Explicit instruction of rules interferes with visuomotor skill transfer.
Tanaka, Kanji; Watanabe, Katsumi
2017-06-01
In the present study, we examined the effects of explicit knowledge, obtained through instruction or spontaneous detection, on the transfer of visuomotor sequence learning. In the learning session, participants learned a visuomotor sequence, via trial and error. In the transfer session, the order of the sequence was reversed from that of the learning session. Before the commencement of the transfer session, some participants received explicit instruction regarding the reversal rule (i.e., Instruction group), while the others did not receive any information and were sorted into either an Aware or Unaware group, as assessed by interview conducted after the transfer session. Participants in the Instruction and Aware groups performed with fewer errors than the Unaware group in the transfer session. The participants in the Instruction group showed slower speed than the Aware and Unaware groups in the transfer session, and the sluggishness likely persisted even in late learning. These results suggest that explicit knowledge reduces errors in visuomotor skill transfer, but may interfere with performance speed, particularly when explicit knowledge is provided, as opposed to being spontaneously discovered.
Bonzano, L; Tacchino, A; Roccatagliata, L; Sormani, M P; Mancardi, G L; Bove, M
2011-07-15
Sequence learning can be investigated by serial reaction-time (SRT) paradigms. Explicit learning occurs when subjects have to recognize a test sequence and has been shown to activate the frontoparietal network in both contralateral and ipsilateral hemispheres. Thus, the left and right superior longitudinal fasciculi (SLF), connecting the intra-hemispheric frontoparietal circuits, could have a role in explicit unimanual visuomotor learning. Also, as both hemispheres are involved, we could hypothesize that the corpus callosum (CC) has a role in this process. Pathological damage in both SLF and CC has been detected in patients with Multiple Sclerosis (PwMS), and microstructural alterations can be quantified by Diffusion Tensor Imaging (DTI). In light of these findings, we inquired whether PwMS with minimal disability showed impairments in explicit visuomotor sequence learning and whether this could be due to loss of white matter integrity in these intra- and inter-hemispheric white matter pathways. Thus, we combined DTI analysis with a modified version of SRT task based on finger opposition movements in a group of PwMS with minimal disability. We found that the performance in explicit sequence learning was significantly reduced in these patients with respect to healthy subjects; the amount of sequence-specific learning was found to be more strongly correlated with fractional anisotropy (FA) in the CC (r=0.93) than in the left (r=0.28) and right SLF (r=0.27) (p for interaction=0.005 and 0.04 respectively). This finding suggests that an inter-hemispheric information exchange between the homologous areas is required to successfully accomplish the task and indirectly supports the role of the right (ipsilateral) hemisphere in explicit visuomotor learning. On the other hand, we found no significant correlation of the FA in the CC and in the SLFs with nonspecific learning (assessed when stimuli are randomly presented), supporting the hypothesis that inter-hemispheric integrity is specifically relevant for explicit sequence learning. Copyright © 2011 Elsevier Inc. All rights reserved.
Implicit transfer of spatial structure in visuomotor sequence learning.
Tanaka, Kanji; Watanabe, Katsumi
2014-11-01
Implicit learning and transfer in sequence learning are essential in daily life. Here, we investigated the implicit transfer of visuomotor sequences following a spatial transformation. In the two experiments, participants used trial and error to learn a sequence consisting of several button presses, known as the m×n task (Hikosaka et al., 1995). After this learning session, participants learned another sequence in which the button configuration was spatially transformed in one of the following ways: mirrored, rotated, and random arrangement. Our results showed that even when participants were unaware of the transformation rules, accuracy of transfer session in the mirrored and rotated groups was higher than that in the random group (i.e., implicit transfer occurred). Both those who noticed the transformation rules and those who did not (i.e., explicit and implicit transfer instances, respectively) showed faster performance in the mirrored sequences than in the rotated sequences. Taken together, the present results suggest that people can use their implicit visuomotor knowledge to spatially transform sequences and that implicit transfers are modulated by a transformation cost, similar to that in explicit transfer. Copyright © 2014 Elsevier B.V. All rights reserved.
Serial Reaction Time Learning in Preschool- and School-Age Children.
ERIC Educational Resources Information Center
Thomas, Kathleen M.; Nelson, Charles A.
2001-01-01
Two experiments assessed visuomotor sequence learning in 4- to 10-year-olds using a serial reaction time (SRT) task with random and sequenced trials. Found that children demonstrated sequence-specific decreases in RT. Participants with explicit awareness of the sequence at the session's end showed larger sequence-specific RT decrements than…
Motor learning and consolidation: the case of visuomotor rotation.
Krakauer, John W
2009-01-01
Adaptation to visuomotor rotation is a particular form of motor learning distinct from force-field adaptation, sequence learning, and skill learning. Nevertheless, study of adaptation to visuomotor rotation has yielded a number of findings and principles that are likely of general importance to procedural learning and memory. First, rotation learning is implicit and appears to proceed through reduction in a visual prediction error generated by a forward model, such implicit adaptation occurs even when it is in conflict with an explicit task goal. Second, rotation learning is subject to different forms of interference: retrograde, anterograde through aftereffects, and contextual blocking of retrieval. Third, opposite rotations can be recalled within a short time interval without interference if implicit contextual cues (effector change) rather than explicit cues (color change) are used. Fourth, rotation learning consolidates both over time and with increased initial training (saturation learning).
Flexible explicit but rigid implicit learning in a visuomotor adaptation task
Bond, Krista M.
2015-01-01
There is mounting evidence for the idea that performance in a visuomotor rotation task can be supported by both implicit and explicit forms of learning. The implicit component of learning has been well characterized in previous experiments and is thought to arise from the adaptation of an internal model driven by sensorimotor prediction errors. However, the role of explicit learning is less clear, and previous investigations aimed at characterizing the explicit component have relied on indirect measures such as dual-task manipulations, posttests, and descriptive computational models. To address this problem, we developed a new method for directly assaying explicit learning by having participants verbally report their intended aiming direction on each trial. While our previous research employing this method has demonstrated the possibility of measuring explicit learning over the course of training, it was only tested over a limited scope of manipulations common to visuomotor rotation tasks. In the present study, we sought to better characterize explicit and implicit learning over a wider range of task conditions. We tested how explicit and implicit learning change as a function of the specific visual landmarks used to probe explicit learning, the number of training targets, and the size of the rotation. We found that explicit learning was remarkably flexible, responding appropriately to task demands. In contrast, implicit learning was strikingly rigid, with each task condition producing a similar degree of implicit learning. These results suggest that explicit learning is a fundamental component of motor learning and has been overlooked or conflated in previous visuomotor tasks. PMID:25855690
ERIC Educational Resources Information Center
Mongeon, David; Blanchet, Pierre; Messier, Julie
2013-01-01
The capacity to learn new visuomotor associations is fundamental to adaptive motor behavior. Evidence suggests visuomotor learning deficits in Parkinson's disease (PD). However, the exact nature of these deficits and the ability of dopamine medication to improve them are under-explored. Previous studies suggested that learning driven by large and…
Visuomotor adaptation in head-mounted virtual reality versus conventional training
Anglin, J. M.; Sugiyama, T.; Liew, S.-L.
2017-01-01
Immersive, head-mounted virtual reality (HMD-VR) provides a unique opportunity to understand how changes in sensory environments affect motor learning. However, potential differences in mechanisms of motor learning and adaptation in HMD-VR versus a conventional training (CT) environment have not been extensively explored. Here, we investigated whether adaptation on a visuomotor rotation task in HMD-VR yields similar adaptation effects in CT and whether these effects are achieved through similar mechanisms. Specifically, recent work has shown that visuomotor adaptation may occur via both an implicit, error-based internal model and a more cognitive, explicit strategic component. We sought to measure both overall adaptation and balance between implicit and explicit mechanisms in HMD-VR versus CT. Twenty-four healthy individuals were placed in either HMD-VR or CT and trained on an identical visuomotor adaptation task that measured both implicit and explicit components. Our results showed that the overall timecourse of adaption was similar in both HMD-VR and CT. However, HMD-VR participants utilized a greater cognitive strategy than CT, while CT participants engaged in greater implicit learning. These results suggest that while both conditions produce similar results in overall adaptation, the mechanisms by which visuomotor adaption occurs in HMD-VR appear to be more reliant on cognitive strategies. PMID:28374808
Fama, Rosemary; Rosenbloom, Margaret J; Sassoon, Stephanie A; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V
2014-12-01
Component cognitive and motor processes contributing to diminished visuomotor procedural learning in HIV infection with comorbid chronic alcoholism (HIV+ALC) include problems with attention and explicit memory processes. The neural correlates associated with this constellation of cognitive and motor processes in HIV infection and alcoholism have yet to be delineated. Frontostriatal regions are affected in HIV infection, frontothalamocerebellar regions are affected in chronic alcoholism, and frontolimbic regions are likely affected in both; all three of these systems have the potential of contributing to both visuomotor procedural learning and explicit memory processes. Here, we examined the neural correlates of implicit memory, explicit memory, attention, and motor tests in 26 HIV+ALC (5 with comorbidity for nonalcohol drug abuse/dependence) and 19 age-range matched healthy control men. Parcellated brain volumes, including cortical, subcortical, and allocortical regions, as well as cortical sulci and ventricles, were derived using the SRI24 brain atlas. Results indicated that smaller thalamic volumes were associated with poorer performance on tests of explicit (immediate and delayed) and implicit (visuomotor procedural) memory in HIV+ALC. By contrast, smaller hippocampal volumes were associated with lower scores on explicit, but not implicit memory. Multiple regression analyses revealed that volumes of both the thalamus and the hippocampus were each unique independent predictors of explicit memory scores. This study provides evidence of a dissociation between implicit and explicit memory tasks in HIV+ALC, with selective relationships observed between hippocampal volume and explicit but not implicit memory, and highlights the relevance of the thalamus to mnemonic processes.
Schultheiss, Oliver C; Pang, Joyce S; Torges, Cynthia M; Wirth, Michelle M; Treynor, Wendy; Derryberry, Douglas
2005-03-01
Participants (N = 216) were administered a differential implicit learning task during which they were trained and tested on 3 maximally distinct 2nd-order visuomotor sequences, with sequence color serving as discriminative stimulus. During training, 1 sequence each was followed by an emotional face, a neutral face, and no face, using backward masking. Emotion (joy, surprise, anger), face gender, and exposure duration (12 ms, 209 ms) were varied between participants; implicit motives were assessed with a picture-story exercise. For power-motivated individuals, low-dominance facial expressions enhanced and high-dominance expressions impaired learning. For affiliation-motivated individuals, learning was impaired in the context of hostile faces. These findings did not depend on explicit learning of fixed sequences or on awareness of sequence-face contingencies. Copyright 2005 APA, all rights reserved.
Financial incentives enhance adaptation to a sensorimotor transformation.
Gajda, Kathrin; Sülzenbrück, Sandra; Heuer, Herbert
2016-10-01
Adaptation to sensorimotor transformations has received much attention in recent years. However, the role of motivation and its relation to the implicit and explicit processes underlying adaptation has been neglected thus far. Here, we examine the influence of extrinsic motivation on adaptation to a visuomotor rotation by way of providing financial incentives for accurate movements. Participants in the experimental group "bonus" received a defined amount of money for high end-point accuracy in a visuomotor rotation task; participants in the control group "no bonus" did not receive a financial incentive. Results showed better overall adaptation to the visuomotor transformation in participants who were extrinsically motivated. However, there was no beneficial effect of financial incentives on the implicit component, as assessed by the after-effects, and on separately assessed explicit knowledge. These findings suggest that the positive influence of financial incentives on adaptation is due to a component which cannot be measured by after-effects or by our test of explicit knowledge. A likely candidate is model-free learning based on reward-prediction errors, which could be enhanced by the financial bonuses.
Carroll, Timothy J.
2016-01-01
Insights into the neural representation of motor learning can be obtained by investigating how learning transfers to novel task conditions. We recently demonstrated that visuomotor rotation learning transferred strongly between left and right limbs when the task was performed in a sagittal workspace, which afforded a consistent remapping for the two limbs in both extrinsic and joint-based coordinates. In contrast, transfer was absent when performed in horizontal workspace, where the extrinsically defined perturbation required conflicting joint-based remapping for the left and right limbs. Because visuomotor learning is thought to be supported by both implicit and explicit forms of learning, however, it is unclear to what extent these distinct forms of learning contribute to interlimb transfer. In this study, we assessed the degree to which interlimb transfer, following visuomotor rotation training, reflects explicit vs. implicit learning by obtaining verbal reports of participants' aiming direction before each movement. We also determined the extent to which these distinct components of learning are constrained by the compatibility of coordinate systems by comparing transfer between groups of participants who reached to targets arranged in the horizontal and sagittal planes. Both sagittal and horizontal conditions displayed complete transfer of explicit learning to the untrained limb. In contrast, transfer of implicit learning was incomplete, but the sagittal condition showed greater transfer than the horizontal condition. These findings suggest that explicit strategies developed with one limb can be fully implemented in the opposite limb, whereas implicit transfer depends on the degree to which new sensorimotor maps are spatially compatible for the two limbs. PMID:27334955
Poh, Eugene; Carroll, Timothy J; Taylor, Jordan A
2016-09-01
Insights into the neural representation of motor learning can be obtained by investigating how learning transfers to novel task conditions. We recently demonstrated that visuomotor rotation learning transferred strongly between left and right limbs when the task was performed in a sagittal workspace, which afforded a consistent remapping for the two limbs in both extrinsic and joint-based coordinates. In contrast, transfer was absent when performed in horizontal workspace, where the extrinsically defined perturbation required conflicting joint-based remapping for the left and right limbs. Because visuomotor learning is thought to be supported by both implicit and explicit forms of learning, however, it is unclear to what extent these distinct forms of learning contribute to interlimb transfer. In this study, we assessed the degree to which interlimb transfer, following visuomotor rotation training, reflects explicit vs. implicit learning by obtaining verbal reports of participants' aiming direction before each movement. We also determined the extent to which these distinct components of learning are constrained by the compatibility of coordinate systems by comparing transfer between groups of participants who reached to targets arranged in the horizontal and sagittal planes. Both sagittal and horizontal conditions displayed complete transfer of explicit learning to the untrained limb. In contrast, transfer of implicit learning was incomplete, but the sagittal condition showed greater transfer than the horizontal condition. These findings suggest that explicit strategies developed with one limb can be fully implemented in the opposite limb, whereas implicit transfer depends on the degree to which new sensorimotor maps are spatially compatible for the two limbs. Copyright © 2016 the American Physiological Society.
Effects of learning with explicit elaboration on implicit transfer of visuomotor sequence learning.
Tanaka, Kanji; Watanabe, Katsumi
2013-08-01
Intervals between stimuli and/or responses have significant influences on sequential learning. In the present study, we investigated whether transfer would occur even when the intervals and the visual configurations in a sequence were drastically changed so that participants did not notice that the required sequences of responses were identical. In the experiment, two (or three) sequential button presses comprised a "set," and nine (or six) consecutive sets comprised a "hyperset." In the first session, participants learned either a 2 × 9 or 3 × 6 hyperset by trial and error until they completed it 20 times without error. In the second block, the 2 × 9 (3 × 6) hyperset was changed into the 3 × 6 (2 × 9) hyperset, resulting in different visual configurations and intervals between stimuli and responses. Participants were assigned into two groups: the Identical and Random groups. In the Identical group, the sequence (i.e., the buttons to be pressed) in the second block was identical to that in the first block. In the Random group, a new hyperset was learned. Even in the Identical group, no participants noticed that the sequences were identical. Nevertheless, a significant transfer of performance occurred. However, in the subsequent experiment that did not require explicit trial-and-error learning in the first session, implicit transfer in the second session did not occur. These results indicate that learning with explicit elaboration strengthens the implicit representation of the sequence order as a whole; this might occur independently of the intervals between elements and enable implicit transfer.
Rand, Miya K.; Rentsch, Sebastian
2016-01-01
This study examined adaptive changes of eye-hand coordination during a visuomotor rotation task under the use of terminal visual feedback. Young adults made reaching movements to targets on a digitizer while looking at targets on a monitor where the rotated feedback (a cursor) of hand movements appeared after each movement. Three rotation angles (30°, 75° and 150°) were examined in three groups in order to vary the task difficulty. The results showed that the 30° group gradually reduced direction errors of reaching with practice and adapted well to the visuomotor rotation. The 75° group made large direction errors of reaching, and the 150° group applied a 180° reversal shift from early practice. The 75°and 150° groups, however, overcompensated the respective rotations at the end of practice. Despite these group differences in adaptive changes of reaching, all groups gradually adapted gaze directions prior to reaching from the target area to the areas related to the final positions of reaching during the course of practice. The adaptive changes of both hand and eye movements in all groups mainly reflected adjustments of movement directions based on explicit knowledge of the applied rotation acquired through practice. Only the 30° group showed small implicit adaptation in both effectors. The results suggest that by adapting gaze directions from the target to the final position of reaching based on explicit knowledge of the visuomotor rotation, the oculomotor system supports the limb-motor system to make precise preplanned adjustments of reaching directions during learning of visuomotor rotation under terminal visual feedback. PMID:27812093
Incidental Auditory Category Learning
Gabay, Yafit; Dick, Frederic K.; Zevin, Jason D.; Holt, Lori L.
2015-01-01
Very little is known about how auditory categories are learned incidentally, without instructions to search for category-diagnostic dimensions, overt category decisions, or experimenter-provided feedback. This is an important gap because learning in the natural environment does not arise from explicit feedback and there is evidence that the learning systems engaged by traditional tasks are distinct from those recruited by incidental category learning. We examined incidental auditory category learning with a novel paradigm, the Systematic Multimodal Associations Reaction Time (SMART) task, in which participants rapidly detect and report the appearance of a visual target in one of four possible screen locations. Although the overt task is rapid visual detection, a brief sequence of sounds precedes each visual target. These sounds are drawn from one of four distinct sound categories that predict the location of the upcoming visual target. These many-to-one auditory-to-visuomotor correspondences support incidental auditory category learning. Participants incidentally learn categories of complex acoustic exemplars and generalize this learning to novel exemplars and tasks. Further, learning is facilitated when category exemplar variability is more tightly coupled to the visuomotor associations than when the same stimulus variability is experienced across trials. We relate these findings to phonetic category learning. PMID:26010588
Compatibility of motion facilitates visuomotor synchronization.
Hove, Michael J; Spivey, Michael J; Krumhansl, Carol L
2010-12-01
Prior research indicates that synchronized tapping performance is very poor with flashing visual stimuli compared with auditory stimuli. Three finger-tapping experiments compared flashing visual metronomes with visual metronomes containing a spatial component, either compatible, incompatible, or orthogonal to the tapping action. In Experiment 1, synchronization success rates increased dramatically for spatiotemporal sequences of both geometric and biological forms over flashing sequences. In Experiment 2, synchronization performance was best when target sequences and movements were directionally compatible (i.e., simultaneously down), followed by orthogonal stimuli, and was poorest for incompatible moving stimuli and flashing stimuli. In Experiment 3, synchronization performance was best with auditory sequences, followed by compatible moving stimuli, and was worst for flashing and fading stimuli. Results indicate that visuomotor synchronization improves dramatically with compatible spatial information. However, an auditory advantage in sensorimotor synchronization persists.
Engel, Annerose; Bangert, Marc; Horbank, David; Hijmans, Brenda S; Wilkens, Katharina; Keller, Peter E; Keysers, Christian
2012-11-01
To investigate the cross-modal transfer of movement patterns necessary to perform melodies on the piano, 22 non-musicians learned to play short sequences on a piano keyboard by (1) merely listening and replaying (vision of own fingers occluded) or (2) merely observing silent finger movements and replaying (on a silent keyboard). After training, participants recognized with above chance accuracy (1) audio-motor learned sequences upon visual presentation (89±17%), and (2) visuo-motor learned sequences upon auditory presentation (77±22%). The recognition rates for visual presentation significantly exceeded those for auditory presentation (p<.05). fMRI revealed that observing finger movements corresponding to audio-motor trained melodies is associated with stronger activation in the left rolandic operculum than observing untrained sequences. This region was also involved in silent execution of sequences, suggesting that a link to motor representations may play a role in cross-modal transfer from audio-motor training condition to visual recognition. No significant differences in brain activity were found during listening to visuo-motor trained compared to untrained melodies. Cross-modal transfer was stronger from the audio-motor training condition to visual recognition and this is discussed in relation to the fact that non-musicians are familiar with how their finger movements look (motor-to-vision transformation), but not with how they sound on a piano (motor-to-sound transformation). Copyright © 2012 Elsevier Inc. All rights reserved.
Learning by observation: insights from Williams syndrome.
Foti, Francesca; Menghini, Deny; Mandolesi, Laura; Federico, Francesca; Vicari, Stefano; Petrosini, Laura
2013-01-01
Observing another person performing a complex action accelerates the observer's acquisition of the same action and limits the time-consuming process of learning by trial and error. Observational learning makes an interesting and potentially important topic in the developmental domain, especially when disorders are considered. The implications of studies aimed at clarifying whether and how this form of learning is spared by pathology are manifold. We focused on a specific population with learning and intellectual disabilities, the individuals with Williams syndrome. The performance of twenty-eight individuals with Williams syndrome was compared with that of mental age- and gender-matched thirty-two typically developing children on tasks of learning of a visuo-motor sequence by observation or by trial and error. Regardless of the learning modality, acquiring the correct sequence involved three main phases: a detection phase, in which participants discovered the correct sequence and learned how to perform the task; an exercise phase, in which they reproduced the sequence until performance was error-free; an automatization phase, in which by repeating the error-free sequence they became accurate and speedy. Participants with Williams syndrome beneficiated of observational training (in which they observed an actor detecting the visuo-motor sequence) in the detection phase, while they performed worse than typically developing children in the exercise and automatization phases. Thus, by exploiting competencies learned by observation, individuals with Williams syndrome detected the visuo-motor sequence, putting into action the appropriate procedural strategies. Conversely, their impaired performances in the exercise phases appeared linked to impaired spatial working memory, while their deficits in automatization phases to deficits in processes increasing efficiency and speed of the response. Overall, observational experience was advantageous for acquiring competencies, since it primed subjects' interest in the actions to be performed and functioned as a catalyst for executed action.
Implicit transfer of reversed temporal structure in visuomotor sequence learning.
Tanaka, Kanji; Watanabe, Katsumi
2014-04-01
Some spatio-temporal structures are easier to transfer implicitly in sequential learning. In this study, we investigated whether the consistent reversal of triads of learned components would support the implicit transfer of their temporal structure in visuomotor sequence learning. A triad comprised three sequential button presses ([1][2][3]) and seven consecutive triads comprised a sequence. Participants learned sequences by trial and error, until they could complete it 20 times without error. Then, they learned another sequence, in which each triad was reversed ([3][2][1]), partially reversed ([2][1][3]), or switched so as not to overlap with the other conditions ([2][3][1] or [3][1][2]). Even when the participants did not notice the alternation rule, the consistent reversal of the temporal structure of each triad led to better implicit transfer; this was confirmed in a subsequent experiment. These results suggest that the implicit transfer of the temporal structure of a learned sequence can be influenced by both the structure and consistency of the change. Copyright © 2013 Cognitive Science Society, Inc.
Leow, Li-Ann; Gunn, Reece; Marinovic, Welber; Carroll, Timothy J
2017-08-01
When sensory feedback is perturbed, accurate movement is restored by a combination of implicit processes and deliberate reaiming to strategically compensate for errors. Here, we directly compare two methods used previously to dissociate implicit from explicit learning on a trial-by-trial basis: 1 ) asking participants to report the direction that they aim their movements, and contrasting this with the directions of the target and the movement that they actually produce, and 2 ) manipulating movement preparation time. By instructing participants to reaim without a sensory perturbation, we show that reaiming is possible even with the shortest possible preparation times, particularly when targets are narrowly distributed. Nonetheless, reaiming is effortful and comes at the cost of increased variability, so we tested whether constraining preparation time is sufficient to suppress strategic reaiming during adaptation to visuomotor rotation with a broad target distribution. The rate and extent of error reduction under preparation time constraints were similar to estimates of implicit learning obtained from self-report without time pressure, suggesting that participants chose not to apply a reaiming strategy to correct visual errors under time pressure. Surprisingly, participants who reported aiming directions showed less implicit learning according to an alternative measure, obtained during trials performed without visual feedback. This suggests that the process of reporting can affect the extent or persistence of implicit learning. The data extend existing evidence that restricting preparation time can suppress explicit reaiming and provide an estimate of implicit visuomotor rotation learning that does not require participants to report their aiming directions. NEW & NOTEWORTHY During sensorimotor adaptation, implicit error-driven learning can be isolated from explicit strategy-driven reaiming by subtracting self-reported aiming directions from movement directions, or by restricting movement preparation time. Here, we compared the two methods. Restricting preparation times did not eliminate reaiming but was sufficient to suppress reaiming during adaptation with widely distributed targets. The self-report method produced a discrepancy in implicit learning estimated by subtracting aiming directions and implicit learning measured in no-feedback trials. Copyright © 2017 the American Physiological Society.
Wu, Howard G.
2013-01-01
The planning of goal-directed movements is highly adaptable; however, the basic mechanisms underlying this adaptability are not well understood. Even the features of movement that drive adaptation are hotly debated, with some studies suggesting remapping of goal locations and others suggesting remapping of the movement vectors leading to goal locations. However, several previous motor learning studies and the multiplicity of the neural coding underlying visually guided reaching movements stand in contrast to this either/or debate on the modes of motor planning and adaptation. Here we hypothesize that, during visuomotor learning, the target location and movement vector of trained movements are separately remapped, and we propose a novel computational model for how motor plans based on these remappings are combined during the control of visually guided reaching in humans. To test this hypothesis, we designed a set of experimental manipulations that effectively dissociated the effects of remapping goal location and movement vector by examining the transfer of visuomotor adaptation to untrained movements and movement sequences throughout the workspace. The results reveal that (1) motor adaptation differentially remaps goal locations and movement vectors, and (2) separate motor plans based on these features are effectively averaged during motor execution. We then show that, without any free parameters, the computational model we developed for combining movement-vector-based and goal-location-based planning predicts nearly 90% of the variance in novel movement sequences, even when multiple attributes are simultaneously adapted, demonstrating for the first time the ability to predict how motor adaptation affects movement sequence planning. PMID:23804099
Borragán, Guillermo; Urbain, Charline; Schmitz, Rémy; Mary, Alison; Peigneux, Philippe
2015-04-01
That post-training sleep supports the consolidation of sequential motor skills remains debated. Performance improvement and sensitivity to proactive interference are both putative measures of long-term memory consolidation. We tested sleep-dependent memory consolidation for visuo-motor sequence learning using a proactive interference paradigm. Thirty-three young adults were trained on sequence A on Day 1, then had Regular Sleep (RS) or were Sleep Deprived (SD) on the night after learning. After two recovery nights, they were tested on the same sequence A, then had to learn a novel, potentially competing sequence B. We hypothesized that proactive interference effects on sequence B due to the prior learning of sequence A would be higher in the RS condition, considering that proactive interference is an indirect marker of the robustness of sequence A, which should be better consolidated over post-training sleep. Results highlighted sleep-dependent improvement for sequence A, with faster RTs overnight for RS participants only. Moreover, the beneficial impact of sleep was specific to the consolidation of motor but not sequential skills. Proactive interference effects on learning a new material at Day 4 were similar between RS and SD participants. These results suggest that post-training sleep contributes to optimizing motor but not sequential components of performance in visuo-motor sequence learning. Copyright © 2015 Elsevier Inc. All rights reserved.
Raza, Meher; Ivry, Richard B.
2016-01-01
In standard taxonomies, motor skills are typically treated as representative of implicit or procedural memory. We examined two emblematic tasks of implicit motor learning, sensorimotor adaptation and sequence learning, asking whether individual differences in learning are correlated between these tasks, as well as how individual differences within each task are related to different performance variables. As a prerequisite, it was essential to establish the reliability of learning measures for each task. Participants were tested twice on a visuomotor adaptation task and on a sequence learning task, either the serial reaction time task or the alternating reaction time task. Learning was evident in all tasks at the group level and reliable at the individual level in visuomotor adaptation and the alternating reaction time task but not in the serial reaction time task. Performance variability was predictive of learning in both domains, yet the relationship was in the opposite direction for adaptation and sequence learning. For the former, faster learning was associated with lower variability, consistent with models of sensorimotor adaptation in which learning rates are sensitive to noise. For the latter, greater learning was associated with higher variability and slower reaction times, factors that may facilitate the spread of activation required to form predictive, sequential associations. Interestingly, learning measures of the different tasks were not correlated. Together, these results oppose a shared process for implicit learning in sensorimotor adaptation and sequence learning and provide insight into the factors that account for individual differences in learning within each task domain. NEW & NOTEWORTHY We investigated individual differences in the ability to implicitly learn motor skills. As a prerequisite, we assessed whether individual differences were reliable across test sessions. We found that two commonly used tasks of implicit learning, visuomotor adaptation and the alternating serial reaction time task, exhibited good test-retest reliability in measures of learning and performance. However, the learning measures did not correlate between the two tasks, arguing against a shared process for implicit motor learning. PMID:27832611
Tanaka, Kanji; Watanabe, Katsumi
2016-02-01
The present study examined whether sequence learning led to more accurate and shorter performance time if people who are learning a sequence start over from the beginning when they make an error (i.e., practice the whole sequence) or only from the point of error (i.e., practice a part of the sequence). We used a visuomotor sequence learning paradigm with a trial-and-error procedure. In Experiment 1, we found fewer errors, and shorter performance time for those who restarted their performance from the beginning of the sequence as compared to those who restarted from the point at which an error occurred, indicating better learning of spatial and motor representations of the sequence. This might be because the learned elements were repeated when the next performance started over from the beginning. In subsequent experiments, we increased the occasions for the repetitions of learned elements by modulating the number of fresh start points in the sequence after errors. The results showed that fewer fresh start points were likely to lead to fewer errors and shorter performance time, indicating that the repetitions of learned elements enabled participants to develop stronger spatial and motor representations of the sequence. Thus, a single or two fresh start points in the sequence (i.e., starting over only from the beginning or from the beginning or midpoint of the sequence after errors) is likely to lead to more accurate and faster performance. Copyright © 2016 Elsevier B.V. All rights reserved.
Implicit and Explicit Representations of Hand Position in Tool Use
Rand, Miya K.; Heuer, Herbert
2013-01-01
Understanding the interactions of visual and proprioceptive information in tool use is important as it is the basis for learning of the tool's kinematic transformation and thus skilled performance. This study investigated how the CNS combines seen cursor positions and felt hand positions under a visuo-motor rotation paradigm. Young and older adult participants performed aiming movements on a digitizer while looking at rotated visual feedback on a monitor. After each movement, they judged either the proprioceptively sensed hand direction or the visually sensed cursor direction. We identified asymmetric mutual biases with a strong visual dominance. Furthermore, we found a number of differences between explicit and implicit judgments of hand directions. The explicit judgments had considerably larger variability than the implicit judgments. The bias toward the cursor direction for the explicit judgments was about twice as strong as for the implicit judgments. The individual biases of explicit and implicit judgments were uncorrelated. Biases of these judgments exhibited opposite sequential effects. Moreover, age-related changes were also different between these judgments. The judgment variability was decreased and the bias toward the cursor direction was increased with increasing age only for the explicit judgments. These results indicate distinct explicit and implicit neural representations of hand direction, similar to the notion of distinct visual systems. PMID:23894307
Kanazawa, Yuji; Nakamura, Kimihiro; Ishii, Toru; Aso, Toshihiko; Yamazaki, Hiroshi; Omori, Koichi
2017-01-01
Sign language is an essential medium for everyday social interaction for deaf people and plays a critical role in verbal learning. In particular, language development in those people should heavily rely on the verbal short-term memory (STM) via sign language. Most previous studies compared neural activations during signed language processing in deaf signers and those during spoken language processing in hearing speakers. For sign language users, it thus remains unclear how visuospatial inputs are converted into the verbal STM operating in the left-hemisphere language network. Using functional magnetic resonance imaging, the present study investigated neural activation while bilinguals of spoken and signed language were engaged in a sequence memory span task. On each trial, participants viewed a nonsense syllable sequence presented either as written letters or as fingerspelling (4-7 syllables in length) and then held the syllable sequence for 12 s. Behavioral analysis revealed that participants relied on phonological memory while holding verbal information regardless of the type of input modality. At the neural level, this maintenance stage broadly activated the left-hemisphere language network, including the inferior frontal gyrus, supplementary motor area, superior temporal gyrus and inferior parietal lobule, for both letter and fingerspelling conditions. Interestingly, while most participants reported that they relied on phonological memory during maintenance, direct comparisons between letters and fingers revealed strikingly different patterns of neural activation during the same period. Namely, the effortful maintenance of fingerspelling inputs relative to letter inputs activated the left superior parietal lobule and dorsal premotor area, i.e., brain regions known to play a role in visuomotor analysis of hand/arm movements. These findings suggest that the dorsal visuomotor neural system subserves verbal learning via sign language by relaying gestural inputs to the classical left-hemisphere language network.
Manual Dexterity in Schizophrenia—A Neglected Clinical Marker?
Térémetz, Maxime; Carment, Loïc; Brénugat-Herne, Lindsay; Croca, Marta; Bleton, Jean-Pierre; Krebs, Marie-Odile; Maier, Marc A.; Amado, Isabelle; Lindberg, Påvel G.
2017-01-01
Impaired manual dexterity is commonly observed in schizophrenia. However, a quantitative description of key sensorimotor components contributing to impaired dexterity is lacking. Whether the key components of dexterity are differentially affected and how they relate to clinical characteristics also remains unclear. We quantified the degree of dexterity in 35 stabilized patients with schizophrenia and in 20 age-matched control subjects using four visuomotor tasks: (i) force tracking to quantify visuomotor precision, (ii) sequential finger tapping to measure motor sequence recall, (iii) single-finger tapping to assess temporal regularity, and (iv) multi-finger tapping to measure independence of finger movements. Diverse clinical and neuropsychological tests were also applied. A patient subgroup (N = 15) participated in a 14-week cognitive remediation protocol and was assessed before and after remediation. Compared to control subjects, patients with schizophrenia showed greater error in force tracking, poorer recall of tapping sequences, decreased tapping regularity, and reduced degree of finger individuation. A composite performance measure discriminated patients from controls with sensitivity = 0.79 and specificity = 0.9. Aside from force-tracking error, no other dexterity components correlated with antipsychotic medication. In patients, some dexterity components correlated with neurological soft signs, Positive and Negative Syndrome Scale (PANSS), or neuropsychological scores. This suggests differential cognitive contributions to these components. Cognitive remediation lead to significant improvement in PANSS, tracking error, and sequence recall (without change in medication). These findings show that multiple aspects of sensorimotor control contribute to impaired manual dexterity in schizophrenia. Only visuomotor precision was related to antipsychotic medication. Good diagnostic accuracy and responsiveness to treatment suggest that manual dexterity may represent a useful clinical marker in schizophrenia. PMID:28740470
de Rengervé, Antoine; Andry, Pierre; Gaussier, Philippe
2015-04-01
Imitation and learning from humans require an adequate sensorimotor controller to learn and encode behaviors. We present the Dynamic Muscle Perception-Action(DM-PerAc) model to control a multiple degrees-of-freedom (DOF) robot arm. In the original PerAc model, path-following or place-reaching behaviors correspond to the sensorimotor attractors resulting from the dynamics of learned sensorimotor associations. The DM-PerAc model, inspired by human muscles, permits one to combine impedance-like control with the capability of learning sensorimotor attraction basins. We detail a solution to learn incrementally online the DM-PerAc visuomotor controller. Postural attractors are learned by adapting the muscle activations in the model depending on movement errors. Visuomotor categories merging visual and proprioceptive signals are associated with these muscle activations. Thus, the visual and proprioceptive signals activate the motor action generating an attractor which satisfies both visual and proprioceptive constraints. This visuomotor controller can serve as a basis for imitative behaviors. In addition, the muscle activation patterns can define directions of movement instead of postural attractors. Such patterns can be used in state-action couples to generate trajectories like in the PerAc model. We discuss a possible extension of the DM-PerAc controller by adapting the Fukuyori's controller based on the Langevin's equation. This controller can serve not only to reach attractors which were not explicitly learned, but also to learn the state/action couples to define trajectories.
Stark-Inbar, Alit; Raza, Meher; Taylor, Jordan A; Ivry, Richard B
2017-01-01
In standard taxonomies, motor skills are typically treated as representative of implicit or procedural memory. We examined two emblematic tasks of implicit motor learning, sensorimotor adaptation and sequence learning, asking whether individual differences in learning are correlated between these tasks, as well as how individual differences within each task are related to different performance variables. As a prerequisite, it was essential to establish the reliability of learning measures for each task. Participants were tested twice on a visuomotor adaptation task and on a sequence learning task, either the serial reaction time task or the alternating reaction time task. Learning was evident in all tasks at the group level and reliable at the individual level in visuomotor adaptation and the alternating reaction time task but not in the serial reaction time task. Performance variability was predictive of learning in both domains, yet the relationship was in the opposite direction for adaptation and sequence learning. For the former, faster learning was associated with lower variability, consistent with models of sensorimotor adaptation in which learning rates are sensitive to noise. For the latter, greater learning was associated with higher variability and slower reaction times, factors that may facilitate the spread of activation required to form predictive, sequential associations. Interestingly, learning measures of the different tasks were not correlated. Together, these results oppose a shared process for implicit learning in sensorimotor adaptation and sequence learning and provide insight into the factors that account for individual differences in learning within each task domain. We investigated individual differences in the ability to implicitly learn motor skills. As a prerequisite, we assessed whether individual differences were reliable across test sessions. We found that two commonly used tasks of implicit learning, visuomotor adaptation and the alternating serial reaction time task, exhibited good test-retest reliability in measures of learning and performance. However, the learning measures did not correlate between the two tasks, arguing against a shared process for implicit motor learning. Copyright © 2017 the American Physiological Society.
Bergamasco, Massimo; Frisoli, Antonio; Fontana, Marco; Loconsole, Claudio; Leonardis, Daniele; Troncossi, Marco; Foumashi, Mohammad Mozaffari; Parenti-Castelli, Vincenzo
2011-01-01
This paper presents the preliminary results of the project BRAVO (Brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks). The objective of this project is to define a new approach to the development of assistive and rehabilitative robots for motor impaired users to perform complex visuomotor tasks that require a sequence of reaches, grasps and manipulations of objects. BRAVO aims at developing new robotic interfaces and HW/SW architectures for rehabilitation and regain/restoration of motor function in patients with upper limb sensorimotor impairment through extensive rehabilitation therapy and active assistance in the execution of Activities of Daily Living. The final system developed within this project will include a robotic arm exoskeleton and a hand orthosis that will be integrated together for providing force assistance. The main novelty that BRAVO introduces is the control of the robotic assistive device through the active prediction of intention/action. The system will actually integrate the information about the movement carried out by the user with a prediction of the performed action through an interpretation of current gaze of the user (measured through eye-tracking), brain activation (measured through BCI) and force sensor measurements. © 2011 IEEE
Eye-Hand Coordination during Visuomotor Adaptation with Different Rotation Angles
Rentsch, Sebastian; Rand, Miya K.
2014-01-01
This study examined adaptive changes of eye-hand coordination during a visuomotor rotation task. Young adults made aiming movements to targets on a horizontal plane, while looking at the rotated feedback (cursor) of hand movements on a monitor. To vary the task difficulty, three rotation angles (30°, 75°, and 150°) were tested in three groups. All groups shortened hand movement time and trajectory length with practice. However, control strategies used were different among groups. The 30° group used proportionately more implicit adjustments of hand movements than other groups. The 75° group used more on-line feedback control, whereas the 150° group used explicit strategic adjustments. Regarding eye-hand coordination, timing of gaze shift to the target was gradually changed with practice from the late to early phase of hand movements in all groups, indicating an emerging gaze-anchoring behavior. Gaze locations prior to the gaze anchoring were also modified with practice from the cursor vicinity to an area between the starting position and the target. Reflecting various task difficulties, these changes occurred fastest in the 30° group, followed by the 75° group. The 150° group persisted in gazing at the cursor vicinity. These results suggest that the function of gaze control during visuomotor adaptation changes from a reactive control for exploring the relation between cursor and hand movements to a predictive control for guiding the hand to the task goal. That gaze-anchoring behavior emerged in all groups despite various control strategies indicates a generality of this adaptive pattern for eye-hand coordination in goal-directed actions. PMID:25333942
Sleep benefits consolidation of visuo-motor adaptation learning in older adults.
Mantua, Janna; Baran, Bengi; Spencer, Rebecca M C
2016-02-01
Sleep is beneficial for performance across a range of memory tasks in young adults, but whether memories are similarly consolidated in older adults is less clear. Performance benefits have been observed following sleep in older adults for declarative learning tasks, but this benefit may be reduced for non-declarative, motor skill learning tasks. To date, studies of sleep-dependent consolidation of motor learning in older adults are limited to motor sequence tasks. To examine whether reduced sleep-dependent consolidation in older adults is generalizable to other forms of motor skill learning, we examined performance changes over intervals of sleep and wake in young (n = 62) and older adults (n = 61) using a mirror-tracing task, which assesses visuo-motor adaptation learning. Participants learned the task either in the morning or in evening, and performance was assessed following a 12-h interval containing overnight sleep or daytime wake. Contrary to our prediction, both young adults and older adults exhibited sleep-dependent gains in visuo-motor adaptation. There was a correlation between performance improvement over sleep and percent of the night in non-REM stage 2 sleep. These results indicate that motor skill consolidation remains intact with increasing age although this relationship may be limited to specific forms of motor skill learning.
Encoding attentional states during visuomotor adaptation
Im, Hee Yeon; Bédard, Patrick; Song, Joo-Hyun
2015-01-01
We recently showed that visuomotor adaptation acquired under attentional distraction is better recalled under a similar level of distraction compared to no distraction. This paradoxical effect suggests that attentional state (e.g., divided or undivided) is encoded as an internal context during visuomotor learning and should be reinstated for successful recall (Song & Bédard, 2015). To investigate if there is a critical temporal window for encoding attentional state in visuomotor memory, we manipulated whether participants performed the secondary attention-demanding task concurrently in the early or late phase of visuomotor learning. Recall performance was enhanced when the attentional states between recall and the early phase of visuomotor learning were consistent. However, it reverted to untrained levels when tested under the attentional state of the late-phase learning. This suggests that attentional state is primarily encoded during the early phase of learning before motor errors decrease and reach an asymptote. Furthermore, we demonstrate that when divided and undivided attentional states were mixed during visuomotor adaptation, only divided attention was encoded as an internal cue for memory retrieval. Therefore, a single attentional state appears to be primarily integrated with visuomotor memory while motor error reduction is in progress during learning. PMID:26114683
Playing Action Video Games Improves Visuomotor Control.
Li, Li; Chen, Rongrong; Chen, Jing
2016-08-01
Can playing action video games improve visuomotor control? If so, can these games be used in training people to perform daily visuomotor-control tasks, such as driving? We found that action gamers have better lane-keeping and visuomotor-control skills than do non-action gamers. We then trained non-action gamers with action or nonaction video games. After they played a driving or first-person-shooter video game for 5 or 10 hr, their visuomotor control improved significantly. In contrast, non-action gamers showed no such improvement after they played a nonaction video game. Our model-driven analysis revealed that although different action video games have different effects on the sensorimotor system underlying visuomotor control, action gaming in general improves the responsiveness of the sensorimotor system to input error signals. The findings support a causal link between action gaming (for as little as 5 hr) and enhancement in visuomotor control, and suggest that action video games can be beneficial training tools for driving. © The Author(s) 2016.
Performance of a visuomotor walking task in an augmented reality training setting.
Haarman, Juliet A M; Choi, Julia T; Buurke, Jaap H; Rietman, Johan S; Reenalda, Jasper
2017-12-01
Visual cues can be used to train walking patterns. Here, we studied the performance and learning capacities of healthy subjects executing a high-precision visuomotor walking task, in an augmented reality training set-up. A beamer was used to project visual stepping targets on the walking surface of an instrumented treadmill. Two speeds were used to manipulate task difficulty. All participants (n = 20) had to change their step length to hit visual stepping targets with a specific part of their foot, while walking on a treadmill over seven consecutive training blocks, each block composed of 100 stepping targets. Distance between stepping targets was varied between short, medium and long steps. Training blocks could either be composed of random stepping targets (no fixed sequence was present in the distance between the stepping targets) or sequenced stepping targets (repeating fixed sequence was present). Random training blocks were used to measure non-specific learning and sequenced training blocks were used to measure sequence-specific learning. Primary outcome measures were performance (% of correct hits), and learning effects (increase in performance over the training blocks: both sequence-specific and non-specific). Secondary outcome measures were the performance and stepping-error in relation to the step length (distance between stepping target). Subjects were able to score 76% and 54% at first try for lower speed (2.3 km/h) and higher speed (3.3 km/h) trials, respectively. Performance scores did not increase over the course of the trials, nor did the subjects show the ability to learn a sequenced walking task. Subjects were better able to hit targets while increasing their step length, compared to shortening it. In conclusion, augmented reality training by use of the current set-up was intuitive for the user. Suboptimal feedback presentation might have limited the learning effects of the subjects. Copyright © 2017 Elsevier B.V. All rights reserved.
Visuomotor sensitivity to visual information about surface orientation.
Knill, David C; Kersten, Daniel
2004-03-01
We measured human visuomotor sensitivity to visual information about three-dimensional surface orientation by analyzing movements made to place an object on a slanted surface. We applied linear discriminant analysis to the kinematics of subjects' movements to surfaces with differing slants (angle away form the fronto-parallel) to derive visuomotor d's for discriminating surfaces differing in slant by 5 degrees. Subjects' visuomotor sensitivity to information about surface orientation was very high, with discrimination "thresholds" ranging from 2 to 3 degrees. In a first experiment, we found that subjects performed only slightly better using binocular cues alone than monocular texture cues and that they showed only weak evidence for combining the cues when both were available, suggesting that monocular cues can be just as effective in guiding motor behavior in depth as binocular cues. In a second experiment, we measured subjects' perceptual discrimination and visuomotor thresholds in equivalent stimulus conditions to decompose visuomotor sensitivity into perceptual and motor components. Subjects' visuomotor thresholds were found to be slightly greater than their perceptual thresholds for a range of memory delays, from 1 to 3 s. The data were consistent with a model in which perceptual noise increases with increasing delay between stimulus presentation and movement initiation, but motor noise remains constant. This result suggests that visuomotor and perceptual systems rely on the same visual estimates of surface slant for memory delays ranging from 1 to 3 s.
The effects of working memory resource depletion and training on sensorimotor adaptation
Anguera, Joaquin A.; Bernard, Jessica A.; Jaeggi, Susanne M.; Buschkuehl, Martin; Benson, Bryan L.; Jennett, Sarah; Humfleet, Jennifer; Reuter-Lorenz, Patricia; Jonides, John; Seidler, Rachael D.
2011-01-01
We have recently demonstrated that visuospatial working memory performance predicts the rate of motor skill learning, particularly during the early phase of visuomotor adaptation. Here, we follow up these correlational findings with direct manipulations of working memory resources to determine the impact on visuomotor adaptation, a form of motor learning. We conducted two separate experiments. In the first one, we used a resource depletion strategy to investigate whether the rate of early visuomotor adaptation would be negatively affected by fatigue of spatial working memory resources. In the second study, we employed a dual n-back task training paradigm that has been shown to result in transfer effects [1] over five weeks to determine whether training-related improvements would boost the rate of early visuomotor adaptation. The depletion of spatial working memory resources negatively affected the rate of early visuomotor adaptation. However, enhancing working memory capacity via training did not lead to improved rates of visuomotor adaptation, suggesting that working memory capacity may not be the factor limiting maximal rate of visuomotor adaptation in young adults. These findings are discussed from a resource limitation / capacity framework with respect to current views of motor learning. PMID:22155489
Neural Correlates of Expert Visuomotor Performance in Badminton Players.
Hülsdünker, Thorben; Strüder, Heiko K; Mierau, Andreas
2016-11-01
Elite/skilled athletes participating in sports that require the initiation of targeted movements in response to visual cues under critical time pressure typically outperform nonathletes in a visuomotor reaction task. However, the exact physiological mechanisms of this advantage remain unclear. Therefore, this study aimed to determine the neurophysiological processes contributing to superior visuomotor performance in athletes using visual evoked potential (VEP). Central and peripheral determinants of visuomotor reaction time were investigated in 15 skilled badminton players and 28 age-matched nonathletic controls. To determine the speed of visual signal perception in the cortex, chromatic and achromatic pattern reversal stimuli were presented, and VEP values were recorded with a 64-channel EEG system. Further, a simple visuomotor reaction task was performed to investigate the transformation of the visual into a motor signal in the brain as well as the timing of muscular activation. Amplitude and latency of VEP (N75, P100, and N145) revealed that the athletes did not significantly differ from the nonathletes. However, visuomotor reaction time was significantly reduced in the athletes compared with nonathletes (athletes = 234.9 ms, nonathletes = 260.3 ms, P = 0.015). This was accompanied by an earlier activation of the premotor and supplementary motor areas (athletes = 163.9 ms, nonathletes = 199.1 ms, P = 0.015) as well as an earlier EMG onset (athletes = 167.5 ms, nonathletes = 206.5 ms, P < 0.001). The latency of premotor and supplementary motor area activation was correlated with EMG onset (r = 0.41) and visuomotor reaction time (r = 0.43). The results of this study indicate that superior visuomotor performance in athletes originates from faster visuomotor transformation in the premotor and supplementary motor cortical regions rather than from earlier perception of visual signals in the visual cortex.
Visuomotor cerebellum in human and nonhuman primates.
Voogd, Jan; Schraa-Tam, Caroline K L; van der Geest, Jos N; De Zeeuw, Chris I
2012-06-01
In this paper, we will review the anatomical components of the visuomotor cerebellum in human and, where possible, in non-human primates and discuss their function in relation to those of extracerebellar visuomotor regions with which they are connected. The floccular lobe, the dorsal paraflocculus, the oculomotor vermis, the uvula-nodulus, and the ansiform lobule are more or less independent components of the visuomotor cerebellum that are involved in different corticocerebellar and/or brain stem olivocerebellar loops. The floccular lobe and the oculomotor vermis share different mossy fiber inputs from the brain stem; the dorsal paraflocculus and the ansiform lobule receive corticopontine mossy fibers from postrolandic visual areas and the frontal eye fields, respectively. Of the visuomotor functions of the cerebellum, the vestibulo-ocular reflex is controlled by the floccular lobe; saccadic eye movements are controlled by the oculomotor vermis and ansiform lobule, while control of smooth pursuit involves all these cerebellar visuomotor regions. Functional imaging studies in humans further emphasize cerebellar involvement in visual reflexive eye movements and are discussed.
Aleci, Carlo; Piccoli, Marzia; Melotti, Valentina; Melis, Elena; Canavese, Lorenzo
2017-12-01
Purpose A model aimed at detecting the proportion of visuoperceptive and visuomotor coordination impairment in children with ascertained or suspected learning disability is described. The final purpose is to provide customized rehabilitation programs. Methods In this pilot study, four children (8-9 years) were administered a set of standardized tests to evaluate their ability to perform visuoperceptive and visuomotor tasks. Depending on the individual outcomes, two indexes have been computed from the resulting z-scores: η (Eta) that quantifies the visuoperceptive impairment, and μ (Mu) that expresses the alteration in visuomotor coordination. Results A condition of abnormality was evident in each patient: Subjects 1 and 3 suffered mainly from a visuoperceptive alteration (η higher than expected), while Subject 4 had reduced visuomotor coordination (μ higher than expected). Subject 2 showed balanced visuoperceptive and visuomotor impairment. Based on the obtained η and μ values, each child underwent a customized rehabilitation treatment, then they were examined again. At re-test, η or μ turned balanced and z-scores improved in the four patients. Conclusions The Eta/Mu model is effective in detecting the type of damage by quantifying the share of visuoperceptive and visuomotor coordination involvement in dyslexic children, allowing a customized rehabilitative approach. Such an approach, focused on treating the function found to be defective, appears to be effective in rebalancing individual visuomotor and visuoperceptive skills; it should, therefore, be taken into consideration when updating the rehabilitation plans of learning disabled children.
Effect of visuomotor-map uncertainty on visuomotor adaptation.
Saijo, Naoki; Gomi, Hiroaki
2012-03-01
Vision and proprioception contribute to generating hand movement. If a conflict between the visual and proprioceptive feedback of hand position is given, reaching movement is disturbed initially but recovers after training. Although previous studies have predominantly investigated the adaptive change in the motor output, it is unclear whether the contributions of visual and proprioceptive feedback controls to the reaching movement are modified by visuomotor adaptation. To investigate this, we focused on the change in proprioceptive feedback control associated with visuomotor adaptation. After the adaptation to gradually introduce visuomotor rotation, the hand reached the shifted position of the visual target to move the cursor to the visual target correctly. When the cursor feedback was occasionally eliminated (probe trial), the end point of the hand movement was biased in the visual-target direction, while the movement was initiated in the adapted direction, suggesting the incomplete adaptation of proprioceptive feedback control. Moreover, after the learning of uncertain visuomotor rotation, in which the rotation angle was randomly fluctuated on a trial-by-trial basis, the end-point bias in the probe trial increased, but the initial movement direction was not affected, suggesting a reduction in the adaptation level of proprioceptive feedback control. These results suggest that the change in the relative contribution of visual and proprioceptive feedback controls to the reaching movement in response to the visuomotor-map uncertainty is involved in visuomotor adaptation, whereas feedforward control might adapt in a manner different from that of the feedback control.
Hirashima, Masaya
2016-01-01
Abstract When a visually guided reaching movement is unexpectedly perturbed, it is implicitly corrected in two ways: immediately after the perturbation by feedback control (online correction) and in the next movement by adjusting feedforward motor commands (offline correction or motor adaptation). Although recent studies have revealed a close relationship between feedback and feedforward controls, the nature of this relationship is not yet fully understood. Here, we show that both implicit online and offline movement corrections utilize the same visuomotor map for feedforward movement control that transforms the spatial location of visual objects into appropriate motor commands. First, we artificially distorted the visuomotor map by applying opposite visual rotations to the cursor representing the hand position while human participants reached for two different targets. This procedure implicitly altered the visuomotor map so that changes in the movement direction to the target location were more insensitive or more sensitive. Then, we examined how such visuomotor map distortion influenced online movement correction by suddenly changing the target location. The magnitude of online movement correction was altered according to the shape of the visuomotor map. We also examined offline movement correction; the aftereffect induced by visual rotation in the previous trial was modulated according to the shape of the visuomotor map. These results highlighted the importance of the visuomotor map as a foundation for implicit motor control mechanisms and the intimate relationship between feedforward control, feedback control, and motor adaptation. PMID:27275006
Hayashi, Takuji; Yokoi, Atsushi; Hirashima, Masaya; Nozaki, Daichi
2016-01-01
When a visually guided reaching movement is unexpectedly perturbed, it is implicitly corrected in two ways: immediately after the perturbation by feedback control (online correction) and in the next movement by adjusting feedforward motor commands (offline correction or motor adaptation). Although recent studies have revealed a close relationship between feedback and feedforward controls, the nature of this relationship is not yet fully understood. Here, we show that both implicit online and offline movement corrections utilize the same visuomotor map for feedforward movement control that transforms the spatial location of visual objects into appropriate motor commands. First, we artificially distorted the visuomotor map by applying opposite visual rotations to the cursor representing the hand position while human participants reached for two different targets. This procedure implicitly altered the visuomotor map so that changes in the movement direction to the target location were more insensitive or more sensitive. Then, we examined how such visuomotor map distortion influenced online movement correction by suddenly changing the target location. The magnitude of online movement correction was altered according to the shape of the visuomotor map. We also examined offline movement correction; the aftereffect induced by visual rotation in the previous trial was modulated according to the shape of the visuomotor map. These results highlighted the importance of the visuomotor map as a foundation for implicit motor control mechanisms and the intimate relationship between feedforward control, feedback control, and motor adaptation.
Acquisition, representation, and transfer of models of visuo-motor error
Zhang, Hang; Kulsa, Mila Kirstie C.; Maloney, Laurence T.
2015-01-01
We examined how human subjects acquire and represent models of visuo-motor error and how they transfer information about visuo-motor error from one task to a closely related one. The experiment consisted of three phases. In the training phase, subjects threw beanbags underhand towards targets displayed on a wall-mounted touch screen. The distribution of their endpoints was a vertically elongated bivariate Gaussian. In the subsequent choice phase, subjects repeatedly chose which of two targets varying in shape and size they would prefer to attempt to hit. Their choices allowed us to investigate their internal models of visuo-motor error distribution, including the coordinate system in which they represented visuo-motor error. In the transfer phase, subjects repeated the choice phase from a different vantage point, the same distance from the screen but with the throwing direction shifted 45°. From the new vantage point, visuo-motor error was effectively expanded horizontally by . We found that subjects incorrectly assumed an isotropic distribution in the choice phase but that the anisotropy they assumed in the transfer phase agreed with an objectively correct transfer. We also found that the coordinate system used in coding two-dimensional visuo-motor error in the choice phase was effectively one-dimensional. PMID:26057549
Short-Term Plasticity of the Visuomotor Map during Grasping Movements in Humans
ERIC Educational Resources Information Center
Safstrom, Daniel; Edin, Benoni B.
2005-01-01
During visually guided grasping movements, visual information is transformed into motor commands. This transformation is known as the "visuomotor map." To investigate limitations in the short-term plasticity of the visuomotor map in normal humans, we studied the maximum grip aperture (MGA) during the reaching phase while subjects grasped objects…
Baugh, Lee A; Lawrence, Jane M; Marotta, Jonathan J
2011-10-01
Previous literature has reported a wide range of anatomical correlates when participants are required to perform a visuomotor adaptation task. However, traditional adaptation tasks suffer a number of inherent limitations that may, in part, give rise to this variability. For instance, the sparse visual environment does not map well onto conditions in which a visuomotor transformation would normally be required in everyday life. To further clarify these neural underpinnings, functional magnetic resonance imaging (fMRI) was performed on 17 (6M, age range 20-45 years old; mean age=26) naive participants performing a viewing window task in which a visuomotor transformation was created by varying the relationship between the participant's movement and the resultant movement of the viewing window. The viewing window task more naturally replicates scenarios in which haptic and visual information would be combined to achieve a higher-level goal. Even though activity related to visuomotor adaptation was found within previously reported regions of the parietal lobes, frontal lobes, and occipital lobes, novel activation patterns were observed within the claustrum - a region well-established as multi-modal convergence zone. These results confirm the diversity in the number and location of neurological systems recruited to perform a required visuomotor adaptation, and provide the first evidence of participation of the claustrum to overcome a visuomotor transformation. Copyright © 2011 Elsevier B.V. All rights reserved.
Halje, Pär; Seeck, Margitta; Blanke, Olaf; Ionta, Silvio
2015-12-01
The neural correspondence between the systems responsible for the execution and recognition of actions has been suggested both in humans and non-human primates. Apart from being a key region of this visuo-motor observation-execution matching (OEM) system, the human inferior frontal gyrus (IFG) is also important for speech production. The functional overlap of visuo-motor OEM and speech, together with the phylogenetic history of the IFG as a motor area, has led to the idea that speech function has evolved from pre-existing motor systems and to the hypothesis that an OEM system may exist also for speech. However, visuo-motor OEM and speech OEM have never been compared directly. We used electrocorticography to analyze oscillations recorded from intracranial electrodes in human fronto-parieto-temporal cortex during visuo-motor (executing or visually observing an action) and speech OEM tasks (verbally describing an action using the first or third person pronoun). The results show that neural activity related to visuo-motor OEM is widespread in the frontal, parietal, and temporal regions. Speech OEM also elicited widespread responses partly overlapping with visuo-motor OEM sites (bilaterally), including frontal, parietal, and temporal regions. Interestingly a more focal region, the inferior frontal gyrus (bilaterally), showed both visuo-motor OEM and speech OEM properties independent of orolingual speech-unrelated movements. Building on the methodological advantages in human invasive electrocorticography, the present findings provide highly precise spatial and temporal information to support the existence of a modality-independent action representation system in the human brain that is shared between systems for performing, interpreting and describing actions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Resting-state connectivity predicts visuo-motor skill learning.
Manuel, Aurélie L; Guggisberg, Adrian G; Thézé, Raphaël; Turri, Francesco; Schnider, Armin
2018-08-01
Spontaneous brain activity at rest is highly organized even when the brain is not explicitly engaged in a task. Functional connectivity (FC) in the alpha frequency band (α, 8-12 Hz) during rest is associated with improved performance on various cognitive and motor tasks. In this study we explored how FC is associated with visuo-motor skill learning and offline consolidation. We tested two hypotheses by which resting-state FC might achieve its impact on behavior: preparing the brain for an upcoming task or consolidating training gains. Twenty-four healthy participants were assigned to one of two groups: The experimental group (n = 12) performed a computerized mirror-drawing task. The control group (n = 12) performed a similar task but with concordant cursor direction. High-density 156-channel resting-state EEG was recorded before and after learning. Subjects were tested for offline consolidation 24h later. The Experimental group improved during training and showed offline consolidation. Increased α-FC between the left superior parietal cortex and the rest of the brain before training and decreased α-FC in the same region after training predicted learning. Resting-state FC following training did not predict offline consolidation and none of these effects were present in controls. These findings indicate that resting-state alpha-band FC is primarily implicated in providing optimal neural resources for upcoming tasks. Copyright © 2018 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Chung, Kevin Kien Hoa; Lam, Chun Bun; Cheung, Ka Chun
2018-01-01
This cross-sectional study examined the associations of visuomotor integration and executive functioning with Chinese word reading and writing in kindergarten children. A total of 369 Chinese children (mean age = 57.99 months; 55% of them were girls) from Hong Kong, China, completed tasks on visuomotor integration, executive functioning, and…
Sanchez, Daniel J.; Gobel, Eric W.; Reber, Paul J.
2015-01-01
Memory-impaired patients express intact implicit perceptual–motor sequence learning, but it has been difficult to obtain a similarly clear dissociation in healthy participants. When explicit memory is intact, participants acquire some explicit knowledge and performance improvements from implicit learning may be subtle. Therefore, it is difficult to determine whether performance exceeds what could be expected on the basis of the concomitant explicit knowledge. Using a challenging new sequence-learning task, robust implicit learning was found in healthy participants with virtually no associated explicit knowledge. Participants trained on a repeating sequence that was selected randomly from a set of five. On a performance test of all five sequences, performance was best on the trained sequence, and two-thirds of the participants exhibited individually reliable improvement (by chi-square analysis). Participants could not reliably indicate which sequence had been trained by either recognition or recall. Only by expressing their knowledge via performance were participants able to indicate which sequence they had learned. PMID:21169570
Gómez-Moya, Rosinna; Díaz, Rosalinda; Fernandez-Ruiz, Juan
2016-04-01
Different processes are involved during visuomotor learning, including an error-based procedural and a strategy based cognitive mechanism. Our objective was to analyze if the changes in the adaptation or the aftereffect components of visuomotor learning measured across development, reflected different maturation rates of the aforementioned mechanisms. Ninety-five healthy children aged 4-12years and a group of young adults participated in a wedge prism and a dove prism throwing task, which laterally displace or horizontally reverse the visual field respectively. The results show that despite the age-related differences in motor control, all children groups adapted in the error-based wedge prisms condition. However, when removing the prism, small children showed a slower aftereffects extinction rate. On the strategy-based visual reversing task only the older children group reached adult-like levels. These results are consistent with the idea of different mechanisms with asynchronous maturation rates participating during visuomotor learning. Copyright © 2016 Elsevier B.V. All rights reserved.
Implicit and explicit motor sequence learning in children born very preterm.
Jongbloed-Pereboom, Marjolein; Janssen, Anjo J W M; Steiner, K; Steenbergen, Bert; Nijhuis-van der Sanden, Maria W G
2017-01-01
Motor skills can be learned explicitly (dependent on working memory (WM)) or implicitly (relatively independent of WM). Children born very preterm (VPT) often have working memory deficits. Explicit learning may be compromised in these children. This study investigated implicit and explicit motor learning and the role of working memory in VPT children and controls. Three groups (6-9 years) participated: 20 VPT children with motor problems, 20 VPT children without motor problems, and 20 controls. A nine button sequence was learned implicitly (pressing the lighted button as quickly as possible) and explicitly (discovering the sequence via trial-and-error). Children learned implicitly and explicitly, evidenced by decreased movement duration of the sequence over time. In the explicit condition, children also reduced the number of errors over time. Controls made more errors than VPT children without motor problems. Visual WM had positive effects on both explicit and implicit performance. VPT birth and low motor proficiency did not negatively affect implicit or explicit learning. Visual WM was positively related to both implicit and explicit performance, but did not influence learning curves. These findings question the theoretical difference between implicit and explicit learning and the proposed role of visual WM therein. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multiple Motor Learning Strategies in Visuomotor Rotation
Saijo, Naoki; Gomi, Hiroaki
2010-01-01
Background When exposed to a continuous directional discrepancy between movements of a visible hand cursor and the actual hand (visuomotor rotation), subjects adapt their reaching movements so that the cursor is brought to the target. Abrupt removal of the discrepancy after training induces reaching error in the direction opposite to the original discrepancy, which is called an aftereffect. Previous studies have shown that training with gradually increasing visuomotor rotation results in a larger aftereffect than with a suddenly increasing one. Although the aftereffect difference implies a difference in the learning process, it is still unclear whether the learned visuomotor transformations are qualitatively different between the training conditions. Methodology/Principal Findings We examined the qualitative changes in the visuomotor transformation after the learning of the sudden and gradual visuomotor rotations. The learning of the sudden rotation led to a significant increase of the reaction time for arm movement initiation and then the reaching error decreased, indicating that the learning is associated with an increase of computational load in motor preparation (planning). In contrast, the learning of the gradual rotation did not change the reaction time but resulted in an increase of the gain of feedback control, suggesting that the online adjustment of the reaching contributes to the learning of the gradual rotation. When the online cursor feedback was eliminated during the learning of the gradual rotation, the reaction time increased, indicating that additional computations are involved in the learning of the gradual rotation. Conclusions/Significance The results suggest that the change in the motor planning and online feedback adjustment of the movement are involved in the learning of the visuomotor rotation. The contributions of those computations to the learning are flexibly modulated according to the visual environment. Such multiple learning strategies would be required for reaching adaptation within a short training period. PMID:20195373
Ulrich, Martin; Kiefer, Markus
2016-06-01
Unconscious visuomotor priming defined as the advantage in reaction time (RT) or accuracy for target shapes mapped to the same (congruent condition) when compared with a different (incongruent condition) motor response as a preceding subliminally presented prime shape has been shown to modulate activity within a visuomotor network comprised of parietal and frontal motor areas in previous functional magnetic resonance imaging (fMRI) studies. The present fMRI study investigated whether, in addition to changes in brain activity, unconscious visuomotor priming results in a modulation of functional connectivity profiles. Activity associated with congruent compared with incongruent trials was lower in the bilateral inferior and medial superior frontal gyri, in the inferior parietal lobules, and in the right caudate nucleus and adjacent portions of the thalamus. Functional connectivity increased under congruent relative to incongruent conditions between ventral visual stream areas (e.g., calcarine, fusiform, and lingual gyri), the precentral gyrus, the supplementary motor area, posterior parietal areas, the inferior frontal gyrus, and the caudate nucleus. Our findings suggest that an increase in coupling between visuomotor regions, reflecting higher efficiency of processing, is an important neural mechanism underlying unconscious visuomotor priming, in addition to changes in the magnitude of activation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Shabbott, Britne A; Sainburg, Robert L
2010-05-01
Visuomotor adaptation is mediated by errors between intended and sensory-detected arm positions. However, it is not clear whether visual-based errors that are shown during the course of motion lead to qualitatively different or more efficient adaptation than errors shown after movement. For instance, continuous visual feedback mediates online error corrections, which may facilitate or inhibit the adaptation process. We addressed this question by manipulating the timing of visual error information and task instructions during a visuomotor adaptation task. Subjects were exposed to a visuomotor rotation, during which they received continuous visual feedback (CF) of hand position with instructions to correct or not correct online errors, or knowledge-of-results (KR), provided as a static hand-path at the end of each trial. Our results showed that all groups improved performance with practice, and that online error corrections were inconsequential to the adaptation process. However, in contrast to the CF groups, the KR group showed relatively small reductions in mean error with practice, increased inter-trial variability during rotation exposure, and more limited generalization across target distances and workspace. Further, although the KR group showed improved performance with practice, after-effects were minimal when the rotation was removed. These findings suggest that simultaneous visual and proprioceptive information is critical in altering neural representations of visuomotor maps, although delayed error information may elicit compensatory strategies to offset perturbations.
Nobusako, Satoshi; Sakai, Ayami; Tsujimoto, Taeko; Shuto, Takashi; Nishi, Yuki; Asano, Daiki; Furukawa, Emi; Zama, Takuro; Osumi, Michihiro; Shimada, Sotaro; Morioka, Shu; Nakai, Akio
2018-01-01
The neurological basis of developmental coordination disorder (DCD) is thought to be deficits in the internal model and mirror-neuron system (MNS) in the parietal lobe and cerebellum. However, it is not clear if the visuo-motor temporal integration in the internal model and automatic-imitation function in the MNS differs between children with DCD and those with typical development (TD). The current study aimed to investigate these differences. Using the manual dexterity test of the Movement Assessment Battery for Children (second edition), the participants were either assigned to the probable DCD (pDCD) group or TD group. The former was comprised of 29 children with clumsy manual dexterity, while the latter consisted of 42 children with normal manual dexterity. Visuo-motor temporal integration ability and automatic-imitation function were measured using the delayed visual feedback detection task and motor interference task, respectively. Further, the current study investigated whether autism-spectrum disorder (ASD) traits, attention-deficit hyperactivity disorder (ADHD) traits, and depressive symptoms differed among the two groups, since these symptoms are frequent comorbidities of DCD. In addition, correlation and multiple regression analyses were performed to extract factors affecting clumsy manual dexterity. In the results, the delay-detection threshold (DDT) and steepness of the delay-detection probability curve, which indicated visuo-motor temporal integration ability, were significantly prolonged and decreased, respectively, in children with pDCD. The interference effect, which indicated automatic-imitation function, was also significantly reduced in this group. These results highlighted that children with clumsy manual dexterity have deficits in visuo-motor temporal integration and automatic-imitation function. There was a significant correlation between manual dexterity, and measures of visuo-motor temporal integration, and ASD traits and ADHD traits and ASD. Multiple regression analysis revealed that the DDT, which indicated visuo-motor temporal integration, was the greatest predictor of poor manual dexterity. The current results supported and provided further evidence for the internal model deficit hypothesis. Further, they suggested a neurorehabilitation technique that improved visuo-motor temporal integration could be therapeutically effective for children with DCD.
