Sample records for exploding composite nanodroplet

  1. Transport of lipid nano-droplets through MDCK epithelial cell monolayer.

    PubMed

    Khatri, Pulkit; Shao, Jun

    2017-05-01

    This study aims to investigate the transport of lipid nano-droplets through MDCK epithelial cell monolayer. Nanoemulsions of self-nano-emulsifying drug delivery systems (SNEDDS) labeled with radioactive C18 triglyceride were developed. The effect of droplet size and lipid composition on the transport was investigated. The results showed that the lipid nano-droplet transport through MDCK cell monolayer was as high as 2.5%. The transport of lipid nano-droplets was higher for nanoemulsions of medium chain glycerides than the long chain glycerides. The transport was reduced by more than half when the average lipid nano-droplet size increased from 38nm to 261nm. The droplet size measurement verified the existence of lipid nano-droplets in the receiver chamber only when the nanoemulsions were added to the donor chamber but not when the surfactant or saline solution was added. Cryo-TEM images confirmed the presence of lipid nano-droplets in both donor and receiver chamber at the end of transport study. In conclusion, lipid nano-droplets can be transported through the cell monolayer. This finding may help to further explore the oral and other non-invasive delivery of macromolecules loaded inside SNEDDS. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Materials Properties and Solvated Electron Dynamics of Isolated Nanoparticles and Nanodroplets Probed with Ultrafast Extreme Ultraviolet Beams.

    PubMed

    Ellis, Jennifer L; Hickstein, Daniel D; Xiong, Wei; Dollar, Franklin; Palm, Brett B; Keister, K Ellen; Dorney, Kevin M; Ding, Chengyuan; Fan, Tingting; Wilker, Molly B; Schnitzenbaumer, Kyle J; Dukovic, Gordana; Jimenez, Jose L; Kapteyn, Henry C; Murnane, Margaret M

    2016-02-18

    We present ultrafast photoemission measurements of isolated nanoparticles in vacuum using extreme ultraviolet (EUV) light produced through high harmonic generation. Surface-selective static EUV photoemission measurements were performed on nanoparticles with a wide array of compositions, ranging from ionic crystals to nanodroplets of organic material. We find that the total photoelectron yield varies greatly with nanoparticle composition and provides insight into material properties such as the electron mean free path and effective mass. Additionally, we conduct time-resolved photoelectron yield measurements of isolated oleylamine nanodroplets, observing that EUV photons can create solvated electrons in liquid nanodroplets. Using photoemission from a time-delayed 790 nm pulse, we observe that a solvated electron is produced in an excited state and subsequently relaxes to its ground state with a lifetime of 151 ± 31 fs. This work demonstrates that femotosecond EUV photoemission is a versatile surface-sensitive probe of the properties and ultrafast dynamics of isolated nanoparticles.

  3. Surface nanodroplets for highly efficient liquid-liquid microextraction

    NASA Astrophysics Data System (ADS)

    Li, Miaosi; Lu, Ziyang; Yu, Haitao; Zhang, Xuehua

    2016-11-01

    Nanoscale droplets on a substrate are an essential element for a wide range of applications, such as laboratory-on-chip devices, simple and highly efficient miniaturized reactors for concentrating products, high-throughput single-bacteria or single-biomolecular analysis, encapsulation, and high-resolution imaging techniques. The solvent exchange process is a simple bottom-up approach for producing droplets at solid-liquid interfaces that are only several tens to hundreds of nanometers in height, or a few femtoliters in volume Oil nanodroplets can be produced on a substrate by solvent exchange in which a good solvent of oil is displaced by a poor solvent. Our previous work has significantly advanced understanding of the principle of solvent exchange, and the droplet size can be well-controlled by several parameters, including flow rates, flow geometry, gravitational effect and composition of solutions. In this work, we studied the microextraction effect of surface nanodroplets. Oil nanodroplets have been demonstrated to provide highly-efficient liquid-liquid microextraction of hydrophobic solute in a highly diluted solution. This effect proved the feasibility of nanodroplets as a platform for preconcentrating compounds for in situ highly sensitive microanalysis without further separation. Also the long lifetime and temporal stability of surface nanodroplets allow for some long-term extraction process and extraction without addition of stabilisers.

  4. Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets.

    PubMed

    Chen, Cherry C; Sheeran, Paul S; Wu, Shih-Ying; Olumolade, Oluyemi O; Dayton, Paul A; Konofagou, Elisa E

    2013-12-28

    Focused ultrasound (FUS) in the presence of systemically administered microbubbles has been shown to locally, transiently and reversibly increase the permeability of the blood-brain barrier (BBB), thus allowing targeted delivery of therapeutic agents in the brain for the treatment of central nervous system diseases. Currently, microbubbles are the only agents that have been used to facilitate the FUS-induced BBB opening. However, they are constrained within the intravascular space due to their micron-size diameters, limiting the delivery effect at or near the microvessels. In the present study, acoustically-activated nanodroplets were used as a new class of contrast agents to mediate FUS-induced BBB opening in order to study the feasibility of utilizing these nanoscale phase-shift particles for targeted drug delivery in the brain. Significant dextran delivery was achieved in the mouse hippocampus using nanodroplets at clinically relevant pressures. Passive cavitation detection was used in the attempt to establish a correlation between the amount of dextran delivered in the brain and the acoustic emission recorded during sonication. Conventional microbubbles with the same lipid shell composition and perfluorobutane core as the nanodroplets were also used to compare the efficiency of an FUS-induced dextran delivery. It was found that nanodroplets had a higher BBB opening pressure threshold but a lower stable cavitation threshold than microbubbles, suggesting that contrast agent-dependent acoustic emission monitoring was needed. A more homogeneous dextran delivery within the targeted hippocampus was achieved using nanodroplets without inducing inertial cavitation or compromising safety. Our results offered a new means of developing the FUS-induced BBB opening technology for potential extravascular targeted drug delivery in the brain, extending the potential drug delivery region beyond the cerebral vasculature. © 2013.

  5. Atomistic Modeling of the Hypervelocity Impact of Electrosprayed Nanodroplets

    NASA Astrophysics Data System (ADS)

    Saiz Poyatos, Fernan

    Uniform beams of nanodroplets can be electrosprayed in a vacuum by applying strong electric fields at the tip of an emitter fed with an ionic liquid. These projectiles can be electrostatically accelerated up to velocities of several kilometers per second, and directed towards the surface of a crystalline solid to produce a hypervelocity impact. The phenomenology of these nanodroplet impacts is diverse: for example, it has been observed that the associated sputtering yield is of order one; and that at high enough projectile velocity the bombardment amorphizes the surface of silicon. However there is no detailed understanding of the physical mechanisms behind these observations. The goal of this doctoral research is to correct this situation. Molecular Dynamics (MD) are employed to simulate a number of nanodroplet impacts, which in turn yields accurate thermodynamic and structural information of the target. This information reveals that the amorphization is caused by the fast cooling of the liquid layer produced on the impact face, and the sputtering is caused by the evaporation of the melt. A collection of sensitivity analysis gauges how both phenomena are influenced by the silicon interaction potential, and the projectile's velocity, size, angle of incidence, dose, and composition. The projectile's velocity plays the most significant role. The thickness of the melt becomes comparable to the droplet's diameter at around 3 km/s, as reported by the experiments. Sputtering is first observed approximately at 3 km/s in agreement with the evaporation mechanism. The projectile's composition plays a major role. By using droplets with molecules of larger size and weight, the temperatures and sputtering near the impact interface increase considerably.

  6. Development of a New Generation of Stable, Tunable, and Catalytically Active Nanoparticles Produced by the Helium Nanodroplet Deposition Method

    DOE PAGES

    Wu, Qiyuan; Ridge, Claron J.; Zhao, Shen; ...

    2016-07-13

    Nanoparticles (NPs) are revolutionizing many areas of science and technology, often delivering unprecedented improvements to properties of the conventional materials. However, despite important advances in NPs synthesis and applications, numerous challenges still remain. Development of alternative synthetic method capable of producing very uniform, extremely clean and very stable NPs is urgently needed. If successful, such method can potentially transform several areas of nanoscience, including environmental and energy related catalysis. Here we present the first experimental demonstration of catalytically active NPs synthesis achieved by the helium nanodroplet isolation method. This alternative method of NPs fabrication and deposition produces narrowly distributed, clean,more » and remarkably stable NPs. The fabrication is achieved inside ultra-low temperature, superfluid helium nanodroplets, which can be subsequently deposited onto any substrate. Lastly, this technique is universal enough to be applied to nearly any element, while achieving high deposition rates for single element as well as composite core-shell NPs.« less

  7. Multilevel and Latent Variable Modeling with Composite Links and Exploded Likelihoods

    ERIC Educational Resources Information Center

    Rabe-Hesketh, Sophia; Skrondal, Anders

    2007-01-01

    Composite links and exploded likelihoods are powerful yet simple tools for specifying a wide range of latent variable models. Applications considered include survival or duration models, models for rankings, small area estimation with census information, models for ordinal responses, item response models with guessing, randomized response models,…

  8. Formation of bimetallic clusters in superfluid helium nanodroplets analysed by atomic resolution electron tomography

    PubMed Central

    Haberfehlner, Georg; Thaler, Philipp; Knez, Daniel; Volk, Alexander; Hofer, Ferdinand; Ernst, Wolfgang E.; Kothleitner, Gerald

    2015-01-01

    Structure, shape and composition are the basic parameters responsible for properties of nanoscale materials, distinguishing them from their bulk counterparts. To reveal these in three dimensions at the nanoscale, electron tomography is a powerful tool. Advancing electron tomography to atomic resolution in an aberration-corrected transmission electron microscope remains challenging and has been demonstrated only a few times using strong constraints or extensive filtering. Here we demonstrate atomic resolution electron tomography on silver/gold core/shell nanoclusters grown in superfluid helium nanodroplets. We reveal morphology and composition of a cluster identifying gold- and silver-rich regions in three dimensions and we estimate atomic positions without using any prior information and with minimal filtering. The ability to get full three-dimensional information down to the atomic scale allows understanding the growth and deposition process of the nanoclusters and demonstrates an approach that may be generally applicable to all types of nanoscale materials. PMID:26508471

  9. Pharmacokinetics of quercetin-loaded nanodroplets with ultrasound activation and their use for bioimaging

    PubMed Central

    Chang, Li-Wen; Hou, Mei-Ling; Hung, Shuo-Hui; Lin, Lie-Chwen; Tsai, Tung-Hu

    2015-01-01

    Bubble formulations have both diagnostic and therapeutic applications. However, research on nanobubbles/nanodroplets remains in the initial stages. In this study, a nanodroplet formulation was prepared and loaded with a novel class of chemotherapeutic drug, ie, quercetin, to observe its pharmacokinetic properties and ultrasonic bioimaging of specific sites, namely the abdominal vein and bladder. Four parallel groups were designed to investigate the effects of ultrasound and nanodroplets on the pharmacokinetics of quercetin. These groups were quercetin alone, quercetin triggered with ultrasound, quercetin-encapsulated in nanodroplets, and quercetin encapsulated in nanodroplets triggered with ultrasound. Spherical vesicles with a mean diameter of 280 nm were formed, and quercetin was completely encapsulated within. In vivo ultrasonic imaging confirmed that the nanodroplets could be treated by ultrasound. The results indicate that the initial 5-minute serum concentration, area under the concentration–time curve, elimination half-life, and clearance of quercetin were significantly enhanced by nanodroplets with or without ultrasound. PMID:25945049

  10. Nanodroplets Impact on Rough Surfaces: A Simulation and Theoretical Study.

    PubMed

    Gao, Shan; Liao, Quanwen; Liu, Wei; Liu, Zhichun

    2018-05-22

    Impact of droplets is widespread in life, and modulating the dynamics of impinging droplets is a significant problem in production. However, on textured surfaces, the micromorphologic change and mechanism of impinging nanodroplets are not well-understood; furthermore, the accuracy of the theoretical model for nanodroplets needs to be improved. Here, considering the great challenge of conducting experiments on nanodroplets, a molecular dynamics simulation is performed to visualize the impact process of nanodroplets on nanopillar surfaces. Compared with macroscale droplets, apart from the similar relation of restitution coefficient with the Weber number, we found some distinctive results: the maximum spreading time is described as a power law of impact velocity, and the relation of maximum spreading factor with impact velocity or the Reynolds number is exponential. Moreover, the roughness of substrates plays a prominent role in the dynamics of impact nanodroplets, and on surfaces with lower solid fraction, the lower attraction force induces an easier rebound of impact nanodroplets. At last, on the basis of the energy balance, through modifying the estimation of viscous dissipation and surface energy terms, we proposed an improved model for the maximum spreading factor, which shows greater accuracy for nanodroplets, especially in the low-to-moderate velocity range. The outcome of this study demonstrates that a distinctive dynamical behavior of impinging nanodroplets, the fundamental insight, and more accurate prediction are very useful in the improvement of the hydrodynamic behavior of the nanodroplets.

  11. Drug Release from Phase-Changeable Nanodroplets Triggered by Low-Intensity Focused Ultrasound

    PubMed Central

    Cao, Yang; Chen, Yuli; Yu, Tao; Guo, Yuan; Liu, Fengqiu; Yao, Yuanzhi; Li, Pan; Wang, Dong; Wang, Zhigang; Chen, Yu; Ran, Haitao

    2018-01-01

    Background: As one of the most effective triggers with high tissue-penetrating capability and non-invasive feature, ultrasound shows great potential for controlling the drug release and enhancing the chemotherapeutic efficacy. In this study, we report, for the first time, construction of a phase-changeable drug-delivery nanosystem with programmable low-intensity focused ultrasound (LIFU) that could trigger drug-release and significantly enhance anticancer drug delivery. Methods: Liquid-gas phase-changeable perfluorocarbon (perfluoropentane) and an anticancer drug (doxorubicin) were simultaneously encapsulated in two kinds of nanodroplets. By triggering LIFU, the nanodroplets could be converted into microbubbles locally in tumor tissues for acoustic imaging and the loaded anticancer drug (doxorubicin) was released after the microbubble collapse. Based on the acoustic property of shell materials, such as shell stiffness, two types of nanodroplets (lipid-based nanodroplets and PLGA-based nanodroplets) were activated by different acoustic pressure levels. Ultrasound irradiation duration and power of LIFU were tested and selected to monitor and control the drug release from nanodroplets. Various ultrasound energies were introduced to induce the phase transition and microbubble collapse of nanodroplets in vitro (3 W/3 min for lipid nanodroplets; 8 W/3 min for PLGA nanodroplets). Results: We detected three steps in the drug-releasing profiles exhibiting the programmable patterns. Importantly, the intratumoral accumulation and distribution of the drug with LIFU exposure were significantly enhanced, and tumor proliferation was substantially inhibited. Co-delivery of two drug-loaded nanodroplets could overcome the physical barriers of tumor tissues during chemotherapy. Conclusion: Our study provides a new strategy for the efficient ultrasound-triggered chemotherapy by nanocarriers with programmable LIFU capable of achieving the on-demand drug release. PMID:29507623

  12. Interfacial gas nanobubbles or oil nanodroplets?

    PubMed

    Wang, Xingya; Zhao, Binyu; Hu, Jun; Wang, Shuo; Tai, Renzhong; Gao, Xingyu; Zhang, Lijuan

    2017-01-04

    The existence of nanobubbles at a solid-liquid interface with high stability has been confirmed by myriad experimental studies, and their gaseous nature has also been extensively verified. However, nanodroplets of polydimethylsiloxane (PDMS) recently observed in the atomic force microscopy (AFM) measurement of nanobubbles plague the nanobubble community. It may easily lead to wrong interpretations of the AFM results and thus hinders further application of the already widely used AFM in nanobubble studies. Therefore, finding a direct experimental solution to distinguish nanobubbles from nanodroplets in AFM measurements is a matter of great urgency. Herein, we first developed an effective and reproducible method to produce PDMS nanodroplets at the highly ordered pyrolytic graphite (HOPG)/water interface. From their size, contact angle, and stiffness, the formed PDMS nanodroplets are not distinguishable from nanobubbles. However, the force curves on these two objects are strikingly different from each other, i.e., a peculiar plateau in both the approach and retraction curves was found on nanobubbles whereas they changed linearly between the jump-in and jump-off point on PDMS nanodroplets. Thus, the present study not only provided a simple and effective procedure to generate PDMS nanodroplets but also paved a simple practical and in situ way to discriminate nanobubbles from the PDMS nanodroplets by direct AFM force measurements.

  13. Novel ultrasound-responsive chitosan/perfluorohexane nanodroplets for image-guided smart delivery of an anticancer agent: Curcumin.

    PubMed

    Baghbani, Fatemeh; Chegeni, Mahdieh; Moztarzadeh, Fathollah; Hadian-Ghazvini, Samaneh; Raz, Majid

    2017-05-01

    Ultrasound-responsive nanodroplets are a class of new emerging smart drug delivery systems which provide image-guided nano-therapy of various diseases, especially cancers. Here, we developed multifunctional smart curcumin-loaded chitosan/perfluorohexane nanodroplets for contrast-ultrasound imaging and on-demand drug delivery. The nanodroplets were synthesized via nanoemulsion process. The optimal formulation with the size of 101.2nm and 77.8% curcumin entrapment was chosen for release study and cytotoxicity evaluation. Sonication at the frequency of 1MHz, 2W/cm 2 for 4min triggered the release of 63.5% of curcumin from optimal formulation (Cur-NDs-2). Ultrasound aided release study indicated that the concentration of perfluorohexane and the degree of acoustic droplet vaporization play important role in ultrasound-active drug release. B-mode ultrasound imaging confirmed strong ultrasound contrast of chitosan nanodroplets even at low concentrations via droplet to bubble transition. Finally, cytotoxicity of the ultrasound-responsive nanodroplets in the presence of ultrasound was evaluated in-vitro on 4T1 human breast cancer cells. Cell growth inhibitory effects of curcumin-loaded nanodroplets significantly increased by ultrasound exposure. According to the obtained results, these ultrasound responsive curcumin-loaded chitosan/perfluorohexane nanodroplets have a great potential for imaged-guided cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Analysis of the Efficiency of Surfactant-Mediated Stabilization Reactions of EGaIn Nanodroplets.

    PubMed

    Finkenauer, Lauren R; Lu, Qingyun; Hakem, Ilhem F; Majidi, Carmel; Bockstaller, Michael R

    2017-09-26

    A methodology based on light scattering and spectrophotometry was developed to evaluate the effect of organic surfactants on the size and yield of eutectic gallium/indium (EGaIn) nanodroplets formed in organic solvents by ultrasonication. The process was subsequently applied to systematically evaluate the role of headgroup chemistry as well as polar/apolar interactions of aliphatic surfactant systems on the efficiency of nanodroplet formation. Ethanol was found to be the most effective solvent medium in promoting the formation and stabilization of EGaIn nanodroplets. For the case of thiol-based surfactants in ethanol, the yield of nanodroplet formation increased with the number of carbon atoms in the aliphatic part. In the case of the most effective surfactant system-octadecanethiol-the nanodroplet yield increased by about 370% as compared to pristine ethanol. The rather low overall efficiency of the reaction process along with the incompatibility of surfactant-stabilized EGaIn nanodroplets in nonpolar organic solvents suggests that the stabilization mechanism differs from the established self-assembled monolayer formation process that has been widely observed in nanoparticle formation.

  15. Coalescence-Induced Jumping of Nanodroplets on Textured Surfaces.

    PubMed

    Gao, Shan; Liao, Quanwen; Liu, Wei; Liu, Zhichun

    2018-01-04

    Conducting experimental studies on nanoscale droplet coalescence using traditional microscopes is a challenging research topic, and views differ as to whether the spontaneous removal can occur in the coalescing nanodroplets. Here, a molecular dynamics simulation is carried out to investigate the coalescence process of two equally sized nanodroplets. On the basis of atomic coordinates, we compute the liquid bridge radii for various cases, which is described by a power law of spreading time, and these nanodroplets undergo coalescence in the inertially limited-viscous regime. Moreover, coalescence-induced jumping is also possible for the nanodroplets, and the attraction force between surface and water molecules plays a crucial role in this process, where the merged nanodroplets prefer to jump away from those surfaces with lower attraction force. When the solid-liquid interaction intensity and surface structure parameters are varied, the attraction force is shown to decrease with decreasing surface wettability intensity and solid fraction.

  16. Atomic Scale Imaging of Nucleation and Growth Trajectories of an Interfacial Bismuth Nanodroplet.

    PubMed

    Li, Yingxuan; Bunes, Benjamin R; Zang, Ling; Zhao, Jie; Li, Yan; Zhu, Yunqing; Wang, Chuanyi

    2016-02-23

    Because of the lack of experimental evidence, much confusion still exists on the nucleation and growth dynamics of a nanostructure, particularly of metal. The situation is even worse for nanodroplets because it is more difficult to induce the formation of a nanodroplet while imaging the dynamic process with atomic resolution. Here, taking advantage of an electron beam to induce the growth of Bi nanodroplets on a SrBi2Ta2O9 platelet under a high resolution transmission electron microscope (HRTEM), we directly observed the detailed growth pathways of Bi nanodroplets from the earliest stage of nucleation that were previously inaccessible. Atomic scale imaging reveals that the dynamics of nucleation involves a much more complex trajectory than previously predicted based on classical nucleation theory (CNT). The monatomic Bi layer was first formed in the nucleation process, which induced the formation of the prenucleated clusters. Following that, critical nuclei for the nanodroplets formed both directly from the addition of atoms to the prenucleated clusters by the classical growth process and indirectly through transformation of an intermediate liquid film based on the Stranski-Krastanov growth mode, in which the liquid film was induced by the self-assembly of the prenucleated clusters. Finally, the growth of the Bi nanodroplets advanced through the classical pathway and sudden droplet coalescence. This study allows us to visualize the critical steps in the nucleation process of an interfacial nanodroplet, which suggests a revision of the perspective of CNT.

  17. How a Nanodroplet Diffuses on Smooth Surfaces

    NASA Astrophysics Data System (ADS)

    Li, Chu; Huang, Jizu; Li, Zhigang

    2016-11-01

    In this study, we investigate how nanodroplets diffuse on smooth surfaces through molecular dynamics (MD) simulations and theoretical analyses. The simulations results show that the surface diffusion of nanodroplet is different from that of single molecules and solid nanoparticles. The dependence of nanodroplet diffusion coefficient on temperature is surface wettability dependent, which undergoes a transition from linear to nonlinear as the surface wettability is weakened due to the coupling of temperature and surface energy. We also develop a simple relation for the diffusion coefficient by using the contact angle and contact radius of the droplet. It works well for different surface wettabilities and sized nanodroplets, as confirmed by MD simulations. This work was supported by the Research Grants Council of the Hong Kong Special Administrative Region under Grant No. 615312.

  18. Interfacial nanodroplets guided construction of hierarchical Au, Au-Pt, and Au-Pd particles as excellent catalysts

    NASA Astrophysics Data System (ADS)

    Ma, Aijing; Xu, Jie; Zhang, Xuehua; Zhang, Bin; Wang, Dayang; Xu, Haolan

    2014-05-01

    Interfacial nanodroplets were grafted to the surfaces of self-sacrificed template particles in a galvanic reaction system to assist the construction of 3D Au porous structures. The interfacial nanodroplets were formed via direct adsorption of surfactant-free emulsions onto the particle surfaces. The interfacial nanodroplets discretely distributed at the template particle surfaces and served as soft templates to guide the formation of porous Au structures. The self-variation of footprint sizes of interfacial nanodroplets during Au growth gave rise to a hierarchical pore size distribution of the obtained Au porous particles. This strategy could be easily extended to synthesize bimetal porous particles such as Au-Pt and Au-Pd. The obtained porous Au, Au-Pt, and Au-Pd particles showed excellent catalytic activity in catalytic reduction of 4-nitrophenol.

  19. Distinguishing Nanobubbles from Nanodroplets with AFM: The Influence of Vertical and Lateral Imaging Forces.

    PubMed

    An, Hongjie; Tan, Beng Hau; Ohl, Claus-Dieter

    2016-12-06

    The widespread application of surface-attached nanobubbles and nanodroplets in biomedical engineering and nanotechnology is limited by numerous experimental challenges, in particular, the possibility of contamination in nucleation experiments. These challenges are complicated by recent reports that it can be difficult to distinguish between nanoscale drops and bubbles. Here we identify clear differences in the mechanical responses of nanobubbles and nanodroplets under various modes of AFM imaging that subject the objects to predominantly vertical or lateral forces. This allows us to distinguish among nanodroplets, nanobubbles, and oil-covered nanobubbles in water.

  20. Molecular dynamics study of nanodroplet diffusion on smooth solid surfaces

    NASA Astrophysics Data System (ADS)

    Niu, Zhao-Xia; Huang, Tao; Chen, Yong

    2018-10-01

    We perform molecular dynamics simulations of Lennard-Jones particles in a canonical ensemble to study the diffusion of nanodroplets on smooth solid surfaces. Using the droplet-surface interaction to realize a hydrophilic or hydrophobic surface and calculating the mean square displacement of the center-of-mass of the nanodroplets, the random motion of nanodroplets could be characterized by shorttime subdiffusion, intermediate-time superdiffusion, and long-time normal diffusion. The short-time subdiffusive exponent increases and almost reaches unity (normal diffusion) with decreasing droplet size or enhancing hydrophobicity. The diffusion coefficient of the droplet on hydrophobic surfaces is larger than that on hydrophilic surfaces.

  1. Docetaxel-loaded multilayer nanoparticles with nanodroplets for cancer therapy.

    PubMed

    Oh, Keun Sang; Kim, Kyungim; Yoon, Byeong Deok; Lee, Hye Jin; Park, Dal Yong; Kim, Eun-Yeong; Lee, Kiho; Seo, Jae Hong; Yuk, Soon Hong

    2016-01-01

    A mixture of docetaxel (DTX) and Solutol(®) HS 15 (Solutol) transiently formed nanodroplets when it was suspended in an aqueous medium. However, nanodroplets that comprised DTX and Solutol showed a rapid precipitation of DTX because of their unstable characteristics in the aqueous medium. The incorporation of nanodroplets that comprised DTX and Solutol through vesicle fusion and subsequent stabilization was designed to prepare multilayer nanoparticles (NPs) with a DTX-loaded Solutol nanodroplet (as template NPs) core for an efficient delivery of DTX as a chemotherapeutic drug. As a result, the DTX-loaded Solutol nanodroplets (~11.7 nm) were observed to have an increased average diameter (from 11.7 nm to 156.1 nm) and a good stability of the hydrated NPs without precipitation of DTX by vesicle fusion and multilayered structure, respectively. Also, a long circulation of the multilayer NPs was observed, and this was due to the presence of Pluronic F-68 on the surface of the multilayer NPs. This led to an improved antitumor efficacy based on the enhanced permeation and retention effect. Therefore, this study indicated that the multilayer NPs have a considerable potential as a drug delivery system with an enhanced therapeutic efficacy by blood circulation and with low side effects.

  2. Forming Rb(+) snowballs in the center of He nanodroplets.

    PubMed

    Theisen, Moritz; Lackner, Florian; Ernst, Wolfgang E

    2010-12-07

    Helium nanodroplets doped with rubidium atoms are ionized by applying a resonant two-step ionization scheme. Subsequent immersion of rubidium ions is observed in time-of-flight mass spectra. While alkali-metal atoms usually desorb from the surface of a helium nanodroplet upon electronic excitation, rubidium in its excited 5(2)P(1/2) state provides an exception from this rule (Auböck et al., Phys. Rev. Lett., 2008, 101, 35301). In our new experiment, Rb atoms are selectively excited either to the 5(2)P(1/2) or to the 5(2)P(3/2) state. From there they are ionized by a laser pulse. Time-of-flight mass spectra of the ionization products reveal that the intermediate population of the 5(2)P(1/2) state does not only make the ionization process Rb-monomer selective, but also gives rise to a very high yield of Rb(+)-He(N) complexes. Ions with masses of up to several thousand amu have been monitored, which can be explained by an immersion of the single Rb ion into the He nanodroplet, where most likely a snowball is formed in the center of the He nanodroplet. As the most stable position for an ion is in the center of a He nanodroplet, our results agree well with theory.

  3. Docetaxel-loaded multilayer nanoparticles with nanodroplets for cancer therapy

    PubMed Central

    Oh, Keun Sang; Kim, Kyungim; Yoon, Byeong Deok; Lee, Hye Jin; Park, Dal Yong; Kim, Eun-yeong; Lee, Kiho; Seo, Jae Hong; Yuk, Soon Hong

    2016-01-01

    A mixture of docetaxel (DTX) and Solutol® HS 15 (Solutol) transiently formed nanodroplets when it was suspended in an aqueous medium. However, nanodroplets that comprised DTX and Solutol showed a rapid precipitation of DTX because of their unstable characteristics in the aqueous medium. The incorporation of nanodroplets that comprised DTX and Solutol through vesicle fusion and subsequent stabilization was designed to prepare multilayer nanoparticles (NPs) with a DTX-loaded Solutol nanodroplet (as template NPs) core for an efficient delivery of DTX as a chemotherapeutic drug. As a result, the DTX-loaded Solutol nanodroplets (~11.7 nm) were observed to have an increased average diameter (from 11.7 nm to 156.1 nm) and a good stability of the hydrated NPs without precipitation of DTX by vesicle fusion and multilayered structure, respectively. Also, a long circulation of the multilayer NPs was observed, and this was due to the presence of Pluronic F-68 on the surface of the multilayer NPs. This led to an improved antitumor efficacy based on the enhanced permeation and retention effect. Therefore, this study indicated that the multilayer NPs have a considerable potential as a drug delivery system with an enhanced therapeutic efficacy by blood circulation and with low side effects. PMID:27042062

  4. Efficient and controllable thermal ablation induced by short-pulsed HIFU sequence assisted with perfluorohexane nanodroplets.