Nobusako, Satoshi; Sakai, Ayami; Tsujimoto, Taeko; Shuto, Takashi; Nishi, Yuki; Asano, Daiki; Furukawa, Emi; Zama, Takuro; Osumi, Michihiro; Shimada, Sotaro; Morioka, Shu; Nakai, Akio
2018-01-01
The neurological basis of developmental coordination disorder (DCD) is thought to be deficits in the internal model and mirror-neuron system (MNS) in the parietal lobe and cerebellum. However, it is not clear if the visuo-motor temporal integration in the internal model and automatic-imitation function in the MNS differs between children with DCD and those with typical development (TD). The current study aimed to investigate these differences. Using the manual dexterity test of the Movement Assessment Battery for Children (second edition), the participants were either assigned to the probable DCD (pDCD) group or TD group. The former was comprised of 29 children with clumsy manual dexterity, while the latter consisted of 42 children with normal manual dexterity. Visuo-motor temporal integration ability and automatic-imitation function were measured using the delayed visual feedback detection task and motor interference task, respectively. Further, the current study investigated whether autism-spectrum disorder (ASD) traits, attention-deficit hyperactivity disorder (ADHD) traits, and depressive symptoms differed among the two groups, since these symptoms are frequent comorbidities of DCD. In addition, correlation and multiple regression analyses were performed to extract factors affecting clumsy manual dexterity. In the results, the delay-detection threshold (DDT) and steepness of the delay-detection probability curve, which indicated visuo-motor temporal integration ability, were significantly prolonged and decreased, respectively, in children with pDCD. The interference effect, which indicated automatic-imitation function, was also significantly reduced in this group. These results highlighted that children with clumsy manual dexterity have deficits in visuo-motor temporal integration and automatic-imitation function. There was a significant correlation between manual dexterity, and measures of visuo-motor temporal integration, and ASD traits and ADHD traits and ASD. Multiple regression analysis revealed that the DDT, which indicated visuo-motor temporal integration, was the greatest predictor of poor manual dexterity. The current results supported and provided further evidence for the internal model deficit hypothesis. Further, they suggested a neurorehabilitation technique that improved visuo-motor temporal integration could be therapeutically effective for children with DCD. PMID:29556211
Butcher, Peter A; Ivry, Richard B; Kuo, Sheng-Han; Rydz, David; Krakauer, John W; Taylor, Jordan A
2017-09-01
Individuals with damage to the cerebellum perform poorly in sensorimotor adaptation paradigms. This deficit has been attributed to impairment in sensory prediction error-based updating of an internal forward model, a form of implicit learning. These individuals can, however, successfully counter a perturbation when instructed with an explicit aiming strategy. This successful use of an instructed aiming strategy presents a paradox: In adaptation tasks, why do individuals with cerebellar damage not come up with an aiming solution on their own to compensate for their implicit learning deficit? To explore this question, we employed a variant of a visuomotor rotation task in which, before executing a movement on each trial, the participants verbally reported their intended aiming location. Compared with healthy control participants, participants with spinocerebellar ataxia displayed impairments in both implicit learning and aiming. This was observed when the visuomotor rotation was introduced abruptly ( experiment 1 ) or gradually ( experiment 2 ). This dual deficit does not appear to be related to the increased movement variance associated with ataxia: Healthy undergraduates showed little change in implicit learning or aiming when their movement feedback was artificially manipulated to produce similar levels of variability ( experiment 3 ). Taken together the results indicate that a consequence of cerebellar dysfunction is not only impaired sensory prediction error-based learning but also a difficulty in developing and/or maintaining an aiming solution in response to a visuomotor perturbation. We suggest that this dual deficit can be explained by the cerebellum forming part of a network that learns and maintains action-outcome associations across trials. NEW & NOTEWORTHY Individuals with cerebellar pathology are impaired in sensorimotor adaptation. This deficit has been attributed to an impairment in error-based learning, specifically, from a deficit in using sensory prediction errors to update an internal model. Here we show that these individuals also have difficulty in discovering an aiming solution to overcome their adaptation deficit, suggesting a new role for the cerebellum in sensorimotor adaptation tasks. Copyright © 2017 the American Physiological Society.
Duiser, Ivonne H F; van der Kamp, John; Ledebt, Annick; Savelsbergh, Geert J P
2014-04-01
We examined whether the three subtests of the Beery Buktenica developmental test of visuomotor integration predicted quality of handwriting across and within groups of boys and girls classified as proficient, at risk or non-proficient writers according to the Concise Assessment Scale for Children's Handwriting. The Beery Buktenica developmental test of visuomotor integration and the Concise Assessment Scale for Children's Handwriting tests were administered to 240 grade 2 children. Proficient writers scored better on the visuomotor integration subtest than non-proficient writers, while proficient and at risk writers scored better than non-proficient writers on the motor coordination subtest. No differences were found on the visual perception subtest. Girls were more often classified as proficient writers than boys, and they scored better on the motor coordination subtest. Across groups, regression indicated that gender and both the visuomotor integration subtest and the motor coordination subtest were significant predictors for the quality of handwriting (i.e., accounted for 17% of the variance). After one year of writing tuition, the visuomotor integration subtest (and to a lesser extent the motor coordination subtest) but not the visual perception subtest significant relates to quality of children's handwriting as measured with the Concise Assessment Scale for Children's Handwriting. However, the relatively little variance explained also points to other abilities and/or task constraints that underlie quality of handwriting. © 2013 Occupational Therapy Australia.
Low-Cost Robotic Assessment of Visuo-Motor Deficits in Alzheimer's Disease.
Bartoli, Eleonora; Caso, Francesca; Magnani, Giuseppe; Baud-Bovy, Gabriel
2017-07-01
A low-cost robotic interface was used to assess the visuo-motor performance of patients with Alzheimer's disease (AD). Twenty AD patients and twenty age-matched controls participated in this work. The battery of tests included simple reaction times, position tracking, and stabilization tasks performed with both hands. The regularity, velocity, visual and haptic feedback were manipulated to vary movement complexity. Reaction times and movement tracking error were analyzed. Results show a marked group effect on a subset of conditions, in particular when the patients could not rely on the visual feedback of hand movement. The visuo-motor performance correlated with the measures of global cognitive functioning and with different memory-related abilities. Our results support the hypothesis that the ability to recall and use visuo-spatial associations might underlie the impairment in complex motor behavior that has been reported in AD patients. Importantly, the patients had preserved learning effects across sessions, which might relate to visuo-motor deficits being less evident in every-day life and clinical assessments. This robotic assessment, lasting less than 1 h, provides detailed information about the integrity of visuo-motor abilities. The data can aid the understanding of the complex pattern of deficits that characterizes this pervasive disease.
Variable practice with lenses improves visuo-motor plasticity
NASA Technical Reports Server (NTRS)
Roller, C. A.; Cohen, H. S.; Kimball, K. T.; Bloomberg, J. J.
2001-01-01
Novel sensorimotor situations present a unique challenge to an individual's adaptive ability. Using the simple and easily measured paradigm of visual-motor rearrangement created by the use of visual displacement lenses, we sought to determine whether an individual's ability to adapt to visuo-motor discordance could be improved through training. Subjects threw small balls at a stationary target during a 3-week practice regimen involving repeated exposure to one set of lenses in block practice (x 2.0 magnifying lenses), multiple sets of lenses in variable practice (x 2.0 magnifying, x 0.5 minifying and up-down reversing lenses) or sham lenses. At the end of training, adaptation to a novel visuo-motor situation (20-degree right shift lenses) was tested. We found that (1) training with variable practice can increase adaptability to a novel visuo-motor situation, (2) increased adaptability is retained for at least 1 month and is transferable to further novel visuo-motor permutations and (3) variable practice improves performance of a simple motor task even in the undisturbed state. These results have implications for the design of clinical rehabilitation programs and countermeasures to enhance astronaut adaptability, facilitating adaptive transitions between gravitational environments.
Zovko, Monika; Kiefer, Markus
2013-02-01
According to classical theories, automatic processes operate independently of attention. Recent evidence, however, shows that masked visuomotor priming, an example of an automatic process, depends on attention to visual form versus semantics. In a continuation of this approach, we probed feature-specific attention within the perceptual domain and tested in two event-related potential (ERP) studies whether masked visuomotor priming in a shape decision task specifically depends on attentional sensitization of visual pathways for shape in contrast to color. Prior to the masked priming procedure, a shape or a color decision task served to induce corresponding task sets. ERP analyses revealed visuomotor priming effects over the occipitoparietal scalp only after the shape, but not after the color induction task. Thus, top-down control coordinates automatic processing streams in congruency with higher-level goals even at a fine-grained level. Copyright © 2012 Society for Psychophysiological Research.
Effects of learning duration on implicit transfer.
Tanaka, Kanji; Watanabe, Katsumi
2015-10-01
Implicit learning and transfer in sequence acquisition play important roles in daily life. Several previous studies have found that even when participants are not aware that a transfer sequence has been transformed from the learning sequence, they are able to perform the transfer sequence faster and more accurately; this suggests implicit transfer of visuomotor sequences. Here, we investigated whether implicit transfer could be modulated by the number of trials completed in a learning session. Participants learned a sequence through trial and error, known as the m × n task (Hikosaka et al. in J Neurophysiol 74:1652-1661, 1995). In the learning session, participants were required to successfully perform the same sequence 4, 12, 16, or 20 times. In the transfer session, participants then learned one of two other sequences: one where the button configuration Vertically Mirrored the learning sequence, or a randomly generated sequence. Our results show that even when participants did not notice the alternation rule (i.e., vertical mirroring), their total working time was less and their total number of errors was lower in the transfer session compared with those who performed a Random sequence, irrespective of the number of trials completed in the learning session. This result suggests that implicit transfer likely occurs even over a shorter learning duration.
Concurrent visuomotor behaviour improves form discrimination in a patient with visual form agnosia.
Schenk, Thomas; Milner, A David
2006-09-01
It is now well established that the visual brain is divided into two visual streams, the ventral and the dorsal stream. Milner and Goodale have suggested that the ventral stream is dedicated for processing vision for perception and the dorsal stream vision for action [A.D. Milner & M.A. Goodale (1995) The Visual Brain in Action, Oxford University Press, Oxford]. However, it is possible that ongoing processes in the visuomotor stream will nevertheless have an effect on perceptual processes. This possibility was examined in the present study. We have examined the visual form-discrimination performance of the form-agnosic patient D.F. with and without a concurrent visuomotor task, and found that her performance was significantly improved in the former condition. This suggests that the visuomotor behaviour provides cues that enhance her ability to recognize the form of the target object. In control experiments we have ruled out proprioceptive and efferent cues, and therefore propose that D.F. can, to a significant degree, access the object's visuomotor representation in the dorsal stream. Moreover, we show that the grasping-induced perceptual improvement disappears if the target objects only differ with respect to their shape but not their width. This suggests that shape information per se is not used for this grasping task.
ERIC Educational Resources Information Center
Le-Thi, Duyen; Rodgers, Michael P. H.; Pellicer-Sánchez, Ana
2017-01-01
This study investigates the relative effectiveness of different teaching approaches on the learning of formulaic sequences. Three comparisons were made in this study: the effects of explicit teaching of formulaic sequences versus teaching embedded in traditional coursebook instruction, the effects of the degree of salience of the sequences in the…
Visual Motion Processing Subserves Faster Visuomotor Reaction in Badminton Players.
Hülsdünker, Thorben; Strüder, Heiko K; Mierau, Andreas
2017-06-01
Athletes participating in ball or racquet sports have to respond to visual stimuli under critical time pressure. Previous studies used visual contrast stimuli to determine visual perception and visuomotor reaction in athletes and nonathletes; however, ball and racquet sports are characterized by motion rather than contrast visual cues. Because visual contrast and motion signals are processed in different cortical regions, this study aimed to determine differences in perception and processing of visual motion between athletes and nonathletes. Twenty-five skilled badminton players and 28 age-matched nonathletic controls participated in this study. Using a 64-channel EEG system, we investigated visual motion perception/processing in the motion-sensitive middle temporal (MT) cortical area in response to radial motion of different velocities. In a simple visuomotor reaction task, visuomotor transformation in Brodmann area 6 (BA6) and BA4 as well as muscular activation (EMG onset) and visuomotor reaction time (VMRT) were investigated. Stimulus- and response-locked potentials were determined to differentiate between perceptual and motor-related processes. As compared with nonathletes, athletes showed earlier EMG onset times (217 vs 178 ms, P < 0.001), accompanied by a faster VMRT (274 vs 243 ms, P < 0.001). Furthermore, athletes showed an earlier stimulus-locked peak activation of MT (200 vs 182 ms, P = 0.002) and BA6 (161 vs 137 ms, P = 0.009). Response-locked peak activation in MT was later in athletes (-7 vs 26 ms, P < 0.001), whereas no group differences were observed in BA6 and BA4. Multiple regression analyses with stimulus- and response-locked cortical potentials predicted EMG onset (r = 0.83) and VMRT (r = 0.77). The athletes' superior visuomotor performance in response to visual motion is primarily related to visual perception and, to a minor degree, to motor-related processes.
Electrophysiological evidence for right frontal lobe dominance in spatial visuomotor learning.
Lang, W; Lang, M; Kornhuber, A; Kornhuber, H H
1986-02-01
Slow negative potential shifts were recorded together with the error made in motor performance when two different groups of 14 students tracked visual stimuli with their right hand. Various visuomotor tasks were compared. A tracking task (T) in which subjects had to track the stimulus directly, showed no decrease of error in motor performance during the experiment. In a distorted tracking task (DT) a continuous horizontal distortion of the visual feedback had to be compensated. The additional demands of this task required visuomotor learning. Another learning condition was a mirrored-tracking task (horizontally inverted tracking, hIT), i.e. an elementary function, such as the concept of changing left and right was interposed between perception and action. In addition, subjects performed a no-tracking control task (NT) in which they started the visual stimulus without tracking it. A slow negative potential shift was associated with the visuomotor performance (TP: tracking potential). In the learning tasks (DT and hIT) this negativity was significantly enhanced over the anterior midline and in hIT frontally and precentrally over both hemispheres. Comparing hIT and T for every subject, the enhancement of the tracking potential in hIT was correlated with the success in motor learning in frontomedial and bilaterally in frontolateral recordings (r = 0.81-0.88). However, comparing DT and T, such a correlation was only found in frontomedial and right frontolateral electrodes (r = 0.5-0.61), but not at the left frontolateral electrode. These experiments are consistent with previous findings and give further neurophysiological evidence for frontal lobe activity in visuomotor learning. The hemispherical asymmetry is discussed in respect to hemispherical specialization (right frontal lobe dominance in spatial visuomotor learning).
Explicit pre-training instruction does not improve implicit perceptual-motor sequence learning
Sanchez, Daniel J.; Reber, Paul J.
2012-01-01
Memory systems theory argues for separate neural systems supporting implicit and explicit memory in the human brain. Neuropsychological studies support this dissociation, but empirical studies of cognitively healthy participants generally observe that both kinds of memory are acquired to at least some extent, even in implicit learning tasks. A key question is whether this observation reflects parallel intact memory systems or an integrated representation of memory in healthy participants. Learning of complex tasks in which both explicit instruction and practice is used depends on both kinds of memory, and how these systems interact will be an important component of the learning process. Theories that posit an integrated, or single, memory system for both types of memory predict that explicit instruction should contribute directly to strengthening task knowledge. In contrast, if the two types of memory are independent and acquired in parallel, explicit knowledge should have no direct impact and may serve in a “scaffolding” role in complex learning. Using an implicit perceptual-motor sequence learning task, the effect of explicit pre-training instruction on skill learning and performance was assessed. Explicit pre-training instruction led to robust explicit knowledge, but sequence learning did not benefit from the contribution of pre-training sequence memorization. The lack of an instruction benefit suggests that during skill learning, implicit and explicit memory operate independently. While healthy participants will generally accrue parallel implicit and explicit knowledge in complex tasks, these types of information appear to be separately represented in the human brain consistent with multiple memory systems theory. PMID:23280147
Effects of Normal Aging on Visuo-Motor Plasticity
NASA Technical Reports Server (NTRS)
Roller, Carrie A.; Cohen, Helen S.; Kimball, Kay T.; Bloomberg, Jacob J.
2001-01-01
Normal aging is associated with declines in neurologic function. Uncompensated visual and vestibular problems may have dire consequences including dangerous falls. Visuomotor plasticity is a form of behavioral neural plasticity which is important in the process of adapting to visual or vestibular alteration, including those changes due to pathology, pharmacotherapy, surgery or even entry into a microgravity or underwater environment. In order to determine the effects of aging on visuomotor plasticity, we chose the simple and easily measured paradigm of visual-motor re-arrangement created by using visual displacement prisms while throwing small balls at a target. Subjects threw balls before, during and after wearing a set of prisms which displace the visual scene by twenty degrees to the right. Data obtained during adaptation were modeled using multilevel analyses for 73 subjects aged 20 to 80 years. We found no statistically significant difference in measures of visuomotor plasticity with advancing age. Further studies are underway examining variable practice training as a potential mechanism for enhancing this form of behavioral neural plasticity.
Effects of normal aging on visuo-motor plasticity
NASA Technical Reports Server (NTRS)
Roller, Carrie A.; Cohen, Helen S.; Kimball, Kay T.; Bloomberg, Jacob J.
2002-01-01
Normal aging is associated with declines in neurologic function. Uncompensated visual and vestibular problems may have dire consequences including dangerous falls. Visuo-motor plasticity is a form of behavioral neural plasticity, which is important in the process of adapting to visual or vestibular alteration, including those changes due to pathology, pharmacotherapy, surgery or even entry into microgravity or an underwater environment. To determine the effects of aging on visuo-motor plasticity, we chose the simple and easily measured paradigm of visual-motor rearrangement created by using visual displacement prisms while throwing small balls at a target. Subjects threw balls before, during and after wearing a set of prisms which displace the visual scene by twenty degrees to the right. Data obtained during adaptation were modeled using multilevel modeling techniques for 73 subjects, aged 20 to 80 years. We found no statistically significant difference in measures of visuo-motor plasticity with advancing age. Further studies are underway examining variable practice training as a potential mechanism for enhancing this form of behavioral neural plasticity.
Dopaminergic striatal innervation predicts interlimb transfer of a visuomotor skill
Isaias, IU; Moisello, C; Marotta, G; Schiavella, M; Canesi, M; Perfetti, B; Cavallari, P; Pezzoli, G; Ghilardi, MF
2011-01-01
We investigated whether dopamine influences the rate of adaptation to a visuomotor distortion and the transfer of this learning from the right to the left limb in human subjects. We thus studied patients with Parkinson disease as a putative in vivo model of dopaminergic denervation. Despite normal adaptation rates, patients showed a reduced transfer compared to age-matched healthy controls. The magnitude of the transfer, but not of the adaptation rate, was positively predicted by the values of dopamine-transporter binding of the right caudate and putamen. We conclude that striatal dopaminergic activity plays an important role in the transfer of visuomotor skills. PMID:21994362
Dopaminergic striatal innervation predicts interlimb transfer of a visuomotor skill.
Isaias, Ioannis U; Moisello, Clara; Marotta, Giorgio; Schiavella, Mauro; Canesi, Margherita; Perfetti, Bernardo; Cavallari, Paolo; Pezzoli, Gianni; Ghilardi, M Felice
2011-10-12
We investigated whether dopamine influences the rate of adaptation to a visuomotor distortion and the transfer of this learning from the right to the left limb in human subjects. We thus studied patients with Parkinson disease as a putative in vivo model of dopaminergic denervation. Despite normal adaptation rates, patients showed a reduced transfer compared with age-matched healthy controls. The magnitude of the transfer, but not of the adaptation rate, was positively predicted by the values of dopamine-transporter binding of the right caudate and putamen. We conclude that striatal dopaminergic activity plays an important role in the transfer of visuomotor skills.
Deroost, Natacha; Coomans, Daphné
2018-02-01
We examined the role of sequence awareness in a pure perceptual sequence learning design. Participants had to react to the target's colour that changed according to a perceptual sequence. By varying the mapping of the target's colour onto the response keys, motor responses changed randomly. The effect of sequence awareness on perceptual sequence learning was determined by manipulating the learning instructions (explicit versus implicit) and assessing the amount of sequence awareness after the experiment. In the explicit instruction condition (n = 15), participants were instructed to intentionally search for the colour sequence, whereas in the implicit instruction condition (n = 15), they were left uninformed about the sequenced nature of the task. Sequence awareness after the sequence learning task was tested by means of a questionnaire and the process-dissociation-procedure. The results showed that the instruction manipulation had no effect on the amount of perceptual sequence learning. Based on their report to have actively applied their sequence knowledge during the experiment, participants were subsequently regrouped in a sequence strategy group (n = 14, of which 4 participants from the implicit instruction condition and 10 participants from the explicit instruction condition) and a no-sequence strategy group (n = 16, of which 11 participants from the implicit instruction condition and 5 participants from the explicit instruction condition). Only participants of the sequence strategy group showed reliable perceptual sequence learning and sequence awareness. These results indicate that perceptual sequence learning depends upon the continuous employment of strategic cognitive control processes on sequence knowledge. Sequence awareness is suggested to be a necessary but not sufficient condition for perceptual learning to take place. Copyright © 2018 Elsevier B.V. All rights reserved.
Cohn, Neil; Kutas, Marta
2015-01-01
Inference has long been emphasized in the comprehension of verbal and visual narratives. Here, we measured event-related brain potentials to visual sequences designed to elicit inferential processing. In Impoverished sequences, an expressionless “onlooker” watches an undepicted event (e.g., person throws a ball for a dog, then watches the dog chase it) just prior to a surprising finale (e.g., someone else returns the ball), which should lead to an inference (i.e., the different person retrieved the ball). Implied sequences alter this narrative structure by adding visual cues to the critical panel such as a surprised facial expression to the onlooker implying they saw an unexpected, albeit undepicted, event. In contrast, Expected sequences show a predictable, but then confounded, event (i.e., dog retrieves ball, then different person returns it), and Explicit sequences depict the unexpected event (i.e., different person retrieves then returns ball). At the critical penultimate panel, sequences representing depicted events (Explicit, Expected) elicited a larger posterior positivity (P600) than the relatively passive events of an onlooker (Impoverished, Implied), though Implied sequences were slightly more positive than Impoverished sequences. At the subsequent and final panel, a posterior positivity (P600) was greater to images in Impoverished sequences than those in Explicit and Implied sequences, which did not differ. In addition, both sequence types requiring inference (Implied, Impoverished) elicited a larger frontal negativity than those explicitly depicting events (Expected, Explicit). These results show that neural processing differs for visual narratives omitting events versus those depicting events, and that the presence of subtle visual cues can modulate such effects presumably by altering narrative structure. PMID:26320706
Dissociation of agency and body ownership following visuomotor temporal recalibration
Imaizumi, Shu; Asai, Tomohisa
2015-01-01
Bodily self-consciousness consists of one’s sense of agency (I am causing an action) and body ownership (my body belongs to me). Both stem from the temporal congruence between different modalities, although some visuomotor temporal incongruence is acceptable for agency. To examine the association or dissociation between agency and body ownership in the context of different temporal sensitivities, we applied a temporal recalibration paradigm, in which subjective synchrony between asynchronous hand action and its visual feedback can be perceived after exposure to the asynchronous visuomotor stimulation. In the experiment, participants continuously clasped and unclasped their hand while watching an online video of their hand that was presented with delays of 50, 110, 170, 230, 290, and 350 ms. Then, they rated a video of their hand with a delay of 50 ms (test stimulus) with respect to the synchrony between hand action and hand video and the perceived agency over the video. Moreover, proprioceptive drift of participants’ hand location toward the hand video during the exposure was measured as an index of illusory body ownership. Results indicated that perception of agency emerged over the delayed hand video as subjective visuomotor synchrony was recalibrated, but that body ownership did not emerge for the delayed video, even after the recalibration. We suggest that there is a dissociation between agency and body ownership following visuomotor temporal recalibration. PMID:25999826
Visuomotor Tracking Ability of Young Adult Speakers.
ERIC Educational Resources Information Center
Moon, Jerald B.; And Others
1993-01-01
Twenty-five normal young adult speakers tracked sinusoidal and unpredictable target signals using lower lip and jaw movement and fundamental frequency modulation. Tracking accuracy varied as a function of target frequency and articulator used to track. Results show the potential of visuomotor tracking tasks in the assessment of speech articulatory…
Kantak, Shailesh S; Mummidisetty, Chaithanya K; Stinear, James W
2012-09-01
Implicit and explicit memory systems for motor skills compete with each other during and after motor practice. Primary motor cortex (M1) is known to be engaged during implicit motor learning, while dorsal premotor cortex (PMd) is critical for explicit learning. To elucidate the neural substrates underlying the interaction between implicit and explicit memory systems, adults underwent a randomized crossover experiment of anodal transcranial direct current stimulation (AtDCS) applied over M1, PMd or sham stimulation during implicit motor sequence (serial reaction time task, SRTT) practice. We hypothesized that M1-AtDCS during practice will enhance online performance and offline learning of the implicit motor sequence. In contrast, we also hypothesized that PMd-AtDCS will attenuate performance and retention of the implicit motor sequence. Implicit sequence performance was assessed at baseline, at the end of acquisition (EoA), and 24 h after practice (retention test, RET). M1-AtDCS during practice significantly improved practice performance and supported offline stabilization compared with Sham tDCS. Performance change from EoA to RET revealed that PMd-AtDCS during practice attenuated offline stabilization compared with M1-AtDCS and sham stimulation. The results support the role of M1 in implementing online performance gains and offline stabilization for implicit motor sequence learning. In contrast, enhancing the activity within explicit motor memory network nodes such as the PMd during practice may be detrimental to offline stabilization of the learned implicit motor sequence. These results support the notion of competition between implicit and explicit motor memory systems and identify underlying neural substrates that are engaged in this competition. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
The Effects of Explicit Instruction of Formulaic Sequences on Second-Language Writers
ERIC Educational Resources Information Center
Colovic-Markovic, Jelena
2012-01-01
The present study investigated the effects of the explicit teaching of formulaic sequences (i.e., academic and topic-induced) on L2 writing. The research examined separately the effects of the treatment on the students' abilities to produce the target formulaic sequences in controlled (i.e., C-tests) and uncontrolled situations (i.e.,…
Executive and Visuo-Motor Function in Adolescents and Adults with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Sachse, Michael; Schlitt, Sabine; Hainz, Daniela; Ciaramidaro, Angela; Schirman, Shella; Walter, Henrik; Poustka, Fritz; Bolte, Sven; Freitag, Christine M.
2013-01-01
This study broadly examines executive (EF) and visuo-motor function in 30 adolescent and adult individuals with high-functioning autism spectrum disorder (ASD) in comparison to 28 controls matched for age, gender, and IQ. ASD individuals showed impaired spatial working memory, whereas planning, cognitive flexibility, and inhibition were spared.…
Handwriting, Visuomotor Integration, and Neurological Condition at School Age
ERIC Educational Resources Information Center
Van Hoorn, Jessika F.; Maathuis, Carel G. B.; Peters, Lieke H. J.; Hadders-Algra, Mijna
2010-01-01
Aim: The study investigated the relationships between handwriting, visuomotor integration, and neurological condition. We paid particular attention to the presence of minor neurological dysfunction (MND). Method : Participants were 200 children (131 males, 69 females; age range 8-13y) of whom 118 received mainstream education (mean age 10y 5mo, SD…
Dual-Tasking Alleviated Sleep Deprivation Disruption in Visuomotor Tracking: An fMRI Study
ERIC Educational Resources Information Center
Gazes, Yunglin; Rakitin, Brian C.; Steffener, Jason; Habeck, Christian; Butterfield, Brady; Basner, Robert C.; Ghez, Claude; Stern, Yaakov
2012-01-01
Effects of dual-responding on tracking performance after 49-h of sleep deprivation (SD) were evaluated behaviorally and with functional magnetic resonance imaging (fMRI). Continuous visuomotor tracking was performed simultaneously with an intermittent color-matching visual detection task in which a pair of color-matched stimuli constituted a…
Evidence from Visuomotor Adaptation for Two Partially Independent Visuomotor Systems
ERIC Educational Resources Information Center
Thaler, Lore; Todd, James T.
2010-01-01
Visual information can specify spatial layout with respect to the observer (egocentric) or with respect to an external frame of reference (allocentric). People can use both of these types of visual spatial information to guide their hands. The question arises if movements based on egocentric and movements based on allocentric visual information…
Exploring Visuomotor Priming Following Biological and Non-Biological Stimuli
ERIC Educational Resources Information Center
Gowen, E.; Bradshaw, C.; Galpin, A.; Lawrence, A.; Poliakoff, E.
2010-01-01
Observation of human actions influences the observer's own motor system, termed visuomotor priming, and is believed to be caused by automatic activation of mirror neurons. Evidence suggests that priming effects are larger for biological (human) as opposed to non-biological (object) stimuli and enhanced when viewing stimuli in mirror compared to…
Stimulating the cerebellum affects visuomotor adaptation but not intermanual transfer of learning.
Block, Hannah; Celnik, Pablo
2013-12-01
When systematic movement errors occur, the brain responds with a systematic change in motor behavior. This type of adaptive motor learning can transfer intermanually; adaptation of movements of the right hand in response to training with a perturbed visual signal (visuomotor adaptation) may carry over to the left hand. While visuomotor adaptation has been studied extensively, it is unclear whether the cerebellum, a structure involved in adaptation, is important for intermanual transfer as well. We addressed this question with three experiments in which subjects reached with their right hands as a 30° visuomotor rotation was introduced. Subjects received anodal or sham transcranial direct current stimulation on the trained (experiment 1) or untrained (experiment 2) hemisphere of the cerebellum, or, for comparison, motor cortex (M1). After the training period, subjects reached with their left hand, without visual feedback, to assess intermanual transfer of learning aftereffects. Stimulation of the right cerebellum caused faster adaptation, but none of the stimulation sites affected transfer. To ascertain whether cerebellar stimulation would increase transfer if subjects learned faster as well as a larger amount, in experiment 3 anodal and sham cerebellar groups experienced a shortened training block such that the anodal group learned more than sham. Despite the difference in adaptation magnitude, transfer was similar across these groups, although smaller than in experiment 1. Our results suggest that intermanual transfer of visuomotor learning does not depend on cerebellar activity and that the number of movements performed at plateau is an important predictor of transfer.
Using brain potentials to understand prism adaptation: the error-related negativity and the P300
MacLean, Stephane J.; Hassall, Cameron D.; Ishigami, Yoko; Krigolson, Olav E.; Eskes, Gail A.
2015-01-01
Prism adaptation (PA) is both a perceptual-motor learning task as well as a promising rehabilitation tool for visuo-spatial neglect (VSN)—a spatial attention disorder often experienced after stroke resulting in slowed and/or inaccurate motor responses to contralesional targets. During PA, individuals are exposed to prism-induced shifts of the visual-field while performing a visuo-guided reaching task. After adaptation, with goggles removed, visuomotor responding is shifted to the opposite direction of that initially induced by the prisms. This visuomotor aftereffect has been used to study visuomotor learning and adaptation and has been applied clinically to reduce VSN severity by improving motor responding to stimuli in contralesional (usually left-sided) space. In order to optimize PA's use for VSN patients, it is important to elucidate the neural and cognitive processes that alter visuomotor function during PA. In the present study, healthy young adults underwent PA while event-related potentials (ERPs) were recorded at the termination of each reach (screen-touch), then binned according to accuracy (hit vs. miss) and phase of exposure block (early, middle, late). Results show that two ERP components were evoked by screen-touch: an error-related negativity (ERN), and a P300. The ERN was consistently evoked on miss trials during adaptation, while the P300 amplitude was largest during the early phase of adaptation for both hit and miss trials. This study provides evidence of two neural signals sensitive to visual feedback during PA that may sub-serve changes in visuomotor responding. Prior ERP research suggests that the ERN reflects an error processing system in medial-frontal cortex, while the P300 is suggested to reflect a system for context updating and learning. Future research is needed to elucidate the role of these ERP components in improving visuomotor responses among individuals with VSN. PMID:26124715
Using brain potentials to understand prism adaptation: the error-related negativity and the P300.
MacLean, Stephane J; Hassall, Cameron D; Ishigami, Yoko; Krigolson, Olav E; Eskes, Gail A
2015-01-01
Prism adaptation (PA) is both a perceptual-motor learning task as well as a promising rehabilitation tool for visuo-spatial neglect (VSN)-a spatial attention disorder often experienced after stroke resulting in slowed and/or inaccurate motor responses to contralesional targets. During PA, individuals are exposed to prism-induced shifts of the visual-field while performing a visuo-guided reaching task. After adaptation, with goggles removed, visuomotor responding is shifted to the opposite direction of that initially induced by the prisms. This visuomotor aftereffect has been used to study visuomotor learning and adaptation and has been applied clinically to reduce VSN severity by improving motor responding to stimuli in contralesional (usually left-sided) space. In order to optimize PA's use for VSN patients, it is important to elucidate the neural and cognitive processes that alter visuomotor function during PA. In the present study, healthy young adults underwent PA while event-related potentials (ERPs) were recorded at the termination of each reach (screen-touch), then binned according to accuracy (hit vs. miss) and phase of exposure block (early, middle, late). Results show that two ERP components were evoked by screen-touch: an error-related negativity (ERN), and a P300. The ERN was consistently evoked on miss trials during adaptation, while the P300 amplitude was largest during the early phase of adaptation for both hit and miss trials. This study provides evidence of two neural signals sensitive to visual feedback during PA that may sub-serve changes in visuomotor responding. Prior ERP research suggests that the ERN reflects an error processing system in medial-frontal cortex, while the P300 is suggested to reflect a system for context updating and learning. Future research is needed to elucidate the role of these ERP components in improving visuomotor responses among individuals with VSN.
Trial-by-Trial Motor Cortical Correlates of a Rapidly Adapting Visuomotor Internal Model
Ryu, Stephen I.
2017-01-01
Accurate motor control is mediated by internal models of how neural activity generates movement. We examined neural correlates of an adapting internal model of visuomotor gain in motor cortex while two macaques performed a reaching task in which the gain scaling between the hand and a presented cursor was varied. Previous studies of cortical changes during visuomotor adaptation focused on preparatory and perimovement epochs and analyzed trial-averaged neural data. Here, we recorded simultaneous neural population activity using multielectrode arrays and focused our analysis on neural differences in the period before the target appeared. We found that we could estimate the monkey's internal model of the gain using the neural population state during this pretarget epoch. This neural correlate depended on the gain experienced during recent trials and it predicted the speed of the subsequent reach. To explore the utility of this internal model estimate for brain–machine interfaces, we performed an offline analysis showing that it can be used to compensate for upcoming reach extent errors. Together, these results demonstrate that pretarget neural activity in motor cortex reflects the monkey's internal model of visuomotor gain on single trials and can potentially be used to improve neural prostheses. SIGNIFICANCE STATEMENT When generating movement commands, the brain is believed to use internal models of the relationship between neural activity and the body's movement. Visuomotor adaptation tasks have revealed neural correlates of these computations in multiple brain areas during movement preparation and execution. Here, we describe motor cortical changes in a visuomotor gain change task even before a specific movement is cued. We were able to estimate the gain internal model from these pretarget neural correlates and relate it to single-trial behavior. This is an important step toward understanding the sensorimotor system's algorithms for updating its internal models after specific movements and errors. Furthermore, the ability to estimate the internal model before movement could improve motor neural prostheses being developed for people with paralysis. PMID:28087767
The interference effects of non-rotated versus counter-rotated trials in visuomotor adaptation.
Hinder, Mark R; Walk, Laura; Woolley, Daniel G; Riek, Stephan; Carson, Richard G
2007-07-01
An isometric torque-production task was used to investigate interference and retention in adaptation to multiple visuomotor environments. Subjects produced isometric flexion-extension and pronation-supination elbow torques to move a cursor to acquire targets as quickly as possible. Adaptation to a 30 degrees counter-clockwise (CCW) rotation (task A), was followed by a period of rest (control), trials with no rotation (task B0), or trials with a 60 degrees clockwise (CW) rotation (task B60). For all groups, retention of task A was assessed 5 h later. With initial training, all groups reduced the angular deviation of cursor paths early in the movements, indicating feedforward adaptation. For the control group, performance at commencement of the retest was significantly better than that at the beginning of the initial learning. For the B0 group, performance in the retest of task A was not dissimilar to that at the start of the initial learning, while for the B60 group retest performance in task A was markedly worse than initially observed. Our results indicate that close juxtaposition of two visuomotor environments precludes improved retest performance in the initial environment. Data for the B60 group, specifically larger angular errors upon retest compared with initial exposures, are consistent with the presence of anterograde interference. Furthermore, full interference occurred even when the visuomotor environment encountered in the second task was not rotated (B0). This latter novel result differs from those obtained for force field learning, where interference does not occur when task B does not impose perturbing forces, i.e., when B consists of a null field (Brashers-Krug et al., Nature 382:252-255, 1996). The results are consistent with recent proposals suggesting different interference mechanisms for visuomotor (kinematic) compared to force field (dynamic) adaptations, and have implications for the use of washout trials when studying interference between multiple visuomotor environments.
Lamm, Claus; Windischberger, Christian; Moser, Ewald; Bauer, Herbert
2007-07-15
Subjects deciding whether two objects presented at angular disparity are identical or mirror versions of each other usually show response times that linearly increase with the angle between objects. This phenomenon has been termed mental rotation. While there is widespread agreement that parietal cortex plays a dominant role in mental rotation, reports concerning the involvement of motor areas are less consistent. From a theoretical point of view, activation in motor areas suggests that mental rotation relies upon visuo-motor rather than visuo-spatial processing alone. However, the type of information that is processed by motor areas during mental rotation remains unclear. In this study we used event-related fMRI to assess whether activation in parietal and dorsolateral premotor areas (dPM) during mental rotation is distinctively related to processing spatial orientation information. Using a newly developed task paradigm we explicitly separated the processing steps (encoding, mental rotation proper and object matching) required by mental rotation tasks and additionally modulated the amount of spatial orientation information that had to be processed. Our results show that activation in dPM during mental rotation is not strongly modulated by the processing of spatial orientation information, and that activation in dPM areas is strongest during mental rotation proper. The latter finding suggests that dPM is involved in more generalized processes such as visuo-spatial attention and movement anticipation. We propose that solving mental rotation tasks is heavily dependent upon visuo-motor processes and evokes neural processing that may be considered as an implicit simulation of actual object rotation.
Whitfield, Jason A; Goberman, Alexander M
2017-06-22
Everyday communication is carried out concurrently with other tasks. Therefore, determining how dual tasks interfere with newly learned speech motor skills can offer insight into the cognitive mechanisms underlying speech motor learning in Parkinson disease (PD). The current investigation examines a recently learned speech motor sequence under dual-task conditions. A previously learned sequence of 6 monosyllabic nonwords was examined using a dual-task paradigm. Participants repeated the sequence while concurrently performing a visuomotor task, and performance on both tasks was measured in single- and dual-task conditions. The younger adult group exhibited little to no dual-task interference on the accuracy and duration of the sequence. The older adult group exhibited variability in dual-task costs, with the group as a whole exhibiting an intermediate, though significant, amount of dual-task interference. The PD group exhibited the largest degree of bidirectional dual-task interference among all the groups. These data suggest that PD affects the later stages of speech motor learning, as the dual-task condition interfered with production of the recently learned sequence beyond the effect of normal aging. Because the basal ganglia is critical for the later stages of motor sequence learning, the observed deficits may result from the underlying neural dysfunction associated with PD.
Deceiving Oneself about Being in Control: Conscious Detection of Changes in Visuomotor Coupling
ERIC Educational Resources Information Center
Knoblich, Gunther; Kircher, Tilo T. J.
2004-01-01
Previous research has demonstrated that compensatory movements for changes in visuomotor coupling often are not consciously detected. But what factors affect the conscious detection of such changes? This issue was addressed in 4 experiments. Participants carried out a drawing task in which the relative velocity between the actual movement and its…
Visuo-Motor and Cognitive Procedural Learning in Children with Basal Ganglia Pathology
ERIC Educational Resources Information Center
Mayor-Dubois, C.; Maeder, P.; Zesiger, P.; Roulet-Perez, E.
2010-01-01
We investigated procedural learning in 18 children with basal ganglia (BG) lesions or dysfunctions of various aetiologies, using a visuo-motor learning test, the Serial Reaction Time (SRT) task, and a cognitive learning test, the Probabilistic Classification Learning (PCL) task. We compared patients with early (less than 1 year old, n=9), later…
ERIC Educational Resources Information Center
Becker, Derek R.; Miao, Alicia; Duncan, Robert; McClelland, Megan M.
2014-01-01
The present study explored direct and interactive effects between behavioral self-regulation (SR) and two measures of executive function (EF, inhibitory control and working memory), with a fine motor measure tapping visuomotor skills (VMS) in a sample of 127 prekindergarten and kindergarten children. It also examined the relative contribution of…
ERIC Educational Resources Information Center
Byers, Anthony I.; Cameron, Claire E.; Ko, Michelle; LoCasale-Crouch, Jennifer; Grissmer, David W.
2016-01-01
Research Findings: This study examined the contribution of several classroom experience measures (classroom characteristics, teacher characteristics, and teacher-child interactions) to preschoolers' improvement in visuomotor integration. Children (N = 467) ranged in age from 3 to 5 years old and were enrolled in 115 classrooms in 5 U.S. states.…
Visuomotor Integration and Inhibitory Control Compensate for Each Other in School Readiness
ERIC Educational Resources Information Center
Cameron, Claire E.; Brock, Laura L.; Hatfield, Bridget E.; Cottone, Elizabeth A.; Rubinstein, Elise; LoCasale-Crouch, Jennifer; Grissmer, David W.
2015-01-01
Visuomotor integration (VMI), or the ability to copy designs, and 2 measures of executive function were examined in a predominantly low-income, typically developing sample of children (n = 467, mean age 4.2 years) from 5 U.S. states. In regression models controlling for age and demographic variables, we tested the interaction between visuomotor…
Contributions to workload of rotational optical transformations
NASA Technical Reports Server (NTRS)
Atkinson, R. P.; Harrington, T. L.
1985-01-01
An investigation of visuomotor adaptation to optical rotation and optical inversion was conducted. Experiment 1 examined the visuomotor adaptability of subjects to an optically rotating visual world with a univariate repeated measures design. Experiment 1A tested one major prediction of a model of adaptation put forth by Welch who predicted that the aversive drive state that triggers adaptation would be habituated to fairly rapidly. Experiment 2 was conducted to investigate the role of motor activity in adaptation to optical rotation. Specifically, this experiment contrasted the reafference hypothesis and the proprioceptive change hypothesis. Experiment 3 examined the role of cognition, error-corrective feedback, and proprioceptive and/or reafferent feedback in visuomotor adaptation to optical inversion. Implications for research and implications for practice were suggested for all experiments.
Verwey, Willem B
2015-05-01
Research has provided many indications that highly practiced 6-key sequences are carried out in a chunking mode in which key-specific stimuli past the first are largely ignored. When in such sequences a deviating stimulus occasionally occurs at an unpredictable location, participants fall back to responding to individual stimuli (Verwey & Abrahamse, 2012). The observation that in such a situation execution still benefits from prior practice has been attributed to the possibility to operate in an associative mode. To better understand the contribution to the execution of keying sequences of motor chunks, associative sequence knowledge and also of explicit sequence knowledge, the present study tested three alternative accounts for the earlier finding of an execution rate increase at the end of 6-key sequences performed in the associative mode. The results provide evidence that the earlier observed execution rate increase can be attributed to the use of explicit sequence knowledge. In the present experiment this benefit was limited to sequences that are executed at the moderately fast rates of the associative mode, and occurred at both the earlier and final elements of the sequences. Copyright © 2015 Elsevier B.V. All rights reserved.
Stimulating the cerebellum affects visuomotor adaptation but not intermanual transfer of learning
Block, Hannah; Celnik, Pablo
2013-01-01
When systematic movement errors occur, the brain responds with a systematic change in motor behavior. This type of adaptive motor learning can transfer intermanually; adaptation of movements of the right hand in response to training with a perturbed visual signal (visuomotor adaptation) may carry over to the left hand. While visuomotor adaptation has been studied extensively, it is unclear whether the cerebellum, a structure involved in adaptation, is important for intermanual transfer as well. We addressed this question with three experiments in which subjects reached with their right hands as a 30° visuomotor rotation was introduced. Subjects received anodal or sham transcranial direct current stimulation (tDCS) on the trained (Experiment 1) or untrained (Experiment 2) hemisphere of the cerebellum, or, for comparison, motor cortex (M1). After the training period, subjects reached with their left hand, without visual feedback, to assess intermanual transfer of learning aftereffects. Stimulation of the right cerebellum caused faster adaptation, but none of the stimulation sites affected transfer. To ascertain whether cerebellar stimulation would increase transfer if subjects learned faster as well as a larger amount, in Experiment 3 anodal and sham cerebellar groups experienced a shortened training block such that the anodal group learned more than sham. Despite the difference in adaptation magnitude, transfer was similar across these groups, although smaller than in Experiment 1. Our results suggest that intermanual transfer of visuomotor learning does not depend on cerebellar activity, and that the number of movements performed at plateau is an important predictor of transfer. PMID:23625383
Role of the Visuomotor System in On-Line Attenuation of a Premovement Illusory Bias in Grip Aperture
ERIC Educational Resources Information Center
Heath, M.; Rival, C.
2005-01-01
In this investigation participants formulated a grip aperture (GA) consistent with the size of an object embedded within a Muller-Lyer (ML) figure prior to initiating visually guided grasping movements. The accuracy of the grasping response was emphasized to determine whether or not the visuomotor system might resolve the premovement bias in GA…
ERIC Educational Resources Information Center
Trempe, Maxime; Proteau, Luc
2010-01-01
Consolidation is a time-dependent process responsible for the storage of information in long-term memory. As such, it plays a crucial role in motor learning. In two experiments, we sought to determine whether one's performance influences the outcome of the consolidation process. We used a visuomotor adaptation task in which the cursor moved by the…
An Integrative Framework of Stress, Attention, and Visuomotor Performance
Vine, Samuel J.; Moore, Lee J.; Wilson, Mark R.
2016-01-01
The aim of this article is to present an integrative conceptual framework that depicts the effect of acute stress on the performance of visually guided motor skills. We draw upon seminal theories highlighting the importance of subjective interpretations of stress on subsequent performance and outline how models of disrupted attentional control might explain this effect through impairments in visuomotor control. We first synthesize and critically discuss empirical support for theories examining these relationships in isolation. We then outline our integrative framework that seeks to provide a more complete picture of the interacting influences of stress responses (challenge and threat) and attention in explaining how elevated stress may lead to different visuomotor performance outcomes. We propose a number of mechanisms that explain why evaluations of stress are related to attentional control, and highlight the emotion of anxiety as the most likely candidate to explain why negative reactions to stress lead to disrupted attention and poor visuomotor skill performance. Finally, we propose a number of feedback loops that explain why stress responses are often self-perpetuating, as well as a number of proposed interventions that are designed to help improve or maintain performance in real world performance environments (e.g., sport, surgery, military, and aviation). PMID:27847484
La parole, vue et prise par les etudiants (Speech as Seen and Understood by Student).
ERIC Educational Resources Information Center
Gajo, Laurent, Ed.; Jeanneret, Fabrice, Ed.
1998-01-01
Articles on speech and second language learning include: "Les sequences de correction en classe de langue seconde: evitement du 'non' explicite" ("Error Correction Sequences in Second Language Class: Avoidance of the Explicit 'No'") (Anne-Lise de Bosset); "Analyse hierarchique et fonctionnelle du discours: conversations…
Palisade Endings of Extraocular Muscles Develop Postnatally Following Different Time Courses.
Blumer, Roland; Streicher, Johannes; Davis-López de Carrizosa, María A; de la Cruz, Rosa R; Pastor, Angel M
2017-10-01
To analyze in a frontal-eyed mammal (cat) the postnatal development of palisade endings in extraocular muscles (EOMs) and to compare the spatiotemporal and quantitative patterns of palisade endings among individual rectus muscles. Cats of different ages ranging from birth to adult stage were studied. EOM whole-mount preparations were fluorescently labeled using six combinations of triple staining and analyzed in the confocal laser scanning microscope. Palisade endings developed postnatally and passed in each rectus muscle through the same, three developmental steps but in a heterochronic sequence and to a different final density per muscle. Specifically, palisade ending development was first completed in the medial rectus and later in the inferior, lateral, and superior rectus. The highest density of palisade endings was observed in the medial rectus and the lowest in the lateral rectus whereas values for the inferior and superior rectus were in between. Palisade endings expressed high levels of growth associated protein 43 during development and were supplied by axons that established motor terminals. Cats open their eyes 7 to 10 days after birth and later develop a complex three-dimensional visuomotor climbing and jumping behavior depending on accurate binocular vision and fine tuning of the ocular movements. Our findings indicate that palisade ending development correlates with important landmarks in visuomotor behavior and provide support for our previous notion that palisade endings play an important role for convergence eye movements in frontal-eyed species.
Zhang, Hang; Wu, Shih-Wei; Maloney, Laurence T.
2010-01-01
S.-W. Wu, M. F. Dal Martello, and L. T. Maloney (2009) evaluated subjects' performance in a visuo-motor task where subjects were asked to hit two targets in sequence within a fixed time limit. Hitting targets earned rewards and Wu et al. varied rewards associated with targets. They found that subjects failed to maximize expected gain; they failed to invest more time in the movement to the more valuable target. What could explain this lack of response to reward? We first considered the possibility that subjects require training in allocating time between two movements. In Experiment 1, we found that, after extensive training, subjects still failed: They did not vary time allocation with changes in payoff. However, their actual gains equaled or exceeded the expected gain of an ideal time allocator, indicating that constraining time itself has a cost for motor accuracy. In a second experiment, we found that movements made under externally imposed time limits were less accurate than movements made with the same timing freely selected by the mover. Constrained time allocation cost about 17% in expected gain. These results suggest that there is no single speed–accuracy tradeoff for movement in our task and that subjects pursued different motor strategies with distinct speed–accuracy tradeoffs in different conditions. PMID:20884550
Control order and visuomotor strategy development for joystick-steered underground shuttle cars.
Cloete, Steven; Zupanc, Christine; Burgess-Limerick, Robin; Wallis, Guy
2014-09-01
In this simulator-based study, we aimed to quantify performance differences between joystick steering systems using first-order and second-order control, which are used in underground coal mining shuttle cars. In addition, we conducted an exploratory analysis of how users of the more difficult, second-order system changed their behavior over time. Evidence from the visuomotor control literature suggests that higher-order control devices are not intuitive, which could pose a significant risk to underground mine personnel, equipment, and infrastructure. Thirty-six naive participants were randomly assigned to first- and second-order conditions and completed three experimental trials comprising sequences of 90 degrees turns in a virtual underground mine environment, with velocity held constant at 9 km/h(-1). Performance measures were lateral deviation, steering angle variability, high-frequency steering content, joystick activity, and cumulative time in collision with the virtual mine wall. The second-order control group exhibited significantly poorer performance for all outcome measures. In addition, a series of correlation analyses revealed that changes in strategy were evident in the second-order group but not the first-order group. Results were consistent with previous literature indicating poorer performance with higher-order control devices and caution against the adoption of the second-order joystick system for underground shuttle cars. Low-cost, portable simulation platforms may provide an effective basis for operator training and recruitment.
Unaware Processing of Tools in the Neural System for Object-Directed Action Representation.
Tettamanti, Marco; Conca, Francesca; Falini, Andrea; Perani, Daniela
2017-11-01
The hypothesis that the brain constitutively encodes observed manipulable objects for the actions they afford is still debated. Yet, crucial evidence demonstrating that, even in the absence of perceptual awareness, the mere visual appearance of a manipulable object triggers a visuomotor coding in the action representation system including the premotor cortex, has hitherto not been provided. In this fMRI study, we instantiated reliable unaware visual perception conditions by means of continuous flash suppression, and we tested in 24 healthy human participants (13 females) whether the visuomotor object-directed action representation system that includes left-hemispheric premotor, parietal, and posterior temporal cortices is activated even under subliminal perceptual conditions. We found consistent activation in the target visuomotor cortices, both with and without perceptual awareness, specifically for pictures of manipulable versus non-manipulable objects. By means of a multivariate searchlight analysis, we also found that the brain activation patterns in this visuomotor network enabled the decoding of manipulable versus non-manipulable object picture processing, both with and without awareness. These findings demonstrate the intimate neural coupling between visual perception and motor representation that underlies manipulable object processing: manipulable object stimuli specifically engage the visuomotor object-directed action representation system, in a constitutive manner that is independent from perceptual awareness. This perceptuo-motor coupling endows the brain with an efficient mechanism for monitoring and planning reactions to external stimuli in the absence of awareness. SIGNIFICANCE STATEMENT Our brain constantly encodes the visual information that hits the retina, leading to a stimulus-specific activation of sensory and semantic representations, even for objects that we do not consciously perceive. Do these unconscious representations encompass the motor programming of actions that could be accomplished congruently with the objects' functions? In this fMRI study, we instantiated unaware visual perception conditions, by dynamically suppressing the visibility of manipulable object pictures with mondrian masks. Despite escaping conscious perception, manipulable objects activated an object-directed action representation system that includes left-hemispheric premotor, parietal, and posterior temporal cortices. This demonstrates that visuomotor encoding occurs independently of conscious object perception. Copyright © 2017 the authors 0270-6474/17/3710712-13$15.00/0.
Trial-by-Trial Motor Cortical Correlates of a Rapidly Adapting Visuomotor Internal Model.
Stavisky, Sergey D; Kao, Jonathan C; Ryu, Stephen I; Shenoy, Krishna V
2017-02-15
Accurate motor control is mediated by internal models of how neural activity generates movement. We examined neural correlates of an adapting internal model of visuomotor gain in motor cortex while two macaques performed a reaching task in which the gain scaling between the hand and a presented cursor was varied. Previous studies of cortical changes during visuomotor adaptation focused on preparatory and perimovement epochs and analyzed trial-averaged neural data. Here, we recorded simultaneous neural population activity using multielectrode arrays and focused our analysis on neural differences in the period before the target appeared. We found that we could estimate the monkey's internal model of the gain using the neural population state during this pretarget epoch. This neural correlate depended on the gain experienced during recent trials and it predicted the speed of the subsequent reach. To explore the utility of this internal model estimate for brain-machine interfaces, we performed an offline analysis showing that it can be used to compensate for upcoming reach extent errors. Together, these results demonstrate that pretarget neural activity in motor cortex reflects the monkey's internal model of visuomotor gain on single trials and can potentially be used to improve neural prostheses. SIGNIFICANCE STATEMENT When generating movement commands, the brain is believed to use internal models of the relationship between neural activity and the body's movement. Visuomotor adaptation tasks have revealed neural correlates of these computations in multiple brain areas during movement preparation and execution. Here, we describe motor cortical changes in a visuomotor gain change task even before a specific movement is cued. We were able to estimate the gain internal model from these pretarget neural correlates and relate it to single-trial behavior. This is an important step toward understanding the sensorimotor system's algorithms for updating its internal models after specific movements and errors. Furthermore, the ability to estimate the internal model before movement could improve motor neural prostheses being developed for people with paralysis. Copyright © 2017 the authors 0270-6474/17/371721-12$15.00/0.
Changes in the Spinal Neural Circuits are Dependent on the Movement Speed of the Visuomotor Task
Kubota, Shinji; Hirano, Masato; Koizume, Yoshiki; Tanabe, Shigeo; Funase, Kozo
2015-01-01
Previous studies have shown that spinal neural circuits are modulated by motor skill training. However, the effects of task movement speed on changes in spinal neural circuits have not been clarified. The aim of this research was to investigate whether spinal neural circuits were affected by task movement speed. Thirty-eight healthy subjects participated in this study. In experiment 1, the effects of task movement speed on the spinal neural circuits were examined. Eighteen subjects performed a visuomotor task involving ankle muscle slow (nine subjects) or fast (nine subjects) movement speed. Another nine subjects performed a non-visuomotor task (controls) in fast movement speed. The motor task training lasted for 20 min. The amounts of D1 inhibition and reciprocal Ia inhibition were measured using H-relfex condition-test paradigm and recorded before, and at 5, 15, and 30 min after the training session. In experiment 2, using transcranial magnetic stimulation (TMS), the effects of corticospinal descending inputs on the presynaptic inhibitory pathway were examined before and after performing either a visuomotor (eight subjects) or a control task (eight subjects). All measurements were taken under resting conditions. The amount of D1 inhibition increased after the visuomotor task irrespective of movement speed (P < 0.01). The amount of reciprocal Ia inhibition increased with fast movement speed conditioning (P < 0.01), but was unchanged by slow movement speed conditioning. These changes lasted up to 15 min in D1 inhibition and 5 min in reciprocal Ia inhibition after the training session. The control task did not induce changes in D1 inhibition and reciprocal Ia inhibition. The TMS conditioned inhibitory effects of presynaptic inhibitory pathways decreased following visuomotor tasks (P < 0.01). The size of test H-reflex was almost the same size throughout experiments. The results suggest that supraspinal descending inputs for controlling joint movement are responsible for changes in the spinal neural circuits, and that task movement speed is one of the critical factors for inducing plastic changes in reciprocal Ia inhibition. PMID:26696873
Visual but not motor processes predict simple visuomotor reaction time of badminton players.
Hülsdünker, Thorben; Strüder, Heiko K; Mierau, Andreas
2018-03-01
The athlete's brain exhibits significant functional adaptations that facilitate visuomotor reaction performance. However, it is currently unclear if the same neurophysiological processes that differentiate athletes from non-athletes also determine performance within a homogeneous group of athletes. This information can provide valuable help for athletes and coaches aiming to optimize existing training regimes. Therefore, this study aimed to identify the neurophysiological correlates of visuomotor reaction performance in a group of skilled athletes. In 36 skilled badminton athletes, electroencephalography (EEG) was used to investigate pattern reversal and motion onset visual-evoked potentials (VEPs) as well as visuomotor reaction time (VMRT) during a simple reaction task. Stimulus-locked and response-locked event-related potentials (ERPs) in visual and motor regions as well as the onset of muscle activation (EMG onset) were determined. Correlation and multiple regression analyses identified the neurophysiological parameters predicting EMG onset and VMRT. For pattern reversal stimuli, the P100 latency and age best predicted EMG onset (r = 0.43; p = .003) and VMRT (r = 0.62; p = .001). In the motion onset experiment, EMG onset (r = 0.80; p < .001) and VMRT (r = 0.78; p < .001) were predicted by N2 latency and age. In both conditions, cortical potentials in motor regions were not correlated with EMG onset or VMRT. It is concluded that previously identified neurophysiological parameters differentiating athletes from non-athletes do not necessarily determine performance within a homogeneous group of athletes. Specifically, the speed of visual perception/processing predicts EMG onset and VMRT in skilled badminton players while motor-related processes, although differentiating athletes from non-athletes, are not associated simple with visuomotor reaction performance.
Ju, Yan-Ying; Liu, Yen-Hsiu; Cheng, Chih-Hsiu; Lee, Yu-Lung; Chang, Shih-Tsung; Sun, Chi-Chin; Cheng, Hsin-Yi Kathy
2018-02-07
Data on visuomotor performance in combat training and the effects of combat training on visuomotor performance are limited. This study aimed to investigate the effects of a specially designed combat sports (CS) training program on the visuomotor performance levels of children. A pre-post comparative design was implemented. A total of 26 students aged 9-12 years underwent 40-min CS training sessions twice a week for 8 weeks during their physical education classes. The CS training program was designed by a karate coach and a motor control specialist. The other 30 students continued their regular activities and were considered as a control group. Each student's eye movement was monitored using an eye tracker, whereas the motor performance was measured using a target hitting system with a program-controlled microprocessor. The measurements were taken 8 weeks before (baseline), 1 day before (pretest), and 1 week after (posttest) the designated training program. The task used for evaluating these students was hitting or tracking random illuminated targets as rapidly as possible. A two-way analysis of variance [group(2) × time(3)] with repeated measures of time was performed for statistical analysis. For the children who received combat training, although the eye response improvement was not significant, both the primary and secondary saccade onset latencies were significantly earlier compared to the children without combat training. Both groups of students exhibited improvement in their hit response times during the target hitting tasks. The current finding supported the notion that sports training efforts essentially enhance visuomotor function in children aged 9-12 years, and combat training facilitates an earlier secondary saccade onset.
Bao, Shancheng; Lei, Yuming; Wang, Jinsung
2017-01-18
The extent of transfer following visuomotor adaptation across the arms is typically limited as compared to that within the same arm. However, we have demonstrated that interlimb transfer can occur nearly completely if one arm performs reaching movements associated with a desired trajectory repeatedly and actively during an initial training session in which the other arm adapts to a novel visuomotor adaptation. Based on that finding, we argued that the absence of instances associated with specific motor effectors is the major reason for limited interlimb transfer. Here, we examined whether providing movement instances associated with one arm passively while adapting to a visuomotor rotation with the opposite arm could also lead to a greater extent of interlimb transfer. We had subjects perform reaching movements either actively or passively with the right arm while adapting to a 30° visuomotor rotation with the left arm (training session), and then had them perform reaching movements under the rotation condition with the right arm (transfer session). Results showed that the extent of transfer observed in the active and the passive training groups was significantly greater than that observed in a control group who only experienced the testing session. This finding suggests that providing effector-specific instances can increase the extent of interlimb transfer substantially, regardless of whether the instances are provided actively or passively. The current finding may have implications for neurorehabilitation targeted for individuals with motor impairment, such as persons with stroke or spinal cord injury. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Visual Processing in Rapid-Chase Systems: Image Processing, Attention, and Awareness
Schmidt, Thomas; Haberkamp, Anke; Veltkamp, G. Marina; Weber, Andreas; Seydell-Greenwald, Anna; Schmidt, Filipp
2011-01-01
Visual stimuli can be classified so rapidly that their analysis may be based on a single sweep of feedforward processing through the visuomotor system. Behavioral criteria for feedforward processing can be evaluated in response priming tasks where speeded pointing or keypress responses are performed toward target stimuli which are preceded by prime stimuli. We apply this method to several classes of complex stimuli. (1) When participants classify natural images into animals or non-animals, the time course of their pointing responses indicates that prime and target signals remain strictly sequential throughout all processing stages, meeting stringent behavioral criteria for feedforward processing (rapid-chase criteria). (2) Such priming effects are boosted by selective visual attention for positions, shapes, and colors, in a way consistent with bottom-up enhancement of visuomotor processing, even when primes cannot be consciously identified. (3) Speeded processing of phobic images is observed in participants specifically fearful of spiders or snakes, suggesting enhancement of feedforward processing by long-term perceptual learning. (4) When the perceived brightness of primes in complex displays is altered by means of illumination or transparency illusions, priming effects in speeded keypress responses can systematically contradict subjective brightness judgments, such that one prime appears brighter than the other but activates motor responses as if it was darker. We propose that response priming captures the output of the first feedforward pass of visual signals through the visuomotor system, and that this output lacks some characteristic features of more elaborate, recurrent processing. This way, visuomotor measures may become dissociated from several aspects of conscious vision. We argue that “fast” visuomotor measures predominantly driven by feedforward processing should supplement “slow” psychophysical measures predominantly based on visual awareness. PMID:21811484
Grasping objects by their handles: a necessary interaction between cognition and action
NASA Technical Reports Server (NTRS)
Creem, S. H.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)
2001-01-01
Research has illustrated dissociations between "cognitive" and "action" systems, suggesting that different representations may underlie phenomenal experience and visuomotor behavior. However, these systems also interact. The present studies show a necessary interaction when semantic processing of an object is required for an appropriate action. Experiment 1 demonstrated that a semantic task interfered with grasping objects appropriately by their handles, but a visuospatial task did not. Experiment 2 assessed performance on a visuomotor task that had no semantic component and showed a reversal of the effects of the concurrent tasks. In Experiment 3, variations on concurrent word tasks suggested that retrieval of semantic information was necessary for appropriate grasping. In all, without semantic processing, the visuomotor system can direct the effective grasp of an object, but not in a manner that is appropriate for its use.
Dumel, Gaëlle; Carr, Michelle; Marquis, Louis-Philippe; Blanchette-Carrière, Cloé; Paquette, Tyna; Nielsen, Tore
2015-08-01
Although sleep facilitates learning and memory, the roles of dreaming and habitual levels of recalling dreams remain unknown. This study examined if performance and overnight improvement on a rapid eye movement sleep-sensitive visuomotor task is associated differentially with habitually high or low dream recall frequency. As a relation between dream production and visuospatial skills has been demonstrated previously, one possibility is that frequency of dream recall will be linked to performance on visuomotor tasks such as the Mirror Tracing Task. We expected that habitually low dream recallers would perform more poorly on the Mirror Tracing Task than would high recallers and would show less task improvement following a night of sleep. Fifteen low and 20 high dream recallers slept one night each in the laboratory and performed the Mirror Tracing Task before and after sleep. Low recallers had overall worse baseline performance but a greater evening-to-morning improvement than did high recallers. Greater improvements in completion time in low recallers were associated with Stage 2 rather than rapid eye movement sleep. Findings support the separate notions that dreaming is related to visuomotor processes and that different levels of visuomotor skill engage different sleep- and dream-related consolidation mechanisms. © 2015 European Sleep Research Society.
Todd, Gabrielle; Pearson-Dennett, Verity; Flavel, Stanley C.; Haberfield, Miranda; Edwards, Hannah; White, Jason M.
2016-01-01
Little is known about the long-lasting effect of use of illicit stimulant drugs on learning of new motor skills. We hypothesised that abstinent individuals with a history of primarily methamphetamine and ecstasy use would exhibit normal learning of a visuomotor tracking task compared to controls. The study involved three groups: abstinent stimulant users (n = 21; 27 ± 6 yrs) and two gender-matched control groups comprising nondrug users (n = 16; 22 ± 4 yrs) and cannabis users (n = 16; 23 ± 5 yrs). Motor learning was assessed with a three-minute visuomotor tracking task. Subjects were instructed to follow a moving target on a computer screen with movement of the index finger. Metacarpophalangeal joint angle and first dorsal interosseous electromyographic activity were recorded. Pattern matching was assessed by cross-correlation of the joint angle and target traces. Distance from the target (tracking error) was also calculated. Motor learning was evident in the visuomotor task. Pattern matching improved over time (cross-correlation coefficient) and tracking error decreased. However, task performance did not differ between the groups. The results suggest that learning of a new fine visuomotor skill is unchanged in individuals with a history of illicit stimulant use. PMID:26819778
Evidence for multisensory spatial-to-motor transformations in aiming movements of children.
King, Bradley R; Kagerer, Florian A; Contreras-Vidal, Jose L; Clark, Jane E
2009-01-01
The extant developmental literature investigating age-related differences in the execution of aiming movements has predominantly focused on visuomotor coordination, despite the fact that additional sensory modalities, such as audition and somatosensation, may contribute to motor planning, execution, and learning. The current study investigated the execution of aiming movements toward both visual and acoustic stimuli. In addition, we examined the interaction between visuomotor and auditory-motor coordination as 5- to 10-yr-old participants executed aiming movements to visual and acoustic stimuli before and after exposure to a visuomotor rotation. Children in all age groups demonstrated significant improvement in performance under the visuomotor perturbation, as indicated by decreased initial directional and root mean squared errors. Moreover, children in all age groups demonstrated significant visual aftereffects during the postexposure phase, suggesting a successful update of their spatial-to-motor transformations. Interestingly, these updated spatial-to-motor transformations also influenced auditory-motor performance, as indicated by distorted movement trajectories during the auditory postexposure phase. The distorted trajectories were present during auditory postexposure even though the auditory-motor relationship was not manipulated. Results suggest that by the age of 5 yr, children have developed a multisensory spatial-to-motor transformation for the execution of aiming movements toward both visual and acoustic targets.
Todd, Gabrielle; Pearson-Dennett, Verity; Flavel, Stanley C; Haberfield, Miranda; Edwards, Hannah; White, Jason M
2016-01-01
Little is known about the long-lasting effect of use of illicit stimulant drugs on learning of new motor skills. We hypothesised that abstinent individuals with a history of primarily methamphetamine and ecstasy use would exhibit normal learning of a visuomotor tracking task compared to controls. The study involved three groups: abstinent stimulant users (n = 21; 27 ± 6 yrs) and two gender-matched control groups comprising nondrug users (n = 16; 22 ± 4 yrs) and cannabis users (n = 16; 23 ± 5 yrs). Motor learning was assessed with a three-minute visuomotor tracking task. Subjects were instructed to follow a moving target on a computer screen with movement of the index finger. Metacarpophalangeal joint angle and first dorsal interosseous electromyographic activity were recorded. Pattern matching was assessed by cross-correlation of the joint angle and target traces. Distance from the target (tracking error) was also calculated. Motor learning was evident in the visuomotor task. Pattern matching improved over time (cross-correlation coefficient) and tracking error decreased. However, task performance did not differ between the groups. The results suggest that learning of a new fine visuomotor skill is unchanged in individuals with a history of illicit stimulant use.
D'Mello, G D; Duffy, E A; Miles, S S
1985-01-01
A conveyor belt task for assessing visuo-motor coordination in the marmoset is described. Animals are motivated by apple, a preferred food, under a state of minimal food deprivation. The apparatus used was designed to test animals within their home cages and not restrained in any way, thus avoiding possible confounding factors associated with restraint stress. Stable baseline levels of performance were reached by all animals in a median of 24 sessions. Performance was shown to be differentially sensitive to the effects of four psychoactive drugs. Moderate doses of diazepam, chlorpromazine and pentobarbital disrupted visuo-motor coordination in a dose-related manner. The possibility that disruption of performance observed at higher doses may have resulted from non-specific actions of these drugs such as decreases in feeding motivation were not supported by results from ancillary experiments. Changes in performance characteristic of high dose effects were similar in nature to changes observed when the degree of task difficulty was increased. Doses of d-amphetamine up to and including those reported to produce signs of stereotypy failed to influence performance. The potential of the conveyor belt task for measuring visuo-motor coordination in both primate and rodent species is discussed.
The Role of Representation Strength of the Prime in Subliminal Visuomotor Priming.
Wang, Yongchun; Wang, Yonghui; Liu, Peng; Di, Meilin; Gong, Yanyan; Tan, Mengge
2017-11-01
This study investigated the role of representation strength of the prime in subliminal visuomotor priming in two experiments. Prime/target compatibility (compatible and incompatible) and preposed object type (jumbled lines, strong masking; and rectangular outlines, weak masking) were manipulated in Experiment 1. A significant negative compatibility effect (NCE) was observed in the rectangle condition, whereas no compatibility effect was found in the line condition. However, when a new variable, prime duration, was introduced in Experiment 2, the NCE was reversed with an increase in the prime duration in the rectangle condition, whereas the NCE was maintained in the line condition. This result is consistent with the claim that increasing the prime duration causes the prime representation to be too strong for inhibition in the rectangle condition but strong enough to reliably trigger inhibition in the line condition. The findings demonstrated that prime representation has a causal role in subliminal visuomotor priming.
Developmental Relations Among Motor and Cognitive Processes and Mathematics Skills.
Kim, Helyn; Duran, Chelsea A K; Cameron, Claire E; Grissmer, David
2018-03-01
This study explored transactional associations among visuomotor integration, attention, fine motor coordination, and mathematics skills in a diverse sample of one hundred thirty-five 5-year-olds (kindergarteners) and one hundred nineteen 6-year-olds (first graders) in the United States who were followed over the course of 2 school years. Associations were dynamic, with more reciprocal transactions occurring in kindergarten than in the later grades. Specifically, visuomotor integration and mathematics exhibited ongoing reciprocity in kindergarten and first grade, attention contributed to mathematics in kindergarten and first grade, mathematics contributed to attention across the kindergarten year only, and fine motor coordination contributed to mathematics indirectly, through visuomotor integration, across kindergarten and first grade. Implications of examining the hierarchical interrelations among processes underlying the development of children's mathematics skills are discussed. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.
Impaired force control in writer's cramp showing a bilateral deficit in sensorimotor integration.
Bleton, Jean-Pierre; Teremetz, Maxime; Vidailhet, Marie; Mesure, Serge; Maier, Marc A; Lindberg, Påvel G
2014-01-01
Abnormal cortical processing of sensory inputs has been found bilaterally in writer's cramp (WC). This study tested the hypothesis that patients with WC have an impaired ability to adjust grip forces according to visual and somatosensory cues in both hands. A unimanual visuomotor force-tracking task and a bimanual sense of effort force-matching task were performed by WC patients and healthy controls. In visuomotor tracking, WC patients showed increased error, greater variability, and longer release duration than controls. In the force-matching task, patients underestimated, whereas controls overestimated, the force applied in the other hand. Visuomotor tracking and force matching were equally impaired in both the symptomatic and nonsymptomatic hand in WC patients. This study provides evidence of bilaterally impaired grip-force control in WC, when using visual or sense of effort cues. This suggests a generalized subclinical deficit in sensorimotor integration in WC. Copyright © 2013 Movement Disorder Society.
Online adaptation and over-trial learning in macaque visuomotor control.
Braun, Daniel A; Aertsen, Ad; Paz, Rony; Vaadia, Eilon; Rotter, Stefan; Mehring, Carsten
2011-01-01
When faced with unpredictable environments, the human motor system has been shown to develop optimized adaptation strategies that allow for online adaptation during the control process. Such online adaptation is to be contrasted to slower over-trial learning that corresponds to a trial-by-trial update of the movement plan. Here we investigate the interplay of both processes, i.e., online adaptation and over-trial learning, in a visuomotor experiment performed by macaques. We show that simple non-adaptive control schemes fail to perform in this task, but that a previously suggested adaptive optimal feedback control model can explain the observed behavior. We also show that over-trial learning as seen in learning and aftereffect curves can be explained by learning in a radial basis function network. Our results suggest that both the process of over-trial learning and the process of online adaptation are crucial to understand visuomotor learning.
Online Adaptation and Over-Trial Learning in Macaque Visuomotor Control
Braun, Daniel A.; Aertsen, Ad; Paz, Rony; Vaadia, Eilon; Rotter, Stefan; Mehring, Carsten
2011-01-01
When faced with unpredictable environments, the human motor system has been shown to develop optimized adaptation strategies that allow for online adaptation during the control process. Such online adaptation is to be contrasted to slower over-trial learning that corresponds to a trial-by-trial update of the movement plan. Here we investigate the interplay of both processes, i.e., online adaptation and over-trial learning, in a visuomotor experiment performed by macaques. We show that simple non-adaptive control schemes fail to perform in this task, but that a previously suggested adaptive optimal feedback control model can explain the observed behavior. We also show that over-trial learning as seen in learning and aftereffect curves can be explained by learning in a radial basis function network. Our results suggest that both the process of over-trial learning and the process of online adaptation are crucial to understand visuomotor learning. PMID:21720526
A possible correlation between performance IQ, visuomotor adaptation ability and mu suppression.
Anwar, Muhammad Nabeel; Navid, Muhammad Samran; Khan, Mushtaq; Kitajo, Keiichi
2015-04-07
Psychometric, anatomical and functional brain studies suggest that individuals differ in the way that they perceive and analyze information and strategically control and execute movements. Inter-individual differences are also observed in neural correlates of specific and general cognitive ability. As a result, some individuals perceive and adapt to environmental conditions and perform motor activities better than others. The aim of this study was to identify a common factor that predicts adaptation of a reaching movement to a visual perturbation and suppression of movement-related brain activity (mu rhythms). Twenty-eight participants participated in two different experiments designed to evaluate visuomotor adaptation and mu suppression ability. Performance intelligence quotient (IQ) was assessed using the revised Wechsler Adult Intelligence Scale. Performance IQ predicted adaptation index of visuomotor performance (r=0.43, p=0.02) and suppression of mu rhythms (r=-0.59; p<0.001). Participants with high performance IQ were faster at adapting to a visuomotor perturbation and better at suppressing mu activity than participants with low performance IQ. We found a possible link between performance IQ and mu suppression, and performance IQ and the initial rate of adaptation. Individuals with high performance IQ were better in suppressing mu rhythms and were quicker at associating motor command and required movement than individuals with low performance IQ. Copyright © 2015 Elsevier B.V. All rights reserved.
Influence of divergent and convergent thinking on visuomotor adaptation in young and older adults.
Simon, Anja; Bock, Otmar
2016-04-01
Visuomotor adaptation declines in older age. This has been attributed to cognitive impairments. One relevant cognitive function could be creativity, since creativity is implicated as mediator of early learning. The present study therefore evaluates whether two aspects of creativity, divergent and convergent thinking, are differentially involved in the age-dependent decline of visuomotor adaptation. In 25 young and 24 older volunteers, divergent thinking was assessed by the alternative-uses-task (AUT), convergent thinking by the Intelligenz-Struktur-Test-2000 (IST), and sensorimotor-adaptation by a pointing task with 60° rotated visual feedback. Young participants outperformed older participants in all three tasks. AUT scores were positively associated with young but not older participants' adaptive performance, whereas IST scores were negatively associated with older but not young participants' adaptive performance. This pattern of findings could be attributed to a consistent relationship between AUT, IST and adaptation; taking this into account, adaptation deficits of older participants were no longer significant. We conclude that divergent thinking supports workaround-strategies during adaptation, but doesn't influence visuomotor recalibration. Furthermore, the decay of divergent thinking in older adults may explain most of age-related decline of adaptive strategies. When the age-related decay of divergent thinking coincides with well-preserved convergent thinking, adaptation suffers most. Copyright © 2015 Elsevier B.V. All rights reserved.
Neural mechanisms underlying spatial realignment during adaptation to optical wedge prisms.
Chapman, Heidi L; Eramudugolla, Ranmalee; Gavrilescu, Maria; Strudwick, Mark W; Loftus, Andrea; Cunnington, Ross; Mattingley, Jason B
2010-07-01
Visuomotor adaptation to a shift in visual input produced by prismatic lenses is an example of dynamic sensory-motor plasticity within the brain. Prism adaptation is readily induced in healthy individuals, and is thought to reflect the brain's ability to compensate for drifts in spatial calibration between different sensory systems. The neural correlate of this form of functional plasticity is largely unknown, although current models predict the involvement of parieto-cerebellar circuits. Recent studies that have employed event-related functional magnetic resonance imaging (fMRI) to identify brain regions associated with prism adaptation have discovered patterns of parietal and cerebellar modulation as participants corrected their visuomotor errors during the early part of adaptation. However, the role of these regions in the later stage of adaptation, when 'spatial realignment' or true adaptation is predicted to occur, remains unclear. Here, we used fMRI to quantify the distinctive patterns of parieto-cerebellar activity as visuomotor adaptation develops. We directly contrasted activation patterns during the initial error correction phase of visuomotor adaptation with that during the later spatial realignment phase, and found significant recruitment of the parieto-cerebellar network--with activations in the right inferior parietal lobe and the right posterior cerebellum. These findings provide the first evidence of both cerebellar and parietal involvement during the spatial realignment phase of prism adaptation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Venezia, Jonathan H; Fillmore, Paul; Matchin, William; Isenberg, A Lisette; Hickok, Gregory; Fridriksson, Julius
2016-02-01
Sensory information is critical for movement control, both for defining the targets of actions and providing feedback during planning or ongoing movements. This holds for speech motor control as well, where both auditory and somatosensory information have been shown to play a key role. Recent clinical research demonstrates that individuals with severe speech production deficits can show a dramatic improvement in fluency during online mimicking of an audiovisual speech signal suggesting the existence of a visuomotor pathway for speech motor control. Here we used fMRI in healthy individuals to identify this new visuomotor circuit for speech production. Participants were asked to perceive and covertly rehearse nonsense syllable sequences presented auditorily, visually, or audiovisually. The motor act of rehearsal, which is prima facie the same whether or not it is cued with a visible talker, produced different patterns of sensorimotor activation when cued by visual or audiovisual speech (relative to auditory speech). In particular, a network of brain regions including the left posterior middle temporal gyrus and several frontoparietal sensorimotor areas activated more strongly during rehearsal cued by a visible talker versus rehearsal cued by auditory speech alone. Some of these brain regions responded exclusively to rehearsal cued by visual or audiovisual speech. This result has significant implications for models of speech motor control, for the treatment of speech output disorders, and for models of the role of speech gesture imitation in development. Copyright © 2015 Elsevier Inc. All rights reserved.
Venezia, Jonathan H.; Fillmore, Paul; Matchin, William; Isenberg, A. Lisette; Hickok, Gregory; Fridriksson, Julius
2015-01-01
Sensory information is critical for movement control, both for defining the targets of actions and providing feedback during planning or ongoing movements. This holds for speech motor control as well, where both auditory and somatosensory information have been shown to play a key role. Recent clinical research demonstrates that individuals with severe speech production deficits can show a dramatic improvement in fluency during online mimicking of an audiovisual speech signal suggesting the existence of a visuomotor pathway for speech motor control. Here we used fMRI in healthy individuals to identify this new visuomotor circuit for speech production. Participants were asked to perceive and covertly rehearse nonsense syllable sequences presented auditorily, visually, or audiovisually. The motor act of rehearsal, which is prima facie the same whether or not it is cued with a visible talker, produced different patterns of sensorimotor activation when cued by visual or audiovisual speech (relative to auditory speech). In particular, a network of brain regions including the left posterior middle temporal gyrus and several frontoparietal sensorimotor areas activated more strongly during rehearsal cued by a visible talker versus rehearsal cued by auditory speech alone. Some of these brain regions responded exclusively to rehearsal cued by visual or audiovisual speech. This result has significant implications for models of speech motor control, for the treatment of speech output disorders, and for models of the role of speech gesture imitation in development. PMID:26608242
Childhood cognitive ability and body composition in adulthood.
Kumpulainen, S M; Heinonen, K; Salonen, M K; Andersson, S; Wolke, D; Kajantie, E; Eriksson, J G; Raikkonen, K
2016-08-15
Childhood cognitive ability has been identified as a novel risk factor for adulthood overweight and obesity as assessed by adult body mass index (BMI). BMI does not, however, distinguish fat-free and metabolically harmful fat tissue. Hence, we examined the associations between childhood cognitive abilities and body fat percentage (BF%) in young adulthood. Participants of the Arvo Ylppö Longitudinal Study (n=816) underwent tests of general reasoning, visuomotor integration, verbal competence and language comprehension (M=100; s.d.=15) at the age of 56 months. At the age of 25 years, they underwent a clinical examination, including measurements of BF% by the InBody 3.0 eight-polar tactile electrode system, weight and height from which BMI (kg m(-2)) was calculated and waist circumference (cm). After adjustments for sex, age and BMI-for-age s.d. score at 56 months, lower general reasoning and visuomotor integration in childhood predicted higher BMI (kg m(-2)) increase per s.d. unit decrease in cognitive ability (-0.32, 95% confidence interval -0.60,-0.05; -0.45, -0.75,-0.14, respectively) and waist circumference (cm) increase per s.d. unit decrease in cognitive ability (-0.84, -1.56,-0.11; -1.07,-1.88,-0.26, respectively) in adulthood. In addition, lower visuomotor integration predicted higher BF% per s.d. unit decrease in cognitive ability (-0.62,-1.14,-0.09). Associations between general reasoning and BMI/waist were attenuated when adjusted for smoking, alcohol consumption, intake of fruits and vegetables and physical activity in adulthood, and all associations, except for visuomotor integration and BMI, were attenuated when adjusted for parental and/or own attained education and/or birth weight. Of the measured childhood cognitive abilities, only lower visuomotor integration was associated with BF% in adulthood. This challenges the view that cognitive ability, at least when measured in early childhood, poses a risk for adiposity in adulthood, as characterized by higher BF%.
The number of reduced alignments between two DNA sequences
2014-01-01
Background In this study we consider DNA sequences as mathematical strings. Total and reduced alignments between two DNA sequences have been considered in the literature to measure their similarity. Results for explicit representations of some alignments have been already obtained. Results We present exact, explicit and computable formulas for the number of different possible alignments between two DNA sequences and a new formula for a class of reduced alignments. Conclusions A unified approach for a wide class of alignments between two DNA sequences has been provided. The formula is computable and, if complemented by software development, will provide a deeper insight into the theory of sequence alignment and give rise to new comparison methods. AMS Subject Classification Primary 92B05, 33C20, secondary 39A14, 65Q30 PMID:24684679
Prediction during statistical learning, and implications for the implicit/explicit divide
Dale, Rick; Duran, Nicholas D.; Morehead, J. Ryan
2012-01-01
Accounts of statistical learning, both implicit and explicit, often invoke predictive processes as central to learning, yet practically all experiments employ non-predictive measures during training. We argue that the common theoretical assumption of anticipation and prediction needs clearer, more direct evidence for it during learning. We offer a novel experimental context to explore prediction, and report results from a simple sequential learning task designed to promote predictive behaviors in participants as they responded to a short sequence of simple stimulus events. Predictive tendencies in participants were measured using their computer mouse, the trajectories of which served as a means of tapping into predictive behavior while participants were exposed to very short and simple sequences of events. A total of 143 participants were randomly assigned to stimulus sequences along a continuum of regularity. Analysis of computer-mouse trajectories revealed that (a) participants almost always anticipate events in some manner, (b) participants exhibit two stable patterns of behavior, either reacting to vs. predicting future events, (c) the extent to which participants predict relates to performance on a recall test, and (d) explicit reports of perceiving patterns in the brief sequence correlates with extent of prediction. We end with a discussion of implicit and explicit statistical learning and of the role prediction may play in both kinds of learning. PMID:22723817
Enhanced visuomotor processing of phobic images in blood-injury-injection fear.
Haberkamp, Anke; Schmidt, Thomas
2014-04-01
Numerous studies have identified attentional biases and processing enhancements for fear-relevant stimuli in individuals with specific phobias. However, this has not been conclusively shown in blood-injury-injection (BII) phobia, which has rarely been investigated even though it has features distinct from all other specific phobias. The present study aims to fill that gap and compares the time-course of visuomotor processing of phobic stimuli (i.e., pictures of small injuries) in BII-fearful (n=19) and non-anxious control participants (n=23) by using a response priming paradigm. In BII-fearful participants, phobic stimuli produced larger priming effects and lower response times compared to neutral stimuli, whereas non-anxious control participants showed no such differences. Because these effects are fully present in the fastest responses, they indicate an enhancement in early visuomotor processing of injury pictures in BII-fearful participants. These results are comparable to the enhanced processing of phobic stimuli in other specific phobias (i.e., spider phobia). Copyright © 2014 Elsevier Ltd. All rights reserved.
Differential transfer processes in incremental visuomotor adaptation.
Seidler, Rachel D
2005-01-01
Visuomotor adaptive processes were examined by testing transfer of adaptation between similar conditions. Participants made manual aiming movements with a joystick to hit targets on a computer screen, with real-time feedback display of their movement. They adapted to three different rotations of the display in a sequential fashion, with a return to baseline display conditions between rotations. Adaptation was better when participants had prior adaptive experiences. When performance was assessed using direction error (calculated at the time of peak velocity) and initial endpoint error (error before any overt corrective actions), transfer was greater when the final rotation reflected an addition of previously experienced rotations (adaptation order 30 degrees rotation, 15 degrees, 45 degrees) than when it was a subtraction of previously experienced conditions (adaptation order 45 degrees rotation, 15 degrees, 30 degrees). Transfer was equal regardless of adaptation order when performance was assessed with final endpoint error (error following any discrete, corrective actions). These results imply the existence of multiple independent processes in visuomotor adaptation.
Visuo-motor and cognitive procedural learning in children with basal ganglia pathology.
Mayor-Dubois, C; Maeder, P; Zesiger, P; Roulet-Perez, E
2010-06-01
We investigated procedural learning in 18 children with basal ganglia (BG) lesions or dysfunctions of various aetiologies, using a visuo-motor learning test, the Serial Reaction Time (SRT) task, and a cognitive learning test, the Probabilistic Classification Learning (PCL) task. We compared patients with early (<1 year old, n=9), later onset (>6 years old, n=7) or progressive disorder (idiopathic dystonia, n=2). All patients showed deficits in both visuo-motor and cognitive domains, except those with idiopathic dystonia, who displayed preserved classification learning skills. Impairments seem to be independent from the age of onset of pathology. As far as we know, this study is the first to investigate motor and cognitive procedural learning in children with BG damage. Procedural impairments were documented whatever the aetiology of the BG damage/dysfunction and time of pathology onset, thus supporting the claim of very early skill learning development and lack of plasticity in case of damage. Copyright 2010 Elsevier Ltd. All rights reserved.
Multimodal Encoding of Goal-Directed Actions in Monkey Ventral Premotor Grasping Neurons.
Bruni, Stefania; Giorgetti, Valentina; Fogassi, Leonardo; Bonini, Luca
2017-01-01
Visuo-motor neurons of the ventral premotor area F5 encode "pragmatic" representations of object in terms of the potential motor acts (e.g., precision grip) afforded by it. Likewise, objects with identical pragmatic features (e.g., small spheres) but different behavioral value (e.g., edible or inedible) convey different "semantic" information and thus afford different goal-directed behaviors (e.g., grasp-to-eat or grasp-to-place). However, whether F5 neurons can extract distinct behavioral affordances from objects with similar pragmatic features is unknown. We recorded 134 F5 visuo-motor neurons in 2 macaques during a contextually cued go/no-go task in which the monkey grasped, or refrained from grasping, a previously presented edible or inedible target to eat it or placing it, respectively. Sixty-nine visuo-motor neurons showed motor selectivity for the target (35 food and 34 object), and about half of them (N = 35) exhibited congruent visual preference. Interestingly, when the monkey grasped in complete darkness and could identify the target only based on haptic feedback, visuo-motor neurons lost their precontact selectivity, but most of them (80%) showed it again 60 ms after hand-target contact. These findings suggest that F5 neurons possess a multimodal access to semantic information on objects, which are transformed into motor representations of the potential goal-directed actions afforded by them. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Pelle, Gina; Perrucci, Mauro Gianni; Galati, Gaspare; Fattori, Patrizia; Galletti, Claudio; Committeri, Giorgia
2012-01-01
Background Several psychophysical experiments found evidence for the involvement of gaze-centered and/or body-centered coordinates in arm-movement planning and execution. Here we aimed at investigating the frames of reference involved in the visuomotor transformations for reaching towards visual targets in space by taking target eccentricity and performing hand into account. Methodology/Principal Findings We examined several performance measures while subjects reached, in complete darkness, memorized targets situated at different locations relative to the gaze and/or to the body, thus distinguishing between an eye-centered and a body-centered frame of reference involved in the computation of the movement vector. The errors seem to be mainly affected by the visual hemifield of the target, independently from its location relative to the body, with an overestimation error in the horizontal reaching dimension (retinal exaggeration effect). The use of several target locations within the perifoveal visual field allowed us to reveal a novel finding, that is, a positive linear correlation between horizontal overestimation errors and target retinal eccentricity. In addition, we found an independent influence of the performing hand on the visuomotor transformation process, with each hand misreaching towards the ipsilateral side. Conclusions While supporting the existence of an internal mechanism of target-effector integration in multiple frames of reference, the present data, especially the linear overshoot at small target eccentricities, clearly indicate the primary role of gaze-centered coding of target location in the visuomotor transformation for reaching. PMID:23272180
Tamayo, F; Casals-Coll, M; Sánchez-Benavides, G; Quintana, M; Manero, R M; Rognoni, T; Calvo, L; Palomo, R; Aranciva, F; Peña-Casanova, J
2012-01-01
Verbal and visuospatial span, Letter-Number Sequencing, Trail Making Test, and Symbol Digit Modalities Test are frequently used in clinical practice to assess attention, executive functions and memory. In the present study, as part of the Spanish normative studies of NEURONORMA young adults Project, normative data adjusted by age and education are provided for digits, Corsi Block-Tapping Task, Letter-Number Sequencing, Trail Making Test, and Symbol Digit Modalities Test. The sample consisted of 179 participants from 18 to 49 years old, who were cognitively normal. Tables to convert raw scores to scaled scores are provided. Age and education adjusted scores are provided by applying linear regressions. Education affected scores in most of the attention tests; age was found to be related to the visuospatial span and to speed of visuomotor tracking, and there was no relationship as regards sex. The data obtained will be useful in the clinical evaluation of young Spanish adults. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
Monroy, Claire D; Gerson, Sarah A; Hunnius, Sabine
2018-05-01
Humans are sensitive to the statistical regularities in action sequences carried out by others. In the present eyetracking study, we investigated whether this sensitivity can support the prediction of upcoming actions when observing unfamiliar action sequences. In two between-subjects conditions, we examined whether observers would be more sensitive to statistical regularities in sequences performed by a human agent versus self-propelled 'ghost' events. Secondly, we investigated whether regularities are learned better when they are associated with contingent effects. Both implicit and explicit measures of learning were compared between agent and ghost conditions. Implicit learning was measured via predictive eye movements to upcoming actions or events, and explicit learning was measured via both uninstructed reproduction of the action sequences and verbal reports of the regularities. The findings revealed that participants, regardless of condition, readily learned the regularities and made correct predictive eye movements to upcoming events during online observation. However, different patterns of explicit-learning outcomes emerged following observation: Participants were most likely to re-create the sequence regularities and to verbally report them when they had observed an actor create a contingent effect. These results suggest that the shift from implicit predictions to explicit knowledge of what has been learned is facilitated when observers perceive another agent's actions and when these actions cause effects. These findings are discussed with respect to the potential role of the motor system in modulating how statistical regularities are learned and used to modify behavior.
A Unified Theoretical Framework for Cognitive Sequencing.
Savalia, Tejas; Shukla, Anuj; Bapi, Raju S
2016-01-01
The capacity to sequence information is central to human performance. Sequencing ability forms the foundation stone for higher order cognition related to language and goal-directed planning. Information related to the order of items, their timing, chunking and hierarchical organization are important aspects in sequencing. Past research on sequencing has emphasized two distinct and independent dichotomies: implicit vs. explicit and goal-directed vs. habits. We propose a theoretical framework unifying these two streams. Our proposal relies on brain's ability to implicitly extract statistical regularities from the stream of stimuli and with attentional engagement organizing sequences explicitly and hierarchically. Similarly, sequences that need to be assembled purposively to accomplish a goal require engagement of attentional processes. With repetition, these goal-directed plans become habits with concomitant disengagement of attention. Thus, attention and awareness play a crucial role in the implicit-to-explicit transition as well as in how goal-directed plans become automatic habits. Cortico-subcortical loops basal ganglia-frontal cortex and hippocampus-frontal cortex loops mediate the transition process. We show how the computational principles of model-free and model-based learning paradigms, along with a pivotal role for attention and awareness, offer a unifying framework for these two dichotomies. Based on this framework, we make testable predictions related to the potential influence of response-to-stimulus interval (RSI) on developing awareness in implicit learning tasks.
A Unified Theoretical Framework for Cognitive Sequencing
Savalia, Tejas; Shukla, Anuj; Bapi, Raju S.
2016-01-01
The capacity to sequence information is central to human performance. Sequencing ability forms the foundation stone for higher order cognition related to language and goal-directed planning. Information related to the order of items, their timing, chunking and hierarchical organization are important aspects in sequencing. Past research on sequencing has emphasized two distinct and independent dichotomies: implicit vs. explicit and goal-directed vs. habits. We propose a theoretical framework unifying these two streams. Our proposal relies on brain's ability to implicitly extract statistical regularities from the stream of stimuli and with attentional engagement organizing sequences explicitly and hierarchically. Similarly, sequences that need to be assembled purposively to accomplish a goal require engagement of attentional processes. With repetition, these goal-directed plans become habits with concomitant disengagement of attention. Thus, attention and awareness play a crucial role in the implicit-to-explicit transition as well as in how goal-directed plans become automatic habits. Cortico-subcortical loops basal ganglia-frontal cortex and hippocampus-frontal cortex loops mediate the transition process. We show how the computational principles of model-free and model-based learning paradigms, along with a pivotal role for attention and awareness, offer a unifying framework for these two dichotomies. Based on this framework, we make testable predictions related to the potential influence of response-to-stimulus interval (RSI) on developing awareness in implicit learning tasks. PMID:27917146
Teulings, H; Contreras-Vidal, J; Stelmach, G; Adler, C
2002-01-01
Objective: The ability to use visual feedback to control handwriting size was compared in patients with Parkinson's disease (PD), elderly people, and young adults to better understand factors playing a part in parkinsonian micrographia. Methods: The participants wrote sequences of eight cursive l loops with visual target sizes of 0.5 and 2 cm on a flat panel display digitiser which both recorded and displayed the pen movements. In the pre-exposure and postexposure conditions, the display digitiser showed the actual pen trace in real time and real size. In the distortion exposure conditions, the gain of the vertical dimension of the visual feedback was either reduced to 70% or enlarged to 140%. Results: The young controls showed a gradual visuomotor adaptation that compensated for the visual feedback distortions during the exposure conditions. They also showed significant after effects during the postexposure conditions. The elderly controls marginally corrected for the size distortions and showed small after effects. The patients with PD, however, showed no trial by trial adaptations or after effects but instead, a progressive amplification of the distortion effect in each individual trial. Conclusion: The young controls used visual feedback to update their visuomotor map. The elderly controls seemed to make little use of visual feedback. The patients with Parkinson's disease rely on the visual feedback of previous or of ongoing strokes to programme subsequent strokes. This recursive feedback may play a part in the progressive reductions in handwriting size found in parkinsonian micrographia. PMID:11861687
Norman, Elisabeth; Price, Mark C.
2012-01-01
In the current paper, we first evaluate the suitability of traditional serial reaction time (SRT) and artificial grammar learning (AGL) experiments for measuring implicit learning of social signals. We then report the results of a novel sequence learning task which combines aspects of the SRT and AGL paradigms to meet our suggested criteria for how implicit learning experiments can be adapted to increase their relevance to situations of social intuition. The sequences followed standard finite-state grammars. Sequence learning and consciousness of acquired knowledge were compared between 2 groups of 24 participants viewing either sequences of individually presented letters or sequences of body-posture pictures, which were described as series of yoga movements. Participants in both conditions showed above-chance classification accuracy, indicating that sequence learning had occurred in both stimulus conditions. This shows that sequence learning can still be found when learning procedures reflect the characteristics of social intuition. Rule awareness was measured using trial-by-trial evaluation of decision strategy (Dienes & Scott, 2005; Scott & Dienes, 2008). For letters, sequence classification was best on trials where participants reported responding on the basis of explicit rules or memory, indicating some explicit learning in this condition. For body-posture, classification was not above chance on these types of trial, but instead showed a trend to be best on those trials where participants reported that their responses were based on intuition, familiarity, or random choice, suggesting that learning was more implicit. Results therefore indicate that the use of traditional stimuli in research on sequence learning might underestimate the extent to which learning is implicit in domains such as social learning, contributing to ongoing debate about levels of conscious awareness in implicit learning. PMID:22679467
Implicit perceptual-motor skill learning in mild cognitive impairment and Parkinson's disease.
Gobel, Eric W; Blomeke, Kelsey; Zadikoff, Cindy; Simuni, Tanya; Weintraub, Sandra; Reber, Paul J
2013-05-01
Implicit skill learning is hypothesized to depend on nondeclarative memory that operates independent of the medial temporal lobe (MTL) memory system and instead depends on cortico striatal circuits between the basal ganglia and cortical areas supporting motor function and planning. Research with the Serial Reaction Time (SRT) task suggests that patients with memory disorders due to MTL damage exhibit normal implicit sequence learning. However, reports of intact learning rely on observations of no group differences, leading to speculation as to whether implicit sequence learning is fully intact in these patients. Patients with Parkinson's disease (PD) often exhibit impaired sequence learning, but this impairment is not universally observed. Implicit perceptual-motor sequence learning was examined using the Serial Interception Sequence Learning (SISL) task in patients with amnestic Mild Cognitive Impairment (MCI; n = 11) and patients with PD (n = 15). Sequence learning in SISL is resistant to explicit learning and individually adapted task difficulty controls for baseline performance differences. Patients with MCI exhibited robust sequence learning, equivalent to healthy older adults (n = 20), supporting the hypothesis that the MTL does not contribute to learning in this task. In contrast, the majority of patients with PD exhibited no sequence-specific learning in spite of matched overall task performance. Two patients with PD exhibited performance indicative of an explicit compensatory strategy suggesting that impaired implicit learning may lead to greater reliance on explicit memory in some individuals. The differences in learning between patient groups provides strong evidence in favor of implicit sequence learning depending solely on intact basal ganglia function with no contribution from the MTL memory system.
Lei, Yuming; Binder, Jeffrey R.
2015-01-01
The extent to which motor learning is generalized across the limbs is typically very limited. Here, we investigated how two motor learning hypotheses could be used to enhance the extent of interlimb transfer. According to one hypothesis, we predicted that reinforcement of successful actions by providing binary error feedback regarding task success or failure, in addition to terminal error feedback, during initial training would increase the extent of interlimb transfer following visuomotor adaptation (experiment 1). According to the other hypothesis, we predicted that performing a reaching task repeatedly with one arm without providing performance feedback (which prevented learning the task with this arm), while concurrently adapting to a visuomotor rotation with the other arm, would increase the extent of transfer (experiment 2). Results indicate that providing binary error feedback, compared with continuous visual feedback that provided movement direction and amplitude information, had no influence on the extent of transfer. In contrast, repeatedly performing (but not learning) a specific task with one arm while visuomotor adaptation occurred with the other arm led to nearly complete transfer. This suggests that the absence of motor instances associated with specific effectors and task conditions is the major reason for limited interlimb transfer and that reinforcement of successful actions during initial training is not beneficial for interlimb transfer. These findings indicate crucial contributions of effector- and task-specific motor instances, which are thought to underlie (a type of) model-free learning, to optimal motor learning and interlimb transfer. PMID:25632082
Sequential neural processes in abacus mental addition: an EEG and FMRI case study.
Ku, Yixuan; Hong, Bo; Zhou, Wenjing; Bodner, Mark; Zhou, Yong-Di
2012-01-01
Abacus experts are able to mentally calculate multi-digit numbers rapidly. Some behavioral and neuroimaging studies have suggested a visuospatial and visuomotor strategy during abacus mental calculation. However, no study up to now has attempted to dissociate temporally the visuospatial neural process from the visuomotor neural process during abacus mental calculation. In the present study, an abacus expert performed the mental addition tasks (8-digit and 4-digit addends presented in visual or auditory modes) swiftly and accurately. The 100% correct rates in this expert's task performance were significantly higher than those of ordinary subjects performing 1-digit and 2-digit addition tasks. ERPs, EEG source localizations, and fMRI results taken together suggested visuospatial and visuomotor processes were sequentially arranged during the abacus mental addition with visual addends and could be dissociated from each other temporally. The visuospatial transformation of the numbers, in which the superior parietal lobule was most likely involved, might occur first (around 380 ms) after the onset of the stimuli. The visuomotor processing, in which the superior/middle frontal gyri were most likely involved, might occur later (around 440 ms). Meanwhile, fMRI results suggested that neural networks involved in the abacus mental addition with auditory stimuli were similar to those in the visual abacus mental addition. The most prominently activated brain areas in both conditions included the bilateral superior parietal lobules (BA 7) and bilateral middle frontal gyri (BA 6). These results suggest a supra-modal brain network in abacus mental addition, which may develop from normal mental calculation networks.
Barton, Brian; Treister, Andrew; Humphrey, Melanie; Abedi, Garen; Cramer, Steven C.; Brewer, Alyssa A.
2014-01-01
Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the brain, influencing neural development, plasticity, and repair (Chen et al., 2004; Thoenen, 1995). The BDNF gene contains a single-nucleotide polymorphism (SNP) called Val66Met. The Met allele interferes with intracellular BDNF-trafficking, decreases activity-dependent BDNF secretion, and consequently is often associated with a shift from plasticity to stability in neural circuits (Egan et al., 2003). We investigated the behavioral consequences of the presence of the Met allele by comparing how 40 heterozygous subjects with the Val/Met genotype and 35 homozygous subjects with the Val/Val genotype performed on visuomotor tasks (reaching and navigation) under two conditions: normal vision and completely left-right reversed vision. As expected, subjects did not differ in their short-term ability to learn the tasks with normal vision (p = 0.58). Intuitively, it would be expected that homozygous Val/Val subjects with a propensity for greater BDNF-induced activity-dependent plasticity would learn new tasks more quickly than heterozygous Val/Met subjects with decreased BDNF secretion (Gilbert, Li, & Piech, 2009). However, we found the opposite here. When short-term mechanisms of visuomotor adaptation were engaged to compensate for the misalignment of visual and somatomotor information created by the left-right reversal of vision, heterozygous Val/Met subjects learned significantly more quickly than their homozygous Val/Val counterparts (p = 0.027). Our results demonstrate the paradoxical finding that the presence of the Met allele, which is thought to promote cortical stability, here improves immediate visuomotor adaptation to left–right-reversed visual input. PMID:25104829
NASA Technical Reports Server (NTRS)
Morin, Lawrence P.; Blanchard, Jane H.
2005-01-01
The intergeniculate leaflet (IGL), homolog of the primate pregeniculate nucleus, modulates circadian rhythms. However, its extensive anatomical connections suggest that it may regulate other systems, particularly those for visuomotor function and sleep/arousal. Here, descending IGL-efferent pathways are identified with the anterograde tracer, Phaseolus vulgaris leucoagglutinin, with projections to over 50 brain stem nuclei. Projections of the ventral lateral geniculate are similar, but more limited. Many of the nuclei with IGL afferents contribute to circuitry governing visuomotor function. These include the oculomotor, trochlear, anterior pretectal, Edinger-Westphal, and the terminal nuclei; all layers of the superior colliculus, interstitial nucleus of the medial longitudinal fasciculus, supraoculomotor periaqueductal gray, nucleus of the optic tract, the inferior olive, and raphe interpositus. Other target nuclei are known to be involved in the regulation of sleep, including the lateral dorsal and pedunculopontine tegmentum. The dorsal raphe also receives projections from the IGL and may contribute to both sleep/arousal and visuomotor function. However, the locus coeruleus and medial vestibular nucleus, which contribute to sleep and eye movement regulation and which send projections to the IGL, do not receive reciprocal projections from it. The potential involvement of the IGL with the sleep/arousal system is further buttressed by existing evidence showing IGL-efferent projections to the ventrolateral preoptic area, dorsomedial, and medial tuberal hypothalamus. In addition, the great majority of all regions receiving IGL projections also receive input from the orexin/hypocretin system, suggesting that this system contributes not only to the regulation of sleep, but to eye movement control as well.
Task-specificity of unilateral anodal and dual-M1 tDCS effects on motor learning.
Karok, Sophia; Fletcher, David; Witney, Alice G
2017-01-08
Task-specific effects of transcranial direct current stimulation (tDCS) on motor learning were investigated in 30 healthy participants. In a sham-controlled, mixed design, participants trained on 3 different motor tasks (Purdue Pegboard Test, Visuomotor Grip Force Tracking Task and Visuomotor Wrist Rotation Speed Control Task) over 3 consecutive days while receiving either unilateral anodal over the right primary motor cortex (M1), dual-M1 or sham stimulation. Retention sessions were administered 7 and 28 days after the end of training. In the Purdue Pegboard Test, both anodal and dual-M1 stimulation reduced average completion time approximately equally, an improvement driven by online learning effects and maintained for about 1 week. The Visuomotor Grip Force Tracking Task and the Visuomotor Wrist Rotation Speed Control Task were associated with an advantage of dual-M1 tDCS in consolidation processes both between training sessions and when testing at long-term retention; both were maintained for at least 1 month. This study demonstrates that M1-tDCS enhances and sustains motor learning with different electrode montages. Stimulation-induced effects emerged at different learning phases across the tasks, which strongly suggests that the influence of tDCS on motor learning is dynamic with respect to the functional recruitment of the distributed motor system at the time of stimulation. Divergent findings regarding M1-tDCS effects on motor learning may partially be ascribed to task-specific consequences and the effects of offline consolidation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Single Neurons in M1 and Premotor Cortex Directly Reflect Behavioral Interference
Zach, Neta; Inbar, Dorrit; Grinvald, Yael; Vaadia, Eilon
2012-01-01
Some motor tasks, if learned together, interfere with each other's consolidation and subsequent retention, whereas other tasks do not. Interfering tasks are said to employ the same internal model whereas noninterfering tasks use different models. The division of function among internal models, as well as their possible neural substrates, are not well understood. To investigate these questions, we compared responses of single cells in the primary motor cortex and premotor cortex of primates to interfering and noninterfering tasks. The interfering tasks were visuomotor rotation followed by opposing visuomotor rotation. The noninterfering tasks were visuomotor rotation followed by an arbitrary association task. Learning two noninterfering tasks led to the simultaneous formation of neural activity typical of both tasks, at the level of single neurons. In contrast, and in accordance with behavioral results, after learning two interfering tasks, only the second task was successfully reflected in motor cortical single cell activity. These results support the hypothesis that the representational capacity of motor cortical cells is the basis of behavioral interference and division between internal models. PMID:22427923
Staels, Eva; Van den Broeck, Wim
2017-05-01
Recently, a general implicit sequence learning deficit was proposed as an underlying cause of dyslexia. This new hypothesis was investigated in the present study by including a number of methodological improvements, for example, the inclusion of appropriate control conditions. The second goal of the study was to explore the role of attentional functioning in implicit and explicit learning tasks. In a 2 × 2 within-subjects design 4 tasks were administered in 30 dyslexic and 38 control children: an implicit and explicit serial reaction time (RT) task and an implicit and explicit contextual cueing task. Attentional functioning was also administered. The entire learning curves of all tasks were analyzed using latent growth curve modeling in order to compare performances between groups and to examine the role of attentional functioning on the learning curves. The amount of implicit learning was similar for both groups. However, the dyslexic group showed slower RTs throughout the entire task. This group difference reduced and became nonsignificant after controlling for attentional functioning. Both implicit learning tasks, but none of the explicit learning tasks, were significantly affected by attentional functioning. Dyslexic children do not suffer from a specific implicit sequence learning deficit. The slower RTs of the dyslexic children throughout the entire implicit sequence learning process are caused by their comorbid attention problems and overall slowness. A key finding of the present study is that, in contrast to what was assumed for a long time, implicit learning relies on attentional resources, perhaps even more than explicit learning does. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
An Evolutionary Machine Learning Framework for Big Data Sequence Mining
ERIC Educational Resources Information Center
Kamath, Uday Krishna
2014-01-01
Sequence classification is an important problem in many real-world applications. Unlike other machine learning data, there are no "explicit" features or signals in sequence data that can help traditional machine learning algorithms learn and predict from the data. Sequence data exhibits inter-relationships in the elements that are…
Miller, Haylie L.; Bugnariu, Nicoleta; Patterson, Rita M.; Wijayasinghe, Indika; Popa, Dan O.
2018-01-01
Visuomotor integration (VMI), the use of visual information to guide motor planning, execution, and modification, is necessary for a wide range of functional tasks. To comprehensively, quantitatively assess VMI, we developed a paradigm integrating virtual environments, motion-capture, and mobile eye-tracking. Virtual environments enable tasks to be repeatable, naturalistic, and varied in complexity. Mobile eye-tracking and minimally-restricted movement enable observation of natural strategies for interacting with the environment. This paradigm yields a rich dataset that may inform our understanding of VMI in typical and atypical development. PMID:29876370
Implicit Perceptual-Motor Skill Learning in Mild Cognitive Impairment and Parkinson's Disease
Gobel, Eric W.; Blomeke, Kelsey; Zadikoff, Cindy; Simuni, Tanya; Weintraub, Sandy; Reber, Paul J.
2015-01-01
Objective Implicit skill learning is hypothesized to depend on nondeclarative memory that operates independent of the medial temporal lobe (MTL) memory system and instead depends on cortico-striatal circuits between the basal ganglia and cortical areas supporting motor function and planning. Research with the Serial Reaction Time (SRT) task suggests that patients with memory-disorders due to MTL damage exhibit normal implicit sequence learning. However, reports of intact learning rely on observations of no group differences, leading to speculation whether implicit sequence learning is fully intact in these patients. Patients with Parkinson's Disease (PD) often exhibit impaired sequence learning, but this impairment is not universally observed. Method Implicit perceptual-motor sequence learning was examined using the Serial Interception Sequence Learning (SISL) task in patients with amnestic Mild Cognitive Impairment (MCI; n=11) and patients with PD (n=15). Sequence learning in SISL is resistant to explicit learning and individually adapted task difficulty controls for baseline performance differences. Results Patients with MCI exhibited robust sequence learning, equivalent to healthy older adults (n=20), supporting the hypothesis that the MTL does not contribute to learning in this task. In contrast, the majority of patients with PD exhibited no sequence-specific learning in spite of matched overall task performance. Two patients with PD exhibited performance indicative of an explicit compensatory strategy suggesting that impaired implicit learning may lead to greater reliance on explicit memory in some individuals. Conclusion The differences in learning between patient groups provides strong evidence in favor of implicit sequence learning depending solely on intact basal ganglia function with no contribution from the MTL memory system. PMID:23688213
Gorbet, Diana J; Sergio, Lauren E
2018-01-01
A history of action video game (AVG) playing is associated with improvements in several visuospatial and attention-related skills and these improvements may be transferable to unrelated tasks. These facts make video games a potential medium for skill-training and rehabilitation. However, examinations of the neural correlates underlying these observations are almost non-existent in the visuomotor system. Further, the vast majority of studies on the effects of a history of AVG play have been done using almost exclusively male participants. Therefore, to begin to fill these gaps in the literature, we present findings from two experiments. In the first, we use functional MRI to examine brain activity in experienced, female AVG players during visually-guided reaching. In the second, we examine the kinematics of visually-guided reaching in this population. Imaging data demonstrate that relative to women who do not play, AVG players have less motor-related preparatory activity in the cuneus, middle occipital gyrus, and cerebellum. This decrease is correlated with estimates of time spent playing. Further, these correlations are strongest during the performance of a visuomotor mapping that spatially dissociates eye and arm movements. However, further examinations of the full time-course of visuomotor-related activity in the AVG players revealed that the decreased activity during motor preparation likely results from a later onset of activity in AVG players, which occurs closer to beginning motor execution relative to the non-playing group. Further, the data presented here suggest that this later onset of preparatory activity represents greater neural efficiency that is associated with faster visually-guided responses.
Gorbet, Diana J.; Sergio, Lauren E.
2018-01-01
A history of action video game (AVG) playing is associated with improvements in several visuospatial and attention-related skills and these improvements may be transferable to unrelated tasks. These facts make video games a potential medium for skill-training and rehabilitation. However, examinations of the neural correlates underlying these observations are almost non-existent in the visuomotor system. Further, the vast majority of studies on the effects of a history of AVG play have been done using almost exclusively male participants. Therefore, to begin to fill these gaps in the literature, we present findings from two experiments. In the first, we use functional MRI to examine brain activity in experienced, female AVG players during visually-guided reaching. In the second, we examine the kinematics of visually-guided reaching in this population. Imaging data demonstrate that relative to women who do not play, AVG players have less motor-related preparatory activity in the cuneus, middle occipital gyrus, and cerebellum. This decrease is correlated with estimates of time spent playing. Further, these correlations are strongest during the performance of a visuomotor mapping that spatially dissociates eye and arm movements. However, further examinations of the full time-course of visuomotor-related activity in the AVG players revealed that the decreased activity during motor preparation likely results from a later onset of activity in AVG players, which occurs closer to beginning motor execution relative to the non-playing group. Further, the data presented here suggest that this later onset of preparatory activity represents greater neural efficiency that is associated with faster visually-guided responses. PMID:29364891
Cortical oscillatory activity and the induction of plasticity in the human motor cortex.
McAllister, Suzanne M; Rothwell, John C; Ridding, Michael C
2011-05-01
Repetitive transcranial magnetic stimulation paradigms such as continuous theta burst stimulation (cTBS) induce long-term potentiation- and long-term depression-like plasticity in the human motor cortex. However, responses to cTBS are highly variable and may depend on the activity of the cortex at the time of stimulation. We investigated whether power in different electroencephalogram (EEG) frequency bands predicted the response to subsequent cTBS, and conversely whether cTBS had after-effects on the EEG. cTBS may utilize similar mechanisms of plasticity to motor learning; thus, we conducted a parallel set of experiments to test whether ongoing electroencephalography could predict performance of a visuomotor training task, and whether training itself had effects on the EEG. Motor evoked potentials (MEPs) provided an index of cortical excitability pre- and post-intervention. The EEG was recorded over the motor cortex pre- and post-intervention, and power spectra were computed. cTBS reduced MEP amplitudes; however, baseline power in the delta, theta, alpha or beta frequencies did not predict responses to cTBS or learning of the visuomotor training task. cTBS had no effect on delta, theta, alpha or beta power. In contrast, there was an increase in alpha power following visuomotor training that was positively correlated with changes in MEP amplitude post-training. The results suggest that the EEG is not a useful state-marker for predicting responses to plasticity-inducing paradigms. The correlation between alpha power and changes in corticospinal excitability following visuomotor training requires further investigation, but may be related to disengagement of the somatosensory system important for motor memory consolidation. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Meehan, S K; Zabukovec, J R; Dao, E; Cheung, K L; Linsdell, M A; Boyd, L A
2013-10-01
Consolidation of motor memories associated with skilled practice can occur both online, concurrent with practice, and offline, after practice has ended. The current study investigated the role of dorsal premotor cortex (PMd) in early offline motor memory consolidation of implicit sequence-specific learning. Thirty-three participants were assigned to one of three groups of repetitive transcranial magnetic stimulation (rTMS) over left PMd (5 Hz, 1 Hz or control) immediately following practice of a novel continuous tracking task. There was no additional practice following rTMS. This procedure was repeated for 4 days. The continuous tracking task contained a repeated sequence that could be learned implicitly and random sequences that could not. On a separate fifth day, a retention test was performed to assess implicit sequence-specific motor learning of the task. Tracking error was decreased for the group who received 1 Hz rTMS over the PMd during the early consolidation period immediately following practice compared with control or 5 Hz rTMS. Enhanced sequence-specific learning with 1 Hz rTMS following practice was due to greater offline consolidation, not differences in online learning between the groups within practice days. A follow-up experiment revealed that stimulation of PMd following practice did not differentially change motor cortical excitability, suggesting that changes in offline consolidation can be largely attributed to stimulation-induced changes in PMd. These findings support a differential role for the PMd in support of online and offline sequence-specific learning of a visuomotor task and offer converging evidence for competing memory systems. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Visuomotor control of human adaptive locomotion: understanding the anticipatory nature.
Higuchi, Takahiro
2013-01-01
To maintain balance during locomotion, the central nervous system (CNS) accommodates changes in the constraints of spatial environment (e.g., existence of an obstacle or changes in the surface properties). Locomotion while modifying the basic movement patterns in response to such constraints is referred to as adaptive locomotion. The most powerful means of ensuring balance during adaptive locomotion is to visually perceive the environmental properties at a distance and modify the movement patterns in an anticipatory manner to avoid perturbation altogether. For this reason, visuomotor control of adaptive locomotion is characterized, at least in part, by its anticipatory nature. The purpose of the present article is to review the relevant studies which revealed the anticipatory nature of the visuomotor control of adaptive locomotion. The anticipatory locomotor adjustments for stationary and changeable environment, as well as the spatio-temporal patterns of gaze behavior to support the anticipatory locomotor adjustments are described. Such description will clearly show that anticipatory locomotor adjustments are initiated when an object of interest (e.g., a goal or obstacle) still exists in far space. This review also show that, as a prerequisite of anticipatory locomotor adjustments, environmental properties are accurately perceived from a distance in relation to individual's action capabilities.
Cross-sectional evaluation of visuomotor tracking performance following subconcussive head impacts.
Brokaw, E B; Fine, M S; Kindschi, K E; Santago Ii, A C; Lum, P S; Higgins, M
2018-01-01
Repeated mild traumatic brain injury (mTBI) has been associated with increased risk of degenerative neurological disorders. While the effects of mTBI and repeated injury are known, studies have only recently started examining repeated subconcussive impacts, impacts that do not result in a clinically diagnosed mTBI. In these studies, repeated subconcussive impacts have been connected to cognitive performance and brain imaging changes. Recent research suggests that performance on a visuomotor tracking (VMT) task may help improve the identification of mTBI. The goal of this study was to investigate if VMT performance is sensitive to the cumulative effect of repeated subconcussive head impacts in collegiate men's lacrosse players. A cross-sectional, prospective study was completed with eleven collegiate men's lacrosse players. Participants wore helmet-mounted sensors and completed VMT and reaction time assessments. The relationship between cumulative impact metrics and VMT metrics were investigated. In this study, VMT performance correlated with repeated subconcussive head impacts; individuals approached clinically diagnosed mTBI-like performance as the cumulative rotational velocity they experienced increased. This suggests that repeated subconcussive impacts can result in measurable impairments and indicates that visuomotor tracking performance may be a useful tool for monitoring the effects of repeated subconcussive impacts.
Grouping principles in direct competition.
Schmidt, Filipp; Schmidt, Thomas
2013-08-09
We (1) introduce a primed flanker task as an objective method to measure perceptual grouping, and (2) use it to directly compare the efficiency of different grouping cues in rapid visuomotor processing. In two experiments, centrally presented primes were succeeded by flanking targets with varying stimulus-onset asynchronies (SOAs). Primes and targets were grouped by the same or by different grouping cues (Exp. 1: brightness/shape, Exp. 2: brightness/size) and were consistent or inconsistent with respect to the required response. Subjective grouping strength was varied to identify its influence on overall response times, error rates, and priming effects, that served as a measure of visual feedforward processing. Our results show that stronger grouping in the targets enhanced overall response times while stronger grouping in the primes enhanced priming effects in motor responses. Also, we obtained differences between rapid visuomotor processing and the subjective impression with cues of brightness and shape but not with cues of brightness and size. Our findings establish the primed flanker task as an objective method to study the speeded visuomotor processing of grouping cues, making it a useful method for the comparative study of feedforward-transmitted base groupings (Roelfsema & Houtkamp, 2011). Copyright © 2013 Elsevier Ltd. All rights reserved.
Development of a Portable Motor Learning Laboratory (PoMLab)
Shinya, Masahiro
2016-01-01
Most motor learning experiments have been conducted in a laboratory setting. In this type of setting, a huge and expensive manipulandum is frequently used, requiring a large budget and wide open space. Subjects also need to travel to the laboratory, which is a burden for them. This burden is particularly severe for patients with neurological disorders. Here, we describe the development of a novel application based on Unity3D and smart devices, e.g., smartphones or tablet devices, that can be used to conduct motor learning experiments at any time and in any place, without requiring a large budget and wide open space and without the burden of travel on subjects. We refer to our application as POrtable Motor learning LABoratory, or PoMLab. PoMLab is a multiplatform application that is available and sharable for free. We investigated whether PoMLab could be an alternative to the laboratory setting using a visuomotor rotation paradigm that causes sensory prediction error, enabling the investigation of how subjects minimize the error. In the first experiment, subjects could adapt to a constant visuomotor rotation that was abruptly applied at a specific trial. The learning curve for the first experiment could be modeled well using a state space model, a mathematical model that describes the motor leaning process. In the second experiment, subjects could adapt to a visuomotor rotation that gradually increased each trial. The subjects adapted to the gradually increasing visuomotor rotation without being aware of the visuomotor rotation. These experimental results have been reported for conventional experiments conducted in a laboratory setting, and our PoMLab application could reproduce these results. PoMLab can thus be considered an alternative to the laboratory setting. We also conducted follow-up experiments in university physical education classes. A state space model that was fit to the data obtained in the laboratory experiments could predict the learning curves obtained in the follow-up experiments. Further, we investigated the influence of vibration function, weight, and screen size on learning curves. Finally, we compared the learning curves obtained in the PoMLab experiments to those obtained in the conventional reaching experiments. The results of the in-class experiments show that PoMLab can be used to conduct motor learning experiments at any time and place. PMID:27348223
Development of a Portable Motor Learning Laboratory (PoMLab).
Takiyama, Ken; Shinya, Masahiro
2016-01-01
Most motor learning experiments have been conducted in a laboratory setting. In this type of setting, a huge and expensive manipulandum is frequently used, requiring a large budget and wide open space. Subjects also need to travel to the laboratory, which is a burden for them. This burden is particularly severe for patients with neurological disorders. Here, we describe the development of a novel application based on Unity3D and smart devices, e.g., smartphones or tablet devices, that can be used to conduct motor learning experiments at any time and in any place, without requiring a large budget and wide open space and without the burden of travel on subjects. We refer to our application as POrtable Motor learning LABoratory, or PoMLab. PoMLab is a multiplatform application that is available and sharable for free. We investigated whether PoMLab could be an alternative to the laboratory setting using a visuomotor rotation paradigm that causes sensory prediction error, enabling the investigation of how subjects minimize the error. In the first experiment, subjects could adapt to a constant visuomotor rotation that was abruptly applied at a specific trial. The learning curve for the first experiment could be modeled well using a state space model, a mathematical model that describes the motor leaning process. In the second experiment, subjects could adapt to a visuomotor rotation that gradually increased each trial. The subjects adapted to the gradually increasing visuomotor rotation without being aware of the visuomotor rotation. These experimental results have been reported for conventional experiments conducted in a laboratory setting, and our PoMLab application could reproduce these results. PoMLab can thus be considered an alternative to the laboratory setting. We also conducted follow-up experiments in university physical education classes. A state space model that was fit to the data obtained in the laboratory experiments could predict the learning curves obtained in the follow-up experiments. Further, we investigated the influence of vibration function, weight, and screen size on learning curves. Finally, we compared the learning curves obtained in the PoMLab experiments to those obtained in the conventional reaching experiments. The results of the in-class experiments show that PoMLab can be used to conduct motor learning experiments at any time and place.
NASA Technical Reports Server (NTRS)
Heuer, H.; Spijkers, W.; Kiesswetter, E.; Schmidtke, V.
1998-01-01
Tacit knowledge is part of many professional skills and can be studied experimentally with implicit-learning paradigms. The authors explored the effects of 2 different stressors, loss of sleep and mental fatigue, on implicit learning in a serial-response time (RT) task. In the 1st experiment, 1 night of sleep deprivation was shown to impair implicit but not explicit sequence learning. In the 2nd experiment, no impairment of both types of sequence learning was found after 1.5 hr of mental work. Serial-RT performance, in contrast, suffered from both stressors. These findings suggest that sleep deprivation induces specific risks for automatic, skill-based behavior that are not present in consciously controlled performance.
Influence of automatic word reading on motor control.
Gentilucci, M; Gangitano, M
1998-02-01
We investigated the possible influence of automatic word reading on processes of visuo-motor transformation. Six subjects were required to reach and grasp a rod on whose visible face the word 'long' or 'short' was printed. Word reading was not explicitly required. In order to induce subjects to visually analyse the object trial by trial, object position and size were randomly varied during the experimental session. The kinematics of the reaching component was affected by word presentation. Peak acceleration, peak velocity, and peak deceleration of arm were higher for the word 'long' with respect to the word 'short'. That is, during the initial movement phase subjects automatically associated the meaning of the word with the distance to be covered and activated a motor program for a farther and/or nearer object position. During the final movement phase, subjects modified the braking forces (deceleration) in order to correct the initial error. No effect of the words on the grasp component was observed. These results suggest a possible influence of cognitive functions on motor control and seem to contrast with the notion that the analyses executed in the ventral and dorsal cortical visual streams are different and independent.
Steering a virtual blowfly: simulation of visual pursuit.
Boeddeker, Norbert; Egelhaaf, Martin
2003-09-22
The behavioural repertoire of male flies includes visually guided chasing after moving targets. The visuomotor control system for these pursuits belongs to the fastest found in the animal kingdom. We simulated a virtual fly, to test whether or not experimentally established hypotheses on the underlying control system are sufficient to explain chasing behaviour. Two operating instructions for steering the chasing virtual fly were derived from behavioural experiments: (i) the retinal size of the target controls the fly's forward speed and, thus, indirectly its distance to the target; and (ii) a smooth pursuit system uses the retinal position of the target to regulate the fly's flight direction. Low-pass filters implement neuronal processing time. Treating the virtual fly as a point mass, its kinematics are modelled in consideration of the effects of translatory inertia and air friction. Despite its simplicity, the model shows behaviour similar to that of real flies. Depending on its starting position and orientation as well as on target size and speed, the virtual fly either catches the target or follows it indefinitely without capture. These two behavioural modes of the virtual fly emerge from the control system for flight steering without implementation of an explicit decision maker.
Lukic, Luka; Santos-Victor, José; Billard, Aude
2014-04-01
We investigate the role of obstacle avoidance in visually guided reaching and grasping movements. We report on a human study in which subjects performed prehensile motion with obstacle avoidance where the position of the obstacle was systematically varied across trials. These experiments suggest that reaching with obstacle avoidance is organized in a sequential manner, where the obstacle acts as an intermediary target. Furthermore, we demonstrate that the notion of workspace travelled by the hand is embedded explicitly in a forward planning scheme, which is actively involved in detecting obstacles on the way when performing reaching. We find that the gaze proactively coordinates the pattern of eye-arm motion during obstacle avoidance. This study provides also a quantitative assessment of the coupling between the eye-arm-hand motion. We show that the coupling follows regular phase dependencies and is unaltered during obstacle avoidance. These observations provide a basis for the design of a computational model. Our controller extends the coupled dynamical systems framework and provides fast and synchronous control of the eyes, the arm and the hand within a single and compact framework, mimicking similar control system found in humans. We validate our model for visuomotor control of a humanoid robot.
How Incidental Sequence Learning Creates Reportable Knowledge: The Role of Unexpected Events
ERIC Educational Resources Information Center
Runger, Dennis; Frensch, Peter A.
2008-01-01
Research on incidental sequence learning typically is concerned with the characteristics of implicit or nonconscious learning. In this article, the authors aim to elucidate the cognitive mechanisms that contribute to the generation of explicit, reportable sequence knowledge. According to the unexpected-event hypothesis (P. A. Frensch, H. Haider,…
Vidoni, Eric D; Boyd, Lara A
2007-09-01
Two major memory and learning systems operate in the brain: one for facts and ideas (ie, the declarative or explicit system), one for habits and behaviors (ie, the procedural or implicit system). Broadly speaking these two memory systems can operate either in concert or entirely independently of one another during the performance and learning of skilled motor behaviors. This Special Issue article has two parts. In the first, we present a review of implicit motor skill learning that is largely centered on the interactions between declarative and procedural learning and memory. Because distinct neuroanatomical substrates support unique aspects of learning and memory and thus focal injury can cause impairments that are dependent on lesion location, we also broadly consider which brain regions mediate implicit and explicit learning and memory. In the second part of this article, the interactive nature of these two memory systems is illustrated by the presentation of new data that reveal that both learning implicitly and acquiring explicit knowledge through physical practice lead to motor sequence learning. In our new data, we discovered that for healthy individuals use of the implicit versus explicit memory system differently affected variability of performance during acquisition practice; variability was higher early in practice for the implicit group and later in practice for the acquired explicit group. Despite the difference in performance variability, by retention both groups demonstrated comparable change in tracking accuracy and thus, motor sequence learning. Clinicians should be aware of the potential effects of implicit and explicit interactions when designing rehabilitation interventions, particularly when delivering explicit instructions before task practice, working with individuals with focal brain damage, and/or adjusting therapeutic parameters based on acquisition performance variability.
Reduced Implicit and Explicit Sequence Learning in First-Episode Schizophrenia
ERIC Educational Resources Information Center
Pedersen, Anya; Siegmund, Ansgar; Ohrmann, Patricia; Rist, Fred; Rothermundt, Matthias; Suslow, Thomas; Arolt, Volker
2008-01-01
A high prevalence of deficits in explicit learning has been reported for schizophrenic patients, but it is less clear whether these patients are impaired in implicit learning. Deficits in implicit learning indicative of a fronto-striatal dysfunction have been reported using a serial reaction-time task (SRT), but the impact of typical neuroleptic…
Explicit Pre-Training Instruction Does Not Improve Implicit Perceptual-Motor Sequence Learning
ERIC Educational Resources Information Center
Sanchez, Daniel J.; Reber, Paul J.
2013-01-01
Memory systems theory argues for separate neural systems supporting implicit and explicit memory in the human brain. Neuropsychological studies support this dissociation, but empirical studies of cognitively healthy participants generally observe that both kinds of memory are acquired to at least some extent, even in implicit learning tasks. A key…
Peripheral neuropathy reduces asymmetries in inter-limb transfer in a visuo-motor task.
Pan, Zhujun; Van Gemmert, Arend W A
2016-01-01
Asymmetry of inter-limb transfer has been associated with the specialization of the dominant and non-dominant motor system. Reductions of asymmetry have been interpreted as behavioural evidence showing a decline of hemispheric lateralization. A previous study showed that ageing did not qualitatively change the inter-limb transfer asymmetry of a visuo-motor task. The current study elaborates on these findings; it examines whether diminished somatosensory information as a result of peripheral neuropathy (PN) adversely affects inter-limb transfer asymmetry. Twenty individuals affected by PN and 20 older controls were recruited and divided equally across two groups. One group trained a visuo-motor task with the right hand while the other group trained it with the left hand. Performance (initial direction error) of the untrained hand before and after training was collected to determine learning effects from inter-limb transfer. Similar to previous studies, the current study showed asymmetric inter-limb transfer in older controls. In contrast, PN showed inter-limb transfer in both directions indicating that PN reduces inter-limb transfer asymmetry. Increased bilateral hemispheric recruitment is suggested to be responsible for this reduced asymmetry which may compensate for deteriorated tactile and/or proprioceptive inputs in PN. Two possible hypotheses are discussed explaining the relationship between declined somatosensory information and increases in bilateral hemispheric recruitment.
Kasuga, Shoko; Ushiba, Junichi
2014-01-01
Humans have a flexible motor ability to adapt their movements to changes in the internal/external environment. For example, using arm-reaching tasks, a number of studies experimentally showed that participants adapt to a novel visuomotor environment. These results helped develop computational models of motor learning implemented in the central nervous system. Despite the importance of such experimental paradigms for exploring the mechanisms of motor learning, because of the cost and preparation time, most students are unable to participate in such experiments. Therefore, in the current study, to help students better understand motor learning theories, we developed a simple finger-reaching experimental system using commonly used laptop PC components with an open-source programming language (Processing Motor Learning Toolkit: PMLT). We found that compared to a commercially available robotic arm-reaching device, our PMLT accomplished similar learning goals (difference in the error reduction between the devices, P = 0.10). In addition, consistent with previous reports from visuomotor learning studies, the participants showed after-effects indicating an adaptation of the motor learning system. The results suggest that PMLT can serve as a new experimental system for an undergraduate laboratory exercise of motor learning theories with minimal time and cost for instructors.
Moving to Capture Children's Attention: Developing a Methodology for Measuring Visuomotor Attention.
Hill, Liam J B; Coats, Rachel O; Mushtaq, Faisal; Williams, Justin H G; Aucott, Lorna S; Mon-Williams, Mark
2016-01-01
Attention underpins many activities integral to a child's development. However, methodological limitations currently make large-scale assessment of children's attentional skill impractical, costly and lacking in ecological validity. Consequently we developed a measure of 'Visual Motor Attention' (VMA)-a construct defined as the ability to sustain and adapt visuomotor behaviour in response to task-relevant visual information. In a series of experiments, we evaluated the capability of our method to measure attentional processes and their contributions in guiding visuomotor behaviour. Experiment 1 established the method's core features (ability to track stimuli moving on a tablet-computer screen with a hand-held stylus) and demonstrated its sensitivity to principled manipulations in adults' attentional load. Experiment 2 standardised a format suitable for use with children and showed construct validity by capturing developmental changes in executive attention processes. Experiment 3 tested the hypothesis that children with and without coordination difficulties would show qualitatively different response patterns, finding an interaction between the cognitive and motor factors underpinning responses. Experiment 4 identified associations between VMA performance and existing standardised attention assessments and thereby confirmed convergent validity. These results establish a novel approach to measuring childhood attention that can produce meaningful functional assessments that capture how attention operates in an ecologically valid context (i.e. attention's specific contribution to visuomanual action).
Activation of the cerebellar cortex and the dentate nucleus in a prism adaptation fMRI study.
Küper, Michael; Wünnemann, Meret J S; Thürling, Markus; Stefanescu, Roxana M; Maderwald, Stefan; Elles, Hans G; Göricke, Sophia; Ladd, Mark E; Timmann, Dagmar
2014-04-01
During prism adaptation two types of learning processes can be distinguished. First, fast strategic motor control responses are predominant in the early course of prism adaptation to achieve rapid error correction within few trials. Second, slower spatial realignment occurs among the misaligned visual and proprioceptive sensorimotor coordinate system. The aim of the present ultra-highfield (7T) functional magnetic resonance imaging (fMRI) study was to explore cerebellar cortical and dentate nucleus activation during the course of prism adaptation in relation to a similar visuomotor task without prism exposure. Nineteen young healthy participants were included into the study. Recently developed normalization procedures were applied for the cerebellar cortex and the dentate nucleus. By means of subtraction analysis (early prism adaptation > visuomotor, early prism adaptation > late prism adaptation) we identified ipsilateral activation associated with strategic motor control responses within the posterior cerebellar cortex (lobules VIII and IX) and the ventro-caudal dentate nucleus. During the late phase of adaptation we observed pronounced activation of posterior parts of lobule VI, although subtraction analyses (late prism adaptation > visuomotor) remained negative. These results are in good accordance with the concept of a representation of non-motor functions, here strategic control, within the ventro-caudal dentate nucleus. Copyright © 2013 Wiley Periodicals, Inc.
Naber, Marnix; Hommel, Bernhard; Colzato, Lorenza S
2015-08-14
Only few nutrients are known to enhance cognition. Here we explore whether visuomotor performance can be improved through the intake of the nutrient choline, an essential chemical compound in a vertebrate's diet. Choline is abundant in for example eggs and shrimps and many animal studies suggest that it serves as a cognitive enhancer. As choline is important for the communication between motor neurons and the control of skeletal muscles, we assumed that choline supplementation may have positive effects on action coordination in humans. A group of twenty-eight individuals ingested two grams of choline bitartrate or a placebo in two separate sessions. Seventy minutes post ingestion, participants performed a visuomotor aiming task in which they had to rapidly hit the centers of targets. Results showed that participants hit targets more centrally after choline supplementation. Pupil size (a cognition-sensitive biomarker) also significantly decreased after choline intake and correlated positively with the hit distance to the targets and the number of target misses, and negatively with reaction times. These findings point to a choline-induced bias towards action precision in the trade-off between speed and accuracy. The changes in pupil size suggest that choline uptake alters cholinergic functions in the nervous system.
Simon, Anja; Bock, Otmar
2015-01-01
A new 3-stage model based on neuroimaging evidence is proposed by Chein and Schneider (2012). Each stage is associated with different brain regions, and draws on cognitive abilities: the first stage on creativity, the second on selective attention, and the third on automatic processing. The purpose of the present study was to scrutinize the validity of this model for 1 popular learning paradigm, visuomotor adaptation. Participants completed tests for creativity, selective attention and automated processing before attending in a pointing task with adaptation to a 60° rotation of visual feedback. To examine the relationship between cognitive abilities and motor learning at different times of practice, associations between cognitive and adaptation scores were calculated repeatedly throughout adaptation. The authors found no benefit of high creativity for adaptive performance. High levels of selective attention were positively associated with early adaptation, but hardly with late adaptation and de-adaptation. High levels of automated execution were beneficial for late adaptation, but hardly for early and de-adaptation. From this we conclude that Chein and Schneider's first learning stage is difficult to confirm by research on visuomotor adaptation, and that the other 2 learning stages rather relate to workaround strategies than to actual adaptive recalibration.