    PubMed

    Chang, Nan; Lu, Shukuan; Qin, Dui; Xu, Tianqi; Han, Meng; Wang, Supin; Wan, Mingxi

    2018-07-01

    A HIFU sequence with extremely short pulse duration and high pulse repetition frequency can achieve thermal ablation at a low acoustic power using inertial cavitation. Because of its cavitation-dependent property, the therapeutic outcome is unreliable when the treatment zone lacks cavitation nuclei. To overcome this intrinsic limitation, we introduced perfluorocarbon nanodroplets as extra cavitation nuclei into short-pulsed HIFU-mediated thermal ablation. Two types of nanodroplets were used with perfluorohexane (PFH) as the core material coated with bovine serum albumin (BSA) or an anionic fluorosurfactant (FS) to demonstrate the feasibility of this study. The thermal ablation process was recorded by high-speed photography. The inertial cavitation activity during the ablation was revealed by sonoluminescence (SL). The high-speed photography results show that the thermal ablation volume increased by ∼643% and 596% with BSA-PFH and FS-PFH, respectively, than the short-pulsed HIFU alone at an acoustic power of 19.5 W. Using nanodroplets, much larger ablation volumes were created even at a much lower acoustic power. Meanwhile, the treatment time for ablating a desired volume significantly reduced in the presence of nanodroplets. Moreover, by adjusting the treatment time, lesion migration towards the HIFU transducer could also be avoided. The SL results show that the thermal lesion shape was significantly dependent on the inertial cavitation in this short-pulsed HIFU-mediated thermal ablation. The inertial cavitation activity became more predictable by using nanodroplets. Therefore, the introduction of PFH nanodroplets as extra cavitation nuclei made the short-pulsed HIFU thermal ablation more efficient by increasing the ablation volume and speed, and more controllable by reducing the acoustic power and preventing lesion migration. Copyright © 2018. Published by Elsevier B.V.

  5. Cavitation Enhancing Nanodroplets Mediate Efficient DNA Fragmentation in a Bench Top Ultrasonic Water Bath

    PubMed Central

    Malc, Ewa P.; Jayakody, Chatura N.; Tsuruta, James K.; Mieczkowski, Piotr A.; Janzen, William P.; Dayton, Paul A.

    2015-01-01

    A perfluorocarbon nanodroplet formulation is shown to be an effective cavitation enhancement agent, enabling rapid and consistent fragmentation of genomic DNA in a standard ultrasonic water bath. This nanodroplet-enhanced method produces genomic DNA libraries and next-generation sequencing results indistinguishable from DNA samples fragmented in dedicated commercial acoustic sonication equipment, and with higher throughput. This technique thus enables widespread access to fast bench-top genomic DNA fragmentation. PMID:26186461

  6. Electronic Spectroscopy of Phthalocyanine and Porphyrin Derivatives in Superfluid Helium Nanodroplets.

    PubMed

    Slenczka, Alkwin

    2017-07-25

    Phthalocyanine and porphyrin were among the first organic compounds investigated by means of electronic spectroscopy in superfluid helium nanodroplets. Superfluid helium nanodroplets serve as a very gentle host system for preparing cold and isolated molecules. The uniqueness of helium nanodroplets is with respect to the superfluid phase which warrants the vanishing viscosity and, thus, minimal perturbation of the dopant species at a temperature as low as 0.37 K. These are ideal conditions for the study of molecular spectra in order to analyze structures as well as dynamic processes. Besides the investigation of the dopant species itself, molecular spectroscopy in helium droplets provides information on the helium droplet and in particular on microsolvation. This article, as part of a special issue on phthalocyanines and porphyrins, reviews electronic spectroscopy of phthalocyanine and porphyrin compounds in superfluid helium nanodroplets. In addition to the wide variety of medical as well as technical and synthetical aspects, this article discusses electronic spectroscopy of phthalocyanines and porphyrins in helium droplets in order to learn about both the dopant and the helium environment.

  7. Direct observation of stick-slip movements of water nanodroplets induced by an electron beam

    PubMed Central

    Mirsaidov, Utkur M.; Zheng, Haimei; Bhattacharya, Dipanjan; Casana, Yosune; Matsudaira, Paul

    2012-01-01

    Dynamics of the first few nanometers of water at the interface are encountered in a wide range of physical, chemical, and biological phenomena. A simple but critical question is whether interfacial forces at these nanoscale dimensions affect an externally induced movement of a water droplet on a surface. At the bulk-scale water droplets spread on a hydrophilic surface and slip on a nonwetting, hydrophobic surface. Here we report the experimental description of the electron beam-induced dynamics of nanoscale water droplets by direct imaging the translocation of 10- to 80-nm-diameter water nanodroplets by transmission electron microscopy. These nanodroplets move on a hydrophilic surface not by a smooth flow but by a series of stick-slip steps. We observe that each step is preceded by a unique characteristic deformation of the nanodroplet into a toroidal shape induced by the electron beam. We propose that this beam-induced change in shape increases the surface free energy of the nanodroplet that drives its transition from stick to slip state. PMID:22517747

  8. Cracks and nanodroplets produced on tungsten surface samples by dense plasma jets

    NASA Astrophysics Data System (ADS)

    Ticoş, C. M.; Galaţanu, M.; Galaţanu, A.; Luculescu, C.; Scurtu, A.; Udrea, N.; Ticoş, D.; Dumitru, M.

    2018-03-01

    Small samples of 12.5 mm in diameter made from pure tungsten were exposed to a dense plasma jet produced by a coaxial plasma gun operated at 2 kJ. The surface of the samples was analyzed using a scanning electron microscope (SEM) before and after applying consecutive plasma shots. Cracks and craters were produced in the surface due to surface tensions during plasma heating. Nanodroplets and micron size droplets could be observed on the samples surface. An energy-dispersive spectroscopy (EDS) analysis revealed that the composition of these droplets coincided with that of the gun electrode material. Four types of samples were prepared by spark plasma sintering from powders with the average particle size ranging from 70 nanometers up to 80 μm. The plasma power load to the sample surface was estimated to be ≈4.7 MJ m-2 s-1/2 per shot. The electron temperature and density in the plasma jet had peak values 17 eV and 1.6 × 1022 m-3, respectively.

  9. The role of positive and negative pressure on cavitation nucleation in nanodroplet-mediated histotripsy.

    PubMed

    Vlaisavljevich, Eli; Aydin, Omer; Lin, Kuang-Wei; Durmaz, Yasemin Yuksel; Fowlkes, Brian; ElSayed, Mohamed; Xu, Zhen

    2016-01-21

    Nanodroplet-mediated histotripsy (NMH) is an ultrasound ablation technique combining histotripsy with acoustically sensitive perfluorocarbon (PFC) nanodroplets that can be selectively delivered to tumor cells for targeted tumor ablation. NMH takes advantage of the significantly reduced cavitation threshold of the nanodroplets, allowing for cavitation to be selectively generated only in regions containing nanodroplets. Understanding the physical mechanisms underlying the nanodroplet cavitation process is essential to the development of NMH. In this study, we hypothesize that cavitation nucleation is caused by the negative pressure (p-) exposed to the PFC, and the NMH cavitation threshold is therefore determined by the incident p-  of the single-cycle pulses commonly used in NMH. This paper reports the first study that separately investigates the effects of negative and positive pressure on the NMH cavitation threshold using near half-cycle ultrasound pulses with dominant negative (negative-polarity pulses) or positive (positive-polarity pulses) pressure phases. Tissue phantoms containing perfluorohexane (PFH) nanodroplets were exposed to negative-polarity and positive-polarity pulses generated by a frequency compounding transducer recently developed in our lab, and the probability of generating cavitation was measured as a function of peak negative (p-) and peak positive (p+) pressure. The results showed close agreement in the p- cavitation threshold for PFH phantoms exposed to negative-polarity (11.4 ± 0.1 MPa) and positive-polarity (11.7 ± 0.2 MPa) pulses. The p+ at the cavitation threshold, in contrast, was measured to be sign ficantly different for the negative-polarity (4.0 ± 0.1 MPa) and positive-polarity (42.6 ± 0.2 MPa) pulses. In the final part of this study, the experimental results were compared to the cavitation threshold predicted by classical nucleation theory (CNT), with results showing close agreement between simulations and experiments. Overall, the results support our hypothesis and provide significant insight into the physical mechanisms underlying NMH.

  10. Lowering of acoustic droplet vaporization threshold via aggregation

    NASA Astrophysics Data System (ADS)

    Guo, Shifang; Shi, Aiwei; Xu, Shanshan; Du, Xuan; Wang, Xin; Zong, Yujin; Bouakaz, Ayache; Wan, Mingxi

    2017-12-01

    Acoustically sensitive emulsion nanodroplets composed of perfluorocarbon have shown great potential for advanced medical diagnosis and therapy but are limited by the required high acoustic droplet vaporization (ADV) threshold for clinical applications. This study investigates the use of an ultrasonic standing wave to lower the ADV threshold while maintaining the generated bubble size in the required size range, ensuring the generation of inertial cavitation and corresponding physical effects. The results showed that disperse nanodroplets were manipulated to form micron-sized aggregations, and the required ADV threshold was significantly lowered, while a similar size range of the microbubbles generated by disperse nanodroplets was maintained. The threshold could be further regulated by adjusting the aggregation size via controlling the concentration of the disperse nanodroplets. Furthermore, the internal pressures in the aggregations with different sizes were calculated to determine their ADV thresholds theoretically, which were shown to be in good agreement with the experimental results.

  11. Bypassing multidrug resistant ovarian cancer using ultrasound responsive doxorubicin/curcumin co-deliver alginate nanodroplets.

    PubMed

    Baghbani, Fatemeh; Moztarzadeh, Fathollah

    2017-05-01

    Ultrasound-responsive perfluorocarbon nanoemulsions are a class of new multifunctional smart nanocarriers which combine diagnostic properties with therapeutic properties and release their drug payload in a controlled manner in response to ultrasound. Therefore, combination therapy using chemotherapeutic and chemosensitizing agents co-entrapped in these nanocarriers seems beneficial for cancer treatment. In the present study, multifunctional smart alginate/perfluorohexane nanodroplets were developed for co-delivery of doxorubicin and curcumin (a strong chemosensitizer). The nanodroplets with the average particle size of 55.1nm were synthesized via nanoemulsion process. The entrapment efficiency of doxorubicin was 92.3%. To improve curcumin entrapment into the alginate shell, Span 60 was added to the formulation as a co-surfactant and finally curcumin entrapment of about 40% was achieved. Ultrasound-mediated drug release kinetic was evaluated at two different frequencies of 28kHz (low frequency) and 1MHz (high frequency). Low frequency ultrasound resulted in higher triggered drug release from nanodroplets. The nanodroplets showed strong ultrasound contrast via droplet to bubble transition as confirmed via B-mode ultrasound imaging. Enhanced cytotoxicity in adriamycin-resistant A2780 ovarian cancer cells was observed for Dox-Cur-NDs compared to Dox-NDs because of the synergistic effects of doxorubicin and curcumin. However, ultrasound irradiation significantly increased the cytotoxicity of Dox-Cur-NDs. Finally, in vivo ovarian cancer treatment using Dox/Cur-NDs combined with ultrasound irradiation resulted in efficient tumor regression. According to the present study, nanotherapy of multidrug resistant human ovarian cancer using ultrasound responsive doxorubicin/curcumin co-loaded alginate-shelled nanodroplets combined with ultrasound irradiation could be a promising modality for the future of cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Ionic liquid-facilitated preparation of lignocellulosic composites

    USDA-ARS?s Scientific Manuscript database

    Lignocellulosic composites (LCs) were prepared by partially dissolving cotton along with steam exploded Aspen wood and burlap fabric reinforcements utilizing an ionic liquid (IL) solvent. Two methods of preparation were employed. In the first method, a controlled amount of IL was added to preassembl...

  13. Contact angle hysteresis and motion behaviors of a water nano-droplet on suspended graphene under temperature gradient

    NASA Astrophysics Data System (ADS)

    Foroutan, Masumeh; Fatemi, S. Mahmood; Esmaeilian, Farshad; Fadaei Naeini, Vahid; Baniassadi, Majid

    2018-05-01

    In the present work, the effect of temperature gradient on the behavior of a water nano-droplet resting on a suspended graphene was studied based on a non-equilibrium molecular dynamics simulation. The acquired results indicate that the applied temperature gradient to the suspended graphene drives the water nano-droplet to the colder region. The droplet accelerates its motion toward the cold reservoir as the temperature gradient is increased. In addition to the translational motion of the nano-droplet, the vortical motion of the water molecules was also observed. Contact angle analysis was also utilized to describe the directional motion of the nano-droplet. The translational motion of the droplet leads to the estimation of contact angle hysteresis through advancing and receding contact angles while the rotational motion resulted in the advancing and receding fronts being switched with one another through the simulation. The average displacement vector of the water molecules shows that parts of the droplet seem to stagnate while other parts rotate around them. The reason behind this particular behavior was studied based on interaction energy contours between a water molecule and the suspended graphene. The obtained data indicate that the rotational motion is in agreement with the migration of the water molecules to low interaction energy regions in order to avoid high interaction energy areas.

  14. Phase Structures and Magnetic Properties of Graphite Nanosheets and Ni-Graphite Nanocomposite Synthesized by Electrical Explosion of Wire in Liquid

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh-Thuyet; Kim, Jin-Hyung; Lee, Jung-Goo; Kim, Jin-Chun

    2018-03-01

    The present work studied on phases and magnetic properties of graphite nanosheets and Ni-graphite nanocomposite synthesized using the electrical explosion of wire (EEW) in ethanol. X-ray diffraction and field emission scanning electron microscope were used to investigate the phases and the morphology of the nanopowders obtained. It was found that graphite nanosheets were absolutely fabricated by EEW with a thickness of 29 nm and 3 μm diameter. The as-synthesized Ni-graphite composite powders had a Ni-coating on the surfaces of graphite sheets. The hysteresis loop of the as-exploded, the hydrogen-treated composite nanopowders and the sintered samples were examined with a vibrating sample magnetometer at room temperature. The Ni-graphite composite exposed the magnetic behaviors which are attributed to Ni component. The magnetic properties of composite had the improvement from 10.2 emu/g for the as-exploded powders to 15.8 emu/g for heat-treated powders and 49.16 emu/g for sintered samples.

  15. Enhanced Ionization of Embedded Clusters by Electron-Transfer-Mediated Decay in Helium Nanodroplets.

    PubMed

    LaForge, A C; Stumpf, V; Gokhberg, K; von Vangerow, J; Stienkemeier, F; Kryzhevoi, N V; O'Keeffe, P; Ciavardini, A; Krishnan, S R; Coreno, M; Prince, K C; Richter, R; Moshammer, R; Pfeifer, T; Cederbaum, L S; Mudrich, M

    2016-05-20

    We report the observation of electron-transfer-mediated decay (ETMD) involving magnesium (Mg) clusters embedded in helium (He) nanodroplets. ETMD is initiated by the ionization of He followed by removal of two electrons from the Mg clusters of which one is transferred to the He ion while the other electron is emitted into the continuum. The process is shown to be the dominant ionization mechanism for embedded clusters for photon energies above the ionization potential of He. For Mg clusters larger than five atoms we observe stable doubly ionized clusters. Thus, ETMD provides an efficient pathway to the formation of doubly ionized cold species in doped nanodroplets.

  16. Spinning superfluid 4He nanodroplets

    NASA Astrophysics Data System (ADS)

    Ancilotto, Francesco; Barranco, Manuel; Pi, Martí

    2018-05-01

    We have studied spinning superfluid 4He nanodroplets at zero temperature using density functional theory. Due to the irrotational character of the superfluid flow, the shapes of the spinning nanodroplets are very different from those of a viscous normal fluid drop in steady rotation. We show that when vortices are nucleated inside the superfluid droplets, their morphology, which evolves from axisymmetric oblate to triaxial prolate to two-lobed shapes, is in good agreement with experiments. The presence of vortex arrays confers to the superfluid droplets the rigid-body behavior of a normal fluid in steady rotation, and this is the ultimate reason for the surprising good agreement between recent experiments and the classical models used for their description.

  17. Thermophoretic transport of water nanodroplets confined in carbon nanotubes: The role of friction

    NASA Astrophysics Data System (ADS)

    Oyarzua, Elton; Walther, Jens H.; Zambrano, Harvey A.

    2017-11-01

    The development of efficient nanofluidic devices requires driving mechanisms that provide controlled transport of fluids through nanoconduits. Temperature gradients have been proposed as a mechanism to drive particles, fullerenes and nanodroplets inside carbon nanotubes (CNTs). In this work, molecular dynamics (MD) simulations are conducted to study thermophoresis of water nanodroplets inside CNTs. To gain insight into the interplay between the thermophoretic force acting on the droplet and the retarding liquid-solid friction, sets of constrained and unconstrained MD simulations are conducted. The results indicate that the thermophoretic motion of a nanodroplet displays two kinetic regimes: an initial regime characterized by a decreasing acceleration and afterwards a terminal regime with constant velocity. During the initial regime, the magnitude of the friction force increases linearly with the droplet velocity whereas the thermophoretic force has a constant magnitude defined by the magnitude of the thermal gradient and the droplet size. Subsequently, in the terminal regime, the droplet moves at constant velocity due to a dynamic balance between the thermophoretic force and the retarding friction force. We acknowledge partial support from CONICYT (Chile) under scholarship No. 21140427.

  18. Phase-shift perfluorocarbon agents enhance high intensity focused ultrasound thermal delivery with reduced near-field heating

    PubMed Central

    Phillips, Linsey C.; Puett, Connor; Sheeran, Paul S.; Dayton, Paul A.; Wilson Miller, G.; Matsunaga, Terry O.

    2013-01-01

    Ultrasound contrast agents are known to enhance high intensity focused ultrasound (HIFU) ablation, but these perfluorocarbon microbubbles are limited to the vasculature, have a short half-life in vivo, and may result in unintended heating away from the target site. Herein, a nano-sized (100–300 nm), dual perfluorocarbon (decafluorobutane/dodecafluoropentane) droplet that is stable, is sufficiently small to extravasate, and is convertible to micron-sized bubbles upon acoustic activation was investigated. Microbubbles and nanodroplets were incorporated into tissue-mimicking acrylamide-albumin phantoms. Microbubbles or nanodroplets at 0.1 × 106 per cm3 resulted in mean lesion volumes of 80.4 ± 33.1 mm3 and 52.8 ± 14.2 mm3 (mean ± s.e.), respectively, after 20 s of continuous 1 MHz HIFU at a peak negative pressure of 4 MPa, compared to a lesion volume of 1.0 ± 0.8 mm3 in agent-free control phantoms. Magnetic resonance thermometry mapping during HIFU confirmed undesired surface heating in phantoms containing microbubbles, whereas heating occurred at the acoustic focus of phantoms containing the nanodroplets. Maximal change in temperature at the target site was enhanced by 16.9% and 37.0% by microbubbles and nanodroplets, respectively. This perfluorocarbon nanodroplet has the potential to reduce the time to ablate tumors by one-third during focused ultrasound surgery while also safely enhancing thermal deposition at the target site. PMID:23927187

  19. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets.

    PubMed

    Li, Hui; Zeng, Xiao Cheng

    2012-03-27

    Born-Oppenheim quantum molecular dynamics (QMD) simulations are performed to investigate wetting, diffusive, and interfacial properties of water nanodroplets in contact with a graphene sheet or a monolayer boron-nitride (BN) sheet. Contact angles of the water nanodroplets on the two sheets are computed for the first time using QMD simulations. Structural and dynamic properties of the water droplets near the graphene or BN sheet are also studied to gain insights into the interfacial interaction between the water droplet and the substrate. QMD simulation results are compared with those from previous classic MD simulations and with the experimental measurements. The QMD simulations show that the graphene sheet yields a contact angle of 87°, while the monolayer BN sheet gives rise to a contact angle of 86°. Hence, like graphene, the monolayer BN sheet is also weakly hydrophobic, even though the BN bonds entail a large local dipole moment. QMD simulations also show that the interfacial water can induce net positive charges on the contacting surface of the graphene and monolayer BN sheets, and such charge induction may affect electronic structure of the contacting graphene in view that graphene is a semimetal. Contact angles of nanodroplets of water in a supercooled state on the graphene are also computed. It is found that under the supercooled condition, water nanodroplets exhibit an appreciably larger contact angle than under the ambient condition. © 2012 American Chemical Society

  20. Conceptual Design Studies of Composite AMST

    DTIC Science & Technology

    1974-10-01

    WEIGHT OF THE AIRFRAME THE PROPERTIES OF HIGH -STRENGTH GRAPHITE-EPOXY COMPOSITES (REPRESENTATIVE OF THORNEL 300 FIBERS) WERE USED IN THE APPLICATION...The primary advanced composite material selected was a high -strength graphite-epoxy (Thornel 300/Narmco 5208). Boron-infiltrated aluminum extrusions...Figure Page 25 Trimming Irregular Cutouts in Wing Box Attach Angles ...... 71 26 Hydroforming W-Truss Web Beaded Panels ................ 72 27 Exploded

  1. Surface nanobubbles and nanodroplets

    NASA Astrophysics Data System (ADS)

    Lohse, Detlef; Zhang, Xuehua

    2015-07-01

    Surface nanobubbles are nanoscopic gaseous domains on immersed substrates which can survive for days. They were first speculated to exist about 20 years ago, based on stepwise features in force curves between two hydrophobic surfaces, eventually leading to the first atomic force microscopy (AFM) image in 2000. While in the early years it was suspected that they may be an artifact caused by AFM, meanwhile their existence has been confirmed with various other methods, including through direct optical observation. Their existence seems to be paradoxical, as a simple classical estimate suggests that they should dissolve in microseconds, due to the large Laplace pressure inside these nanoscopic spherical-cap-shaped objects. Moreover, their contact angle (on the gas side) is much smaller than one would expect from macroscopic counterparts. This review will not only give an overview on surface nanobubbles, but also on surface nanodroplets, which are nanoscopic droplets (e.g., of oil) on (hydrophobic) substrates immersed in water, as they show similar properties and can easily be confused with surface nanobubbles and as they are produced in a similar way, namely, by a solvent exchange process, leading to local oversaturation of the water with gas or oil, respectively, and thus to nucleation. The review starts with how surface nanobubbles and nanodroplets can be made, how they can be observed (both individually and collectively), and what their properties are. Molecular dynamic simulations and theories to account for the long lifetime of the surface nanobubbles are then reported on. The crucial element contributing to the long lifetime of surface nanobubbles and nanodroplets is pinning of the three-phase contact line at chemical or geometric surface heterogeneities. The dynamical evolution of the surface nanobubbles then follows from the diffusion equation, Laplace's equation, and Henry's law. In particular, one obtains stable surface nanobubbles when the gas influx from the gas-oversaturated water and the outflux due to Laplace pressure balance. This is only possible for small enough surface bubbles. It is therefore the gas or oil oversaturation ζ that determines the contact angle of the surface nanobubble or nanodroplet and not the Young equation. The review also covers the potential technological relevance of surface nanobubbles and nanodroplets, namely, in flotation, in (photo)catalysis and electrolysis, in nanomaterial engineering, for transport in and out of nanofluidic devices, and for plasmonic bubbles, vapor nanobubbles, and energy conversion. Also given is a discussion on surface nanobubbles and nanodroplets in a nutshell, including theoretical predictions resulting from it and future directions. Studying the nucleation, growth, and dissolution dynamics of surface nanobubbles and nanodroplets will shed new light on the problems of contact line pinning and contact angle hysteresis on the submicron scale.

  2. Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery

    NASA Astrophysics Data System (ADS)

    Wu, Shih-Ying; Fix, Samantha M.; Arena, Christopher B.; Chen, Cherry C.; Zheng, Wenlan; Olumolade, Oluyemi O.; Papadopoulou, Virginie; Novell, Anthony; Dayton, Paul A.; Konofagou, Elisa E.

    2018-02-01

    Focused ultrasound with nanodroplets could facilitate localized drug delivery after vaporization with potentially improved in vivo stability, drug payload, and minimal interference outside of the focal zone compared with microbubbles. While the feasibility of blood-brain barrier (BBB) opening using nanodroplets has been previously reported, characterization of the associated delivery has not been achieved. It was hypothesized that the outcome of drug delivery was associated with the droplet’s sensitivity to acoustic energy, and can be modulated with the boiling point of the liquid core. Therefore, in this study, octafluoropropane (OFP) and decafluorobutane (DFB) nanodroplets were used both in vitro for assessing their relative vaporization efficiency with high-speed microscopy, and in vivo for delivering molecules with a size relevant to proteins (40 kDa dextran) to the murine brain. It was found that at low pressures (300-450 kPa), OFP droplets vaporized into a greater number of microbubbles compared to DFB droplets at higher pressures (750-900 kPa) in the in vitro study. In the in vivo study, successful delivery was achieved with OFP droplets at 300 kPa and 450 kPa without evidence of cavitation damage using ¼ dosage, compared to DFB droplets at 900 kPa where histology indicated tissue damage due to inertial cavitation. In conclusion, the vaporization efficiency of nanodroplets positively impacted the amount of molecules delivered to the brain. The OFP droplets due to the higher vaporization efficiency served as better acoustic agents to deliver large molecules efficiently to the brain compared with the DFB droplets.

  3. Ultrasound-enhanced nanotherapy of pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Rapoport, N.; Nam, K.-H.; Christensen, D. A.; Kennedy, A. M.; Shea, J. E.; Scaife, C. L.

    2010-03-01

    The paper reports in vivo results of ultrasonic nanotherapy of orthotopically grown pancreatic cancer. Phase-shift paclitaxel (PTX) loaded perfluoropentane (PFP) nanoemusions combined with tumor-directed ultrasound have been used with a considerable success for tumor-targeted chemotherapy of gemcitabin (GEM)-refractory pancreatic cancer (PC). The GEM-resistant pancreatic cancer proved sensitive to treatment by a micellar PTX formulation Genexol PM (GEN) andor nanodroplet PTX formulation ndGEN. Due to increased permeability of tumor blood vessels, drug-loaded nanodroplets accumulated in the tumor via passive targeting, which was confirmed by ultrasound imaging. Nanodroplets converted into microbubbles in situ under the action of tumor-directed 1-MHz therapeutic ultrasound. The strongest therapeutic effect was observed for the combination therapy by PTX-loaded nanodroplets, GEM and ultrasound (ndGEN+GEM+ultrasound). This combination therapy resulted in a spectacular tumor regression and in some cases complete tumor resolution. Moreover, formation of metastases was dramatically decreased and ascitis generation was completely suppressed. However for all animal groups, local tumor recurrence was observed after the completion of the treatment indicating that some cancer cells survived the treatment. The recurrent tumors proved more resistant to the repeated therapy than initial tumors.

  4. Dance of the Light Echoes

    NASA Image and Video Library

    2008-05-29

    This composite image from NASA Spitzer Space Telescope shows the remnant of a star that exploded, called Cassiopeia A center and its surrounding light echoes -- dances of light through dusty clouds, created when stars blast apart.

  5. Mathematical tool from corn stover TGA to determine its composition.

    PubMed

    Freda, Cesare; Zimbardi, Francesco; Nanna, Francesco; Viola, Egidio

    2012-08-01

    Corn stover was treated by steam explosion process at four different temperatures. A fraction of the four exploded matters was extracted by water. The eight samples (four from steam explosion and four from water extraction of exploded matters) were analysed by wet chemical way to quantify the amount of cellulose, hemicellulose and lignin. Thermogravimetric analysis in air atmosphere was executed on the eight samples. A mathematical tool was developed, using TGA data, to determine the composition of corn stover in terms of cellulose, hemicellulose and lignin. It uses the biomass degradation temperature as multiple linear function of the cellulose, hemicellulose and lignin content of the biomass with interactive terms. The mathematical tool predicted cellulose, hemicellulose and lignin contents with average absolute errors of 1.69, 5.59 and 0.74 %, respectively, compared to the wet chemical method.

  6. Extrapolating dynamic leidenfrost principles to metallic nanodroplets on asymmetrically textured surfaces

    DOE PAGES

    Horne, Joseph E.; Lavrik, Nickolay V.; Terrones, Humberto; ...

    2015-06-30

    In an effort to enhance our knowledge on how to control the movement of metallic nanodroplets, here we have used classical molecular dynamics simulations to investigate whether Cu nanostructures deposited on nanopillared substrates can be made to jump at desired angles. We find that such control is possible, especially for Cu nanostructures that are symmetric; for asymmetric nanostructures, however, control is more uncertain. The work presented here borrows ideas from two seemingly different fields, metallic droplets and water droplets in the dynamic Leidenfrost regime. Despite the differences in the respective systems, we find common ground in their behavior on nanostructuredmore » surfaces. As a result, we suggest that the ongoing research in Leidenfrost droplets is a fertile area for scientists working on metallic nanodroplets.« less

  7. Photoelectron imaging of doped helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Neumark, Daniel

    2008-03-01

    Photoelectron images of helium nanodroplets doped with Kr and Ne atoms are reported. The images and resulting photoelectron spectra were obtained using tunable synchrotron radiation to ionize the droplets. Droplets were excited at 21.6 eV, corresponding to a strong droplet electronic excitation. The rare gas dopant is then ionized via a Penning excitation transfer process. The electron kinetic energy distributions reflect complex ionization and electron escape dynamics.

  8. Exploding the Myth: Enhancing the Expression of Faith and Spirituality through the Study of Dance Composition in Christian Tertiary Education

    ERIC Educational Resources Information Center

    Coleman, Lucinda

    2011-01-01

    For dance educators engaged in teaching choreography in Christian tertiary institutes, encouraging students to develop foundational compositional skills whilst exploring personal expression of the Christian faith is undoubtedly a challenging objective. In 2005, a Christian tertiary education provider in South Australia enrolled six female dance…

  9. Ultrasound-Mediated Tumor Imaging and Nanotherapy using Drug Loaded, Block Copolymer Stabilized Perfluorocarbon Nanoemulsions

    PubMed Central

    Rapoport, Natalya; Nam, Kweon-Ho; Gupta, Roohi; Gao, Zhongao; Mohan, Praveena; Payne, Allison; Todd, Nick; Liu, Xin; Kim, Taeho; Shea, Jill; Scaife, Courtney; Parker, Dennis L.; Jeong, Eun-Kee; Kennedy, Anne M.