Prochnow, D; Bermúdez i Badia, S; Schmidt, J; Duff, A; Brunheim, S; Kleiser, R; Seitz, R J; Verschure, P F M J
2013-05-01
The Rehabilitation Gaming System (RGS) has been designed as a flexible, virtual-reality (VR)-based device for rehabilitation of neurological patients. Recently, training of visuomotor processing with the RGS was shown to effectively improve arm function in acute and chronic stroke patients. It is assumed that the VR-based training protocol related to RGS creates conditions that aid recovery by virtue of the human mirror neuron system. Here, we provide evidence for this assumption by identifying the brain areas involved in controlling the catching of approaching colored balls in the virtual environment of the RGS. We used functional magnetic resonance imaging of 18 right-handed healthy subjects (24 ± 3 years) in both active and imagination conditions. We observed that the imagery of target catching was related to activation of frontal, parietal, temporal, cingulate and cerebellar regions. We interpret these activations in relation to object processing, attention, mirror mechanisms, and motor intention. Active catching followed an anticipatory mode, and resulted in significantly less activity in the motor control areas. Our results provide preliminary support for the hypothesis underlying RGS that this novel neurorehabilitation approach engages human mirror mechanisms that can be employed for visuomotor training. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Visuomotor Transformations Underlying Hunting Behavior in Zebrafish
Bianco, Isaac H.; Engert, Florian
2015-01-01
Summary Visuomotor circuits filter visual information and determine whether or not to engage downstream motor modules to produce behavioral outputs. However, the circuit mechanisms that mediate and link perception of salient stimuli to execution of an adaptive response are poorly understood. We combined a virtual hunting assay for tethered larval zebrafish with two-photon functional calcium imaging to simultaneously monitor neuronal activity in the optic tectum during naturalistic behavior. Hunting responses showed mixed selectivity for combinations of visual features, specifically stimulus size, speed, and contrast polarity. We identified a subset of tectal neurons with similar highly selective tuning, which show non-linear mixed selectivity for visual features and are likely to mediate the perceptual recognition of prey. By comparing neural dynamics in the optic tectum during response versus non-response trials, we discovered premotor population activity that specifically preceded initiation of hunting behavior and exhibited anatomical localization that correlated with motor variables. In summary, the optic tectum contains non-linear mixed selectivity neurons that are likely to mediate reliable detection of ethologically relevant sensory stimuli. Recruitment of small tectal assemblies appears to link perception to action by providing the premotor commands that release hunting responses. These findings allow us to propose a model circuit for the visuomotor transformations underlying a natural behavior. PMID:25754638
Visuomotor transformations underlying hunting behavior in zebrafish.
Bianco, Isaac H; Engert, Florian
2015-03-30
Visuomotor circuits filter visual information and determine whether or not to engage downstream motor modules to produce behavioral outputs. However, the circuit mechanisms that mediate and link perception of salient stimuli to execution of an adaptive response are poorly understood. We combined a virtual hunting assay for tethered larval zebrafish with two-photon functional calcium imaging to simultaneously monitor neuronal activity in the optic tectum during naturalistic behavior. Hunting responses showed mixed selectivity for combinations of visual features, specifically stimulus size, speed, and contrast polarity. We identified a subset of tectal neurons with similar highly selective tuning, which show non-linear mixed selectivity for visual features and are likely to mediate the perceptual recognition of prey. By comparing neural dynamics in the optic tectum during response versus non-response trials, we discovered premotor population activity that specifically preceded initiation of hunting behavior and exhibited anatomical localization that correlated with motor variables. In summary, the optic tectum contains non-linear mixed selectivity neurons that are likely to mediate reliable detection of ethologically relevant sensory stimuli. Recruitment of small tectal assemblies appears to link perception to action by providing the premotor commands that release hunting responses. These findings allow us to propose a model circuit for the visuomotor transformations underlying a natural behavior. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Granek, Joshua A.; Pisella, Laure; Blangero, Annabelle; Rossetti, Yves; Sergio, Lauren E.
2012-01-01
Patients with optic ataxia (OA), who are missing the caudal portion of their superior parietal lobule (SPL), have difficulty performing visually-guided reaches towards extra-foveal targets. Such gaze and hand decoupling also occurs in commonly performed non-standard visuomotor transformations such as the use of a computer mouse. In this study, we test two unilateral OA patients in conditions of 1) a change in the physical location of the visual stimulus relative to the plane of the limb movement, 2) a cue that signals a required limb movement 180° opposite to the cued visual target location, or 3) both of these situations combined. In these non-standard visuomotor transformations, the OA deficit is not observed as the well-documented field-dependent misreach. Instead, OA patients make additional eye movements to update hand and goal location during motor execution in order to complete these slow movements. Overall, the OA patients struggled when having to guide centrifugal movements in peripheral vision, even when they were instructed from visual stimuli that could be foveated. We propose that an intact caudal SPL is crucial for any visuomotor control that involves updating ongoing hand location in space without foveating it, i.e. from peripheral vision, proprioceptive or predictive information. PMID:23071599
Naber, Marnix; Hommel, Bernhard; Colzato, Lorenza S.
2015-01-01
Only few nutrients are known to enhance cognition. Here we explore whether visuomotor performance can be improved through the intake of the nutrient choline, an essential chemical compound in a vertebrate’s diet. Choline is abundant in for example eggs and shrimps and many animal studies suggest that it serves as a cognitive enhancer. As choline is important for the communication between motor neurons and the control of skeletal muscles, we assumed that choline supplementation may have positive effects on action coordination in humans. A group of twenty-eight individuals ingested two grams of choline bitartrate or a placebo in two separate sessions. Seventy minutes post ingestion, participants performed a visuomotor aiming task in which they had to rapidly hit the centers of targets. Results showed that participants hit targets more centrally after choline supplementation. Pupil size (a cognition-sensitive biomarker) also significantly decreased after choline intake and correlated positively with the hit distance to the targets and the number of target misses, and negatively with reaction times. These findings point to a choline-induced bias towards action precision in the trade-off between speed and accuracy. The changes in pupil size suggest that choline uptake alters cholinergic functions in the nervous system. PMID:26271904
Visuomotor adaptability in older adults with mild cognitive decline.
Schaffert, Jeffrey; Lee, Chi-Mei; Neill, Rebecca; Bo, Jin
2017-02-01
The current study examined the augmentation of error feedback on visuomotor adaptability in older adults with varying degrees of cognitive decline (assessed by the Montreal Cognitive Assessment; MoCA). Twenty-three participants performed a center-out computerized visuomotor adaptation task when the visual feedback of their hand movement error was presented in a regular (ratio=1:1) or enhanced (ratio=1:2) error feedback schedule. Results showed that older adults with lower scores on the MoCA had less adaptability than those with higher MoCA scores during the regular feedback schedule. However, participants demonstrated similar adaptability during the enhanced feedback schedule, regardless of their cognitive ability. Furthermore, individuals with lower MoCA scores showed larger after-effects in spatial control during the enhanced schedule compared to the regular schedule, whereas individuals with higher MoCA scores displayed the opposite pattern. Additional neuro-cognitive assessments revealed that spatial working memory and processing speed were positively related to motor adaptability during the regular scheduled but negatively related to adaptability during the enhanced schedule. We argue that individuals with mild cognitive decline employed different adaptation strategies when encountering enhanced visual feedback, suggesting older adults with mild cognitive impairment (MCI) may benefit from enhanced visual error feedback during sensorimotor adaptation. Copyright © 2016 Elsevier B.V. All rights reserved.
Babiloni, Claudio; Brancucci, Alfredo; Vecchio, Fabrizio; Arendt-Nielsen, Lars; Chen, Andrew C N; Rossini, Paolo M
2006-05-01
Does functional coupling of centro-parietal EEG rhythms selectively increase during the anticipation of sensorimotor events composed by somatosensory stimulation and visuomotor task? EEG data were recorded in (1) 'simultaneous' condition in which the subjects waited for somatosensory stimulation at left hand concomitant with a Go (or NoGo) visual stimulus triggering (50%) right hand movements and in (2) 'sequential' condition where the somatosensory stimulation was followed (+1.5 s) by a visuomotor Go/NoGo task. Centro-parietal functional coupling was modeled by spectral coherence. Spectral coherence was computed from Laplacian-transformed EEG data at delta-theta (2-7 Hz), alpha (8-14 Hz), beta 1 (15-21 Hz), beta 2 (22-33 Hz), and gamma (34-45 Hz) rhythms. Before 'simultaneous' sensorimotor events, centro-parietal coherence regions increased in both hemispheres and at all rhythms. In the 'sequential' condition, right centro-parietal coherence increased before somatosensory event (left hand), whereas left centro-parietal coherence increased before subsequent Go/NoGo event (right hand). Anticipation of somatosensory and visuomotor events enhances contralateral centro-parietal coupling of slow and fast EEG rhythms. Predictable somatosensory and visuomotor events are anticipated not only by synchronization of cortical pyramidal neurons generating EEG power in parietal and primary sensorimotor cortical areas (Babiloni C, Brancucci A, Capotosto P, Arendt-Nielsen L, Chen ACN, Rossini PM. Expectancy of pain is influenced by motor preparation: a high-resolution EEG study of cortical alpha rhythms. Behav. Neurosci. 2005a;119(2):503-511; Babiloni C, Brancucci A, Pizzella V, Romani G.L, Tecchio F, Torquati K, Zappasodi F, Arendt-Nielsen L, Chen ACN, Rossini PM. Contingent negative variation in the parasylvian cortex increases during expectancy of painful sensorimotor events: a magnetoencephalographic study. Behav. Neurosci. 2005b;119(2):491-502) but also by functional coordination of these areas.
ERIC Educational Resources Information Center
Kim, Sun A.; Wang, Peishi; Michaels, Craig A.
2015-01-01
This article investigates the effects of fraction word problem-solving instruction involving explicit teaching of the concrete-representational-abstract sequence with culturally relevant teaching examples for 3 low-performing Asian immigrant English learners who spoke a language other than English at home. We used a multiple probe design across…
Balance and coordination after viewing stereoscopic 3D television
Read, Jenny C. A.; Simonotto, Jennifer; Bohr, Iwo; Godfrey, Alan; Galna, Brook; Rochester, Lynn; Smulders, Tom V.
2015-01-01
Manufacturers and the media have raised the possibility that viewing stereoscopic 3D television (S3D TV) may cause temporary disruption to balance and visuomotor coordination. We looked for evidence of such effects in a laboratory-based study. Four hundred and thirty-three people aged 4–82 years old carried out tests of balance and coordination before and after viewing an 80 min movie in either conventional 2D or stereoscopic 3D, while wearing two triaxial accelerometers. Accelerometry produced little evidence of any change in body motion associated with S3D TV. We found no evidence that viewing the movie in S3D causes a detectable impairment in balance or in visuomotor coordination. PMID:26587261
Universality of long-range correlations in expansion randomization systems
NASA Astrophysics Data System (ADS)
Messer, P. W.; Lässig, M.; Arndt, P. F.
2005-10-01
We study the stochastic dynamics of sequences evolving by single-site mutations, segmental duplications, deletions, and random insertions. These processes are relevant for the evolution of genomic DNA. They define a universality class of non-equilibrium 1D expansion-randomization systems with generic stationary long-range correlations in a regime of growing sequence length. We obtain explicitly the two-point correlation function of the sequence composition and the distribution function of the composition bias in sequences of finite length. The characteristic exponent χ of these quantities is determined by the ratio of two effective rates, which are explicitly calculated for several specific sequence evolution dynamics of the universality class. Depending on the value of χ, we find two different scaling regimes, which are distinguished by the detectability of the initial composition bias. All analytic results are accurately verified by numerical simulations. We also discuss the non-stationary build-up and decay of correlations, as well as more complex evolutionary scenarios, where the rates of the processes vary in time. Our findings provide a possible example for the emergence of universality in molecular biology.
Hughey, Laura; Wheaton, Lewis A
2016-01-01
Loss of an upper extremity and the resulting rehabilitation often requires individuals to learn how to use a prosthetic device for activities of daily living. It remains unclear how prostheses affect motor learning outcomes. The authors' aim was to evaluate whether incidental motor learning and explicit recall is affected in intact persons either using prostheses (n = 10) or the sound limb (n = 10), and a chronic amputee on a modified serial reaction time task. Latency and accuracy of task completion were recorded over six blocks, with a distractor task between blocks 5 and 6. Participants were also asked to recall the sequence immediately following the study and at a 24-hr follow-up. Prosthesis users demonstrate patterns consistent with implicit learning, with sustained error patterns with the distal terminal device. More intact individuals were able to explicitly recall the sequence initially, however there was no significant difference 24 hr following the study. Acute incidental motor learning does not appear to diminish task related error patterns or accompany with explicit recall in prosthesis users, which could present limitations for acute training of prosthesis use in amputees. This suggests differing mechanisms of visuospatial sequential learning and motor control with prostheses.
Johnston, Kevin; Timney, Brian; Goodale, Melvyn A.
2013-01-01
Numerous studies have investigated the effects of alcohol consumption on controlled and automatic cognitive processes. Such studies have shown that alcohol impairs performance on tasks requiring conscious, intentional control, while leaving automatic performance relatively intact. Here, we sought to extend these findings to aspects of visuomotor control by investigating the effects of alcohol in a visuomotor pointing paradigm that allowed us to separate the influence of controlled and automatic processes. Six male participants were assigned to an experimental “correction” condition in which they were instructed to point at a visual target as quickly and accurately as possible. On a small percentage of trials, the target “jumped” to a new location. On these trials, the participants’ task was to amend their movement such that they pointed to the new target location. A second group of 6 participants were assigned to a “countermanding” condition, in which they were instructed to terminate their movements upon detection of target “jumps”. In both the correction and countermanding conditions, participants served as their own controls, taking part in alcohol and no-alcohol conditions on separate days. Alcohol had no effect on participants’ ability to correct movements “in flight”, but impaired the ability to withhold such automatic corrections. Our data support the notion that alcohol selectively impairs controlled processes in the visuomotor domain. PMID:23861934
Moving to Capture Children’s Attention: Developing a Methodology for Measuring Visuomotor Attention
Coats, Rachel O.; Mushtaq, Faisal; Williams, Justin H. G.; Aucott, Lorna S.; Mon-Williams, Mark
2016-01-01
Attention underpins many activities integral to a child’s development. However, methodological limitations currently make large-scale assessment of children’s attentional skill impractical, costly and lacking in ecological validity. Consequently we developed a measure of ‘Visual Motor Attention’ (VMA)—a construct defined as the ability to sustain and adapt visuomotor behaviour in response to task-relevant visual information. In a series of experiments, we evaluated the capability of our method to measure attentional processes and their contributions in guiding visuomotor behaviour. Experiment 1 established the method’s core features (ability to track stimuli moving on a tablet-computer screen with a hand-held stylus) and demonstrated its sensitivity to principled manipulations in adults’ attentional load. Experiment 2 standardised a format suitable for use with children and showed construct validity by capturing developmental changes in executive attention processes. Experiment 3 tested the hypothesis that children with and without coordination difficulties would show qualitatively different response patterns, finding an interaction between the cognitive and motor factors underpinning responses. Experiment 4 identified associations between VMA performance and existing standardised attention assessments and thereby confirmed convergent validity. These results establish a novel approach to measuring childhood attention that can produce meaningful functional assessments that capture how attention operates in an ecologically valid context (i.e. attention's specific contribution to visuomanual action). PMID:27434198
Fitzgibbon, Bernadette M; Kirkovski, Melissa; Fornito, Alex; Paton, Bryan; Fitzgerald, Paul B; Enticott, Peter G
2016-04-01
Recent neuroimaging studies have demonstrated that activation of the putative human mirror neuron system (MNS) can be elicited via visuomotor training. This is generally interpreted as supporting an associative learning account of the mirror neuron system (MNS) that argues against the ontogeny of the MNS to be an evolutionary adaptation for social cognition. The current study assessed whether a central component of social cognition, emotion processing, would influence the MNS activity to trained visuomotor associations, which could support a broader role of the MNS in social cognition. Using functional magnetic resonance imaging (fMRI), we assessed repetition suppression to the presentation of stimulus pairs involving a simple hand action and a geometric shape that was either congruent or incongruent with earlier association training. Each pair was preceded by an image of positive, negative, or neutral emotionality. In support of an associative learning account of the MNS, repetition suppression was greater for trained pairs compared with untrained pairs in several regions, primarily supplementary motor area (SMA) and right inferior frontal gyrus (rIFG). This response, however, was not modulated by the valence of the emotional images. These findings argue against a fundamental role of emotion processing in the mirror neuron response, and are inconsistent with theoretical accounts linking mirror neurons to social cognition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Proprioceptive recalibration in the right and left hands following abrupt visuomotor adaptation.
Salomonczyk, Danielle; Henriques, Denise Y P; Cressman, Erin K
2012-03-01
Previous studies have demonstrated that after reaching with misaligned visual feedback of the hand, one adapts his or her reaches and partially recalibrates proprioception, such that sense of felt hand position is shifted to match the seen hand position. However, to date, this has only been demonstrated in the right (dominant) hand following reach training with a visuomotor distortion in which the rotated cursor distortion was introduced gradually. As reach adaptation has been shown to differ depending on how the distortion is introduced (gradual vs. abrupt), we sought to examine proprioceptive recalibration following reach training with a cursor that was abruptly rotated 30° clockwise relative to hand motion. Furthermore, because the left and right arms have demonstrated selective advantages when matching visual and proprioceptive targets, respectively, we assessed proprioceptive recalibration in right-handed subjects following training with either the right or the left hand. On average, we observed shifts in felt hand position of approximately 7.6° following training with misaligned visual feedback of the hand, which is consistent with our previous findings in which the distortion was introduced gradually. Moreover, no difference was observed in proprioceptive recalibration across the left and right hands. These findings suggest that proprioceptive recalibration is a robust process that arises symmetrically in the two hands following visuomotor adaptation regardless of the initial magnitude of the error signal.
Experience-enabled enhancement of adult visual cortex function.
Tschetter, Wayne W; Alam, Nazia M; Yee, Christopher W; Gorz, Mario; Douglas, Robert M; Sagdullaev, Botir; Prusky, Glen T
2013-03-20
We previously reported in adult mice that visuomotor experience during monocular deprivation (MD) augmented enhancement of visual-cortex-dependent behavior through the non-deprived eye (NDE) during deprivation, and enabled enhanced function to persist after MD. We investigated the physiological substrates of this experience-enabled form of adult cortical plasticity by measuring visual behavior and visually evoked potentials (VEPs) in binocular visual cortex of the same mice before, during, and after MD. MD on its own potentiated VEPs contralateral to the NDE during MD and shifted ocular dominance (OD) in favor of the NDE in both hemispheres. Whereas we expected visuomotor experience during MD to augment these effects, instead enhanced responses contralateral to the NDE, and the OD shift ipsilateral to the NDE were attenuated. However, in the same animals, we measured NMDA receptor-dependent VEP potentiation ipsilateral to the NDE during MD, which persisted after MD. The results indicate that visuomotor experience during adult MD leads to enduring enhancement of behavioral function, not simply by amplifying MD-induced changes in cortical OD, but through an independent process of increasing NDE drive in ipsilateral visual cortex. Because the plasticity is resident in the mature visual cortex and selectively effects gain of visual behavior through experiential means, it may have the therapeutic potential to target and non-invasively treat eye- or visual-field-specific cortical impairment.
Dewar, Michaela T; Carey, David P
2006-01-01
Recent findings of visuomotor immunity to perceptual illusions have been attributed to a perception-action division of labour within two anatomically segregated streams in the visual cortex. However, critics argue that such experimental findings are not valid and have suggested that the perception-action dissociations can be explained away by differential attentional/processing demands, rather than a functional dissociation in the neurologically intact brain: perceptual tasks require processing of the entire illusion display while visuomotor tasks only require processing the target that is acted upon. The present study examined whether grasping of the Müller-Lyer display would remain immune to the illusion when the task required the direction of attention or a related resource towards both Müller-Lyer shafts. Twelve participants were required to match and grasp two Müller-Lyer shafts bimanually (i.e. one with each hand). It was found that bimanual grasping was not significantly affected by the illusion, while there was a highly significant illusion effect on perceptual estimation by matching. Furthermore, it was established that this dissociation did not result from a differing baseline rate of change in manual estimation and grasping aperture to a change in physical object size. These findings provide further support for the postulated perception-action dissociation and fail to uphold the idea that grasping 'immunity' to the Müller-Lyer illusions merely represents an experimental artefact.
Ginani, G E; Tufik, S; Bueno, O F A; Pradella-Hallinan, M; Rusted, J; Pompéia, S
2011-11-01
The cholinergic system is involved in the modulation of both bottom-up and top-down attentional control. Top-down attention engages multiple executive control processes, but few studies have investigated whether all or selective elements of executive functions are modulated by the cholinergic system. To investigate the acute effects of the pro-cholinergic donepezil in young, healthy volunteers on distinct components of executive functions we conducted a double-blind, placebo-controlled, independent-groups design study including 42 young healthy male participants who were randomly assigned to one of three oral treatments: glucose (placebo), donepezil 5 mg or donepezil 7.5 mg. The test battery included measures of different executive components (shifting, updating, inhibition, dual-task performance, planning, access to long-term memory), tasks that evaluated arousal/vigilance/visuomotor performance, as well as functioning of working memory subsidiary systems. Donepezil improved sustained attention, reaction times, dual-task performance and the executive component of digit span. The positive effects in these executive tasks did not correlate with arousal/visuomotor/vigilance measures. Among the various executive domains investigated donepezil selectively increased dual-task performance in a manner that could not be ascribed to improvement in arousal/vigilance/visuomotor performance nor working memory slave systems. Other executive tasks that rely heavily on visuospatial processing may also be modulated by the cholinergic system.
Fractal landscape analysis of DNA walks
NASA Technical Reports Server (NTRS)
Peng, C. K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Sciortino, F.; Simons, M.; Stanley, H. E.
1992-01-01
By mapping nucleotide sequences onto a "DNA walk", we uncovered remarkably long-range power law correlations [Nature 356 (1992) 168] that imply a new scale invariant property of DNA. We found such long-range correlations in intron-containing genes and in non-transcribed regulatory DNA sequences, but not in cDNA sequences or intron-less genes. In this paper, we present more explicit evidences to support our findings.
Testing the Use of Implicit Solvent in the Molecular Dynamics Modelling of DNA Flexibility
NASA Astrophysics Data System (ADS)
Mitchell, J.; Harris, S.
DNA flexibility controls packaging, looping and in some cases sequence specific protein binding. Molecular dynamics simulations carried out with a computationally efficient implicit solvent model are potentially a powerful tool for studying larger DNA molecules than can be currently simulated when water and counterions are represented explicitly. In this work we compare DNA flexibility at the base pair step level modelled using an implicit solvent model to that previously determined from explicit solvent simulations and database analysis. Although much of the sequence dependent behaviour is preserved in implicit solvent, the DNA is considerably more flexible when the approximate model is used. In addition we test the ability of the implicit solvent to model stress induced DNA disruptions by simulating a series of DNA minicircle topoisomers which vary in size and superhelical density. When compared with previously run explicit solvent simulations, we find that while the levels of DNA denaturation are similar using both computational methodologies, the specific structural form of the disruptions is different.
Clos, Mareike; Sommer, Tobias; Schneider, Signe L; Rose, Michael
2018-01-01
During incidental learning statistical regularities are extracted from the environment without the intention to learn. Acquired implicit memory of these regularities can affect behavior in the absence of awareness. However, conscious insight in the underlying regularities can also develop during learning. Such emergence of explicit memory is an important learning mechanism that is assumed to involve prediction errors in the striatum and to be dopamine-dependent. Here we directly tested this hypothesis by manipulating dopamine levels during incidental learning in a modified serial reaction time task (SRTT) featuring a hidden regular sequence of motor responses in a placebo-controlled between-group study. Awareness for the sequential regularity was subsequently assessed using cued generation and additionally verified using free recall. The results demonstrated that dopaminergic modulation nearly doubled the amount of explicit sequence knowledge emerged during learning in comparison to the placebo group. This strong effect clearly argues for a causal role of dopamine-dependent processing for the development of awareness for sequential regularities during learning.
Plasticity of illusory vowel perception in Brazilian-Japanese bilinguals.
Parlato-Oliveira, Erika; Christophe, Anne; Hirose, Yuki; Dupoux, Emmanuel
2010-06-01
Previous research shows that monolingual Japanese and Brazilian Portuguese listeners perceive illusory vowels (/u/ and /i/, respectively) within illegal sequences of consonants. Here, several populations of Japanese-Brazilian bilinguals are tested, using an explicit vowel identification task (experiment 1), and an implicit categorization and sequence recall task (experiment 2). Overall, second-generation immigrants, who first acquired Japanese at home and Brazilian during childhood (after age 4) showed a typical Brazilian pattern of result (and so did simultaneous bilinguals, who were exposed to both languages from birth on). In contrast, late bilinguals, who acquired their second language in adulthood, exhibited a pattern corresponding to their native language. In addition, an influence of the second language was observed in the explicit task of Exp. 1, but not in the implicit task used in Exp. 2, suggesting that second language experience affects mostly explicit or metalinguistic skills. These results are compared to other studies of phonological representations in adopted children or immigrants, and discussed in relation to the role of age of acquisition and sociolinguistic factors.
Watt, Jennifer C.; Grove, George A.; Wollam, Mariegold E.; Uyar, Fatma; Mataro, Maria; Cohen, Neal J.; Howard, Darlene V.; Howard, James H.; Erickson, Kirk I.
2016-01-01
Accumulating evidence suggests that physical activity improves explicit memory and executive cognitive functioning at the extreme ends of the lifespan (i.e., in older adults and children). However, it is unknown whether these associations hold for younger adults who are considered to be in their cognitive prime, or for implicit cognitive functions that do not depend on motor sequencing. Here we report the results of a study in which we examine the relationship between objectively measured physical activity and (1) explicit relational memory, (2) executive control, and (3) implicit probabilistic sequence learning in a sample of healthy, college-aged adults. The main finding was that physical activity was positively associated with explicit relational memory and executive control (replicating previous research), but negatively associated with implicit learning, particularly in females. These results raise the intriguing possibility that physical activity upregulates some cognitive processes, but downregulates others. Possible implications of this pattern of results for physical health and health habits are discussed. PMID:27584059
An effective solution to the nonlinear, nonstationary Navier-Stokes equations for two dimensions
NASA Technical Reports Server (NTRS)
Gabrielsen, R. E.
1975-01-01
A sequence of approximate solutions for the nonlinear, nonstationary Navier-Stokes equations for a two-dimensional domain, from which explicit error estimates and rates of convergence are obtained, is described. This sequence of approximate solutions is based primarily on the Newton-Kantorovich method.
Sticky Plans: Inhibition and Binding during Serial-Task Control
ERIC Educational Resources Information Center
Mayr, Ulrich
2009-01-01
Recent evidence suggests substantial response-time costs associated with lag-2 repetitions of tasks within explicitly controlled task sequences [Koch, I., Philipp, A. M., Gade, M. (2006). Chunking in task sequences modulates task inhibition. "Psychological Science," 17, 346-350; Schneider, D. W. (2007). Task-set inhibition in chunked task…
ERIC Educational Resources Information Center
Sanchez, Daniel J.; Reber, Paul J.
2012-01-01
The memory system that supports implicit perceptual-motor sequence learning relies on brain regions that operate separately from the explicit, medial temporal lobe memory system. The implicit learning system therefore likely has distinct operating characteristics and information processing constraints. To attempt to identify the limits of the…
USDA-ARS?s Scientific Manuscript database
We describe a suite of software tools for identifying possible functional changes in gene structure that may result from sequence variants. ACE (“Assessing Changes to Exons”) converts phased genotype calls to a collection of explicit haplotype sequences, maps transcript annotations onto them, detect...
Incorporating evolution of transcription factor binding sites into annotated alignments.
Bais, Abha S; Grossmann, Stefen; Vingron, Martin
2007-08-01
Identifying transcription factor binding sites (TFBSs) is essential to elucidate putative regulatory mechanisms. A common strategy is to combine cross-species conservation with single sequence TFBS annotation to yield "conserved TFBSs". Most current methods in this field adopt a multi-step approach that segregates the two aspects. Again, it is widely accepted that the evolutionary dynamics of binding sites differ from those of the surrounding sequence. Hence, it is desirable to have an approach that explicitly takes this factor into account. Although a plethora of approaches have been proposed for the prediction of conserved TFBSs, very few explicitly model TFBS evolutionary properties, while additionally being multi-step. Recently, we introduced a novel approach to simultaneously align and annotate conserved TFBSs in a pair of sequences. Building upon the standard Smith-Waterman algorithm for local alignments, SimAnn introduces additional states for profiles to output extended alignments or annotated alignments. That is, alignments with parts annotated as gaplessly aligned TFBSs (pair-profile hits)are generated. Moreover,the pair- profile related parameters are derived in a sound statistical framework. In this article, we extend this approach to explicitly incorporate evolution of binding sites in the SimAnn framework. We demonstrate the extension in the theoretical derivations through two position-specific evolutionary models, previously used for modelling TFBS evolution. In a simulated setting, we provide a proof of concept that the approach works given the underlying assumptions,as compared to the original work. Finally, using a real dataset of experimentally verified binding sites in human-mouse sequence pairs,we compare the new approach (eSimAnn) to an existing multi-step tool that also considers TFBS evolution. Although it is widely accepted that binding sites evolve differently from the surrounding sequences, most comparative TFBS identification methods do not explicitly consider this.Additionally, prediction of conserved binding sites is carried out in a multi-step approach that segregates alignment from TFBS annotation. In this paper, we demonstrate how the simultaneous alignment and annotation approach of SimAnn can be further extended to incorporate TFBS evolutionary relationships. We study how alignments and binding site predictions interplay at varying evolutionary distances and for various profile qualities.
Sinai, Amanda; Hassiotis, Angela; Rantell, Khadija; Strydom, Andre
2016-01-01
Background Down syndrome is associated with specific cognitive deficits. Alongside this, older adults with Down syndrome are a high risk group for dementia. The Arizona Cognitive Test Battery (ACTB), a cognitive assessment battery specifically developed for use with individuals with Down syndrome, has been proposed for use as outcome measures for clinical trials in this population. It has not been validated in older adults with Down syndrome. This study aims to assess the use and validity of the ACTB in older adults with Down syndrome. Methods Participants with Down syndrome aged 45 and over were assessed using the ACTB, standard tabletop tests and informant ratings. Results Assessment outcomes of 49 participants were analysed. Of these, 19 (39%) had a diagnosis of dementia or possible dementia. Most participants were able to attempt most of the tasks, although some tasks had high floor effects (including CANTAB Intra-Extra Dimensional shift stages completed and Modified Dots Task). Of the ACTB tasks, statistically significant differences were observed between the dementia and no dementia groups on CANTAB Simple Reaction Time median latency, NEPSY Visuomotor Precision—Car and Motorbike and CANTAB Paired Associates Learning stages completed. No significant differences were observed for CANTAB Intra-Extra Dimensional Shift, Modified Dots Task, Finger Sequencing, NEPSY Visuomotor precision—Train and Car and CANTAB Paired Associates Learning first trial memory score. Several of the tasks in the ACTB can be used in older adults with Down syndrome and have mild to moderate concurrent validity when compared to tabletop tests and informant ratings, although this varies on a test by test basis. Conclusions Overall, scores for a number of tests in the ACTB were similar when comparing dementia and no dementia groups of older adults with Down syndrome, suggesting that it would not be an appropriate outcome measure of cognitive function for clinical trials of dementia treatments without further modification and validation. PMID:27171413
Sinai, Amanda; Hassiotis, Angela; Rantell, Khadija; Strydom, Andre
2016-01-01
Down syndrome is associated with specific cognitive deficits. Alongside this, older adults with Down syndrome are a high risk group for dementia. The Arizona Cognitive Test Battery (ACTB), a cognitive assessment battery specifically developed for use with individuals with Down syndrome, has been proposed for use as outcome measures for clinical trials in this population. It has not been validated in older adults with Down syndrome. This study aims to assess the use and validity of the ACTB in older adults with Down syndrome. Participants with Down syndrome aged 45 and over were assessed using the ACTB, standard tabletop tests and informant ratings. Assessment outcomes of 49 participants were analysed. Of these, 19 (39%) had a diagnosis of dementia or possible dementia. Most participants were able to attempt most of the tasks, although some tasks had high floor effects (including CANTAB Intra-Extra Dimensional shift stages completed and Modified Dots Task). Of the ACTB tasks, statistically significant differences were observed between the dementia and no dementia groups on CANTAB Simple Reaction Time median latency, NEPSY Visuomotor Precision-Car and Motorbike and CANTAB Paired Associates Learning stages completed. No significant differences were observed for CANTAB Intra-Extra Dimensional Shift, Modified Dots Task, Finger Sequencing, NEPSY Visuomotor precision-Train and Car and CANTAB Paired Associates Learning first trial memory score. Several of the tasks in the ACTB can be used in older adults with Down syndrome and have mild to moderate concurrent validity when compared to tabletop tests and informant ratings, although this varies on a test by test basis. Overall, scores for a number of tests in the ACTB were similar when comparing dementia and no dementia groups of older adults with Down syndrome, suggesting that it would not be an appropriate outcome measure of cognitive function for clinical trials of dementia treatments without further modification and validation.
Munz, Manuel T.; Prehn-Kristensen, Alexander; Thielking, Frederieke; Mölle, Matthias; Göder, Robert; Baving, Lioba
2015-01-01
Background: Behavioral inhibition, which is a later-developing executive function (EF) and anatomically located in prefrontal areas, is impaired in attention-deficit and hyperactivity disorder (ADHD). While optimal EFs have been shown to depend on efficient sleep in healthy subjects, the impact of sleep problems, frequently reported in ADHD, remains elusive. Findings of macroscopic sleep changes in ADHD are inconsistent, but there is emerging evidence for distinct microscopic changes with a focus on prefrontal cortical regions and non-rapid eye movement (non-REM) slow-wave sleep. Recently, slow oscillations (SO) during non-REM sleep were found to be less functional and, as such, may be involved in sleep-dependent memory impairments in ADHD. Objective:By augmenting slow-wave power through bilateral, slow oscillating transcranial direct current stimulation (so-tDCS, frequency = 0.75 Hz) during non-REM sleep, we aimed to improve daytime behavioral inhibition in children with ADHD. Methods: Fourteen boys (10–14 years) diagnosed with ADHD were included. In a randomized, double-blind, cross-over design, patients received so-tDCS either in the first or in the second experimental sleep night. Inhibition control was assessed with a visuomotor go/no-go task. Intrinsic alertness was assessed with a simple stimulus response task. To control for visuomotor performance, motor memory was assessed with a finger sequence tapping task. Results: SO-power was enhanced during early non-REM sleep, accompanied by slowed reaction times and decreased standard deviations of reaction times, in the go/no-go task after so-tDCS. In contrast, intrinsic alertness, and motor memory performance were not improved by so-tDCS. Conclusion: Since behavioral inhibition but not intrinsic alertness or motor memory was improved by so-tDCS, our results suggest that lateral prefrontal slow oscillations during sleep might play a specific role for executive functioning in ADHD. PMID:26321911
Munz, Manuel T; Prehn-Kristensen, Alexander; Thielking, Frederieke; Mölle, Matthias; Göder, Robert; Baving, Lioba
2015-01-01
Behavioral inhibition, which is a later-developing executive function (EF) and anatomically located in prefrontal areas, is impaired in attention-deficit and hyperactivity disorder (ADHD). While optimal EFs have been shown to depend on efficient sleep in healthy subjects, the impact of sleep problems, frequently reported in ADHD, remains elusive. Findings of macroscopic sleep changes in ADHD are inconsistent, but there is emerging evidence for distinct microscopic changes with a focus on prefrontal cortical regions and non-rapid eye movement (non-REM) slow-wave sleep. Recently, slow oscillations (SO) during non-REM sleep were found to be less functional and, as such, may be involved in sleep-dependent memory impairments in ADHD. By augmenting slow-wave power through bilateral, slow oscillating transcranial direct current stimulation (so-tDCS, frequency = 0.75 Hz) during non-REM sleep, we aimed to improve daytime behavioral inhibition in children with ADHD. Fourteen boys (10-14 years) diagnosed with ADHD were included. In a randomized, double-blind, cross-over design, patients received so-tDCS either in the first or in the second experimental sleep night. Inhibition control was assessed with a visuomotor go/no-go task. Intrinsic alertness was assessed with a simple stimulus response task. To control for visuomotor performance, motor memory was assessed with a finger sequence tapping task. SO-power was enhanced during early non-REM sleep, accompanied by slowed reaction times and decreased standard deviations of reaction times, in the go/no-go task after so-tDCS. In contrast, intrinsic alertness, and motor memory performance were not improved by so-tDCS. Since behavioral inhibition but not intrinsic alertness or motor memory was improved by so-tDCS, our results suggest that lateral prefrontal slow oscillations during sleep might play a specific role for executive functioning in ADHD.
Consolidation of visuomotor adaptation memory with consistent and noisy environments
Maeda, Rodrigo S.; McGee, Steven E.
2016-01-01
Our understanding of how we learn and retain motor behaviors is still limited. For instance, there is conflicting evidence as to whether the memory of a learned visuomotor perturbation consolidates; i.e., the motor memory becomes resistant to interference from learning a competing perturbation over time. Here, we sought to determine the factors that influence consolidation during visually guided walking. Subjects learned a novel mapping relationship, created by prism lenses, between the perceived location of two targets and the motor commands necessary to direct the feet to their positions. Subjects relearned this mapping 1 wk later. Different groups experienced protocols with or without a competing mapping (and with and without washout trials), presented either on the same day as initial learning or before relearning on day 2. We tested identical protocols under constant and noisy mapping structures. In the latter, we varied, on a trial-by-trial basis, the strength of prism lenses around a non-zero mean. We found that a novel visuomotor mapping is retained at least 1 wk after initial learning. We also found reduced foot-placement error with relearning in constant and noisy mapping groups, despite learning a competing mapping beforehand, and with the exception of one protocol, with and without washout trials. Exposure to noisy mappings led to similar performance on relearning compared with the equivalent constant mapping groups for most protocols. Overall, our results support the idea of motor memory consolidation during visually guided walking and suggest that constant and noisy practices are effective for motor learning. NEW & NOTEWORTHY The adaptation of movement is essential for many daily activities. To interact with targets, this often requires learning the mapping to produce appropriate motor commands based on visual input. Here, we show that a novel visuomotor mapping is retained 1 wk after initial learning in a visually guided walking task. Furthermore, we find that this motor memory consolidates (i.e., becomes more resistant to interference from learning a competing mapping) when learning in constant and noisy mapping environments. PMID:27784800
Bigsby, Kathryn; Mangine, Robert E; Clark, Joseph F; Rauch, Joseph T; Bixenmann, Benjamin; Susaret, Antonia W; Hasselfeld, Kimberly A; Colosimo, Angelo J
2014-08-01
Visuomotor ability is an important parameter for neurologic function and effective sport performance. Adding a balance challenge during a structured eye-hand coordination task, such as hitting lights on a light board (Dynavision™), has not been previously reported. Using Division I football players, the aim of this study was to determine normative data on a dual-task performance regimen combining a visuomotor light board task with a balance task. The intent is to use such normative data and baseline data as part of a concussion management program. Division I college football team members, n=105, were consented. Subjects first performed Dynavision™ D2™ Visuomotor Training Device (D2™) eye-hand coordination tasks, the A* and the RT; they then performed the same tasks with an added balance challenge, standing on a BOSU® ball. Ninety-four athletes completed the full testing procedure on the D2™ system. The mean score of the A* test was 93 ± 11.0 hits per minute; and the mean on the A* test with the added BOSU® balance challenge was 83.7 ± 9.2 hits per minute. The mean RT time was 0.33 ± 0.036 seconds. Mean reaction time increased to 0.38 ± 0.063 while the subject stood on the BOSU® ball. Performance on the D2™ A* and RT were both statistically significantly different in the dual task condition (p<0.05). Results show an approximate 10% decline in D2™ performance when healthy individuals stand on a BOSU® ball. From the data presented here, the authors determined that there is a 10% decrement in performance when one's balance is challenged on the BOSU® ball. A fall in performance of substantially greater than 10% may indicate abnormal vestibulocerebellar regulatory processing of balance and motion. Further research, using these normative data is needed to determine more specific parameters for definitions of impairment and return-to-play and if there is utility for such studies as part of a concussion management program. III.
Retention of Implicit Sequence Learning in Persons who Stutter and Persons with Parkinson's Disease
Smits-Bandstra, Sarah; Gracco, Vincent
2014-01-01
This study investigated the retention of implicit sequence learning in 14 persons with Parkinson's disease (PPD), 14 persons who stutter (PWS) and 14 control participants. Participants completed a nonsense syllable serial reaction time task in a 120-minute session. Participants named aloud four syllables in response to four visual stimuli. The syllables formed a repeating 8-item sequence not made known to participants. After one week, participants completed a 60-minute retention session that included an explicit learning questionnaire and a sequence generation task. PPD showed retention of general learning equivalent to controls but PWS's reaction times were significantly slower on early trials of the retention test relative to other groups. Controls showed implicit learning during the initial session that was retained on the retention test. In contrast, PPD and PWS did not demonstrate significant implicit learning until the retention test suggesting intact, but delayed, learning and retention of implicit sequencing skills. All groups demonstrated similar limited explicit sequence knowledge. Performance differences between PWS and PPD relative to controls during the initial session and on early retention trials indicated possible dysfunction of the cortico-striato-thalamo-cortical loop. The etiological implications for stuttering, and clinical implications for both populations, of this dysfunction are discussed. PMID:23844763
ERIC Educational Resources Information Center
Fyfe, Emily R.; DeCaro, Marci S.; Rittle-Johnson, Bethany
2014-01-01
Background: The sequencing of learning materials greatly influences the knowledge that learners construct. Recently, learning theorists have focused on the sequencing of instruction in relation to solving related problems. The general consensus suggests explicit instruction should be provided; however, when to provide instruction remains unclear.…
Consolidating the effects of waking and sleep on motor-sequence learning.
Brawn, Timothy P; Fenn, Kimberly M; Nusbaum, Howard C; Margoliash, Daniel
2010-10-20
Sleep is widely believed to play a critical role in memory consolidation. Sleep-dependent consolidation has been studied extensively in humans using an explicit motor-sequence learning paradigm. In this task, performance has been reported to remain stable across wakefulness and improve significantly after sleep, making motor-sequence learning the definitive example of sleep-dependent enhancement. Recent work, however, has shown that enhancement disappears when the task is modified to reduce task-related inhibition that develops over a training session, thus questioning whether sleep actively consolidates motor learning. Here we use the same motor-sequence task to demonstrate sleep-dependent consolidation for motor-sequence learning and explain the discrepancies in results across studies. We show that when training begins in the morning, motor-sequence performance deteriorates across wakefulness and recovers after sleep, whereas performance remains stable across both sleep and subsequent waking with evening training. This pattern of results challenges an influential model of memory consolidation defined by a time-dependent stabilization phase and a sleep-dependent enhancement phase. Moreover, the present results support a new account of the behavioral effects of waking and sleep on explicit motor-sequence learning that is consistent across a wide range of tasks. These observations indicate that current theories of memory consolidation that have been formulated to explain sleep-dependent performance enhancements are insufficient to explain the range of behavioral changes associated with sleep.
Aiken, Christopher A; Pan, Zhujun; Van Gemmert, Arend W A
2015-01-01
Research has attempted to address what characteristics benefit from transfer of learning; however, it is still unclear which characteristics are effector dependent or independent. Furthermore, it is not clear if intralimb transfer shows, similarly to interlimb transfer, an asymmetry of benefits between the upper limbs. The purpose of the current study is to examine if effector independence effects emerge, as observed in interlimb transfer studies, when transfer to new effector group within the same limb occurs, and whether the pattern of intralimb transfer benefits differ between the limbs. Our results suggest that a visuomotor task transfers within both limbs, even though the transfer benefits within the limbs seem to differ. This was supported by more transfer occurring in the dominant limb than the nondominant limb. Potential control mechanisms used for intralimb transfer are discussed.
Robotic assessment of sensorimotor deficits after traumatic brain injury.
Debert, Chantel T; Herter, Troy M; Scott, Stephen H; Dukelow, Sean
2012-06-01
Robotic technology is commonly used to quantify aspects of typical sensorimotor function. We evaluated the feasibility of using robotic technology to assess visuomotor and position sense impairments following traumatic brain injury (TBI). We present results of robotic sensorimotor function testing in 12 subjects with TBI, who had a range of initial severities (9 severe, 2 moderate, 1 mild), and contrast these results with those of clinical tests. We also compared these with robotic test outcomes in persons without disability. For each subject with TBI, a review of the initial injury and neuroradiologic findings was conducted. Following this, each subject completed a number of standardized clinical measures (Fugl-Meyer Assessment, Purdue Peg Board, Montreal Cognitive Assessment, Rancho Los Amigos Scale), followed by two robotic tasks. A visually guided reaching task was performed to assess visuomotor control of the upper limb. An arm position-matching task was used to assess position sense. Robotic task performance in the subjects with TBI was compared with findings in a cohort of 170 person without disabilities. Subjects with TBI demonstrated a broad range of sensory and motor deficits on robotic testing. Notably, several subjects with TBI displayed significant deficits in one or both of the robotic tasks, despite normal scores on traditional clinical motor and cognitive assessment measures. The findings demonstrate the potential of robotic assessments for identifying deficits in visuomotor control and position sense following TBI. Improved identification of neurologic impairments following TBI may ultimately enhance rehabilitation.
A kinematic analysis of visually-guided movement in Williams syndrome.
Hocking, Darren R; Rinehart, Nicole J; McGinley, Jennifer L; Moss, Simon A; Bradshaw, John L
2011-02-15
Previous studies have reported that people with the neurodevelopmental disorder Williams syndrome exhibit difficulties with visuomotor control. In the current study, we examined the extent to which visuomotor deficits were associated with movement planning or feedback-based on-line control. We used a variant of the Fitts' reciprocal aiming task on a computerized touchscreen in adults with WS, IQ-matched individuals with Down syndrome (DS), and typically developing controls. By manipulating task difficulty both as a function of target size and amplitude, we were able to vary the requirements for accuracy to examine processes associated with dorsal visual stream and cerebellar functioning. Although a greater increase in movement time as a function of task difficulty was observed in the two clinical groups with WS and DS, greater magnitude in the late kinematic components of movement-specifically, time after peak velocity-was revealed in the WS group during increased demands for accuracy. In contrast, the DS group showed a greater speed-accuracy trade-off with significantly reduced and more variable endpoint accuracy, which may be associated with cerebellar deficits. In addition, the WS group spent more time stationary in the target when task-related features reflected a higher level of difficulty, suggestive of specific deficits in movement planning. Our results indicate that the visuomotor coordination deficits in WS may reflect known impairments of the dorsal stream, but may also indicate a role for the cerebellum in dynamic feed-forward motor control. Copyright © 2010 Elsevier B.V. All rights reserved.
Yavari, Fatemeh; Mahdavi, Shirin; Towhidkhah, Farzad; Ahmadi-Pajouh, Mohammad-Ali; Ekhtiari, Hamed; Darainy, Mohammad
2016-04-01
Despite several pieces of evidence, which suggest that the human brain employs internal models for motor control and learning, the location of these models in the brain is not yet clear. In this study, we used transcranial direct current stimulation (tDCS) to manipulate right cerebellar function, while subjects adapt to a visuomotor task. We investigated the effect of this manipulation on the internal forward and inverse models by measuring two kinds of behavior: generalization of training in one direction to neighboring directions (as a proxy for inverse models) and localization of the hand position after movement without visual feedback (as a proxy for forward model). The experimental results showed no effect of cerebellar tDCS on generalization, but significant effect on localization. These observations support the idea that the cerebellum is a possible brain region for internal forward, but not inverse model formation. We also used a realistic human head model to calculate current density distribution in the brain. The result of this model confirmed the passage of current through the cerebellum. Moreover, to further explain some observed experimental results, we modeled the visuomotor adaptation process with the help of a biologically inspired method known as population coding. The effect of tDCS was also incorporated in the model. The results of this modeling study closely match our experimental data and provide further evidence in line with the idea that tDCS manipulates FM's function in the cerebellum.
Gamberini, Michela; Bakola, Sophia; Passarelli, Lauretta; Burman, Kathleen J; Rosa, Marcello G P; Fattori, Patrizia; Galletti, Claudio
2016-04-01
The medial posterior parietal cortex of the primate brain includes different functional areas, which have been defined based on the functional properties, cyto- and myeloarchitectural criteria, and cortico-cortical connections. Here, we describe the thalamic projections to two of these areas (V6 and V6A), based on 14 retrograde neuronal tracer injections in 11 hemispheres of 9 Macaca fascicularis. The injections were placed either by direct visualisation or using electrophysiological guidance, and the location of injection sites was determined post mortem based on cyto- and myeloarchitectural criteria. We found that the majority of the thalamic afferents to the visual area V6 originate in subdivisions of the lateral and inferior pulvinar nuclei, with weaker inputs originating from the central densocellular, paracentral, lateral posterior, lateral geniculate, ventral anterior and mediodorsal nuclei. In contrast, injections in both the dorsal and ventral parts of the visuomotor area V6A revealed strong inputs from the lateral posterior and medial pulvinar nuclei, as well as smaller inputs from the ventrolateral complex and from the central densocellular, paracentral, and mediodorsal nuclei. These projection patterns are in line with the functional properties of injected areas: "dorsal stream" extrastriate area V6 receives information from visuotopically organised subdivisions of the thalamus; whereas visuomotor area V6A, which is involved in the sensory guidance of arm movement, receives its primary afferents from thalamic nuclei that provide high-order somatic and visual input.
Visuomotor adaptation to a visual rotation is gravity dependent.
Toma, Simone; Sciutti, Alessandra; Papaxanthis, Charalambos; Pozzo, Thierry
2015-03-15
Humans perform vertical and horizontal arm motions with different temporal patterns. The specific velocity profiles are chosen by the central nervous system by integrating the gravitational force field to minimize energy expenditure. However, what happens when a visuomotor rotation is applied, so that a motion performed in the horizontal plane is perceived as vertical? We investigated the dynamic of the adaptation of the spatial and temporal properties of a pointing motion during prolonged exposure to a 90° visuomotor rotation, where a horizontal movement was associated with a vertical visual feedback. We found that participants immediately adapted the spatial parameters of motion to the conflicting visual scene in order to keep their arm trajectory straight. In contrast, the initial symmetric velocity profiles specific for a horizontal motion were progressively modified during the conflict exposure, becoming more asymmetric and similar to those appropriate for a vertical motion. Importantly, this visual effect that increased with repetitions was not followed by a consistent aftereffect when the conflicting visual feedback was absent (catch and washout trials). In a control experiment we demonstrated that an intrinsic representation of the temporal structure of perceived vertical motions could provide the error signal allowing for this progressive adaptation of motion timing. These findings suggest that gravity strongly constrains motor learning and the reweighting process between visual and proprioceptive sensory inputs, leading to the selection of a motor plan that is suboptimal in terms of energy expenditure. Copyright © 2015 the American Physiological Society.
Effects of Anisometropic Amblyopia on Visuomotor Behavior, Part 2: Visually Guided Reaching
Niechwiej-Szwedo, Ewa; Goltz, Herbert C.; Chandrakumar, Manokaraananthan; Hirji, Zahra; Crawford, J. Douglas; Wong, Agnes M. F.
2016-01-01
Purpose The effects of impaired spatiotemporal vision in amblyopia on visuomotor skills have rarely been explored in detail. The goal of this study was to examine the influences of amblyopia on visually guided reaching. Methods Fourteen patients with anisometropic amblyopia and 14 control subjects were recruited. Participants executed reach-to-touch movements toward targets presented randomly 5° or 10° to the left or right of central fixation in three viewing conditions: binocular, monocular amblyopic eye, and monocular fellow eye viewing (left and right monocular viewing for control subjects). Visual feedback of the target was removed on 50% of the trials at the initiation of reaching. Results Reaching accuracy was comparable between patients and control subjects during all three viewing conditions. Patients’ reaching responses were slightly less precise during amblyopic eye viewing, but their precision was normal during binocular or fellow eye viewing. Reaching reaction time was not affected by amblyopia. The duration of the acceleration phase was longer in patients than in control subjects under all viewing conditions, whereas the duration of the deceleration phase was unaffected. Peak acceleration and peak velocity were also reduced in patients. Conclusions Amblyopia affects both the programming and the execution of visually guided reaching. The increased duration of the acceleration phase, as well as the reduced peak acceleration and peak velocity, might reflect a strategy or adaptation of feedforward/feedback control of the visuomotor system to compensate for degraded spatiotemporal vision in amblyopia, allowing patients to optimize their reaching performance. PMID:21051723
Visuomotor Dissociation in Cerebral Scaling of Size.
Potgieser, Adriaan R E; de Jong, Bauke M
2016-01-01
Estimating size and distance is crucial in effective visuomotor control. The concept of an internal coordinate system implies that visual and motor size parameters are scaled onto a common template. To dissociate perceptual and motor components in such scaling, we performed an fMRI experiment in which 16 right-handed subjects copied geometric figures while the result of drawing remained out of sight. Either the size of the example figure varied while maintaining a constant size of drawing (visual incongruity) or the size of the examples remained constant while subjects were instructed to make changes in size (motor incongruity). These incongruent were compared to congruent conditions. Statistical Parametric Mapping (SPM8) revealed brain activations related to size incongruity in the dorsolateral prefrontal and inferior parietal cortex, pre-SMA / anterior cingulate and anterior insula, dominant in the right hemisphere. This pattern represented simultaneous use of a 'resized' virtual template and actual picture information requiring spatial working memory, early-stage attention shifting and inhibitory control. Activations were strongest in motor incongruity while right pre-dorsal premotor activation specifically occurred in this condition. Visual incongruity additionally relied on a ventral visual pathway. Left ventral premotor activation occurred in all variably sized drawing while constant visuomotor size, compared to congruent size variation, uniquely activated the lateral occipital cortex additional to superior parietal regions. These results highlight size as a fundamental parameter in both general hand movement and movement guided by objects perceived in the context of surrounding 3D space.
Acquisition and generalization of visuomotor transformations by nonhuman primates.
Paz, Rony; Nathan, Chen; Boraud, Thomas; Bergman, Hagai; Vaadia, Eilon
2005-02-01
The kinematics of straight reaching movements can be specified vectorially by the direction of the movement and its extent. To explore the representation in the brain of these two properties, psychophysical studies have examined learning of visuomotor transformations of either rotation or gain and their generalization. However, the neuronal substrates of such complex learning are only beginning to be addressed. As an initial step in ensuring the validity of such investigations, it must be shown that monkeys indeed learn and generalize visuomotor transformations in the same manner as humans. Here, we analyze trajectories and velocities of movements as monkeys adapt to either rotational or gain transformations. We used rotations with different signs and magnitudes, and gains with different signs, and analyzed transfer of learning to untrained movements. The results show that monkeys can adapt to both types of transformation with a time course that resembles human learning. Analysis of the aftereffects reveals that rotation is learned locally and generalizes poorly to untrained directions, whereas gain is learned more globally and can be transferred to other amplitudes. The results lend additional support to the hypothesis that reaching movements are learned locally but can be easily rescaled to other magnitudes by scaling the peak velocity. The findings also indicate that reaching movements in monkeys are planned and executed very similarly to those in humans. This validates the underlying presumption that neuronal recordings in primates can help elucidate the mechanisms of motor learning in particular and motor planning in general.
Mahé, Sylvain; Braud, Raphaël; Gaussier, Philippe; Quoy, Mathias; Pitti, Alexandre
2015-02-01
The so-called self-other correspondence problem in imitation demands to find the transformation that maps the motor dynamics of one partner to our own. This requires a general purpose sensorimotor mechanism that transforms an external fixation-point (partner's shoulder) reference frame to one's own body-centered reference frame. We propose that the mechanism of gain-modulation observed in parietal neurons may generally serve these types of transformations by binding the sensory signals across the modalities with radial basis functions (tensor products) on the one hand and by permitting the learning of contextual reference frames on the other hand. In a shoulder-elbow robotic experiment, gain-field neurons (GF) intertwine the visuo-motor variables so that their amplitude depends on them all. In situations of modification of the body-centered reference frame, the error detected in the visuo-motor mapping can serve then to learn the transformation between the robot's current sensorimotor space and the new one. These situations occur for instance when we turn the head on its axis (visual transformation), when we use a tool (body modification), or when we interact with a partner (embodied simulation). Our results defend the idea that the biologically-inspired mechanism of gain modulation found in parietal neurons can serve as a basic structure for achieving nonlinear mapping in spatial tasks as well as in cooperative and social functions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Brief Morning Light Exposure, Visuomotor Performance, and Biochemistry in Sport Shooters.
Leichtfried, Veronika; Hanser, Friedrich; Griesmacher, Andrea; Canazei, Markus; Schobersberger, Wolfgang
2016-09-01
Demands on concentrative and cognitive performance are high in sport shooting and vary in a circadian pattern, aroused by internal and external stimuli. The most prominent external stimulus is light. Bright light (BL) has been shown to have a certain impact on cognitive and physical performance. To evaluate the impact of a single half hour of BL exposure in the morning hours on physical and cognitive performance in 15 sport shooters. In addition, courses of sulfateoxymelatonin (aMT6s), tryptophan (TRP), and kynurenine (KYN) were monitored. In a crossover design, 15 sport shooters were exposed to 30 min of BL and dim light (DL) in the early-morning hours. Shooting performance, balance, visuomotor performance, and courses of aMT6s, TRP, and KYN were evaluated. Shooting performance was 365.4 (349.7-381.0) and 368.5 (353.9-383.1), identical in both light setups. Numbers of right reactions (sustained attention) and deviations from the horizontal plane (balance-related measure) were higher after BL. TRP concentrations decreased from 77.5 (73.5-81.4) to 66.9 (60.7-67.0) in the DL setup only. The 2 light conditions generated heterogeneous visuomotor and physiological effects in sport shooters. The authors therefore suggest that a single half hour of BL exposure is effective in improving cognitive aspects of performance, but not physical performance. Further research is needed to evaluate BL's impact on biochemical parameters.
Age differences in spatial working memory contributions to visuomotor adaptation and transfer.
Langan, Jeanne; Seidler, Rachael D
2011-11-20
Throughout our life span we encounter challenges that require us to adapt to the demands of our changing environment; this entails learning new skills. Two primary components of motor skill learning are motor acquisition, the initial process of learning the skill, and motor transfer, when learning a new skill is benefitted by the overlap with a previously learned one. Older adults typically exhibit declines in motor acquisition compared to young adults, but remarkably, do not demonstrate deficits in motor transfer [10]. Our recent work demonstrates that a failure to engage spatial working memory (SWM) is associated with skill learning deficits in older adults [16]. Here, we investigate the role that SWM plays in both motor learning and transfer in young and older adults. Both age groups exhibited performance savings, or positive transfer, at transfer of learning for some performance variables. Measures of spatial working memory performance and reaction time correlated with both motor learning and transfer for young adults. Young adults recruited overlapping brain regions in prefrontal, premotor, parietal and occipital cortex for performance of a SWM and a visuomotor adaptation task, most notably during motor learning, replicating our prior findings [12]. Neural overlap between the SWM task and visuomotor adaptation for the older adults was limited to parietal cortex, with minimal changes from motor learning to transfer. Combined, these results suggest that age differences in engagement of cognitive strategies have a differential impact on motor learning and transfer. Copyright © 2011 Elsevier B.V. All rights reserved.
Age differences in spatial working memory contributions to visuomotor adaptation and transfer
Langan, Jeanne; Seidler, Rachael. D.
2011-01-01
Throughout our life span we encounter challenges that require us to adapt to the demands of our changing environment; this entails learning new skills. Two primary components of motor skill learning are motor acquisition, the initial process of learning the skill, and motor transfer, when learning a new skill is benefitted by the overlap with a previously learned one. Older adults typically exhibit declines in motor acquisition compared to young adults, but remarkably, do not demonstrate deficits in motor transfer (Seidler, 2007). Our recent work demonstrates that a failure to engage spatial working memory (SWM) is associated with skill learning deficits in older adults (Anguera et al., 2011). Here, we investigate the role that SWM plays in both motor learning and transfer in young and older adults. Both age groups exhibited performance savings, or positive transfer, at transfer of learning for some performance variables. Measures of spatial working memory performance and reaction time correlated with both motor learning and transfer for young adults. Young adults recruited overlapping brain regions in prefrontal, premotor, parietal and occipital cortex for performance of a SWM and a visuomotor adaptation task, most notably during motor learning, replicating our prior findings (Anguera et al., 2010). Neural overlap between the SWM task and visuomotor adaptation for the older adults was limited to parietal cortex, with minimal changes from motor learning to transfer. Combined, these results suggest that age differences in engagement of cognitive strategies have a differential impact on motor learning and transfer. PMID:21784106
Properties of intermodal transfer after dual visuo- and auditory-motor adaptation.
Schmitz, Gerd; Bock, Otmar L
2017-10-01
Previous work documented that sensorimotor adaptation transfers between sensory modalities: When subjects adapt with one arm to a visuomotor distortion while responding to visual targets, they also appear to be adapted when they are subsequently tested with auditory targets. Vice versa, when they adapt to an auditory-motor distortion while pointing to auditory targets, they appear to be adapted when they are subsequently tested with visual targets. Therefore, it was concluded that visuomotor as well as auditory-motor adaptation use the same adaptation mechanism. Furthermore, it has been proposed that sensory information from the trained modality is weighted larger than sensory information from an untrained one, because transfer between sensory modalities is incomplete. The present study tested these hypotheses for dual arm adaptation. One arm adapted to an auditory-motor distortion and the other either to an opposite directed auditory-motor or visuomotor distortion. We found that both arms adapted significantly. However, compared to reference data on single arm adaptation, adaptation in the dominant arm was reduced indicating interference from the non-dominant to the dominant arm. We further found that arm-specific aftereffects of adaptation, which reflect recalibration of sensorimotor transformation rules, were stronger or equally strong when targets were presented in the previously adapted compared to the non-adapted sensory modality, even when one arm adapted visually and the other auditorily. The findings are discussed with respect to a recently published schematic model on sensorimotor adaptation. Copyright © 2017 Elsevier B.V. All rights reserved.
Lanzilotto, Marco; Livi, Alessandro; Maranesi, Monica; Gerbella, Marzio; Barz, Falk; Ruther, Patrick; Fogassi, Leonardo; Rizzolatti, Giacomo; Bonini, Luca
2016-01-01
Grasping relies on a network of parieto-frontal areas lying on the dorsolateral and dorsomedial parts of the hemispheres. However, the initiation and sequencing of voluntary actions also requires the contribution of mesial premotor regions, particularly the pre-supplementary motor area F6. We recorded 233 F6 neurons from 2 monkeys with chronic linear multishank neural probes during reaching–grasping visuomotor tasks. We showed that F6 neurons play a role in the control of forelimb movements and some of them (26%) exhibit visual and/or motor specificity for the target object. Interestingly, area F6 neurons form 2 functionally distinct populations, showing either visually-triggered or movement-related bursts of activity, in contrast to the sustained visual-to-motor activity displayed by ventral premotor area F5 neurons recorded in the same animals and with the same task during previous studies. These findings suggest that F6 plays a role in object grasping and extend existing models of the cortical grasping network. PMID:27733538
High blood pressure and cognitive decline in mild cognitive impairment.
Goldstein, Felicia C; Levey, Allan I; Steenland, N Kyle
2013-01-01
To determine whether high blood pressure (BP) levels are associated with faster decline in specific cognitive domains. Prospective longitudinal cohort. Uniform Data Set of the National Institutes of Health, National Institute on Aging Alzheimer's Disease Centers. One thousand three hundred eighty-five participants with a diagnosis of mild cognitive impairment (MCI) and measured BP values at baseline and two annual follow-up visits. Neuropsychological test scores and Clinical Dementia Rating Sum of Boxes (CDR Sum) score. Participants with MCI with two or three annual occasions of high BP values (systolic BP ≥140 mmHg or diastolic BP ≥90 mmHg) had significantly faster decline on neuropsychological measures of visuomotor sequencing, set shifting, and naming than those who were normotensive on all three occasions. High systolic BP values were associated as well with faster decline on the CDR Sum score. Hypertension is associated with faster cognitive decline in persons at risk for dementia. © 2012, Copyright the Authors Journal compilation © 2012, The American Geriatrics Society.
High Blood Pressure and Cognitive Decline in Mild Cognitive Impairment
Goldstein, Felicia C.; Levey, Allan I.; Steenland, N. Kyle
2013-01-01
Objectives To determine whether high blood pressure (BP) levels are associated with faster decline in specific cognitive domains. Design Prospective longitudinal cohort. Setting Uniform Data Set of the National Institutes of Health, National Institute on Aging Alzheimer's Disease Centers. Participants One thousand three hundred eighty-five participants with a diagnosis of mild cognitive impairment (MCI) and measured BP values at baseline and two annual follow-up visits. Measurements Neuropsychological test scores and Clinical Dementia Rating Sum of Boxes (CDR Sum) score. Results Participants with MCI with two or three annual occasions of high BP values (systolic BP ≥ 140 mmHg or diastolic BP ≥ 90 mmHg) had significantly faster decline on neuropsychological measures of visuomotor sequencing, set shifting, and naming than those who were normotensive on all three occasions. High systolic BP values were associated as well with faster decline on the CDR Sum score. Conclusion Hypertension is associated with faster cognitive decline in persons at risk for dementia. PMID:23301925
Motor transfer from map ocular exploration to locomotion during spatial navigation from memory.
Demichelis, Alixia; Olivier, Gérard; Berthoz, Alain
2013-02-01
Spatial navigation from memory can rely on two different strategies: a mental simulation of a kinesthetic spatial navigation (egocentric route strategy) or visual-spatial memory using a mental map (allocentric survey strategy). We hypothesized that a previously performed "oculomotor navigation" on a map could be used by the brain to perform a locomotor memory task. Participants were instructed to (1) learn a path on a map through a sequence of vertical and horizontal eyes movements and (2) walk on the slabs of a "magic carpet" to recall this path. The main results showed that the anisotropy of ocular movements (horizontal ones being more efficient than vertical ones) influenced performances of participants when they change direction on the central slab of the magic carpet. These data suggest that, to find their way through locomotor space, subjects mentally repeated their past ocular exploration of the map, and this visuo-motor memory was used as a template for the locomotor performance.
Lateralized implicit sequence learning in uni- and bi-manual conditions.
Schmitz, Rémy; Pasquali, Antoine; Cleeremans, Axel; Peigneux, Philippe
2013-02-01
It has been proposed that the right hemisphere (RH) is better suited to acquire novel material whereas the left hemisphere (LH) is more able to process well-routinized information. Here, we ask whether this potential dissociation also manifests itself in an implicit learning task. Using a lateralized version of the serial reaction time task (SRT), we tested whether participants trained in a divided visual field condition primarily stimulating the RH would learn the implicit regularities embedded in sequential material faster than participants in a condition favoring LH processing. In the first study, half of participants were presented sequences in the left (vs. right) visual field, and had to respond using their ipsilateral hand (unimanual condition), hence making visuo-motor processing possible within the same hemisphere. Results showed successful implicit sequence learning, as indicated by increased reaction time for a transfer sequence in both hemispheric conditions and lack of conscious knowledge in a generation task. There was, however, no evidence of interhemispheric differences. In the second study, we hypothesized that a bimanual response version of the lateralized SRT, which requires interhemispheric communication and increases computational and cognitive processing loads, would favor RH-dependent visuospatial/attentional processes. In this bimanual condition, our results revealed a much higher transfer effect in the RH than in the LH condition, suggesting higher RH sensitivity to the processing of novel sequential material. This LH/RH difference was interpreted within the framework of the Novelty-Routinization model [Goldberg, E., & Costa, L. D. (1981). Hemisphere differences in the acquisition and use of descriptive systems. Brain and Language, 14(1), 144-173] and interhemispheric interactions in attentional processing [Banich, M. T. (1998). The missing link: the role of interhemispheric interaction in attentional processing. Brain and Cognition, 36(2), 128-157]. Copyright © 2012 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Viczko, Jeremy; Sergeeva, Valya; Ray, Laura B.; Owen, Adrian M.; Fogel, Stuart M.
2018-01-01
Sleep facilitates the consolidation (i.e., enhancement) of simple, explicit (i.e., conscious) motor sequence learning (MSL). MSL can be dissociated into egocentric (i.e., motor) or allocentric (i.e., spatial) frames of reference. The consolidation of the allocentric memory representation is sleep-dependent, whereas the egocentric consolidation…
A new neural net approach to robot 3D perception and visuo-motor coordination
NASA Technical Reports Server (NTRS)
Lee, Sukhan
1992-01-01
A novel neural network approach to robot hand-eye coordination is presented. The approach provides a true sense of visual error servoing, redundant arm configuration control for collision avoidance, and invariant visuo-motor learning under gazing control. A 3-D perception network is introduced to represent the robot internal 3-D metric space in which visual error servoing and arm configuration control are performed. The arm kinematic network performs the bidirectional association between 3-D space arm configurations and joint angles, and enforces the legitimate arm configurations. The arm kinematic net is structured by a radial-based competitive and cooperative network with hierarchical self-organizing learning. The main goal of the present work is to demonstrate that the neural net representation of the robot 3-D perception net serves as an important intermediate functional block connecting robot eyes and arms.
Rapid visuomotor processing of phobic images in spider- and snake-fearful participants.
Haberkamp, Anke; Schmidt, Filipp; Schmidt, Thomas
2013-10-01
This study investigates enhanced visuomotor processing of phobic compared to fear-relevant and neutral stimuli. We used a response priming design to measure rapid, automatic motor activation by natural images (spiders, snakes, mushrooms, and flowers) in spider-fearful, snake-fearful, and control participants. We found strong priming effects in all tasks and conditions; however, results showed marked differences between groups. Most importantly, in the group of spider-fearful individuals, spider pictures had a strong and specific influence on even the fastest motor responses: Phobic primes entailed the largest priming effects, and phobic targets accelerated responses, both effects indicating speeded response activation by phobic images. In snake-fearful participants, this processing enhancement for phobic material was less pronounced and extended to both snake and spider images. We conclude that spider phobia leads to enhanced processing capacity for phobic images. We argue that this is enabled by long-term perceptual learning processes. © 2013.
Limited Plasticity of Prismatic Visuomotor Adaptation
Wischhusen, Sven; Fahle, Manfred
2017-01-01
Movements toward an object displaced optically through prisms adapt quickly, a striking example for the plasticity of neuronal visuomotor programs. We investigated the degree and time course of this system’s plasticity. Participants performed goal-directed throwing or pointing movements with terminal feedback before, during, and after wearing prism goggles shifting the visual world laterally either to the right or to the left. Prism adaptation was incomplete even after 240 throwing movements, still deviating significantly laterally by on average of 0.8° (CI = 0.20°) at the end of the adaptation period. The remaining lateral deviation was significant for pointing movements only with left shifting prisms. In both tasks, removal of the prisms led to an aftereffect which disappeared in the course of further training. This incomplete prism adaptation may be caused by movement variability combined with an adaptive neuronal control system exhibiting a finite capacity for evaluating movement errors. PMID:28473909
Extensive video-game experience alters cortical networks for complex visuomotor transformations.