    2011-01-01

    Perfluorocarbon nanoemulsions can deliver lipophilic therapeutic agents to solid tumors and simultaneously provide for monitoring nanocarrier biodistribution via ultrasonography and/or 19F MRI. In the first generation of block copolymer stabilized perfluorocarbon nanoemulsions, perfluoropentane (PFP) was used as the droplet forming compound. Although manifesting excellent therapeutic and ultrasound imaging properties, PFP nanoemulsions were unstable at storage, difficult to handle, and underwent hard to control phenomenon of irreversible droplet-to-bubble transition upon injection. To solve the above problems, perfluoro-15-crown-5-ether (PFCE) was used as a core forming compound in the second generation of block copolymer stabilized perfluorocarbon nanoemulsions. PFCE nanodroplets manifest both ultrasound and fluorine (19F) MR contrast properties, which allows using multimodal imaging and 19F MR spectroscopy for monitoring nanodroplet pharmacokinetics and biodistribution. In the present paper, acoustic, imaging, and therapeutic properties of unloaded and paclitaxel (PTX) loaded PFCE nanoemulsions are reported. As manifested by the 19F MR spectroscopy, PFCE nanodroplets are long circulating, with about 50% of the injected dose remaining in circulation two hours after the systemic injection. Sonication with 1-MHz therapeutic ultrasound triggered reversible droplet-to-bubble transition in PFCE nanoemulsions. Microbubbles formed by acoustic vaporization of nanodroplets underwent stable cavitation. The nanodroplet size (200 nm to 350 nm depending on a type of the shell and conditions of emulsification) as well as long residence in circulation favored their passive accumulation in tumor tissue that was confirmed by ultrasonography. In the breast and pancreatic cancer animal models, ultrasound-mediated therapy with paclitaxel-loaded PFCE nanoemulsions showed excellent therapeutic properties characterized by tumor regression and suppression of metastasis. Anticipated mechanisms of the observed effects are discussed. PMID:21277919

  10. Photoacoustic measurements of photokinetics in single optically trapped aerosol droplets

    NASA Astrophysics Data System (ADS)

    Covert, Paul; Cremer, Johannes; Signorell, Ruth; Thaler, Klemens; Haisch, Christoph

    2017-04-01

    It is well established that interaction of light with atmospheric aerosols has a large impact on the Earth's climate. However, uncertainties in the magnitude of this impact remain large, due in part to broad distributions of aerosol size, composition, and chemical reactivity. In this context, photoacoustic spectroscopy is commonly used to measure light absorption by aerosols. Here, we present photoacoustic measurements of single, optically-trapped nanodroplets to reveal droplet size-depencies of photochemical and physical processes. Theoretical considerations have pointed to a size-dependence in the magnitude and phase of the photoacoustic response from aerosol droplets. This dependence is thought to originate from heat transfer processes that are slow compared to the acoustic excitation frequency. In the case of a model aerosol, our measurements of single particle absorption cross-section versus droplet size confirm these theoretical predictions. In a related study, using the same model aerosol, we also demonstrate a droplet size-dependence of photochemical reaction rates [1]. Within sub-micron sized particles, photolysis rates were observed to be an order of magnitude greater than those observed in larger droplets. [1] J. W. Cremer, K. M. Thaler, C. Haisch, and R. Signorell. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics. Nat. Commun., 7:10941, 2016.

  11. Communication: Helium nanodroplet isolation and rovibrational spectroscopy of hydroxymethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leavitt, Christopher M.; Moradi, Christopher P.; Stanton, John F.

    Here, hydroxymethylene (HCOH) and its d 1-isotopologue (HCOD) are isolated in low temperature helium nanodroplets following pyrolysis of glyoxylic acid. Transitions identified in the infrared spectrum are assigned exclusively to the trans-conformation based on previously reported anharmonic frequency computations. For the OH(D) and CH stretches, a-and b-type transitions are observed, and when taken in conjunction with CCSD(T)/cc-pVTZ computations, lower limits to the vibrational band origins are determined. The relative intensities of the a-and b-type transitions provide the orientation of the transition dipole moment in the inertial frame. The He nanodroplet data are in excellent agreement with anharmonic frequency computations reportedmore » here and elsewhere, confirming an appreciable Ar-matrix shift of the OH and OD stretches and strong anharmonic resonance interactions in the high-frequency stretch regions of the mid-infrared.« less

  12. Communication: Helium nanodroplet isolation and rovibrational spectroscopy of hydroxymethylene

    DOE PAGES

    Leavitt, Christopher M.; Moradi, Christopher P.; Stanton, John F.; ...

    2014-05-05

    Here, hydroxymethylene (HCOH) and its d 1-isotopologue (HCOD) are isolated in low temperature helium nanodroplets following pyrolysis of glyoxylic acid. Transitions identified in the infrared spectrum are assigned exclusively to the trans-conformation based on previously reported anharmonic frequency computations. For the OH(D) and CH stretches, a-and b-type transitions are observed, and when taken in conjunction with CCSD(T)/cc-pVTZ computations, lower limits to the vibrational band origins are determined. The relative intensities of the a-and b-type transitions provide the orientation of the transition dipole moment in the inertial frame. The He nanodroplet data are in excellent agreement with anharmonic frequency computations reportedmore » here and elsewhere, confirming an appreciable Ar-matrix shift of the OH and OD stretches and strong anharmonic resonance interactions in the high-frequency stretch regions of the mid-infrared.« less

  13. Estimation of viscous dissipation in nanodroplet impact and spreading

    NASA Astrophysics Data System (ADS)

    Li, Xin-Hao; Zhang, Xiang-Xiong; Chen, Min

    2015-05-01

    The developments in nanocoating and nanospray technology have resulted in the increasing importance of the impact of micro-/nanoscale liquid droplets on solid surface. In this paper, the impact of a nanodroplet on a flat solid surface is examined using molecular dynamics simulations. The impact velocity ranges from 58 m/s to 1044 m/s, in accordance with the Weber number ranging from 0.62 to 200.02 and the Reynolds number ranging from 0.89 to 16.14. The obtained maximum spreading factors are compared with previous models in the literature. The predicted results from the previous models largely deviate from our simulation results, with mean relative errors up to 58.12%. The estimated viscous dissipation is refined to present a modified theoretical model, which reduces the mean relative error to 15.12% in predicting the maximum spreading factor for cases of nanodroplet impact.

  14. Critical Landau Velocity in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Brauer, Nils B.; Smolarek, Szymon; Loginov, Evgeniy; Mateo, David; Hernando, Alberto; Pi, Marti; Barranco, Manuel; Buma, Wybren J.; Drabbels, Marcel

    2013-10-01

    The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective excitations of the helium atoms in the liquid. In the present work we determine to what extent this concept can still be applied to nanometer-scale, finite size helium systems. To this end, atoms and molecules embedded in helium nanodroplets of various sizes are accelerated out of the droplets by means of optical excitation, and the speed distributions of the ejected particles are determined. The measurements reveal the existence of a critical velocity in these systems, even for nanodroplets consisting of only a thousand helium atoms. Accompanying theoretical simulations based on a time-dependent density functional description of the helium confirm and further elucidate this experimental finding.

  15. The 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)-imide ionic liquid nanodroplets on solid surfaces and in electric field: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Dong, Dengpan; Vatamanu, Jenel P.; Wei, Xiaoyu; Bedrov, Dmitry

    2018-05-01

    Atomistic molecular dynamics simulations were conducted to study the wetting states of 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)-imide ionic liquid (IL) nanodroplets on surfaces with different strengths of van der Waals (VDW) interactions and in the presence of an electric field. By adjusting the depth of Lennard-Jones potential, the van der Waals interaction between the solid surface and ionic liquid was systematically varied. The shape of the droplets was analyzed to extract the corresponding contact angle utilized to characterize wetting states of the nanodroplets. The explored range of surface-IL interactions allowed contact angles ranging from complete IL spreading on the surface to poor wettability. The effect of the external electrical field was explored by adding point charges to the surface atoms. Systems with two charge densities (±0.002 e/atom and ±0.004 e/atom) that correspond to 1.36 V/nm and 2.72 V/nm electric fields were investigated. Asymmetrical wetting states were observed for both cases. At 1.36 V/nm electric field, contributions of IL-surface VDW interactions and Coulombic interactions to the wetting state were competitive. At 2.72 V/nm field, electrostatic interactions dominate the interaction between the nanodroplet and surface, leading to enhanced wettability on all surfaces.

  16. Amorphization and thermal stability of aluminum-based nanoparticles prepared from the rapid cooling of nanodroplets: effect of iron addition.

    PubMed

    Xiao, Shifang; Li, Xiaofan; Deng, Huiqiu; Deng, Lei; Hu, Wangyu

    2015-03-07

    Despite an intensive investigation on bimetallic nanoparticles, little attention has been paid to their amorphization in the past few decades. The study of amorphization on a nanoscale is of considerable significance for the preparation of amorphous nanoparticles and bulk metallic glass. Herein, we pursue the amorphization process of Al-based nanoparticles with classic molecular dynamics simulations and local structural analysis techniques. By a comparative study of the amorphization of pure Al and Fe-doped Al-based nanodroplets in the course of rapid cooling, we find that Fe addition plays a very important role in the vitrification of Al-based nanodroplets. Owing to the subsurface segregated Fe atoms with their nearest neighbors tending to form relatively stable icosahedral (ICO) clusters, the Fe-centred cluster network near the surface effectively suppresses the crystallization of droplets from surface nucleation and growth as the concentration of Fe attains a certain value. The glass formation ability of nanodroplets is suggested to be enhanced by the high intrinsic inner pressure as a result of small size and surface tension, combined with the dopant-inhibited surface nucleation. In addition, the effect of the size and the added concentration of nanoparticles on amorphization and the thermal stability of the amorphous nanoparticles are discussed. Our findings reveal the amorphization mechanism in Fe-doped Al-based nanoparticles and provide a theoretical guidance for the design of amorphous materials.

  17. Growth and assembly of cobalt oxide nanoparticle rings at liquid nanodroplets with solid junction.

    PubMed

    Zhou, Yilong; Powers, Alexander S; Zhang, Xiaowei; Xu, Tao; Bustillo, Karen; Sun, Litao; Zheng, Haimei

    2017-09-28

    Using liquid cell TEM, we imaged the formation of CoO nanoparticle rings. Nanoparticles nucleated and grew tracing the perimeter of droplets sitting on the SiN x solid substrate, and finally formed necklace-like rings. By tracking single nanoparticle trajectories during the ring formation and an estimation of the forces between droplets and nanoparticles using a simplified model, we found the junction of liquid nanodroplets with a solid substrate is the attractive site for CoO nanoparticles. Coalescing droplets were capable of pushing nanoparticles to the perimeter of the new droplet and nanoparticles on top of the droplets rolled off toward the perimeter. We propose that the curved surface morphology of the droplets created a force gradient that contributed to the assembly of nanoparticles at the droplet perimeter. Revealing the dynamics of nanoparticle movements and the interactions of nanoparticles with the liquid nanodroplet provides insights on developing novel self-assembly strategies for building precisely defined nanostructures on solid substrates.

  18. Extrapolating Single Organic Ion Solvation Thermochemistry from Simulated Water Nanodroplets.

    PubMed

    Coles, Jonathan P; Houriez, Céline; Meot-Ner Mautner, Michael; Masella, Michel

    2016-09-08

    We compute the ion/water interaction energies of methylated ammonium cations and alkylated carboxylate anions solvated in large nanodroplets of 10 000 water molecules using 10 ns molecular dynamics simulations and an all-atom polarizable force-field approach. Together with our earlier results concerning the solvation of these organic ions in nanodroplets whose molecular sizes range from 50 to 1000, these new data allow us to discuss the reliability of extrapolating absolute single-ion bulk solvation energies from small ion/water droplets using common power-law functions of cluster size. We show that reliable estimates of these energies can be extrapolated from a small data set comprising the results of three droplets whose sizes are between 100 and 1000 using a basic power-law function of droplet size. This agrees with an earlier conclusion drawn from a model built within the mean spherical framework and paves the road toward a theoretical protocol to systematically compute the solvation energies of complex organic ions.

  19. Communication: A combined periodic density functional and incremental wave-function-based approach for the dispersion-accounting time-resolved dynamics of ⁴He nanodroplets on surfaces: ⁴He/graphene.

    PubMed

    de Lara-Castells, María Pilar; Stoll, Hermann; Civalleri, Bartolomeo; Causà, Mauro; Voloshina, Elena; Mitrushchenkov, Alexander O; Pi, Martí

    2014-10-21

    In this work we propose a general strategy to calculate accurate He-surface interaction potentials. It extends the dispersionless density functional approach recently developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] to adsorbate-surface interactions by including periodic boundary conditions. We also introduce a scheme to parametrize the dispersion interaction by calculating two- and three-body dispersion terms at coupled cluster singles and doubles and perturbative triples (CCSD(T)) level via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. The performance of the composite approach is tested on (4)He/graphene by determining the energies of the low-lying selective adsorption states, finding an excellent agreement with the best available theoretical data. Second, the capability of the approach to describe dispersionless correlation effects realistically is used to extract dispersion effects in time-dependent density functional simulations on the collision of (4)He droplets with a single graphene sheet. It is found that dispersion effects play a key role in the fast spreading of the (4)He nanodroplet, the evaporation-like process of helium atoms, and the formation of solid-like helium structures. These characteristics are expected to be quite general and highly relevant to explain experimental measurements with the newly developed helium droplet mediated deposition technique.

  20. Communication: X-ray coherent diffractive imaging by immersion in nanodroplets

    DOE PAGES

    Tanyag, Rico Mayro P.; Bernando, Charles; Jones, Curtis F.; ...

    2015-10-14

    Lensless x-ray microscopy requires the recovery of the phase of the radiation scattered from a specimen. Here, we demonstrate a de novo phase retrieval technique by encapsulating an object in a superfluid helium nanodroplet, which provides both a physical support and an approximate scattering phase for the iterative image reconstruction. The technique is robust, fast-converging, and yields the complex density of the immersed object. As a result, images of xenon clusters embedded in superfluid helium droplets reveal transient configurations of quantum vortices in this fragile system.

  1. The THz/FIR Spectrum of Small Water Clusters in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Schwaab, Gerhard; Schwan, Raffael; Mani, Devendra; Pal, Nitish; Dey, Arghya; Redlich, Britta; van der Meer, Lex; Havenith, Martina

    2017-06-01

    The microscopic properties of water that are relevant for bulk solvation processes are still not fully understood. Here, we combine mass selective Helium nanodroplet spectroscopy with the powerful Terahertz (THz) and far-infrared (FIR) capabilities of the free electron laser facility FELIX to study the fingerprint of small neutral water clusters in the wavelength range from 90-900\\wn. Helium nanodroplets are a gentle, superfluid matrix and allow aggregation of pre-cooled moieties at ultra-cold temperatures (0.37 K). The fast cooling rate allows in some cases to stabilize not only the global minimum structure but also local minimum structures. The FELIX facility in Nijmegen provides narrowband (Δν / ν=0.5%) pulsed radation covering the frequency range from 80-3300 \\wn. We used a repetition rate of 10 Hz and typical pulse energies from 10 mJ at the 90\\wn and 40 mJ at 900\\wn. This corresponds to average powers of 100-400 mW far beyond those available using other radiation sources in this frequency range. The observed spectrum is exceptionally rich and includes lines that are close to or below our resolution limit. By mass selective detection and by varying the pickup pressure, we were able to identify contributions from dimer, trimer, tetramer and pentamer. The number of resonances indicates stabilization of at least two trimer structures in He nanodroplets. A comparison with theoretical predictions is on the way. We are confident that our experiments will contribute to understand the very special behavior of water in a bottom up approach.

  2. Data reduction and analysis of graphite fiber release experiments

    NASA Technical Reports Server (NTRS)

    Lieberman, P.; Chovit, A. R.; Sussholz, B.; Korman, H. F.

    1979-01-01

    The burn and burn/explode effects on aircraft structures were examined in a series of fifteen outdoor tests conducted to verify the results obtained in previous burn and explode tests of carbon/graphite composite samples conducted in a closed chamber, and to simulate aircraft accident scenarios in which carbon/graphite fibers would be released. The primary effects that were to be investigaged in these tests were the amount and size distribution of the conductive fibers released from the composite structures, and how these various sizes of fibers transported downwind. The structures included plates, barrels, aircraft spoilers and a cockpit. The heat sources included a propane gas burner and 20 ft by 20 ft and 40 ft by 60 ft JP-5 pool fires. The larger pool fire was selected to simulate an aircraft accident incident. The passive instrumentation included sticky paper and sticky bridal veil over an area 6000 ft downwind and 3000 ft crosswind. The active instrumentation included instrumented meteorological towers, movies, infrared imaging cameras, LADAR, high voltage ball gages, light emitting diode gages, microwave gages and flame velocimeter.

  3. Exploding conducting film laser pumping apparatus

    DOEpatents

    Ware, Kenneth D.; Jones, Claude R.

    1986-01-01

    Exploding conducting film laser optical pumping apparatus. The 342-nm molecular iodine and the 1.315-.mu.m atomic iodine lasers have been optically pumped by intense light from exploding-metal-film discharges. Brightness temperatures for the exploding-film discharges were approximately 25,000 K. Although lower output energies were achieved for such discharges when compared to exploding-wire techniques, the larger surface area and smaller inductance inherent in the exploding-film should lead to improved efficiency for optically-pumped gas lasers.

  4. Communication: Fourier-transform infrared probing of remarkable quantities of gas trapped in cold homogeneously nucleated nanodroplets.

    PubMed

    Uras-Aytemiz, Nevin; Devlin, J Paul

    2013-07-14

    Studies of catalyzed all-vapor gas-hydrate formation on a sub-second timescale have been extended with a special focus on liquid-droplet compositions at the instant of hydrate crystallization. This focus has been enabled by inclusion of methanol in the all-vapor mixture. This slows droplet to gas-hydrate conversion near 200 K to a time scale suited for standard FTIR sampling. Such droplet data are sought as a guide to ongoing efforts to reduce the amount of guest catalyst required for instant formation of the gas hydrates. For the same reason, all-vapor sampling has also been extended to the generation of long-lived liquid droplets with reduced or no water content. Observations of single-solvent droplets show that surprising quantities of gas molecules are trapped during rapid droplet growth. For example, CO2 is trapped at levels near 50 mol. % in droplets of acetone, tetrahydrofuran, or trimethylene oxide formed under CO2 pressures of several Torr in a cold-chamber at 170 K. Less but significant amounts of gas are trapped at higher temperatures, or in methanol or water-methanol droplets. The droplet metastability appears to commonly lead to formation of bubbles larger than the original nanodroplets. Besides serving as a guide for the all-vapor gas-hydrate studies, the semiquantitative evidence of extensive trapping of gases is expected to have a role in future studies of atmospheric aerosols.

  5. Communication: Fourier-transform infrared probing of remarkable quantities of gas trapped in cold homogeneously nucleated nanodroplets

    NASA Astrophysics Data System (ADS)

    Uras-Aytemiz, Nevin; Devlin, J. Paul

    2013-07-01

    Studies of catalyzed all-vapor gas-hydrate formation on a sub-second timescale have been extended with a special focus on liquid-droplet compositions at the instant of hydrate crystallization. This focus has been enabled by inclusion of methanol in the all-vapor mixture. This slows droplet to gas-hydrate conversion near 200 K to a time scale suited for standard FTIR sampling. Such droplet data are sought as a guide to ongoing efforts to reduce the amount of guest catalyst required for instant formation of the gas hydrates. For the same reason, all-vapor sampling has also been extended to the generation of long-lived liquid droplets with reduced or no water content. Observations of single-solvent droplets show that surprising quantities of gas molecules are trapped during rapid droplet growth. For example, CO2 is trapped at levels near 50 mol. % in droplets of acetone, tetrahydrofuran, or trimethylene oxide formed under CO2 pressures of several Torr in a cold-chamber at 170 K. Less but significant amounts of gas are trapped at higher temperatures, or in methanol or water-methanol droplets. The droplet metastability appears to commonly lead to formation of bubbles larger than the original nanodroplets. Besides serving as a guide for the all-vapor gas-hydrate studies, the semiquantitative evidence of extensive trapping of gases is expected to have a role in future studies of atmospheric aerosols.

  6. Camptothecin-loaded fusogenic nanodroplets as ultrasound theranostic agent in stem cell-mediated drug-delivery system.

    PubMed

    Ho, Yi-Ju; Chiang, Yu-Jung; Kang, Shih-Tsung; Fan, Ching-Hsiang; Yeh, Chih-Kuang

    2018-05-28

    Adipose-derived stem cells (ADSCs) have been utilized in cellular delivery systems to carry therapeutic agents into tumors by migration. Drug-loaded nanodroplets release drugs and form bubbles after acoustic droplet vaporization (ADV) triggered by ultrasound stimulation, providing a system for ultrasound-induced cellular delivery of theranostic agents. In order to improve the efficiency of drug release, fusogenic nanodroplets were designed to go from nano to micron size upon uptake by ADSCs for reducing ADV threshold. The purpose of our study was to demonstrate the utility of camptothecin-loaded fusogenic nanodroplets (CPT-FNDs) as ultrasound theranostic agents in an ADSCs delivery system. CPT-FNDs showed an increase in size from 81.6 ± 3.5 to 1043.5 ± 28.3 nm and improved CPT release from 22.0 ± 1.8% to 37.6 ± 2.1%, demonstrating the fusion ability of CPT-FNDs. CPT-FNDs-loaded ADSCs demonstrated a cell viability of 77 ± 4%, and the in vitro migration ability was 3.2 ± 1.2-fold for the tumor condition compared to the cell growth condition. Ultrasound enhancement imaging showed intratumoral ADV-generated bubble formation (increasing 3.24 ± 0.47 dB) triggered by ultrasound after CPT-FNDs-loaded ADSCs migration into B16F0 tumors. Histological images revealed intratumoral distribution of CPT-FNDs-loaded ADSCs and tissue damage due to the ADV. The CPT-FNDs can be used as theranostic agents in an ADSCs delivery system to provide the ultrasound contrast imaging and deliver combination therapy of drug release and physical damage after ADV. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Interaction of SO2 with the Surface of a Water Nanodroplet.

    PubMed

    Zhong, Jie; Zhu, Chongqin; Li, Lei; Richmond, Geraldine L; Francisco, Joseph S; Zeng, Xiao Cheng

    2017-11-29

    We present a comprehensive computational study of interaction of a SO 2 with water molecules in the gas phase and with the surface of various sized water nanodroplets to investigate the solvation behavior of SO 2 in different atmospheric environments. Born-Oppenheimer molecular dynamics (BOMD) simulation shows that, in the gas phase and at a temperature of 300 K, the dominant interaction between SO 2 and H 2 O is (SO 2 ) S···O (H 2 O) , consistent with previous density-functional theory (DFT) computation at 0 K. However, at the surface of a water nanodroplet, BOMD simulation shows that the hydrogen-bonding interaction of (SO 2 ) O···H (H 2 O) becomes increasingly important with the increase of droplet size, reflecting a marked effect of the water surface on the SO 2 solvation. This conclusion is in good accordance with spectroscopy evidence obtained previously (J. Am. Chem. Soc. 2005, 127, 16806; J. Am. Chem. Soc. 2006, 128, 3256). The prevailing interaction (SO 2 ) O···H (H 2 O) on a large droplet is mainly due to favorable exposure of H atoms of H 2 O at the air-water interface. Indeed, the conversion of the dominant interaction in the gas phase (SO 2 ) S···O (H 2 O) to the dominant interaction on the water nanodroplet (SO 2 ) O···H (H 2 O) may incur effects on the SO 2 chemistry in atmospheric aerosols because the solvation of SO 2 at the water surface can affect the reactive sites and electrophilicity of SO 2 . Hence, the solvation of SO 2 on the aerosol surface may have new implications when studying SO 2 chemistry in the aerosol-containing troposphere.

  8. Exploding dissipative solitons in the cubic-quintic complex Ginzburg-Landau equation in one and two spatial dimensions. A review and a perspective

    NASA Astrophysics Data System (ADS)

    Cartes, C.; Descalzi, O.; Brand, H. R.

    2014-10-01

    We review the work on exploding dissipative solitons in one and two spatial dimensions. Features covered include: the transition from modulated to exploding dissipative solitons, the analogue of the Ruelle-Takens scenario for dissipative solitons, inducing exploding dissipative solitons by noise, two classes of exploding dissipative solitons in two spatial dimensions, diffusing asymmetric exploding dissipative solitons as a model for a two-dimensional extended chaotic system. As a perspective we outline the interaction of exploding dissipative solitons with quasi one-dimensional dissipative solitons, breathing quasi one-dimensional solutions and their possible connection with experimental results on convection, and the occurence of exploding dissipative solitons in reaction-diffusion systems. It is a great pleasure to dedicate this work to our long-time friend Hans (Prof. Dr. Hans Jürgen Herrmann) on the occasion of his 60th birthday.

  9. 50th Annual Fuze Conference.Session 3 and 4

    DTIC Science & Technology

    2006-05-11

    Exploding Foil Initiator Research • Research on Explosives • Conclusion Wim Prinse Research Scientist3 TNO has organised...Research Scientist6 Exploding Foil Initiator Research • Electrical circuit • Exploding foil • Velocity of the flyer • Driver Explosive • Secondary...90% efficiency of energy deposited in the exploding foil (50 % other circuits) Wim Prinse Research Scientist8 Exploding foil • Dimension of the foil

  10. Alignment and Imaging of the CS2 Dimer Inside Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Pickering, James D.; Shepperson, Benjamin; Hübschmann, Bjarke A. K.; Thorning, Frederik; Stapelfeldt, Henrik

    2018-03-01

    The carbon disulphide (CS2) dimer is formed inside He nanodroplets and identified using fs laser-induced Coulomb explosion, by observing the CS2+ ion recoil velocity. It is then shown that a 160 ps moderately intense laser pulse can align the dimer in advantageous spatial orientations which allow us to determine the cross-shaped structure of the dimer by analysis of the correlations between the emission angles of the nascent CS2+ and S+ ions, following the explosion process. Our method will enable fs time-resolved structural imaging of weakly bound molecular complexes during conformational isomerization, including formation of exciplexes.

  11. Fast-switching optically isotropic liquid crystal nano-droplets with improved depolarization and Kerr effect by doping high k nanoparticles.

    PubMed

    Kim, Byeonggon; Kim, Hyun Gyu; Shim, Gyu-Yeop; Park, Ji-Sub; Joo, Kyung-Il; Lee, Dong-Jin; Lee, Joun-Ho; Baek, Ji-Ho; Kim, Byeong Koo; Choi, Yoonseuk; Kim, Hak-Rin

    2018-01-10

    We proposed and analyzed an optically isotropic nano-droplet liquid crystal (LC) doped with high k nanoparticles (NPs), exhibiting enhanced Kerr effects, which could be operated with reduced driving voltages. For enhancing the contrast ratio together with the light efficiencies, the LC droplet sizes were adjusted to be shorter than the wavelength of visible light to reduce depolarization effects by optical scattering of the LC droplets. Based on the optical analysis of the depolarization effects, the influence of the relationship between the LC droplet size and the NP doping ratio on the Kerr effect change was investigated.

  12. Oil-encapsulated nanodroplet array for bio-molecular detection.

    PubMed

    Qiao, Wen; Zhang, Tiantian; Yen, Tony; Ku, Ti-Hsuan; Song, Junlan; Lian, Ian; Lo, Yu-Hwa

    2014-09-01

    Detection of low abundance biomolecules is challenging for biosensors that rely on surface chemical reactions. For surface reaction based biosensors, it require to take hours or even days for biomolecules of diffusivities in the order of 10(-10-11) m2/s to reach the surface of the sensors by Brownian motion. In addition, often times the repelling Coulomb interactions between the molecules and the probes further defer the binding process, leading to undesirably long detection time for applications such as point-of-care in vitro diagnosis. In this work, we designed an oil encapsulated nanodroplet array microchip utilizing evaporation for pre-concentration of the targets to greatly shorten the reaction time and enhance the detection sensitivity. The evaporation process of the droplets is facilitated by the superhydrophilic surface and resulting nanodroplets are encapsulated by oil drops to form stable reaction chamber. Using this method, desirable droplet volumes, concentrations of target molecules, and reaction conditions (salt concentrations, reaction temperature, etc.) in favour of fast and sensitive detection are obtained. A linear response over 2 orders of magnitude in target concentration was achieved at 10 fM for protein targets and 100 fM for miRNA mimic oligonucleotides.

  13. Amorphization of hard crystalline materials by electrosprayed nanodroplet impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamero-Castaño, Manuel, E-mail: mgameroc@uci.edu; Torrents, Anna; Borrajo-Pelaez, Rafael

    2014-11-07

    A beam of electrosprayed nanodroplets impacting on single-crystal silicon amorphizes a thin surface layer of a thickness comparable to the diameter of the drops. The phase transition occurs at projectile velocities exceeding a threshold, and is caused by the quenching of material melted by the impacts. This article demonstrates that the amorphization of silicon is a general phenomenon, as nanodroplets impacting at sufficient velocity also amorphize other covalently bonded crystals. In particular, we bombard single-crystal wafers of Si, Ge, GaAs, GaP, InAs, and SiC in a range of projectile velocities, and characterize the samples via electron backscatter diffraction and transmissionmore » electron microscopy to determine the aggregation state under the surface. InAs requires the lowest projectile velocity to develop an amorphous layer, followed by Ge, Si, GaAs, and GaP. SiC is the only semiconductor that remains fully crystalline, likely due to the relatively low velocities of the beamlets used in this study. The resiliency of each crystal to amorphization correlates well with the specific energy needed to melt it except for Ge, which requires projectile velocities higher than expected.« less

  14. Theranostic Performance of Acoustic Nanodroplet Vaporization-Generated Bubbles in Tumor Intertissue.

    PubMed

    Ho, Yi-Ju; Yeh, Chih-Kuang

    2017-01-01

    Solid tumors with poorly perfused regions reveal some of the treatment limitations that restrict drug delivery and therapeutic efficacy. Acoustic droplet vaporization (ADV) has been applied to directly disrupt vessels and release nanodroplets, ADV-generated bubbles (ADV-Bs), and drugs into tumor tissue. In this study, we investigated the in vivo behavior of ADV-Bs stimulated by US, and evaluated the possibility of moving intertissue ADV-Bs into the poorly perfused regions of solid tumors. Intravital imaging revealed intertissue ADV-B formation, movement, and cavitation triggered by US, where the distance of intertissue ADV-B movement was 33-99 µm per pulse. When ADV-Bs were applied to tumor cells, the cell membrane was damaged, increasing cellular permeability or inducing cell death. The poorly perfused regions within solid tumors show enhancement due to ADV-B accumulation after application of US-triggered ADV-B. The intratumoral nanodroplet or ADV-B distribution around the poorly perfused regions with tumor necrosis or hypoxia were demonstrated by histological assessment. ADV-B formation, movement and cavitation could induce cell membrane damage by mechanical force providing a mechanism to overcome treatment limitations in poorly perfused regions of tumors.