Granek, Joshua A; Gorbet, Diana J; Sergio, Lauren E
2010-10-01
Using event-related functional magnetic resonance imaging (fMRI), we examined the effect of video-game experience on the neural control of increasingly complex visuomotor tasks. Previously, skilled individuals have demonstrated the use of a more efficient movement control brain network, including the prefrontal, premotor, primary sensorimotor and parietal cortices. Our results extend and generalize this finding by documenting additional prefrontal cortex activity in experienced video gamers planning for complex eye-hand coordination tasks that are distinct from actual video-game play. These changes in activation between non-gamers and extensive gamers are putatively related to the increased online control and spatial attention required for complex visually guided reaching. These data suggest that the basic cortical network for processing complex visually guided reaching is altered by extensive video-game play. Crown Copyright © 2009. Published by Elsevier Srl. All rights reserved.
Directional hypokinesia in spatial hemineglect: a case study.
Bottini, G; Sterzi, R; Vallar, G
1992-01-01
A patient with an ischaemic lesion involving the right frontal lobe and basal ganglia showed left spatial hemineglect in visuomotor exploratory tasks, requiring the use of the right unaffected hand. Her performance was, however, entirely preserved, with no evidence of neglect, when she was required to identify targets among distractors in both the left and right halves of space, and in the Wundt-Jastrow illusion test. The latter tasks do not require any arm movement in extrapersonal space. In this patient spatial hemineglect may be explained in terms of defective organisation of movements towards the left half-space (directional hypokinesia). The frontal lesion of the patient may be the neural correlate of this selective disorder. This pattern of impairment may be contrasted with the typical deficit found in patients with right brain damage with perceptual neglect. One case had a defective performance both in visuomotor and in purely perceptual tasks. Images PMID:1640231
Inactivation of the Parietal Reach Region Causes Optic Ataxia, Impairing Reaches but Not Saccades
Hwang, Eun Jung; Hauschild, Markus; Wilke, Melanie; Andersen, Richard A.
2013-01-01
SUMMARY Lesions in human posterior parietal cortex can cause optic ataxia (OA), in which reaches but not saccades to visual objects are impaired, suggesting separate visuomotor pathways for the two effectors. In monkeys, one potentially crucial area for reach control is the parietal reach region (PRR), in which neurons respond preferentially during reach planning as compared to saccade planning. However, direct causal evidence linking the monkey PRR to the deficits observed in OA is missing. We thus inactivated part of the macaque PRR, in the medial wall of the intraparietal sulcus, and produced the hallmarks of OA, misreaching for peripheral targets but unimpaired saccades. Furthermore, reach errors were larger for the targets preferred by the neural population local to the injection site. These results demonstrate that PRR is causally involved in reach-specific visuomotor pathways, and reach goal disruption in PRR can be a neural basis of OA. PMID:23217749
Bashir, Ali; Bansal, Vikas; Bafna, Vineet
2010-06-18
Massively parallel DNA sequencing technologies have enabled the sequencing of several individual human genomes. These technologies are also being used in novel ways for mRNA expression profiling, genome-wide discovery of transcription-factor binding sites, small RNA discovery, etc. The multitude of sequencing platforms, each with their unique characteristics, pose a number of design challenges, regarding the technology to be used and the depth of sequencing required for a particular sequencing application. Here we describe a number of analytical and empirical results to address design questions for two applications: detection of structural variations from paired-end sequencing and estimating mRNA transcript abundance. For structural variation, our results provide explicit trade-offs between the detection and resolution of rearrangement breakpoints, and the optimal mix of paired-read insert lengths. Specifically, we prove that optimal detection and resolution of breakpoints is achieved using a mix of exactly two insert library lengths. Furthermore, we derive explicit formulae to determine these insert length combinations, enabling a 15% improvement in breakpoint detection at the same experimental cost. On empirical short read data, these predictions show good concordance with Illumina 200 bp and 2 Kbp insert length libraries. For transcriptome sequencing, we determine the sequencing depth needed to detect rare transcripts from a small pilot study. With only 1 Million reads, we derive corrections that enable almost perfect prediction of the underlying expression probability distribution, and use this to predict the sequencing depth required to detect low expressed genes with greater than 95% probability. Together, our results form a generic framework for many design considerations related to high-throughput sequencing. We provide software tools http://bix.ucsd.edu/projects/NGS-DesignTools to derive platform independent guidelines for designing sequencing experiments (amount of sequencing, choice of insert length, mix of libraries) for novel applications of next generation sequencing.
Teaching Formulaic Sequences in the Classroom: Effects on Spoken Fluency
ERIC Educational Resources Information Center
McGuire, Michael; Larson-Hall, Jenifer
2017-01-01
Formulaic sequences (FS) are frequently used by native speakers and have been found to help non-native speakers sound more fluent as well. We hypothesized that explicitly teaching FS to classroom ESL learners would increase the use of such language, which could further result in increased second language (L2) fluency. We report on a 5-week study…
ERIC Educational Resources Information Center
Cromley, Jennifer G.; Wills, Theodore W.
2016-01-01
Van den Broek's landscape model explicitly posits sequences of moves during reading in real time. Two other models that implicitly describe sequences of processes during reading are tested in the present research. Coded think-aloud data from 24 undergraduate students reading scientific text were analysed with lag-sequential techniques to compare…
Lei, Yuming; Wang, Jinsung
2014-11-01
Learning a visumotor adaptation task with one arm typically facilitates subsequent performance with the other. The extent of transfer across the arms, however, is generally much smaller than that across different conditions within the same arm. This may be attributed to a possibility that intralimb transfer involves both algorithmic and instance-reliant learning, whereas interlimb transfer only involves algorithmic learning. Here, we investigated whether prolonged training with one arm could facilitate subsequent performance with the other arm to a greater extent, by examining the effect of varying lengths of practice trials on the extent of interlimb transfer. We had 18 subjects adapt to a 30° visuomotor rotation with the left arm first (training), then with the right arm (transfer). During the training session, the subjects reached toward multiple targets for 160, 320 or 400 trials; during the transfer session, all subjects performed the same task for 160 trials. Our results revealed substantial initial transfer from the left to the right arm in all three conditions. However, neither the amount of initial transfer nor the rate of adaptation during the transfer session was significantly different across the conditions, indicating that the extent of transfer was similar regardless of the length of initial training. Our findings suggest that interlimb transfer of visuomotor adaptation may only occur through algorithmic learning, which is effector independent, and that prolonged training may only have beneficial effects when instance-reliant learning, which is effector dependent, is also involved in the learning process. Copyright © 2014 Elsevier Inc. All rights reserved.
Collaer, Marcia L; Brook, Charles G D; Conway, Gerard S; Hindmarsh, Peter C; Hines, Melissa
2009-02-01
This study investigated early androgen influence on the development of human motor and visuomotor characteristics. Participants, ages 12-45 years, were individuals with congenital adrenal hyperplasia (CAH), a disorder causing increased adrenal androgen production before birth (40 females, 29 males) and their unaffected relatives (29 females, 30 males). We investigated grip strength and visuomotor targeting tasks on which males generally outperform females, and fine motor pegboard tasks on which females generally outperform males. Physical characteristics (height and weight) were measured to explore whether body parameters could explain differences in motor skills. Females with CAH were stronger and showed better targeting than unaffected females and showed reduced fine visuomotor skill on one pegboard measure, with no difference on the other. Males with CAH were weaker than unaffected males in grip strength but did not differ on the targeting or pegboard measures. Correction for body size could not explain the findings for females, but suggests that the reduced strength of males with CAH may relate to their smaller stature. Further, the targeting advantage in females with CAH persisted following adjustment for their greater strength. Results in females support the hypothesis that androgen may masculinize, or promote, certain motor characteristics at which males excel, and contribute to defeminization of certain fine motor characteristics at which females excel. Thus, these data suggest that organizational effects of androgens on behavior during prenatal life may extend to motor characteristics and may contribute to general sex differences in motor-related behaviors; however, alternative explanations based on activational influences of androgen or altered experiential factors cannot be excluded without further study.
The Neural Correlates of Grasping in Left-Handers: When Handedness Does Not Matter.
Begliomini, Chiara; Sartori, Luisa; Di Bono, Maria G; Budisavljević, Sanja; Castiello, Umberto
2018-01-01
Neurophysiological studies showed that in macaques, grasp-related visuomotor transformations are supported by a circuit involving the anterior part of the intraparietal sulcus, the ventral and the dorsal region of the premotor area. In humans, a similar grasp-related circuit has been revealed by means of neuroimaging techniques. However, the majority of "human" studies considered movements performed by right-handers only, leaving open the question of whether the dynamics underlying motor control during grasping is simply reversed in left-handers with respect to right-handers or not. To address this question, a group of left-handed participants has been scanned with functional magnetic resonance imaging while performing a precision grasping task with the left or the right hand. Dynamic causal modeling was used to assess how brain regions of the two hemispheres contribute to grasping execution and whether the intra- and inter-hemispheric connectivity is modulated by the choice of the performing hand. Results showed enhanced inter-hemispheric connectivity between anterior intraparietal and dorsal premotor cortices during grasping execution with the left dominant hand (LDH) (e.g., right hemisphere) compared to the right (e.g., left hemisphere). These findings suggest that that the left hand, although dominant and theoretically more skilled in left handers, might need additional resources in terms of the visuomotor control and on-line monitoring to accomplish a precision grasping movement. The results are discussed in light of theories on the modulation of parieto-frontal networks during the execution of prehensile movements, providing novel evidence supporting the hypothesis of a handedness-independent specialization of the left hemisphere in visuomotor control.
Relating Brain Damage to Brain Plasticity in Patients With Multiple Sclerosis
Tomassini, Valentina; Johansen-Berg, Heidi; Jbabdi, Saad; Wise, Richard G.; Pozzilli, Carlo; Palace, Jacqueline; Matthews, Paul M.
2013-01-01
Background Failure of adaptive plasticity with increasing pathology is suggested to contribute to progression of disability in multiple sclerosis (MS). However, functional impairments can be reduced with practice, suggesting that brain plasticity is preserved even in patients with substantial damage. Objective Here, functional magnetic resonance imaging (fMRI) was used to probe systems-level mechanisms of brain plasticity associated with improvements in visuomotor performance in MS patients and related to measures of microstructural damage. Methods 23 MS patients and 12 healthy controls underwent brain fMRI during the first practice session of a visuomotor task (short-term practice) and after 2 weeks of daily practice with the same task (longer-term practice). Participants also underwent a structural brain MRI scan. Results Patients performed more poorly than controls at baseline. Nonetheless, with practice, patients showed performance improvements similar to controls and independent of the extent of MRI measures of brain pathology. Different relationships between performance improvements and activations were found between groups: greater short-term improvements were associated with lower activation in the sensorimotor, posterior cingulate, and parahippocampal cortices for patients, whereas greater long-term improvements correlated with smaller activation reductions in the visual cortex of controls. Conclusions Brain plasticity for visuomotor practice is preserved in MS patients despite a high burden of cerebral pathology. Cognitive systems different from those acting in controls contribute to this plasticity in patients. These findings challenge the notion that increasing pathology is accompanied by an outright failure of adaptive plasticity, supporting a neuroscientific rationale for recovery-oriented strategies even in chronically disabled patients. PMID:22328685
Tumanova, Victoria; Zebrowski, Patricia M.; Goodman, Shawn S.; Arenas, Richard M.
2015-01-01
Purpose The purpose of this study was to utilize a visuomotor tracking task, with both the jaw and hand, to add to the literature regarding non-speech motor practice and sensorimotor integration (outside of auditory-motor integration domain) in adults who do (PWS) and do not (PWNS) stutter. Method Participants were 15 PWS (14 males, mean age = 27.0) and 15 PWNS (14 males, mean age = 27.2). Participants tracked both predictable and unpredictable moving targets separately with their jaw and their dominant hand, and accuracy was assessed by calculating phase and amplitude difference between the participant and the target. Motor practice effect was examined by comparing group performance over consecutive tracking trials of predictable conditions as well as within the first trial of same conditions. Results Results showed that compared to PWNS, PWS were not significantly different in matching either the phase (timing) or the amplitude of the target in both jaw and hand tracking of predictable and unpredictable targets. Further, there were no significant between-group differences in motor practice effects for either jaw or hand tracking. Both groups showed improved tracking accuracy within and between the trials. Conclusion Our findings revealed no statistically significant differences in non-speech motor practice effects and integration of sensorimotor feedback between PWS and PWNS, at least in the context of the visuomotor tracking tasks employed in the study. In general, both talker groups exhibited practice effects (i.e., increased accuracy over time) within and between tracking trials during both jaw and hand tracking. Implications for these results are discussed. PMID:25990027
The Davida Teller Award Lecture, 2016
Atkinson, Janette
2017-01-01
Research in the Visual Development Unit on “dorsal stream vulnerability' (DSV) arose from research in two somewhat different areas. In the first, using cortical milestones for local and global processing from our neurobiological model, we identified cerebral visual impairment in infants in the first year of life. In the second, using photo/videorefraction in population refractive screening programs, we showed that infant spectacle wear could reduce the incidence of strabismus and amblyopia, but many preschool children, who had been significantly hyperopic earlier, showed visuo-motor and attentional deficits. This led us to compare developing dorsal and ventral streams, using sensitivity to global motion and form as signatures, finding deficits in motion sensitivity relative to form in children with Williams syndrome, or perinatal brain injury in hemiplegia or preterm birth. Later research showed that this “DSV” was common across many disorders, both genetic and acquired, from autism to amblyopia. Here, we extend DSV to be a cluster of problems, common to many disorders, including poor motion sensitivity, visuo-motor spatial integration for planning actions, attention, and number skills. In current research, we find that individual differences in motion coherence sensitivity in typically developing children are correlated with MRI measures of area variations in parietal lobe, fractional anisotropy (from TBSS) of the superior longitudinal fasciculus, and performance on tasks of mathematics and visuo-motor integration. These findings suggest that individual differences in motion sensitivity reflect decision making and attentional control rather than integration in MT/V5 or V3A. Its neural underpinnings may be related to Duncan's “multiple-demand” (MD) system. PMID:28362900
Saccone, Elizabeth J; Szpak, Ancret; Churches, Owen; Nicholls, Michael E R
2018-01-01
Research suggests that the human brain codes manipulable objects as possibilities for action, or affordances, particularly objects close to the body. Near-body space is not only a zone for body-environment interaction but also is socially relevant, as we are driven to preserve our near-body, personal space from others. The current, novel study investigated how close proximity of a stranger modulates visuomotor processing of object affordances in shared, social space. Participants performed a behavioural object recognition task both alone and with a human confederate. All object images were in participants' reachable space but appeared relatively closer to the participant or the confederate. Results revealed when participants were alone, objects in both locations produced an affordance congruency effect but when the confederate was present, only objects nearer the participant elicited the effect. Findings suggest space is divided between strangers to preserve independent near-body space boundaries, and in turn this process influences motor coding for stimuli within that social space. To demonstrate that this visuomotor modulation represents a social phenomenon, rather than a general, attentional effect, two subsequent experiments employed nonhuman joint conditions. Neither a small, Japanese, waving cat statue (Experiment 2) nor a metronome (Experiment 3) modulated the affordance effect as in Experiment 1. These findings suggest a truly social explanation of the key interaction from Experiment 1. This study represents an important step toward understanding object affordance processing in real-world, social contexts and has implications broadly across fields of social action and cognition, and body space representation.
When eyes drive hand: Influence of non-biological motion on visuo-motor coupling.
Thoret, Etienne; Aramaki, Mitsuko; Bringoux, Lionel; Ystad, Sølvi; Kronland-Martinet, Richard
2016-01-26
Many studies stressed that the human movement execution but also the perception of motion are constrained by specific kinematics. For instance, it has been shown that the visuo-manual tracking of a spotlight was optimal when the spotlight motion complies with biological rules such as the so-called 1/3 power law, establishing the co-variation between the velocity and the trajectory curvature of the movement. The visual or kinesthetic perception of a geometry induced by motion has also been shown to be constrained by such biological rules. In the present study, we investigated whether the geometry induced by the visuo-motor coupling of biological movements was also constrained by the 1/3 power law under visual open loop control, i.e. without visual feedback of arm displacement. We showed that when someone was asked to synchronize a drawing movement with a visual spotlight following a circular shape, the geometry of the reproduced shape was fooled by visual kinematics that did not respect the 1/3 power law. In particular, elliptical shapes were reproduced when the circle is trailed with a kinematics corresponding to an ellipse. Moreover, the distortions observed here were larger than in the perceptual tasks stressing the role of motor attractors in such a visuo-motor coupling. Finally, by investigating the direct influence of visual kinematics on the motor reproduction, our result conciliates previous knowledge on sensorimotor coupling of biological motions with external stimuli and gives evidence to the amodal encoding of biological motion. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Neurobehavioral Outcomes 11 Years After Neonatal Caffeine Therapy for Apnea of Prematurity.
Mürner-Lavanchy, Ines M; Doyle, Lex W; Schmidt, Barbara; Roberts, Robin S; Asztalos, Elizabeth V; Costantini, Lorrie; Davis, Peter G; Dewey, Deborah; D'Ilario, Judy; Grunau, Ruth E; Moddemann, Diane; Nelson, Harvey; Ohlsson, Arne; Solimano, Alfonso; Tin, Win; Anderson, Peter J
2018-05-01
Caffeine is effective in the treatment of apnea of prematurity. Although caffeine therapy has a benefit on gross motor skills in school-aged children, effects on neurobehavioral outcomes are not fully understood. We aimed to investigate effects of neonatal caffeine therapy in very low birth weight (500-1250 g) infants on neurobehavioral outcomes in 11-year-old participants of the Caffeine for Apnea of Prematurity trial. Thirteen academic hospitals in Canada, Australia, Great Britain, and Sweden participated in this part of the 11-year follow-up of the double-blind, randomized, placebo-controlled trial. Measures of general intelligence, attention, executive function, visuomotor integration and perception, and behavior were obtained in up to 870 children. The effects of caffeine therapy were assessed by using regression models. Neurobehavioral outcomes were generally similar for both the caffeine and placebo group. The caffeine group performed better than the placebo group in fine motor coordination (mean difference [MD] = 2.9; 95% confidence interval [CI]: 0.7 to 5.1; P = .01), visuomotor integration (MD = 1.8; 95% CI: 0.0 to 3.7; P < .05), visual perception (MD = 2.0; 95% CI: 0.3 to 3.8; P = .02), and visuospatial organization (MD = 1.2; 95% CI: 0.4 to 2.0; P = .003). Neonatal caffeine therapy for apnea of prematurity improved visuomotor, visuoperceptual, and visuospatial abilities at age 11 years. General intelligence, attention, and behavior were not adversely affected by caffeine, which highlights the long-term safety of caffeine therapy for apnea of prematurity in very low birth weight neonates. Copyright © 2018 by the American Academy of Pediatrics.
Auditory Task Irrelevance: A Basis for Inattentional Deafness
Scheer, Menja; Bülthoff, Heinrich H.; Chuang, Lewis L.
2018-01-01
Objective This study investigates the neural basis of inattentional deafness, which could result from task irrelevance in the auditory modality. Background Humans can fail to respond to auditory alarms under high workload situations. This failure, termed inattentional deafness, is often attributed to high workload in the visual modality, which reduces one’s capacity for information processing. Besides this, our capacity for processing auditory information could also be selectively diminished if there is no obvious task relevance in the auditory channel. This could be another contributing factor given the rarity of auditory warnings. Method Forty-eight participants performed a visuomotor tracking task while auditory stimuli were presented: a frequent pure tone, an infrequent pure tone, and infrequent environmental sounds. Participants were required either to respond to the presentation of the infrequent pure tone (auditory task-relevant) or not (auditory task-irrelevant). We recorded and compared the event-related potentials (ERPs) that were generated by environmental sounds, which were always task-irrelevant for both groups. These ERPs served as an index for our participants’ awareness of the task-irrelevant auditory scene. Results Manipulation of auditory task relevance influenced the brain’s response to task-irrelevant environmental sounds. Specifically, the late novelty-P3 to irrelevant environmental sounds, which underlies working memory updating, was found to be selectively enhanced by auditory task relevance independent of visuomotor workload. Conclusion Task irrelevance in the auditory modality selectively reduces our brain’s responses to unexpected and irrelevant sounds regardless of visuomotor workload. Application Presenting relevant auditory information more often could mitigate the risk of inattentional deafness. PMID:29578754
Dissociation between unconscious motor response facilitation and conflict in medial frontal areas.
D'Ostilio, Kevin; Garraux, Gaëtan
2012-01-01
Masked prime tasks have shown that sensory information that has not been consciously perceived can nevertheless modulate behavior. The neuronal correlates of behavioral manifestations of visuomotor priming remain debated, particularly with respect to the distribution and direction (i.e. increase or decrease) of activity changes in medial frontal areas. Here, we predicted that these discrepant results could be accounted for by two automatic and unconscious processes embedded in this task: response conflict and facilitation. We used event-related functional magnetic resonance imaging (fMRI), as 24 healthy participants had to respond, as fast as possible, to a target arrow presented immediately after a subliminal masked prime arrow. There were three experimental conditions defined by the prime-target relationship: compatible, incompatible, and neutral. The classical visuomotor priming effect was reproduced, with relatively longer reaction times (RTs) in incompatible trials. Longer RTs in incompatible than in neutral trials were specifically associated with stronger blood oxygen level-dependent (BOLD) activity in a conflict-related network comprising the anterior cingulate cortex and right frontal associative areas. Motor response facilitation as shown by shorter RTs in compatible than in neutral trials was associated with reduced activation in a motor preparation network including the medial and lateral premotor cortices, as a result of the repetition suppression of the fMRI BOLD signal. The present results provide new insights into automatic and unconscious visuomotor priming processes, suggesting an involvement of either a cognitive or motor network, depending on the prime-target relationship. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Lei, Yuming; Bao, Shancheng; Wang, Jinsung
2016-09-07
Sensorimotor adaptation can be induced by action observation, and also by passive training. Here, we investigated the effect of a protocol that combined action observation and passive training on visuomotor adaptation, by comparing it with the effect of action observation or passive training alone. Subjects were divided into five conditions during the training session: (1) action observation, in which the subjects watched a video of a model who adapted to a novel visuomotor rotation; (2) proprioceptive training, in which the subject's arm was moved passively to target locations that were associated with desired trajectories; (3) combined training, in which the subjects watched the video of a model during a half of the session and experienced passive movements during the other half; (4) active training, in which the subjects adapted actively to the rotation; and (5) a control condition, in which the subjects did not perform any task. Following that session, all subjects adapted to the same visuomotor rotation. Results showed that the subjects in the combined training condition adapted to the rotation significantly better than those in the observation or proprioceptive training condition, although their performance was not as good as that of those who adapted actively. These findings suggest that although a protocol that combines action observation and passive training consists of all the processes involved in active training (error detection and correction, effector-specific and proprioceptively based reaching movements), these processes in that protocol may work differently as compared to a protocol in which the same processes are engaged actively. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Isolating Visual and Proprioceptive Components of Motor Sequence Learning in ASD.
Sharer, Elizabeth A; Mostofsky, Stewart H; Pascual-Leone, Alvaro; Oberman, Lindsay M
2016-05-01
In addition to defining impairments in social communication skills, individuals with autism spectrum disorder (ASD) also show impairments in more basic sensory and motor skills. Development of new skills involves integrating information from multiple sensory modalities. This input is then used to form internal models of action that can be accessed when both performing skilled movements, as well as understanding those actions performed by others. Learning skilled gestures is particularly reliant on integration of visual and proprioceptive input. We used a modified serial reaction time task (SRTT) to decompose proprioceptive and visual components and examine whether patterns of implicit motor skill learning differ in ASD participants as compared with healthy controls. While both groups learned the implicit motor sequence during training, healthy controls showed robust generalization whereas ASD participants demonstrated little generalization when visual input was constant. In contrast, no group differences in generalization were observed when proprioceptive input was constant, with both groups showing limited degrees of generalization. The findings suggest, when learning a motor sequence, individuals with ASD tend to rely less on visual feedback than do healthy controls. Visuomotor representations are considered to underlie imitative learning and action understanding and are thereby crucial to social skill and cognitive development. Thus, anomalous patterns of implicit motor learning, with a tendency to discount visual feedback, may be an important contributor in core social communication deficits that characterize ASD. Autism Res 2016, 9: 563-569. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Probability differently modulating the effects of reward and punishment on visuomotor adaptation.
Song, Yanlong; Smiley-Oyen, Ann L
2017-12-01
Recent human motor learning studies revealed that punishment seemingly accelerated motor learning but reward enhanced consolidation of motor memory. It is not evident how intrinsic properties of reward and punishment modulate the potentially dissociable effects of reward and punishment on motor learning and motor memory. It is also not clear what causes the dissociation of the effects of reward and punishment. By manipulating probability of distribution, a critical property of reward and punishment, the present study demonstrated that probability had distinct modulation on the effects of reward and punishment in adapting to a sudden visual rotation and consolidation of the adaptation memory. Specifically, two probabilities of monetary reward and punishment distribution, 50 and 100%, were applied during young adult participants adapting to a sudden visual rotation. Punishment and reward showed distinct effects on motor adaptation and motor memory. The group that received punishments in 100% of the adaptation trials adapted significantly faster than the other three groups, but the group that received rewards in 100% of the adaptation trials showed marked savings in re-adapting to the same rotation. In addition, the group that received punishments in 50% of the adaptation trials that were randomly selected also had savings in re-adapting to the same rotation. Sensitivity to sensory prediction error or difference in explicit process induced by reward and punishment may likely contribute to the distinct effects of reward and punishment.
Singular vectors for the WN algebras
NASA Astrophysics Data System (ADS)
Ridout, David; Siu, Steve; Wood, Simon
2018-03-01
In this paper, we use free field realisations of the A-type principal, or Casimir, WN algebras to derive explicit formulae for singular vectors in Fock modules. These singular vectors are constructed by applying screening operators to Fock module highest weight vectors. The action of the screening operators is then explicitly evaluated in terms of Jack symmetric functions and their skew analogues. The resulting formulae depend on sequences of pairs of integers that completely determine the Fock module as well as the Jack symmetric functions.
Heideman, Simone G; van Ede, Freek; Nobre, Anna C
2018-05-24
In daily life, temporal expectations may derive from incidental learning of recurring patterns of intervals. We investigated the incidental acquisition and utilisation of combined temporal-ordinal (spatial/effector) structure in complex visual-motor sequences using a modified version of a serial reaction time (SRT) task. In this task, not only the series of targets/responses, but also the series of intervals between subsequent targets was repeated across multiple presentations of the same sequence. Each participant completed three sessions. In the first session, only the repeating sequence was presented. During the second and third session, occasional probe blocks were presented, where a new (unlearned) spatial-temporal sequence was introduced. We first confirm that participants not only got faster over time, but that they were slower and less accurate during probe blocks, indicating that they incidentally learned the sequence structure. Having established a robust behavioural benefit induced by the repeating spatial-temporal sequence, we next addressed our central hypothesis that implicit temporal orienting (evoked by the learned temporal structure) would have the largest influence on performance for targets following short (as opposed to longer) intervals between temporally structured sequence elements, paralleling classical observations in tasks using explicit temporal cues. We found that indeed, reaction time differences between new and repeated sequences were largest for the short interval, compared to the medium and long intervals, and that this was the case, even when comparing late blocks (where the repeated sequence had been incidentally learned), to early blocks (where this sequence was still unfamiliar). We conclude that incidentally acquired temporal expectations that follow a sequential structure can have a robust facilitatory influence on visually-guided behavioural responses and that, like more explicit forms of temporal orienting, this effect is most pronounced for sequence elements that are expected at short inter-element intervals. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Piccolo, Lidia Del; Finset, Arnstein; Mellblom, Anneli V; Figueiredo-Braga, Margarida; Korsvold, Live; Zhou, Yuefang; Zimmermann, Christa; Humphris, Gerald
2017-12-01
To discuss the theoretical and empirical framework of VR-CoDES and potential future direction in research based on the coding system. The paper is based on selective review of papers relevant to the construction and application of VR-CoDES. VR-CoDES system is rooted in patient-centered and biopsychosocial model of healthcare consultations and on a functional approach to emotion theory. According to the VR-CoDES, emotional interaction is studied in terms of sequences consisting of an eliciting event, an emotional expression by the patient and the immediate response by the clinician. The rationale for the emphasis on sequences, on detailed classification of cues and concerns, and on the choices of explicit vs. non-explicit responses and providing vs. reducing room for further disclosure, as basic categories of the clinician responses, is described. Results from research on VR-CoDES may help raise awareness of emotional sequences. Future directions in applying VR-CoDES in research may include studies on predicting patient and clinician behavior within the consultation, qualitative analyses of longer sequences including several VR-CoDES triads, and studies of effects of emotional communication on health outcomes. VR-CoDES may be applied to develop interventions to promote good handling of patients' emotions in healthcare encounters. Copyright © 2017 Elsevier B.V. All rights reserved.
Biesbroek, J Matthijs; Weaver, Nick A; Hilal, Saima; Kuijf, Hugo J; Ikram, Mohammad Kamran; Xu, Xin; Tan, Boon Yeow; Venketasubramanian, Narayanaswamy; Postma, Albert; Biessels, Geert Jan; Chen, Christopher P L H
2016-01-01
Studies on the impact of small vessel disease (SVD) on cognition generally focus on white matter hyperintensity (WMH) volume. The extent to which WMH location relates to cognitive performance has received less attention, but is likely to be functionally important. We examined the relation between WMH location and cognition in a memory clinic cohort of patients with sporadic SVD. A total of 167 patients with SVD were recruited from memory clinics. Assumption-free region of interest-based analyses based on major white matter tracts and voxel-wise analyses were used to determine the association between WMH location and executive functioning, visuomotor speed and memory. Region of interest-based analyses showed that WMHs located particularly within the anterior thalamic radiation and forceps minor were inversely associated with both executive functioning and visuomotor speed, independent of total WMH volume. Memory was significantly associated with WMH volume in the forceps minor, independent of total WMH volume. An independent assumption-free voxel-wise analysis identified strategic voxels in these same tracts. Region of interest-based analyses showed that WMH volume within the anterior thalamic radiation explained 6.8% of variance in executive functioning, compared to 3.9% for total WMH volume; WMH volume within the forceps minor explained 4.6% of variance in visuomotor speed and 4.2% of variance in memory, compared to 1.8% and 1.3% respectively for total WMH volume. Our findings identify the anterior thalamic radiation and forceps minor as strategic white matter tracts in which WMHs are most strongly associated with cognitive impairment in memory clinic patients with SVD. WMH volumes in individual tracts explained more variance in cognition than total WMH burden, emphasizing the importance of lesion location when addressing the functional consequences of WMHs.
Quiet eye training in a visuomotor control task.
Causer, Joe; Holmes, Paul S; Williams, Andrew Mark
2011-06-01
Several researchers have reported the importance of maintaining a longer final fixation on the target (termed the quiet eye period, QE) before performing an aiming task. We present an innovative, perceptual training intervention intended to improve the efficiency of gaze behavior (i.e., QE) in shotgun shooting. A sample of 20 international-level skeet shooters were assigned equally to one of two ability-matched groups based on their pretest shooting scores. A perceptual training group participated in a four-step preshot routine alongside three video feedback sessions involving their own gaze behaviors and those of an expert model in an effort to positively influence QE behaviors. A control group received video feedback of performance but without the addition of feedback on QE behaviors. Participants completed pretests and posttests along with an 8-wk training intervention. Subjects of the perceptual training group significantly increased their mean QE duration (397 vs 423 ms), used an earlier onset of QE (257 vs 244 ms), and recorded higher shooting accuracy scores (62 vs 70%) from pretest to posttest. Participants in the perceptual training group significantly reduced gun barrel displacement and absolute peak velocity on the posttest compared with the pretest, although neither variable was overtly trained. A transfer test based on performance during competition indicated that perceptual training significantly improved shooting accuracy from before to after the intervention. No pretest to posttest differences were observed for the control group on the measures reported. The results demonstrate the effectiveness of QE training in improving shooting accuracy and developing a more efficient visuomotor control strategy.The findings have implications for future research on training visuomotor behaviors, attention, and gaze orientation during the performance of aiming tasks.
Sadeh, Morteza; Sajad, Amirsaman; Wang, Hongying; Yan, Xiaogang; Crawford, John Douglas
2015-12-01
We previously reported that visuomotor activity in the superior colliculus (SC)--a key midbrain structure for the generation of rapid eye movements--preferentially encodes target position relative to the eye (Te) during low-latency head-unrestrained gaze shifts (DeSouza et al., 2011). Here, we trained two monkeys to perform head-unrestrained gaze shifts after a variable post-stimulus delay (400-700 ms), to test whether temporally separated SC visual and motor responses show different spatial codes. Target positions, final gaze positions and various frames of reference (eye, head, and space) were dissociated through natural (untrained) trial-to-trial variations in behaviour. 3D eye and head orientations were recorded, and 2D response field data were fitted against multiple models by use of a statistical method reported previously (Keith et al., 2009). Of 60 neurons, 17 showed a visual response, 12 showed a motor response, and 31 showed both visual and motor responses. The combined visual response field population (n = 48) showed a significant preference for Te, which was also preferred in each visual subpopulation. In contrast, the motor response field population (n = 43) showed a preference for final (relative to initial) gaze position models, and the Te model was statistically eliminated in the motor-only population. There was also a significant shift of coding from the visual to motor response within visuomotor neurons. These data confirm that SC response fields are gaze-centred, and show a target-to-gaze transformation between visual and motor responses. Thus, visuomotor transformations can occur between, and even within, neurons within a single frame of reference and brain structure. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
A Virtual Out-of-Body Experience Reduces Fear of Death
2017-01-01
Immersive virtual reality can be used to visually substitute a person’s real body by a life-sized virtual body (VB) that is seen from first person perspective. Using real-time motion capture the VB can be programmed to move synchronously with the real body (visuomotor synchrony), and also virtual objects seen to strike the VB can be felt through corresponding vibrotactile stimulation on the actual body (visuotactile synchrony). This setup typically gives rise to a strong perceptual illusion of ownership over the VB. When the viewpoint is lifted up and out of the VB so that it is seen below this may result in an out-of-body experience (OBE). In a two-factor between-groups experiment with 16 female participants per group we tested how fear of death might be influenced by two different methods for producing an OBE. In an initial embodiment phase where both groups experienced the same multisensory stimuli there was a strong feeling of body ownership. Then the viewpoint was lifted up and behind the VB. In the experimental group once the viewpoint was out of the VB there was no further connection with it (no visuomotor or visuotactile synchrony). In a control condition, although the viewpoint was in the identical place as in the experimental group, visuomotor and visuotactile synchrony continued. While both groups reported high scores on a question about their OBE illusion, the experimental group had a greater feeling of disownership towards the VB below compared to the control group, in line with previous findings. Fear of death in the experimental group was found to be lower than in the control group. This is in line with previous reports that naturally occurring OBEs are often associated with enhanced belief in life after death. PMID:28068368
Rise and fall of the two visual systems theory.
Rossetti, Yves; Pisella, Laure; McIntosh, Robert D
2017-06-01
Among the many dissociations describing the visual system, the dual theory of two visual systems, respectively dedicated to perception and action, has yielded a lot of support. There are psychophysical, anatomical and neuropsychological arguments in favor of this theory. Several behavioral studies that used sensory and motor psychophysical parameters observed differences between perceptive and motor responses. The anatomical network of the visual system in the non-human primate was very readily organized according to two major pathways, dorsal and ventral. Neuropsychological studies, exploring optic ataxia and visual agnosia as characteristic deficits of these two pathways, led to the proposal of a functional double dissociation between visuomotor and visual perceptual functions. After a major wave of popularity that promoted great advances, particularly in knowledge of visuomotor functions, the guiding theory is now being reconsidered. Firstly, the idea of a double dissociation between optic ataxia and visual form agnosia, as cleanly separating visuomotor from visual perceptual functions, is no longer tenable; optic ataxia does not support a dissociation between perception and action and might be more accurately viewed as a negative image of action blindsight. Secondly, dissociations between perceptive and motor responses highlighted in the framework of this theory concern a very elementary level of action, even automatically guided action routines. Thirdly, the very rich interconnected network of the visual brain yields few arguments in favor of a strict perception/action dissociation. Overall, the dissociation between motor function and perceptive function explored by these behavioral and neuropsychological studies can help define an automatic level of action organization deficient in optic ataxia and preserved in action blindsight, and underlines the renewed need to consider the perception-action circle as a functional ensemble. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Performance in complex motor tasks deteriorates in hyperthermic humans.
Piil, Jacob F; Lundbye-Jensen, Jesper; Trangmar, Steven J; Nybo, Lars
2017-01-01
Heat stress, leading to elevations in whole-body temperature, has a marked impact on both physical performance and cognition in ecological settings. Lab experiments confirm this for physically demanding activities, whereas observations are inconsistent for tasks involving cognitive processing of information or decision-making prior to responding. We hypothesized that divergences could relate to task complexity and developed a protocol consisting of 1) simple motor task [TARGET_pinch], 2) complex motor task [Visuo-motor tracking], 3) simple math task [MATH_type], 4) combined motor-math task [MATH_pinch]. Furthermore, visuo-motor tracking performance was assessed both in a separate- and a multipart protocol (complex motor tasks alternating with the three other tasks). Following familiarization, each of the 10 male subjects completed separate and multipart protocols in randomized order in the heat (40°C) or control condition (20°C) with testing at baseline (seated rest) and similar seated position, following exercise-induced hyperthermia (core temperature ∼ 39.5°C in the heat and 38.2°C in control condition). All task scores were unaffected by control exercise or passive heat exposure, but visuo-motor tracking performance was reduced by 10.7 ± 6.5% following exercise-induced hyperthermia when integrated in the multipart protocol and 4.4 ± 5.7% when tested separately (both P < 0.05 ). TARGET_pinch precision declined by 2.6 ± 1.3% ( P < 0.05 ), while no significant changes were observed for the math tasks. These results indicate that heat per se has little impact on simple motor or cognitive test performance, but complex motor performance is impaired by hyperthermia and especially so when multiple tasks are combined.
Guxens, Mònica; Vermeulen, Roel; van Eijsden, Manon; Beekhuizen, Johan; Vrijkotte, Tanja G M; van Strien, Rob T; Kromhout, Hans; Huss, Anke
2016-10-01
Little is known about the exposure of young children to radiofrequency electromagnetic fields (RF-EMF) and potentially associated health effects. We assessed the relationship between residential RF-EMF exposure from mobile phone base stations, residential presence of indoor sources, personal cell phone and cordless phone use, and children's cognitive function at 5-6 years of age. Cross-sectional study on children aged 5-6 years from the Amsterdam Born Children and their Development (ABCD) study, the Netherlands (n=2354). Residential RF-EMF exposure from mobile phone base stations was estimated with a 3D geospatial radio wave propagation model. Residential presence of indoor sources (cordless phone base stations and Wi-Fi) and children's cell phone and cordless phone use was reported by the mother. Speed of information processing, inhibitory control, cognitive flexibility, and visuomotor coordination was assessed using the Amsterdam Neuropsychological Tasks. Residential presence of RF-EMF indoor sources was associated with an improved speed of information processing. Higher residential RF-EMF exposure from mobile phone base stations and presence of indoor sources was associated with an improved inhibitory control and cognitive flexibility whereas we observed a reduced inhibitory control and cognitive flexibility with higher personal cordless phone use. Higher residential RF-EMF exposure from mobile phone base stations was associated with a reduced visuomotor coordination whereas we observed an improved visuomotor coordination with residential presence of RF-EMF indoor sources and higher personal cell phone use. We found inconsistent associations between different sources of RF-EMF exposure and cognitive function in children aged 5-6 years. Copyright © 2016 Elsevier Inc. All rights reserved.
Facilitation of learning induced by both random and gradual visuomotor task variation
Braun, Daniel A.; Wolpert, Daniel M.
2012-01-01
Motor task variation has been shown to be a key ingredient in skill transfer, retention, and structural learning. However, many studies only compare training of randomly varying tasks to either blocked or null training, and it is not clear how experiencing different nonrandom temporal orderings of tasks might affect the learning process. Here we study learning in human subjects who experience the same set of visuomotor rotations, evenly spaced between −60° and +60°, either in a random order or in an order in which the rotation angle changed gradually. We compared subsequent learning of three test blocks of +30°→−30°→+30° rotations. The groups that underwent either random or gradual training showed significant (P < 0.01) facilitation of learning in the test blocks compared with a control group who had not experienced any visuomotor rotations before. We also found that movement initiation times in the random group during the test blocks were significantly (P < 0.05) lower than for the gradual or the control group. When we fit a state-space model with fast and slow learning processes to our data, we found that the differences in performance in the test block were consistent with the gradual or random task variation changing the learning and retention rates of only the fast learning process. Such adaptation of learning rates may be a key feature of ongoing meta-learning processes. Our results therefore suggest that both gradual and random task variation can induce meta-learning and that random learning has an advantage in terms of shorter initiation times, suggesting less reliance on cognitive processes. PMID:22131385
Experimental Test of Spatial Updating Models for Monkey Eye-Head Gaze Shifts
Van Grootel, Tom J.; Van der Willigen, Robert F.; Van Opstal, A. John
2012-01-01
How the brain maintains an accurate and stable representation of visual target locations despite the occurrence of saccadic gaze shifts is a classical problem in oculomotor research. Here we test and dissociate the predictions of different conceptual models for head-unrestrained gaze-localization behavior of macaque monkeys. We adopted the double-step paradigm with rapid eye-head gaze shifts to measure localization accuracy in response to flashed visual stimuli in darkness. We presented the second target flash either before (static), or during (dynamic) the first gaze displacement. In the dynamic case the brief visual flash induced a small retinal streak of up to about 20 deg at an unpredictable moment and retinal location during the eye-head gaze shift, which provides serious challenges for the gaze-control system. However, for both stimulus conditions, monkeys localized the flashed targets with accurate gaze shifts, which rules out several models of visuomotor control. First, these findings exclude the possibility that gaze-shift programming relies on retinal inputs only. Instead, they support the notion that accurate eye-head motor feedback updates the gaze-saccade coordinates. Second, in dynamic trials the visuomotor system cannot rely on the coordinates of the planned first eye-head saccade either, which rules out remapping on the basis of a predictive corollary gaze-displacement signal. Finally, because gaze-related head movements were also goal-directed, requiring continuous access to eye-in-head position, we propose that our results best support a dynamic feedback scheme for spatial updating in which visuomotor control incorporates accurate signals about instantaneous eye- and head positions rather than relative eye- and head displacements. PMID:23118883
Quiet eye training facilitates competitive putting performance in elite golfers.
Vine, Samuel J; Moore, Lee J; Wilson, Mark R
2011-01-01
The aim of this study was to examine the effectiveness of a brief quiet eye (QE) training intervention aimed at optimizing visuomotor control and putting performance of elite golfers under pressure, and in real competition. Twenty-two elite golfers (mean handicap 2.7) recorded putting statistics over 10 rounds of competitive golf before attending training individually. Having been randomly assigned to either a QE training or Control group, participants were fitted with an Applied Science Laboratories Mobile Eye tracker and performed 20 baseline (pre-test) putts from 10 ft. Training consisted of video feedback of their gaze behavior while they completed 20 putts; however the QE-trained group received additional instructions related to maintaining a longer QE period. Participants then recorded their putting statistics over a further 10 competitive rounds and re-visited the laboratory for retention and pressure tests of their visuomotor control and putting performance. Overall, the results were supportive of the efficacy of the QE training intervention. QE duration predicted 43% of the variance in putting performance, underlying its critical role in the visuomotor control of putting. The QE-trained group maintained their optimal QE under pressure conditions, whereas the Control group experienced reductions in QE when anxious, with subsequent effects on performance. Although their performance was similar in the pre-test, the QE-trained group holed more putts and left the ball closer to the hole on missed putts than their Control group counterparts in the pressure test. Importantly, these advantages transferred to the golf course, where QE-trained golfers made 1.9 fewer putts per round, compared to pre-training, whereas the Control group showed no change in their putting statistics. These results reveal that QE training, incorporated into a pre-shot routine, is an effective intervention to help golfers maintain control when anxious.
Hadj-Bouziane, Fadila; Benatru, Isabelle; Brovelli, Andrea; Klinger, Hélène; Thobois, Stéphane; Broussolle, Emmanuel; Boussaoud, Driss; Meunier, Martine
2013-01-01
The present behavioral study re-addresses the question of habit learning in Parkinson's disease (PD). Patients were early onset, non-demented, dopa-responsive, candidates for surgical treatment, similar to those we found earlier as suffering greater dopamine depletion in the putamen than in the caudate nucleus. The task was the same conditional associative learning task as that used previously in monkeys and healthy humans to unveil the striatum involvement in habit learning. Sixteen patients and 20 age- and education-matched healthy control subjects learned sets of 3 visuo-motor associations between complex patterns and joystick displacements during two testing sessions separated by a few hours. We distinguished errors preceding vs. following the first correct response to compare patients' performance during the earliest phase of learning dominated by goal-directed actions with that observed later on, when responses start to become habitual. The disease significantly retarded both learning phases, especially in patients under 60 years of age. However, only the late phase deficit was disease severity-dependent and persisted on the second testing session. These findings provide the first corroboration in Parkinson patients of two ideas well-established in the animal literature. The first is the idea that associating visual stimuli to motor acts is a form of habit learning that engages the striatum. It is confirmed here by the global impairment in visuo-motor learning induced by PD. The second idea is that goal-directed behaviors are predominantly caudate-dependent whereas habitual responses are primarily putamen-dependent. At the advanced PD stages tested here, dopamine depletion is greater in the putamen than in the caudate nucleus. Accordingly, the late phase of learning corresponding to the emergence of habitual responses was more vulnerable to the disease than the early phase dominated by goal-directed actions. PMID:23386815
Feedback and feedforward adaptation to visuomotor delay during reaching and slicing movements.
Botzer, Lior; Karniel, Amir
2013-07-01
It has been suggested that the brain and in particular the cerebellum and motor cortex adapt to represent the environment during reaching movements under various visuomotor perturbations. It is well known that significant delay is present in neural conductance and processing; however, the possible representation of delay and adaptation to delayed visual feedback has been largely overlooked. Here we investigated the control of reaching movements in human subjects during an imposed visuomotor delay in a virtual reality environment. In the first experiment, when visual feedback was unexpectedly delayed, the hand movement overshot the end-point target, indicating a vision-based feedback control. Over the ensuing trials, movements gradually adapted and became accurate. When the delay was removed unexpectedly, movements systematically undershot the target, demonstrating that adaptation occurred within the vision-based feedback control mechanism. In a second experiment designed to broaden our understanding of the underlying mechanisms, we revealed similar after-effects for rhythmic reversal (out-and-back) movements. We present a computational model accounting for these results based on two adapted forward models, each tuned for a specific modality delay (proprioception or vision), and a third feedforward controller. The computational model, along with the experimental results, refutes delay representation in a pure forward vision-based predictor and suggests that adaptation occurred in the forward vision-based predictor, and concurrently in the state-based feedforward controller. Understanding how the brain compensates for conductance and processing delays is essential for understanding certain impairments concerning these neural delays as well as for the development of brain-machine interfaces. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Wamsley, Erin J.; Perry, Karen; Djonlagic, Ina; Babkes Reaven, Laura; Stickgold, Robert
2010-01-01
Study Objectives: Studies of neural activity in animals and humans suggest that experiences are “replayed” in cortical and hippocampal networks during NREM sleep. Here, we examine whether memory reactivation in sleeping humans might also be evident within reports of concomitant subjective experience (i.e., dreaming). Design: Participants were trained on an engaging visuomotor learning task across a period of one or more days, and sleep onset mentation was collected at variable intervals using the “Nightcap” home-monitoring device. Verbal reports of sleep onset mentation were obtained either at the beginning of the night, or following 2 h of initial sleep. Setting: Data were collected in participants' home environments, via the Nightcap monitoring system, and at The Center for Sleep and Cognition, Beth Israel Deaconess Medical Center, Boston MA. Participants: 43 healthy, medication-free college students (16 males, age 18-25 years). Interventions: N/A Measurements and Results: The learning task exerted a powerful, direct effect on verbal reports of mentation during light NREM sleep (stages 1 and 2). On post-training nights, a full 30% of all verbal reports were related to the task. The nature of this cognitive “replay” effect was altered with increasing durations of sleep, becoming more abstracted from the original experience as time into sleep increased. Conclusions: These observations are interpreted in light of memory consolidation theory, and demonstrate that introspective reports can provide a valuable window on cognitive processing in the sleeping brain. Citation: Wamsley EJ; Perry K; Djonlagic I; Babkes Reaven L; Stickgold R. Cognitive replay of visuomotor learning at sleep onset: temporal dynamics and relationship to task performance. SLEEP 2010;33(1):59-68. PMID:20120621
Visuomotor adaptation needs a validation of prediction error by feedback error
Gaveau, Valérie; Prablanc, Claude; Laurent, Damien; Rossetti, Yves; Priot, Anne-Emmanuelle
2014-01-01
The processes underlying short-term plasticity induced by visuomotor adaptation to a shifted visual field are still debated. Two main sources of error can induce motor adaptation: reaching feedback errors, which correspond to visually perceived discrepancies between hand and target positions, and errors between predicted and actual visual reafferences of the moving hand. These two sources of error are closely intertwined and difficult to disentangle, as both the target and the reaching limb are simultaneously visible. Accordingly, the goal of the present study was to clarify the relative contributions of these two types of errors during a pointing task under prism-displaced vision. In “terminal feedback error” condition, viewing of their hand by subjects was allowed only at movement end, simultaneously with viewing of the target. In “movement prediction error” condition, viewing of the hand was limited to movement duration, in the absence of any visual target, and error signals arose solely from comparisons between predicted and actual reafferences of the hand. In order to prevent intentional corrections of errors, a subthreshold, progressive stepwise increase in prism deviation was used, so that subjects remained unaware of the visual deviation applied in both conditions. An adaptive aftereffect was observed in the “terminal feedback error” condition only. As far as subjects remained unaware of the optical deviation and self-assigned pointing errors, prediction error alone was insufficient to induce adaptation. These results indicate a critical role of hand-to-target feedback error signals in visuomotor adaptation; consistent with recent neurophysiological findings, they suggest that a combination of feedback and prediction error signals is necessary for eliciting aftereffects. They also suggest that feedback error updates the prediction of reafferences when a visual perturbation is introduced gradually and cognitive factors are eliminated or strongly attenuated. PMID:25408644
Smith, Mary Lou; Puka, Klajdi; Sehra, Ramandeep; Read, Stanley E; Bitnun, Ari
2017-10-01
Little is known about the neurodevelopmental outcomes of children older than 3 years of age born to HIV infected mother but who are HIV-uninfected (HEU), and who have been exposed in utero and early in life to HIV and to antiretroviral medications (ARVs). We conducted a longitudinal study of cognitive, visuomotor and adaptive function of HEU children, who were assessed at two ages, 3.5 and 5.5 years. Sixty-four children (33 female) were assessed. In comparison with population norms for their age, at 3.5 years of age they had scores significantly below age expectations on aspects of adaptive behavior, but at age 5.5 years, their scores did not significantly diverge from the population norms on any of the measures. Verbal intelligence was lower at age 5.5 than at age 3.5 years, although there were also improvements in some features of adaptive behavior. Exposure to PI-based ARVs (compared to NNRTIs) was associated with higher Performance IQ, visuomotor and communication scores at age 5.5 years. Birth, early growth, and sociodemographic variables were predictive of outcomes. This study is important in tracking the trajectory of neurocognitive development across the pre-school and early school age years. The findings suggest that the full impact of early ARV exposure may not be evident until a considerable period of development has occurred. The results raise the possibility of negative effects of early ARV exposure on neurodevelopment that emerge over time, and reiterate the importance of sociodemographic and early health variables for optimal development.
Trial-by-trial analysis of intermanual transfer during visuomotor adaptation
Wojaczynski, Greg J.; Ivry, Richard B.
2011-01-01
Studies of intermanual transfer have been used to probe representations formed during skill acquisition. We employ a new method that provides a continuous assay of intermanual transfer, intermixing right- and left-hand trials while limiting visual feedback to right-hand movements. We manipulated the degree of awareness of the visuomotor rotation, introducing a 22.5° perturbation in either an abrupt single step or gradually in ∼1° increments every 10 trials. Intermanual transfer was observed with the direction of left-hand movements shifting in the opposite direction of the rotation over the course of training. The transfer on left-hand trials was less than that observed in the right hand. Moreover, the magnitude of transfer was larger in our mixed-limb design compared with the standard blocked design in which transfer is only probed at the end of training. Transfer was similar in the abrupt and gradual groups, suggesting that awareness of the perturbation has little effect on intermanual transfer. In a final experiment, participants were provided with a strategy to offset an abrupt rotation, a method that has been shown to increase error over the course of training due to the operation of sensorimotor adaptation. This deterioration was also observed on left-hand probe trials, providing further support that awareness has little effect on intermanual transfer. These results indicate that intermanual transfer is not dependent on the implementation of cognitively assisted strategies that participants might adopt when they become aware that the visuomotor mapping has been perturbed. Rather, the results indicate that the information available to processes involved in adaptation entails some degree of effector independence. PMID:21917998
Bobrova, E V; Liakhovetskiĭ, V A; Borshchevskaia, E R
2011-01-01
The dependence of errors during reproduction of a sequence of hand movements without visual feedback on the previous right- and left-hand performance ("prehistory") and on positions in space of sequence elements (random or ordered by the explicit rule) was analyzed. It was shown that the preceding information about the ordered positions of the sequence elements was used during right-hand movements, whereas left-hand movements were performed with involvement of the information about the random sequence. The data testify to a central mechanism of the analysis of spatial structure of sequence elements. This mechanism activates movement coding specific for the left hemisphere (vector coding) in case of an ordered sequence structure and positional coding specific for the right hemisphere in case of a random sequence structure.
Lanzilotto, Marco; Livi, Alessandro; Maranesi, Monica; Gerbella, Marzio; Barz, Falk; Ruther, Patrick; Fogassi, Leonardo; Rizzolatti, Giacomo; Bonini, Luca
2016-12-01
Grasping relies on a network of parieto-frontal areas lying on the dorsolateral and dorsomedial parts of the hemispheres. However, the initiation and sequencing of voluntary actions also requires the contribution of mesial premotor regions, particularly the pre-supplementary motor area F6. We recorded 233 F6 neurons from 2 monkeys with chronic linear multishank neural probes during reaching-grasping visuomotor tasks. We showed that F6 neurons play a role in the control of forelimb movements and some of them (26%) exhibit visual and/or motor specificity for the target object. Interestingly, area F6 neurons form 2 functionally distinct populations, showing either visually-triggered or movement-related bursts of activity, in contrast to the sustained visual-to-motor activity displayed by ventral premotor area F5 neurons recorded in the same animals and with the same task during previous studies. These findings suggest that F6 plays a role in object grasping and extend existing models of the cortical grasping network. © The Author 2016. Published by Oxford University Press.
Compatibility of Motion Facilitates Visuomotor Synchronization
ERIC Educational Resources Information Center
Hove, Michael J.; Spivey, Michael J.; Krumhansl, Carol L.
2010-01-01
Prior research indicates that synchronized tapping performance is very poor with flashing visual stimuli compared with auditory stimuli. Three finger-tapping experiments compared flashing visual metronomes with visual metronomes containing a spatial component, either compatible, incompatible, or orthogonal to the tapping action. In Experiment 1,…
Kim, Hyoung F.; Hikosaka, Okihide
2013-01-01
A goal-directed action aiming at an incentive outcome, if repeated, becomes a skill that may be initiated automatically. We now report that the tail of the caudate nucleus (CDt) may serve to control a visuomotor skill. Monkeys looked at many fractal objects, half of which were always associated with a large reward (high-valued objects) and the other half with a small reward (low-valued objects). After several daily sessions, they developed a gaze bias, looking at high-valued objects even when no reward was associated. CDt neurons developed a response bias, typically showing stronger responses to high-valued objects. In contrast, their responses showed no change when object values were reversed frequently, although monkeys showed a strong gaze bias, looking at high-valued objects in a goal-directed manner. The biased activity of CDt neurons may be transmitted to the oculomotor region so that animals can choose high-valued objects automatically based on stable reward experiences. PMID:23825426
Haberkamp, Anke; Schmidt, Filipp
2015-09-01
This study investigates the interpretative bias in spider phobia with respect to rapid visuomotor processing. We compared perception, evaluation, and visuomotor processing of ambiguous schematic stimuli between spider-fearful and control participants. Stimuli were produced by gradually morphing schematic flowers into spiders. Participants rated these stimuli related to their perceptual appearance and to their feelings of valence, disgust, and arousal. Also, they responded to the same stimuli within a response priming paradigm that measures rapid motor activation. Spider-fearful individuals showed an interpretative bias (i.e., ambiguous stimuli were perceived as more similar to spiders) and rated spider-like stimuli as more unpleasant, disgusting, and arousing. However, we observed no differences between spider-fearful and control participants in priming effects for ambiguous stimuli. For non-ambiguous stimuli, we observed a similar enhancement for phobic pictures as has been reported previously for natural images. We discuss our findings with respect to the visual representation of morphed stimuli and to perceptual learning processes. Copyright © 2015 Elsevier B.V. All rights reserved.
Almeida, Jorge; Amaral, Lénia; Garcea, Frank E; Aguiar de Sousa, Diana; Xu, Shan; Mahon, Bradford Z; Martins, Isabel Pavão
2018-05-24
A major principle of organization of the visual system is between a dorsal stream that processes visuomotor information and a ventral stream that supports object recognition. Most research has focused on dissociating processing across these two streams. Here we focus on how the two streams interact. We tested neurologically-intact and impaired participants in an object categorization task over two classes of objects that depend on processing within both streams-hands and tools. We measured how unconscious processing of images from one of these categories (e.g., tools) affects the recognition of images from the other category (i.e., hands). Our findings with neurologically-intact participants demonstrated that processing an image of a hand hampers the subsequent processing of an image of a tool, and vice versa. These results were not present in apraxic patients (N = 3). These findings suggest local and global inhibitory processes working in tandem to co-register information across the two streams.
Impaired visuomotor adaptation in adults with ADHD.
Kurdziel, Laura B F; Dempsey, Katherine; Zahara, Mackenzie; Valera, Eve; Spencer, Rebecca M C
2015-04-01
Attention-deficit hyperactivity disorder (ADHD) is a prevalent psychiatric disorder in children that often continues into adulthood. It has been suggested that motor impairments in ADHD are associated with underlying cerebellar pathology. If such is the case, individuals with ADHD should be impaired on motor tasks requiring healthy cerebellar function. To test this, we compared performance of individuals with ADHD and ADHD-like symptoms with non-ADHD controls on a visuomotor adaptation task known to be impaired following cerebellar lesions. Participants adapted reaching movements to a visual representation that was rotated by 30°. Individuals with ADHD and those with ADHD-like symptoms took longer to correct the angle of movement once the rotation was applied relative to controls. However, post-adaptation residual effect did not differ for individuals with ADHD and ADHD-like symptoms compared to the control group. These results are consistent with the hypothesis that mild cerebellar deficits are evident in the motor performance of adults with ADHD.
A Link Between Attentional Function, Effective Eye Movements, and Driving Ability
2016-01-01
The misallocation of driver visual attention has been suggested as a major contributing factor to vehicle accidents. One possible reason is that the relatively high cognitive demands of driving limit the ability to efficiently allocate gaze. We present an experiment that explores the relationship between attentional function and visual performance when driving. Drivers performed 2 variations of a multiple-object tracking task targeting aspects of cognition including sustained attention, dual-tasking, covert attention, and visuomotor skill. They also drove a number of courses in a driving simulator. Eye movements were recorded throughout. We found that individuals who performed better in the cognitive tasks exhibited more effective eye movement strategies when driving, such as scanning more of the road, and they also exhibited better driving performance. We discuss the potential link between an individual’s attentional function, effective eye movements, and driving ability. We also discuss the use of a visuomotor task in assessing driving behavior. PMID:27893270
The neuropsychology of 22q11 deletion syndrome. A neuropsychiatric study of 100 individuals.
Niklasson, Lena; Gillberg, Christopher
2010-01-01
The primary objective of this study was to study the impact of ASD/ADHD on general intellectual ability and profile, executive functions and visuo-motor skills in children and adults with 22q11 deletion syndrome (22q11DS). A secondary aim was to study if gender, age, heart disease, ASD, ADHD or ASD in combination with ADHD had an impact on general intellectual ability and profile. One hundred consecutively referred individuals aged 1-35 years with 22q11DS were given in-depth neuropsychological assessments. Mean full scale IQ was 71 with a normal distribution around this mean. Higher IQ for females than males, and a negative trend for IQ with higher age were found. Intellectual impairment, as well as visuo-motor dysfunction, was found to be related to 22q11DS per se and not to ASD/ADHD. In the area of executive function, the presence of ASD/ADHD predicted poor planning ability in the children in the study.
Direct visuomotor mapping for fast visually-evoked arm movements.
Reynolds, Raymond F; Day, Brian L
2012-12-01
In contrast to conventional reaction time (RT) tasks, saccadic RT's to visual targets are very fast and unaffected by the number of possible targets. This can be explained by the sub-cortical circuitry underlying eye movements, which involves direct mapping between retinal input and motor output in the superior colliculus. Here we asked if the choice-invariance established for the eyes also applies to a special class of fast visuomotor responses of the upper limb. Using a target-pointing paradigm we observed very fast reaction times (<150 ms) which were completely unaffected as the number of possible target choices was increased from 1 to 4. When we introduced a condition of altered stimulus-response mapping, RT went up and a cost of choice was observed. These results can be explained by direct mapping between visual input and motor output, compatible with a sub-cortical pathway for visual control of the upper limb. Copyright © 2012 Elsevier Ltd. All rights reserved.
Botrel, L; Acqualagna, L; Blankertz, B; Kübler, A
2017-11-01
Brain computer interfaces (BCIs) allow for controlling devices through modulation of sensorimotor rhythms (SMR), yet a profound number of users is unable to achieve sufficient accuracy. Here, we investigated if visuo-motor coordination (VMC) training or Jacobsen's progressive muscle relaxation (PMR) prior to BCI use would increase later performance compared to a control group who performed a reading task (CG). Running the study in two different BCI-labs, we achieved a joint sample size of N=154 naïve participants. No significant effect of either intervention (VMC, PMR, control) was found on resulting BCI performance. Relaxation level and visuo-motor performance were associated with later BCI performance in one BCI-lab but not in the other. These mixed results do not indicate a strong potential of VMC or PMR for boosting performance. Yet further research with different training parameters or experimental designs is needed to complete the picture. Copyright © 2017 Elsevier B.V. All rights reserved.
Processes of Personality Development in Adulthood: The TESSERA Framework.
Wrzus, Cornelia; Roberts, Brent W
2017-08-01
The current article presents a theoretical framework of the short- and long-term processes underlying personality development throughout adulthood. The newly developed TESSERA framework posits that long-term personality development occurs due to repeated short-term, situational processes. These short-term processes can be generalized as recursive sequence of Triggering situations, Expectancy, States/State expressions, and Reactions (TESSERA). Reflective and associative processes on TESSERA sequences can lead to personality development (i.e., continuity and lasting changes in explicit and implicit personality characteristics and behavioral patterns). We illustrate how the TESSERA framework facilitates a more comprehensive understanding of normative and differential personality development at various ages during the life span. The TESSERA framework extends previous theories by explicitly linking short- and long-term processes of personality development, by addressing different manifestations of personality, and by being applicable to different personality characteristics, for example, behavioral traits, motivational orientations, or life narratives.
High-order noise filtering in nontrivial quantum logic gates.
Green, Todd; Uys, Hermann; Biercuk, Michael J
2012-07-13
Treating the effects of a time-dependent classical dephasing environment during quantum logic operations poses a theoretical challenge, as the application of noncommuting control operations gives rise to both dephasing and depolarization errors that must be accounted for in order to understand total average error rates. We develop a treatment based on effective Hamiltonian theory that allows us to efficiently model the effect of classical noise on nontrivial single-bit quantum logic operations composed of arbitrary control sequences. We present a general method to calculate the ensemble-averaged entanglement fidelity to arbitrary order in terms of noise filter functions, and provide explicit expressions to fourth order in the noise strength. In the weak noise limit we derive explicit filter functions for a broad class of piecewise-constant control sequences, and use them to study the performance of dynamically corrected gates, yielding good agreement with brute-force numerics.
Differential working memory correlates for implicit sequence performance in young and older adults.
Bo, Jin; Jennett, S; Seidler, R D
2012-09-01
Our recent work has revealed that visuospatial working memory (VSWM) relates to the rate of explicit motor sequence learning (Bo and Seidler in J Neurophysiol 101:3116-3125, 2009) and implicit sequence performance (Bo et al. in Exp Brain Res 214:73-81, 2011a) in young adults (YA). Although aging has a detrimental impact on many cognitive functions, including working memory, older adults (OA) still rely on their declining working memory resources in an effort to optimize explicit motor sequence learning. Here, we evaluated whether age-related differences in VSWM and/or verbal working memory (VWM) performance relates to implicit performance change in the serial reaction time (SRT) sequence task in OA. Participants performed two computerized working memory tasks adapted from change detection working memory assessments (Luck and Vogel in Nature 390:279-281, 1997), an implicit SRT task and several neuropsychological tests. We found that, although OA exhibited an overall reduction in both VSWM and VWM, both OA and YA showed similar performance in the implicit SRT task. Interestingly, while VSWM and VWM were significantly correlated with each other in YA, there was no correlation between these two working memory scores in OA. In YA, the rate of SRT performance change (exponential fit to the performance curve) was significantly correlated with both VSWM and VWM, while in contrast, OA's performance was only correlated with VWM, and not VSWM. These results demonstrate differential reliance on VSWM and VWM for SRT performance between YA and OA. OA may utilize VWM to maintain optimized performance of second-order conditional sequences.
EEG Biofeedback: A Critical Evaluation of the Results and Underlying Rationale.
1977-01-31
workers (Nowlia & Kamiya, 1970), improved delayed recall have published a series of studies evaluating the (Cannon 6 Sternbach , 1971), extrasensory ... perception role of the visuomotor system in the control of (Ifonorton , Davidson, 6 Bindier, 1971) , and decreased alpha activity (Mulholland 6 Runnals, 1962
The "Motor" in Implicit Motor Sequence Learning: A Foot-stepping Serial Reaction Time Task.
Du, Yue; Clark, Jane E
2018-05-03
This protocol describes a modified serial reaction time (SRT) task used to study implicit motor sequence learning. Unlike the classic SRT task that involves finger-pressing movements while sitting, the modified SRT task requires participants to step with both feet while maintaining a standing posture. This stepping task necessitates whole body actions that impose postural challenges. The foot-stepping task complements the classic SRT task in several ways. The foot-stepping SRT task is a better proxy for the daily activities that require ongoing postural control, and thus may help us better understand sequence learning in real-life situations. In addition, response time serves as an indicator of sequence learning in the classic SRT task, but it is unclear whether response time, reaction time (RT) representing mental process, or movement time (MT) reflecting the movement itself, is a key player in motor sequence learning. The foot-stepping SRT task allows researchers to disentangle response time into RT and MT, which may clarify how motor planning and movement execution are involved in sequence learning. Lastly, postural control and cognition are interactively related, but little is known about how postural control interacts with learning motor sequences. With a motion capture system, the movement of the whole body (e.g., the center of mass (COM)) can be recorded. Such measures allow us to reveal the dynamic processes underlying discrete responses measured by RT and MT, and may aid in elucidating the relationship between postural control and the explicit and implicit processes involved in sequence learning. Details of the experimental set-up, procedure, and data processing are described. The representative data are adopted from one of our previous studies. Results are related to response time, RT, and MT, as well as the relationship between the anticipatory postural response and the explicit processes involved in implicit motor sequence learning.
A sequence-dependent rigid-base model of DNA
NASA Astrophysics Data System (ADS)
Gonzalez, O.; Petkevičiutė, D.; Maddocks, J. H.
2013-02-01
A novel hierarchy of coarse-grain, sequence-dependent, rigid-base models of B-form DNA in solution is introduced. The hierarchy depends on both the assumed range of energetic couplings, and the extent of sequence dependence of the model parameters. A significant feature of the models is that they exhibit the phenomenon of frustration: each base cannot simultaneously minimize the energy of all of its interactions. As a consequence, an arbitrary DNA oligomer has an intrinsic or pre-existing stress, with the level of this frustration dependent on the particular sequence of the oligomer. Attention is focussed on the particular model in the hierarchy that has nearest-neighbor interactions and dimer sequence dependence of the model parameters. For a Gaussian version of this model, a complete coarse-grain parameter set is estimated. The parameterized model allows, for an oligomer of arbitrary length and sequence, a simple and explicit construction of an approximation to the configuration-space equilibrium probability density function for the oligomer in solution. The training set leading to the coarse-grain parameter set is itself extracted from a recent and extensive database of a large number of independent, atomic-resolution molecular dynamics (MD) simulations of short DNA oligomers immersed in explicit solvent. The Kullback-Leibler divergence between probability density functions is used to make several quantitative assessments of our nearest-neighbor, dimer-dependent model, which is compared against others in the hierarchy to assess various assumptions pertaining both to the locality of the energetic couplings and to the level of sequence dependence of its parameters. It is also compared directly against all-atom MD simulation to assess its predictive capabilities. The results show that the nearest-neighbor, dimer-dependent model can successfully resolve sequence effects both within and between oligomers. For example, due to the presence of frustration, the model can successfully predict the nonlocal changes in the minimum energy configuration of an oligomer that are consequent upon a local change of sequence at the level of a single point mutation.
A sequence-dependent rigid-base model of DNA.