  15. Coalescence driven self-organization of growing nanodroplets around a microcap

    NASA Astrophysics Data System (ADS)

    Dyett, Brendan; Hao, Hao; Lohse, Detlef; Zhang, Xuehua

    The coalescence between growing droplets is important for the surface coverage and spatial arrangements of droplets on surfaces. In this work, total internal reflection fluorescence (TIRF) microscopy is utilized to in-situ investigate the formation of nanodroplets around the rim of a polymer microcap, with sub-micron spatial and millisecond temporal resolution. We observe that the coalescence among droplets occurs frequently during their growth by solvent exchange. Our experimental results show that the position of the droplet from two merged droplets is related to the size of the parent droplets. The position of the coalesced droplet and the ratio of parent droplet sizes obey a scaling law, reflecting a coalescence preference based on the size inequality. As a result of droplet coalescence, the angles between the centroids of two neighbouring droplets increase with time, obeying a nearly symmetrical arrangement of droplets at various time intervals. The evolution of the position and number from coalescence of growing droplets is modelled. The mechanism for coalescence driven self-organization of growing droplets is general, applicable to microcaps of different sizes and droplets of different liquids. The understanding from this work may be valuable for positioning nanodroplets by nucleation and growth without using templates.

  16. Coalescence driven self-organization of growing nanodroplets around a microcap.

    PubMed

    Dyett, Brendan; Hao, Hao; Lohse, Detlef; Zhang, Xuehua

    2018-04-04

    The coalescence between growing droplets is important for the surface coverage and spatial arrangements of droplets on surfaces. In this work, total internal reflection fluorescence (TIRF) microscopy is utilized to in situ investigate the formation of nanodroplets around the rim of a polymer microcap, with sub-micron spatial and millisecond temporal resolution. We observe that the coalescence among droplets occurs frequently during their growth by solvent exchange. Our experimental results show that the position of the droplet from two merged droplets is related to the size of the parent droplets. The position of the coalesced droplet and the ratio of parent droplet sizes obey a scaling law, reflecting a coalescence preference based on the size inequality. As a result of droplet coalescence, the angles between the centroids of two neighbouring droplets increase with time, obeying a nearly symmetrical arrangement of droplets at various time intervals. The evolution of the position and number from coalescence of growing droplets is modelled. The mechanism for coalescence driven self-organization of growing droplets is general, applicable to microcaps of different sizes and droplets of different liquids. The understanding from this work may be valuable for positioning nanodroplets by nucleation and growth without using templates.

  17. Theranostic Performance of Acoustic Nanodroplet Vaporization-Generated Bubbles in Tumor Intertissue

    PubMed Central

    Ho, Yi-Ju; Yeh, Chih-Kuang

    2017-01-01

    Solid tumors with poorly perfused regions reveal some of the treatment limitations that restrict drug delivery and therapeutic efficacy. Acoustic droplet vaporization (ADV) has been applied to directly disrupt vessels and release nanodroplets, ADV-generated bubbles (ADV-Bs), and drugs into tumor tissue. In this study, we investigated the in vivo behavior of ADV-Bs stimulated by US, and evaluated the possibility of moving intertissue ADV-Bs into the poorly perfused regions of solid tumors. Intravital imaging revealed intertissue ADV-B formation, movement, and cavitation triggered by US, where the distance of intertissue ADV-B movement was 33-99 µm per pulse. When ADV-Bs were applied to tumor cells, the cell membrane was damaged, increasing cellular permeability or inducing cell death. The poorly perfused regions within solid tumors show enhancement due to ADV-B accumulation after application of US-triggered ADV-B. The intratumoral nanodroplet or ADV-B distribution around the poorly perfused regions with tumor necrosis or hypoxia were demonstrated by histological assessment. ADV-B formation, movement and cavitation could induce cell membrane damage by mechanical force providing a mechanism to overcome treatment limitations in poorly perfused regions of tumors. PMID:28529631

  18. The Detection Rate of Early UV Emission from Supernovae: A Dedicated Galex/PTF Survey and Calibrated Theoretical Estimates

    NASA Astrophysics Data System (ADS)

    Ganot, Noam; Gal-Yam, Avishay; Ofek, Eran. O.; Sagiv, Ilan; Waxman, Eli; Lapid, Ofer; Kulkarni, Shrinivas R.; Ben-Ami, Sagi; Kasliwal, Mansi M.; The ULTRASAT Science Team; Chelouche, Doron; Rafter, Stephen; Behar, Ehud; Laor, Ari; Poznanski, Dovi; Nakar, Ehud; Maoz, Dan; Trakhtenbrot, Benny; WTTH Consortium, The; Neill, James D.; Barlow, Thomas A.; Martin, Christofer D.; Gezari, Suvi; the GALEX Science Team; Arcavi, Iair; Bloom, Joshua S.; Nugent, Peter E.; Sullivan, Mark; Palomar Transient Factory, The

    2016-03-01

    The radius and surface composition of an exploding massive star, as well as the explosion energy per unit mass, can be measured using early UV observations of core-collapse supernovae (SNe). We present the first results from a simultaneous GALEX/PTF search for early ultraviolet (UV) emission from SNe. Six SNe II and one Type II superluminous SN (SLSN-II) are clearly detected in the GALEX near-UV (NUV) data. We compare our detection rate with theoretical estimates based on early, shock-cooling UV light curves calculated from models that fit existing Swift and GALEX observations well, combined with volumetric SN rates. We find that our observations are in good agreement with calculated rates assuming that red supergiants (RSGs) explode with fiducial radii of 500 R ⊙, explosion energies of 1051 erg, and ejecta masses of 10 M ⊙. Exploding blue supergiants and Wolf-Rayet stars are poorly constrained. We describe how such observations can be used to derive the progenitor radius, surface composition, and explosion energy per unit mass of such SN events, and we demonstrate why UV observations are critical for such measurements. We use the fiducial RSG parameters to estimate the detection rate of SNe during the shock-cooling phase (<1 day after explosion) for several ground-based surveys (PTF, ZTF, and LSST). We show that the proposed wide-field UV explorer ULTRASAT mission is expected to find >85 SNe per year (˜0.5 SN per deg2), independent of host galaxy extinction, down to an NUV detection limit of 21.5 mag AB. Our pilot GALEX/PTF project thus convincingly demonstrates that a dedicated, systematic SN survey at the NUV band is a compelling method to study how massive stars end their life.

  19. 50th Annual Fuze Conference Sessions 3 and 4 Held in Norfolk, Virginia on May 9-11, 2006

    DTIC Science & Technology

    2006-05-11

    Exploding Foil Initiator Research • Research on Explosives • Conclusion Wim Prinse Research Scientist3 TNO has organised...Research Scientist6 Exploding Foil Initiator Research • Electrical circuit • Exploding foil • Velocity of the flyer • Driver Explosive • Secondary...90% efficiency of energy deposited in the exploding foil (50 % other circuits) Wim Prinse Research Scientist8 Exploding foil • Dimension of the foil

  20. Exploding conducting film laser pumping apparatus

    DOEpatents

    Ware, K.D.; Jones, C.R.

    1984-04-27

    The 342-nm molecular iodine and the 1.315-..mu..m atomic iodine lasers have been optically pumped by intense light from exploding-metal-film discharges. Brightness temperatures for the exploding-film discharges were approximately 25,000 K. Although lower output energies were achieved for such discharges when compared to exploding-wire techniques, the larger surface area and smaller inductance inherent in the exploding-film should lead to improved efficiency for optically-pumped gas lasers.

  1. Income Inequality, Race, and Child Well-Being: An Aggregate Analysis in the 50 United States

    ERIC Educational Resources Information Center

    McLeod, Jane D.; Nonnemaker, James M.; Call, Kathleen Thiede

    2004-01-01

    Interest in income inequality as a predictor of health has exploded since the mid-1990s. Recent analyses suggest, however, that the effect of income inequality on population health is not robust to a control for the racial composition of the population. That observation raises two interpretational questions. First, does income inequality have an…

  2. Oxygen Isotope Composition of Almahata Sitta

    NASA Technical Reports Server (NTRS)

    Rumble, D.; Zolensky, M. E.; Friedrich, J. M.; Jenniskens, P.; Shaddad, M. H.

    2010-01-01

    The name Almahata Sitta is applied collectively to some hundreds of stones that were found in a linear strewn field in the Nubian Desert coincident with the projected Earth-impacting orbit of the Asteroid 2008 TC3. Fragments of the meteorite were collected in December 2008 and March 2009, 2 to 5 months after the asteroid exploded in Earths atmosphere on 7 October 2008.

  3. Nanodroplet impact onto solid platinum surface: Spreading and bouncing

    NASA Astrophysics Data System (ADS)

    Lussier, Daniel; Ventikos, Yiannis

    2009-11-01

    The impact of droplets onto solid surfaces is found in a huge variety of natural and technological applications, from rain drops splashing on the pavement, to material manufacturing by molten droplet deposition. Taking inspiration from existing microfluidic technologies (i.e. lab-on-chip), there is increasing interest in the use of nanodroplets (D < 100 nm) for a number of applications such as drug delivery and semiconductor device manufacturing. However, as the size of the droplet is reduced into the nanoscale, the direct use of previously obtained macroscopic results is not guaranteed. At the nanoscale, important effects due to the molecular nature of the fluid, thermal fluctuations and reduced dimensionality can play a critical role in determining system dynamics. In this paper we present the results of large-scale, fully atomistic, three-dimensional molecular dynamics (MD) simulation of an argon nanodroplet (D = 18 nm, 54 000 atoms) impact onto a solid platinum surface, using the LAMMPS software package. The fluid argon is modeled using the well-known Lennard-Jones (LJ) potential, while the embedded-atom model (EAM) potential is used for the solid platinum. By varying both the impact velocities (10-1000 m/s) and the wettability of the solid surface a wide range of impact behaviors is observed, from smooth spreading, to bouncing recoil, pointing towards a wide array of potential applications.

  4. Enhancing the chemiluminescence intensity of a KMnO4 formaldehyde system for estimating the total phenolic content in honey samples using a novel nanodroplet mixing approach in a microfluidics platform.

    PubMed

    Al Lawati, Haider A J; Al Mughairy, Baqia; Al Lawati, Iman; Suliman, FakhrEldin O

    2018-04-30

    A novel mixing approach was utilized with a highly sensitive chemiluminescence (CL) method to determine the total phenolic content (TPC) in honey samples using an acidic potassium permanganate-formaldehyde system. The mixing approach was based on exploiting the mixing efficiency of nanodroplets generated in a microfluidic platform. Careful optimization of the instrument setup and various experimental conditions were employed to obtain excellent sensitivity. The mixing efficiency of the droplets was compared with the CL signal intensity obtained using the common serpentine chip design, with both approaches using at a total flow rate of 15 μl min -1 ; the results showed that the nanodroplets provided 600% higher CL signal intensity at this low flow rate. Using the optimum conditions, calibration equations, limits of detection (LOD) and limits of quantification (LOQ) for gallic acid (GA), caffeic acid (CA), kaempferol (KAM), quercetin (QRC) and catechin (CAT) were obtained. The LOD ranged from 6.2 ppb for CA to 11.0 ppb for QRC. Finally, the method was applied for the determination of TPC in several local and commercial honey samples. Copyright © 2018 John Wiley & Sons, Ltd.

  5. Ion formation upon electron collisions with valine embedded in helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Weinberger, Nikolaus; Ralser, Stefan; Renzler, Michael; Harnisch, Martina; Kaiser, Alexander; Denifl, Stefan; Böhme, Diethard K.; Scheier, Paul

    2016-04-01

    We report here experimental results for the electron ionization of large superfluid helium nanodroplets with sizes of about 105 atoms that are doped with valine and clusters of valine. Spectra of both cations and anions were monitored with high-resolution time-of-flight mass spectrometry (mass resolution >4000). Clear series of peaks with valine cluster sizes up to at least 40 and spaced by the mass of a valine molecule are visible in both the cation and anion spectra. Ion efficiency curves are presented for selected cations and anions at electron energies up to about 40 eV and these provide insight into the mode of ion formation. The measured onset of 24.59 eV for cations is indicative of valine ionization by He+ whereas broad resonances at 2, 10 and 22 eV (and beyond) in the formation of anions speak to the occurrence of various modes of dissociative electron attachment by collisions with electrons or He*- and the influence of droplet size on the relative importance of these processes. Comparisons are also made with gas phase results and these provide insight into a matrix effect within the superfluid helium nanodroplet. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  6. Drug-Loaded Nanoemulsions/Microbubbles for Combined Tumor Imaging and Therapy

    NASA Astrophysics Data System (ADS)

    Rapoport, Natalya; Gao, Zhonggao; Kennedy, Ann

    2007-05-01

    A new class of multifunctional nanoparticles that combine properties of polymeric drug carriers, ultrasound imaging contrast agents, and enhancers of ultrasound-mediated intracellular drug delivery was developed. At room temperature, the developed systems comprise perfluorocarbon nanodroplets stabilized by the walls made of biodegradable block copolymers. The nanodroplets convert into microbubbles upon heating to physiological temperatures. The phase state of the systems and nanodroplet size may be controlled by the copolymer/perfluorocarbon volume ratio. Three areas observed in phase diagrams correspond to micelles; micelle/microbubble coexistence; and nano/microbubble coexistence. These systems manifest a relatively high drug loading capacity (about 15 % wt/wt). As indicated by biodistribution measurements and ultrasound imaging, the micelles and nanobubbles extravasate selectively into the tumor interstitia. Microbubble cavitate and collapse under the action of tumor-directed ultrasound, resulting in a dramatically enhanced intracellular drug uptake by the tumor cells. Upon intravenous injections, a long-lasting, strong and selective ultrasound contrast is observed in the tumor volume confirming nanobubble extravasation through the defected tumor microvasculature and suggesting their coalescence into larger, highly echogenic microbubbles in the tumor tissue. This effect is tumor-selective; no accumulation of echogenic microbubbles is observed in other organs. Tumor contrast increases in time confirming gradual accumulation of echogenic microbubbles in the tumor tissue, presumably via the enhanced penetration and retention (EPR) effect.

  7. Synthesis of Calcium Phosphate Composite Organogels by Using Emulsion Method for Dentine Occlusion Materials

    NASA Astrophysics Data System (ADS)

    Nopteeranupharp, C.; Akkarachaneeyakorn, K.; Songsasaen, A.

    2018-03-01

    Dentinal hypersensitivity (DH) is one of the most human’s problems caused by the erosion of enamel. There are many methods and materials to solve this problem. Calcium phosphate is an excellent alternative for curing this symptom because of its osteoconductivity, and biocompatibility properties. The low-cost and low-toxicity calcium phosphate nanogel was fabricated by using emulsion method and characterized by using TEM, EDX, and DLS techniques. The results showed that P123 (poly (ethylene oxide)19-block-Poly (propylene oxide)69-block-poly (ethylene oxide)19) has played a major role as template and gel formation, SDS was used as a surfactant to form water-in-oil emulsion nanodroplets with circle-like shape. Moreover, the ability of synthesised organogel to occlude the exposed dentine tubules was tested on the model of human’s dentine slices. The results showed that calcium phosphate composite organogel can be efficiently occluded on dentine slice, characterized by SEM technique, after 1 day.

  8. Patterning of Thick Parylene Films by Oxygen Plasma for Application as Exploding Foil Initiator Flyer Material

    DTIC Science & Technology

    2009-09-01

    exploding foil initiator ( EFI ) type fuzes are being explored to...Acronyms Au gold Cr chromium Cu copper EFI exploding foil initiator BOE buffered oxide etch MEMS microelectromechanical systems RIE reactive ion...Patterning of Thick Parylene Films by Oxygen Plasma for Application as Exploding Foil Initiator Flyer Material by Eugene Zakar and Michael

  9. Method for making generally cylindrical underground openings

    DOEpatents

    Routh, J.W.

    1983-05-26

    A rapid, economical and safe method for making a generally cylindrical underground opening such as a shaft or a tunnel is described. A borehole is formed along the approximate center line of where it is desired to make the underground opening. The borehole is loaded with an explodable material and the explodable material is detonated. An enlarged cavity is formed by the explosive action of the detonated explodable material forcing outward and compacting the original walls of the borehole. The enlarged cavity may be increased in size by loading it with a second explodable material, and detonating the second explodable material. The process may be repeated as required until the desired underground opening is made. The explodable material used in the method may be free-flowing, and it may be contained in a pipe.

  10. Development of ingan quantum dots by the Stranski-Krastanov method and droplet heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Woodward, Jeffrey Michael

    The development of InGaN quantum dots (QDs) is both scienti?cally challenging and promising for applications in visible spectrum LEDs, lasers, detectors, electroabsorption modulators and photovoltaics. Such QDs are typically grown using the Stranski-Krastanov (SK) growth mode, in which accumulated in-plane compressive strain induces a transition from 2D to 3D growth. This method has a number of inherent limitations, including the unavoidable formation of a 2D wetting layer and the di?culty of controlling the composition, areal density, and size of the dots. In this research, I have developed InGaN QDs by two methods using a plasma-assisted molecular beam epitaxy reactor. In the ?rst method, InGaN QDs were formed by SK growth mode on (0001) GaN/sapphire. In the second, I have addressed the limitations of the SK growth of InGaN QDs by developing a novel alternative method, which was utilized to grow on both (0001) GaN/sapphire and AlN/sapphire. This method relies upon the ability to form thermodynamically stable In-Ga liquid solutions throughout the entire compositional range at relatively low temperatures. Upon simultaneous or sequential deposition of In and Ga on a substrate, the adatoms form a liquid solution, whose composition is controlled by the ratio of the fluxes of the two constituents FIn/(FIn+FGa ). Depending on the interfacial free energy between the liquid deposit and substrate, the liquid deposit and vapor, and the vapor and substrate, the liquid deposit forms Inx-Ga1- x nano-droplets on the substrate. These nano-droplets convert into InxGa1-xN QDs upon exposure to nitrogen RF plasma. InGaN QDs produced by both methods were investigated in-situ by reflection high-energy electron diffraction and ex-situ by atomic force microscopy, field emission scanning electron microscopy, transmission electron microscopy, high resolution x-ray diffraction, and grazing incidence small angle x-ray scattering. The optical activity and device potential of the QDs were investigated by photoluminescence measurements and the formation and evaluation of PIN devices (in which the intrinsic region contains QDs embedded within a higher bandgap matrix). InGaN QDs with areal densities ranging from 109 to 1011 cm -2 and diameters ranging from 11 to 39 nm were achieved.

  11. Fragmentation dynamics of ionized neon trimer inside helium nanodroplets: a theoretical study.

    PubMed

    Bonhommeau, David; Viel, Alexandra; Halberstadt, Nadine

    2004-06-22

    We report a theoretical study of the fragmentation dynamics of Ne(3) (+) inside helium nanodroplets, following vertical ionization of the neutral neon trimer. The motion of the neon atoms is treated classically, while transitions between the electronic states of the ionic cluster are treated quantum mechanically. A diatomics-in-molecules description of the potential energy surfaces is used, in a minimal basis set consisting of three effective p orbitals on each neon atom for the missing electron. The helium environment is modeled by a friction force acting on the neon atoms when their speed exceeds the Landau velocity. A reasonable range of values for the corresponding friction coefficient is obtained by comparison with existing experimental measurements. (c) 2004 American Institute of Physics.

  12. Proteomic analysis of single mammalian cells enabled by microfluidic nanodroplet sample preparation and ultrasensitive nanoLC-MS.

    PubMed

    Zhu, Ying; Clair, Geremy; Chrisler, William; Shen, Yufeng; Zhao, Rui; Shukla, Anil; Moore, Ronald; Misra, Ravi; Pryhuber, Gloria; Smith, Richard; Ansong, Charles; Kelly, Ryan T

    2018-05-24

    We report on the quantitative proteomic analysis of single mammalian cells. Fluorescence-activated cell sorting was employed to deposit cells into a newly developed nanodroplet sample processing chip, after which samples were analysed by ultrasensitive nanoLC-MS. An average of ~670 protein groups were confidently identified from single HeLa cells, which is a far greater level of proteome coverage for single cells than has been previously reported. We demonstrate that the single cell proteomics platform can be used to differentiate cell types from enzyme-dissociated human lung primary cells and identify specific protein markers for epithelial and mesenchymal cells. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Color Composite Image of the Supernova Remnant

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image is a color composite of the supernova remnant E0102-72: x-ray (blue), optical (green), and radio (red). E0102-72 is the remnant of a star that exploded in a nearby galaxy known as the Small Magellanic Cloud. The star exploded outward at speeds in excess of 20 million kilometers per hour (12 million mph) and collided with surrounding gas. This collision produced two shock waves, or cosmic sonic booms, one traveling outward, and the other rebounding back into the material ejected by the explosion. The radio image, shown in red, was made using the Australia Telescope Compact Array. The radio waves are due to extremely high-energy electrons spiraling around magnetic field lines in the gas and trace the outward moving shock wave. The Chandra X-ray Observatory image, shown in blue, shows gas that has been heated to millions of degrees by the rebounding, or reverse shock wave. The x-ray data show that this gas is rich in oxygen and neon. These elements were created by nuclear reactions inside the star and hurled into space by the supernova. The Hubble Space Telescope optical image, shown in green, shows dense clumps of oxygen gas that have 'cooled' to about 30,000 degrees. Photo Credit: X-ray (NASA/CXC/SAO); optical (NASA/HST): radio: (ACTA)

  14. Strategy to Minimize Energetics Contamination at Military Testing/Training Ranges

    DTIC Science & Technology

    2005-09-01

    exploding foil exploding foil initiator ) initiator will minimize the energetic material...i.e., exploding foil initiator P 𔃾 𔃾 𔃾 𔃾 4. Use an electronic S&A; i.e., high voltage driven semi-conductor bridge elements P ’ 𔃾 𔃾 𔃾 5. Use...alternatives Opportunity 1. Eliminate energetics 3. Use an electronic S&A; i.e., exploding foil initiator 1 3 3 -3 2 -6 -2 1 -2 -5 4. Use an

  15. Counterion-enhanced cyanine dye loading into lipid nano-droplets for single-particle tracking in zebrafish.

    PubMed

    Kilin, Vasyl N; Anton, Halina; Anton, Nicolas; Steed, Emily; Vermot, Julien; Vandamme, Thierry F; Mely, Yves; Klymchenko, Andrey S

    2014-06-01

    Superior brightness of fluorescent nanoparticles places them far ahead of the classical fluorescent dyes in the field of biological imaging. However, for in vivo applications, inorganic nanoparticles, such as quantum dots, are limited due to the lack of biodegradability. Nano-emulsions encapsulating high concentrations of organic dyes are an attractive alternative, but classical fluorescent dyes are inconvenient due to their poor solubility in the oil and their tendency to form non-fluorescent aggregates. This problem was solved here for a cationic cyanine dye (DiI) by substituting its perchlorate counterion for a bulky and hydrophobic tetraphenylborate. This new dye salt, due to its exceptional oil solubility, could be loaded at 8 wt% concentration into nano-droplets of controlled size in the range 30-90 nm. Our 90 nm droplets, which contained >10,000 cyanine molecules, were >100-fold brighter than quantum dots. This extreme brightness allowed, for the first time, single-particle tracking in the blood flow of live zebrafish embryo, revealing both the slow and fast phases of the cardiac cycle. These nano-droplets showed minimal cytotoxicity in cell culture and in the zebrafish embryo. The concept of counterion-based dye loading provides a new effective route to ultra-bright lipid nanoparticles, which enables tracking single particles in live animals, a new dimension of in vivo imaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. THE DETECTION RATE OF EARLY UV EMISSION FROM SUPERNOVAE: A DEDICATED GALEX/PTF SURVEY AND CALIBRATED THEORETICAL ESTIMATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganot, Noam; Gal-Yam, Avishay; Ofek, Eran O.

    The radius and surface composition of an exploding massive star, as well as the explosion energy per unit mass, can be measured using early UV observations of core-collapse supernovae (SNe). We present the first results from a simultaneous GALEX/PTF search for early ultraviolet (UV) emission from SNe. Six SNe II and one Type II superluminous SN (SLSN-II) are clearly detected in the GALEX near-UV (NUV) data. We compare our detection rate with theoretical estimates based on early, shock-cooling UV light curves calculated from models that fit existing Swift and GALEX observations well, combined with volumetric SN rates. We find thatmore » our observations are in good agreement with calculated rates assuming that red supergiants (RSGs) explode with fiducial radii of 500 R{sub ⊙}, explosion energies of 10{sup 51} erg, and ejecta masses of 10 M{sub ⊙}. Exploding blue supergiants and Wolf–Rayet stars are poorly constrained. We describe how such observations can be used to derive the progenitor radius, surface composition, and explosion energy per unit mass of such SN events, and we demonstrate why UV observations are critical for such measurements. We use the fiducial RSG parameters to estimate the detection rate of SNe during the shock-cooling phase (<1 day after explosion) for several ground-based surveys (PTF, ZTF, and LSST). We show that the proposed wide-field UV explorer ULTRASAT mission is expected to find >85 SNe per year (∼0.5 SN per deg{sup 2}), independent of host galaxy extinction, down to an NUV detection limit of 21.5 mag AB. Our pilot GALEX/PTF project thus convincingly demonstrates that a dedicated, systematic SN survey at the NUV band is a compelling method to study how massive stars end their life.« less

  17. Dynamics of solvation and desolvation of rubidium attached to He nanodroplets

    NASA Astrophysics Data System (ADS)

    von Vangerow, J.; John, O.; Stienkemeier, F.; Mudrich, M.

    2015-07-01

    The real-time dynamics of photoexcited and photoionized rubidium (Rb) atoms attached to helium (He) nanodroplets is studied by femtosecond pump-probe mass spectrometry. While excited Rb atoms in the perturbed 6p-state (Rb*) desorb off the He droplets, Rb+ photoions tend to sink into the droplet interior when created near the droplet surface. The transition from Rb+ solvation to full Rb* desorption is found to occur at a delay time τ ˜ 600 fs for Rb* in the 6pΣ-state and τ ˜ 1200 fs for the 6pΠ-state. Rb+He ions are found to be created by directly exciting bound Rb*He exciplex states as well as by populating bound Rb+He-states in a photoassociative ionization process.

  18. From the tunneling dimer to the onset of microsolvation: Infrared spectroscopy of allyl radical water aggregates in helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Leicht, Daniel; Kaufmann, Matin; Pal, Nitish; Schwaab, Gerhard; Havenith, Martina

    2017-03-01

    The infrared spectrum of allyl:water clusters embedded in helium nanodroplets was recorded. Allyl radicals were produced by flash vacuum pyrolysis and trapped in helium droplets. Deuterated water was added to the doped droplets, and the infrared spectrum of the radical water aggregates was recorded in the frequency range 2570-2820 cm-1. Several absorption bands are observed and assigned to 1:1 and 1:2 allyl:D2O clusters, based on pressure dependent measurements and accompanying quantum chemical calculations. The analysis of the 1:1 cluster spectrum revealed a tunneling splitting as well as a combination band. For the 1:2 cluster, we observe a water dimer-like motif that is bound by one π-hydrogen bond to the allyl radical.

  19. Evaluating the Laplace pressure of water nanodroplets from simulations

    NASA Astrophysics Data System (ADS)

    Malek, Shahrazad M. A.; Sciortino, Francesco; Poole, Peter H.; Saika-Voivod, Ivan

    2018-04-01

    We calculate the components of the microscopic pressure tensor as a function of radial distance r from the centre of a spherical water droplet, modelled using the TIP4P/2005 potential. To do so, we modify a coarse-graining method for calculating the microscopic pressure (Ikeshoji et al 2003 Mol. Simul. 29 101) in order to apply it to a rigid molecular model of water. As test cases, we study nanodroplets ranging in size from 776 to 2880 molecules at 220 K. Beneath a surface region comprising approximately two molecular layers, the pressure tensor becomes approximately isotropic and constant with r. We find that the dependence of the pressure on droplet radius is that expected from the Young-Laplace equation, despite the small size of the droplets.

  20. Infrared laser Stark spectroscopy of hydroxymethoxycarbene in 4He nanodroplets

    DOE PAGES

    Broderick, Bernadette M.; Moradi, Christopher P.; Douberly, Gary E.

    2015-09-07

    Hydroxymethoxycarbene, CH 3OCOH, was produced via pyrolysis of monomethyl oxalate and subsequently isolated in 4He nanodroplets. Infrared laser spectroscopy reveals two rotationally resolved a,b-hybrid bands in the OH-stretch region, which are assigned to trans, trans- and cis, trans-rotamers. Stark spectroscopy of the trans, trans-OH stretch band provides the a-axis inertial component of the dipole moment, namely μ a = 0.62(7) D. Here, the computed equilibrium dipole moment agrees well with the expectation value determined from experiment, consistent with a semi-rigid CH 3OCOH backbone computed via a potential energy scan at the B3LYP/cc-pVTZ level of theory, which reveals substantial conformer interconversionmore » barriers of ≈17 kcal/mol.« less

  1. Improved Thermal Stability of Lithium-Rich Layered Oxide by Fluorine Doping.

    PubMed

    Kapylou, Andrei; Song, Jay Hyok; Missiul, Aleksandr; Ham, Dong Jin; Kim, Dong Han; Moon, San; Park, Jin Hwan

    2018-01-05

    The thermal stability of lithium-rich layered oxide with the composition Li(Li 1/6 Ni 1/6 Co 1/6 Mn 1/2 )O 2-x F x (x=0.00 and 0.05) is evaluated for use as a cathode material in lithium-ion batteries. Thermogravimetric analysis, evolved gas analysis, and differential scanning calorimetry show that, upon fluorine doping, degradation of the lithium-rich layered oxides commences at higher temperatures and the exothermic reaction is suppressed. Hot box tests also reveal that the prismatic cell with the fluorine-doped powder does not explode, whereas that with the undoped one explodes at about 135 °C with a sudden temperature increase. XRD analysis indicates that fluorine doping imparts the lithium-rich layered oxide with better thermal stability by mitigating oxygen release at elevated temperatures that cause an exothermic reaction with the electrolyte. The origin of the reduced oxygen release from the fluorinated lithium-rich layered oxide is also discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Monolithic exploding foil initiator

    DOEpatents

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  3. Fragmentation of ionized doped helium nanodroplets: theoretical evidence for a dopant ejection mechanism.

    PubMed

    Bonhommeau, D; Lewerenz, M; Halberstadt, N

    2008-02-07

    We report a theoretical study of the effect induced by a helium nanodroplet environment on the fragmentation dynamics of a dopant. The dopant is an ionized neon cluster Ne(n) (+) (n=4-6) surrounded by a helium nanodroplet composed of 100 atoms. A newly designed mixed quantum/classical approach is used to take into account both the large helium cluster zero-point energy due to the light mass of the helium atoms and all the nonadiabatic couplings between the Ne(n) (+) potential-energy surfaces. The results reveal that the intermediate ionic dopant can be ejected from the droplet, possibly with some helium atoms still attached, thereby reducing the cooling power of the droplet. Energy relaxation by helium atom evaporation and dissociation, the other mechanism which has been used in most interpretations of doped helium cluster dynamics, also exhibits new features. The kinetic energy distribution of the neutral monomer fragments can be fitted to the sum of two Boltzmann distributions, one with a low kinetic energy and the other with a higher kinetic energy. This indicates that cooling by helium atom evaporation is more efficient than was believed so far, as suggested by recent experiments. The results also reveal the predominance of Ne(2) (+) and He(q)Ne(2) (+) fragments and the absence of bare Ne(+) fragments, in agreement with available experimental data (obtained for larger helium nanodroplets). Moreover, the abundance in fragments with a trimeric neon core is found to increase with the increase in dopant size. Most of the fragmentation is achieved within 10 ps and the only subsequent dynamical process is the relaxation of hot intermediate He(q)Ne(2) (+) species to Ne(2) (+) by helium atom evaporation. The dependence of the ionic fragment distribution on the parent ion electronic state reached by ionization is also investigated. It reveals that He(q)Ne(+) fragments are produced only from the highest electronic state, whereas He(q)Ne(2) (+) fragments originate from all the electronic states. Surprisingly, the highest electronic states also lead to fragments that still contain the original ionic dopant species. A mechanism is conjectured to explain this fragmentation inhibition.

  4. Dextran-shelled oxygen-loaded nanodroplets reestablish a normoxia-like pro-angiogenic phenotype and behavior in hypoxic human dermal microvascular endothelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basilico, Nicoletta, E-mail: nicoletta.basilico@unimi.it; Magnetto, Chiara, E-mail: c.magnetto@inrim.it; D'Alessandro, Sarah, E-mail: sarah.dalessandro@unimi.it

    In chronic wounds, hypoxia seriously undermines tissue repair processes by altering the balances between pro-angiogenic proteolytic enzymes (matrix metalloproteinases, MMPs) and their inhibitors (tissue inhibitors of metalloproteinases, TIMPs) released from surrounding cells. Recently, we have shown that in human monocytes hypoxia reduces MMP-9 and increases TIMP-1 without affecting TIMP-2 secretion, whereas in human keratinocytes it reduces MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. Provided that the phenotype of the cellular environment is better understood, chronic wounds might be targeted by new oxygenating compounds such as chitosan- or dextran-shelled and 2H,3H-decafluoropentane-cored oxygen-loaded nanodroplets (OLNs). Here, we investigated the effects ofmore » hypoxia and dextran-shelled OLNs on the pro-angiogenic phenotype and behavior of human dermal microvascular endothelium (HMEC-1 cell line), another cell population playing key roles during wound healing. Normoxic HMEC-1 constitutively released MMP-2, TIMP-1 and TIMP-2 proteins, but not MMP-9. Hypoxia enhanced MMP-2 and reduced TIMP-1 secretion, without affecting TIMP-2 levels, and compromised cell ability to migrate and invade the extracellular matrix. When taken up by HMEC-1, nontoxic OLNs abrogated the effects of hypoxia, restoring normoxic MMP/TIMP levels and promoting cell migration, matrix invasion, and formation of microvessels. These effects were specifically dependent on time-sustained oxygen diffusion from OLN core, since they were not achieved by oxygen-free nanodroplets or oxygen-saturated solution. Collectively, these data provide new information on the effects of hypoxia on dermal endothelium and support the hypothesis that OLNs might be used as effective adjuvant tools to promote chronic wound healing processes. - Highlights: • Hypoxia enhances MMP-2 and reduces TIMP-1 secretion by dermal HMEC-1 cell line. • Hypoxia compromises migration and matrix invasion abilities of HMEC-1. • Nontoxic dextran-shelled oxygen-loaded nanodroplets (OLNs) are uptaken by HMEC-1. • Dextran-shelled OLNs abrogate hypoxia effects on HMEC-1 pro-angiogenic phenotype. • Dextran-shelled OLNs abrogate hypoxia effects on HMEC-1 pro-angiogenic behavior.« less

  5. Exploding head syndrome is common in college students.

    PubMed

    Sharpless, Brian A

    2015-08-01

    Exploding head syndrome is characterized by the perception of loud noises during sleep-wake or wake-sleep transitions. Although episodes by themselves are relatively harmless, it is a frightening phenomenon that may result in clinical consequences. At present there are little systematic data on exploding head syndrome, and prevalence rates are unknown. It has been hypothesized to be rare and to occur primarily in older (i.e. 50+ years) individuals, females, and those suffering from isolated sleep paralysis. In order to test these hypotheses, 211 undergraduate students were assessed for both exploding head syndrome and isolated sleep paralysis using semi-structured diagnostic interviews: 18.00% of the sample experienced lifetime exploding head syndrome, this reduced to 16.60% for recurrent cases. Though not more common in females, it was found in 36.89% of those diagnosed with isolated sleep paralysis. Exploding head syndrome episodes were accompanied by clinically significant levels of fear, and a minority (2.80%) experienced it to such a degree that it was associated with clinically significant distress and/or impairment. Contrary to some earlier theorizing, exploding head syndrome was found to be a relatively common experience in younger individuals. Given the potential clinical impacts, it is recommended that it be assessed more regularly in research and clinical settings. © 2015 European Sleep Research Society.

  6. Electric Discharge Sintering and Joining of Tungsten Carbide—Cobalt Composite with High-Speed Steel Substrate

    NASA Astrophysics Data System (ADS)

    Grigoryev, Evgeny G.

    2011-01-01

    Simultaneous electro discharge sintering of high strength structure of tungsten carbide—cobalt composite and connection it with high-speed steel substrate is investigated and suitable operating parameters are defined. Tungsten carbide—cobalt and high-speed steel joining was produced by the method of high voltage electrical discharge together with application of mechanical pressure to powder compact. It was found that the density and hardness of composite material reach its maximum values at certain magnitudes of applied pressure and high voltage electrical discharge parameters. We show that there is an upper level for the discharge voltage beyond which the powder of composite material disintegrates like an exploding wire. Due to our results it is possible to determine optimal parameters for simultaneous electro discharge sintering of WC-Co and bonding it with high-speed steel substrate.

  7. Reactive intermediates in 4He nanodroplets: Infrared laser Stark spectroscopy of dihydroxycarbene

    NASA Astrophysics Data System (ADS)

    Broderick, Bernadette M.; McCaslin, Laura; Moradi, Christopher P.; Stanton, John F.; Douberly, Gary E.

    2015-04-01

    Singlet dihydroxycarbene ( HO C ̈ OH ) is produced via pyrolytic decomposition of oxalic acid, captured by helium nanodroplets, and probed with infrared laser Stark spectroscopy. Rovibrational bands in the OH stretch region are assigned to either trans,trans- or trans,cis-rotamers on the basis of symmetry type, nuclear spin statistical weights, and comparisons to electronic structure theory calculations. Stark spectroscopy provides the inertial components of the permanent electric dipole moments for these rotamers. The dipole components for trans, trans- and trans, cis-rotamers are (μa, μb) = (0.00, 0.68(6)) and (1.63(3), 1.50(5)), respectively. The infrared spectra lack evidence for the higher energy cis,cis-rotamer, which is consistent with a previously proposed pyrolytic decomposition mechanism of oxalic acid and computations of HO C ̈ OH torsional interconversion and tautomerization barriers.

  8. One- and Two-Color Resonant Photoionization Spectroscopy of Chromium-Doped Helium Nanodroplets

    PubMed Central

    2014-01-01

    We investigate the photoinduced relaxation dynamics of Cr atoms embedded into superfluid helium nanodroplets. One- and two-color resonant two-photon ionization (1CR2PI and 2CR2PI, respectively) are applied to study the two strong ground state transitions z7P2,3,4° ← a7S3 and y7P2,3,4° ← a7S3. Upon photoexcitation, Cr* atoms are ejected from the droplet in various excited states, as well as paired with helium atoms as Cr*–Hen exciplexes. For the y7P2,3,4° intermediate state, comparison of the two methods reveals that energetically lower states than previously identified are also populated. With 1CR2PI we find that the population of ejected z5P3° states is reduced for increasing droplet size, indicating that population is transferred preferentially to lower states during longer interaction with the droplet. In the 2CR2PI spectra we find evidence for generation of bare Cr atoms in their septet ground state (a7S3) and metastable quintet state (a5S2), which we attribute to a photoinduced fast excitation–relaxation cycle mediated by the droplet. A fraction of Cr atoms in these ground and metastable states is attached to helium atoms, as indicated by blue wings next to bare atom spectral lines. These relaxation channels provide new insight into the interaction of excited transition metal atoms with helium nanodroplets. PMID:24708058

  9. Chitosan-shelled oxygen-loaded nanodroplets abrogate hypoxia dysregulation of human keratinocyte gelatinases and inhibitors: New insights for chronic wound healing.

    PubMed

    Khadjavi, Amina; Magnetto, Chiara; Panariti, Alice; Argenziano, Monica; Gulino, Giulia Rossana; Rivolta, Ilaria; Cavalli, Roberta; Giribaldi, Giuliana; Guiot, Caterina; Prato, Mauro

    2015-08-01

    In chronic wounds, efficient epithelial tissue repair is hampered by hypoxia, and balances between the molecules involved in matrix turn-over such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are seriously impaired. Intriguingly, new oxygenating nanocarriers such as 2H,3H-decafluoropentane-based oxygen-loaded nanodroplets (OLNs) might effectively target chronic wounds. To investigate hypoxia and chitosan-shelled OLN effects on MMP/TIMP production by human keratinocytes. HaCaT cells were treated for 24h with 10% v/v OLNs both in normoxia or hypoxia. Cytotoxicity and cell viability were measured through biochemical assays; cellular uptake by confocal microscopy; and MMP and TIMP production by enzyme-linked immunosorbent assay or gelatin zymography. Normoxic HaCaT cells constitutively released MMP-2, MMP-9, TIMP-1 and TIMP-2. Hypoxia strongly impaired MMP/TIMP balances by reducing MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. After cellular uptake by keratinocytes, nontoxic OLNs abrogated all hypoxia effects on MMP/TIMP secretion, restoring physiological balances. OLN abilities were specifically dependent on time-sustained oxygen diffusion from OLN core. Chitosan-shelled OLNs effectively counteract hypoxia-dependent dysregulation of MMP/TIMP balances in human keratinocytes. Therefore, topical administration of exogenous oxygen, properly encapsulated in nanodroplet formulations, might be a promising adjuvant approach to promote healing processes in hypoxic wounds. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Poly(styrene-co-butadiene) random copolymer thin films and nanostructures on a mica surface: morphology and contact angles of nanodroplets.

    PubMed

    McClements, Jake; Buffone, Cosimo; Shaver, Michael P; Sefiane, Khellil; Koutsos, Vasileios

    2017-09-20

    The self-assembly of poly(styrene-co-butadiene) random copolymers on mica surfaces was studied by varying solution concentrations and polymer molecular weights. Toluene solutions of the poly(styrene-co-butadiene) samples were spin coated onto a mica surface and the resulting polymer morphology was investigated by atomic force microscopy. At higher concentrations, thin films formed with varying thicknesses; some dewetting was observed which depended on the molecular weight. Total dewetting did not occur despite the polymer's low glass transition temperature. Instead, partial dewetting was observed suggesting that the polymer was in a metastable equilibrium state. At lower concentrations, spherical cap shaped nanodroplets formed with varying sizes from single polymer chains to aggregates containing millions of chains. As the molecular weight was increased, fewer aggregates were observed on the surface, albeit with larger sizes resulting from increased solution viscosities and more chain entanglements at higher molecular weights. The contact angles of the nanodroplets were shown to be size dependent. A minimum contact angle occurs for droplets with radii of 100-250 nm at each molecular weight. Droplets smaller than 100 nm showed a sharp increase in contact angle; attributed to an increase in the elastic modulus of the droplets, in addition, to a positive line tension value. Droplets larger than 250 nm also showed an increased contact angle due to surface heterogeneities which cannot be avoided for larger droplets. This increase in contact angle plateaus as the droplet size reaches the macroscopic scale.

  11. 25 CFR 11.409 - Reckless burning or exploding.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Reckless burning or exploding. 11.409 Section 11.409 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER COURTS OF INDIAN OFFENSES AND LAW AND ORDER CODE Criminal Offenses § 11.409 Reckless burning or exploding. A person commits a...

  12. 25 CFR 11.409 - Reckless burning or exploding.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Reckless burning or exploding. 11.409 Section 11.409 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER COURTS OF INDIAN OFFENSES AND LAW AND ORDER CODE Criminal Offenses § 11.409 Reckless burning or exploding. A person commits a...

  13. 25 CFR 11.409 - Reckless burning or exploding.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Reckless burning or exploding. 11.409 Section 11.409 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER COURTS OF INDIAN OFFENSES AND LAW AND ORDER CODE Criminal Offenses § 11.409 Reckless burning or exploding. A person commits a...

  14. 25 CFR 11.409 - Reckless burning or exploding.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Reckless burning or exploding. 11.409 Section 11.409 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER COURTS OF INDIAN OFFENSES AND LAW AND ORDER CODE Criminal Offenses § 11.409 Reckless burning or exploding. A person commits a...

  15. 25 CFR 11.409 - Reckless burning or exploding.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Reckless burning or exploding. 11.409 Section 11.409 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER COURTS OF INDIAN OFFENSES AND LAW AND ORDER CODE Criminal Offenses § 11.409 Reckless burning or exploding. A person commits a...

  16. A New Take on Exploding Carts

    ERIC Educational Resources Information Center

    Broder, Darren; Burleigh, James; Christian, Matthew; Mowry, Shawn; Hassel, George E.

    2017-01-01

    The Exploding Carts is a popular introductory physics activity in which a one-dimensional explosion is simulated utilizing two dynamics carts that are pushed apart by a spring-loaded plunger released from one of the carts. Traditional treatments of the Exploding Carts usually involve multiple trials where the mass of one or both of the carts is…

  17. Polyethylenimine functionalized Fe3O4/steam-exploded rice straw composite as an efficient adsorbent for Cr(VI) removal

    NASA Astrophysics Data System (ADS)

    Zhang, Shengli; Wang, Zhikai; Chen, Haoyu; Kai, Chengcheng; Jiang, Man; Wang, Qun; Zhou, Zuowan

    2018-05-01

    Polyethyleneimine functionalized Fe3O4/steam-exploded rice straw composite (Fe3O4-PEI-SERS), which combines magnetic separation with adsorption of PEI functionalized biosorbent, was successfully prepared via a simple glutaraldehyde crosslinking method. Its adsorption potential for the removal of Cr(VI) was systematically studied in batch mode. Results showed that Cr(VI) adsorption on Fe3O4-PEI-SESERS was highly pH-dependent, and the optimum pH was 2.0. The time to reach equilibrium was related to initial Cr(VI) concentration and was 1 and 6 h for 200 and 300 mg/L of Cr(VI), respectively. The adsorption system followed pseudo-second-order kinetic model and Langmuir isotherm. Its maximum adsorption capacity was 280.11, 317.46 and 338.98 mg/g at 25, 35 and 45 °C, respectively. The competitive uptake from coexisting ions (K+, Na+, Cu2+, Cl- and NO3-) was insignificant except SO42-. After six adsorption/desorption cycles, the adsorbent retained good adsorption capacity. The Cr(VI) removal involved its partial reduction into Cr(III). Due to the properties of high adsorption capacity, strong magnetic responsiveness, good reusability and Cr(VI) detoxification, the Fe3O4-PEI-SESERS has a potential application in Cr(VI) removal from wastewater.

  18. Exploding Head Syndrome in the Epilepsy Monitoring Unit: Case Report and Literature Review.

    PubMed

    Gillis, Kara; Ng, Marcus C

    2017-01-01

    Diagnosis of paroxysmal events in epilepsy patients is often made through video-telemetry electroencephalography in the epilepsy monitoring unit. This case report describes the first-ever diagnosis of exploding head syndrome in a patient with longstanding epilepsy and novel nocturnal events. In this report, we describe the presentation of exploding head syndrome and its prevalence and risk factors. In addition, the prevalence of newly diagnosed sleep disorders through video-telemetry electroencephalography in the epilepsy monitoring unit is briefly reviewed. This report also illustrates the novel use of clobazam for the treatment of exploding head syndrome.

  19. Topiramate Responsive Exploding Head Syndrome

    PubMed Central

    Palikh, Gaurang M.; Vaughn, Bradley V.

    2010-01-01

    Exploding head syndrome is a rare phenomenon but can be a significant disruption to quality of life. We describe a 39-year-old female with symptoms of a loud bang and buzz at sleep onset for 3 years. EEG monitoring confirmed these events occurred in transition from stage 1 sleep. This patient reported improvement in intensity of events with topiramate medication. Based on these results, topiramate may be an alternative method to reduce the intensity of events in exploding head syndrome. Citation: Palikh GM; Vaughn BV. Topiramate responsive exploding head syndrome. J Clin Sleep Med 2010;6(4):382-383. PMID:20726288

  20. Composition and ethanol production potential of cotton gin residues.

    PubMed

    Agblevor, Foster A; Batz, Sandra; Trumbo, Jessica

    2003-01-01

    Cotton gin residue (CGR) collected from five cotton gins was fractionated and characterized for summative composition. The major fractions of the CGR varied widely between cotton gins and consisted of clean lint (5-12%),hulls (16-48%), seeds (6-24%), motes (16-24%), and leaves (14-30%). The summative composition varied within and between cotton gins and consisted of ash (7.9-14.6%), acid-insoluble material (18-26%), xylan (4-15%),and cellulose (20-38%). Overlimed steam-exploded cotton gin waste was readily fermented to ethanol by Escherichia coli KO11. Ethanol yields were feedstock and severity dependent and ranged from 58 to 92.5% of the theoretical yields. The highest ethanol yield was 191 L (50 gal)/t, and the lowest was 120 L (32 gal)/t.

  1. Exploding head syndrome.

    PubMed

    Sharpless, Brian A

    2014-12-01

    Exploding head syndrome is characterized by the perception of abrupt, loud noises when going to sleep or waking up. They are usually painless, but associated with fear and distress. In spite of the fact that its characteristic symptomatology was first described approximately 150 y ago, exploding head syndrome has received relatively little empirical and clinical attention. Therefore, a comprehensive review of the scientific literature using Medline, PsycINFO, Google Scholar, and PubMed was undertaken. After first discussing the history, prevalence, and associated features, the available polysomnography data and five main etiological theories for exploding head syndrome are summarized. None of these theories has yet reached dominance in the field. Next, the various methods used to assess and treat exploding head syndrome are discussed, as well as the limited outcome data. Finally, recommendations for future measure construction, treatment options, and differential diagnosis are provided. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Dynamics of photoexcited Ba+ cations in 4He nanodroplets

    NASA Astrophysics Data System (ADS)

    Leal, Antonio; Zhang, Xiaohang; Barranco, Manuel; Cargnoni, Fausto; Hernando, Alberto; Mateo, David; Mella, Massimo; Drabbels, Marcel; Pi, Martí

    2016-03-01

    We present a joint experimental and theoretical study on the desolvation of Ba+ cations in 4He nanodroplets excited via the 6p ← 6s transition. The experiments reveal an efficient desolvation process yielding mainly bare Ba+ cations and Ba+Hen exciplexes with n = 1 and 2. The speed distributions of the ions are well described by Maxwell-Boltzmann distributions with temperatures ranging from 60 to 178 K depending on the excitation frequency and Ba+ Hen exciplex size. These results have been analyzed by calculations based on a time-dependent density functional description for the helium droplet combined with classical dynamics for the Ba+. In agreement with experiment, the calculations reveal the dynamical formation of exciplexes following excitation of the Ba+ cation. In contrast to experimental observation, the calculations do not reveal desolvation of excited Ba+ cations or exciplexes, even when relaxation pathways to lower lying states are included.

  3. Collective Autoionization in Multiply-Excited Systems: A novel ionization process observed in Helium Nanodroplets

    PubMed Central

    LaForge, A. C.; Drabbels, M.; Brauer, N. B.; Coreno, M.; Devetta, M.; Di Fraia, M.; Finetti, P.; Grazioli, C.; Katzy, R.; Lyamayev, V.; Mazza, T.; Mudrich, M.; O'Keeffe, P.; Ovcharenko, Y.; Piseri, P.; Plekan, O.; Prince, K. C.; Richter, R.; Stranges, S.; Callegari, C.; Möller, T.; Stienkemeier, F.

    2014-01-01

    Free electron lasers (FELs) offer the unprecedented capability to study reaction dynamics and image the structure of complex systems. When multiple photons are absorbed in complex systems, a plasma-like state is formed where many atoms are ionized on a femtosecond timescale. If multiphoton absorption is resonantly-enhanced, the system becomes electronically-excited prior to plasma formation, with subsequent decay paths which have been scarcely investigated to date. Here, we show using helium nanodroplets as an example that these systems can decay by a new type of process, named collective autoionization. In addition, we show that this process is surprisingly efficient, leading to ion abundances much greater than that of direct single-photon ionization. This novel collective ionization process is expected to be important in many other complex systems, e.g. macromolecules and nanoparticles, exposed to high intensity radiation fields. PMID:24406316

  4. Dewetting Properties of Metallic Liquid Film on Nanopillared Graphene

    PubMed Central

    Li, Xiongying; He, Yezeng; Wang, Yong; Dong, Jichen; Li, Hui

    2014-01-01

    In this work, we report simulation evidence that the graphene surface decorated by carbon nanotube pillars shows strong dewettability, which can give it great advantages in dewetting and detaching metallic nanodroplets on the surfaces. Molecular dynamics (MD) simulations show that the ultrathin liquid film first contracts then detaches from the graphene on a time scale of several nanoseconds, as a result of the inertial effect. The detaching velocity is in the order of 10 m/s for the droplet with radii smaller than 50 nm. Moreover, the contracting and detaching behaviors of the liquid film can be effectively controlled by tuning the geometric parameters of the liquid film or pillar. In addition, the temperature effects on the dewetting and detaching of the metallic liquid film are also discussed. Our results show that one can exploit and effectively control the dewetting properties of metallic nanodroplets by decorating the surfaces with nanotube pillars. PMID:24487279

  5. Electro-suppression of water nano-droplets' solidification in no man's land: Electromagnetic fields' entropic trapping of supercooled water

    NASA Astrophysics Data System (ADS)

    Nandi, Prithwish K.; Burnham, Christian J.; English, Niall J.

    2018-01-01

    Understanding water solidification, especially in "No Man's Land" (NML) (150 K < T < 235 K) is crucially important (e.g., upper-troposphere cloud processes) and challenging. A rather neglected aspect of tropospheric ice-crystallite formation is inevitably present electromagnetic fields' role. Here, we employ non-equilibrium molecular dynamics of aggressively quenched supercooled water nano-droplets in the gas phase under NML conditions, in externally applied electromagnetic (e/m) fields, elucidating significant differences between effects of static and oscillating fields: although static fields induce "electro-freezing," e/m fields exhibit the contrary - solidification inhibition. This anti-freeze action extends not only to crystal-ice formation but also restricts amorphisation, i.e., suppression of low-density amorphous ice which forms otherwise in zero-field NML environments. E/m-field applications maintain water in the deeply supercooled state in an "entropic trap," which is ripe for industrial impacts in cryo-freezing, etc.

  6. Vibrational Spectroscopy of Fluoroformate, FCO2-, Trapped in Helium Nanodroplets.

    PubMed

    Thomas, Daniel A; Mucha, Eike; Gewinner, Sandy; Schöllkopf, Wieland; Meijer, Gerard; von Helden, Gert

    2018-05-03

    Fluoroformate, also known as carbonofluoridate, is an intriguing molecule readily formed by the reductive derivatization of carbon dioxide. In spite of its well-known stability, a detailed structural characterization of the isolated anion has yet to be reported. Presented in this work is the vibrational spectrum of fluoroformate obtained by infrared action spectroscopy of ions trapped in helium nanodroplets, the first application of this technique to a molecular anion. The experimental method yields narrow spectral lines, providing experimental constraints on the structure that can be accurately reproduced using high-level ab initio methods. In addition, two notable Fermi resonances between a fundamental and combination band are observed. The electrostatic potential map of fluoroformate reveals substantial charge density on fluorine as well as on the oxygen atoms, suggesting multiple sites for interaction with hydrogen bond donors and electrophiles, which may in turn lead to intriguing solvation structures and reaction pathways.

  7. Fluorescence correlation spectroscopy directly monitors coalescence during nanoparticle preparation.

    PubMed

    Schaeffel, David; Staff, Roland Hinrich; Butt, Hans-Juergen; Landfester, Katharina; Crespy, Daniel; Koynov, Kaloian

    2012-11-14

    Dual color fluorescence cross-correlation spectroscopy (DC FCCS) experiments were conducted to study the coalescence and aggregation during the formation of nanoparticles. To assess the generality of the method, three completely different processes were selected to prepare the nanoparticles. Polymeric nanoparticles were formed either by solvent evaporation from emulsion nanodroplets of polymer solutions or by miniemulsion polymerization. Inorganic nanocapsules were formed by polycondensation of alkoxysilanes at the interface of nanodroplets. In all cases, DC FCCS provided fast and unambiguous information about the occurrence of coalescence and thus a deeper insight into the mechanism of nanoparticle formation. In particular, it was found that coalescence played a minor role for the emulsion-solvent evaporation process and the miniemulsion polymerization, whereas substantial coalescence was detected during the formation of the inorganic nanocapsules. These findings demonstrate that DC FCCS is a powerful tool for monitoring nanoparticles genesis.

  8. Acoustic Response of Microbubbles Derived from Phase-Change Nanodroplet

    NASA Astrophysics Data System (ADS)

    Kawabata, Ken-ichi; Asami, Rei; Azuma, Takashi; Umemura, Shin-ichiro

    2010-07-01

    An in vitro feasibility test for a novel ultrasound therapy using a type of superheated perfluorocarbon droplet, phase-change nanodroplet (PCND), was performed in gel phantoms with the goal of high selectivity and low invasiveness. Measurements of broadband signal emission revealed that a triggering ultrasound pulse (peak negative pressure of 2.4 MPa) reduces the pressure threshold for cavitation induced by a subsequent ultrasound exposure at an order of magnitude from 2.4 to 0.2 MPa. The maximum allowed interval between the two ultrasound exposures for inducing cavitation with 100- and 1,000-cycle triggering ultrasound was about 100 and 500 ms, respectively. The echo signal increases induced by the triggering ultrasound with 100- and 1000-cycles were enhanced and suppressed by the subsequent ultrasound exposure, respectively. This different behavior seemed to be due to the presence of enlarged free bubbles, which should be avoided for the localization of therapeutic effects.

  9. Reactive intermediates in 4He nanodroplets: Infrared laser Stark spectroscopy of dihydroxycarbene

    DOE PAGES

    Broderick, Bernadette M.; McCaslin, Laura; Moradi, Christopher P.; ...

    2015-04-14

    Singlet dihydroxycarbene (HOmore » $$\\ddot C$$OH) is produced via pyrolytic decomposition of oxalic acid, captured by helium nanodroplets, and probed with infrared laser Stark spectroscopy. Rovibrational bands in the OH stretch region are assigned to either trans, trans-or trans, cis-rotamers on the basis of symmetry type, nuclear spin statistical weights, and comparisons to electronic structure theory calculations. Stark spectroscopy provides the inertial components of the permanent electric dipole moments for these rotamers. The dipole components for trans, trans-and trans, cis-rotamers are (μ a, μ b) = (0.00,0.68(6)) and (1.63(3), 1.50(5)), respectively. The infrared spectra lack evidence for the higher energy cis,cis-rotamer, which is consistent with a previously proposed pyrolytic decomposition mechanism of oxalic acid and computations of HO$$\\ddot C$$OH torsional interconversion and tautomerization barriers.« less

  10. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics

    NASA Astrophysics Data System (ADS)

    Cremer, Johannes W.; Thaler, Klemens M.; Haisch, Christoph; Signorell, Ruth

    2016-03-01

    Photochemistry taking place in atmospheric aerosol droplets has a significant impact on the Earth's climate. Nanofocusing of electromagnetic radiation inside aerosols plays a crucial role in their absorption behaviour, since the radiation flux inside the droplet strongly affects the activation rate of photochemically active species. However, size-dependent nanofocusing effects in the photokinetics of small aerosols have escaped direct observation due to the inability to measure absorption signatures from single droplets. Here we show that photoacoustic measurements on optically trapped single nanodroplets provide a direct, broadly applicable method to measure absorption with attolitre sensitivity. We demonstrate for a model aerosol that the photolysis is accelerated by an order of magnitude in the sub-micron to micron size range, compared with larger droplets. The versatility of our technique promises broad applicability to absorption studies of aerosol particles, such as atmospheric aerosols where quantitative photokinetic data are critical for climate predictions.

  11. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics

    PubMed Central

    Cremer, Johannes W.; Thaler, Klemens M.; Haisch, Christoph; Signorell, Ruth

    2016-01-01

    Photochemistry taking place in atmospheric aerosol droplets has a significant impact on the Earth's climate. Nanofocusing of electromagnetic radiation inside aerosols plays a crucial role in their absorption behaviour, since the radiation flux inside the droplet strongly affects the activation rate of photochemically active species. However, size-dependent nanofocusing effects in the photokinetics of small aerosols have escaped direct observation due to the inability to measure absorption signatures from single droplets. Here we show that photoacoustic measurements on optically trapped single nanodroplets provide a direct, broadly applicable method to measure absorption with attolitre sensitivity. We demonstrate for a model aerosol that the photolysis is accelerated by an order of magnitude in the sub-micron to micron size range, compared with larger droplets. The versatility of our technique promises broad applicability to absorption studies of aerosol particles, such as atmospheric aerosols where quantitative photokinetic data are critical for climate predictions. PMID:26979973

  12. Infrared Spectroscopy of NaCl(CH3OH)n Complexes in Helium Nanodroplets.

    PubMed

    Sadoon, Ahmed M; Sarma, Gautam; Cunningham, Ethan M; Tandy, Jon; Hanson-Heine, Magnus W D; Besley, Nicholas A; Yang, Shengfu; Ellis, Andrew M

    2016-10-10

    Infrared (IR) spectra of complexes between NaCl and methanol have been recorded for the first time. These complexes were formed in liquid helium nanodroplets by consecutive pick-up of NaCl and CH 3 OH molecules. For the smallest NaCl(CH 3 OH) n , complexes where n = 1-3, the IR data suggest that the lowest-energy isomer is the primary product in each case. The predominant contribution to the binding comes from ionic hydrogen bonds between the OH in each methanol molecule and the chloride ion in the NaCl, as established by the large red shift of the OH stretching bands compared with the isolated CH 3 OH molecule. For n ≥ 4, there is a dramatic shift from discrete vibrational bands to very broad absorption envelopes, suggesting a profound change in the structural landscape and, in particular, access to multiple low-energy isomers.