Gonzalez, O; Petkevičiūtė, D; Maddocks, J H
2013-02-07
A novel hierarchy of coarse-grain, sequence-dependent, rigid-base models of B-form DNA in solution is introduced. The hierarchy depends on both the assumed range of energetic couplings, and the extent of sequence dependence of the model parameters. A significant feature of the models is that they exhibit the phenomenon of frustration: each base cannot simultaneously minimize the energy of all of its interactions. As a consequence, an arbitrary DNA oligomer has an intrinsic or pre-existing stress, with the level of this frustration dependent on the particular sequence of the oligomer. Attention is focussed on the particular model in the hierarchy that has nearest-neighbor interactions and dimer sequence dependence of the model parameters. For a Gaussian version of this model, a complete coarse-grain parameter set is estimated. The parameterized model allows, for an oligomer of arbitrary length and sequence, a simple and explicit construction of an approximation to the configuration-space equilibrium probability density function for the oligomer in solution. The training set leading to the coarse-grain parameter set is itself extracted from a recent and extensive database of a large number of independent, atomic-resolution molecular dynamics (MD) simulations of short DNA oligomers immersed in explicit solvent. The Kullback-Leibler divergence between probability density functions is used to make several quantitative assessments of our nearest-neighbor, dimer-dependent model, which is compared against others in the hierarchy to assess various assumptions pertaining both to the locality of the energetic couplings and to the level of sequence dependence of its parameters. It is also compared directly against all-atom MD simulation to assess its predictive capabilities. The results show that the nearest-neighbor, dimer-dependent model can successfully resolve sequence effects both within and between oligomers. For example, due to the presence of frustration, the model can successfully predict the nonlocal changes in the minimum energy configuration of an oligomer that are consequent upon a local change of sequence at the level of a single point mutation.
Visually Guided Step Descent in Children with Williams Syndrome
ERIC Educational Resources Information Center
Cowie, Dorothy; Braddick, Oliver; Atkinson, Janette
2012-01-01
Individuals with Williams syndrome (WS) have impairments in visuospatial tasks and in manual visuomotor control, consistent with parietal and cerebellar abnormalities. Here we examined whether individuals with WS also have difficulties in visually controlling whole-body movements. We investigated visual control of stepping down at a change of…
Sequential Pointing in Children and Adults.
ERIC Educational Resources Information Center
Badan, Maryse; Hauert, Claude-Alain; Mounoud, Pierre
2000-01-01
Four experiments investigated the development of visuomotor control in sequential pointing in tasks varying in difficulty among 6- to 10-year-olds and adults. Comparisons across difficulty levels and ages suggest that motor development is not a uniform fine-tuning of stable strategies. Findings raise argument for stage characteristics of…
The Interplay between Executive Control and Motor Functioning in Williams Syndrome
ERIC Educational Resources Information Center
Hocking, Darren R.; Thomas, Daniel; Menant, Jasmine C.; Porter, Melanie A.; Smith, Stuart; Lord, Stephen R.; Cornish, Kim M.
2013-01-01
Previous studies suggest that individuals with Williams syndrome (WS), a rare genetically based neurodevelopmental disorder, show specific weaknesses in visual attention and response inhibition within the visuospatial domain. Here we examine the extent to which impairments in attentional control extend to the visuomotor domain using a…
ERIC Educational Resources Information Center
Osman, Magda
2008-01-01
Given the privileged status claimed for active learning in a variety of domains (visuomotor learning, causal induction, problem solving, education, skill learning), the present study examines whether action-based learning is a necessary, or a sufficient, means of acquiring the relevant skills needed to perform a task typically described as…
Evidence of automatic processing in sequence learning using process-dissociation
Mong, Heather M.; McCabe, David P.; Clegg, Benjamin A.
2012-01-01
This paper proposes a way to apply process-dissociation to sequence learning in addition and extension to the approach used by Destrebecqz and Cleeremans (2001). Participants were trained on two sequences separated from each other by a short break. Following training, participants self-reported their knowledge of the sequences. A recognition test was then performed which required discrimination of two trained sequences, either under the instructions to call any sequence encountered in the experiment “old” (the inclusion condition), or only sequence fragments from one half of the experiment “old” (the exclusion condition). The recognition test elicited automatic and controlled process estimates using the process dissociation procedure, and suggested both processes were involved. Examining the underlying processes supporting performance may provide more information on the fundamental aspects of the implicit and explicit constructs than has been attainable through awareness testing. PMID:22679465
Supplement to the ICRPG turbulent boundary layer nozzle analysis computer program
NASA Technical Reports Server (NTRS)
Omori, S.; Gross, K. W.
1972-01-01
A supplement is presented for a turbulent boundary layer nozzle analysis computer program. It describes the program calculation sequence and presents a detailed documentation of each subroutine. Important equations are derived explicitly, and improvements to the program are discussed.
Yamashita, Yuichi; Tani, Jun
2008-01-01
It is generally thought that skilled behavior in human beings results from a functional hierarchy of the motor control system, within which reusable motor primitives are flexibly integrated into various sensori-motor sequence patterns. The underlying neural mechanisms governing the way in which continuous sensori-motor flows are segmented into primitives and the way in which series of primitives are integrated into various behavior sequences have, however, not yet been clarified. In earlier studies, this functional hierarchy has been realized through the use of explicit hierarchical structure, with local modules representing motor primitives in the lower level and a higher module representing sequences of primitives switched via additional mechanisms such as gate-selecting. When sequences contain similarities and overlap, however, a conflict arises in such earlier models between generalization and segmentation, induced by this separated modular structure. To address this issue, we propose a different type of neural network model. The current model neither makes use of separate local modules to represent primitives nor introduces explicit hierarchical structure. Rather than forcing architectural hierarchy onto the system, functional hierarchy emerges through a form of self-organization that is based on two distinct types of neurons, each with different time properties (“multiple timescales”). Through the introduction of multiple timescales, continuous sequences of behavior are segmented into reusable primitives, and the primitives, in turn, are flexibly integrated into novel sequences. In experiments, the proposed network model, coordinating the physical body of a humanoid robot through high-dimensional sensori-motor control, also successfully situated itself within a physical environment. Our results suggest that it is not only the spatial connections between neurons but also the timescales of neural activity that act as important mechanisms leading to functional hierarchy in neural systems. PMID:18989398
Pruitt, Kim D.; Tatusova, Tatiana; Maglott, Donna R.
2005-01-01
The National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) database (http://www.ncbi.nlm.nih.gov/RefSeq/) provides a non-redundant collection of sequences representing genomic data, transcripts and proteins. Although the goal is to provide a comprehensive dataset representing the complete sequence information for any given species, the database pragmatically includes sequence data that are currently publicly available in the archival databases. The database incorporates data from over 2400 organisms and includes over one million proteins representing significant taxonomic diversity spanning prokaryotes, eukaryotes and viruses. Nucleotide and protein sequences are explicitly linked, and the sequences are linked to other resources including the NCBI Map Viewer and Gene. Sequences are annotated to include coding regions, conserved domains, variation, references, names, database cross-references, and other features using a combined approach of collaboration and other input from the scientific community, automated annotation, propagation from GenBank and curation by NCBI staff. PMID:15608248
Verburgh, L; Scherder, E J A; van Lange, P A M; Oosterlaan, J
2016-09-01
In sports, fast and accurate execution of movements is required. It has been shown that implicitly learned movements might be less vulnerable than explicitly learned movements to stressful and fast changing circumstances that exist at the elite sports level. The present study provides insight in explicit and implicit motor learning in youth soccer players with different expertise levels. Twenty-seven youth elite soccer players and 25 non-elite soccer players (aged 10-12) performed a serial reaction time task (SRTT). In the SRTT, one of the sequences must be learned explicitly, the other was implicitly learned. No main effect of group was found for implicit and explicit learning on mean reaction time (MRT) and accuracy. However, for MRT, an interaction was found between learning condition, learning phase and group. Analyses showed no group effects for the explicit learning condition, but youth elite soccer players showed better learning in the implicit learning condition. In particular, during implicit motor learning youth elite soccer showed faster MRTs in the early learning phase and earlier reached asymptote performance in terms of MRT. Present findings may be important for sports because children with superior implicit learning abilities in early learning phases may be able to learn more (durable) motor skills in a shorter time period as compared to other children.
Role of Right Posterior Parietal Cortex in Maintaining Attention to Spatial Locations over Time
ERIC Educational Resources Information Center
Malhotra, Paresh; Coulthard, Elizabeth J.; Husain, Masud
2009-01-01
Recent models of human posterior parietal cortex (PPC) have variously emphasized its role in spatial perception, visuomotor control or directing attention. However, neuroimaging and lesion studies also suggest that the right PPC might play a special role in maintaining an alert state. Previously, assessments of right-hemisphere patients with…
A Developmental and Cognitivist Approach to a Perceptuo-Motor Task.
ERIC Educational Resources Information Center
Zanone, P. G.; Hauert, C. A.
Discussed are data concerning a simple visuomotor tracking task, especially the expectations and cognitive representations involved in performing such a task. The task consisted in tracking the horizontal displacement of a target spot on the screen by appropriate forearm rotations. Each subject participated in two sessions: first, at a .8 Hz…
Left to Right: Representational Biases for Numbers and the Effect of Visuomotor Adaptation
ERIC Educational Resources Information Center
Loftus, Andrea M.; Nicholls, Michael E. R.; Mattingley, Jason B.; Bradshaw, John L.
2008-01-01
Adaptation to right-shifting prisms improves left neglect for mental number line bisection. This study examined whether adaptation affects the mental number line in normal participants. Thirty-six participants completed a mental number line task before and after adaptation to either: left-shifting prisms, right-shifting prisms or control…
Isometric Force Regulation in Children.
ERIC Educational Resources Information Center
Lazarus, Jo-Anne C.; And Others
1995-01-01
Isometric pinch force regulation was investigated in children and adults using a visuo-motor tracking paradigm. Younger children aged 5-7 years performed significantly worse than older children aged 9-11 years and adults in terms of an overall error score as well as a correlation score, which is believed to reflect the ability to predict the…
At the Root of Embodied Cognition: Cognitive Science Meets Neurophysiology
ERIC Educational Resources Information Center
Garbarini, Francesca; Adenzato, Mauro
2004-01-01
Recent experimental research in the field of neurophysiology has led to the discovery of two classes of visuomotor neurons: canonical neurons and mirror neurons. In light of these studies, we propose here an overview of two classical themes in the cognitive science panorama: James Gibson's theory of affordances and Eleanor Rosch's principles of…
Developmental Relations among Motor and Cognitive Processes and Mathematics Skills
ERIC Educational Resources Information Center
Kim, Helyn; Duran, Chelsea A. K.; Cameron, Claire E.; Grissmer, David
2018-01-01
This study explored transactional associations among visuomotor integration, attention, fine motor coordination, and mathematics skills in a diverse sample of one hundred thirty-five 5-year-olds (kindergarteners) and one hundred nineteen 6-year-olds (first graders) in the United States who were followed over the course of 2 school years.…
Visuomotor Binding in Older Adults
ERIC Educational Resources Information Center
Bloesch, Emily K.; Abrams, Richard A.
2010-01-01
Action integration is the process through which actions performed on a stimulus and perceptual aspects of the stimulus become bound as a unitary object. This process appears to be controlled by the dopaminergic system in the prefrontal cortex, an area that is known to decrease in volume and dopamine functioning in older adults. Although the…
Familial Clustering of Executive Functioning in Affected Sibling Pair Families with ADHD
ERIC Educational Resources Information Center
Slaats-Willemse, Dorine; Swaab-Barneveld, Hanna; De Sonneville, Leo; Buitelaar, Jan
2005-01-01
Objective: To investigate familial clustering of executive functioning (i.e., response inhibition, fine visuomotor functioning, and attentional control) in attention-deficit/hyperactivity disorder (ADHD)-affected sibling pairs. Method: Fifty-two affected sibling pairs aged 6 to 18 years and diagnosed with ADHD according to DSM-IV performed the…
Exaggerated Leftward Bias in the Mental Number Line of Patients with Schizophrenia
ERIC Educational Resources Information Center
Cavezian, Celine; Rossetti, Yves; Danckert, James; d'Amato, Thierry; Dalery, Jean; Saoud, Mohamed
2007-01-01
Several visuo-motor tasks can be used to demonstrate biases towards left hemispace in schizophrenic patients, suggesting a minor right hemineglect. Recent studies in neglect patients used a new number bisection task to highlight a lateralized defect in their visuo-spatial representation of numbers. To test a possible lateralized representational…
Success Modulates Consolidation of a Visuomotor Adaptation Task
ERIC Educational Resources Information Center
Trempe, Maxime; Sabourin, Maxime; Proteau, Luc
2012-01-01
Consolidation is a time-dependent process that is responsible for the storage of information in long-term memory. As such, it plays a crucial role in motor learning. Prior research suggests that some consolidation processes are triggered only when the learner experiences some success during practice. In the present study, we tested whether…
Robotic Movement Elicits Visuomotor Priming in Children with Autism
ERIC Educational Resources Information Center
Pierno, Andrea C.; Mari, Morena; Lusher, Dean; Castiello, Umberto
2008-01-01
The ability to understand another person's action and, if needed, to imitate that action, is a core component of human social behaviour. Imitation skills have attracted particular attention in the search for the underlying causes of the social difficulties that characterize autism. In recent years, it has been reported that people with autism can…
Visuomotor Tracking Abilities of Speakers With Apraxia of Speech or Conduction Aphasia
Robin, Donald A.; Jacks, Adam; Hageman, Carlin; Clark, Heather C.; Woodworth, George
2008-01-01
This investigation examined the visuomotor tracking abilities of persons with apraxia of speech (AOS) or conduction aphasia (CA). In addition, tracking performance was correlated with perceptual judgments of speech accuracy. Five individuals with AOS and four with CA served as participants, as well as an equal number of healthy controls matched by age and gender. Participants tracked predictable (sinusoidal) and unpredictable signals using jaw and lip movements transduced with strain gauges. Tracking performance in participants with AOS was poorest for predictable signals, with decreased kinematic measures of cross-correlation and gain ratio and increased target-tracker difference. In contrast, tracking of the unpredictable signal by participants with AOS was performed as well as for other groups (e.g. participants with CA, healthy controls). Performance of the subjects with AOS on the predictable tracking task was found to strongly correlate with perceptual judgments of speech. These findings suggest that motor control capabilities are impaired in AOS, but not in CA. Results suggest that AOS has its basis in motor programming deficits, not impaired motor execution. PMID:18558428
Milner, A D; Paulignan, Y; Dijkerman, H C; Michel, F; Jeannerod, M
1999-11-07
We tested a patient (A. T.) with bilateral brain damage to the parietal lobes, whose resulting 'optic ataxia' causes her to make large pointing errors when asked to locate single light emitting diodes presented in her visual field. We report here that, unlike normal individuals, A. T.'s pointing accuracy improved when she was required to wait for 5 s before responding. This counter-intuitive result is interpreted as reflecting the very brief time-scale on which visuomotor control systems in the superior parietal lobe operate. When an immediate response was required, A. T.'s damaged visuomotor system caused her to make large errors; but when a delay was required, a different, more flexible, visuospatial coding system--presumably relatively intact in her brain--came into play, resulting in much more accurate responses. The data are consistent with a dual processing theory whereby motor responses made directly to visual stimuli are guided by a dedicated system in the superior parietal and premotor cortices, while responses to remembered stimuli depend on perceptual processing and may thus crucially involve processing within the temporal neocortex.
Cosper, Sharon M; Lee, Gregory P; Peters, Susan Beth; Bishop, Elizabeth
2009-12-01
The objective of this study was to examine the efficacy of Interactive Metronome (Interactive Metronome, Sunrise, Florida, USA) training in a group of children with mixed attentional and motor coordination disorders to further explore which subcomponents of attentional control and motor functioning the training influences. Twelve children who had been diagnosed with attention deficit hyperactivity disorder, in conjunction with either developmental coordination disorder (n=10) or pervasive developmental disorder (n=2), underwent 15 1-h sessions of Interactive Metronome training over a 15-week period. Each child was assessed before and after the treatment using measures of attention, coordination, and motor control to determine the efficacy of training on these cognitive and behavioral realms. As a group, the children made significant improvements in complex visual choice reaction time and visuomotor control after the training. There were, however, no significant changes in sustained attention or inhibitory control over inappropriate motor responses after treatment. These results suggest Interactive Metronome training may address deficits in visuomotor control and speed, but appears to have little effect on sustained attention or motor inhibition.
Elasticity improves handgrip performance and user experience during visuomotor control
Rinne, Paul; Liardon, Jean-Luc; Uhomoibhi, Catherine; Bentley, Paul; Burdet, Etienne
2017-01-01
Passive rehabilitation devices, providing motivation and feedback, potentially offer an automated and low-cost therapy method, and can be used as simple human–machine interfaces. Here, we ask whether there is any advantage for a hand-training device to be elastic, as opposed to rigid, in terms of performance and preference. To address this question, we have developed a highly sensitive and portable digital handgrip, promoting independent and repetitive rehabilitation of grasp function based around a novel elastic force and position sensing structure. A usability study was performed on 66 healthy subjects to assess the effect of elastic versus rigid handgrip control during various visuomotor tracking tasks. The results indicate that, for tasks relying either on feedforward or on feedback control, novice users perform significantly better with the elastic handgrip, compared with the rigid equivalent (11% relative improvement, 9–14% mean range; p < 0.01). Furthermore, there was a threefold increase in the number of subjects who preferred elastic compared with rigid handgrip interaction. Our results suggest that device compliance is an important design consideration for grip training devices. PMID:28386448
Elasticity improves handgrip performance and user experience during visuomotor control.
Mace, Michael; Rinne, Paul; Liardon, Jean-Luc; Uhomoibhi, Catherine; Bentley, Paul; Burdet, Etienne
2017-02-01
Passive rehabilitation devices, providing motivation and feedback, potentially offer an automated and low-cost therapy method, and can be used as simple human-machine interfaces. Here, we ask whether there is any advantage for a hand-training device to be elastic, as opposed to rigid, in terms of performance and preference. To address this question, we have developed a highly sensitive and portable digital handgrip, promoting independent and repetitive rehabilitation of grasp function based around a novel elastic force and position sensing structure. A usability study was performed on 66 healthy subjects to assess the effect of elastic versus rigid handgrip control during various visuomotor tracking tasks. The results indicate that, for tasks relying either on feedforward or on feedback control, novice users perform significantly better with the elastic handgrip, compared with the rigid equivalent (11% relative improvement, 9-14% mean range; p < 0.01). Furthermore, there was a threefold increase in the number of subjects who preferred elastic compared with rigid handgrip interaction. Our results suggest that device compliance is an important design consideration for grip training devices.
Villalobos, Michele E.; Mizuno, Akiko; Dahl, Branelle C.; Kemmotsu, Nobuko; Müller, Ralph-Axel
2010-01-01
Some recent evidence has suggested abnormalities of the dorsal stream and possibly the mirror neuron system in autism, which may be responsible for impairments of joint attention, imitation, and secondarily for language delays. The current study investigates functional connectivity along the dorsal stream in autism, examining interregional blood oxygenation level dependent (BOLD) signal cross-correlation during visuomotor coordination. Eight high-functioning autistic men and 8 handedness and age-matched controls were included. Visually prompted button presses were performed with the preferred hand. For each subject, functional connectivity was computed in terms of BOLD signal correlation with the mean time series in bilateral visual area 17. Our hypothesis of reduced dorsal stream connectivity in autism was only in part confirmed. Functional connectivity with superior parietal areas was not significantly reduced. However, the autism group showed significantly reduced connectivity with bilateral inferior frontal area 44, which is compatible with the hypothesis of mirror neuron defects in autism. More generally, our findings suggest that dorsal stream connectivity in autism may not be fully functional. PMID:15808991
Villalobos, Michele E; Mizuno, Akiko; Dahl, Branelle C; Kemmotsu, Nobuko; Müller, Ralph-Axel
2005-04-15
Some recent evidence has suggested abnormalities of the dorsal stream and possibly the mirror neuron system in autism, which may be responsible for impairments of joint attention, imitation, and secondarily for language delays. The current study investigates functional connectivity along the dorsal stream in autism, examining interregional blood oxygenation level dependent (BOLD) signal cross-correlation during visuomotor coordination. Eight high-functioning autistic men and eight handedness and age-matched controls were included. Visually prompted button presses were performed with the preferred hand. For each subject, functional connectivity was computed in terms of BOLD signal correlation with the mean time series in bilateral visual area 17. Our hypothesis of reduced dorsal stream connectivity in autism was only in part confirmed. Functional connectivity with superior parietal areas was not significantly reduced. However, the autism group showed significantly reduced connectivity with bilateral inferior frontal area 44, which is compatible with the hypothesis of mirror neuron defects in autism. More generally, our findings suggest that dorsal stream connectivity in autism may not be fully functional.
Badenes, Dolors; Garolera, Maite; Casas, Laura; Cejudo-Bolivar, Juan Carlos; de Francisco, Jorge; Zaragoza, Silvia; Calzado, Noemi; Aguilar, Miquel
2014-05-01
Multiple Sclerosis (MS) significantly impacts daily living activities, including car driving. To investigate driving difficulties experienced with MS, we compared 50 MS patients with minor or moderate disability and 50 healthy controls (HC) using computerized driving tests (the ASDE driver test and the Useful Field of View (UFOV) test) and neuropsychological tests. Inclusion criteria included being active drivers. We evaluated whether cognitive deterioration in MS is associated with the results of driving tests by comparing MS patients without cognitive deterioration with HC. The results indicated that the MS patients performed worse than the HCs in attention, information processing, working memory and visuomotor coordination tasks. Furthermore, MS patients with cognitive impairments experienced more difficulties in the driving tests than did the non-impaired MS patients. Motor dysfunction associated with MS also played an important role in this activity. The results of this study suggest that MS should be assessed carefully and that special emphasis should be placed on visuomotor coordination and executive functions because patients with minor motor disability and subtle cognitive impairments can pass measures predictive of driving safety.
A direct comparison of short-term audiomotor and visuomotor memory.
Ward, Amanda M; Loucks, Torrey M; Ofori, Edward; Sosnoff, Jacob J
2014-04-01
Audiomotor and visuomotor short-term memory are required for an important variety of skilled movements but have not been compared in a direct manner previously. Audiomotor memory capacity might be greater to accommodate auditory goals that are less directly related to movement outcome than for visually guided tasks. Subjects produced continuous isometric force with the right index finger under auditory and visual feedback. During the first 10 s of each trial, subjects received continuous auditory or visual feedback. For the following 15 s, feedback was removed but the force had to be maintained accurately. An internal effort condition was included to test memory capacity in the same manner but without external feedback. Similar decay times of ~5-6 s were found for vision and audition but the decay time for internal effort was ~4 s. External feedback thus provides an advantage in maintaining a force level after feedback removal, but may not exclude some contribution from a sense of effort. Short-term memory capacity appears longer than certain previous reports but there may not be strong distinctions in capacity across different sensory modalities, at least for isometric force.
Optimal time-domain technique for pulse width modulation in power electronics
NASA Astrophysics Data System (ADS)
Mayergoyz, I.; Tyagi, S.
2018-05-01
Optimal time-domain technique for pulse width modulation is presented. It is based on exact and explicit analytical solutions for inverter circuits, obtained for any sequence of input voltage rectangular pulses. Two optimal criteria are discussed and illustrated by numerical examples.
Brooks, Patricia J; Kempe, Vera
2013-02-01
In this study, we sought to identify cognitive predictors of individual differences in adult foreign-language learning and to test whether metalinguistic awareness mediated the observed relationships. Using a miniature language-learning paradigm, adults (N = 77) learned Russian vocabulary and grammar (gender agreement and case marking) over six 1-h sessions, completing tasks that encouraged attention to phrases without explicitly teaching grammatical rules. The participants' ability to describe the Russian gender and case-marking patterns mediated the effects of nonverbal intelligence and auditory sequence learning on grammar learning and generalization. Hence, even under implicit-learning conditions, individual differences stemmed from explicit metalinguistic awareness of the underlying grammar, which, in turn, was linked to nonverbal intelligence and auditory sequence learning. Prior knowledge of languages with grammatical gender (predominantly Spanish) predicted learning of gender agreement. Transfer of knowledge of gender from other languages to Russian was not mediated by awareness, which suggests that transfer operates through an implicit process akin to structural priming.
Pilot Performance on New ATM Operations: Maintaining In-Trail Separation and Arrival Sequencing
NASA Technical Reports Server (NTRS)
Pritchett, Amy R.; Yankosky, L. J.; Johnson, Walter (Technical Monitor)
1999-01-01
Cockpit Display of Traffic Information (CDTI) may enable new Air Traffic Management (ATM) operations. However, CDTI is not the only source of traffic information in the cockpit; ATM procedures may provide information, implicitly and explicitly, about other aircraft. An experiment investigated pilot ability to perform two new ATM operations - maintaining in-trail separation from another aircraft and sequencing into an arrival stream. In the experiment, pilots were provided different amounts of information from displays and procedures. The results are described.
Structured prediction models for RNN based sequence labeling in clinical text.
Jagannatha, Abhyuday N; Yu, Hong
2016-11-01
Sequence labeling is a widely used method for named entity recognition and information extraction from unstructured natural language data. In clinical domain one major application of sequence labeling involves extraction of medical entities such as medication, indication, and side-effects from Electronic Health Record narratives. Sequence labeling in this domain, presents its own set of challenges and objectives. In this work we experimented with various CRF based structured learning models with Recurrent Neural Networks. We extend the previously studied LSTM-CRF models with explicit modeling of pairwise potentials. We also propose an approximate version of skip-chain CRF inference with RNN potentials. We use these methodologies for structured prediction in order to improve the exact phrase detection of various medical entities.
Structured prediction models for RNN based sequence labeling in clinical text
Jagannatha, Abhyuday N; Yu, Hong
2016-01-01
Sequence labeling is a widely used method for named entity recognition and information extraction from unstructured natural language data. In clinical domain one major application of sequence labeling involves extraction of medical entities such as medication, indication, and side-effects from Electronic Health Record narratives. Sequence labeling in this domain, presents its own set of challenges and objectives. In this work we experimented with various CRF based structured learning models with Recurrent Neural Networks. We extend the previously studied LSTM-CRF models with explicit modeling of pairwise potentials. We also propose an approximate version of skip-chain CRF inference with RNN potentials. We use these methodologies1 for structured prediction in order to improve the exact phrase detection of various medical entities. PMID:28004040
Hilal, Saima; Kuijf, Hugo J.; Ikram, Mohammad Kamran; Xu, Xin; Tan, Boon Yeow; Venketasubramanian, Narayanaswamy; Postma, Albert; Biessels, Geert Jan; Chen, Christopher P. L. H.
2016-01-01
Background and Purpose Studies on the impact of small vessel disease (SVD) on cognition generally focus on white matter hyperintensity (WMH) volume. The extent to which WMH location relates to cognitive performance has received less attention, but is likely to be functionally important. We examined the relation between WMH location and cognition in a memory clinic cohort of patients with sporadic SVD. Methods A total of 167 patients with SVD were recruited from memory clinics. Assumption-free region of interest-based analyses based on major white matter tracts and voxel-wise analyses were used to determine the association between WMH location and executive functioning, visuomotor speed and memory. Results Region of interest-based analyses showed that WMHs located particularly within the anterior thalamic radiation and forceps minor were inversely associated with both executive functioning and visuomotor speed, independent of total WMH volume. Memory was significantly associated with WMH volume in the forceps minor, independent of total WMH volume. An independent assumption-free voxel-wise analysis identified strategic voxels in these same tracts. Region of interest-based analyses showed that WMH volume within the anterior thalamic radiation explained 6.8% of variance in executive functioning, compared to 3.9% for total WMH volume; WMH volume within the forceps minor explained 4.6% of variance in visuomotor speed and 4.2% of variance in memory, compared to 1.8% and 1.3% respectively for total WMH volume. Conclusions Our findings identify the anterior thalamic radiation and forceps minor as strategic white matter tracts in which WMHs are most strongly associated with cognitive impairment in memory clinic patients with SVD. WMH volumes in individual tracts explained more variance in cognition than total WMH burden, emphasizing the importance of lesion location when addressing the functional consequences of WMHs. PMID:27824925
Quiet Eye Training Facilitates Competitive Putting Performance in Elite Golfers
Vine, Samuel J.; Moore, Lee J.; Wilson, Mark R.
2011-01-01
The aim of this study was to examine the effectiveness of a brief quiet eye (QE) training intervention aimed at optimizing visuomotor control and putting performance of elite golfers under pressure, and in real competition. Twenty-two elite golfers (mean handicap 2.7) recorded putting statistics over 10 rounds of competitive golf before attending training individually. Having been randomly assigned to either a QE training or Control group, participants were fitted with an Applied Science Laboratories Mobile Eye tracker and performed 20 baseline (pre-test) putts from 10 ft. Training consisted of video feedback of their gaze behavior while they completed 20 putts; however the QE-trained group received additional instructions related to maintaining a longer QE period. Participants then recorded their putting statistics over a further 10 competitive rounds and re-visited the laboratory for retention and pressure tests of their visuomotor control and putting performance. Overall, the results were supportive of the efficacy of the QE training intervention. QE duration predicted 43% of the variance in putting performance, underlying its critical role in the visuomotor control of putting. The QE-trained group maintained their optimal QE under pressure conditions, whereas the Control group experienced reductions in QE when anxious, with subsequent effects on performance. Although their performance was similar in the pre-test, the QE-trained group holed more putts and left the ball closer to the hole on missed putts than their Control group counterparts in the pressure test. Importantly, these advantages transferred to the golf course, where QE-trained golfers made 1.9 fewer putts per round, compared to pre-training, whereas the Control group showed no change in their putting statistics. These results reveal that QE training, incorporated into a pre-shot routine, is an effective intervention to help golfers maintain control when anxious. PMID:21713182
A novel computational model to probe visual search deficits during motor performance
Singh, Tarkeshwar; Fridriksson, Julius; Perry, Christopher M.; Tryon, Sarah C.; Ross, Angela; Fritz, Stacy
2016-01-01
Successful execution of many motor skills relies on well-organized visual search (voluntary eye movements that actively scan the environment for task-relevant information). Although impairments of visual search that result from brain injuries are linked to diminished motor performance, the neural processes that guide visual search within this context remain largely unknown. The first objective of this study was to examine how visual search in healthy adults and stroke survivors is used to guide hand movements during the Trail Making Test (TMT), a neuropsychological task that is a strong predictor of visuomotor and cognitive deficits. Our second objective was to develop a novel computational model to investigate combinatorial interactions between three underlying processes of visual search (spatial planning, working memory, and peripheral visual processing). We predicted that stroke survivors would exhibit deficits in integrating the three underlying processes, resulting in deteriorated overall task performance. We found that normal TMT performance is associated with patterns of visual search that primarily rely on spatial planning and/or working memory (but not peripheral visual processing). Our computational model suggested that abnormal TMT performance following stroke is associated with impairments of visual search that are characterized by deficits integrating spatial planning and working memory. This innovative methodology provides a novel framework for studying how the neural processes underlying visual search interact combinatorially to guide motor performance. NEW & NOTEWORTHY Visual search has traditionally been studied in cognitive and perceptual paradigms, but little is known about how it contributes to visuomotor performance. We have developed a novel computational model to examine how three underlying processes of visual search (spatial planning, working memory, and peripheral visual processing) contribute to visual search during a visuomotor task. We show that deficits integrating spatial planning and working memory underlie abnormal performance in stroke survivors with frontoparietal damage. PMID:27733596
Najdzion, Janusz
2018-03-01
The superior colliculus (SC) of mammals is a midbrain center, that can be subdivided into the superficial (SCs) and deep layers (SCd). In contrast to the visual SCs, the SCd are involved in multisensory and motor processing. This study investigated the pattern of distribution and colocalization of cocaine- and amphetamine-regulated transcript peptide (CART) and three calcium-binding proteins (CaBPs) i.e. calbindin (CB), calretinin (CR) and parvalbumin (PV) in the SCd of the guinea pig. CART labeling was seen almost exclusively in the neuropil and fibers, which differed in regard to morphology and location. CART-positive neurons were very rare and restricted to a narrow area of the SCd. The most intense CART immunoreactivity was observed in the most dorsally located sublayer of the SCd, which is anatomically and functionally connected with the SCs. CART immunoreactivity in the remaining SCd was less intensive, but still relatively high. This characteristic pattern of immunoreactivity indicates that CART as a putative neurotransmitter or neuromodulator may play an important role in processing of visual information, while its involvement in the auditory and visuomotor processing is less significant, but still possible. CaBPs-positive neurons were morphologically diverse and widely distributed throughout all SCd. From studied CaBPs, CR showed a markedly different distribution compared to CB and PV. Overall, the patterns of distribution of CB and PV were similar in the entire SCd. Consequently, the complementarity of these patterns in the guinea pig was very weak. Double immunostaining revealed that CART did not colocalize with either CaBPs, which suggested that these neurochemical substances might not coexist in the multisensory and visuomotor parts of the SC. Copyright © 2017 Elsevier B.V. All rights reserved.
Post-stroke balance rehabilitation under multi-level electrotherapy: a conceptual review
Dutta, Anirban; Lahiri, Uttama; Das, Abhijit; Nitsche, Michael A.; Guiraud, David
2014-01-01
Stroke is caused when an artery carrying blood from heart to an area in the brain bursts or a clot obstructs the blood flow thereby preventing delivery of oxygen and nutrients. About half of the stroke survivors are left with some degree of disability. Innovative methodologies for restorative neurorehabilitation are urgently required to reduce long-term disability. The ability of the nervous system to respond to intrinsic or extrinsic stimuli by reorganizing its structure, function, and connections is called neuroplasticity. Neuroplasticity is involved in post-stroke functional disturbances, but also in rehabilitation. It has been shown that active cortical participation in a closed-loop brain machine interface (BMI) can induce neuroplasticity in cortical networks where the brain acts as a controller, e.g., during a visuomotor task. Here, the motor task can be assisted with neuromuscular electrical stimulation (NMES) where the BMI will act as a real-time decoder. However, the cortical control and induction of neuroplasticity in a closed-loop BMI is also dependent on the state of brain, e.g., visuospatial attention during visuomotor task performance. In fact, spatial neglect is a hidden disability that is a common complication of stroke and is associated with prolonged hospital stays, accidents, falls, safety problems, and chronic functional disability. This hypothesis and theory article presents a multi-level electrotherapy paradigm toward motor rehabilitation in virtual reality that postulates that while the brain acts as a controller in a closed-loop BMI to drive NMES, the state of brain can be can be altered toward improvement of visuomotor task performance with non-invasive brain stimulation (NIBS). This leads to a multi-level electrotherapy paradigm where a virtual reality-based adaptive response technology is proposed for post-stroke balance rehabilitation. In this article, we present a conceptual review of the related experimental findings. PMID:25565937
Hammer, Eva M.; Kaufmann, Tobias; Kleih, Sonja C.; Blankertz, Benjamin; Kübler, Andrea
2014-01-01
Modulation of sensorimotor rhythms (SMR) was suggested as a control signal for brain-computer interfaces (BCI). Yet, there is a population of users estimated between 10 to 50% not able to achieve reliable control and only about 20% of users achieve high (80–100%) performance. Predicting performance prior to BCI use would facilitate selection of the most feasible system for an individual, thus constitute a practical benefit for the user, and increase our knowledge about the correlates of BCI control. In a recent study, we predicted SMR-BCI performance from psychological variables that were assessed prior to the BCI sessions and BCI control was supported with machine-learning techniques. We described two significant psychological predictors, namely the visuo-motor coordination ability and the ability to concentrate on the task. The purpose of the current study was to replicate these results thereby validating these predictors within a neurofeedback based SMR-BCI that involved no machine learning.Thirty-three healthy BCI novices participated in a calibration session and three further neurofeedback training sessions. Two variables were related with mean SMR-BCI performance: (1) a measure for the accuracy of fine motor skills, i.e., a trade for a person’s visuo-motor control ability; and (2) subject’s “attentional impulsivity”. In a linear regression they accounted for almost 20% in variance of SMR-BCI performance, but predictor (1) failed significance. Nevertheless, on the basis of our prior regression model for sensorimotor control ability we could predict current SMR-BCI performance with an average prediction error of M = 12.07%. In more than 50% of the participants, the prediction error was smaller than 10%. Hence, psychological variables played a moderate role in predicting SMR-BCI performance in a neurofeedback approach that involved no machine learning. Future studies are needed to further consolidate (or reject) the present predictors. PMID:25147518
Aupperle, Robin L; Allard, Carolyn B; Grimes, Erin M; Simmons, Alan N; Flagan, Taru; Behrooznia, Michelle; Cissell, Shadha H; Twamley, Elizabeth W; Thorp, Steven R; Norman, Sonya B; Paulus, Martin P; Stein, Murray B
2012-04-01
Posttraumatic stress disorder (PTSD) has been associated with executive or attentional dysfunction and problems in emotion processing. However, it is unclear whether these two domains of dysfunction are related to common or distinct neurophysiological substrates. To examine the hypothesis that greater neuropsychological impairment in PTSD relates to greater disruption in prefrontal-subcortical networks during emotional anticipation. Case-control, cross-sectional study. General community and hospital and community psychiatric clinics. Volunteer sample of 37 women with PTSD related to intimate partner violence and 34 age-comparable healthy control women. We used functional magnetic resonance imaging (fMRI) to examine neural responses during anticipation of negative and positive emotional images. The Clinician-Administered PTSD Scale was used to characterize PTSD symptom severity. The Wechsler Adult Intelligence Scale, Third Edition, Digit Symbol Test, Delis-Kaplan Executive Function System Color-Word Interference Test, and Wisconsin Card Sorting Test were used to characterize neuropsychological performance. Women with PTSD performed worse on complex visuomotor processing speed (Digit Symbol Test) and executive function (Color-Word Interference Inhibition/Switching subtest) measures compared with control subjects. Posttraumatic stress disorder was associated with greater anterior insula and attenuated lateral prefrontal cortex (PFC) activation during emotional anticipation. Greater dorsolateral PFC activation (anticipation of negative images minus anticipation of positive images) was associated with lower PTSD symptom severity and better visuomotor processing speed and executive functioning. Greater medial PFC and amygdala activation related to slower visuomotor processing speed. During emotional anticipation, women with PTSD show exaggerated activation in the anterior insula, a region important for monitoring internal bodily state. Greater dorsolateral PFC response in PTSD patients during emotional anticipation may reflect engagement of cognitive control networks that are beneficial for emotional and cognitive functioning. Novel treatments could be aimed at strengthening the balance between cognitive control (dorsolateral PFC) and affective processing (medial PFC and amygdala) networks to improve overall functioning for PTSD patients.
Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention.
Won, Bo-Yeong; Jiang, Yuhong V
2015-05-01
Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal that working memory is attention directed toward internal representations. Here, we show that the close relationship between these 2 constructs is limited to some but not all forms of spatial attention. In 5 experiments, participants held color arrays, dot locations, or a sequence of dots in working memory. During the memory retention interval, they performed a T-among-L visual search task. Crucially, the probable target location was cued either implicitly through location probability learning or explicitly with a central arrow or verbal instruction. Our results showed that whereas imposing a visual working memory load diminished the effectiveness of explicit cuing, it did not interfere with probability cuing. We conclude that spatial working memory shares similar mechanisms with explicit, goal-driven attention but is dissociated from implicitly learned attention. (c) 2015 APA, all rights reserved).
Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention
Won, Bo-Yeong; Jiang, Yuhong V.
2014-01-01
Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal that working memory is attention directed toward internal representations. Here we show that the close relationship between these two constructs is limited to some but not all forms of spatial attention. In five experiments, participants held color arrays, dot locations, or a sequence of dots in working memory. During the memory retention interval they performed a T-among-L visual search task. Crucially, the probable target location was cued either implicitly through location probability learning, or explicitly with a central arrow or verbal instruction. Our results showed that whereas imposing a visual working memory load diminished the effectiveness of explicit cuing, it did not interfere with probability cuing. We conclude that spatial working memory shares similar mechanisms with explicit, goal-driven attention but is dissociated from implicitly learned attention. PMID:25401460
2014-01-01
Affinity capture of DNA methylation combined with high-throughput sequencing strikes a good balance between the high cost of whole genome bisulfite sequencing and the low coverage of methylation arrays. We present BayMeth, an empirical Bayes approach that uses a fully methylated control sample to transform observed read counts into regional methylation levels. In our model, inefficient capture can readily be distinguished from low methylation levels. BayMeth improves on existing methods, allows explicit modeling of copy number variation, and offers computationally efficient analytical mean and variance estimators. BayMeth is available in the Repitools Bioconductor package. PMID:24517713
Robust Vocabulary Instruction in a Readers' Workshop
ERIC Educational Resources Information Center
Feezell, Greg
2012-01-01
This article presents strategies for integrating explicit vocabulary instruction within a reading workshop. The author begins by describing a process for involving students in word selection. The author then provides a weeklong instructional sequence using student-selected words. Finally, the author briefly examines the role of vocabulary…
Number Sense on the Number Line
ERIC Educational Resources Information Center
Woods, Dawn Marie; Ketterlin Geller, Leanne; Basaraba, Deni
2018-01-01
A strong foundation in early number concepts is critical for students' future success in mathematics. Research suggests that visual representations, like a number line, support students' development of number sense by helping them create a mental representation of the order and magnitude of numbers. In addition, explicitly sequencing instruction…
Kasap, Bahadir; van Opstal, A John
2017-08-01
Single-unit recordings suggest that the midbrain superior colliculus (SC) acts as an optimal controller for saccadic gaze shifts. The SC is proposed to be the site within the visuomotor system where the nonlinear spatial-to-temporal transformation is carried out: the population encodes the intended saccade vector by its location in the motor map (spatial), and its trajectory and velocity by the distribution of firing rates (temporal). The neurons' burst profiles vary systematically with their anatomical positions and intended saccade vectors, to account for the nonlinear main-sequence kinematics of saccades. Yet, the underlying collicular mechanisms that could result in these firing patterns are inaccessible to current neurobiological techniques. Here, we propose a simple spiking neural network model that reproduces the spike trains of saccade-related cells in the intermediate and deep SC layers during saccades. The model assumes that SC neurons have distinct biophysical properties for spike generation that depend on their anatomical position in combination with a center-surround lateral connectivity. Both factors are needed to account for the observed firing patterns. Our model offers a basis for neuronal algorithms for spatiotemporal transformations and bio-inspired optimal controllers.
Zerze, Gül H; Best, Robert B; Mittal, Jeetain
2015-11-19
We use all-atom molecular simulation with explicit solvent to study the properties of selected intrinsically disordered proteins and unfolded states of foldable proteins, which include chain dimensions and shape, secondary structure propensity, solvent accessible surface area, and contact formation. We find that the qualitative scaling behavior of the chains matches expectations from theory under ambient conditions. In particular, unfolded globular proteins tend to be more collapsed under the same conditions than charged disordered sequences of the same length. However, inclusion of explicit solvent in addition naturally captures temperature-dependent solvation effects, which results in an initial collapse of the chains as temperature is increased, in qualitative agreement with experiment. There is a universal origin to the collapse, revealed in the change of hydration of individual residues as a function of temperature: namely, that the initial collapse is driven by unfavorable solvation free energy of individual residues, which in turn has a strong temperature dependence. We also observe that in unfolded globular proteins, increased temperature also initially favors formation of native-like (rather than non-native-like) structure. Our results help to establish how sequence encodes the degree of intrinsic disorder or order as well as its response to changes in environmental conditions.
Neuropsychological Functioning in Gulf War Veterans Exposed to Pesticides and Pyridostigmine Bromide
2008-02-01
processing speed and mood and sequelae from overt poisoning from organophosphate pesticides can result in lasting deficits in the domains of visuomotor...R. G., O’Malley, M., Chrislip, D., & Russo, J. (1994). Chronic neurological sequelae to organophosphate pesticide poisoning . American...War Veterans Exposed to Pesticides and Pyridostigmine Bromide PRINCIPAL INVESTIGATOR: Maxine Krengel, Ph.D
ERIC Educational Resources Information Center
Egeland, Jens; Ueland, Torill; Johansen, Susanne
2012-01-01
Participants with attention-deficit/hyperactivity disorder (ADHD) are often impaired in visuomotor tasks. However, little is known about the contribution of modal impairment in motor function relative to central processing deficits or whether different processes underlie the impairment in ADHD combined (ADHD-C) versus ADHD inattentive (ADHD-I)…
Parametric Modulation of Error-Related ERP Components by the Magnitude of Visuo-Motor Mismatch
ERIC Educational Resources Information Center
Vocat, Roland; Pourtois, Gilles; Vuilleumier, Patrik
2011-01-01
Errors generate typical brain responses, characterized by two successive event-related potentials (ERP) following incorrect action: the error-related negativity (ERN) and the positivity error (Pe). However, it is unclear whether these error-related responses are sensitive to the magnitude of the error, or instead show all-or-none effects. We…
Incidental Learning of Trust: Examining the Role of Emotion and Visuomotor Fluency
ERIC Educational Resources Information Center
Strachan, James W. A.; Kirkham, Alexander J.; Manssuer, Luis R.; Tipper, Steven P.
2016-01-01
Eye gaze is a powerful directional cue that automatically evokes joint attention states. Even when faces are ignored, there is incidental learning of the reliability of the gaze cueing of another person, such that people who look away from targets are judged less trustworthy. In a series of experiments, we demonstrated further properties of the…
Hinaut, Xavier; Dominey, Peter Ford
2011-01-01
Categorical encoding is crucial for mastering large bodies of related sensory-motor experiences, but what is its neural substrate? In an effort to respond to this question, recent single-unit recording studies in the macaque lateral prefrontal cortex (LPFC) have demonstrated two characteristic forms of neural encoding of the sequential structure of the animal's sensory-motor experience. One population of neurons encodes the specific behavioral sequences. A second population of neurons encodes the sequence category (e.g. ABAB, AABB or AAAA) and does not differentiate sequences within the category (Shima, K., Isoda, M., Mushiake, H., Tanji, J., 2007. Categorization of behavioural sequences in the prefrontal cortex. Nature 445, 315-318.). Interestingly these neurons are intermingled in the lateral prefrontal cortex, and not topographically segregated. Thus, LPFC may provide a neurophysiological basis for sensorimotor categorization. Here we report on a neural network simulation study that reproduces and explains these results. We model a cortical circuit composed of three layers (infragranular, granular, and supragranular) of 5*5 leaky integrator neurons with a sigmoidal output function, and we examine 1000 such circuits running in parallel. Crucially the three layers are interconnected with recurrent connections, thus producing a dynamical system that is inherently sensitive to the spatiotemporal structure of the sequential inputs. The model is presented with 11 four-element sequences following Shima et al. We isolated one subpopulation of neurons each of whose activity predicts individual sequences, and a second population that predicts category independent of the specific sequence. We argue that a richly interconnected cortical circuit is capable of internally generating a neural representation of category membership, thus significantly extending the scope of recurrent network computation. In order to demonstrate that these representations can be used to create an explicit categorization capability, we introduced an additional neural structure corresponding to the striatum. We showed that via cortico-striatal plasticity, neurons in the striatum could produce an explicit representation both of the identity of each sequence, and its category membership. Copyright © 2011 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Slof, B.; Erkens, G.; Kirschner, P. A.; Janssen, J.; Jaspers, J. G. M.
2012-01-01
This study investigated whether and how scripting learners' use of representational tools in a computer supported collaborative learning (CSCL)-environment fostered their collaborative performance on a complex business-economics task. Scripting the problem-solving process sequenced and made its phase-related part-task demands explicit, namely…
Lecture and Laboratory Approaches to the Teaching of Ecology
ERIC Educational Resources Information Center
Cox, George W.
1970-01-01
Discusses the relationships of individual, population and ecosystem level approaches to ecology. Outlines how these approaches can be used in introductory college ecology courses. Emphasizes the importance of laboratory and field work and makes explicit suggestions. Outlines course sequences in the undergraduate systems ecology program at San…
ERIC Educational Resources Information Center
Strickland, Tricia K.; Maccini, Paula
2010-01-01
To improve student success in mathematics, the use of research-based interventions is necessary to help secondary students with learning disabilities (LD) access the algebra curriculum. The authors provide an overview of the following research-based approaches: explicit instruction, graduated instructional sequence, technology, and graphic…
ERIC Educational Resources Information Center
Leach, Debra
2016-01-01
Students with learning disabilities often struggle with math fact fluency and require specialized interventions to recall basic facts. Deficits in math fact fluency can result in later difficulties when learning higher-level mathematical computation, concepts, and problem solving. The response-to-intervention (RTI) and…
Development of an Electrochemistry Teaching Sequence using a Phenomenographic Approach
NASA Astrophysics Data System (ADS)
Rodriguez-Velazquez, Sorangel
Electrochemistry is the area of chemistry that studies electron transfer reactions across an interface. Chemistry education researchers have acknowledged that difficulties in electrochemistry instruction arise due to the level of abstraction of the topic, lack of adequate explanations and representations found in textbooks, and a quantitative emphasis in the application of concepts. Studies have identified conceptions (also referred to as misconceptions, alternative conceptions, etc.) about the electrochemical process that transcends academic and preparation levels (e.g., students and instructors) as well as cultural and educational settings. Furthermore, conceptual understanding of the electrochemical process requires comprehension of concepts usually studied in physics such as electric current, resistance and potential and often neglected in introductory chemistry courses. The lack of understanding of physical concepts leads to students. conceptions with regards to the relation between the concepts of redox reactions and electric circuits. The need for instructional materials to promote conceptual understanding of the electrochemical process motivated the development of the electrochemistry teaching sequence presented in this dissertation. Teaching sequences are educational tools that aim to bridge the gap between student conceptions and the scientific acceptable conceptions that instructors expect students to learn. This teaching sequence explicitly addresses known conceptions in electrochemistry and departs from traditional instruction in electrochemistry to reinforce students. previous knowledge in thermodynamics providing the foundation for the explicit relation of redox reactions and electric circuits during electrochemistry instruction. The scientific foundations of the electrochemical process are explained based on the Gibbs free energy (G) involved rather than on the standard redox potential values (E° ox/red) of redox half-reactions. Representations of the core concepts from discipline-specific models and theories serve as visual tools to describe reversible redox half-reactions at equilibrium, predict the spontaneity of the electrochemical process and explain interfacial equilibrium between redox species and electrodes in solution. The integration of physics concepts into electrochemistry instruction facilitated describing the interactions between the chemical system (e.g., redox species) and the external circuit (e.g., voltmeter). The "Two worlds" theoretical framework was chosen to anchor a robust educational design where the world of objects and events is deliberately connected to the world of theories and models. The core concepts in Marcus theory and density of states (DOS) provided the scientific foundations to connect both worlds. The design of this teaching sequence involved three phases; the selection of the content to be taught, the determination of a coherent and explicit connection among concepts and the development of educational activities to engage students in the learning process. The reduction-oxidation and electrochemistry chapters of three of the most popular general chemistry textbooks were revised in order to identify potential gaps during instruction, taking into consideration learning and teaching difficulties. The electrochemistry curriculum was decomposed into manageable sections contained in modules. Thirteen modules were developed and each module addresses specific conceptions with regard to terminology, redox reactions in electrochemical cells, and the function of the external circuit in electrochemical process. The electrochemistry teaching sequence was evaluated using a phenomenographic approach. This approach allows describing the qualitative variation in instructors' consciousness about the teaching of electrochemistry. A phenomenographic analysis revealed that the most relevant aspect of variation came from instructors' expertise. Participant A expertise (electrochemist) promoted in-depth discussions of fundamental theories and models that explain the electrochemical process while participant B expertise (general chemistry instruction) emphasized a coherent and explicit presentation of such theories and models to students. Other categories of variation were identified as: recognizing students' conceptions, the use of teaching resources and instructors' expectations for the teaching sequence. For example, while Participant B depended heavily on representations and explanations found in textbooks, participant A recognized misleading representations and oversimplified statements in general chemistry textbooks. Participant A was also more inclined to question the significance of some conceptions such as the correlation between the use of the term circuit and students' conceptions related to the movement of electrons in solution in an electrochemical cell. The electrochemistry teaching sequence in this dissertation fulfils each of the instructors' expectations with regards to the content that incorporated discipline-specific theories and models, explicit connections and flow among concepts, and addressing students' conceptions via the educational activities developed.
Rooting gene trees without outgroups: EP rooting.
Sinsheimer, Janet S; Little, Roderick J A; Lake, James A
2012-01-01
Gene sequences are routinely used to determine the topologies of unrooted phylogenetic trees, but many of the most important questions in evolution require knowing both the topologies and the roots of trees. However, general algorithms for calculating rooted trees from gene and genomic sequences in the absence of gene paralogs are few. Using the principles of evolutionary parsimony (EP) (Lake JA. 1987a. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol. 4:167-181) and its extensions (Cavender, J. 1989. Mechanized derivation of linear invariants. Mol Biol Evol. 6:301-316; Nguyen T, Speed TP. 1992. A derivation of all linear invariants for a nonbalanced transversion model. J Mol Evol. 35:60-76), we explicitly enumerate all linear invariants that solely contain rooting information and derive algorithms for rooting gene trees directly from gene and genomic sequences. These new EP linear rooting invariants allow one to determine rooted trees, even in the complete absence of outgroups and gene paralogs. EP rooting invariants are explicitly derived for three taxon trees, and rules for their extension to four or more taxa are provided. The method is demonstrated using 18S ribosomal DNA to illustrate how the new animal phylogeny (Aguinaldo AMA et al. 1997. Evidence for a clade of nematodes, arthropods, and other moulting animals. Nature 387:489-493; Lake JA. 1990. Origin of the metazoa. Proc Natl Acad Sci USA 87:763-766) may be rooted directly from sequences, even when they are short and paralogs are unavailable. These results are consistent with the current root (Philippe H et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255-260).
Rooting Gene Trees without Outgroups: EP Rooting
Sinsheimer, Janet S.; Little, Roderick J. A.; Lake, James A.
2012-01-01
Gene sequences are routinely used to determine the topologies of unrooted phylogenetic trees, but many of the most important questions in evolution require knowing both the topologies and the roots of trees. However, general algorithms for calculating rooted trees from gene and genomic sequences in the absence of gene paralogs are few. Using the principles of evolutionary parsimony (EP) (Lake JA. 1987a. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol. 4:167–181) and its extensions (Cavender, J. 1989. Mechanized derivation of linear invariants. Mol Biol Evol. 6:301–316; Nguyen T, Speed TP. 1992. A derivation of all linear invariants for a nonbalanced transversion model. J Mol Evol. 35:60–76), we explicitly enumerate all linear invariants that solely contain rooting information and derive algorithms for rooting gene trees directly from gene and genomic sequences. These new EP linear rooting invariants allow one to determine rooted trees, even in the complete absence of outgroups and gene paralogs. EP rooting invariants are explicitly derived for three taxon trees, and rules for their extension to four or more taxa are provided. The method is demonstrated using 18S ribosomal DNA to illustrate how the new animal phylogeny (Aguinaldo AMA et al. 1997. Evidence for a clade of nematodes, arthropods, and other moulting animals. Nature 387:489–493; Lake JA. 1990. Origin of the metazoa. Proc Natl Acad Sci USA 87:763–766) may be rooted directly from sequences, even when they are short and paralogs are unavailable. These results are consistent with the current root (Philippe H et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255–260). PMID:22593551
Havrila, Marek; Réblová, Kamila; Zirbel, Craig L.; Leontis, Neocles B.; Šponer, Jiří
2013-01-01
The Sarcin-Ricin RNA motif (SR motif) is one of the most prominent recurrent RNA building blocks that occurs in many different RNA contexts and folds autonomously, i.e., in a context-independent manner. In this study, we combined bioinformatics analysis with explicit-solvent molecular dynamics (MD) simulations to better understand the relation between the RNA sequence and the evolutionary patterns of SR motif. SHAPE probing experiment was also performed to confirm fidelity of MD simulations. We identified 57 instances of the SR motif in a non-redundant subset of the RNA X-ray structure database and analyzed their basepairing, base-phosphate, and backbone-backbone interactions. We extracted sequences aligned to these instances from large ribosomal RNA alignments to determine frequency of occurrence for different sequence variants. We then used a simple scoring scheme based on isostericity to suggest 10 sequence variants with highly variable expected degree of compatibility with the SR motif 3D structure. We carried out MD simulations of SR motifs with these base substitutions. Non isosteric base substitutions led to unstable structures, but so did isosteric substitutions which were unable to make key base-phosphate interactions. MD technique explains why some potentially isosteric SR motifs are not realized during evolution. We also found that inability to form stable cWW geometry is an important factor in case of the first base pair of the flexible region of the SR motif. Comparison of structural, bioinformatics, SHAPE probing and MD simulation data reveals that explicit solvent MD simulations neatly reflect viability of different sequence variants of the SR motif. Thus, MD simulations can efficiently complement bioinformatics tools in studies of conservation patterns of RNA motifs and provide atomistic insight into the role of their different signature interactions. PMID:24144333
Prefrontal neural correlates of memory for sequences.
Averbeck, Bruno B; Lee, Daeyeol
2007-02-28
The sequence of actions appropriate to solve a problem often needs to be discovered by trial and error and recalled in the future when faced with the same problem. Here, we show that when monkeys had to discover and then remember a sequence of decisions across trials, ensembles of prefrontal cortex neurons reflected the sequence of decisions the animal would make throughout the interval between trials. This signal could reflect either an explicit memory process or a sequence-planning process that begins far in advance of the actual sequence execution. This finding extended to error trials such that, when the neural activity during the intertrial interval specified the wrong sequence, the animal also attempted to execute an incorrect sequence. More specifically, we used a decoding analysis to predict the sequence the monkey was planning to execute at the end of the fore-period, just before sequence execution. When this analysis was applied to error trials, we were able to predict where in the sequence the error would occur, up to three movements into the future. This suggests that prefrontal neural activity can retain information about sequences between trials, and that regardless of whether information is remembered correctly or incorrectly, the prefrontal activity veridically reflects the animal's action plan.
Test Input Generation for Red-Black Trees using Abstraction
NASA Technical Reports Server (NTRS)
Visser, Willem; Pasareanu, Corina S.; Pelanek, Radek
2005-01-01
We consider the problem of test input generation for code that manipulates complex data structures. Test inputs are sequences of method calls from the data structure interface. We describe test input generation techniques that rely on state matching to avoid generation of redundant tests. Exhaustive techniques use explicit state model checking to explore all the possible test sequences up to predefined input sizes. Lossy techniques rely on abstraction mappings to compute and store abstract versions of the concrete states; they explore under-approximations of all the possible test sequences. We have implemented the techniques on top of the Java PathFinder model checker and we evaluate them using a Java implementation of red-black trees.
Implicit sequence learning and contextual cueing do not compete for central cognitive resources.
Jiménez, Luis; Vázquez, Gustavo A
2011-02-01
Sequence learning and contextual cueing explore different forms of implicit learning, arising from practice with a structured serial task, or with a search task with informative contexts. We assess whether these two learning effects arise simultaneously when both remain implicit. Experiments 1 and 2 confirm that a cueing effect can be observed under a continuous setting and that there is no interference between contextual cueing and sequence learning. Experiments 3a and 3b tested whether an interference arises specifically when the sequence becomes explicit. Results show that the expression of contextual cueing disappeared in those conditions but that context information is still acquired, and it affects performance when the sequence is removed. The results are discussed in relation to the current debates about the automaticity of implicit learning, and about the role of attention in the acquisition and expression of contextual cueing. (c) 2010 APA, all rights reserved.
Motor Sequence Learning-Induced Neural Efficiency in Functional Brain Connectivity
Karim, Helmet T; Huppert, Theodore J; Erickson, Kirk I; Wollam, Mariegold E; Sparto, Patrick J; Sejdić, Ervin; VanSwearingen, Jessie M
2016-01-01
Previous studies have shown the functional neural circuitry differences before and after an explicitly learned motor sequence task, but have not assessed these changes during the process of motor skill learning. Functional magnetic resonance imaging activity was measured while participants (n=13) were asked to tap their fingers to visually presented sequences in blocks that were either the same sequence repeated (learning block) or random sequences (control block). Motor learning was associated with a decrease in brain activity during learning compared to control. Lower brain activation was noted in the posterior parietal association area and bilateral thalamus during the later periods of learning (not during the control). Compared to the control condition, we found the task-related motor learning was associated with decreased connectivity between the putamen and left inferior frontal gyrus and left middle cingulate brain regions. Motor learning was associated with changes in network activity, spatial extent, and connectivity. PMID:27845228
Designing the optimal shutter sequences for the flutter shutter imaging method
NASA Astrophysics Data System (ADS)
Jelinek, Jan
2010-04-01
Acquiring iris or face images of moving subjects at larger distances using a flash to prevent the motion blur quickly runs into eye safety concerns as the acquisition distance is increased. For that reason the flutter shutter method recently proposed by Raskar et al.has generated considerable interest in the biometrics community. The paper concerns the design of shutter sequences that produce the best images. The number of possible sequences grows exponentially in both the subject' s motion velocity and desired exposure value, with their majority being useless. Because the exact solution leads to an intractable mixed integer programming problem, we propose an approximate solution based on pre - screening the sequences according to the distribution of roots in their Fourier transform. A very fast algorithm utilizing the Jury' s criterion allows the testing to be done without explicitly computing the roots, making the approach practical for moderately long sequences.
Heuer, Herbert; Hegele, Mathias
2010-12-01
Mechanical tools are transparent in the sense that their input-output relations can be derived from their perceptible characteristics. Modern technology creates more and more tools that lack mechanical transparency, such as in the control of the position of a cursor by means of a computer mouse or some other input device. We inquired whether an enhancement of transparency by means of presenting the shaft of a virtual sliding lever, which governed the transformation of hand position into cursor position, supports performance of aimed cursor movement and the acquisition of an internal model of the transformation in both younger and older adults. Enhanced transparency resulted in an improvement of visual closed-loop control in terms of movement time and curvature of cursor paths. The movement-time improvement was more pronounced at older working age than at younger working age, so that the enhancement of transparency can serve as a means to mitigate age-related declines in performance. Benefits for the acquisition of an internal model of the transformation and of explicit knowledge were absent. Thus, open-loop control in this task did not profit from enhanced mechanical transparency. These findings strongly suggest that environmental support of transparency of the effects of input devices on controlled systems might be a powerful tool to support older users. Enhanced transparency may also improve simulator-based training by increasing motivation, even if training benefits do not transfer to situations without enhanced transparency. (PsycINFO Database Record (c) 2010 APA, all rights reserved).
Target size matters: target errors contribute to the generalization of implicit visuomotor learning.
Reichenthal, Maayan; Avraham, Guy; Karniel, Amir; Shmuelof, Lior
2016-08-01
The process of sensorimotor adaptation is considered to be driven by errors. While sensory prediction errors, defined as the difference between the planned and the actual movement of the cursor, drive implicit learning processes, target errors (e.g., the distance of the cursor from the target) are thought to drive explicit learning mechanisms. This distinction was mainly studied in the context of arm reaching tasks where the position and the size of the target were constant. We hypothesize that in a dynamic reaching environment, where subjects have to hit moving targets and the targets' dynamic characteristics affect task success, implicit processes will benefit from target errors as well. We examine the effect of target errors on learning of an unnoticed perturbation during unconstrained reaching movements. Subjects played a Pong game, in which they had to hit a moving ball by moving a paddle controlled by their hand. During the game, the movement of the paddle was gradually rotated with respect to the hand, reaching a final rotation of 25°. Subjects were assigned to one of two groups: The high-target error group played the Pong with a small ball, and the low-target error group played with a big ball. Before and after the Pong game, subjects performed open-loop reaching movements toward static targets with no visual feedback. While both groups adapted to the rotation, the postrotation reaching movements were directionally biased only in the small-ball group. This result provides evidence that implicit adaptation is sensitive to target errors. Copyright © 2016 the American Physiological Society.
[Cognition, schizophrenia and the effect of antipsychotics].
Stip, E
2006-01-01
In this review, we conclude that cognitive impairments are as important as positive and negative symptoms in the clinical assessment and management of patients with schizophrenia. This is not a comprehensive review, considering that the new Measurement And Treatment Research to Improve Cognition in Schizophrenia (MATRICS) model will soon provide valuable data. It is however a product of the collective efforts of a French Canadian clinical research team that proposes a synthesis of data of pragmatic interest to clinicians. Medication with improved safety and cognition profile, gene-rally lead to better outcomes by facilitating compliance with drug regimens and rehabilitation programs. In addition, measures of attention and executive function (EF) appear to improve with novel antipsychotics when compared to traditional neuroleptics. Nevertheless, evaluating cognitive performance is not a routine procedure outside the domain of research. For example, procedural learning (PL) -- an important measure of cognitive function -- refers to cognitive and motor learning processes in which execution strategies cannot be explicitly described (ie learning by doing). These actions or procedures are then progressively learned through trial and error until automation of optimal performance is established. Procedural learning is rarely assessed in clinical practice. Inconsistent findings regarding the effects of neuroleptic drugs on PL have been reported. Trials using acute administration of chlorpromazine in normal subjects induced PL deficits, suggesting the direct effect of neuroleptics, presumably via a D(2) dopamine blockade in the striatum. In a recent study by our group, schizophrenia patients, divided into three groups according to their pharmacological treatment (haloperidol, clozapine and risperidone) were compared to normal controls on two PL tasks; a visuomotor learning task (mirror drawing) and a problem solving learning task (Tower of Toronto). No deficits were detected in patients receiving clozapine, while haloperidol was associated with deleterious effects in both tasks. Risperidone, however, produced different effects depending on the task performed. Another 6-month double-blind Canadian study confirmed the beneficial effect of olanzapine on PL compared to haloperidol and risperidone. The differential effects of drugs on the striatal D(2) receptors, -irrespective of their classification as conventional or atypical neuroleptics and the specific process implicated in each of these PL tasks may explain these results. Tracer studies using radioactive benzamides (IBZM) specific to striatal D receptors determined a relationship between striatal D(2) receptor occupancy and PL performance such as the mirror drawing task. Using this method, data obtained in Montreal on schizophrenia patients receiving olanzapine and haloperidol have shown that the coefficient of determination in a visuomotor PL task varied inversely with D2 receptor saturation. This review probes the effect of impaired cognitive functions on schizophrenia patients' quality of life. Cognitive deficits found in schizophrenia affect planning, along with the aptitude to initiate and -regulate a goal-directed behaviour. These impairments have been repeatedly, yet inconclusively, attributed to frontal lobe dysfunction. Morphological findings obtained from neuroimaging studies remain inconsistent, some noting no differences between patients and controls while others observing reduced prefrontal volumes in schizophrenia patients. Conversely, functional neuroimaging (fMRI) demonstrated reduced frontal blood flow relative to global cerebral perfusion in schizophrenia patients. Overall, neuroimaging literature provides reliable evidence of frontal impairments in schizophrenia, although the average magnitude of difference between patients and controls is insufficient to defend a frontal lobe dysfunction hypo-thesis, as far as brain volume, resting cerebral metabolism or blood flow are concerned. The only measurement clearly distinguishing between patients and controls is fMRI of the frontal lobe while performing an experimentally controlled task. Here, schizophrenia patients fail to activate their frontal cortex when required. Sensitive to frontal lobe dysfunction are Neuropsychological tests of executive function. A study conducted in Montreal assessed the relation between EF impairments and difficulties in planning daily activities in schizophrenia patients scoring more than 3 on at least 4 items of the PANSS negative subscale. Performances on EF, memory and script generation were measured and compared to controls. Script production task required that subjects recite 10-20 actions that would normally be carried out for during daily life activity (going to a restaurant, buying groceries, etc.). Patients' performances were significantly lower with higher perserveration and sequencing impairments. Routine activities such as the ability to cook a meal were similarly investigated. Patients were videotaped in a kitchen while preparing a specific meal. Optimal sequence of micro- and macro-steps necessary to prepare the meal in a minimal time were measured. Sequencing errors, repetitions and omissions were significantly higher compared to controls. In addition, temporal organization was positively correlated with negative symptoms and low EF performance on neuro-psychological tasks. Thus concluding that EF impairment interferes with basic routine activities in schizophrenia patients, notably those with negative symptoms. Last but not least, we assessed the progress of patients' subjective complaints with regards to their cognitive functions using tests such as the SSTICS, specifically developed to address subjective cognitive complaints and insight. This review concludes that from now on cognitive deficit should be recognized as a major element in social and professional integration of schizophrenia patients, and should become a standardized assessment approach in clinical practice.
An fMRI Investigation of a Novel Analogue to the Trail-Making Test
ERIC Educational Resources Information Center
Jacobson, Sarah C.; Blanchard, Mathieu; Connolly, Colm C.; Cannon, Mary; Garavan, Hugh
2011-01-01
The Trail-Making Test (TMT) is a widely used neuropsychological measure that assesses visuomotor abilities and cognitive flexibility. For the TMT-A condition participants are required to locate and connect numbers (i.e. 1-2-3...) while in the TMT-B condition participants perform the set-shifting task of locating and connecting numbers and letters…
Associative learning is necessary but not sufficient for mirror neuron development.
Bonaiuto, James
2014-04-01
Existing computational models of the mirror system demonstrate the additional circuitry needed for mirror neurons to display the range of properties that they exhibit. Such models emphasize the need for existing connectivity to form visuomotor associations, processing to reduce the space of possible inputs, and demonstrate the role neurons with mirror properties might play in monitoring one's own actions.
Visuomotor Processing, Induced Stress and Perceptual Learning
2006-11-01
the performance of expert video game players with non-experienced video game players on multiple assessments of attention, Green & Bavelier (2003...concluded that experience and proficiency playing video games alters human visual attention beneficially in terms of numerical capacity, and both...person perspective video game play. We propose that psychological stress, though not addressed as a main factor in their study, may be an
Primary Motor Cortex Involvement in Initial Learning during Visuomotor Adaptation
ERIC Educational Resources Information Center
Riek, Stephan; Hinder, Mark R.; Carson, Richard G.
2012-01-01
Human motor behaviour is continually modified on the basis of errors between desired and actual movement outcomes. It is emerging that the role played by the primary motor cortex (M1) in this process is contingent upon a variety of factors, including the nature of the task being performed, and the stage of learning. Here we used repetitive TMS to…
Lustenberger, Caroline; Mouthon, Anne-Laure; Tesler, Noemi; Kurth, Salome; Ringli, Maya; Buchmann, Andreas; Jenni, Oskar G; Huber, Reto
2017-01-01
Reliable markers for brain maturation are important to identify neural deviations that eventually predict the development of mental illnesses. Recent studies have proposed topographical EEG-derived slow wave activity (SWA) during NREM sleep as a mirror of cortical development. However, studies about the longitudinal stability as well as the relationship with behavioral skills are needed before SWA topography may be considered such a reliable marker. We examined six subjects longitudinally (over 5.1 years) using high-density EEG and a visuomotor learning task. All subjects showed a steady increase of SWA at a frontal electrode and a decrease in central electrodes. Despite these large changes in EEG power, SWA topography was relatively stable within each subject during development indicating individual trait-like characteristics. Moreover, the SWA changes in the central cluster were related to the development of specific visuomotor skills. Taken together with the previous work in this domain, our results suggest that EEG sleep SWA represents a marker for motor skill development and further supports the idea that SWA mirrors cortical development during childhood and adolescence. © 2016 Wiley Periodicals, Inc.
Shah, Reshma P.; Spruyt, Karen; Kragie, Brigette C.; Greeley, Siri Atma W.; Msall, Michael E.
2012-01-01
OBJECTIVE To assess performance on an age-standardized neuromotor coordination task among sulfonylurea-treated KCNJ11-related neonatal diabetic patients. RESEARCH DESIGN AND METHODS Nineteen children carrying KCNJ11 mutations associated with isolated diabetes (R201H; n = 8), diabetes with neurodevelopmental impairment (V59M or V59A [V59M/A]; n = 8), or diabetes not consistently associated with neurodevelopmental disability (Y330C, E322K, or R201C; n = 3) were studied using the age-standardized Beery-Buktenica Developmental Test of Visual-Motor Integration (VMI). RESULTS Although R201H subjects tested in the normal range (median standard score = 107), children with V59M/A mutations had significantly lower than expected VMI standard scores (median = 49). The scores for all three groups were significantly different from each other (P = 0.0017). The age of sulfonylurea initiation was inversely correlated with VMI scores in the V59M/A group (P < 0.05). CONCLUSIONS Neurodevelopmental disability in KCNJ11-related diabetes includes visuomotor problems that may be ameliorated by early sulfonylurea treatment. Comprehensive longitudinal assessment on larger samples will be imperative. PMID:22855734
Seeing Circles and Drawing Ellipses: When Sound Biases Reproduction of Visual Motion
Aramaki, Mitsuko; Bringoux, Lionel; Ystad, Sølvi; Kronland-Martinet, Richard
2016-01-01
The perception and production of biological movements is characterized by the 1/3 power law, a relation linking the curvature and the velocity of an intended action. In particular, motions are perceived and reproduced distorted when their kinematics deviate from this biological law. Whereas most studies dealing with this perceptual-motor relation focused on visual or kinaesthetic modalities in a unimodal context, in this paper we show that auditory dynamics strikingly biases visuomotor processes. Biologically consistent or inconsistent circular visual motions were used in combination with circular or elliptical auditory motions. Auditory motions were synthesized friction sounds mimicking those produced by the friction of the pen on a paper when someone is drawing. Sounds were presented diotically and the auditory motion velocity was evoked through the friction sound timbre variations without any spatial cues. Remarkably, when subjects were asked to reproduce circular visual motion while listening to sounds that evoked elliptical kinematics without seeing their hand, they drew elliptical shapes. Moreover, distortion induced by inconsistent elliptical kinematics in both visual and auditory modalities added up linearly. These results bring to light the substantial role of auditory dynamics in the visuo-motor coupling in a multisensory context. PMID:27119411
Sacheli, Lucia Maria; Christensen, Andrea; Giese, Martin A; Taubert, Nick; Pavone, Enea Francesco; Aglioti, Salvatore Maria; Candidi, Matteo
2015-02-17
During social interactions people automatically apply stereotypes in order to rapidly categorize others. Racial differences are among the most powerful cues that drive these categorizations and modulate our emotional and cognitive reactivity to others. We investigated whether implicit racial bias may also shape hand kinematics during the execution of realistic joint actions with virtual in- and out-group partners. Caucasian participants were required to perform synchronous imitative or complementary reach-to-grasp movements with avatars that had different skin color (white and black) but showed identical action kinematics. Results demonstrate that stronger visuo-motor interference (indexed here as hand kinematics differences between complementary and imitative actions) emerged: i) when participants were required to predict the partner's action goal in order to on-line adapt their own movements accordingly; ii) during interactions with the in-group partner, indicating the partner's racial membership modulates interactive behaviors. Importantly, the in-group/out-group effect positively correlated with the implicit racial bias of each participant. Thus visuo-motor interference during joint action, likely reflecting predictive embodied simulation of the partner's movements, is affected by cultural inter-individual differences.
Development of interactions between sensorimotor representations in school-aged children
KAGERER, Florian A.; CLARK, Jane E.
2014-01-01
Reliable sensory-motor integration is a pre-requisite for optimal movement control; the functionality of this integration changes during development. Previous research has shown that motor performance of school-age children is characterized by higher variability, particularly under conditions where vision is not available, and movement planning and control is largely based on kinesthetic input. The purpose of the current study was to determine the characteristics of how kinesthetic-motor internal representations interact with visuo-motor representations during development. To this end, we induced a visuo-motor adaptation in 59 children, ranging from 5 to 12 years of age, as well as in a group of adults, and measured initial directional error (IDE) and endpoint error (EPE) during a subsequent condition where visual feedback was not available, and participants had to rely on kinesthetic input. Our results show that older children (age range 9–12 years) de-adapted significantly more than younger children (age range 5–8 years) over the course of 36 trials in the absence of vision, suggesting that the kinesthetic-motor internal representation in the older children was utilized more efficiently to guide hand movements, and was comparable to the performance of the adults. PMID:24636697
Yacubian, Elza Márcia; Wolf, Peter
2014-04-01
There is increasing awareness that reflex epileptic mechanisms provide unique insight into ictogenesis in human epilepsies. Several of the described triggers have in common that they imply complex visuomotor coordination and decision-making; they are today regarded as variations of one principle, i.e. praxis induction (PI). This focused review considers PI from the aspects of history and delineation, clinical and electroencephalographic presentation, syndromatic relations, prevalence, mechanisms of ictogenesis and nosological implications, treatment and prognosis. We reviewed a series of published articles and case reports on PI in order to clarify clinical and electroencephalographic findings, treatment and outcome. Findings of both induction and inhibition by the same stimuli suggest widening the reflex epilepsy concept into a broader one of epilepsies with exogenous modification of ictogenesis. PI is closely related to juvenile myoclonic epilepsy (JME) where hyperexcitability and hyperconnectivity of the entire network of visuomotor coordination seem to provide the precondition for eliciting reflex myocloni in the musculature active in the precipitating task. The conclusions on ictogenesis derived from PI support the concept of JME as a system disorder of the brain. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Rana computatrix to human language: towards a computational neuroethology of language evolution.
Arbib, Michael A
2003-10-15
Walter's Machina speculatrix inspired the name Rana computatrix for a family of models of visuomotor coordination in the frog, which contributed to the development of computational neuroethology. We offer here an 'evolutionary' perspective on models in the same tradition for rat, monkey and human. For rat, we show how the frog-like taxon affordance model provides a basis for the spatial navigation mechanisms that involve the hippocampus and other brain regions. For monkey, we recall two models of neural mechanisms for visuomotor coordination. The first, for saccades, shows how interactions between the parietal and frontal cortex augment superior colliculus seen as the homologue of frog tectum. The second, for grasping, continues the theme of parieto-frontal interactions, linking parietal affordances to motor schemas in premotor cortex. It further emphasizes the mirror system for grasping, in which neurons are active both when the monkey executes a specific grasp and when it observes a similar grasp executed by others. The model of human-brain mechanisms is based on the mirror-system hypothesis of the evolution of the language-ready brain, which sees the human Broca's area as an evolved extension of the mirror system for grasping.
Tramacere, Antonella; Pievani, Telmo; Ferrari, Pier F
2017-08-01
Considering the properties of mirror neurons (MNs) in terms of development and phylogeny, we offer a novel, unifying, and testable account of their evolution according to the available data and try to unify apparently discordant research, including the plasticity of MNs during development, their adaptive value and their phylogenetic relationships and continuity. We hypothesize that the MN system reflects a set of interrelated traits, each with an independent natural history due to unique selective pressures, and propose that there are at least three evolutionarily significant trends that gave raise to three subtypes: hand visuomotor, mouth visuomotor, and audio-vocal. Specifically, we put forward a mosaic evolution hypothesis, which posits that different types of MNs may have evolved at different rates within and among species. This evolutionary hypothesis represents an alternative to both adaptationist and associative models. Finally, the review offers a strong heuristic potential in predicting the circumstances under which specific variations and properties of MNs are expected. Such predictive value is critical to test new hypotheses about MN activity and its plastic changes, depending on the species, the neuroanatomical substrates, and the ecological niche. © 2016 Cambridge Philosophical Society.
Influence of Internal and External Noise on Spontaneous Visuomotor Synchronization.
Varlet, Manuel; Schmidt, R C; Richardson, Michael J
2016-01-01
Historically, movement noise or variability is considered to be an undesirable property of biological motor systems. In particular, noise is typically assumed to degrade the emergence and stability of rhythmic motor synchronization. Recently, however, it has been suggested that small levels of noise might actually improve the functioning of motor systems and facilitate their adaptation to environmental events. Here, the authors investigated whether noise can facilitate spontaneous rhythmic visuomotor synchronization. They examined the influence of internal noise in the rhythmic limb movements of participants and external noise in the movement of an oscillating visual stimulus on the occurrence of spontaneous synchronization. By indexing the natural frequency variability of participants and manipulating the frequency variability of the visual stimulus, the authors demonstrated that both internal and external noise degrade synchronization when the participants' and stimulus movement frequencies are similar, but can actually facilitate synchronization when the frequencies are different. Furthermore, the two kinds of noise interact with each other. Internal noise facilitates synchronization only when external noise is minimal and vice versa. Too much internal and external noise together degrades synchronization. These findings open new perspectives for better understanding the role of noise in human rhythmic coordination.
Use of a tracing task to assess visuomotor performance for evidence of concussion and recuperation.
Kelty-Stephen, Damian G; Qureshi Ahmad, Mona; Stirling, Leia
2015-12-01
The likelihood of suffering a concussion while playing a contact sport ranges from 15-45% per year of play. These rates are highly variable as athletes seldom report concussive symptoms, or do not recognize their symptoms. We performed a prospective cohort study (n = 206, aged 10-17) to examine visuomotor tracing to determine the sensitivity for detecting neuromotor components of concussion. Tracing variability measures were investigated for a mean shift with presentation of concussion-related symptoms and a linear return toward baseline over subsequent return visits. Furthermore, previous research relating brain injury to the dissociation of smooth movements into "submovements" led to the expectation that cumulative micropause duration, a measure of motion continuity, might detect likelihood of injury. Separate linear mixed effects regressions of tracing measures indicated that 4 of the 5 tracing measures captured both short-term effects of injury and longer-term effects of recovery with subsequent visits. Cumulative micropause duration has a positive relationship with likelihood of participants having had a concussion. The present results suggest that future research should evaluate how well the coefficients for the tracing parameter in the logistic regression help to detect concussion in novel cases. (c) 2015 APA, all rights reserved).
Graci, Valentina
2011-10-01
It has been previously suggested that coupled upper and limb movements need visuomotor coordination to be achieved. Previous studies have not investigated the role that visual cues may play in the coordination of locomotion and prehension. The aim of this study was to investigate if lower peripheral visual cues provide online control of the coordination of locomotion and prehension as they have been showed to do during adaptive gait and level walking. Twelve subjects reached a semi-empty or a full glass with their dominant or non-dominant hand at gait termination. Two binocular visual conditions were investigated: normal vision and lower visual occlusion. Outcome measures were determined using 3D motion capture techniques. Results showed that although the subjects were able to successfully complete the task without spilling the water from the glass under lower visual occlusion, they increased the margin of safety between final foot placements and glass. These findings suggest that lower visual cues are mainly used online to fine tune the trajectory of the upper and lower limbs moving toward the target. Copyright © 2011 Elsevier B.V. All rights reserved.
There and back again: putting the vectorial movement planning hypothesis to a critical test.
Kobak, Eva-Maria; Cardoso de Oliveira, Simone
2014-01-01
Based on psychophysical evidence about how learning of visuomotor transformation generalizes, it has been suggested that movements are planned on the basis of movement direction and magnitude, i.e., the vector connecting movement origin and targets. This notion is also known under the term "vectorial planning hypothesis". Previous psychophysical studies, however, have included separate areas of the workspace for training movements and testing the learning. This study eliminates this confounding factor by investigating the transfer of learning from forward to backward movements in a center-out-and-back task, in which the workspace for both movements is completely identical. Visual feedback allowed for learning only during movements towards the target (forward movements) and not while moving back to the origin (backward movements). When subjects learned the visuomotor rotation in forward movements, initial directional errors in backward movements also decreased to some degree. This learning effect in backward movements occurred predominantly when backward movements featured the same movement directions as the ones trained in forward movements (i.e., when opposite targets were presented). This suggests that learning was transferred in a direction specific way, supporting the notion that movement direction is the most prominent parameter used for motor planning.
From self-observation to imitation: visuomotor association on a robotic hand.
Chaminade, Thierry; Oztop, Erhan; Cheng, Gordon; Kawato, Mitsuo
2008-04-15
Being at the crux of human cognition and behaviour, imitation has become the target of investigations ranging from experimental psychology and neurophysiology to computational sciences and robotics. It is often assumed that the imitation is innate, but it has more recently been argued, both theoretically and experimentally, that basic forms of imitation could emerge as a result of self-observation. Here, we tested this proposal on a realistic experimental platform, comprising an associative network linking a 16 degrees of freedom robotic hand and a simple visual system. We report that this minimal visuomotor association is sufficient to bootstrap basic imitation. Our results indicate that crucial features of human imitation, such as generalization to new actions, may emerge from a connectionist associative network. Therefore, we suggest that a behaviour as complex as imitation could be, at the neuronal level, founded on basic mechanisms of associative learning, a notion supported by a recent proposal on the developmental origin of mirror neurons. Our approach can be applied to the development of realistic cognitive architectures for humanoid robots as well as to shed new light on the cognitive processes at play in early human cognitive development.
Neurophysiological correlates of visuo-motor learning through mental and physical practice.
Allami, Nadia; Brovelli, Andrea; Hamzaoui, El Mehdi; Regragui, Fakhita; Paulignan, Yves; Boussaoud, Driss
2014-03-01
We have previously shown that mental rehearsal can replace up to 75% of physical practice for learning a visuomotor task (Allami, Paulignan, Brovelli, & Boussaoud, (2008). Experimental Brain Research, 184, 105-113). Presumably, mental rehearsal must induce brain changes that facilitate motor learning. We tested this hypothesis by recording scalp electroencephalographic activity (EEG) in two groups of subjects. In one group, subjects executed a reach to grasp task for 240 trials. In the second group, subjects learned the task through a combination of mental rehearsal for the initial 180 trials followed by the execution of 60 trials. Thus, one group physically executed the task for 240 trials, the other only for 60 trials. Amplitudes and latencies of event-related potentials (ERPs) were compared across groups at different stages during learning. We found that ERP activity increases dramatically with training and reaches the same amplitude over the premotor regions in the two groups, despite large differences in physically executed trials. These findings suggest that during mental rehearsal, neuronal changes occur in the motor networks that make physical practice after mental rehearsal more effective in configuring functional networks for skilful behaviour. Copyright © 2013 Elsevier Ltd. All rights reserved.
Multilevel Factor Analyses of Family Data from the Hawai'i Family Study of Cognition
ERIC Educational Resources Information Center
McArdle, John J.; Hamagami, Fumiaki; Bautista, Randy; Onoye, Jane; Hishinuma, Earl S.; Prescott, Carol A.; Takeshita, Junji; Zonderman, Alan B.; Johnson, Ronald C.
2014-01-01
In this study, we reanalyzed the classic Hawai'i Family Study of Cognition (HFSC) data using contemporary multilevel modeling techniques. We used the HFSC baseline data ("N" = 6,579) and reexamined the factorial structure of 16 cognitive variables using confirmatory (restricted) measurement models in an explicit sequence. These models…
Raising L2 Listeners' Metacognitive Awareness: A Sociocultural Theory Perspective
ERIC Educational Resources Information Center
Cross, Jeremy
2010-01-01
Grounded in sociocultural theory, this article outlines a small-scale study exploring metacognitive awareness of second language (L2) listening. In each of five lessons, six pairs of advanced-level, adult, Japanese, EFL learners participated in a sequence of tasks involving the explicit verbalisation of strategies as part of a pedagogical cycle…
Filling in the Gaps: Memory Implications for Inferring Missing Content in Graphic Narratives
ERIC Educational Resources Information Center
Magliano, Joseph P.; Kopp, Kristopher; Higgs, Karyn; Rapp, David N.
2017-01-01
Visual narratives, including graphic novels, illustrated instructions, and picture books, convey event sequences constituting a plot but cannot depict all events that make up the plot. Viewers must generate inferences that fill the gaps between explicitly shown images. This study explored the inferential products and memory implications of…
It Is Not What You Expect: Dissociating Conflict Adaptation from Expectancies in a Stroop Task
ERIC Educational Resources Information Center
Jimenez, Luis; Mendez, Amavia
2013-01-01
In conflict tasks, congruency effects are modulated by the sequence of preceding trials. This modulation effect has been interpreted as an influence of a proactive mechanism of adaptation to conflict (Botvinick, Nystrom, Fissell, Carter, & Cohen, 1999), but the possible contribution of explicit expectancies to this adaptation effect remains…
Effects of Explicit Subtraction Instruction on Fifth Grade Students with Learning Disabilities
ERIC Educational Resources Information Center
Ferreira, Danielle
2009-01-01
This study involved an investigation of the effects of strategy instruction integrated with the concrete-representational-abstract teaching sequence on students with learning disabilities. A multiple probe design across subjects with one replication was used in this study. Two sets of data were analyzed to determine effectiveness of the…
Is Implicit Sequence Learning Impaired in Schizophrenia? A Meta-Analysis
ERIC Educational Resources Information Center
Siegert, Richard J.; Weatherall, Mark; Bell, Elliot M.
2008-01-01
Cognition in schizophrenia seems to be characterized by impaired performance on most tests of explicit or declarative learning contrasting with relatively intact performance on most tests of implicit or procedural learning. At the same time there have been conflicting results for studies that have used the Serial Reaction Time (SRT) task to…
Second Language Idiom Learning: The Effects of Lexical Knowledge and Pedagogical Sequencing
ERIC Educational Resources Information Center
Zyzik, Eve
2011-01-01
This article examines the acquisition of Spanish idioms in a classroom setting that was supplemented with explicit instruction over a 10-week period. The research design manipulated two variables: prior lexical knowledge and idiom organization. Sixty-five second language (L2) learners completed pre- and posttests that measured their ability to…
Spanish Subject Personal Pronoun Use by Monolinguals, Bilinguals and Second Language Learners
ERIC Educational Resources Information Center
Abreu, Laurel
2009-01-01
Various studies analyzing pronominal subject expression in Spanish have found that switch-reference, the relationship between two consecutive subjects, is the factor that most commonly constrains speakers' choice of a null or explicit subject personal pronoun (SPP) (Cameron, 1995; Flores-Ferran, 2002). When the second subject in a sequence differs…
Ex-Nihilo II: Examination Syllabi and the Sequencing of Cosmology Education
ERIC Educational Resources Information Center
Pimbblet, Kevin A.; Newman, John C.
2003-01-01
Cosmology education has become an integral part of modern physics courses. Directed by National Curricula, major UK examination boards have developed syllabi that contain explicit statements about the model of the Big Bang and the strong observational evidence that supports it. This work examines the similarities and differences in these…
A Case Study in Using Explicit Instruction to Teach Young Children Counting Skills
ERIC Educational Resources Information Center
Hinton, Vanessa; Stroizer, Shaunita; Flores, Margaret
2015-01-01
Number sense is one's ability to understand what numbers mean, perform mental mathematics, and look at the world and make comparisons. Researchers show instruction that teaches children how to classify numbers, put numbers in sequence, conserve numbers effectively, and count builds their number sense skills. Targeted instruction that teaches…
ERIC Educational Resources Information Center
Winarno, Sri; Muthu, Kalaiarasi Sonai; Ling, Lew Sook
2018-01-01
Direct instruction approach has been widely used in higher education. Many studies revealed that direct instruction improved students' knowledge. The characteristics of direct instruction include the subject delivered through face-to-face interaction with the lecturers and materials that sequenced deliberately and taught explicitly. However,…
ERIC Educational Resources Information Center
Terego, Alex
2009-01-01
The argument now raging in academic circles pits those who espouse teaching 21st century skills against those who believe that schools should be teaching explicit and well-sequenced content. This debate has largely been framed as an either-or proposition. In this author's view, portraying this debate as one between two mutually exclusive sides…
The repertoire of resistance: Non-compliance with directives in Milgram's 'obedience' experiments.
Hollander, Matthew M
2015-09-01
This paper is the first extensive conversation-analytic study of resistance to directives in one of the most controversial series of experiments in social psychology, Stanley Milgram's 1961-1962 study of 'obedience to authority'. As such, it builds bridges between interactionist and experimental areas of social psychology that do not often communicate with one another. Using as data detailed transcripts of 117 of the original sessions representing five experimental conditions, I show how research participants' resistance to experimental progressivity takes shape against a background of directive/response and complaint/remedy conversational sequences--sequence types that project opposing and competing courses of action. In local contexts of competing sequential relevancies, participants mobilize six forms of resistance to the confederate experimenter's directives to continue. These range along a continuum of explicitness, from relatively subtle resistance that momentarily postpones continuation to techniques for explicitly trying to stop the experiment. Although both 'obedient'- and 'defiant'-outcome participants use all six of the forms, evidence is provided suggesting precisely how members of the two groups differ in manner and frequency of resistance. © 2015 The British Psychological Society.
Stahl, Christoph; Barth, Marius; Haider, Hilde
2015-12-01
We investigated potential biases affecting the validity of the process-dissociation (PD) procedure when applied to sequence learning. Participants were or were not exposed to a serial reaction time task (SRTT) with two types of pseudo-random materials. Afterwards, participants worked on a free or cued generation task under inclusion and exclusion instructions. Results showed that pre-experimental response tendencies, non-associative learning of location frequencies, and the usage of cue locations introduced bias to PD estimates. These biases may lead to erroneous conclusions regarding the presence of implicit and explicit knowledge. Potential remedies for these problems are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
Attentional load and implicit sequence learning.
Shanks, David R; Rowland, Lee A; Ranger, Mandeep S
2005-06-01
A widely employed conceptualization of implicit learning hypothesizes that it makes minimal demands on attentional resources. This conjecture was investigated by comparing learning under single-task and dual-task conditions in the sequential reaction time (SRT) task. Participants learned probabilistic sequences, with dual-task participants additionally having to perform a counting task using stimuli that were targets in the SRT display. Both groups were then tested for sequence knowledge under single-task (Experiments 1 and 2) or dual-task (Experiment 3) conditions. Participants also completed a free generation task (Experiments 2 and 3) under inclusion or exclusion conditions to determine if sequence knowledge was conscious or unconscious in terms of its access to intentional control. The experiments revealed that the secondary task impaired sequence learning and that sequence knowledge was consciously accessible. These findings disconfirm both the notion that implicit learning is able to proceed normally under conditions of divided attention, and that the acquired knowledge is inaccessible to consciousness. A unitary framework for conceptualizing implicit and explicit learning is proposed.
Slow wave and REM sleep deprivation effects on explicit and implicit memory during sleep.
Casey, Sarah J; Solomons, Luke C; Steier, Joerg; Kabra, Neeraj; Burnside, Anna; Pengo, Martino F; Moxham, John; Goldstein, Laura H; Kopelman, Michael D
2016-11-01
It has been debated whether different stages in the human sleep cycle preferentially mediate the consolidation of explicit and implicit memories, or whether all of the stages in succession are necessary for optimal consolidation. Here we investigated whether the selective deprivation of slow wave sleep (SWS) or rapid eye movement (REM) sleep over an entire night would have a specific effect on consolidation in explicit and implicit memory tasks. Participants completed a set of explicit and implicit memory tasks at night, prior to sleep. They had 1 control night of undisturbed sleep and 2 experimental nights, during which either SWS or REM sleep was selectively deprived across the entire night (sleep conditions counterbalanced across participants). Polysomnography recordings quantified precisely the amount of SWS and REM sleep that occurred during each of the sleep conditions, and spindle counts were recorded. In the morning, participants completed the experimental tasks in the same sequence as the night before. SWS deprivation disrupted the consolidation of explicit memories for visuospatial information (ηp2 = .23), and both SWS (ηp2 = .53) and REM sleep (ηp2 = .52) deprivation adversely affected explicit verbal recall. Neither SWS nor REM sleep deprivation affected aspects of short-term or working memory, and did not affect measures of verbal implicit memory. Spindle counts did not correlate significantly with memory performance. These findings demonstrate the importance of measuring the sleep cycles throughout the entire night, and the contribution of both SWS and REM sleep to memory consolidation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Verbal implicit sequence learning in persons who stutter and persons with Parkinson's disease.
Smits-Bandstra, Sarah; Gracco, Vincent
2013-01-01
The authors investigated the integrity of implicit learning systems in 14 persons with Parkinson's disease (PPD), 14 persons who stutter (PWS), and 14 control participants. In a 120-min session participants completed a verbal serial reaction time task, naming aloud 4 syllables in response to 4 visual stimuli. Unbeknownst to participants, the syllables formed a repeating 8-item sequence. PWS and PPD demonstrated slower reaction times for early but not late learning trials relative to controls reflecting delays but not deficiencies in general learning. PPD also demonstrated less accuracy in general learning relative to controls. All groups demonstrated similar limited explicit sequence knowledge. Both PWS and PPD demonstrated significantly less implicit sequence learning relative to controls, suggesting that stuttering may be associated with compromised functional integrity of the cortico-striato-thalamo-cortical loop.
Drosopoulos, Spyridon; Harrer, Dorothea; Born, Jan
2011-03-01
Sleep supports the conversion of implicitly acquired information into explicitly available knowledge. Currently, it is unclear if awareness about the presence of regularities in the stimulus material can modulate this conversion. Forty participants were trained on a serial reaction time task (SRTT). Twenty participants were informed afterwards that there was some regularity in the underlying sequence, without giving them any specific details about this regularity (aware condition); twenty other participants were not informed (unaware condition). Ten participants in each group slept the night after training, whereas 10 remained awake. After a second night of (recovery) sleep, a generation task followed where the target positions of the trained SRTT had to be deliberately generated. Both "sleep" and "awareness" improved generation task performance, but the two factors did not interact. We conclude that whilst sleep facilitates the conversion of implicit into explicit knowledge, the effect of awareness is not specific to sleep-dependent consolidation. Copyright © 2010 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Heuer, Herbert; Hegele, Mathias
2010-01-01
Mechanical tools are transparent in the sense that their input-output relations can be derived from their perceptible characteristics. Modern technology creates more and more tools that lack mechanical transparency, such as in the control of the position of a cursor by means of a computer mouse or some other input device. We inquired whether an…
A Biologically Inspired Learning to Grasp System
2001-10-25
possible extensive discussions of data on the premotor cortex and monkey grasping circuit with Giacomo Rizzolatti , Vittorio Gallese, to whom we express...premotor specialisation for the different types of grasps that Rizzolatti group [3] has found be formed at this age yet. Infants will need to...our gratitude. REFERENCES [1] M. Jeannerod, M.A. Arbib, G. Rizzolatti , H. Sakata, “Grasping objects: the cortical mechanisms of visuomotor
The influence of communication mode on written language processing and beyond.
Barca, Laura; Pezzulo, Giovanni
2017-01-01
Empirical evidence suggests a broad impact of communication mode on cognition at large, beyond language processing. Using a sign language since infancy might shape the representation of words and other linguistic stimuli - for example, incorporating in it the movements and signs used to express them. Once integrated into linguistic representations, this visuo-motor content can affect deaf signers' linguistic and cognitive processing.
Sequence-specific bias correction for RNA-seq data using recurrent neural networks.
Zhang, Yao-Zhong; Yamaguchi, Rui; Imoto, Seiya; Miyano, Satoru
2017-01-25
The recent success of deep learning techniques in machine learning and artificial intelligence has stimulated a great deal of interest among bioinformaticians, who now wish to bring the power of deep learning to bare on a host of bioinformatical problems. Deep learning is ideally suited for biological problems that require automatic or hierarchical feature representation for biological data when prior knowledge is limited. In this work, we address the sequence-specific bias correction problem for RNA-seq data redusing Recurrent Neural Networks (RNNs) to model nucleotide sequences without pre-determining sequence structures. The sequence-specific bias of a read is then calculated based on the sequence probabilities estimated by RNNs, and used in the estimation of gene abundance. We explore the application of two popular RNN recurrent units for this task and demonstrate that RNN-based approaches provide a flexible way to model nucleotide sequences without knowledge of predetermined sequence structures. Our experiments show that training a RNN-based nucleotide sequence model is efficient and RNN-based bias correction methods compare well with the-state-of-the-art sequence-specific bias correction method on the commonly used MAQC-III data set. RNNs provides an alternative and flexible way to calculate sequence-specific bias without explicitly pre-determining sequence structures.
Kuntz, Jessica R; Karl, Jenni M; Doan, Jon B; Whishaw, Ian Q
2018-04-01
Reach-to-grasp movements feature the integration of a reach directed by the extrinsic (location) features of a target and a grasp directed by the intrinsic (size, shape) features of a target. The action-perception theory suggests that integration and scaling of a reach-to-grasp movement, including its trajectory and the concurrent digit shaping, are features that depend upon online action pathways of the dorsal visuomotor stream. Scaling is much less accurate for a pantomime reach-to-grasp movement, a pretend reach with the target object absent. Thus, the action-perception theory proposes that pantomime movement is mediated by perceptual pathways of the ventral visuomotor stream. A distinguishing visual feature of a real reach-to-grasp movement is gaze anchoring, in which a participant visually fixates the target throughout the reach and disengages, often by blinking or looking away/averting the head, at about the time that the target is grasped. The present study examined whether gaze anchoring is associated with pantomime reaching. The eye and hand movements of participants were recorded as they reached for a ball of one of three sizes, located on a pedestal at arms' length, or pantomimed the same reach with the ball and pedestal absent. The kinematic measures for real reach-to-grasp movements were coupled to the location and size of the target, whereas the kinematic measures for pantomime reach-to-grasp, although grossly reflecting target features, were significantly altered. Gaze anchoring was also tightly coupled to the target for real reach-to-grasp movements, but there was no systematic focus for gaze, either in relation with the virtual target, the previous location of the target, or the participant's reaching hand, for pantomime reach-to-grasp. The presence of gaze anchoring during real vs. its absence in pantomime reach-to-grasp supports the action-perception theory that real, but not pantomime, reaches are online visuomotor actions and is discussed in relation with the neural control of real and pantomime reach-to-grasp movements.
Subbian, Vignesh; Ratcliff, Jonathan J; Korfhagen, Joseph J; Hart, Kimberly W; Meunier, Jason M; Shaw, George J; Lindsell, Christopher J; Beyette, Fred R
2016-04-01
Postconcussion symptoms (PCS) are a common complication of mild traumatic brain injury (TBI). Currently, there is no validated clinically available method to reliably predict at the time of injury who will subsequently develop PCS. The purpose of this study was to determine if PCS following mild TBI can be predicted during the initial presentation to an emergency department (ED) using a novel robotic-assisted assessment of neurologic function. All patients presenting to an urban ED with a chief complaint of head injury within the preceding 24 hours were screened for inclusion from March 2013 to April 2014. The enrollment criteria were as follows: 1) age of 18 years or greater, 2) ability and willingness to provide written informed consent, 3) blunt head trauma and clinical diagnosis of isolated mild TBI by the treating physician, and 4) blood alcohol level of <100 mg/dL. Eligible mild TBI patients were enrolled and their neuromotor function was assessed in the ED using a battery of five tests that cover a range of proprioceptive, visuomotor, visuospatial, and executive function performance metrics. At 3 weeks postinjury, participants were contacted via telephone to complete the Rivermead Post-Concussion Symptoms Questionnaire to assess the presence of significant PCS. A total of 66 mild TBI patients were enrolled in the study with 42 of them completing both the ED assessment and the follow-up; 40 patients were included in the analyses. The area under the receiver operating characteristic curve (AUC) for the entire test battery was 0.72 (95% confidence interval [CI] = 0.54 to 0.90). The AUC for tests that primarily measure visuomotor and proprioceptive performance were 0.80 (95% CI = 0.65 to 0.95) and 0.71 (95% CI = 0.53 to 0.89), respectively. The robotic-assisted test battery has the ability to discriminate between subjects who developed PCS and those who did not. Additionally, poor visuomotor and proprioceptive performance were most strongly associated with subsequent PCS. © 2016 by the Society for Academic Emergency Medicine.
Sanchez, Daniel J; Reber, Paul J
2012-04-01
The memory system that supports implicit perceptual-motor sequence learning relies on brain regions that operate separately from the explicit, medial temporal lobe memory system. The implicit learning system therefore likely has distinct operating characteristics and information processing constraints. To attempt to identify the limits of the implicit sequence learning mechanism, participants performed the serial interception sequence learning (SISL) task with covertly embedded repeating sequences that were much longer than most previous studies: ranging from 30 to 60 (Experiment 1) and 60 to 90 (Experiment 2) items in length. Robust sequence-specific learning was observed for sequences up to 80 items in length, extending the known capacity of implicit sequence learning. In Experiment 3, 12-item repeating sequences were embedded among increasing amounts of irrelevant nonrepeating sequences (from 20 to 80% of training trials). Despite high levels of irrelevant trials, learning occurred across conditions. A comparison of learning rates across all three experiments found a surprising degree of constancy in the rate of learning regardless of sequence length or embedded noise. Sequence learning appears to be constant with the logarithm of the number of sequence repetitions practiced during training. The consistency in learning rate across experiments and conditions implies that the mechanisms supporting implicit sequence learning are not capacity-constrained by very long sequences nor adversely affected by high rates of irrelevant sequences during training.
The MaizeGDB Genome Browser tutorial: one example of database outreach to biologists via video.
Harper, Lisa C; Schaeffer, Mary L; Thistle, Jordan; Gardiner, Jack M; Andorf, Carson M; Campbell, Darwin A; Cannon, Ethalinda K S; Braun, Bremen L; Birkett, Scott M; Lawrence, Carolyn J; Sen, Taner Z
2011-01-01
Video tutorials are an effective way for researchers to quickly learn how to use online tools offered by biological databases. At MaizeGDB, we have developed a number of video tutorials that demonstrate how to use various tools and explicitly outline the caveats researchers should know to interpret the information available to them. One such popular video currently available is 'Using the MaizeGDB Genome Browser', which describes how the maize genome was sequenced and assembled as well as how the sequence can be visualized and interacted with via the MaizeGDB Genome Browser. Database
Integration of Temporal and Ordinal Information During Serial Interception Sequence Learning
Gobel, Eric W.; Sanchez, Daniel J.; Reber, Paul J.
2011-01-01
The expression of expert motor skills typically involves learning to perform a precisely timed sequence of movements (e.g., language production, music performance, athletic skills). Research examining incidental sequence learning has previously relied on a perceptually-cued task that gives participants exposure to repeating motor sequences but does not require timing of responses for accuracy. Using a novel perceptual-motor sequence learning task, learning a precisely timed cued sequence of motor actions is shown to occur without explicit instruction. Participants learned a repeating sequence through practice and showed sequence-specific knowledge via a performance decrement when switched to an unfamiliar sequence. In a second experiment, the integration of representation of action order and timing sequence knowledge was examined. When either action order or timing sequence information was selectively disrupted, performance was reduced to levels similar to completely novel sequences. Unlike prior sequence-learning research that has found timing information to be secondary to learning action sequences, when the task demands require accurate action and timing information, an integrated representation of these types of information is acquired. These results provide the first evidence for incidental learning of fully integrated action and timing sequence information in the absence of an independent representation of action order, and suggest that this integrative mechanism may play a material role in the acquisition of complex motor skills. PMID:21417511
Spectral distances on the doubled Moyal plane using Dirac eigenspinors
NASA Astrophysics Data System (ADS)
Kumar, Kaushlendra; Chakraborty, Biswajit
2018-04-01
We present here a novel method for computing spectral distances in the doubled Moyal plane in a noncommutative geometrical framework using Dirac eigenspinors, while solving the Lipschitz ball condition explicitly through matrices. The standard results of longitudinal, transverse, and hypotenuse distances between different pairs of pure states have been computed and the Pythagorean equality between them has been reproduced. The issue of the nonunital nature of the Moyal plane algebra is taken care of through a sequence of projection operators constructed from Dirac eigenspinors, which plays a crucial role throughout this paper. At the end, a toy model for a "Higgs field" has been constructed by fluctuating the Dirac operator and the variation on the transverse distance has been demonstrated, through an explicit computation.
Towards automated assistance for operating home medical devices.
Gao, Zan; Detyniecki, Marcin; Chen, Ming-Yu; Wu, Wen; Hauptmann, Alexander G; Wactlar, Howard D
2010-01-01
To detect errors when subjects operate a home medical device, we observe them with multiple cameras. We then perform action recognition with a robust approach to recognize action information based on explicitly encoding motion information. This algorithm detects interest points and encodes not only their local appearance but also explicitly models local motion. Our goal is to recognize individual human actions in the operations of a home medical device to see if the patient has correctly performed the required actions in the prescribed sequence. Using a specific infusion pump as a test case, requiring 22 operation steps from 6 action classes, our best classifier selects high likelihood action estimates from 4 available cameras, to obtain an average class recognition rate of 69%.
Multiple systems for motor skill learning.
Clark, Dav; Ivry, Richard B
2010-07-01
Motor learning is a ubiquitous feature of human competence. This review focuses on two particular classes of model tasks for studying skill acquisition. The serial reaction time (SRT) task is used to probe how people learn sequences of actions, while adaptation in the context of visuomotor or force field perturbations serves to illustrate how preexisting movements are recalibrated in novel environments. These tasks highlight important issues regarding the representational changes that occur during the course of motor learning. One important theme is that distinct mechanisms vary in their information processing costs during learning and performance. Fast learning processes may require few trials to produce large changes in performance but impose demands on cognitive resources. Slower processes are limited in their ability to integrate complex information but minimally demanding in terms of attention or processing resources. The representations derived from fast systems may be accessible to conscious processing and provide a relatively greater measure of flexibility, while the representations derived from slower systems are more inflexible and automatic in their behavior. In exploring these issues, we focus on how multiple neural systems may interact and compete during the acquisition and consolidation of new behaviors. Copyright © 2010 John Wiley & Sons, Ltd. This article is categorized under: Psychology > Motor Skill and Performance. Copyright © 2010 John Wiley & Sons, Ltd.
Coelho, Daniel Boari; Teixeira, Luis Augusto
2017-08-01
Processing of predictive contextual cues of an impending perturbation is thought to induce adaptive postural responses. Cueing in previous research has been provided through repeated perturbations with a constant foreperiod. This experimental strategy confounds explicit predictive cueing with adaptation and non-specific properties of temporal cueing. Two experiments were performed to assess those factors separately. To perturb upright balance, the base of support was suddenly displaced backwards in three amplitudes: 5, 10 and 15 cm. In Experiment 1, we tested the effect of cueing the amplitude of the impending postural perturbation by means of visual signals, and the effect of adaptation to repeated exposures by comparing block versus random sequences of perturbation. In Experiment 2, we evaluated separately the effects of cueing the characteristics of an impending balance perturbation and cueing the timing of perturbation onset. Results from Experiment 1 showed that the block sequence of perturbations led to increased stability of automatic postural responses, and modulation of magnitude and onset latency of muscular responses. Results from Experiment 2 showed that only the condition cueing timing of platform translation onset led to increased balance stability and modulation of onset latency of muscular responses. Conversely, cueing platform displacement amplitude failed to induce any effects on automatic postural responses in both experiments. Our findings support the interpretation of improved postural responses via optimized sensorimotor processes, at the same time that cast doubt on the notion that cognitive processing of explicit contextual cues advancing the magnitude of an impending perturbation can preset adaptive postural responses.
Ferdinand, Nicola K; Kray, Jutta
2017-03-01
This study aimed at investigating the ability to learn regularities across the life span and examine whether this learning process can be supported or hampered by verbalizations. For this purpose, children (aged 8-10 years) and younger (aged 19-30 years) and older (aged 70-80 years) adults took part in a sequence learning experiment. We found that verbalizing sequence-congruent information during learning is a powerful tool to generate explicit knowledge and it is especially helpful for younger adults. Although recent research suggests that implicit learning can be influenced by directing the participants' attention to relevant aspects of the task, verbalizations had a much weaker influence on implicit than explicit learning. Our results show that verbalizing during learning slows down reaction times (RTs) but does not influence the amount of implicit learning. Especially older adults were not able to overcome the cost of the dual-task situation. Younger adults, in contrast, show an initial dual-tasking cost that, in the case of a helpful verbalization, is overcome with practice and turns into a RT and learning benefit. However, when the verbalization is omitted this benefit is lost, that is, better implicit learning seems to be confined to situations in which the supporting verbalization is maintained. Additionally, we did not find reliable age differences in implicit learning in the no verbalization groups, which speaks in favor of age-invariant models of implicit learning across the life span. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Effective Identification of Similar Patients Through Sequential Matching over ICD Code Embedding.
Nguyen, Dang; Luo, Wei; Venkatesh, Svetha; Phung, Dinh
2018-04-11
Evidence-based medicine often involves the identification of patients with similar conditions, which are often captured in ICD (International Classification of Diseases (World Health Organization 2013)) code sequences. With no satisfying prior solutions for matching ICD-10 code sequences, this paper presents a method which effectively captures the clinical similarity among routine patients who have multiple comorbidities and complex care needs. Our method leverages the recent progress in representation learning of individual ICD-10 codes, and it explicitly uses the sequential order of codes for matching. Empirical evaluation on a state-wide cancer data collection shows that our proposed method achieves significantly higher matching performance compared with state-of-the-art methods ignoring the sequential order. Our method better identifies similar patients in a number of clinical outcomes including readmission and mortality outlook. Although this paper focuses on ICD-10 diagnosis code sequences, our method can be adapted to work with other codified sequence data.
Thavabalasingam, Sathesan; O'Neil, Edward B; Lee, Andy C H
2018-05-22
Recent rodent work suggests the hippocampus may provide a temporal representation of event sequences, in which the order of events and the interval durations between them are encoded. There is, however, limited human evidence for the latter, in particular whether the hippocampus processes duration information pertaining to the passage of time rather than qualitative or quantitative changes in event content. We scanned participants while they made match-mismatch judgements on each trial between a study sequence of events and a subsequent test sequence. Participants explicitly remembered event order or interval duration information (Experiment 1), or monitored order only, with duration being manipulated implicitly (Experiment 2). Hippocampal study-test pattern similarity was significantly reduced by changes to order or duration in mismatch trials, even when duration was processed implicitly. Our findings suggest the human hippocampus processes short intervals within sequences and support the idea that duration information is integrated into hippocampal mnemonic representations. Copyright © 2018 Elsevier Inc. All rights reserved.
Motor sequence learning-induced neural efficiency in functional brain connectivity.
Karim, Helmet T; Huppert, Theodore J; Erickson, Kirk I; Wollam, Mariegold E; Sparto, Patrick J; Sejdić, Ervin; VanSwearingen, Jessie M
2017-02-15
Previous studies have shown the functional neural circuitry differences before and after an explicitly learned motor sequence task, but have not assessed these changes during the process of motor skill learning. Functional magnetic resonance imaging activity was measured while participants (n=13) were asked to tap their fingers to visually presented sequences in blocks that were either the same sequence repeated (learning block) or random sequences (control block). Motor learning was associated with a decrease in brain activity during learning compared to control. Lower brain activation was noted in the posterior parietal association area and bilateral thalamus during the later periods of learning (not during the control). Compared to the control condition, we found the task-related motor learning was associated with decreased connectivity between the putamen and left inferior frontal gyrus and left middle cingulate brain regions. Motor learning was associated with changes in network activity, spatial extent, and connectivity. Copyright © 2016 Elsevier B.V. All rights reserved.
String Mining in Bioinformatics
NASA Astrophysics Data System (ADS)
Abouelhoda, Mohamed; Ghanem, Moustafa
Sequence analysis is a major area in bioinformatics encompassing the methods and techniques for studying the biological sequences, DNA, RNA, and proteins, on the linear structure level. The focus of this area is generally on the identification of intra- and inter-molecular similarities. Identifying intra-molecular similarities boils down to detecting repeated segments within a given sequence, while identifying inter-molecular similarities amounts to spotting common segments among two or multiple sequences. From a data mining point of view, sequence analysis is nothing but string- or pattern mining specific to biological strings. For a long time, this point of view, however, has not been explicitly embraced neither in the data mining nor in the sequence analysis text books, which may be attributed to the co-evolution of the two apparently independent fields. In other words, although the word "data-mining" is almost missing in the sequence analysis literature, its basic concepts have been implicitly applied. Interestingly, recent research in biological sequence analysis introduced efficient solutions to many problems in data mining, such as querying and analyzing time series [49,53], extracting information from web pages [20], fighting spam mails [50], detecting plagiarism [22], and spotting duplications in software systems [14].
String Mining in Bioinformatics
NASA Astrophysics Data System (ADS)
Abouelhoda, Mohamed; Ghanem, Moustafa
Sequence analysis is a major area in bioinformatics encompassing the methods and techniques for studying the biological sequences, DNA, RNA, and proteins, on the linear structure level. The focus of this area is generally on the identification of intra- and inter-molecular similarities. Identifying intra-molecular similarities boils down to detecting repeated segments within a given sequence, while identifying inter-molecular similarities amounts to spotting common segments among two or multiple sequences. From a data mining point of view, sequence analysis is nothing but string- or pattern mining specific to biological strings. For a long time, this point of view, however, has not been explicitly embraced neither in the data mining nor in the sequence analysis text books, which may be attributed to the co-evolution of the two apparently independent fields. In other words, although the word “data-mining” is almost missing in the sequence analysis literature, its basic concepts have been implicitly applied. Interestingly, recent research in biological sequence analysis introduced efficient solutions to many problems in data mining, such as querying and analyzing time series [49,53], extracting information from web pages [20], fighting spam mails [50], detecting plagiarism [22], and spotting duplications in software systems [14].
EventThread: Visual Summarization and Stage Analysis of Event Sequence Data.
Guo, Shunan; Xu, Ke; Zhao, Rongwen; Gotz, David; Zha, Hongyuan; Cao, Nan
2018-01-01
Event sequence data such as electronic health records, a person's academic records, or car service records, are ordered series of events which have occurred over a period of time. Analyzing collections of event sequences can reveal common or semantically important sequential patterns. For example, event sequence analysis might reveal frequently used care plans for treating a disease, typical publishing patterns of professors, and the patterns of service that result in a well-maintained car. It is challenging, however, to visually explore large numbers of event sequences, or sequences with large numbers of event types. Existing methods focus on extracting explicitly matching patterns of events using statistical analysis to create stages of event progression over time. However, these methods fail to capture latent clusters of similar but not identical evolutions of event sequences. In this paper, we introduce a novel visualization system named EventThread which clusters event sequences into threads based on tensor analysis and visualizes the latent stage categories and evolution patterns by interactively grouping the threads by similarity into time-specific clusters. We demonstrate the effectiveness of EventThread through usage scenarios in three different application domains and via interviews with an expert user.
ERIC Educational Resources Information Center
Holmes, Scott A.; Heath, Matthew
2013-01-01
An issue of continued debate in the visuomotor control literature surrounds whether a 2D object serves as a representative proxy for a 3D object in understanding the nature of the visual information supporting grasping control. In an effort to reconcile this issue, we examined the extent to which aperture profiles for grasping 2D and 3D objects…
Neural substrates of visuomotor learning based on improved feedback control and prediction
Grafton, Scott T.; Schmitt, Paul; Horn, John Van; Diedrichsen, Jörn
2008-01-01
Motor skills emerge from learning feedforward commands as well as improvements in feedback control. These two components of learning were investigated in a compensatory visuomotor tracking task on a trial-by-trial basis. Between trial learning was characterized with a state-space model to provide smoothed estimates of feedforward and feedback learning, separable from random fluctuations in motor performance and error. The resultant parameters were correlated with brain activity using magnetic resonance imaging. Learning related to the generation of a feedforward command correlated with activity in dorsal premotor cortex, inferior parietal lobule, supplementary motor area and cingulate motor area, supporting a role of these areas in retrieving and executing a predictive motor command. Modulation of feedback control was associated with activity in bilateral posterior superior parietal lobule as well as right ventral premotor cortex. Performance error correlated with activity in a widespread cortical and subcortical network including bilateral parietal, premotor and rostral anterior cingulate cortex as well as the cerebellar cortex. Finally, trial-by-trial changes of kinematics, as measured by mean absolute hand acceleration, correlated with activity in motor cortex and anterior cerebellum. The results demonstrate that incremental, learning dependent changes can be modeled on a trial-by-trial basis and neural substrates for feedforward control of novel motor programs are localized to secondary motor areas. PMID:18032069
Lysaker, Paul H; Bryson, Gary J; Davis, Louanne W; Bell, Morris D
2005-06-15
Vocational impairments in schizophrenia have been widely linked to deficits in neurocognition. This study examined the possibility that deficits in visuomotor processing speed and flexibility in abstract thought may in combination be an especially potent risk factor for poorer levels of work performance in rehabilitation. Fifty-seven participants with confirmed diagnoses of schizophrenia spectrum disorders were administered the Digit Symbol Subtest and the Wisconsin Card Sorting Test and then offered work placements in a vocational rehabilitation program. Work performance was assessed biweekly over two months using the Work Behavior Inventory. Multivariate and univariate repeated ANOVA revealed that participants classified as having no impairments in either visuomotor processing speed and flexibility in abstract thought (n=14) had superior work performance compared to participants with deficits in either one area (n=20) or both areas (n=23). Additionally, participants with no impairments were the only group to show significant improvement in work performance over 7 weeks of rehabilitation. Participants with only one deficit had significantly better work performance than participants with both deficits but showed no statistically significant improvement in work performance. Results suggest assessments of these domains of neurocognition may provide important information about individual needs for adjunct services.
He, Jiang-Hong; Yang, Yi; Zhang, Yi; Qiu, Si-You; Zhou, Zhen-Yu; Dang, Yuan-Yuan; Dai, Yi-Wu; Liu, Yi-Jun; Xu, Ru-Xiang
2014-08-01
Resting-state functional MRI (fMRI) has emerged as a valuable tool to characterize the complex states encompassing disorders of consciousness (DOC). Awareness appears to comprise two coexistent, anticorrelated components named the external and internal awareness networks. The present study hypothesizes that DOC interrupts the balance between the internal and external awareness networks. To gain more understanding of this phenomenon, the present study analyzed resting-state fMRI data from 12 patients with DOC versus 12 healthy age-matched controls. The data were explored using independent component analysis and amplitude of low-frequency fluctuation (ALFF) analysis. The results indicated that DOC deactivated midline areas associated with internal awareness. In addition, external awareness was strengthened in DOC because of increased activation in the insula, lingual gyrus, paracentral and supplementary motor area. The activity patterns suggested strengthened external awareness against weakened internal awareness in DOC. In particular, increased activity found in the insula, lingual gyrus, paracentral and supplementary motor area of patients with DOC implied possible involvement of augmented visuo-motor modulation in these patients. DOC is probably related to hyperactive external awareness opposing hypoactive internal awareness. This unique pattern of brain activity may potentially be a prognostic marker for DOC. Copyright © 2014 John Wiley & Sons, Ltd.
Effects of Pictorial Cues on Reaching Depend on the Distinctiveness of Target Objects
Himmelbach, Marc
2013-01-01
There is an ongoing debate under what conditions learned object sizes influence visuomotor control under preserved stereovision. Using meaningful objects (matchboxes of locally well-known brands in the UK) a previous study has nicely shown that the recognition of these objects influences action programming by means of reach amplitude and grasp pre-shaping even under binocular vision. Using the same paradigm, we demonstrated that short-term learning of colour-size associations was not sufficient to induce any visuomotor effects under binocular viewing conditions. Now we used the same matchboxes, for which the familiarity effect was shown in the UK, with German participants who have never seen these objects before. We addressed the question whether simply a high degree of distinctness, or whether instead actual prior familiarity of these objects, are required to affect motor computations. We found that under monocular and binocular viewing conditions the learned size and location influenced the amplitude of the reaching component significantly. In contrast, the maximum grip aperture remained unaffected for binocular vision. We conclude that visual distinctness is sufficient to form reliable associations in short-term learning to influence reaching even for preserved stereovision. Grasp pre-shaping instead seems to be less susceptible to such perceptual effects. PMID:23382882
Face processing in chronic alcoholism: a specific deficit for emotional features.
Maurage, P; Campanella, S; Philippot, P; Martin, S; de Timary, P
2008-04-01
It is well established that chronic alcoholism is associated with a deficit in the decoding of emotional facial expression (EFE). Nevertheless, it is still unclear whether this deficit is specifically for emotions or due to a more general impairment in visual or facial processing. This study was designed to clarify this issue using multiple control tasks and the subtraction method. Eighteen patients suffering from chronic alcoholism and 18 matched healthy control subjects were asked to perform several tasks evaluating (1) Basic visuo-spatial and facial identity processing; (2) Simple reaction times; (3) Complex facial features identification (namely age, emotion, gender, and race). Accuracy and reaction times were recorded. Alcoholic patients had a preserved performance for visuo-spatial and facial identity processing, but their performance was impaired for visuo-motor abilities and for the detection of complex facial aspects. More importantly, the subtraction method showed that alcoholism is associated with a specific EFE decoding deficit, still present when visuo-motor slowing down is controlled for. These results offer a post hoc confirmation of earlier data showing an EFE decoding deficit in alcoholism by strongly suggesting a specificity of this deficit for emotions. This may have implications for clinical situations, where emotional impairments are frequently observed among alcoholic subjects.
Lack of sex effect on brain activity during a visuomotor response task: functional MR imaging study.
Mikhelashvili-Browner, Nina; Yousem, David M; Wu, Colin; Kraut, Michael A; Vaughan, Christina L; Oguz, Kader Karli; Calhoun, Vince D
2003-03-01
As more individuals are enrolled in clinical functional MR imaging (fMRI) studies, an understanding of how sex may influence fMRI-measured brain activation is critical. We used fixed- and random-effects models to study the influence of sex on fMRI patterns of brain activation during a simple visuomotor reaction time task in the group of 26 age-matched men and women. We evaluated the right visual, left visual, left primary motor, left supplementary motor, and left anterior cingulate areas. Volumes of activations did not significantly differ between the groups in any defined regions. Analysis of variance failed to show any significant correlations between sex and volumes of brain activation in any location studied. Mean percentage signal-intensity changes for all locations were similar between men and women. A two-way t test of brain activation in men and women, performed as a part of random-effects modeling, showed no significant difference at any site. Our results suggest that sex seems to have little influence on fMRI brain activation when we compared performance on the simple reaction-time task. The need to control for sex effects is not critical in the analysis of this task with fMRI.
A Direct Brain-to-Brain Interface in Humans
Rao, Rajesh P. N.; Stocco, Andrea; Bryan, Matthew; Sarma, Devapratim; Youngquist, Tiffany M.; Wu, Joseph; Prat, Chantel S.
2014-01-01
We describe the first direct brain-to-brain interface in humans and present results from experiments involving six different subjects. Our non-invasive interface, demonstrated originally in August 2013, combines electroencephalography (EEG) for recording brain signals with transcranial magnetic stimulation (TMS) for delivering information to the brain. We illustrate our method using a visuomotor task in which two humans must cooperate through direct brain-to-brain communication to achieve a desired goal in a computer game. The brain-to-brain interface detects motor imagery in EEG signals recorded from one subject (the “sender”) and transmits this information over the internet to the motor cortex region of a second subject (the “receiver”). This allows the sender to cause a desired motor response in the receiver (a press on a touchpad) via TMS. We quantify the performance of the brain-to-brain interface in terms of the amount of information transmitted as well as the accuracies attained in (1) decoding the sender’s signals, (2) generating a motor response from the receiver upon stimulation, and (3) achieving the overall goal in the cooperative visuomotor task. Our results provide evidence for a rudimentary form of direct information transmission from one human brain to another using non-invasive means. PMID:25372285
Neuropsychological sequelae of exposure to welding fumes in a group of occupationally exposed men.
Bowler, Rosemarie M; Gysens, Sabine; Diamond, Emily; Booty, Andrew; Hartney, Christopher; Roels, Harry A
2003-10-01
This study compares the neuropsychological function, emotional status, visual function, and illness prevalence of 76 former and current chemical industry welders primarily involved in steel welding, and exposed to welding fumes for an average of 24.9 years with that of 42 unexposed, non-welder controls. Health and occupational history questionnaires were administered, as were the neuropsychological tests included in the World Health Organization Neurobehavioral Core Test Battery, Luria Motor Test, and selected tests from the WAIS-III, and WMS-III. Emotional status tests included the BSI, POMS, BAI, and BDI, and vision tests included the Snellen near visual acuity, Lanthony d-15 color vision, Vistech Contrast Sensitivity, and Schirmer strips. While welders and controls performed similarly on tests of verbal skills, verbal retention, and auditory span, welders performed worse than controls on tests of verbal learning, working memory, cognitive flexibility, visuomotor processing speed, and motor efficiency. Welders had poorer color vision and emotional status, and increased prevalence of illnesses and psychiatric symptoms. The increased symptoms in welders were related to decreased scores on tasks measuring verbal learning, visuomotor abilities, visuospatial abilities, and information processing, and motor efficiency. Within the group of welders, the number of hours welding was negatively related to scores on verbal learning, auditory span, working memory, cognitive flexibility, and motor efficiency.
Villalta, Jorge I.; Landi, Sofia M.; Fló, Ana; Della-Maggiore, Valeria
2015-01-01
Savings is a fundamental property of learning. In motor adaptation, it refers to the improvement in learning observed when adaptation to a perturbation A (A1) is followed by re-adaptation to the same perturbation (A2). A common procedure to equate the initial level of error across sessions consists of restoring native sensorimotor coordinates by inserting null—unperturbed—trials (N) just before re-adaptation (washout). Here, we hypothesized that the washout is not innocuous but interferes with the expression of the new memory at recall. To assess this possibility, we measured savings following the A1NA2 protocol, where A was a 40° visual rotation. In Experiment 1, we increased the time window between N and A2 from 1 min to 24 h. This manipulation increased the amount of savings during middle to late phases of adaptation, suggesting that N interfered with the retrieval of A. In Experiment 2, we used repetitive TMS to evaluate if this interference was partly mediated by the sensorimotor cortex (SM). We conclude that the washout does not just restore the unperturbed sensorimotor coordinates, but inhibits the expression of the recently acquired visuomotor map through a mechanism involving SM. Our results resemble the phenomenon of extinction in classical conditioning. PMID:24363266
Long-term effects of cannabis on oculomotor function in humans.
Huestegge, L; Radach, R; Kunert, H J
2009-08-01
Cannabis is known to affect human cognitive and visuomotor skills directly after consumption. Some studies even point to rather long-lasting effects, especially after chronic tetrahydrocannabinol (THC) abuse. However, it is still unknown whether long-term effects on basic visual and oculomotor processing may exist. In the present study, the performance of 20 healthy long-term cannabis users without acute THC intoxication and 20 control subjects were examined in four basic visuomotor paradigms to search for specific long-term impairments. Subjects were asked to perform: 1) reflexive saccades to visual targets (prosaccades), including gap and overlap conditions, 2) voluntary antisaccades, 3) memory-guided saccades and 4) double-step saccades. Spatial and temporal parameters of the saccades were subsequently analysed. THC subjects exhibited a significant increase of latency in the prosaccade and antisaccade tasks, as well as prolonged saccade amplitudes in the antisaccade and memory-guided task, compared with the control subjects. The results point to substantial and specific long-term deficits in basic temporal processing of saccades and impaired visuo-spatial working memory. We suggest that these impairments are a major contributor to degraded performance of chronic users in a vital everyday task like visual search, and they might potentially also affect spatial navigation and reading.
Proprioceptive feedback determines visuomotor gain in Drosophila
Bartussek, Jan; Lehmann, Fritz-Olaf
2016-01-01
Multisensory integration is a prerequisite for effective locomotor control in most animals. Especially, the impressive aerial performance of insects relies on rapid and precise integration of multiple sensory modalities that provide feedback on different time scales. In flies, continuous visual signalling from the compound eyes is fused with phasic proprioceptive feedback to ensure precise neural activation of wing steering muscles (WSM) within narrow temporal phase bands of the stroke cycle. This phase-locked activation relies on mechanoreceptors distributed over wings and gyroscopic halteres. Here we investigate visual steering performance of tethered flying fruit flies with reduced haltere and wing feedback signalling. Using a flight simulator, we evaluated visual object fixation behaviour, optomotor altitude control and saccadic escape reflexes. The behavioural assays show an antagonistic effect of wing and haltere signalling on visuomotor gain during flight. Compared with controls, suppression of haltere feedback attenuates while suppression of wing feedback enhances the animal’s wing steering range. Our results suggest that the generation of motor commands owing to visual perception is dynamically controlled by proprioception. We outline a potential physiological mechanism based on the biomechanical properties of WSM and sensory integration processes at the level of motoneurons. Collectively, the findings contribute to our general understanding how moving animals integrate sensory information with dynamically changing temporal structure. PMID:26909184
Action relations facilitate the identification of briefly-presented objects.
Roberts, Katherine L; Humphreys, Glyn W
2011-02-01
The link between perception and action allows us to interact fluently with the world. Objects which 'afford' an action elicit a visuomotor response, facilitating compatible responses. In addition, positioning objects to interact with one another appears to facilitate grouping, indicated by patients with extinction being better able to identify interacting objects (e.g. a corkscrew going towards the top of a wine bottle) than the same objects when positioned incorrectly for action (Riddoch, Humphreys, Edwards, Baker, & Willson, Nature Neuroscience, 6, 82-89, 2003). Here, we investigate the effect of action relations on the perception of normal participants. We found improved identification of briefly-presented objects when in correct versus incorrect co-locations for action. For the object that would be 'active' in the interaction (the corkscrew), this improvement was enhanced when it was oriented for use by the viewer's dominant hand. In contrast, the position-related benefit for the 'passive' object was stronger when the objects formed an action-related pair (corkscrew and bottle) compared with an unrelated pair (corkscrew and candle), and it was reduced when spatial cues disrupted grouping between the objects. We propose that these results indicate two separate effects of action relations on normal perception: a visuomotor response to objects which strongly afford an action; and a grouping effect between objects which form action-related pairs.
Decoding the cortical transformations for visually guided reaching in 3D space.
Blohm, Gunnar; Keith, Gerald P; Crawford, J Douglas
2009-06-01
To explore the possible cortical mechanisms underlying the 3-dimensional (3D) visuomotor transformation for reaching, we trained a 4-layer feed-forward artificial neural network to compute a reach vector (output) from the visual positions of both the hand and target viewed from different eye and head orientations (inputs). The emergent properties of the intermediate layers reflected several known neurophysiological findings, for example, gain field-like modulations and position-dependent shifting of receptive fields (RFs). We performed a reference frame analysis for each individual network unit, simulating standard electrophysiological experiments, that is, RF mapping (unit input), motor field mapping, and microstimulation effects (unit outputs). At the level of individual units (in both intermediate layers), the 3 different electrophysiological approaches identified different reference frames, demonstrating that these techniques reveal different neuronal properties and suggesting that a comparison across these techniques is required to understand the neural code of physiological networks. This analysis showed fixed input-output relationships within each layer and, more importantly, within each unit. These local reference frame transformation modules provide the basic elements for the global transformation; their parallel contributions are combined in a gain field-like fashion at the population level to implement both the linear and nonlinear elements of the 3D visuomotor transformation.
This synthetic, multi-scale approach will generate a sequence of spatially explicit maps that will provide science guidance to support strategic decision-making regarding the spatially-distributed risk of, and possible adaptation to, the spread of invasive species at local to ...
Three Concepts or One? Students' Understanding of Basic Limit Concepts
ERIC Educational Resources Information Center
Fernández-Plaza, José Antonio; Simpson, Adrian
2016-01-01
In many mathematics curricula, the notion of limit is introduced three times: the limit of a sequence, the limit of a function at a point and the limit of a function at infinity. Despite the use of very similar symbols, few connections between these notions are made explicitly and few papers in the large literature on student understanding of…
Structural optimization with approximate sensitivities
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Hopkins, D. A.; Coroneos, R.
1994-01-01
Computational efficiency in structural optimization can be enhanced if the intensive computations associated with the calculation of the sensitivities, that is, gradients of the behavior constraints, are reduced. Approximation to gradients of the behavior constraints that can be generated with small amount of numerical calculations is proposed. Structural optimization with these approximate sensitivities produced correct optimum solution. Approximate gradients performed well for different nonlinear programming methods, such as the sequence of unconstrained minimization technique, method of feasible directions, sequence of quadratic programming, and sequence of linear programming. Structural optimization with approximate gradients can reduce by one third the CPU time that would otherwise be required to solve the problem with explicit closed-form gradients. The proposed gradient approximation shows potential to reduce intensive computation that has been associated with traditional structural optimization.
NASA Astrophysics Data System (ADS)
Nadal, Marcos; Skov, Martin
2017-07-01
The model presented here [1] is the latest in an evolving series of psychological models aimed at explaining the experience of art, first proposed by Leder and colleagues [2]. The aim of this new version is to ;explicitly connect early bottom-up, artwork-derived processing sequence and outputs to top-down, viewer-derived contribution to the processing sequence; [1, p. 5f & 6]. The ;meeting; of these two processing sequences, the authors contend, is crucial to the understanding of people's responses to art [sections 3.6ff & 4], and therefore the new model's principal motivation.
Superstatistical model of bacterial DNA architecture
NASA Astrophysics Data System (ADS)
Bogachev, Mikhail I.; Markelov, Oleg A.; Kayumov, Airat R.; Bunde, Armin
2017-02-01
Understanding the physical principles that govern the complex DNA structural organization as well as its mechanical and thermodynamical properties is essential for the advancement in both life sciences and genetic engineering. Recently we have discovered that the complex DNA organization is explicitly reflected in the arrangement of nucleotides depicted by the universal power law tailed internucleotide interval distribution that is valid for complete genomes of various prokaryotic and eukaryotic organisms. Here we suggest a superstatistical model that represents a long DNA molecule by a series of consecutive ~150 bp DNA segments with the alternation of the local nucleotide composition between segments exhibiting long-range correlations. We show that the superstatistical model and the corresponding DNA generation algorithm explicitly reproduce the laws governing the empirical nucleotide arrangement properties of the DNA sequences for various global GC contents and optimal living temperatures. Finally, we discuss the relevance of our model in terms of the DNA mechanical properties. As an outlook, we focus on finding the DNA sequences that encode a given protein while simultaneously reproducing the nucleotide arrangement laws observed from empirical genomes, that may be of interest in the optimization of genetic engineering of long DNA molecules.
A Bayesian Assessment of Seismic Semi-Periodicity Forecasts
NASA Astrophysics Data System (ADS)
Nava, F.; Quinteros, C.; Glowacka, E.; Frez, J.
2016-01-01
Among the schemes for earthquake forecasting, the search for semi-periodicity during large earthquakes in a given seismogenic region plays an important role. When considering earthquake forecasts based on semi-periodic sequence identification, the Bayesian formalism is a useful tool for: (1) assessing how well a given earthquake satisfies a previously made forecast; (2) re-evaluating the semi-periodic sequence probability; and (3) testing other prior estimations of the sequence probability. A comparison of Bayesian estimates with updated estimates of semi-periodic sequences that incorporate new data not used in the original estimates shows extremely good agreement, indicating that: (1) the probability that a semi-periodic sequence is not due to chance is an appropriate estimate for the prior sequence probability estimate; and (2) the Bayesian formalism does a very good job of estimating corrected semi-periodicity probabilities, using slightly less data than that used for updated estimates. The Bayesian approach is exemplified explicitly by its application to the Parkfield semi-periodic forecast, and results are given for its application to other forecasts in Japan and Venezuela.
Competition between B-Z and B-L transitions in a single DNA molecule: Computational studies
NASA Astrophysics Data System (ADS)
Kwon, Ah-Young; Nam, Gi-Moon; Johner, Albert; Kim, Seyong; Hong, Seok-Cheol; Lee, Nam-Kyung
2016-02-01
Under negative torsion, DNA adopts left-handed helical forms, such as Z-DNA and L-DNA. Using the random copolymer model developed for a wormlike chain, we represent a single DNA molecule with structural heterogeneity as a helical chain consisting of monomers which can be characterized by different helical senses and pitches. By Monte Carlo simulation, where we take into account bending and twist fluctuations explicitly, we study sequence dependence of B-Z transitions under torsional stress and tension focusing on the interaction with B-L transitions. We consider core sequences, (GC) n repeats or (TG) n repeats, which can interconvert between the right-handed B form and the left-handed Z form, imbedded in a random sequence, which can convert to left-handed L form with different (tension dependent) helical pitch. We show that Z-DNA formation from the (GC) n sequence is always supported by unwinding torsional stress but Z-DNA formation from the (TG) n sequence, which are more costly to convert but numerous, can be strongly influenced by the quenched disorder in the surrounding random sequence.
An ultra-sparse code underliesthe generation of neural sequences in a songbird
NASA Astrophysics Data System (ADS)
Hahnloser, Richard H. R.; Kozhevnikov, Alexay A.; Fee, Michale S.
2002-09-01
Sequences of motor activity are encoded in many vertebrate brains by complex spatio-temporal patterns of neural activity; however, the neural circuit mechanisms underlying the generation of these pre-motor patterns are poorly understood. In songbirds, one prominent site of pre-motor activity is the forebrain robust nucleus of the archistriatum (RA), which generates stereotyped sequences of spike bursts during song and recapitulates these sequences during sleep. We show that the stereotyped sequences in RA are driven from nucleus HVC (high vocal centre), the principal pre-motor input to RA. Recordings of identified HVC neurons in sleeping and singing birds show that individual HVC neurons projecting onto RA neurons produce bursts sparsely, at a single, precise time during the RA sequence. These HVC neurons burst sequentially with respect to one another. We suggest that at each time in the RA sequence, the ensemble of active RA neurons is driven by a subpopulation of RA-projecting HVC neurons that is active only at that time. As a population, these HVC neurons may form an explicit representation of time in the sequence. Such a sparse representation, a temporal analogue of the `grandmother cell' concept for object recognition, eliminates the problem of temporal interference during sequence generation and learning attributed to more distributed representations.
Event-related potential correlates of declarative and non-declarative sequence knowledge.