  13. Fragmentation dynamics of ionized neon clusters (Ne(n), n=3-14) embedded in helium nanodroplets.

    PubMed

    Bonhommeau, David; Halberstadt, Nadine; Viel, Alexandra

    2006-01-14

    We report a theoretical study of the nonadiabatic fragmentation dynamics of ionized neon clusters embedded in helium nanodroplets for cluster sizes up to n=14 atoms. The dynamics of the neon atoms is modeled using the molecular dynamics with quantum transitions method of Tully [J. Chem. Phys. 93, 1061 (1990)] with the nuclei treated classically and transitions between electronic states quantum mechanically. The potential-energy surfaces are derived from a diatomics-in-molecules model to which induced dipole-induced dipole interactions are added. The effect of the spin-orbit interaction is also discussed. The helium environment is modeled by a friction force acting on charged atoms whose speed exceeds the critical Landau velocity. The dependence of the fragment size distribution on the friction strength and on the initial nanodroplet size is investigated. By comparing with the available experimental data obtained for Ne3+ and Ne4+, a reasonable value for the friction coefficient, the only parameter of the model, is deduced. This value is then used to predict the effect of the helium environment on the dissociation dynamics of larger neon clusters, n=5-14. The results show stabilization of larger fragments than in the gas phase, but fragmentation is not completely caged. In addition, two types of dynamics are characterized for Ne4+: fast and explosive, therefore leaving no time for friction to cool down the process when dynamics starts on one of the highest electronic states, and slower, therefore leading to some stabilization by helium when it starts on one of the lowest electronic states.

  14. Microencapsulation of nanoemulsions: novel Trojan particles for bioactive lipid molecule delivery

    PubMed Central

    Li, Xiang; Anton, Nicolas; Ta, Thi Minh Chau; Zhao, Minjie; Messaddeq, Nadia; Vandamme, Thierry F

    2011-01-01

    Background Nanoemulsions consist of very stable nanodroplets of oil dispersed in an aqueous phase, typically below 300 nm in size. They can be used to obtain a very fine, homogeneous dispersion of lipophilic compounds in water, thus facilitating their handling and use in nanomedicine. However, the drawback is that they are suspended in an aqueous media. This study proposes a novel technique for drying lipid nanoemulsion suspensions to create so-called Trojan particles, ie, polymer microparticles (around 2 μm) which very homogeneously “entrap” the nano-oil droplets (around 150 nm) in their core. Methods Microencapsulation of the nanoemulsions was performed using a spray-drying process and resulted in a dried powder of microparticles. By using a low-energy nanoemulsification method and relatively gentle spray-drying, the process was well suited to sensitive molecules. The model lipophilic molecule tested was vitamin E acetate, encapsulated at around 20% in dried powder. Results We showed that the presence of nanoemulsions in solution before spray-drying had a significant impact on microparticle size, distribution, and morphology. However, the process itself did not destroy the oil nanodroplets, which could easily be redispersed when the powder was put back in contact with water. High-performance liquid chromatography follow-up of the integrity of the vitamin E acetate showed that the molecules were intact throughout the process, as well as when conserved in their dried form. Conclusion This study proposes a novel technique using a spray-drying process to microencapsulate nanoemulsions. The multiscale object formed, so-called Trojan microparticles, were shown to successfully encapsulate, protect, and release the lipid nanodroplets. PMID:21760727

  15. Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound.

    PubMed

    Sheeran, Paul S; Luois, Samantha; Dayton, Paul A; Matsunaga, Terry O

    2011-09-06

    Recent efforts in the area of acoustic droplet vaporization with the objective of designing extravascular ultrasound contrast agents has led to the development of stabilized, lipid-encapsulated nanodroplets of the highly volatile compound decafluorobutane (DFB). We developed two methods of generating DFB droplets, the first of which involves condensing DFB gas (boiling point from -1.1 to -2 °C) followed by extrusion with a lipid formulation in HEPES buffer. Acoustic droplet vaporization of micrometer-sized lipid-coated droplets at diagnostic ultrasound frequencies and mechanical indices were confirmed optically. In our second formulation methodology, we demonstrate the formulation of submicrometer-sized lipid-coated nanodroplets based upon condensation of preformed microbubbles containing DFB. The droplets are routinely in the 200-300 nm range and yield microbubbles on the order of 1-5 μm once vaporized, consistent with ideal gas law expansion predictions. The simple and effective nature of this methodology allows for the development of a variety of different formulations that can be used for imaging, drug and gene delivery, and therapy. This study is the first to our knowledge to demonstrate both a method of generating ADV agents by microbubble condensation and formulation of primarily submicrometer droplets of decafluorobutane that remain stable at physiological temperatures. Finally, activation of DFB nanodroplets is demonstrated using pressures within the FDA guidelines for diagnostic imaging, which may minimize the potential for bioeffects in humans. This methodology offers a new means of developing extravascular contrast agents for diagnostic and therapeutic applications. © 2011 American Chemical Society

  16. Microencapsulation of nanoemulsions: novel Trojan particles for bioactive lipid molecule delivery.

    PubMed

    Li, Xiang; Anton, Nicolas; Ta, Thi Minh Chau; Zhao, Minjie; Messaddeq, Nadia; Vandamme, Thierry F

    2011-01-01

    Nanoemulsions consist of very stable nanodroplets of oil dispersed in an aqueous phase, typically below 300 nm in size. They can be used to obtain a very fine, homogeneous dispersion of lipophilic compounds in water, thus facilitating their handling and use in nanomedicine. However, the drawback is that they are suspended in an aqueous media. This study proposes a novel technique for drying lipid nanoemulsion suspensions to create so-called Trojan particles, ie, polymer microparticles (around 2 μm) which very homogeneously "entrap" the nano-oil droplets (around 150 nm) in their core. Microencapsulation of the nanoemulsions was performed using a spray-drying process and resulted in a dried powder of microparticles. By using a low-energy nanoemulsification method and relatively gentle spray-drying, the process was well suited to sensitive molecules. The model lipophilic molecule tested was vitamin E acetate, encapsulated at around 20% in dried powder. We showed that the presence of nanoemulsions in solution before spray-drying had a significant impact on microparticle size, distribution, and morphology. However, the process itself did not destroy the oil nanodroplets, which could easily be redispersed when the powder was put back in contact with water. High-performance liquid chromatography follow-up of the integrity of the vitamin E acetate showed that the molecules were intact throughout the process, as well as when conserved in their dried form. This study proposes a novel technique using a spray-drying process to microencapsulate nanoemulsions. The multiscale object formed, so-called Trojan microparticles, were shown to successfully encapsulate, protect, and release the lipid nanodroplets.

  17. Fermentation of wet-exploded corn stover for the production of volatile fatty acids.

    PubMed

    Murali, Nanditha; Fernandez, Sebastian; Ahring, Birgitte Kiaer

    2017-03-01

    Volatile fatty acids (VFA) have been used as platform molecules for production of biofuels and bioproducts. In the current study, we examine the VFA production from wet-exploded corn stover through anaerobic fermentation using rumen bacteria. The total VFA yield (acetic acid equivalents) was found to increase from 22.8g/L at 2.5% total solids (TS) to 40.8g/L at 5% TS. It was found that the acetic acid concentration increased from 10g/L to 22g/L at 2.5% and 5% TS, respectively. An increased propionic acid production was seen between day 10 and 20 at 5% TS. Valeric acid (4g/L) was produced at 5% TS and not at 2.5% TS. Composition analysis showed that 50% of the carbohydrates were converted to VFA at 5% TS and 33% at 2.5% TS. Our results show that rumen fermentation of lignocellulosic biomass after wet explosion can produce high concentrations of VFA without addition of external enzymes of importance for the process economics of lignocellulosic biorefineries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Steam-exploded biomass saccharification is predominately affected by lignocellulose porosity and largely enhanced by Tween-80 in Miscanthus.

    PubMed

    Sun, Dan; Alam, Aftab; Tu, Yuanyuan; Zhou, Shiguang; Wang, Yanting; Xia, Tao; Huang, Jiangfeng; Li, Ying; Zahoor; Wei, Xiaoyang; Hao, Bo; Peng, Liangcai

    2017-09-01

    In this study, total ten Miscanthus accessions exhibited diverse cell wall compositions, leading to largely varied hexoses yields at 17%-40% (% cellulose) released from direct enzymatic hydrolysis of steam-exploded (SE) residues. Further supplied with 2% Tween-80 into the enzymatic digestion, the Mis7 accession showed the higher hexose yield by 14.8-fold than that of raw material, whereas the Mis10 had the highest hexoses yield at 77% among ten Miscanthus accessions. Significantly, this study identified four wall polymer features that negatively affect biomass saccharification as p<0.05 or 0.01 in the SE residues, including cellulose DP, Xyl and Ara of hemicellulose, and S-monomer of lignin. Based on Simons' stain, the SE porosity (defined by DY/DB) was examined to be the unique positive factor on biomass enzymatic digestion. Hence, this study provides the potential strategy to enhance biomass saccharification using optimal biomass process technology and related genetic breeding in Miscanthus and beyond. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Energy Input and Quality of Pellets Made from Steam-Exploded Douglas Fir (Pseudotsuga menziesii)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokhansanj, Shahabaddine; Bi, X.T.; Lim, C. Jim

    Ground softwood Douglas fir (Pseudotsuga menziesii) was treated with pressurized saturated steam at 200-220 C (1.6-2.4 MPa) for 5-10 min in a sealed container. The contents of the container were released to the atmosphere for a sudden decompression. The steam-exploded wood particles were dried to 10% moisture content and pelletized in a single-piston-cylinder system. The pellets were characterized for their mechanical strength, chemical composition, and moisture sorption. The steamtreated wood required 12-81% more energy to compact into pellets than the untreated wood. Pellets made from steam-treated wood had a breaking strength 1.4-3.3 times the strength of pellets made from untreatedmore » wood. Steam-treated pellets had a reduced equilibrium moisture content of 2-4% and a reduced expansion after pelletization. There was a slight increase in the high heating value from 18.94 to 20.09 MJ/kg for the treated samples. Steam-treated pellets exhibited a higher lengthwise rigidity compared to untreated pellets.« less

  20. Characteristics of the electrical explosion of fine metallic wires in vacuum

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Shi, Zongqian; Shi, Yuanjie; Zhao, Zhigang

    2017-09-01

    The experimental investigations on the electrical explosion of aluminum, silver, tungsten and platinum wires are carried out. The dependence of the parameters related to the specific energy deposition on the primary material properties is investigated. The polyimide coatings are applied to enhance the energy deposition for the exploding wires with percent of vaporized energy less than unit. The characteristics of the exploding wires of different materials with and without insulating coatings are studied. The effect of wire length on the percent of vaporization energy for exploding coated wires is presented. A laser probe is employed to construct the shadowgraphy, schlieren and interferometry diagnostics. The optical diagnostics demonstrate the morphology of the exploding products and structure of the energy deposition. The influence of insulating coatings on different wire materials is analyzed. The expansion trajectories of the exploding wires without and with insulating coatings are estimated from the shadowgram. More specific energy is deposited into the coated wires of shorter wire length, leading to faster expanding velocity of the high-density products.

  1. Topiramate responsive exploding head syndrome.

    PubMed

    Palikh, Gaurang M; Vaughn, Bradley V

    2010-08-15

    Exploding head syndrome is a rare phenomenon but can be a significant disruption to quality of life. We describe a 39-year-old female with symptoms of a loud bang and buzz at sleep onset for 3 years. EEG monitoring confirmed these events occurred in transition from stage 1 sleep. This patient reported improvement in intensity of events with topiramate medication. Based on these results, topiramate may be an alternative method to reduce the intensity of events in exploding head syndrome.

  2. Effects of water nanodroplets on skin moisture and viscoelasticity during air-conditioning.

    PubMed

    Ohno, Hideo; Nishimura, Naoki; Yamada, Kuniyuki; Shimizu, Yuuki; Iwase, Satoshi; Sugenoya, Junichi; Sato, Motohiko

    2013-11-01

    In air-conditioned rooms, dry air exacerbates some skin diseases, for example, senile xerosis, atopic dermatitis, and surface roughness. Humidifiers are used to improve air dryness, which often induces excess humidity and thermal discomfort. To address this issue, we investigated the effects of water nanodroplets (mist) on skin hydration, which may increase skin hydration by penetrating into the interstitial spaces between corneocytes of the stratum corneum (SC) without increasing air humidity. We examined biophysical parameters, including skin conductance and transepidermal water loss (TEWL), and biomechanical parameters of skin distension/retraction before and after suction at the forehead, lateral canthus, and cheek, with or without mist, in a testing environment (24°C, 35% relative humidity) for 120 min. In the group without mist, TEWL values significantly decreased at all the sites after 1 h compared with the initial values. However, in the presence of mist, TEWL values were maintained at the initial values through the test, yielding significant differences vs. the group without mist. There were no significant differences between mist and mist-free groups in terms of skin conductance. Skin distension was significantly increased in the group with mist compared with that in the group without mist at the forehead and cheek, suggesting a softening effect of mist. Skin deformation of the face was improved by mist, suggesting hydration of the SC by mist. The change in TEWL was influenced by mist, suggesting supply of water to the skin, particularly the SC, by mist. These data indicated that a mist of water nanodroplets played an important role in softening skin in an air-conditioned room without increasing excess humidity. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Polymeric micelles and nanoemulsions as tumor-targeted drug carriers: Insight through intravital imaging.

    PubMed

    Rapoport, Natalya; Gupta, Roohi; Kim, Yoo-Shin; O'Neill, Brian E

    2015-05-28

    Intravital imaging of nanoparticle extravasation and tumor accumulation has revealed, for the first time, detailed features of carrier and drug behavior in circulation and tissue that suggest new directions for optimization of drug nanocarriers. Using intravital fluorescent microscopy, the extent of the extravasation, diffusion in the tissue, internalization by tissue cells, and uptake by the RES system were studied for polymeric micelles, nanoemulsions, and nanoemulsion-encapsulated drug. Discrimination of vascular and tissue compartments in the processes of micelle and nanodroplet extravasation and tissue accumulation was possible. A simple 1-D continuum model was suggested that allowed discriminating between various kinetic regimes of nanocarrier (or released drug) internalization in tumors of various sizes and cell density. The extravasation and tumor cell internalization occurred much faster for polymeric micelles than for nanoemulsion droplets. Fast micelle internalization resulted in the formation of a perivascular fluorescent coating around blood vessels. A new mechanism of micelle extravasation and internalization was suggested, based on the fast extravasation and internalization rates of copolymer unimers while maintaining micelle/unimer equilibrium in the circulation. The data suggested that to be therapeutically effective, nanoparticles with high internalization rate should manifest fast diffusion in the tumor tissue in order to avoid generation of concentration gradients that induce drug resistance. However an extra-fast diffusion should be avoided as it may result in the flow of extravasated nanoparticles from the tumor to normal organs, which would compromise targeting efficiency. The extravasation kinetics were different for nanodroplets and nanodroplet-encapsulated drug F-PTX suggesting a premature release of some fraction of the drug from the carrier. In conclusion, the development of an "ideal" drug carrier should involve the optimization of both drug retention and carrier diffusion parameters. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khadjavi, Amina; Magnetto, Chiara; Panariti, Alice

    Background: : In chronic wounds, efficient epithelial tissue repair is hampered by hypoxia, and balances between the molecules involved in matrix turn-over such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are seriously impaired. Intriguingly, new oxygenating nanocarriers such as 2H,3H-decafluoropentane-based oxygen-loaded nanodroplets (OLNs) might effectively target chronic wounds. Objective: : To investigate hypoxia and chitosan-shelled OLN effects on MMP/TIMP production by human keratinocytes. Methods: : HaCaT cells were treated for 24 h with 10% v/v OLNs both in normoxia or hypoxia. Cytotoxicity and cell viability were measured through biochemical assays; cellular uptake by confocal microscopy; and MMPmore » and TIMP production by enzyme-linked immunosorbent assay or gelatin zymography. Results: : Normoxic HaCaT cells constitutively released MMP-2, MMP-9, TIMP-1 and TIMP-2. Hypoxia strongly impaired MMP/TIMP balances by reducing MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. After cellular uptake by keratinocytes, nontoxic OLNs abrogated all hypoxia effects on MMP/TIMP secretion, restoring physiological balances. OLN abilities were specifically dependent on time-sustained oxygen diffusion from OLN core. Conclusion: : Chitosan-shelled OLNs effectively counteract hypoxia-dependent dysregulation of MMP/TIMP balances in human keratinocytes. Therefore, topical administration of exogenous oxygen, properly encapsulated in nanodroplet formulations, might be a promising adjuvant approach to promote healing processes in hypoxic wounds. - Highlights: • Hypoxia impairs MMP9/TIMP1 and MMP2/TIMP2 balances in HaCaT human keratinocytes. • Chitosan-shelled oxygen-loaded nanodroplets (OLNs) are internalised by HaCaT cells. • OLNs are not toxic to HaCaT cells. • OLNs effectively counteract hypoxia effects on MMP/TIMP balances in HaCaT cells. • OLNs appear as promising and cost-effective therapeutic tools for hypoxic wounds.« less

  5. Bioethanol production from steam-exploded rice husk by recombinant Escherichia coli KO11.

    PubMed

    Tabata, Takamitsu; Yoshiba, Yusuke; Takashina, Tomonori; Hieda, Kazuo; Shimizu, Norio

    2017-03-01

    Rice husk is one of the most abundant types of lignocellulosic biomass. Because of its significant amount of sugars, such as cellulose and hemicellulose, it can be used for the production of biofuels such as bioethanol. However, the complex structure of lignocellulosic biomass, consisting of cellulose, hemicellulose and lignin, is resistant to degradation, which limits biomass utilization for ethanol production. The protection of cellulose by lignin contributes to the recalcitrance of lignocelluloses to hydrolysis. Therefore, we conducted steam-explosion treatment as pretreatment of rice husk. However, recombinant Escherichia coli KO11 did not ferment the reducing sugar solution obtained by enzymatic saccharification of steam-exploded rice husk. When the steam-exploded rice husk was washed with hot water to remove inhibitory substances and M9 medium (without glucose) was used as a fermentation medium, E. coli KO11 completely fermented the reducing sugar solution obtained by enzymatic saccharification of hot water washing-treated steam-exploded rice husk to ethanol. We report here the efficient production of bioethanol using steam-exploded rice husk.

  6. Exploding wires initiation of nitromethane sensitized by diethylenetriamine

    NASA Astrophysics Data System (ADS)

    Ushnurtsev, A. E.; Shilkin, N. S.; Utkin, A. V.; Mintsev, V. B.

    2018-01-01

    Experiments on initiation of nitromethane sensitized by diethylenetriamine in weight proportion 98/2 by exploding wires were conducted. Several conditions of initiation of low speed detonation were determined.

  7. Final Technical Report: Vibrational Spectroscopy of Transient Combustion Intermediates Trapped in Helium Nanodroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douberly, Gary Elliott

    The objective of our experimental research program is to isolate and stabilize transient intermediates and products of prototype combustion reactions. This will be accomplished by Helium Nanodroplet Isolation, a novel technique where liquid helium droplets freeze out high energy metastable configurations of a reacting system, permitting infrared spectroscopic characterizations of products and intermediates that result from hydrocarbon radical reactions with molecular oxygen and other small molecules relevant to combustion environments. The low temperature (0.4 K) and rapid cooling associated with He droplets provides a perfectly suited medium to isolate and probe a broad range of molecular radical and carbene systemsmore » important to combustion chemistry. The sequential addition of molecular species to He droplets often leads to the stabilization of high-energy, metastable cluster configurations that represent regions of the potential energy surface far from the global minimum. Single and double resonance IR laser spectroscopy techniques, along with Stark and Zeeman capabilities, are being used to probe the structural and dynamical properties of these systems.« less

  8. Optical study of xanthene-type dyes in nano-confined liquid

    NASA Astrophysics Data System (ADS)

    Mahdi Shavakandi, Seyyed; Alizadeh, Khalil; Sharifi, Soheil; Marti, Othmar; Amirkhani, Masoud

    2017-04-01

    The optical activity of dye molecules in different environments is of great interest for many applications such as laser system or biological imaging. We investigate the fluorescence and absorption spectrum of nano-confined xanthene dyes (RhB and fluorescein sodium salt) in a two-phase liquid. Each show very distinct optical behavior in the water phase of a reverse microemulsion. Their optical properties such as absorption and fluorescence for different concentrations of dye and nanodroplets are investigated. We show that for the same concentration of dye in the microemulsion the peak of fluorescence intensity is varied by altering the concentration of nanodroplets. However, the trend of the change is widely different depending on the hydrophobicity of dyes. Quantum-mechanical second order perturbation theory is used to calculate the ratio of dipole moments in the ground and excited states, which accounts for the Stokes shift in fluorescence peak. Photon correlation spectroscopy is employed to check the trace of the dye in the oil phase of the microemulsion.

  9. Kinetic mechanism of the thermal-induced self-organization of Au/Si nanodroplets on Si(100): Size and roughness evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruffino, F.; Canino, A.; Grimaldi, M. G.

    Very thin Au layer was deposited on Si(100) using the sputtering technique. By annealing at 873 K Au/Si nanodroplets were formed and their self-organization was induced changing the annealing time. The evolution of droplet size distribution, center-to-center distance distribution, and droplet density as a function of the annealing time at 873 K was investigated by Rutherford backscattering spectrometry, atomic force microscopy (AFM), and scanning electron microscopy. As a consequence of such study, the droplet clustering is shown to be a ripening process of hemispherical three-dimensional structures limited by the Au surface diffusion. The application of the ripening theory allowed usmore » to calculate the surface diffusion coefficient and all other parameters needed to describe the entire process. Furthermore, the AFM measurements allowed us to study the roughness evolution of the sputtered Au thin film and compare the experimental data with the dynamic scaling theories of growing interfaces.« less

  10. Nanodroplet processing platform for deep and quantitative proteome profiling of 10-100 mammalian cells.

    PubMed

    Zhu, Ying; Piehowski, Paul D; Zhao, Rui; Chen, Jing; Shen, Yufeng; Moore, Ronald J; Shukla, Anil K; Petyuk, Vladislav A; Campbell-Thompson, Martha; Mathews, Clayton E; Smith, Richard D; Qian, Wei-Jun; Kelly, Ryan T

    2018-02-28

    Nanoscale or single-cell technologies are critical for biomedical applications. However, current mass spectrometry (MS)-based proteomic approaches require samples comprising a minimum of thousands of cells to provide in-depth profiling. Here, we report the development of a nanoPOTS (nanodroplet processing in one pot for trace samples) platform for small cell population proteomics analysis. NanoPOTS enhances the efficiency and recovery of sample processing by downscaling processing volumes to <200 nL to minimize surface losses. When combined with ultrasensitive liquid chromatography-MS, nanoPOTS allows identification of ~1500 to ~3000 proteins from ~10 to ~140 cells, respectively. By incorporating the Match Between Runs algorithm of MaxQuant, >3000 proteins are consistently identified from as few as 10 cells. Furthermore, we demonstrate quantification of ~2400 proteins from single human pancreatic islet thin sections from type 1 diabetic and control donors, illustrating the application of nanoPOTS for spatially resolved proteome measurements from clinical tissues.

  11. Ice nucleation rates near ˜225 K

    NASA Astrophysics Data System (ADS)

    Amaya, Andrew J.; Wyslouzil, Barbara E.

    2018-02-01

    We have measured the ice nucleation rates, Jice, in supercooled nano-droplets with radii ranging from 6.6 nm to 10 nm and droplet temperatures, Td, ranging from 225 K to 204 K. The initial temperature of the 10 nm water droplets is ˜250 K, i.e., well above the homogeneous nucleation temperature for micron sized water droplets, TH ˜235 K. The nucleation rates increase systematically from ˜1021 cm-3 s-1 to ˜1022 cm-3 s-1 in this temperature range, overlap with the nucleation rates of Manka et al. [Phys. Chem. Chem. Phys. 14, 4505 (2012)], and suggest that experiments with larger droplets would extrapolate smoothly the rates of Hagen et al. [J. Atmos. Sci. 38, 1236 (1981)]. The sharp corner in the rate data as temperature drops is, however, difficult to match with available theory even if we correct classical nucleation theory and the physical properties of water for the high internal pressure of the nanodroplets.

  12. Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Ying; Piehowski, Paul D.; Zhao, Rui

    Nanoscale or single cell technologies are critical for biomedical applications. However, current mass spectrometry (MS)-based proteomic approaches require samples comprising a minimum of thousands of cells to provide in-depth profiling. Here, we report the development of a nanoPOTS (Nanodroplet Processing in One pot for Trace Samples) platform as a major advance in overall sensitivity. NanoPOTS dramatically enhances the efficiency and recovery of sample processing by downscaling processing volumes to <200 nL to minimize surface losses. When combined with ultrasensitive LC-MS, nanoPOTS allows identification of ~1500 to ~3,000 proteins from ~10 to ~140 cells, respectively. By incorporating the Match Between Runsmore » algorithm of MaxQuant, >3000 proteins were consistently identified from as few as 10 cells. Furthermore, we demonstrate robust quantification of ~2400 proteins from single human pancreatic islet thin sections from type 1 diabetic and control donors, illustrating the application of nanoPOTS for spatially resolved proteome measurements from clinical tissues.« less

  13. Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Ying; Piehowski, Paul D.; Zhao, Rui

    Nanoscale or single-cell technologies are critical for biomedical applications. However, current mass spectrometry (MS)-based proteomic approaches require samples comprising a minimum of thousands of cells to provide in-depth profiling. Here in this paper, we report the development of a nanoPOTS (nanodroplet processing in one pot for trace samples) platform for small cell population proteomics analysis. NanoPOTS enhances the efficiency and recovery of sample processing by downscaling processing volumes to <200 nL to minimize surface losses. When combined with ultrasensitive liquid chromatography-MS, nanoPOTS allows identification of ~1500 to ~3000 proteins from ~10 to ~140 cells, respectively. By incorporating the Match Betweenmore » Runs algorithm of MaxQuant, >3000 proteins are consistently identified from as few as 10 cells. Furthermore, we demonstrate quantification of ~2400 proteins from single human pancreatic islet thin sections from type 1 diabetic and control donors, illustrating the application of nanoPOTS for spatially resolved proteome measurements from clinical tissues.« less

  14. Low-intensity focused ultrasound (LIFU)-induced acoustic droplet vaporization in phase-transition perfluoropentane nanodroplets modified by folate for ultrasound molecular imaging.

    PubMed

    Liu, Jianxin; Shang, Tingting; Wang, Fengjuan; Cao, Yang; Hao, Lan; Ren, JianLi; Ran, Haitao; Wang, Zhigang; Li, Pan; Du, Zhiyu

    2017-01-01

    The commonly used ultrasound (US) molecular probes, such as targeted microbubbles and perfluorocarbon emulsions, present a number of inherent problems including the conflict between US visualization and particle penetration. This study describes the successful fabrication of phase changeable folate-targeted perfluoropentane nanodroplets (termed FA-NDs), a novel US molecular probe for tumor molecular imaging with US. Notably, these FA-NDs can be triggered by low-intensity focused US (LIFU) sonication, providing excellent US enhancement in B-mode and contrast-enhanced US mode in vitro. After intravenous administration into nude mice bearing SKOV3 ovarian carcinomas, 1,1'-dioctadecyl-3,3,3',3' -tetramethylindotricarbocya-nine iodide-labeled FA-NDs were found to accumulate in the tumor region. FA-NDs injection followed by LIFU sonication exhibited remarkable US contrast enhancement in the tumor region. In conclusion, combining our elaborately developed FA-NDs with LIFU sonication provides a potential protocol for US molecular imaging in folate receptor-overexpressing tumors.

  15. Low-intensity focused ultrasound (LIFU)-induced acoustic droplet vaporization in phase-transition perfluoropentane nanodroplets modified by folate for ultrasound molecular imaging

    PubMed Central

    Liu, Jianxin; Shang, Tingting; Wang, Fengjuan; Cao, Yang; Hao, Lan; Ren, JianLi; Ran, Haitao; Wang, Zhigang; Li, Pan; Du, Zhiyu

    2017-01-01

    The commonly used ultrasound (US) molecular probes, such as targeted microbubbles and perfluorocarbon emulsions, present a number of inherent problems including the conflict between US visualization and particle penetration. This study describes the successful fabrication of phase changeable folate-targeted perfluoropentane nanodroplets (termed FA-NDs), a novel US molecular probe for tumor molecular imaging with US. Notably, these FA-NDs can be triggered by low-intensity focused US (LIFU) sonication, providing excellent US enhancement in B-mode and contrast-enhanced US mode in vitro. After intravenous administration into nude mice bearing SKOV3 ovarian carcinomas, 1,1′-dioctadecyl-3,3,3′,3′ -tetramethylindotricarbocya-nine iodide-labeled FA-NDs were found to accumulate in the tumor region. FA-NDs injection followed by LIFU sonication exhibited remarkable US contrast enhancement in the tumor region. In conclusion, combining our elaborately developed FA-NDs with LIFU sonication provides a potential protocol for US molecular imaging in folate receptor-overexpressing tumors. PMID:28184161

  16. Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells

    DOE PAGES

    Zhu, Ying; Piehowski, Paul D.; Zhao, Rui; ...

    2018-02-28

    Nanoscale or single-cell technologies are critical for biomedical applications. However, current mass spectrometry (MS)-based proteomic approaches require samples comprising a minimum of thousands of cells to provide in-depth profiling. Here in this paper, we report the development of a nanoPOTS (nanodroplet processing in one pot for trace samples) platform for small cell population proteomics analysis. NanoPOTS enhances the efficiency and recovery of sample processing by downscaling processing volumes to <200 nL to minimize surface losses. When combined with ultrasensitive liquid chromatography-MS, nanoPOTS allows identification of ~1500 to ~3000 proteins from ~10 to ~140 cells, respectively. By incorporating the Match Betweenmore » Runs algorithm of MaxQuant, >3000 proteins are consistently identified from as few as 10 cells. Furthermore, we demonstrate quantification of ~2400 proteins from single human pancreatic islet thin sections from type 1 diabetic and control donors, illustrating the application of nanoPOTS for spatially resolved proteome measurements from clinical tissues.« less

  17. Explodator: A new skeleton mechanism for the halate driven chemical oscillators

    NASA Astrophysics Data System (ADS)

    Noszticzius, Z.; Farkas, H.; Schelly, Z. A.