Ferdinand, Nicola K; Rünger, Dennis; Frensch, Peter A; Mecklinger, Axel
2010-07-01
The goal of the present study was to demonstrate that declarative and non-declarative knowledge acquired in an incidental sequence learning task contributes differentially to memory retrieval and leads to dissociable ERP signatures in a recognition memory task. For this purpose, participants performed a sequence learning task and were classified as verbalizers, partial verbalizers, or nonverbalizers according to their ability to verbally report the systematic response sequence. Thereafter, ERPs were recorded in a recognition memory task time-locked to sequence triplets that were either part of the previously learned sequence or not. Although all three groups executed old sequence triplets faster than new triplets in the recognition memory task, qualitatively distinct ERP patterns were found for participants with and without reportable knowledge. Verbalizers and, to a lesser extent, partial verbalizers showed an ERP correlate of recollection for parts of the incidentally learned sequence. In contrast, nonverbalizers showed a different ERP effect with a reverse polarity that might reflect priming. This indicates that an ensemble of qualitatively different processes is at work when declarative and non-declarative sequence knowledge is retrieved. By this, our findings favor a multiple-systems view postulating that explicit and implicit learning are supported by different and functionally independent systems. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Gabrielsen, R. E.
1981-01-01
Present approaches to solving the stationary Navier-Stokes equations are of limited value; however, there does exist an equivalent representation of the problem that has significant potential in solving such problems. This is due to the fact that the equivalent representation consists of a sequence of Fredholm integral equations of the second kind, and the solving of this type of problem is very well developed. For the problem in this form, there is an excellent chance to also determine explicit error estimates, since bounded, rather than unbounded, linear operators are dealt with.
The MaizeGDB Genome Browser tutorial: one example of database outreach to biologists via video
Harper, Lisa C.; Schaeffer, Mary L.; Thistle, Jordan; Gardiner, Jack M.; Andorf, Carson M.; Campbell, Darwin A.; Cannon, Ethalinda K.S.; Braun, Bremen L.; Birkett, Scott M.; Lawrence, Carolyn J.; Sen, Taner Z.
2011-01-01
Video tutorials are an effective way for researchers to quickly learn how to use online tools offered by biological databases. At MaizeGDB, we have developed a number of video tutorials that demonstrate how to use various tools and explicitly outline the caveats researchers should know to interpret the information available to them. One such popular video currently available is ‘Using the MaizeGDB Genome Browser’, which describes how the maize genome was sequenced and assembled as well as how the sequence can be visualized and interacted with via the MaizeGDB Genome Browser. Database URL: http://www.maizegdb.org/ PMID:21565781
Kinetics and thermodynamics of exonuclease-deficient DNA polymerases
NASA Astrophysics Data System (ADS)
Gaspard, Pierre
2016-04-01
A kinetic theory is developed for exonuclease-deficient DNA polymerases, based on the experimental observation that the rates depend not only on the newly incorporated nucleotide, but also on the previous one, leading to the growth of Markovian DNA sequences from a Bernoullian template. The dependencies on nucleotide concentrations and template sequence are explicitly taken into account. In this framework, the kinetic and thermodynamic properties of DNA replication, in particular, the mean growth velocity, the error probability, and the entropy production are calculated analytically in terms of the rate constants and the concentrations. Theory is compared with numerical simulations for the DNA polymerases of T7 viruses and human mitochondria.
A behavior analytic analogue of learning to use synonyms, syntax, and parts of speech.
Chase, Philip N; Ellenwood, David W; Madden, Gregory
2008-01-01
Matching-to-sample and sequence training procedures were used to develop responding to stimulus classes that were considered analogous to 3 aspects of verbal behavior: identifying synonyms and parts of speech, and using syntax. Matching-to-sample procedures were used to train 12 paired associates from among 24 stimuli. These pairs were analogous to synonyms. Then, sequence characteristics were trained to 6 of the stimuli. The result was the formation of 3 classes of 4 stimuli, with the classes controlling a sequence response analogous to a simple ordering syntax: first, second, and third. Matching-to-sample procedures were then used to add 4 stimuli to each class. These stimuli, without explicit sequence training, also began to control the same sequence responding as the other members of their class. Thus, three 8-member functionally equivalent sequence classes were formed. These classes were considered to be analogous to parts of speech. Further testing revealed three 8-member equivalence classes and 512 different sequences of first, second, and third. The study indicated that behavior analytic procedures may be used to produce some generative aspects of verbal behavior related to simple syntax and semantics.
Dual methods and approximation concepts in structural synthesis
NASA Technical Reports Server (NTRS)
Fleury, C.; Schmit, L. A., Jr.
1980-01-01
Approximation concepts and dual method algorithms are combined to create a method for minimum weight design of structural systems. Approximation concepts convert the basic mathematical programming statement of the structural synthesis problem into a sequence of explicit primal problems of separable form. These problems are solved by constructing explicit dual functions, which are maximized subject to nonnegativity constraints on the dual variables. It is shown that the joining together of approximation concepts and dual methods can be viewed as a generalized optimality criteria approach. The dual method is successfully extended to deal with pure discrete and mixed continuous-discrete design variable problems. The power of the method presented is illustrated with numerical results for example problems, including a metallic swept wing and a thin delta wing with fiber composite skins.
ERIC Educational Resources Information Center
Marcell, Barclay; DeCleene, Joan; Juettner, Mary Rose
2010-01-01
Since the National Reading Panel presented its 2000 report, systematic and explicit strategy instruction has been featured in the scope and sequence chart of basals, the lesson plans of guided reading groups, and the headlines of workshop brochures. Sticky note responses have become a classroom staple, and teacher read-alouds are now synonymous…
Lee, Ju Seok; Chen, Junghuei; Deaton, Russell; Kim, Jin-Woo
2014-01-01
Genetic material extracted from in situ microbial communities has high promise as an indicator of biological system status. However, the challenge is to access genomic information from all organisms at the population or community scale to monitor the biosystem's state. Hence, there is a need for a better diagnostic tool that provides a holistic view of a biosystem's genomic status. Here, we introduce an in vitro methodology for genomic pattern classification of biological samples that taps large amounts of genetic information from all genes present and uses that information to detect changes in genomic patterns and classify them. We developed a biosensing protocol, termed Biological Memory, that has in vitro computational capabilities to "learn" and "store" genomic sequence information directly from genomic samples without knowledge of their explicit sequences, and that discovers differences in vitro between previously unknown inputs and learned memory molecules. The Memory protocol was designed and optimized based upon (1) common in vitro recombinant DNA operations using 20-base random probes, including polymerization, nuclease digestion, and magnetic bead separation, to capture a snapshot of the genomic state of a biological sample as a DNA memory and (2) the thermal stability of DNA duplexes between new input and the memory to detect similarities and differences. For efficient read out, a microarray was used as an output method. When the microarray-based Memory protocol was implemented to test its capability and sensitivity using genomic DNA from two model bacterial strains, i.e., Escherichia coli K12 and Bacillus subtilis, results indicate that the Memory protocol can "learn" input DNA, "recall" similar DNA, differentiate between dissimilar DNA, and detect relatively small concentration differences in samples. This study demonstrated not only the in vitro information processing capabilities of DNA, but also its promise as a genomic pattern classifier that could access information from all organisms in a biological system without explicit genomic information. The Memory protocol has high potential for many applications, including in situ biomonitoring of ecosystems, screening for diseases, biosensing of pathological features in water and food supplies, and non-biological information processing of memory devices, among many.
VR-CoDES and patient-centeredness. The intersection points between a measure and a concept.
Del Piccolo, Lidia
2017-11-01
The Verona Coding Definitions of Emotional sequences (VR-CoDES) system has been applied in a wide range of studies, in some of these, because of its attention on healthcare provider's ability to respond to patient emotions, it has been used as a proxy of patient-centeredness. The paper aims to discuss how the VR-CoDES can contribute to the broader concept of patient-centeredness and its limitations. VR-CoDES and patient-centeredness concept are briefly described, trying to detect commonalities and distinctions. The VR-CoDES dimensions of Explicit/non explicit responding and Providing or Reducing Space are analysed in relation to relevant aspects of patient-centred communication. Emotional aspects are encompassed within patient-centeredness model, but they represent only one of the numerous dimensions that contribute to define patient-centeredness as well as Explicit/non explicit responding and Providing or Reducing Space serve different functions during communication. The VR-CoDES can contribute to operationalize the description of emotional aspects emerging in a consultation, by inducing coders to adopt a factual attitude in assessing how health providers react to patient's expression of emotions. To better define empirically which measure affective aspects and dimensions of health provider responses are relevant and may contribute to patient-centeredness in different clinical settings. Copyright © 2017. Published by Elsevier B.V.
Attitudes about race predict individual differences in face adaptation aftereffects.
Elliott, Sarah L; Chu, Kelly; Coleman, Jill
2017-12-01
This study examined whether category boundaries between Black and White faces relate to individual attitudes about race. Fifty-seven (20 Black, 37 White) participants completed measures of explicit racism, implicit racism, collective self-esteem (CSE), and racial centrality. Category boundaries between Black and White faces were measured in three separate conditions: following adaptation to (1) a neutral gray background, a sequence of (2) Black or (3) White faces. Two additional conditions measured category boundaries for facial distortion to investigate whether attitudes relate to mechanisms of racial identity alone, or to more global mechanisms of face perception. Using a two-alternative forced-choice staircase procedure, participants indicated whether a test image appeared to be Black or White (or contracted or expanded). Following neutral adaptation, participants with higher CSE showed category boundaries shifted toward faces with a higher percentage of Black features. In addition, the strength of short-term sensitivity shifts following adaptation to Black and White faces was related to explicit and implicit attitudes about race. Sensitivity shifts were weaker when participants scored higher on explicit racism, but were stronger when participants scored higher on implicit but lower on explicit racism. The results of this study indicate that attitudes about race account for some individual differences in natural category boundaries between races as well as the strength of identity aftereffects following face adaptation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Silva, Nuno Miguel; Rio, Jeremy; Currat, Mathias
2017-12-15
Recent advances in sequencing technologies have allowed for the retrieval of ancient DNA data (aDNA) from skeletal remains, providing direct genetic snapshots from diverse periods of human prehistory. Comparing samples taken in the same region but at different times, hereafter called "serial samples", may indicate whether there is continuity in the peopling history of that area or whether an immigration of a genetically different population has occurred between the two sampling times. However, the exploration of genetic relationships between serial samples generally ignores their geographical locations and the spatiotemporal dynamics of populations. Here, we present a new coalescent-based, spatially explicit modelling approach to investigate population continuity using aDNA, which includes two fundamental elements neglected in previous methods: population structure and migration. The approach also considers the extensive temporal and geographical variance that is commonly found in aDNA population samples. We first showed that our spatially explicit approach is more conservative than the previous (panmictic) approach and should be preferred to test for population continuity, especially when small and isolated populations are considered. We then applied our method to two mitochondrial datasets from Germany and France, both including modern and ancient lineages dating from the early Neolithic. The results clearly reject population continuity for the maternal line over the last 7500 years for the German dataset but not for the French dataset, suggesting regional heterogeneity in post-Neolithic migratory processes. Here, we demonstrate the benefits of using a spatially explicit method when investigating population continuity with aDNA. It constitutes an improvement over panmictic methods by considering the spatiotemporal dynamics of genetic lineages and the precise location of ancient samples. The method can be used to investigate population continuity between any pair of serial samples (ancient-ancient or ancient-modern) and to investigate more complex evolutionary scenarios. Although we based our study on mitochondrial DNA sequences, diploid molecular markers of different types (DNA, SNP, STR) can also be simulated with our approach. It thus constitutes a promising tool for the analysis of the numerous aDNA datasets being produced, including genome wide data, in humans but also in many other species.
Veniero, Domenica; Oliveri, Massimiliano
2018-01-01
Prismatic adaption (PA) has been proposed as a tool to induce neural plasticity and is used to help neglect rehabilitation. It leads to a recalibration of visuomotor coordination during pointing as well as to aftereffects on a number of sensorimotor and attention tasks, but whether these effects originate at a motor or attentional level remains a matter of debate. Our aim was to further characterize PA aftereffects by using an approach that allows distinguishing between effects on attentional and motor processes. We recorded EEG in healthy human participants (9 females and 7 males) while performing a new double step, anticipatory attention/motor preparation paradigm before and after adaptation to rightward-shifting prisms, with neutral lenses as a control. We then examined PA aftereffects through changes in known oscillatory EEG signatures of spatial attention orienting and motor preparation in the alpha and beta frequency bands. Our results were twofold. First, we found PA to rightward-shifting prisms to selectively affect EEG signatures of motor but not attentional processes. More specifically, PA modulated preparatory motor EEG activity over central electrodes in the right hemisphere, contralateral to the PA-induced, compensatory leftward shift in pointing movements. No effects were found on EEG signatures of spatial attention orienting over occipitoparietal sites. Second, we found the PA effect on preparatory motor EEG activity to dominate in the beta frequency band. We conclude that changes to intentional visuomotor, rather than attentional visuospatial, processes underlie the PA aftereffect of rightward-deviating prisms in healthy participants. SIGNIFICANCE STATEMENT Prismatic adaptation (PA) has been proposed as a tool to induce neural plasticity in both healthy participants and patients, due to its aftereffect impacting on a number of visuospatial and visuomotor functions. However, the neural mechanisms underlying PA aftereffects are poorly understood as only little neuroimaging evidence is available. Here, we examined, for the first time, the origin of PA aftereffects studying oscillatory brain activity. Our results show a selective modulation of preparatory motor activity following PA in healthy participants but no effect on attention-related activity. This provides novel insight into the PA aftereffect in the healthy brain and may help to inform interventions in neglect patients. PMID:29255004
Marino, Robert A; Levy, Ron; Munoz, Douglas P
2015-08-01
Express saccades represent the fastest possible eye movements to visual targets with reaction times that approach minimum sensory-motor conduction delays. Previous work in monkeys has identified two specific neural signals in the superior colliculus (SC: a midbrain sensorimotor integration structure involved in gaze control) that are required to execute express saccades: 1) previsual activity consisting of a low-frequency increase in action potentials in sensory-motor neurons immediately before the arrival of a visual response; and 2) a transient visual-sensory response consisting of a high-frequency burst of action potentials in visually responsive neurons resulting from the appearance of a visual target stimulus. To better understand how these two neural signals interact to produce express saccades, we manipulated the arrival time and magnitude of visual responses in the SC by altering target luminance and we examined the corresponding influences on SC activity and express saccade generation. We recorded from saccade neurons with visual-, motor-, and previsual-related activity in the SC of monkeys performing the gap saccade task while target luminance was systematically varied between 0.001 and 42.5 cd/m(2) against a black background (∼0.0001 cd/m(2)). Our results demonstrated that 1) express saccade latencies were linked directly to the arrival time in the SC of visual responses produced by abruptly appearing visual stimuli; 2) express saccades were generated toward both dim and bright targets whenever sufficient previsual activity was present; and 3) target luminance altered the likelihood of producing an express saccade. When an express saccade was generated, visuomotor neurons increased their activity immediately before the arrival of the visual response in the SC and saccade initiation. Furthermore, the visual and motor responses of visuomotor neurons merged into a single burst of action potentials, while the visual response of visual-only neurons was unaffected. A linear combination model was used to test which SC signals best predicted the likelihood of producing an express saccade. In addition to visual response magnitude and previsual activity of saccade neurons, the model identified presaccadic activity (activity occurring during the 30-ms epoch immediately before saccade initiation) as a third important signal for predicting express saccades. We conclude that express saccades can be predicted by visual, previsual, and presaccadic signals recorded from visuomotor neurons in the intermediate layers of the SC. Copyright © 2015 the American Physiological Society.
Levy, Ron; Munoz, Douglas P.
2015-01-01
Express saccades represent the fastest possible eye movements to visual targets with reaction times that approach minimum sensory-motor conduction delays. Previous work in monkeys has identified two specific neural signals in the superior colliculus (SC: a midbrain sensorimotor integration structure involved in gaze control) that are required to execute express saccades: 1) previsual activity consisting of a low-frequency increase in action potentials in sensory-motor neurons immediately before the arrival of a visual response; and 2) a transient visual-sensory response consisting of a high-frequency burst of action potentials in visually responsive neurons resulting from the appearance of a visual target stimulus. To better understand how these two neural signals interact to produce express saccades, we manipulated the arrival time and magnitude of visual responses in the SC by altering target luminance and we examined the corresponding influences on SC activity and express saccade generation. We recorded from saccade neurons with visual-, motor-, and previsual-related activity in the SC of monkeys performing the gap saccade task while target luminance was systematically varied between 0.001 and 42.5 cd/m2 against a black background (∼0.0001 cd/m2). Our results demonstrated that 1) express saccade latencies were linked directly to the arrival time in the SC of visual responses produced by abruptly appearing visual stimuli; 2) express saccades were generated toward both dim and bright targets whenever sufficient previsual activity was present; and 3) target luminance altered the likelihood of producing an express saccade. When an express saccade was generated, visuomotor neurons increased their activity immediately before the arrival of the visual response in the SC and saccade initiation. Furthermore, the visual and motor responses of visuomotor neurons merged into a single burst of action potentials, while the visual response of visual-only neurons was unaffected. A linear combination model was used to test which SC signals best predicted the likelihood of producing an express saccade. In addition to visual response magnitude and previsual activity of saccade neurons, the model identified presaccadic activity (activity occurring during the 30-ms epoch immediately before saccade initiation) as a third important signal for predicting express saccades. We conclude that express saccades can be predicted by visual, previsual, and presaccadic signals recorded from visuomotor neurons in the intermediate layers of the SC. PMID:26063770
Jacquin-Courtois, S; Rode, G; Pavani, F; O'Shea, J; Giard, M H; Boisson, D; Rossetti, Y
2010-03-01
Unilateral neglect is a disabling syndrome frequently observed following right hemisphere brain damage. Symptoms range from visuo-motor impairments through to deficient visuo-spatial imagery, but impairment can also affect the auditory modality. A short period of adaptation to a rightward prismatic shift of the visual field is known to improve a wide range of hemispatial neglect symptoms, including visuo-manual tasks, mental imagery, postural imbalance, visuo-verbal measures and number bisection. The aim of the present study was to assess whether the beneficial effects of prism adaptation may generalize to auditory manifestations of neglect. Auditory extinction, whose clinical manifestations are independent of the sensory modalities engaged in visuo-manual adaptation, was examined in neglect patients before and after prism adaptation. Two separate groups of neglect patients (all of whom exhibited left auditory extinction) underwent prism adaptation: one group (n = 6) received a classical prism treatment ('Prism' group), the other group (n = 6) was submitted to the same procedure, but wore neutral glasses creating no optical shift (placebo 'Control' group). Auditory extinction was assessed by means of a dichotic listening task performed three times: prior to prism exposure (pre-test), upon prism removal (0 h post-test) and 2 h later (2 h post-test). The total number of correct responses, the lateralization index (detection asymmetry between the two ears) and the number of left-right fusion errors were analysed. Our results demonstrate that prism adaptation can improve left auditory extinction, thus revealing transfer of benefit to a sensory modality that is orthogonal to the visual, proprioceptive and motor modalities directly implicated in the visuo-motor adaptive process. The observed benefit was specific to the detection asymmetry between the two ears and did not affect the total number of responses. This indicates a specific effect of prism adaptation on lateralized processes rather than on general arousal. Our results suggest that the effects of prism adaptation can extend to unexposed sensory systems. The bottom-up approach of visuo-motor adaptation appears to interact with higher order brain functions related to multisensory integration and can have beneficial effects on sensory processing in different modalities. These findings should stimulate the development of therapeutic approaches aimed at bypassing the affected sensory processing modality by adapting other sensory modalities.
Differentiating Visual from Response Sequencing during Long-term Skill Learning.
Lynch, Brighid; Beukema, Patrick; Verstynen, Timothy
2017-01-01
The dual-system model of sequence learning posits that during early learning there is an advantage for encoding sequences in sensory frames; however, it remains unclear whether this advantage extends to long-term consolidation. Using the serial RT task, we set out to distinguish the dynamics of learning sequential orders of visual cues from learning sequential responses. On each day, most participants learned a new mapping between a set of symbolic cues and responses made with one of four fingers, after which they were exposed to trial blocks of either randomly ordered cues or deterministic ordered cues (12-item sequence). Participants were randomly assigned to one of four groups (n = 15 per group): Visual sequences (same sequence of visual cues across training days), Response sequences (same order of key presses across training days), Combined (same serial order of cues and responses on all training days), and a Control group (a novel sequence each training day). Across 5 days of training, sequence-specific measures of response speed and accuracy improved faster in the Visual group than any of the other three groups, despite no group differences in explicit awareness of the sequence. The two groups that were exposed to the same visual sequence across days showed a marginal improvement in response binding that was not found in the other groups. These results indicate that there is an advantage, in terms of rate of consolidation across multiple days of training, for learning sequences of actions in a sensory representational space, rather than as motoric representations.
The Neural Correlates of Implicit Sequence Learning in Schizophrenia
Marvel, Cherie L.; Turner, Beth M.; O’Leary, Daniel S.; Johnson, Hans J.; Pierson, Ronald K.; Boles Ponto, Laura L.; Andreasen, Nancy C.
2009-01-01
Twenty-seven schizophrenia spectrum patients and 25 healthy controls performed a probabilistic version of the serial reaction time task (SRT) that included sequence trials embedded within random trials. Patients showed diminished, yet measurable, sequence learning. Postexperimental analyses revealed that a group of patients performed above chance when generating short spans of the sequence. This high-generation group showed SRT learning that was similar in magnitude to that of controls. Their learning was evident from the very 1st block; however, unlike controls, learning did not develop further with continued testing. A subset of 12 patients and 11 controls performed the SRT in conjunction with positron emission tomography. High-generation performance, which corresponded to SRT learning in patients, correlated to activity in the premotor cortex and parahippocampus. These areas have been associated with stimulus-driven visuospatial processing. Taken together, these results suggest that a subset of patients who showed moderate success on the SRT used an explicit stimulus-driven strategy to process the sequential stimuli. This adaptive strategy facilitated sequence learning but may have interfered with conventional implicit learning of the overall stimulus pattern. PMID:17983290
Aggregation of peptides in the tube model with correlated sidechain orientations
NASA Astrophysics Data System (ADS)
Hung, Nguyen Ba; Hoang, Trinh Xuan
2015-06-01
The ability of proteins and peptides to aggregate and form toxic amyloid fibrils is associated with a range of diseases including BSE (or mad cow), Alzheimer's and Parkinson's Diseases. In this study, we investigate the the role of amino acid sequence in the aggregation propensity by using a modified tube model with a new procedure for hydrophobic interaction. In this model, the amino acid sidechains are not considered explicitly, but their orientations are taken into account in the formation of hydrophobic contact. Extensive Monte Carlo simulations for systems of short peptides are carried out with the use of parallel tempering technique. Our results show that the propensity to form and the structures of the aggregates strongly depend on the amino acid sequence and the number of peptides. Some sequences may not aggregate at all at a presumable physiological temperature while other can easily form fibril-like, β-sheet struture. Our study provides an insight into the principles of how the formation of amyloid can be governed by amino acid sequence.
Direct Calculation of Protein Fitness Landscapes through Computational Protein Design
Au, Loretta; Green, David F.
2016-01-01
Naturally selected amino-acid sequences or experimentally derived ones are often the basis for understanding how protein three-dimensional conformation and function are determined by primary structure. Such sequences for a protein family comprise only a small fraction of all possible variants, however, representing the fitness landscape with limited scope. Explicitly sampling and characterizing alternative, unexplored protein sequences would directly identify fundamental reasons for sequence robustness (or variability), and we demonstrate that computational methods offer an efficient mechanism toward this end, on a large scale. The dead-end elimination and A∗ search algorithms were used here to find all low-energy single mutant variants, and corresponding structures of a G-protein heterotrimer, to measure changes in structural stability and binding interactions to define a protein fitness landscape. We established consistency between these algorithms with known biophysical and evolutionary trends for amino-acid substitutions, and could thus recapitulate known protein side-chain interactions and predict novel ones. PMID:26745411
Implicit learning of non-spatial sequences in schizophrenia
MARVEL, CHERIE L.; SCHWARTZ, BARBARA L.; HOWARD, DARLENE V.; HOWARD, JAMES H.
2006-01-01
Recent studies have reported abnormal implicit learning of sequential patterns in patients with schizophrenia. Because these studies were based on visuospatial cues, the question remained whether patients were impaired simply due to the demands of spatial processing. This study examined implicit sequence learning in 24 patients with schizophrenia and 24 healthy controls using a non-spatial variation of the serial reaction time test (SRT) in which pattern stimuli alternated with random stimuli on every other trial. Both groups showed learning by responding faster and more accurately to pattern trials than to random trials. Patients, however, showed a smaller magnitude of sequence learning. Both groups were unable to demonstrate explicit knowledge of the nature of the pattern, confirming that learning occurred without awareness. Clinical variables were not correlated with the patients' learning deficits. Patients with schizophrenia have a decreased ability to develop sensitivity to regularly occurring sequences of events within their environment. This type of deficit may affect an array of cognitive and motor functions that rely on the perception of event regularity. PMID:16248901
Haffenden, Angela M; Goodale, Melvyn A
2002-12-01
Previous findings have suggested that visuomotor programming can make use of learned size information in experimental paradigms where movement kinematics are quite consistent from trial to trial. The present experiment was designed to test whether or not this conclusion could be generalized to a different manipulation of kinematic variability. As in previous work, an association was established between the size and colour of square blocks (e.g. red = large; yellow = small, or vice versa). Associating size and colour in this fashion has been shown to reliably alter the perceived size of two test blocks halfway in size between the large and small blocks: estimations of the test block matched in colour to the group of large blocks are smaller than estimations of the test block matched to the group of small blocks. Subjects grasped the blocks, and on other trials estimated the size of the blocks. These changes in perceived block size were incorporated into grip scaling only when movement kinematics were highly consistent from trial to trial; that is, when the blocks were presented in the same location on each trial. When the blocks were presented in different locations grip scaling remained true to the metrics of the test blocks despite the changes in perceptual estimates of block size. These results support previous findings suggesting that kinematic consistency facilitates the incorporation of learned perceptual information into grip scaling.
Elangovan, Naveen; Cappello, Leonardo; Masia, Lorenzo; Aman, Joshua; Konczak, Jürgen
2017-12-06
Proprioceptive function can become enhanced during motor learning. Yet, we have incomplete knowledge to what extent proprioceptive function is trainable and how a training that enhances proprioception may influence performance in untrained motor skills. To address this knowledge gap, healthy young adults (N = 14) trained in a visuomotor task that required learners to make increasingly accurate wrist movements. Using a robotic exoskeleton coupled with a virtual visual environment, participants tilted a virtual table through continuous wrist flexion/extension movements with the goal to position a rolling ball on table into a target. With learning progress, the level of difficulty increased by altering the virtual ball mechanics and the gain between joint movement and ball velocity. Before and after training, wrist position sense acuity and spatial movement accuracy in an untrained, discrete wrist-pointing task was assessed using the same robot. All participants showed evidence of proprioceptive-motor learning. Mean position sense discrimination threshold improved by 34%. Wrist movement accuracy in the untrained pointing task improved by 27% in 13/14 participants. This demonstrates that a short sensorimotor training challenging proprioception can a) effectively enhance proprioceptive acuity and b) improve the accuracy of untrained movement. These findings provide a scientific basis for applying such somatosensory-based motor training to clinical populations with known proprioceptive dysfunction to enhance sensorimotor performance.
Mattfeld, Aaron T.; Stark, Craig E. L.
2015-01-01
The hippocampus and striatum are thought to have different functional roles in learning and memory. It is unknown under what experimental conditions their contributions are dissimilar or converge, and the extent to which they interact over the course of learning. In order to evaluate both the functional contributions of as well as the interactions between the human hippocampus and striatum, the present study used high-resolution functional magnetic resonance imaging (fMRI) and variations of a conditional visuomotor associative learning task that either taxed arbitrary associative learning (Experiment 1) or stimulus-response learning (Experiment 2). In the first experiment we observed changes in activity in the hippocampus and anterior caudate that reflect differences between the two regions consistent with distinct computational principles. In the second experiment we observed activity in the putamen that reflected content specific representations during the learning of arbitrary conditional visuomotor associations. In both experiments the hippocampus and ventral striatum demonstrated dynamic functional coupling during the learning of new arbitrary associations, but not during retrieval of well-learned arbitrary associations using control variants of the tasks that did not preferentially tax one system versus the other. These findings suggest that both the hippocampus and subregions of the dorsal striatum contribute uniquely to the learning of arbitrary associations while the hippocampus and ventral striatum interact over the course of learning. PMID:25560298
Representation of virtual arm movements in precuneus.
Dohle, Christian; Stephan, Klaus Martin; Valvoda, Jakob T; Hosseiny, Omid; Tellmann, Lutz; Kuhlen, Torsten; Seitz, Rüdiger J; Freund, Hans-Joachim
2011-02-01
Arm movements can easily be adapted to different biomechanical constraints. However, the cortical representation of the processing of visual input and its transformation into motor commands remains poorly understood. In a visuo-motor dissociation paradigm, subjects were presented with a 3-D computer-graphical representation of a human arm, presenting movements of the subjects' right arm either as right or left arm. In order to isolate possible effects of coordinate transformations, coordinate mirroring at the body midline was implemented independently. In each of the resulting four conditions, 10 normal, right-handed subjects performed three runs of circular movements, while being scanned with O(15)-Butanol-PET. Kinematic analysis included orientation and accuracy of a fitted ellipsoid trajectory. Imaging analysis was performed with SPM 99 with activations threshold at P < 0.0001 (not corrected). The shape of the trajectory was dependent on the laterality of the arm, irrespective of movement mirroring, and accompanied by a robust activation difference in the contralateral precuneus. Movement mirroring decreased movement accuracy, which was related to increased activation in the left insula. Those two movement conditions that cannot be observed in reality were related to an activation focus at the left middle temporal gyrus, but showed no influence on movement kinematics. These findings demonstrate the prominent role of the precuneus for mediating visuo-motor transformations and have implications for the use of mirror therapy and virtual reality techniques, especially avatars, such as Nintendo Wii in neurorehabilitation.
Prism adaptation in Parkinson disease: comparing reaching to walking and freezers to non-freezers.
Nemanich, Samuel T; Earhart, Gammon M
2015-08-01
Visuomotor adaptation to gaze-shifting prism glasses requires recalibration of the relationship between sensory input and motor output. Healthy individuals flexibly adapt movement patterns to many external perturbations; however, individuals with cerebellar damage do not adapt movements to the same extent. People with Parkinson disease (PD) adapt normally, but exhibit reduced after-effects, which are negative movement errors following the removal of the prism glasses and are indicative of true spatial realignment. Walking is particularly affected in PD, and many individuals experience freezing of gait (FOG), an episodic interruption in walking, that is thought to have a distinct pathophysiology. Here, we examined how individuals with PD with (PD + FOG) and without (PD - FOG) FOG, along with healthy older adults, adapted both reaching and walking patterns to prism glasses. Participants completed a visually guided reaching and walking task with and without rightward-shifting prism glasses. All groups adapted at similar rates during reaching and during walking. However, overall walking adaptation rates were slower compared to reaching rates. The PD - FOG group showed smaller after-effects, particularly during walking, compared to PD + FOG, independent of adaptation magnitude. While FOG did not appear to affect characteristics of prism adaptation, these results support the idea that the distinct neural processes governing visuomotor adaptation and storage are differentially affected by basal ganglia dysfunction in PD.
Freud, Erez; Ganel, Tzvi; Avidan, Galia; Gilaie-Dotan, Sharon
2016-03-01
According to the two visual systems model, the cortical visual system is segregated into a ventral pathway mediating object recognition, and a dorsal pathway mediating visuomotor control. In the present study we examined whether the visual control of action could develop normally even when visual perceptual abilities are compromised from early childhood onward. Using his fingers, LG, an individual with a rare developmental visual object agnosia, manually estimated (perceptual condition) the width of blocks that varied in width and length (but not in overall size), or simply picked them up across their width (grasping condition). LG's perceptual sensitivity to target width was profoundly impaired in the manual estimation task compared to matched controls. In contrast, the sensitivity to object shape during grasping, as measured by maximum grip aperture (MGA), the time to reach the MGA, the reaction time and the total movement time were all normal in LG. Further analysis, however, revealed that LG's sensitivity to object shape during grasping emerged at a later time stage during the movement compared to controls. Taken together, these results demonstrate a dissociation between action and perception of object shape, and also point to a distinction between different stages of the grasping movement, namely planning versus online control. Moreover, the present study implies that visuomotor abilities can develop normally even when perceptual abilities developed in a profoundly impaired fashion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Morgan, Kyle K; Luu, Phan; Tucker, Don M
2016-01-01
Learning is not a unitary phenomenon. Rather, learning progresses through stages, with the stages reflecting different challenges that require the support of specific cognitive processes that reflect the functions of different brain networks. A theory of general learning proposes that learning can be divided into early and late stages controlled by corticolimbic networks located in frontal and posterior brain regions, respectively. Recent human studies using dense-array EEG (dEEG) support these results by showing progressive increases in P3b amplitude (an Event Related Potential with estimated sources in posterior cingulate cortex and hippocampus) as participants acquire a new visuomotor skill. In the present study, the P3b was used to track the learning and performance of participants as they identify defensive football formations and make an appropriate response. Participants acquired the task over three days, and P3b latency and amplitude significantly changed when participants learned the task. As participants demonstrated further proficiency with extensive training, amplitude and latency changes in the P3b continued to closely mirror performance improvements. Source localization results across all days suggest that an important source generator of the P3b is located in the posterior cingulate cortex. Results from the study support prior findings and further suggest that the careful analysis of covert learning mechanisms and their underlying electrical signatures are a robust index of task competency.
The effect of musical practice on gesture/sound pairing.
Proverbio, Alice M; Attardo, Lapo; Cozzi, Matteo; Zani, Alberto
2015-01-01
Learning to play a musical instrument is a demanding process requiring years of intense practice. Dramatic changes in brain connectivity, volume, and functionality have been shown in skilled musicians. It is thought that music learning involves the formation of novel audio visuomotor associations, but not much is known about the gradual acquisition of this ability. In the present study, we investigated whether formal music training enhances audiovisual multisensory processing. To this end, pupils at different stages of education were examined based on the hypothesis that the strength of audio/visuomotor associations would be augmented as a function of the number of years of conservatory study (expertise). The study participants were violin and clarinet students of pre-academic and academic levels and of different chronological ages, ages of acquisition, and academic levels. A violinist and a clarinetist each played the same score, and each participant viewed the video corresponding to his or her instrument. Pitch, intensity, rhythm, and sound duration were matched across instruments. In half of the trials, the soundtrack did not match (in pitch) the corresponding musical gestures. Data analysis indicated a correlation between the number of years of formal training (expertise) and the ability to detect an audiomotor incongruence in music performance (relative to the musical instrument practiced), thus suggesting a direct correlation between knowing how to play and perceptual sensitivity.
Memory-guided force output is associated with self-reported ADHD symptoms in young adults.
Neely, Kristina A; Chennavasin, Amanda P; Yoder, Arie; Williams, Genevieve K R; Loken, Eric; Huang-Pollock, Cynthia L
2016-11-01
Attention-deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed mental health disorder in childhood and persists into adulthood in up to 65 % of cases. ADHD is associated with adverse outcomes such as the ability to gain and maintain employment and is associated with an increased risk for substance abuse obesity workplace injuries and traffic accidents A majority of diagnosed children have motor deficits; however, few studies have examined motor deficits in young adults. This study provides a novel examination of visuomotor control of grip force in young adults with and without ADHD. Participants were instructed to maintain force production over a 20-second trial with and without real-time visual feedback about their performance. The results demonstrated that when visual feedback was available, adults with ADHD produced slightly higher grip force than controls. However, when visual feedback was removed, adults with ADHD had a faster rate of decay of force, which was associated with ADHD symptom severity and trait impulsivity. These findings suggest that there may be important differences in the way that adults with ADHD integrate visual feedback during continuous motor tasks. These may account for some of the motor impairments reported in children with ADHD. These deficits could result from (1) dysfunctional sensory motor integration and/or (2) deficits in short-term visuomotor memory.
Error-related negativity in the skilled brain of pianists reveals motor simulation.
Proverbio, Alice Mado; Cozzi, Matteo; Orlandi, Andrea; Carminati, Manuel
2017-03-27
Evidences have been provided of a crucial role of multimodal audio-visuomotor processing in subserving the musical ability. In this paper we investigated whether musical audiovisual stimulation might trigger the activation of motor information in the brain of professional pianists, due to the presence of permanent gestures/sound associations. At this aim EEG was recorded in 24 pianists and naive participants engaged in the detection of rare targets while watching hundreds of video clips showing a pair of hands in the act of playing, along with a compatible or incompatible piano soundtrack. Hands size and apparent distance allowed self-ownership and agency illusions, and therefore motor simulation. Event-related potentials (ERPs) and relative source reconstruction showed the presence of an Error-related negativity (ERN) to incongruent trials at anterior frontal scalp sites, only in pianists, with no difference in naïve participants. ERN was mostly explained by an anterior cingulate cortex (ACC) source. Other sources included "hands" IT regions, the superior temporal gyrus (STG) involved in conjoined auditory and visuomotor processing, SMA and cerebellum (representing and controlling motor subroutines), and regions involved in body parts representation (somatosensory cortex, uncus, cuneus and precuneus). The findings demonstrate that instrument-specific audiovisual stimulation is able to trigger error shooting and correction neural responses via motor resonance and mirroring, being a possible aid in learning and rehabilitation. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Baglietto, M G; Battaglia, F M; Nobili, L; Tortorelli, S; De Negri, E; Calevo, M G; Veneselli, E; De Negri, M
2001-06-01
Nine children (five males, four females; age range 6 years 1 month to 11 years 1 month) affected by benign epilepsy of childhood with centrotemporal or Rolandic spikes (BECRS) with EEG evidence of marked activation of interictal epileptic discharges (IEDs) during sleep, and nine unaffected control children matched for age, sex, and socioeconomic status, were enrolled in a prospective study. At the time of detection of IED activation during sleep, patients showed a mean Full-Scale IQ score within the normal range, but significantly below that of control participants; neuropsychological assessment revealed disorders in visuospatial short-term memory (Corsi's Block Tapping Test), attention, and cognitive flexibility (Trail Making Test and Stroop Color-Word Test), picture naming, and fluency (Benton's Naming Test and Word Fluency), visuoperceptual skill (Ghent-Poppelreuter and Street Gestalt Completion Tests) and visuomotor coordination (Bender Test). After detection of IED activation during sleep, children were followed up for 2 years. At the time of IED remission (T1), neuropsychological re-evaluation showed a notable increase in IQ score and a significant improvement (t-test: p<0.007) in visuomotor coordination, non-verbal short-term memory, sustained attention and mental flexibility, picture naming, and visual-perceptual performance. At T1, patients' performance did not differ from the controls (Mann-Whitney U test).
Mood induction effects on motor sequence learning and stop signal reaction time.
Greeley, Brian; Seidler, Rachael D
2017-01-01
The neurobiological theory of positive affect proposes that positive mood states may benefit cognitive performance due to an increase of dopamine throughout the brain. However, the results of many positive affect studies are inconsistent; this may be due to individual differences. The relationship between dopamine and performance is not linear, but instead follows an inverted "U" shape. Given this, we hypothesized that individuals with high working memory capacity, a proxy measure for dopaminergic transmission, would not benefit from positive mood induction and in fact performance in dopamine-mediated tasks would decline. In contrast, we predicted that individuals with low working memory capacities would receive the most benefit after positive mood induction. Here, we explored the effect of positive affect on two dopamine-mediated tasks, an explicit serial reaction time sequence learning task and the stop signal task, predicting that an individual's performance is modulated not only by working memory capacity, but also on the type of mood. Improvements in explicit sequence learning from pre- to post-positive mood induction were associated with working memory capacity; performance declined in individuals with higher working memory capacities following positive mood induction, but improved in individuals with lower working memory capacities. This was not the case for negative or neutral mood induction. Moreover, there was no relationship between the change in stop signal reaction time with any of the mood inductions and individual differences in working memory capacity. These results provide partial support for the neurobiological theory of positive affect and highlight the importance of taking into account individual differences in working memory when examining the effects of positive mood induction.
McDonald, Daniel; Price, Morgan N; Goodrich, Julia; Nawrocki, Eric P; DeSantis, Todd Z; Probst, Alexander; Andersen, Gary L; Knight, Rob; Hugenholtz, Philip
2012-03-01
Reference phylogenies are crucial for providing a taxonomic framework for interpretation of marker gene and metagenomic surveys, which continue to reveal novel species at a remarkable rate. Greengenes is a dedicated full-length 16S rRNA gene database that provides users with a curated taxonomy based on de novo tree inference. We developed a 'taxonomy to tree' approach for transferring group names from an existing taxonomy to a tree topology, and used it to apply the Greengenes, National Center for Biotechnology Information (NCBI) and cyanoDB (Cyanobacteria only) taxonomies to a de novo tree comprising 408,315 sequences. We also incorporated explicit rank information provided by the NCBI taxonomy to group names (by prefixing rank designations) for better user orientation and classification consistency. The resulting merged taxonomy improved the classification of 75% of the sequences by one or more ranks relative to the original NCBI taxonomy with the most pronounced improvements occurring in under-classified environmental sequences. We also assessed candidate phyla (divisions) currently defined by NCBI and present recommendations for consolidation of 34 redundantly named groups. All intermediate results from the pipeline, which includes tree inference, jackknifing and transfer of a donor taxonomy to a recipient tree (tax2tree) are available for download. The improved Greengenes taxonomy should provide important infrastructure for a wide range of megasequencing projects studying ecosystems on scales ranging from our own bodies (the Human Microbiome Project) to the entire planet (the Earth Microbiome Project). The implementation of the software can be obtained from http://sourceforge.net/projects/tax2tree/.
McDonald, Daniel; Price, Morgan N; Goodrich, Julia; Nawrocki, Eric P; DeSantis, Todd Z; Probst, Alexander; Andersen, Gary L; Knight, Rob; Hugenholtz, Philip
2012-01-01
Reference phylogenies are crucial for providing a taxonomic framework for interpretation of marker gene and metagenomic surveys, which continue to reveal novel species at a remarkable rate. Greengenes is a dedicated full-length 16S rRNA gene database that provides users with a curated taxonomy based on de novo tree inference. We developed a ‘taxonomy to tree' approach for transferring group names from an existing taxonomy to a tree topology, and used it to apply the Greengenes, National Center for Biotechnology Information (NCBI) and cyanoDB (Cyanobacteria only) taxonomies to a de novo tree comprising 408 315 sequences. We also incorporated explicit rank information provided by the NCBI taxonomy to group names (by prefixing rank designations) for better user orientation and classification consistency. The resulting merged taxonomy improved the classification of 75% of the sequences by one or more ranks relative to the original NCBI taxonomy with the most pronounced improvements occurring in under-classified environmental sequences. We also assessed candidate phyla (divisions) currently defined by NCBI and present recommendations for consolidation of 34 redundantly named groups. All intermediate results from the pipeline, which includes tree inference, jackknifing and transfer of a donor taxonomy to a recipient tree (tax2tree) are available for download. The improved Greengenes taxonomy should provide important infrastructure for a wide range of megasequencing projects studying ecosystems on scales ranging from our own bodies (the Human Microbiome Project) to the entire planet (the Earth Microbiome Project). The implementation of the software can be obtained from http://sourceforge.net/projects/tax2tree/. PMID:22134646
Gog, Julia R; Lever, Andrew M L; Skittrall, Jordan P
2018-01-01
We present a fast, robust and parsimonious approach to detecting signals in an ordered sequence of numbers. Our motivation is in seeking a suitable method to take a sequence of scores corresponding to properties of positions in virus genomes, and find outlying regions of low scores. Suitable statistical methods without using complex models or making many assumptions are surprisingly lacking. We resolve this by developing a method that detects regions of low score within sequences of real numbers. The method makes no assumptions a priori about the length of such a region; it gives the explicit location of the region and scores it statistically. It does not use detailed mechanistic models so the method is fast and will be useful in a wide range of applications. We present our approach in detail, and test it on simulated sequences. We show that it is robust to a wide range of signal morphologies, and that it is able to capture multiple signals in the same sequence. Finally we apply it to viral genomic data to identify regions of evolutionary conservation within influenza and rotavirus.
Reversible second-order conditional sequences in incidental sequence learning tasks.
Pasquali, Antoine; Cleeremans, Axel; Gaillard, Vinciane
2018-06-01
In sequence learning tasks, participants' sensitivity to the sequential structure of a series of events often overshoots their ability to express relevant knowledge intentionally, as in generation tasks that require participants to produce either the next element of a sequence (inclusion) or a different element (exclusion). Comparing generation performance under inclusion and exclusion conditions makes it possible to assess the respective influences of conscious and unconscious learning. Recently, two main concerns have been expressed concerning such tasks. First, it is often difficult to design control sequences in such a way that they enable clear comparisons with the training material. Second, it is challenging to ask participants to perform appropriately under exclusion instructions, for the requirement to exclude familiar responses often leads them to adopt degenerate strategies (e.g., pushing on the same key all the time), which then need to be specifically singled out as invalid. To overcome both concerns, we introduce reversible second-order conditional (RSOC) sequences and show (a) that they elicit particularly strong transfer effects, (b) that dissociation of implicit and explicit influences becomes possible thanks to the removal of salient transitions in RSOCs, and (c) that exclusion instructions can be greatly simplified without losing sensitivity.
Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes.
Sharma, S; Raina, S N
2005-01-01
A major component of the plant nuclear genome is constituted by different classes of repetitive DNA sequences. The structural, functional and evolutionary aspects of the satellite repetitive DNA families, and their organization in the chromosomes is reviewed. The tandem satellite DNA sequences exhibit characteristic chromosomal locations, usually at subtelomeric and centromeric regions. The repetitive DNA family(ies) may be widely distributed in a taxonomic family or a genus, or may be specific for a species, genome or even a chromosome. They may acquire large-scale variations in their sequence and copy number over an evolutionary time-scale. These features have formed the basis of extensive utilization of repetitive sequences for taxonomic and phylogenetic studies. Hybrid polyploids have especially proven to be excellent models for studying the evolution of repetitive DNA sequences. Recent studies explicitly show that some repetitive DNA families localized at the telomeres and centromeres have acquired important structural and functional significance. The repetitive elements are under different evolutionary constraints as compared to the genes. Satellite DNA families are thought to arise de novo as a consequence of molecular mechanisms such as unequal crossing over, rolling circle amplification, replication slippage and mutation that constitute "molecular drive". Copyright 2005 S. Karger AG, Basel.
A fully automatic evolutionary classification of protein folds: Dali Domain Dictionary version 3
Dietmann, Sabine; Park, Jong; Notredame, Cedric; Heger, Andreas; Lappe, Michael; Holm, Liisa
2001-01-01
The Dali Domain Dictionary (http://www.ebi.ac.uk/dali/domain) is a numerical taxonomy of all known structures in the Protein Data Bank (PDB). The taxonomy is derived fully automatically from measurements of structural, functional and sequence similarities. Here, we report the extension of the classification to match the traditional four hierarchical levels corresponding to: (i) supersecondary structural motifs (attractors in fold space), (ii) the topology of globular domains (fold types), (iii) remote homologues (functional families) and (iv) homologues with sequence identity above 25% (sequence families). The computational definitions of attractors and functional families are new. In September 2000, the Dali classification contained 10 531 PDB entries comprising 17 101 chains, which were partitioned into five attractor regions, 1375 fold types, 2582 functional families and 3724 domain sequence families. Sequence families were further associated with 99 582 unique homologous sequences in the HSSP database, which increases the number of effectively known structures several-fold. The resulting database contains the description of protein domain architecture, the definition of structural neighbours around each known structure, the definition of structurally conserved cores and a comprehensive library of explicit multiple alignments of distantly related protein families. PMID:11125048
Peng, Xian; Yuan, Han; Chen, Wufan; Ding, Lei
2017-01-01
Continuous loop averaging deconvolution (CLAD) is one of the proven methods for recovering transient auditory evoked potentials (AEPs) in rapid stimulation paradigms, which requires an elaborated stimulus sequence design to attenuate impacts from noise in data. The present study aimed to develop a new metric in gauging a CLAD sequence in terms of noise gain factor (NGF), which has been proposed previously but with less effectiveness in the presence of pink (1/f) noise. We derived the new metric by explicitly introducing the 1/f model into the proposed time-continuous sequence. We selected several representative CLAD sequences to test their noise property on typical EEG recordings, as well as on five real CLAD electroencephalogram (EEG) recordings to retrieve the middle latency responses. We also demonstrated the merit of the new metric in generating and quantifying optimized sequences using a classic genetic algorithm. The new metric shows evident improvements in measuring actual noise gains at different frequencies, and better performance than the original NGF in various aspects. The new metric is a generalized NGF measurement that can better quantify the performance of a CLAD sequence, and provide a more efficient mean of generating CLAD sequences via the incorporation with optimization algorithms. The present study can facilitate the specific application of CLAD paradigm with desired sequences in the clinic. PMID:28414803
Kono, H; Saven, J G
2001-02-23
Combinatorial experiments provide new ways to probe the determinants of protein folding and to identify novel folding amino acid sequences. These types of experiments, however, are complicated both by enormous conformational complexity and by large numbers of possible sequences. Therefore, a quantitative computational theory would be helpful in designing and interpreting these types of experiment. Here, we present and apply a statistically based, computational approach for identifying the properties of sequences compatible with a given main-chain structure. Protein side-chain conformations are included in an atom-based fashion. Calculations are performed for a variety of similar backbone structures to identify sequence properties that are robust with respect to minor changes in main-chain structure. Rather than specific sequences, the method yields the likelihood of each of the amino acids at preselected positions in a given protein structure. The theory may be used to quantify the characteristics of sequence space for a chosen structure without explicitly tabulating sequences. To account for hydrophobic effects, we introduce an environmental energy that it is consistent with other simple hydrophobicity scales and show that it is effective for side-chain modeling. We apply the method to calculate the identity probabilities of selected positions of the immunoglobulin light chain-binding domain of protein L, for which many variant folding sequences are available. The calculations compare favorably with the experimentally observed identity probabilities.
General methods for determining the linear stability of coronal magnetic fields
NASA Technical Reports Server (NTRS)
Craig, I. J. D.; Sneyd, A. D.; Mcclymont, A. N.
1988-01-01
A time integration of a linearized plasma equation of motion has been performed to calculate the ideal linear stability of arbitrary three-dimensional magnetic fields. The convergence rates of the explicit and implicit power methods employed are speeded up by using sequences of cyclic shifts. Growth rates are obtained for Gold-Hoyle force-free equilibria, and the corkscrew-kink instability is found to be very weak.
General methods for determining the linear stability of coronal magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, I.J.D.; Sneyd, A.D.; McClymont, A.N.
1988-12-01
A time integration of a linearized plasma equation of motion has been performed to calculate the ideal linear stability of arbitrary three-dimensional magnetic fields. The convergence rates of the explicit and implicit power methods employed are speeded up by using sequences of cyclic shifts. Growth rates are obtained for Gold-Hoyle force-free equilibria, and the corkscrew-kink instability is found to be very weak. 19 references.
A Statistical Test of Walrasian Equilibrium by Means of Complex Networks Theory
NASA Astrophysics Data System (ADS)
Bargigli, Leonardo; Viaggiu, Stefano; Lionetto, Andrea
2016-10-01
We represent an exchange economy in terms of statistical ensembles for complex networks by introducing the concept of market configuration. This is defined as a sequence of nonnegative discrete random variables {w_{ij}} describing the flow of a given commodity from agent i to agent j. This sequence can be arranged in a nonnegative matrix W which we can regard as the representation of a weighted and directed network or digraph G. Our main result consists in showing that general equilibrium theory imposes highly restrictive conditions upon market configurations, which are in most cases not fulfilled by real markets. An explicit example with reference to the e-MID interbank credit market is provided.
NASA Astrophysics Data System (ADS)
Camilloni, Carlo; Broglia, Ricardo A.; Tiana, Guido
2011-01-01
The study of the mechanism which is at the basis of the phenomenon of protein folding requires the knowledge of multiple folding trajectories under biological conditions. Using a biasing molecular-dynamics algorithm based on the physics of the ratchet-and-pawl system, we carry out all-atom, explicit solvent simulations of the sequence of folding events which proteins G, CI2, and ACBP undergo in evolving from the denatured to the folded state. Starting from highly disordered conformations, the algorithm allows the proteins to reach, at the price of a modest computational effort, nativelike conformations, within a root mean square deviation (RMSD) of approximately 1 Å. A scheme is developed to extract, from the myriad of events, information concerning the sequence of native contact formation and of their eventual correlation. Such an analysis indicates that all the studied proteins fold hierarchically, through pathways which, although not deterministic, are well-defined with respect to the order of contact formation. The algorithm also allows one to study unfolding, a process which looks, to a large extent, like the reverse of the major folding pathway. This is also true in situations in which many pathways contribute to the folding process, like in the case of protein G.
Factorized Runge-Kutta-Chebyshev Methods
NASA Astrophysics Data System (ADS)
O'Sullivan, Stephen
2017-05-01
The second-order extended stability Factorized Runge-Kutta-Chebyshev (FRKC2) explicit schemes for the integration of large systems of PDEs with diffusive terms are presented. The schemes are simple to implement through ordered sequences of forward Euler steps with complex stepsizes, and easily parallelised for large scale problems on distributed architectures. Preserving 7 digits for accuracy at 16 digit precision, the schemes are theoretically capable of maintaining internal stability for acceleration factors in excess of 6000 with respect to standard explicit Runge-Kutta methods. The extent of the stability domain is approximately the same as that of RKC schemes, and a third longer than in the case of RKL2 schemes. Extension of FRKC methods to fourth-order, by both complex splitting and Butcher composition techniques, is also discussed. A publicly available implementation of FRKC2 schemes may be obtained from maths.dit.ie/frkc
Tempo and mode of genomic mutations unveil human evolutionary history.
Hara, Yuichiro
2015-01-01
Mutations that have occurred in human genomes provide insight into various aspects of evolutionary history such as speciation events and degrees of natural selection. Comparing genome sequences between human and great apes or among humans is a feasible approach for inferring human evolutionary history. Recent advances in high-throughput or so-called 'next-generation' DNA sequencing technologies have enabled the sequencing of thousands of individual human genomes, as well as a variety of reference genomes of hominids, many of which are publicly available. These sequence data can help to unveil the detailed demographic history of the lineage leading to humans as well as the explosion of modern human population size in the last several thousand years. In addition, high-throughput sequencing illustrates the tempo and mode of de novo mutations, which are producing human genetic variation at this moment. Pedigree-based human genome sequencing has shown that mutation rates vary significantly across the human genome. These studies have also provided an improved timescale of human evolution, because the mutation rate estimated from pedigree analysis is half that estimated from traditional analyses based on molecular phylogeny. Because of the dramatic reduction in sequencing cost, sequencing on-demand samples designed for specific studies is now also becoming popular. To produce data of sufficient quality to meet the requirements of the study, it is necessary to set an explicit sequencing plan that includes the choice of sample collection methods, sequencing platforms, and number of sequence reads.
DNA Barcode Sequence Identification Incorporating Taxonomic Hierarchy and within Taxon Variability
Little, Damon P.
2011-01-01
For DNA barcoding to succeed as a scientific endeavor an accurate and expeditious query sequence identification method is needed. Although a global multiple–sequence alignment can be generated for some barcoding markers (e.g. COI, rbcL), not all barcoding markers are as structurally conserved (e.g. matK). Thus, algorithms that depend on global multiple–sequence alignments are not universally applicable. Some sequence identification methods that use local pairwise alignments (e.g. BLAST) are unable to accurately differentiate between highly similar sequences and are not designed to cope with hierarchic phylogenetic relationships or within taxon variability. Here, I present a novel alignment–free sequence identification algorithm–BRONX–that accounts for observed within taxon variability and hierarchic relationships among taxa. BRONX identifies short variable segments and corresponding invariant flanking regions in reference sequences. These flanking regions are used to score variable regions in the query sequence without the production of a global multiple–sequence alignment. By incorporating observed within taxon variability into the scoring procedure, misidentifications arising from shared alleles/haplotypes are minimized. An explicit treatment of more inclusive terminals allows for separate identifications to be made for each taxonomic level and/or for user–defined terminals. BRONX performs better than all other methods when there is imperfect overlap between query and reference sequences (e.g. mini–barcode queries against a full–length barcode database). BRONX consistently produced better identifications at the genus–level for all query types. PMID:21857897
Comparison of timing and force control of foot tapping between elderly and young subjects.
Takimoto, Koji; Takebayashi, Hideaki; Miyamoto, Kenzo; Takuma, Yutaka; Inoue, Yoshikazu; Miyamoto, Shoko; Okabe, Takao; Okuda, Takahiro; Kaba, Hideto
2016-06-01
[Purpose] To examine the ability of young and elderly individuals to control the timing and force of periodic sequential foot tapping. [Subjects and Methods] Participants were 10 young (age, 22.1 ± 4.3 years) and 10 elderly individuals (74.8 ± 6.7 years) who were healthy and active. The foot tapping task consisted of practice (stimulus-synchronized tapping with visual feedback) and recall trials (self-paced tapping without visual feedback), periodically performed in this order, at 500-, 1,000-, and 2,000-ms target interstimulus-onset intervals, with a target force of 20% maximum voluntary contraction of the ankle plantar-flexor muscle. [Results] The coefficients of variation of force and intertap interval, used for quantifying the steadiness of the trials, were significantly greater in the elderly than in the young individuals. At the 500-ms interstimulus-onset interval, age-related effects were observed on the normalized mean absolute error of force, which was used to quantify the accuracy of the trials. The coefficients of variation of intertap interval for elderly individuals were significantly greater in the practice than in the recall trials at the 500- and 1,000-ms interstimulus-onset intervals. [Conclusion] The elderly individuals exhibited greater force and timing variability than the young individuals and showed impaired visuomotor processing during foot tapping sequences.
Albouy, Geneviève; Fogel, Stuart; Pottiez, Hugo; Nguyen, Vo An; Ray, Laura; Lungu, Ovidiu; Carrier, Julie; Robertson, Edwin; Doyon, Julien
2013-01-01
Motor sequence learning is known to rely on more than a single process. As the skill develops with practice, two different representations of the sequence are formed: a goal representation built under spatial allocentric coordinates and a movement representation mediated through egocentric motor coordinates. This study aimed to explore the influence of daytime sleep (nap) on consolidation of these two representations. Through the manipulation of an explicit finger sequence learning task and a transfer protocol, we show that both allocentric (spatial) and egocentric (motor) representations of the sequence can be isolated after initial training. Our results also demonstrate that nap favors the emergence of offline gains in performance for the allocentric, but not the egocentric representation, even after accounting for fatigue effects. Furthermore, sleep-dependent gains in performance observed for the allocentric representation are correlated with spindle density during non-rapid eye movement (NREM) sleep of the post-training nap. In contrast, performance on the egocentric representation is only maintained, but not improved, regardless of the sleep/wake condition. These results suggest that motor sequence memory acquisition and consolidation involve distinct mechanisms that rely on sleep (and specifically, spindle) or simple passage of time, depending respectively on whether the sequence is performed under allocentric or egocentric coordinates. PMID:23300993
Animal vocal sequences: not the Markov chains we thought they were
Kershenbaum, Arik; Bowles, Ann E.; Freeberg, Todd M.; Jin, Dezhe Z.; Lameira, Adriano R.; Bohn, Kirsten
2014-01-01
Many animals produce vocal sequences that appear complex. Most researchers assume that these sequences are well characterized as Markov chains (i.e. that the probability of a particular vocal element can be calculated from the history of only a finite number of preceding elements). However, this assumption has never been explicitly tested. Furthermore, it is unclear how language could evolve in a single step from a Markovian origin, as is frequently assumed, as no intermediate forms have been found between animal communication and human language. Here, we assess whether animal taxa produce vocal sequences that are better described by Markov chains, or by non-Markovian dynamics such as the ‘renewal process’ (RP), characterized by a strong tendency to repeat elements. We examined vocal sequences of seven taxa: Bengalese finches Lonchura striata domestica, Carolina chickadees Poecile carolinensis, free-tailed bats Tadarida brasiliensis, rock hyraxes Procavia capensis, pilot whales Globicephala macrorhynchus, killer whales Orcinus orca and orangutans Pongo spp. The vocal systems of most of these species are more consistent with a non-Markovian RP than with the Markovian models traditionally assumed. Our data suggest that non-Markovian vocal sequences may be more common than Markov sequences, which must be taken into account when evaluating alternative hypotheses for the evolution of signalling complexity, and perhaps human language origins. PMID:25143037
Hyperpolarized 13C pyruvate mouse brain metabolism with absorptive-mode EPSI at 1 T
NASA Astrophysics Data System (ADS)
Miloushev, Vesselin Z.; Di Gialleonardo, Valentina; Salamanca-Cardona, Lucia; Correa, Fabian; Granlund, Kristin L.; Keshari, Kayvan R.
2017-02-01
The expected signal in echo-planar spectroscopic imaging experiments was explicitly modeled jointly in spatial and spectral dimensions. Using this as a basis, absorptive-mode type detection can be achieved by appropriate choice of spectral delays and post-processing techniques. We discuss the effects of gradient imperfections and demonstrate the implementation of this sequence at low field (1.05 T), with application to hyperpolarized [1-13C] pyruvate imaging of the mouse brain. The sequence achieves sufficient signal-to-noise to monitor the conversion of hyperpolarized [1-13C] pyruvate to lactate in the mouse brain. Hyperpolarized pyruvate imaging of mouse brain metabolism using an absorptive-mode EPSI sequence can be applied to more sophisticated murine disease and treatment models. The simple modifications presented in this work, which permit absorptive-mode detection, are directly translatable to human clinical imaging and generate improved absorptive-mode spectra without the need for refocusing pulses.
Inferring human population size and separation history from multiple genome sequences.
Schiffels, Stephan; Durbin, Richard
2014-08-01
The availability of complete human genome sequences from populations across the world has given rise to new population genetic inference methods that explicitly model ancestral relationships under recombination and mutation. So far, application of these methods to evolutionary history more recent than 20,000-30,000 years ago and to population separations has been limited. Here we present a new method that overcomes these shortcomings. The multiple sequentially Markovian coalescent (MSMC) analyzes the observed pattern of mutations in multiple individuals, focusing on the first coalescence between any two individuals. Results from applying MSMC to genome sequences from nine populations across the world suggest that the genetic separation of non-African ancestors from African Yoruban ancestors started long before 50,000 years ago and give information about human population history as recent as 2,000 years ago, including the bottleneck in the peopling of the Americas and separations within Africa, East Asia and Europe.
PFAAT version 2.0: a tool for editing, annotating, and analyzing multiple sequence alignments.
Caffrey, Daniel R; Dana, Paul H; Mathur, Vidhya; Ocano, Marco; Hong, Eun-Jong; Wang, Yaoyu E; Somaroo, Shyamal; Caffrey, Brian E; Potluri, Shobha; Huang, Enoch S
2007-10-11
By virtue of their shared ancestry, homologous sequences are similar in their structure and function. Consequently, multiple sequence alignments are routinely used to identify trends that relate to function. This type of analysis is particularly productive when it is combined with structural and phylogenetic analysis. Here we describe the release of PFAAT version 2.0, a tool for editing, analyzing, and annotating multiple sequence alignments. Support for multiple annotations is a key component of this release as it provides a framework for most of the new functionalities. The sequence annotations are accessible from the alignment and tree, where they are typically used to label sequences or hyperlink them to related databases. Sequence annotations can be created manually or extracted automatically from UniProt entries. Once a multiple sequence alignment is populated with sequence annotations, sequences can be easily selected and sorted through a sophisticated search dialog. The selected sequences can be further analyzed using statistical methods that explicitly model relationships between the sequence annotations and residue properties. Residue annotations are accessible from the alignment viewer and are typically used to designate binding sites or properties for a particular residue. Residue annotations are also searchable, and allow one to quickly select alignment columns for further sequence analysis, e.g. computing percent identities. Other features include: novel algorithms to compute sequence conservation, mapping conservation scores to a 3D structure in Jmol, displaying secondary structure elements, and sorting sequences by residue composition. PFAAT provides a framework whereby end-users can specify knowledge for a protein family in the form of annotation. The annotations can be combined with sophisticated analysis to test hypothesis that relate to sequence, structure and function.
A Mechanism for Reducing Delay Discounting by Altering Temporal Attention
Radu, Peter T; Yi, Richard; Bickel, Warren K; Gross, James J; McClure, Samuel M
2011-01-01
Rewards that are not immediately available are discounted compared to rewards that are immediately available. The more a person discounts a delayed reward, the more likely that person is to have a range of behavioral problems, including clinical disorders. This latter observation has motivated the search for interventions that reduce discounting. One surprisingly simple method to reduce discounting is an “explicit-zero” reframing that states default or null outcomes. Reframing a classical discounting choice as “something now but nothing later” versus “nothing now but more later” decreases discount rates. However, it is not clear how this “explicit-zero” framing intervention works. The present studies delineate and test two possible mechanisms to explain the phenomenon. One mechanism proposes that the explicit-zero framing creates the impression of an improving sequence, thereby enhancing the present value of the delayed reward. A second possible mechanism posits an increase in attention allocation to temporally distant reward representations. In four experiments, we distinguish between these two hypothesized mechanisms and conclude that the temporal attention hypothesis is superior for explaining our results. We propose a model of temporal attention whereby framing affects intertemporal preferences by modifying present bias. PMID:22084496
NASA Astrophysics Data System (ADS)
Wilkie, Karina J.; Clarke, Doug M.
2016-06-01
Spatial visualisation of geometric patterns and their generalisation have become a recognised pathway to developing students' functional thinking and understanding of variables in algebra. This design-based research project investigated upper primary students' development of explicit generalisation of functional relationships and their representation descriptively, graphically and symbolically. Ten teachers and their classes were involved in a sequence of tasks involving growing patterns and geometric structures over 1 year. This article focuses on two aspects of the study: visualising the structure of a geometric pattern in different ways and using this to generalise the functional relationship between two quantifiable aspects (variables). It was found that in an initial assessment task ( n = 222), students' initial visualisations could be categorised according to different types and some of these were more likely to lead either to recursive or explicit generalisation. In a later task, a small number of students demonstrated the ability to find more than one way to visualise the same geometric structure and thus represent their explicit generalisations as different but equivalent symbolic equations (using pronumerals). Implications for the teaching of functional thinking in middle-school algebra are discussed.
2015 Summer Series - Lee Stone - Brain Function Through the Eyes of the Beholder
2015-06-09
The Visuomotor Control Laboratory (VCL) at NASA Ames conducts neuroscience research on the link between eye movements and brain function to provide an efficient and quantitative means of monitoring human perceptual performance. The VCL aims to make dramatic improvements in mission success through analysis, experimentation, and modeling of human performance and human-automation interaction. Dr. Lee Stone elaborates on how this research is conducted and how it contributes to NASA's mission and advances human-centered design and operations of complex aerospace systems.
Tian, Ye; Huang, Xiaoqiang; Zhu, Yushan
2015-08-01
Enzyme amino-acid sequences at ligand-binding interfaces are evolutionarily optimized for reactions, and the natural conformation of an enzyme-ligand complex must have a low free energy relative to alternative conformations in native-like or non-native sequences. Based on this assumption, a combined energy function was developed for enzyme design and then evaluated by recapitulating native enzyme sequences at ligand-binding interfaces for 10 enzyme-ligand complexes. In this energy function, the electrostatic interaction between polar or charged atoms at buried interfaces is described by an explicitly orientation-dependent hydrogen-bonding potential and a pairwise-decomposable generalized Born model based on the general side chain in the protein design framework. The energy function is augmented with a pairwise surface-area based hydrophobic contribution for nonpolar atom burial. Using this function, on average, 78% of the amino acids at ligand-binding sites were predicted correctly in the minimum-energy sequences, whereas 84% were predicted correctly in the most-similar sequences, which were selected from the top 20 sequences for each enzyme-ligand complex. Hydrogen bonds at the enzyme-ligand binding interfaces in the 10 complexes were usually recovered with the correct geometries. The binding energies calculated using the combined energy function helped to discriminate the active sequences from a pool of alternative sequences that were generated by repeatedly solving a series of mixed-integer linear programming problems for sequence selection with increasing integer cuts.
The practical evaluation of DNA barcode efficacy.
Spouge, John L; Mariño-Ramírez, Leonardo
2012-01-01
This chapter describes a workflow for measuring the efficacy of a barcode in identifying species. First, assemble individual sequence databases corresponding to each barcode marker. A controlled collection of taxonomic data is preferable to GenBank data, because GenBank data can be problematic, particularly when comparing barcodes based on more than one marker. To ensure proper controls when evaluating species identification, specimens not having a sequence in every marker database should be discarded. Second, select a computer algorithm for assigning species to barcode sequences. No algorithm has yet improved notably on assigning a specimen to the species of its nearest neighbor within a barcode database. Because global sequence alignments (e.g., with the Needleman-Wunsch algorithm, or some related algorithm) examine entire barcode sequences, they generally produce better species assignments than local sequence alignments (e.g., with BLAST). No neighboring method (e.g., global sequence similarity, global sequence distance, or evolutionary distance based on a global alignment) has yet shown a notable superiority in identifying species. Finally, "the probability of correct identification" (PCI) provides an appropriate measurement of barcode efficacy. The overall PCI for a data set is the average of the species PCIs, taken over all species in the data set. This chapter states explicitly how to calculate PCI, how to estimate its statistical sampling error, and how to use data on PCR failure to set limits on how much improvements in PCR technology can improve species identification.
Kuraku, Shigehiro; Zmasek, Christian M; Nishimura, Osamu; Katoh, Kazutaka
2013-07-01
We report a new web server, aLeaves (http://aleaves.cdb.riken.jp/), for homologue collection from diverse animal genomes. In molecular comparative studies involving multiple species, orthology identification is the basis on which most subsequent biological analyses rely. It can be achieved most accurately by explicit phylogenetic inference. More and more species are subjected to large-scale sequencing, but the resultant resources are scattered in independent project-based, and multi-species, but separate, web sites. This complicates data access and is becoming a serious barrier to the comprehensiveness of molecular phylogenetic analysis. aLeaves, launched to overcome this difficulty, collects sequences similar to an input query sequence from various data sources. The collected sequences can be passed on to the MAFFT sequence alignment server (http://mafft.cbrc.jp/alignment/server/), which has been significantly improved in interactivity. This update enables to switch between (i) sequence selection using the Archaeopteryx tree viewer, (ii) multiple sequence alignment and (iii) tree inference. This can be performed as a loop until one reaches a sensible data set, which minimizes redundancy for better visibility and handling in phylogenetic inference while covering relevant taxa. The work flow achieved by the seamless link between aLeaves and MAFFT provides a convenient online platform to address various questions in zoology and evolutionary biology.