    1984-06-01

    In the first part of this work, some shortcomings in the present theories of the Belousov-Zhabotinskii oscillating reaction are discussed. In the second part, a new oscillatory scheme, the limited Explodator, is proposed as an alternative skeleton mechanism. This model contains an always unstable three-variable Lotka-Volterra core (the ``Explodator'') and a stabilizing limiting reaction. The new scheme exhibits Hopf bifurcation and limit cycle oscillations. Finally, some possibilities and problems of a generalization are mentioned.

  18. Chandra X-Ray Observatory (CXO) on Orbit Animation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is an on-orbit animation of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the remnants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers worldwide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  19. All That Remains of Exploded Star

    NASA Image and Video Library

    2011-10-24

    Infrared images from NASA Spitzer Space Telescope and Wide-field Infrared Survey Explorer are combined in this image of RCW 86, the dusty remains of the oldest documented example of an exploding star, or supernova.

  20. Characterization of explosive devices in luggage: Initial results of the ART-IIC test series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerman, M.A.; Kass, M.D.; Clough, B.T.

    1993-12-31

    Characteristics and damage associated with exploded luggage aboard aircraft are presented in this paper. Plastic-sided suitcases filled with typical travel possessions were exploded inside the fuselage of decomissioned B-52 aircraft. Multilayered shield panels, mounted to one side of the fuselage, served to protect the aircraft body and flight system components from both the blast wave and exploded fragments. The resulting damage produced by the explosions was characterized and the absorbing characteristics of the shielding were evaluated. In addition, the energy of the luggage fragments was estimated.

  1. Teaching Chemistry through Observation--The Exploding Can Demonstration.

    ERIC Educational Resources Information Center

    Golestaneh, Kamran

    1998-01-01

    Describes procedures for a demonstration that features an exploding can. This demonstration prompts students to critically analyze the release of energy in an exothermic reaction, the work done in such a reaction, and the enthalpy. (DDR)

  2. Flame Deflector Section, Elevation, Water Supply Flow Diagram, Exploded ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Flame Deflector - Section, Elevation, Water Supply Flow Diagram, Exploded Deflector Manifolds, and Interior Perspective - Marshall Space Flight Center, F-1 Engine Static Test Stand, On Route 565 between Huntsville and Decatur, Huntsville, Madison County, AL

  3. Correlation of Solubility with the Metastable Limit of Nucleation Using Gauge-Cell Monte Carlo Simulations.

    PubMed

    Clark, Michael D; Morris, Kenneth R; Tomassone, Maria Silvina

    2017-09-12

    We present a novel simulation-based investigation of the nucleation of nanodroplets from solution and from vapor. Nucleation is difficult to measure or model accurately, and predicting when nucleation should occur remains an open problem. Of specific interest is the "metastable limit", the observed concentration at which nucleation occurs spontaneously, which cannot currently be estimated a priori. To investigate the nucleation process, we employ gauge-cell Monte Carlo simulations to target spontaneous nucleation and measure thermodynamic properties of the system at nucleation. Our results reveal a widespread correlation over 5 orders of magnitude of solubilities, in which the metastable limit depends exclusively on solubility and the number density of generated nuclei. This three-way correlation is independent of other parameters, including intermolecular interactions, temperature, molecular structure, system composition, and the structure of the formed nuclei. Our results have great potential to further the prediction of nucleation events using easily measurable solute properties alone and to open new doors for further investigation.

  4. Laser detonator development for test-firing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munger, A. C.; Thomas, K. A.; Kennedy, J. E.

    2004-01-01

    Los Alamos National Laboratory has historically fielded two types of electro-explosive detonators. The exploding-bridgewire detonator (EBW) has an exploding wire as the initiating element, a low-density transfer charge and a high-density output pellet. The slapper detonator, or exploding-foil initiator (EFI), utilizes an exploding foil to drive a flying plate element into a high-density output pellet. The last twenty years has seen various research and development activities from many laboratories and manufacturing facilities around the world to develop laser-driven analogs of these devices, but to our knowledge none of those is in general use. Los Alamos is currently committed to designmore » and manufacture a laser analog to the long-standing, generic, general-purpose SE-1 EBW detonator, which is intended to provide increased safety in large-scale test-firing operations. This paper will discuss the major design parameters of this laser detonator and present some preliminary testing results.« less

  5. A Probability Problem from Real Life: The Tire Exploded.

    ERIC Educational Resources Information Center

    Bartlett, Albert A.

    1993-01-01

    Discusses the probability of seeing a tire explode or disintegrate while traveling down the highway. Suggests that a person observing 10 hours a day would see a failure on the average of once every 300 years. (MVL)

  6. Initial Development of an Exploding Aerosol Can Simulator

    DOT National Transportation Integrated Search

    1998-04-01

    A device was constructed to simulate an exploding aerosol can. The device consisted of a cylindrical pressure vessel for storage of flammable propellants and base product and a high-rate discharge (HRD) valve for quick release of the constituents. Si...

  7. LOFT. "Exploded view" of loft containment building (TAN650), including control ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. "Exploded view" of loft containment building (TAN-650), including control building (TAN-630). EG&G. February 1979. INEEL index code no. 036-010-65-220-209565 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  8. Exploding and Imaging of Electron Bubbles in Liquid Helium

    NASA Astrophysics Data System (ADS)

    Yadav, Neha; Vadakkumbatt, Vaisakh; Maris, Humphrey J.; Ghosh, Ambarish

    2017-06-01

    An electron bubble in liquid helium-4 under the saturated vapor pressure becomes unstable and explodes if the pressure becomes more negative than -1.9 bars. In this paper, we use focused ultrasound to explode electron bubbles. We then image at 30,000 frames per second the growth and subsequent collapse of the bubbles. We find that bubbles can grow to as large as 1 mm in diameter within 2 ms after the cavitation event. We examine the relation between the maximum size of the bubble and the lifetime and find good agreement with the experimental results.

  9. Effect of poultry litter biochar on Saccharomyces cerevisiae growth and ethanol production from steam-exploded poplar and corn stover

    NASA Astrophysics Data System (ADS)

    Diallo, Oumou

    The use of ethanol produced from lignocellulosic biomass for transportation fuel offers solutions in reducing environmental emission and the use of non-renewable fuels. However, lignocellulosic ethanol production is still hampered by economic and technical obstacles. For instance, the inhibitory effect of toxic compounds produced during biomass pretreatment was reported to inhibit the fermenting microorganisms, hence there was a decrease in ethanol yield and productivity. Thus, there is a need to improve the bioconversion of lignocellulosic biomass to ethanol in order to promote its commercialization. The research reported here investigated the use of poultry litter biochar to improve the ethanol production from steam-exploded poplar and corn stover. The effect of poultry litter biochar was first studied on Saccharomyces cerevisiae ATCC 204508/S288C growth, and second on the enzyme hydrolysis and fermentation of two steam-exploded biomasses: (poplar and corn stover). The third part of the study investigated optimal process parameters (biochar loading, biomass loading, and enzyme loading) on the reducing sugars production, and ethanol yield from steam-exploded corn stover. In this study, it has been shown that poultry litter biochar improved the S. cerevisiae growth and ethanol productivity; therefore poultry litter biochar could potentially be used to improve the ethanol production from steam-exploded lignocellulosic biomass.

  10. Development of Targeted Nanobubbles for Ultrasound Imaging and Ablation of Metastatic Prostate Cancer Lesions

    DTIC Science & Technology

    2015-10-01

    interstitial space. Recently, nanodroplets that can extravasate to a tumor’s interstitial space have been developed for targeted imaging 4 and drug...with each pulse applied to a different point in the sample (2 mm spacing) to prevent the effects of cavitation damage from altering the tissue phantom

  11. Wetting of nanophases: Nanobubbles, nanodroplets and micropancakes on hydrophobic surfaces.

    PubMed

    An, Hongjie; Liu, Guangming; Craig, Vincent S J

    2015-08-01

    The observation by Atomic Force Microscopy of a range of nanophases on hydrophobic surfaces poses some challenging questions, not only related to the stability of these objects but also regarding their wetting properties. Spherical capped nanobubbles are observed to exhibit contact angles that far exceed the macroscopic contact angle measured for the same materials, whereas nanodroplets exhibit contact angles that are much the same as the macroscopic contact angle. Micropancakes are reported to consist of gas, in which case their wetting properties are mysterious. They should only be stable when the van der Waals forces act to thicken the film whereas for a gas, the van der Waals forces will always act to thin the film. Here we examine the available evidence and contribute some additional experiments in order to review our understanding of the wetting properties of these nanophases. We demonstrate that if in fact micropancakes consist of a contaminant their wetting properties can be explained, though the very high contact angles of nanobubbles remain unexplained. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. 2H,3H-decafluoropentane-based nanodroplets: new perspectives for oxygen delivery to hypoxic cutaneous tissues.

    PubMed

    Prato, Mauro; Magnetto, Chiara; Jose, Jithin; Khadjavi, Amina; Cavallo, Federica; Quaglino, Elena; Panariti, Alice; Rivolta, Ilaria; Benintende, Emilio; Varetto, Gianfranco; Argenziano, Monica; Troia, Adriano; Cavalli, Roberta; Guiot, Caterina

    2015-01-01

    Perfluoropentane (PFP)-based oxygen-loaded nanobubbles (OLNBs) were previously proposed as adjuvant therapeutic tools for pathologies of different etiology sharing hypoxia as a common feature, including cancer, infection, and autoimmunity. Here we introduce a new platform of oxygen nanocarriers, based on 2H,3H-decafluoropentane (DFP) as core fluorocarbon. These new nanocarriers have been named oxygen-loaded nanodroplets (OLNDs) since DFP is liquid at body temperature, unlike gaseous PFP. Dextran-shelled OLNDs, available either in liquid or gel formulations, display spherical morphology, ~600 nm diameters, anionic charge, good oxygen carrying capacity, and no toxic effects on human keratinocytes after cell internalization. In vitro OLNDs result more effective in releasing oxygen to hypoxic environments than former OLNBs, as demonstrated by analysis through oxymetry. In vivo, OLNDs effectively enhance oxy-hemoglobin levels, as emerged from investigation by photoacoustic imaging. Interestingly, ultrasound (US) treatment further improves transdermal oxygen release from OLNDs. Taken together, these data suggest that US-activated, DFP-based OLNDs might be innovative, suitable and cost-effective devices to topically treat hypoxia-associated pathologies of the cutaneous tissues.

  13. The ethyl radical in superfluid helium nanodroplets: Rovibrational spectroscopy and ab initio computations

    DOE PAGES

    Raston, Paul L.; Agarwal, Jay; Turney, Justin M.; ...

    2013-05-15

    The ethyl radical has been isolated and spectroscopically characterized in 4He nanodroplets. The band origins of the five CH stretch fundamentals are shifted by < 2 cm –1 from those reported for the gas phase species. The symmetric CH 2 stretching band (v 1) is rotationally resolved, revealing nuclear spin statistical weights predicted by G 12 permutation-inversion group theory. A permanent electric dipole moment of 0.28 (2) D is obtained via the Stark spectrum of the v 1 band. The four other CH stretch fundamental bands are significantly broadened in He droplets and lack rotational fine structure. This broadening ismore » attributed to symmetry dependent vibration-to-vibration relaxation facilitated by the He droplet environment. In addition to the five fundamentals, three a 1' overtone/combination bands are observed, and each of these have resolved rotational substructure. As a result, these are assigned to the 2v 12, v 4 + v 6, and 2v 6 bands through comparisons to anharmonic frequency computations at the CCSD(T)/cc-pVTZ level of theory.« less

  14. 2H,3H-Decafluoropentane-Based Nanodroplets: New Perspectives for Oxygen Delivery to Hypoxic Cutaneous Tissues

    PubMed Central

    Jose, Jithin; Khadjavi, Amina; Cavallo, Federica; Quaglino, Elena; Panariti, Alice; Rivolta, Ilaria; Benintende, Emilio; Varetto, Gianfranco; Argenziano, Monica; Troia, Adriano; Cavalli, Roberta; Guiot, Caterina

    2015-01-01

    Perfluoropentane (PFP)-based oxygen-loaded nanobubbles (OLNBs) were previously proposed as adjuvant therapeutic tools for pathologies of different etiology sharing hypoxia as a common feature, including cancer, infection, and autoimmunity. Here we introduce a new platform of oxygen nanocarriers, based on 2H,3H-decafluoropentane (DFP) as core fluorocarbon. These new nanocarriers have been named oxygen-loaded nanodroplets (OLNDs) since DFP is liquid at body temperature, unlike gaseous PFP. Dextran-shelled OLNDs, available either in liquid or gel formulations, display spherical morphology, ~600 nm diameters, anionic charge, good oxygen carrying capacity, and no toxic effects on human keratinocytes after cell internalization. In vitro OLNDs result more effective in releasing oxygen to hypoxic environments than former OLNBs, as demonstrated by analysis through oxymetry. In vivo, OLNDs effectively enhance oxy-hemoglobin levels, as emerged from investigation by photoacoustic imaging. Interestingly, ultrasound (US) treatment further improves transdermal oxygen release from OLNDs. Taken together, these data suggest that US-activated, DFP-based OLNDs might be innovative, suitable and cost-effective devices to topically treat hypoxia-associated pathologies of the cutaneous tissues. PMID:25781463

  15. Water nanodroplet thermodynamics: quasi-solid phase-boundary dispersivity.

    PubMed

    Zhang, Xi; Sun, Peng; Huang, Yongli; Ma, Zengsheng; Liu, Xinjuan; Zhou, Ji; Zheng, Weitao; Sun, Chang Q

    2015-04-23

    It has long been puzzling that water nanodroplets undergo simultaneously "supercooling" at freezing and "superheating" at melting. Recent progress (Sun et al. J. Phys. Chem. Lett. 2013, 4, 2565, 3238) enables us to resolve this anomaly from the perspective of hydrogen bond (O:H-O) specific heat disparity. A superposition of the specific heat ηx(T) curves for the H-O bond (x = H) and the O:H nonbond (x = L) defines two intersecting temperatures that form the ice/quasi-solid/liquid phase boundaries. Molecular undercoordination (with fewer than four nearest neighbors in the bulk) stretches the ηH(T) curve by raising the Debye temperature ΘDH through H-O bond shortening and phonon stiffening. The ηH(T) stretching is coupled with the ηL(T) depressing because of the Coulomb repulsion between electron pairs on oxygen ions. The extent of dispersion varies with the size of a droplet that prefers a core-shell structure configuration-the bulk interior and the skin. Understandings may open an effective way of dealing with the thermodynamic behavior of water droplets and bubbles from the perspective of O:H-O bond cooperativity.

  16. Nucleation and growth of microdroplets of ionic liquids deposited by physical vapor method onto different surfaces

    NASA Astrophysics Data System (ADS)

    Costa, José C. S.; Coelho, Ana F. S. M. G.; Mendes, Adélio; Santos, Luís M. N. B. F.

    2018-01-01

    Nanoscience and technology has generated an important area of research in the field of properties and functionality of ionic liquids (ILs) based materials and their thin films. This work explores the deposition process of ILs droplets as precursors for the fabrication of thin films, by means of physical vapor deposition (PVD). It was found that the deposition (by PVD on glass, indium tin oxide, graphene/nickel and gold-coated quartz crystal surfaces) of imidazolium [C4mim][NTf2] and pyrrolidinium [C4C1Pyrr][NTf2] based ILs generates micro/nanodroplets with a shape, size distribution and surface coverage that could be controlled by the evaporation flow rate and deposition time. No indication of the formation of a wetting-layer prior to the island growth was found. Based on the time-dependent morphological analysis of the micro/nanodroplets, a simple model for the description of the nucleation process and growth of ILs droplets is presented. The proposed model is based on three main steps: minimum free area to promote nucleation; first order coalescence; second order coalescence.

  17. Selective intracellular vaporisation of antibody-conjugated phase-change nano-droplets in vitro

    NASA Astrophysics Data System (ADS)

    Ishijima, A.; Minamihata, K.; Yamaguchi, S.; Yamahira, S.; Ichikawa, R.; Kobayashi, E.; Iijima, M.; Shibasaki, Y.; Azuma, T.; Nagamune, T.; Sakuma, I.

    2017-03-01

    While chemotherapy is a major mode of cancer therapeutics, its efficacy is limited by systemic toxicities and drug resistance. Recent advances in nanomedicine provide the opportunity to reduce systemic toxicities. However, drug resistance remains a major challenge in cancer treatment research. Here we developed a nanomedicine composed of a phase-change nano-droplet (PCND) and an anti-cancer antibody (9E5), proposing the concept of ultrasound cancer therapy with intracellular vaporisation. PCND is a liquid perfluorocarbon nanoparticle with a liquid-gas phase that is transformable upon exposure to ultrasound. 9E5 is a monoclonal antibody targeting epiregulin (EREG). We found that 9E5-conjugated PCNDs are selectively internalised into targeted cancer cells and kill the cells dynamically by ultrasound-induced intracellular vaporisation. In vitro experiments show that 9E5-conjugated PCND targets 97.8% of high-EREG-expressing cancer cells and kills 57% of those targeted upon exposure to ultrasound. Furthermore, direct observation of the intracellular vaporisation process revealed the significant morphological alterations of cells and the release of intracellular contents.

  18. Femtosecond Time-Resolved Photoelectron Imaging of Excited Doped Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Saladrigas, Catherine; Bacellar, Camila; Leone, Stephen R.; Neumark, Daniel M.; Gessner, Oliver

    2017-04-01

    Helium nanodroplets are excellent matrices for high resolution spectroscopy and the study of ultracold chemistry. They are optically transparent. In their electronic ground state, interact very weakly with any atomic or molecular dopant. Electronically excited droplets, however, can strongly interact with dopants through a variety of relaxation mechanisms. Previously, these host-dopant interactions were studied in the energy domain, revealing Penning ionization processes enabled by energy transfer between the droplet host and atomic dopants. Using femtosecond time resolved XUV photoelectron imaging, we plan to perform complementary experiments in the time domain to gain deeper insight into the timescales of energy transfer processes and how they compete with internal droplet relaxation. First experiments will be performed using noble gas dopants, such as Kr and Ne, which will be compared to previous energy-domain studies. Femtosecond XUV pulses produced by high harmonic generation will be used to excite the droplets, IR and near-UV light will be used to monitor the relaxation dynamics. Using velocity map imaging, both photoelectron kinetic energies and angular distributions will be recorded as a function of time. Preliminary results and proposed experiments will be presented.

  19. Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source.

    PubMed

    Rupp, Daniela; Monserud, Nils; Langbehn, Bruno; Sauppe, Mario; Zimmermann, Julian; Ovcharenko, Yevheniy; Möller, Thomas; Frassetto, Fabio; Poletto, Luca; Trabattoni, Andrea; Calegari, Francesca; Nisoli, Mauro; Sander, Katharina; Peltz, Christian; J Vrakking, Marc; Fennel, Thomas; Rouzée, Arnaud

    2017-09-08

    Coherent diffractive imaging of individual free nanoparticles has opened routes for the in situ analysis of their transient structural, optical, and electronic properties. So far, single-shot single-particle diffraction was assumed to be feasible only at extreme ultraviolet and X-ray free-electron lasers, restricting this research field to large-scale facilities. Here we demonstrate single-shot imaging of isolated helium nanodroplets using extreme ultraviolet pulses from a femtosecond-laser-driven high harmonic source. We obtain bright wide-angle scattering patterns, that allow us to uniquely identify hitherto unresolved prolate shapes of superfluid helium droplets. Our results mark the advent of single-shot gas-phase nanoscopy with lab-based short-wavelength pulses and pave the way to ultrafast coherent diffractive imaging with phase-controlled multicolor fields and attosecond pulses.Diffraction imaging studies of free individual nanoparticles have so far been restricted to XUV and X-ray free - electron laser facilities. Here the authors demonstrate the possibility of using table-top XUV laser sources to image prolate shapes of superfluid helium droplets.

  20. Doping He droplets by laser ablation with a pulsed supersonic jet source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katzy, R.; Singer, M.; Izadnia, S.

    Laser ablation offers the possibility to study a rich number of atoms, molecules, and clusters in the gas phase. By attaching laser ablated materials to helium nanodroplets, one can gain highly resolved spectra of isolated species in a cold, weakly perturbed system. Here, we present a new setup for doping pulsed helium nanodroplet beams by means of laser ablation. In comparison to more well-established techniques using a continuous nozzle, pulsed nozzles show significant differences in the doping efficiency depending on certain experimental parameters (e.g., position of the ablation plume with respect to the droplet formation, nozzle design, and expansion conditions).more » In particular, we demonstrate that when the ablation region overlaps with the droplet formation region, one also creates a supersonic beam of helium atoms seeded with the sample material. The processes are characterized using a surface ionization detector. The overall doping signal is compared to that of conventional oven cell doping showing very similar dependence on helium stagnation conditions, indicating a comparable doping process. Finally, the ablated material was spectroscopically studied via laser induced fluorescence.« less

  1. Exploiting the Phenomenon of Liquid-Liquid Phase Separation for Enhanced and Sustained Membrane Transport of a Poorly Water-Soluble Drug.

    PubMed

    Indulkar, Anura S; Gao, Yi; Raina, Shweta A; Zhang, Geoff G Z; Taylor, Lynne S

    2016-06-06

    Recent studies on aqueous supersaturated lipophilic drug solutions prepared by methods including antisolvent addition, pH swing, or dissolution of amorphous solid dispersions (ASDs) have demonstrated that when crystallization is slow, these systems undergo liquid-liquid phase separation (LLPS) when the concentration of the drug in the medium exceeds its amorphous solubility. Following LLPS, a metastable equilibrium is formed where the concentration of drug in the continuous phase corresponds to the amorphous solubility while the dispersed phase is composed of a nanosized drug-rich phase. It has been reasoned that the drug-rich phase may act as a reservoir, enabling the rate of passive transport of the drug across a membrane to be maintained at the maximum value for an extended period of time. Herein, using clotrimazole as a model drug, and a flow-through diffusion cell, the reservoir effect is demonstrated. Supersaturated clotrimazole solutions at concentrations below the amorphous solubility show a linear relationship between the maximum flux and the initial concentration. Once the concentration exceeds the amorphous solubility, the maximum flux achieved reaches a plateau. However, the duration for which the high flux persists was found to be highly dependent on the number of drug-rich nanodroplets present in the donor compartment. Macroscopic amorphous particles of clotrimazole did not lead to the same reservoir effect observed with the nanodroplets formed through the process of LLPS. A first-principles mathematical model was developed which was able to fit the experimental receiver concentration-time profiles for concentration regimes both below and above amorphous solubility, providing support for the contention that the nanodroplet phase does not directly diffuse across the membrane but, instead, rapidly replenishes the drug in the aqueous phase that has been removed by transport across the membrane. This study provides important insight into the properties of supersaturated solutions and how these might in turn impact oral absorption through effects on passive membrane transport rates.

  2. Spectroscopy of Lithium Atoms and Molecules on Helium Nanodroplets

    PubMed Central

    2013-01-01

    We report on the spectroscopic investigation of lithium atoms and lithium dimers in their triplet manifold on the surface of helium nanodroplets (HeN). We present the excitation spectrum of the 3p ← 2s and 3d ← 2s two-photon transitions for single Li atoms on HeN. The atoms are excited from the 2S(Σ) ground state into Δ, Π, and Σ pseudodiatomic molecular substates. Excitation spectra are recorded by resonance enhanced multiphoton ionization time-of-flight (REMPI-TOF) mass spectroscopy, which allows an investigation of the exciplex (Li*–Hem, m = 1–3) formation process in the Li–HeN system. Electronic states are shifted and broadened with respect to free atom states, which is explained within the pseudodiatomic model. The assignment is assisted by theoretical calculations, which are based on the Orsay–Trento density functional where the interaction between the helium droplet and the lithium atom is introduced by a pairwise additive approach. When a droplet is doped with more than one alkali atom, the fragility of the alkali–HeN systems leads preferably to the formation of high-spin molecules on the droplets. We use this property of helium nanodroplets for the preparation of Li dimers in their triplet ground state (13Σu+). The excitation spectrum of the 23Πg(ν′ = 0–11) ← 13Σu+(ν″ = 0) transition is presented. The interaction between the molecule and the droplet manifests in a broadening of the transitions with a characteristic asymmetric form. The broadening extends to the blue side of each vibronic level, which is caused by the simultaneous excitation of the molecule and vibrations of the droplet (phonons). The two isotopes of Li form 6Li2 and 7Li2 as well as isotope mixed 6Li7Li molecules on the droplet surface. By using REMPI-TOF mass spectroscopy, isotope-dependent effects could be studied. PMID:23895106

  3. Effects of furan derivatives on biohydrogen fermentation from wet steam-exploded cornstalk and its microbial community.

    PubMed

    Liu, Zhidan; Zhang, Chong; Wang, Linjun; He, Jianwei; Li, Baoming; Zhang, Yuanhui; Xing, Xin-Hui

    2015-01-01

    Understanding the role of furan derivatives, furfural (FUR) and 5-hydroxymethyl furfural (HMF), is important for biofuel production from lignocellulosic biomass. In this study, the effects of furan derivatives on hydrogen fermentation from wet steam-exploded cornstalk were investigated. The control experiments with only seed sludge indicated that HMF addition of up to 1g/L stimulated hydrogen production. Similar results were obtained using steam-exploded cornstalk as the feedstock. Hydrogen productivity was increased by up to 40% with the addition of HMF. In addition, over 90% of furan derivatives with an initial concentration below 1g/L were degraded. Pyosequencing showed that the addition of HMF and FUR resulted in different microbial communities. HMF led to a higher proportion of the genera Clostridium and Ruminococcaceae, supporting the increased hydrogen production. This study suggested that hydrogen fermentation could be a detoxifying step for steam-exploded cornstalk, and HMF and FUR exhibited different functions for hydrogen fermentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Numerical simulation of exploding pusher targets

    NASA Astrophysics Data System (ADS)

    Atzeni, S.; Rosenberg, M. J.; Gatu Johnson, M.; Petrasso, R. D.

    2017-10-01

    Exploding pusher targets, i.e. gas-filled large aspect-ratio glass or plastic shells, driven by a strong laser-generated shock, are widely used as pulsed sources of neutrons and fast charged particles. Recent experiments on exploding pushers provided evidence for the transition from a purely fluid behavior to a kinetic one. Indeed, fluid models largely overpredict yield and temperature as the Knudsen number Kn (ratio of ion mean-free path to compressed gas radius) is comparable or larger than one. At Kn = 0.3 - 1, fluid codes reasonably estimate integral quantities as yield and neutron-averaged temperatures, but do not reproduce burn radii, burn profiles and DD/DHe3 yield ratio. This motivated a detailed simulation study of intermediate-Kn exploding pushers. We will show how simulation results depend on models for laser-interaction, electron conductivity (flux-limited local vs nonlocal), viscosity (physical vs artificial), and ion mixing. Work partially supported by Sapienza Project C26A15YTMA, Sapienza 2016 (n. 257584), and Eurofusion Project AWP17-ENR-IFE-CEA-01.

  5. Gold nanoparticles prepared by electro-exploding wire technique in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kumar, Lalit; Kapoor, Akanksha; Meghwal, Mayank; Annapoorni, S.

    2016-05-01

    This article presents an effective approach for the synthesis of Au nanoparticles via an environmentally benevolent electro-exploding wire (EEW) technique. In this process, Au nanoparticles evolve through the plasma generated from the parent Au metal. Compared to other typical chemical methods, electro-exploding wire technique is a simple and economical technique which normally operates in water or organic liquids under ambient conditions. Efficient size control was achieved using different aqueous medium like (1mM) NaCl, deionized water and aqueous solution of sodium hydroxide (NaOH, pH 9.5) using identical electro-exploding conditions. The gold nanoparticles exhibited the UV-vis absorption spectrum with a maximum absorption band at 530 nm, similar to that of gold nanoparticles chemically prepared in a solution. The mechanism of size variation of Au nanoparticles is also proposed. The results obtained help to develop methodologies for the control of EEW based nanoparticle growth and the functionalization of nanoparticle surfaces by specific interactions.

  6. Explosive double salts and preparation

    DOEpatents

    Cady, Howard H.; Lee, Kien-yin

    1984-01-01

    Applicants have discovered a new composition of matter which is an explosive addition compound of ammonium nitrate (AN) and diethylenetriamine trinitrate (DETN) in a 50:50 molar ratio. The compound is stable over extended periods of time only at temperatures higher than 46.degree. C., decomposing to a fine-grained eutectic mixture (which is also believed to be new) of AN and DETN at temperatures lower than 46.degree. C. The compound of the invention has an x-ray density of 1.61 g/cm.sup.3, explodes to form essentially only gaseous products, has higher detonation properties (i.e., detonation velocity and pressure) than those of any mechanical mixture having the same density and composition as the compound of the invention, is a quite insensitive explosive material, can be cast at temperatures attainable by high pressure steam, and is prepared from inexpensive ingredients. Methods of preparing the compound of the invention and the fine-grained eutectic composition of the invention are given.

  7. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2000-11-01

    This image is a color composite of the supernova remnant E0102-72: x-ray (blue), optical (green), and radio (red). E0102-72 is the remnant of a star that exploded in a nearby galaxy known as the Small Magellanic Cloud. The star exploded outward at speeds in excess of 20 million kilometers per hour (12 million mph) and collided with surrounding gas. This collision produced two shock waves, or cosmic sonic booms, one traveling outward, and the other rebounding back into the material ejected by the explosion. The radio image, shown in red, was made using the Australia Telescope Compact Array. The radio waves are due to extremely high-energy electrons spiraling around magnetic field lines in the gas and trace the outward moving shock wave. The Chandra X-ray Observatory image, shown in blue, shows gas that has been heated to millions of degrees by the rebounding, or reverse shock wave. The x-ray data show that this gas is rich in oxygen and neon. These elements were created by nuclear reactions inside the star and hurled into space by the supernova. The Hubble Space Telescope optical image, shown in green, shows dense clumps of oxygen gas that have "cooled" to about 30,000 degrees. Photo Credit: X-ray (NASA/CXC/SAO); optical (NASA/HST): radio: (ACTA)

  8. PHYSICAL AND OPTICAL PROPERTIES OF STEAM-EXPLODED LASER-PRINTED PAPER

    EPA Science Inventory

    Laser-printed paper was pulped by the steam-explosion process. A full-factorial experimental design was applied to determine the effects of key operating variables on the properties of steam-exploded pulp. The variables were addition level for pulping chemicals (NaOH and/or Na2SO...

  9. Wheelbarrow tire explosion causing trauma to the forearm and hand: a case report

    PubMed Central

    2009-01-01

    Introduction Tire explosion injuries are rare, but they may result in a severe injury pattern. Case reports and statistics from injuries caused by exploded truck tires during servicing are established, but trauma from exploded small tires seems to be unknown. Case presentation A 47-year-old german man inflated a wheelbarrow tire. The tire exploded during inflation and caused an open, multiple forearm and hand injury. Conclusion Even small tires can cause severe injury patterns in the case of an explosion. High inflating pressures and low safety distances are the main factors responsible for this occurrence. Broad safety information and suitable filling devices are indispensable for preventing these occurrences. PMID:19946543

  10. Modeling Initiation in Exploding Bridgewire Detonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrousis, C A

    2005-05-18

    One- and two-dimensional models of initiation in detonators are being developed for the purpose of evaluating the performance of aged and modified detonator designs. The models focus on accurate description of the initiator, whether it be an EBW (exploding bridgewire) that directly initiates a high explosive powder or an EBF (exploding bridgefoil) that sends an inert flyer into a dense HE pellet. The explosion of the initiator is simulated using detailed MHD equations of state as opposed to specific action-based phenomenological descriptions. The HE is modeled using the best available JWL equations of state. Results to date have been promising,more » however, work is still in progress.« less

  11. Clinical features of the exploding head syndrome.

    PubMed

    Pearce, J M

    1989-07-01

    Fifty patients suffering from the "exploding head syndrome" are described. This hitherto unreported syndrome is characterised by a sense of an explosive noise in the head usually in the twilight stage of sleep. The associated symptoms are varied, but the benign nature of the condition is emphasised and neither extensive investigation nor treatment are indicated.

  12. Exploding Boxes

    ERIC Educational Resources Information Center

    Kinney; Jan

    2011-01-01

    How do you teach the "same old, same old" in an interesting and inexpensive way? Art teachers are forever looking for new angles on the good-old elements and principles. And, as budgets tighten, they are trying to be as frugal as possible while still holding their students' attention. Enter exploding boxes! In conceptualizing the three types of…

  13. The Exploding and Explosive Two-Year College.

    ERIC Educational Resources Information Center

    McPherson, Elisabeth

    Junior and community colleges must explode many traditional notions about education in order to fulfill their promises to poor and disadvantaged students. The number of junior and community colleges and the number of students attending them have increased rapidly in the past few years. But many communities think that community colleges didn't keep…

  14. Surface Impact Simulations of Helium Nanodroplets

    DTIC Science & Technology

    2015-06-30

    mechanical delocalization of the individual helium atoms in the droplet and the quan- tum statistical effects that accompany the interchange of identical...incorporates the effects of atomic delocaliza- tion by treating individual atoms as smeared-out probability distributions that move along classical...probability density distributions to give effec- tive interatomic potential energy curves that have zero-point averaging effects built into them [25

  15. Miniemulsion polymerization as a versatile tool for the synthesis of functionalized polymers

    PubMed Central

    Crespy, Daniel

    2010-01-01

    Summary The miniemulsion technique is a particular case in the family of heterophase polymerizations, which allows the formation of functionalized polymers by polymerization or modification of polymers in stable nanodroplets. We present here an overview of the different polymer syntheses within the miniemulsion droplets as reported in the literature, and of the current trends in the field. PMID:21160567

  16. Novel Technique for Quantitative Fast Scanning Calorimetry on Electrospun Fibers

    NASA Astrophysics Data System (ADS)

    Thomas, David; Govinna, Nelaka; Schick, Christoph; Cebe, Peggy

    Fast scanning chip calorimetry allows for the study of polymers which have rapid nucleation and/or crystallization kinetics, or degrade within their melting range. Heating rates used, up to 4000 K/s, allow studies of hetero and homogeneous nucleation at time scales inaccessible with conventional calorimeters, whose rates are typically <0.5 K/s. Polyethylene terephthalate (PET) and polyvinyl alcohol (PVA) were chosen in the development of a new methodology to obtain quantitative fast scanning thermal data from electrospun nanofibers using a Flash DSC1. The structure of nanofibers requires special methods to load nanogram-sized samples onto a UFSC1 sensor. Fibers were directly spun onto TEM grids which provide a durable substrate to support bundles of nanofibers and possess excellent thermal conductivity allowing for a strong, repeatable signal and ensure good sample to sensor contact. As spun samples were held isothermally at temperatures ranging from Tg to Tm then heated at 2,000 K/s to assess as-spun crystallinity and cold crystallization behaviors. Above Tm the fibers break up into micro- and nano-droplets. On these samples, melt crystallization experiments were performed to study nucleation and crystallization of polymer confined to nanodroplet morphology. NSF DMR-1608125.

  17. Infrared Spectroscopy of the Entrance Channel Complex Formed Between the Hydroxyl Radical and Methane in Helium Nanodroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raston, Paul L.; Obi, Emmanuel I.; Douberly, Gary E.

    Here, the entrance channel complex in the exothermic OH + CH 4 → H 2O + CH 3 reaction has been isolated in helium nanodroplets following the sequential pick-up of the hydroxyl radical and methane. The a-type OH stretching band was probed with infrared depletion spectroscopy, revealing a spectrum qualitatively similar to that previously reported in the gas phase, but with additional substructure that is due to the different internal rotation states of methane (j CH4 = 0, 1, or 2) in the complex. We fit the spectra by assuming the rotational constants of the complex are the same formore » all internal rotation states; however, subband origins are found to decrease with increasing j CH4. Measurements of deuterated complexes have also been made (OD–CH 4, OH–CD 4, and OD–CD 4), the relative linewidths of which provide information about the flow of vibrational energy in the complexes; vibrational lifetime broadening is prominent for OH–CH 4 and OD–CD 4, for which the excited OX stretching state has a nearby CY 4 stretching fundamental (X, Y = H or D).« less

  18. Infrared Spectroscopy of the Entrance Channel Complex Formed Between the Hydroxyl Radical and Methane in Helium Nanodroplets

    DOE PAGES

    Raston, Paul L.; Obi, Emmanuel I.; Douberly, Gary E.

    2017-09-22

    Here, the entrance channel complex in the exothermic OH + CH 4 → H 2O + CH 3 reaction has been isolated in helium nanodroplets following the sequential pick-up of the hydroxyl radical and methane. The a-type OH stretching band was probed with infrared depletion spectroscopy, revealing a spectrum qualitatively similar to that previously reported in the gas phase, but with additional substructure that is due to the different internal rotation states of methane (j CH4 = 0, 1, or 2) in the complex. We fit the spectra by assuming the rotational constants of the complex are the same formore » all internal rotation states; however, subband origins are found to decrease with increasing j CH4. Measurements of deuterated complexes have also been made (OD–CH 4, OH–CD 4, and OD–CD 4), the relative linewidths of which provide information about the flow of vibrational energy in the complexes; vibrational lifetime broadening is prominent for OH–CH 4 and OD–CD 4, for which the excited OX stretching state has a nearby CY 4 stretching fundamental (X, Y = H or D).« less

  19. Wetting and evaporation of salt-water nanodroplets: A molecular dynamics investigation.

    PubMed

    Zhang, Jun; Borg, Matthew K; Sefiane, Khellil; Reese, Jason M

    2015-11-01

    We employ molecular dynamics simulations to study the wetting and evaporation of salt-water nanodroplets on platinum surfaces. Our results show that the contact angle of the droplets increases with the salt concentration. To verify this, a second simulation system of a thin salt-water film on a platinum surface is used to calculate the various surface tensions. We find that both the solid-liquid and liquid-vapor surface tensions increase with salt concentration and as a result these cause an increase in the contact angle. However, the evaporation rate of salt-water droplets decreases as the salt concentration increases, due to the hydration of salt ions. When the water molecules have all evaporated from the droplet, two forms of salt crystals are deposited, clump and ringlike, depending on the solid-liquid interaction strength and the evaporation rate. To form salt crystals in a ring, it is crucial that there is a pinned stage in the evaporation process, during which salt ions can move from the center to the rim of the droplets. With a stronger solid-liquid interaction strength, a slower evaporation rate, and a higher salt concentration, a complete salt crystal ring can be deposited on the surface.

  20. Dynamic and spectroscopic studies of nano-micelles comprising dye in water/ dioctyl sodium sulfosuccinate /decane droplet microemulsion at constant water content

    NASA Astrophysics Data System (ADS)

    Rahdar, Abbas; Almasi-Kashi, Mohammad

    2017-01-01

    In the present work, the dynamic and spectroscopic properties of water-in-decane dioctyl sodium sulfosuccinate (AOT) microemulsions comprising dye, Rhodamine B (RB), were studied by varying content of decane at the constant water content (W = 20), by using dynamic light scattering (DLS), UV/visible, and fluorescence techniques. The characterization results of DLS of AOT micelles showed that by decreasing concentration of Rhodamine B in the water/AOT/decane microemulsion, the inter-droplet interactions changed from attractive to repulsive as the mass fraction of nano-droplets (MFD) increased. A deviation in the absorption spectra of Rhodamine B from the Beer's law at the high Rhodamine B concentration (0.001) was observed in the AOT reversed micelles. The Quenching in the emission intensity of AOT droplets comprising Rhodamine B and red shift in λmax of fluorescence of dye was observed as a function of concentration of RB in AOT RMs. The Stokes shift of AOT droplets containing the high concentration of RB, increased with mass fraction of nano-droplet (MFD), whereas at the low Rhodamine B concentration, its variation remained constant up to MFD = 0.07, and then increased.

  1. Infrared spectroscopy and tunneling dynamics of the vinyl radical in 4He nanodroplets

    DOE PAGES

    Raston, Paul L.; Liang, Tao; Douberly, Gary E.

    2013-05-01

    Here, the vinyl radical has been trapped in 4He nanodroplets and probed with infrared laser spectroscopy in the CH stretch region between 2850 and 3200 cm -1. The assigned band origins for the CH 2 symmetric (ν 3), CH 2 antisymmetric (ν 2), and lone α-CH stretch (ν 1) vibrations are in good agreement with previously reported full-dimensional vibrational configuration interaction computations. For all three bands, a-type and b-type transitions are observed from the lowest symmetry allowed roconvibrational state of each nuclear spin isomer, which allows for a determination of the tunneling splittings in both the ground and excited vibrationalmore » levels. Comparisons to gas phase millimeter-wave rotation-tunneling and high-resolution jet-cooled infrared spectra reveal that the He solvent effect is to reduce the ground and ν 3 excited state tunneling splittings by ≈20%. This solvent-induced modification of the tunneling dynamics can be reasonably accounted for by assuming either a ≈2.5% increase in the effective barrier height along the tunneling coordinate or a ≈5% increase in the effective reduced mass of the tunneling particles.« less

  2. Acoustic Droplet Vaporization in Biology and Medicine

    PubMed Central

    Pitt, William G.

    2013-01-01

    This paper reviews the literature regarding the use of acoustic droplet vaporization (ADV) in clinical applications of imaging, embolic therapy, and therapeutic delivery. ADV is a physical process in which the pressure waves of ultrasound induce a phase transition that causes superheated liquid nanodroplets to form gas bubbles. The bubbles provide ultrasonic imaging contrast and other functions. ADV of perfluoropentane was used extensively in imaging for preclinical trials in the 1990s, but its use declined rapidly with the advent of other imaging agents. In the last decade, ADV was proposed and explored for embolic occlusion therapy, drug delivery, aberration correction, and high intensity focused ultrasound (HIFU) sensitization. Vessel occlusion via ADV has been explored in rodents and dogs and may be approaching clinical use. ADV for drug delivery is still in preclinical stages with initial applications to treat tumors in mice. Other techniques are still in preclinical studies but have potential for clinical use in specialty applications. Overall, ADV has a bright future in clinical application because the small size of nanodroplets greatly reduces the rate of clearance compared to larger contrast agent bubbles and yet provides the advantages of ultrasonographic contrast, acoustic cavitation, and nontoxicity of conventional perfluorocarbon contrast agent bubbles. PMID:24350267

  3. Comprehensive Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 3. Relating Solution-Phase to Gas-Phase Structures.

    PubMed

    Kondalaji, Samaneh Ghassabi; Khakinejad, Mahdiar; Valentine, Stephen J

    2018-06-01

    Molecular dynamics (MD) simulations have been utilized to study peptide ion conformer establishment during the electrospray process. An explicit water model is used for nanodroplets containing a model peptide and hydronium ions. Simulations are conducted at 300 K for two different peptide ion charge configurations and for droplets containing varying numbers of hydronium ions. For all conditions, modeling has been performed until production of the gas-phase ions and the resultant conformers have been compared to proposed gas-phase structures. The latter species were obtained from previous studies in which in silico candidate structures were filtered according to ion mobility and hydrogen-deuterium exchange (HDX) reactivity matches. Results from the present study present three key findings namely (1) the evidence from ion production modeling supports previous structure refinement studies based on mobility and HDX reactivity matching, (2) the modeling of the electrospray process is significantly improved by utilizing initial droplets existing below but close to the calculated Rayleigh limit, and (3) peptide ions in the nanodroplets sample significantly different conformers than those in the bulk solution due to altered physicochemical properties of the solvent. Graphical Abstract ᅟ.

  4. Treatment of a multiple sclerosis animal model by a novel nanodrop formulation of a natural antioxidant

    PubMed Central

    Binyamin, Orli; Larush, Liraz; Frid, Kati; Keller, Guy; Friedman-Levi, Yael; Ovadia, Haim; Abramsky, Oded; Magdassi, Shlomo; Gabizon, Ruth

    2015-01-01

    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system and is associated with demyelination, neurodegeneration, and sensitivity to oxidative stress. In this work, we administered a nanodroplet formulation of pomegranate seed oil (PSO), denominated Nano-PSO, to mice induced for experimental autoimmune encephalomyelitis (EAE), an established model of MS. PSO comprises high levels of punicic acid, a unique polyunsaturated fatty acid considered as one of the strongest natural antioxidants. We show here that while EAE-induced mice treated with natural PSO presented some reduction in disease burden, this beneficial effect increased significantly when EAE mice were treated with Nano-PSO of specific size nanodroplets at much lower concentrations of the oil. Pathological examinations revealed that Nano-PSO administration dramatically reduced demyelination and oxidation of lipids in the brains of the affected animals, which are hallmarks of this severe neurological disease. We propose that novel formulations of natural antioxidants such as Nano-PSO may be considered for the treatment of patients suffering from demyelinating diseases. On the mechanistic side, our results demonstrate that lipid oxidation may be a seminal feature in both demyelination and neurodegeneration. PMID:26648720

  5. Synthesis and characterization of beta-Ga2O3 nanorod array clumps by chemical vapor deposition.

    PubMed

    Shi, Feng; Wei, Xiaofeng

    2012-11-01

    beta-Ga2O3 nanorod array clumps were successfully synthesized on Si (111) substrates by chemical vapor deposition. The composition, microstructure, morphology, and light-emitting property of these clumps were characterized by X-ray diffraction, Fourier transform infrared spectrophotometry, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, and photoluminescence. The results demonstrate that the sample synthesized at 1050 degrees C for 15 min was composed of monoclinic beta-Ga2O3 nanorod array clumps, where each single nanorod was about 300 nm in diameter with some nano-droplets on its tip. These results reveal that the growth mechanism agrees with the vapor-liquid-solid (VLS) process. The photoluminescence spectrum shows that the Ga2O3 nanorods have a blue emission at 438 nm, which may be attributed to defects, such as oxygen vacancies and gallium-oxygen vacancy pairs. Defect-energy aggregation confinement growth theory was proposed to explain the growth mechanism of Ga2O3 nanorod array clumps collaborated with the VLS mechanism.

  6. NASA Tech Briefs, September 2011

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Topics covered include: Fused Reality for Enhanced Flight Test Capabilities; Thermography to Inspect Insulation of Large Cryogenic Tanks; Crush Test Abuse Stand; Test Generator for MATLAB Simulations; Dynamic Monitoring of Cleanroom Fallout Using an Air Particle Counter; Enhancement to Non-Contacting Stress Measurement of Blade Vibration Frequency; Positively Verifying Mating of Previously Unverifiable Flight Connectors; Radiation-Tolerant Intelligent Memory Stack - RTIMS; Ultra-Low-Dropout Linear Regulator; Excitation of a Parallel Plate Waveguide by an Array of Rectangular Waveguides; FPGA for Power Control of MSL Avionics; UAVSAR Active Electronically Scanned Array; Lockout/Tagout (LOTO) Simulator; Silicon Carbide Mounts for Fabry-Perot Interferometers; Measuring the In-Process Figure, Final Prescription, and System Alignment of Large; Optics and Segmented Mirrors Using Lidar Metrology; Fiber-Reinforced Reactive Nano-Epoxy Composites; Polymerization Initiated at the Sidewalls of Carbon Nanotubes; Metal-Matrix/Hollow-Ceramic-Sphere Composites; Piezoelectrically Enhanced Photocathodes; Iridium-Doped Ruthenium Oxide Catalyst for Oxygen Evolution; Improved Mo-Re VPS Alloys for High-Temperature Uses; Data Service Provider Cost Estimation Tool; Hybrid Power Management-Based Vehicle Architecture; Force Limit System; Levitated Duct Fan (LDF) Aircraft Auxiliary Generator; Compact, Two-Sided Structural Cold Plate Configuration; AN Fitting Reconditioning Tool; Active Response Gravity Offload System; Method and Apparatus for Forming Nanodroplets; Rapid Detection of the Varicella Zoster Virus in Saliva; Improved Devices for Collecting Sweat for Chemical Analysis; Phase-Controlled Magnetic Mirror for Wavefront Correction; and Frame-Transfer Gating Raman Spectroscopy for Time-Resolved Multiscalar Combustion Diagnostics.

  7. Misconceptions in the Exploding Flask Demonstration Resolved through Students' Critical Thinking

    ERIC Educational Resources Information Center

    Spierenburg, Rick; Jacobse, Leon; de Bruin, Iris; van den Bos, Daan J.; Vis, Dominique M.; Juurlink, Ludo B. F.

    2017-01-01

    As it connects to a large set of important fundamental ideas in chemistry and analytical techniques discussed in high school chemistry curricula, we review the exploding flask demonstration. In this demonstration, methanol vapor is catalytically oxidized by a Pt wire catalyst in an open container. The exothermicity of reactions occurring at the…

  8. Clinical features of the exploding head syndrome.

    PubMed Central

    Pearce, J M

    1989-01-01

    Fifty patients suffering from the "exploding head syndrome" are described. This hitherto unreported syndrome is characterised by a sense of an explosive noise in the head usually in the twilight stage of sleep. The associated symptoms are varied, but the benign nature of the condition is emphasised and neither extensive investigation nor treatment are indicated. PMID:2769286

  9. Deflagration-to-detonation characteristics of a laser exploding bridge detonator

    NASA Astrophysics Data System (ADS)

    Welle, E. J.; Fleming, K. J.; Marley, S. K.

    2006-08-01

    Evaluation of laser initiated explosive trains has been an area of extreme interest due to the safety benefits of these systems relative to traditional electro-explosive devices. A particularly important difference is these devices are inherently less electro-static discharge (ESD) sensitive relative to traditional explosive devices due to the isolation of electrical power and associated materials from the explosive interface. This paper will report work conducted at Sandia National Laboratories' Explosive Components Facility, which evaluated the initiation and deflagration-to-detonation characteristics of a Laser Driven Exploding Bridgewire detonator. This paper will report and discuss characteristics of Laser Exploding Bridgewire devices loaded with hexanitrohexaazaisowurtzitane (CL-20) and tetraammine-cis-bis-(5-nitro-2H-tetrazolato-N2) cobalt (III) perchlorate (BNCP).

  10. Evidence for Sub-Chandrasekhar Mass Type Ia Supernovae from an Extensive Survey of Radiative Transfer Models

    NASA Astrophysics Data System (ADS)

    Goldstein, Daniel A.; Kasen, Daniel

    2018-01-01

    There are two classes of viable progenitors for normal Type Ia supernovae (SNe Ia): systems in which a white dwarf explodes at the Chandrasekhar mass ({M}{ch}), and systems in which a white dwarf explodes below the Chandrasekhar mass (sub-{M}{ch}). It is not clear which of these channels is dominant; observations and light-curve modeling have provided evidence for both. Here we use an extensive grid of 4500 time-dependent, multiwavelength radiation transport simulations to show that the sub-{M}{ch} model can reproduce the entirety of the width–luminosity relation, while the {M}{ch} model can only produce the brighter events (0.8< {{Δ }}{M}15(B)< 1.55), implying that fast-declining SNe Ia come from sub-{M}{ch} explosions. We do not assume a particular theoretical paradigm for the progenitor or explosion mechanism, but instead construct parameterized models that vary the mass, kinetic energy, and compositional structure of the ejecta, thereby realizing a broad range of possible outcomes of white dwarf explosions. We provide fitting functions based on our large grid of detailed simulations that map observable properties of SNe Ia, such as peak brightness and light-curve width, to physical parameters such as {}56{Ni} and total ejected mass. These can be used to estimate the physical properties of observed SNe Ia.

  11. Revival of the fittest: exploding core-collapse supernovae from 12 to 25 M⊙

    NASA Astrophysics Data System (ADS)

    Vartanyan, David; Burrows, Adam; Radice, David; Skinner, M. Aaron; Dolence, Joshua

    2018-07-01

    We present results of 2D axisymmetric core-collapse supernova simulations, employing the FORNAX code, of nine progenitor models spanning 12 to 25 M⊙. Four of the models explode with inelastic scattering off electrons and neutrons as well as the many-body correction to neutrino-nucleon scattering opacities. We show that these four models feature sharp Si-O interfaces in their density profiles, and that the corresponding dip in density reduces the accretion rate around the stalled shock and prompts explosion. The non-exploding models lack such a steep feature, highlighting the Si-O interface as one key to explosion. Furthermore, we show that all of the non-exploding models can be nudged to explosion with modest changes to macrophysical inputs, including moderate rotation and perturbations to infall velocities, as well as to microphysical inputs, including reasonable changes to neutrino-nucleon interaction rates, suggesting that all the models are perhaps close to criticality. Exploding models have energies of a few × 1050 erg at the end of our simulation, and are rising, emphasizing the need to continue these simulations over larger grids and for longer times to reproduce the energies seen in nature. Morphology of the explosion contributes to the explosion energy, with more isotropic ejecta producing larger explosion energies. We do not find evidence for the Lepton-number Emission Self-sustained Asymmetry. Finally, we look at proto-neutron star (PNS) properties and explore the role of dimension in our simulations. We find that convection in the PNS produces larger PNS radii as well as greater `νμ' luminosities in 2D compared to 1D.

  12. Revival of the Fittest: Exploding Core-Collapse Supernovae from 12 to 25 M⊙

    NASA Astrophysics Data System (ADS)

    Vartanyan, David; Burrows, Adam; Radice, David; Skinner, M. Aaron; Dolence, Joshua

    2018-03-01

    We present results of 2D axisymmetric core-collapse supernova simulations, employing the FORNAX code, of nine progenitor models spanning 12 to 25 M⊙. Four of the models explode with inelastic scattering off electrons and neutrons as well as the many-body correction to neutrino-nucleon scattering opacities. We show that these four models feature sharp Si-O interfaces in their density profiles, and that the corresponding dip in density reduces the accretion rate around the stalled shock and prompts explosion. The non-exploding models lack such a steep feature, highlighting the Si-O interface as one key to explosion. Furthermore, we show that all of the non-exploding models can be nudged to explosion with modest changes to macrophysical inputs, including moderate rotation and perturbations to infall velocities, as well as to microphysical inputs, including reasonable changes to neutrino-nucleon interaction rates, suggesting that all the models are perhaps close to criticality. Exploding models have energies of few × 1050 ergs at the end of our simulation, and are rising, emphasizing the need to continue these simulations over larger grids and for longer times to reproduce the energies seen in Nature. Morphology of the explosion contributes to the explosion energy, with more isotropic ejecta producing larger explosion energies. We do not find evidence for the Lepton-number Emission Self-Sustained Asymmetry. Finally, we look at PNS properties and explore the role of dimension in our simulations. We find that convection in the proto-neutron star (PNS) produces larger PNS radii as well as greater "νμ" luminosities in 2D compared to 1D.

  13. Method for detection of nuclear-plasma interactions in a 134Xe-doped exploding pusher at the National Ignition Facility

    DOE PAGES

    Bleuel, Daniel L.; Bernstein, Lee A.; Brand, Christopher A.; ...

    2016-06-10

    Angular momentum changes due to nuclear-plasma interactions on highly-excited nuclei in high energy density plasmas created at the National Ignition Facility can be measured through a change in isomer feeding following gamma emission. Here, we propose an experiment to detect these effects in 133Xe* in exploding pusher capsules.

  14. EBW's and EFI's: The other electric detonators

    NASA Technical Reports Server (NTRS)

    Varosh, Ron

    1994-01-01

    Exploding Bridgewire Detonators (EBW) and Exploding Foil Initiators (EFI) which were originally developed for military applications, have found numerous uses in the non-military commercial market while still retaining their military uses. While not as common as the more familiar hot wire initiators, EBW's and EFI's have definite advantages in certain applications. These advantages, and disadvantages, are discussed for typical designs.

  15. Method for detection of nuclear-plasma interactions in a 134Xe-doped exploding pusher at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bleuel, Daniel L.; Bernstein, Lee A.; Brand, Christopher A.

    Angular momentum changes due to nuclear-plasma interactions on highly-excited nuclei in high energy density plasmas created at the National Ignition Facility can be measured through a change in isomer feeding following gamma emission. Here, we propose an experiment to detect these effects in 133Xe* in exploding pusher capsules.

  16. The exploding head syndrome.

    PubMed

    Green, M W

    2001-06-01

    This article reviews the features of an uncommon malady termed "the exploding head syndrome." Sufferers describe terrorizing attacks of a painless explosion within their head. Attacks tend to occur at the onset of sleep. The etiology of attacks is unknown, although they are considered to be benign. Treatment with clomipramine has been suggested, although most sufferers require only reassurance that the spells are benign in nature.

  17. EIA: A splintering, exploding discipline with a massive new constituency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Eric P., E-mail: ejohnson@ecosite.co.uk

    2015-02-15

    After serving 18 years as Editor-in-Chief of Environmental Impact Assessment Review, the author observes that the period 1997–2014, the discipline of EIA: splintered, exploded and saw the rise of the developing-world authors. Publishing has also changed, with shifts from quantity to quality, the rise of open access, and an ever-increasing shortage of reviewers.

  18. Shock initiated reactions of reactive multi-phase blast explosives

    NASA Astrophysics Data System (ADS)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2017-01-01

    This paper describes a new class of non-ideal explosive compositions made of perfluoropolyether (PFPE), nanoaluminum, and a micron-size, high mass density, reactive metal. Unlike high explosives, these compositions release energy via a fast self-oxidized combustion wave rather than a true self-sustaining detonation. Their reaction rates are shock dependent and they can be overdriven to change their energy release rate. These compositions are fuel rich and have an extended aerobic energy release phase. The term "reactive multiphase blast" refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts energy and momentum [1]; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. Tantalum-based RMBX formulations were tested in two spherical core-shell configurations - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.

  19. Development of Targeted Nanobubbles for Ultrasound Imaging and Ablation of Metastatic Prostate Cancer Lesions

    DTIC Science & Technology

    2013-08-01

    AD_________________ Award Number: W81XWH-12-1-0284 TITLE: Development of Targeted Nanobubbles for...REPORT TYPE Annual 3. DATES COVERED 15 July 2012 - 14 July 2013 4. TITLE AND SUBTITLE Development of Targeted Nanobubbles for Ultrasound...be able to formulate nanodroplets contrast agents with tunable size, PFP content, and shell flexibility to obtain stable and echogenic nanobubbles

  20. Concurrent anti-vascular therapy and chemotherapy in solid tumors using drug-loaded acoustic nanodroplet vaporization.

    PubMed

    Ho, Yi-Ju; Yeh, Chih-Kuang

    2017-02-01

    Drug-loaded nanodroplets (NDs) can be converted into gas bubbles through ultrasound (US) stimulation, termed acoustic droplet vaporization (ADV), which provides a potential strategy to simultaneously induce vascular disruption and release drugs for combined physical anti-vascular therapy and chemotherapy. Doxorubicin-loaded NDs (DOX-NDs) with a mean size of 214nm containing 2.48mg DOX/mL were used in this study. High-speed images displayed bubble formation and cell debris, demonstrating the reduction in cell viability after ADV. Intravital imaging provided direct visualization of disrupted tumor vessels (vessel size <30μm), the extravasation distance was 12μm in the DOX-NDs group and increased over 100μm in the DOX-NDs+US group. Solid tumor perfusion on US imaging was significantly reduced to 23% after DOX-NDs vaporization, but gradually recovered to 41%, especially at the tumor periphery after 24h. Histological images of the DOX-NDs+US group revealed tissue necrosis, a large amount of drug extravasation, vascular disruption, and immune cell infiltration at the tumor center. Tumor sizes decreased 22%, 36%, and 68% for NDs+US, DOX-NDs, and DOX-NDs+US, respectively, to prolong the survival of tumor-bearing mice. Therefore, this study demonstrates that the combination of physical anti-vascular therapy and chemotherapy with DOX-NDs vaporization promotes uniform treatment to improve therapeutic efficacy. Tumor vasculature plays an important role for tumor cell proliferation by transporting oxygen and nutrients. Previous studies combined anti-vascular therapy and drug release to inhibit tumor growth by ultrasound-stimulated microbubble destruction or acoustic droplet vaporization. Although the efficacy of combined therapy has been demonstrated; the relative spatial distribution of vascular disruption, drug delivery, and accompanied immune responses within solid tumors was not discussed clearly. Herein, our study used drug-loaded nanodroplets to combined physical anti-vascular and chemical therapy. The in vitro cytotoxicity, intravital imaging, and histological assessment were used to evaluate the temporal and spatial cooperation between physical and chemical effect. These results revealed some evidences for complementary action to explain the high efficacy of tumor inhibition by combined therapy. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Plasma Properties of an Exploding Semiconductor Igniter

    NASA Astrophysics Data System (ADS)

    McGuirk, J. S.; Thomas, K. A.; Shaffer, E.; Malone, A. L.; Baginski, T.; Baginski, M. E.

    1997-11-01

    Requirements by the automotive industry for low-cost, pyrotechnic igniters for automotive airbags have led to the development of several semiconductor devices. The properties of the plasma produced by the vaporization of an exploding semiconductor are necessary in order to minimize the electrical energy requirements. This work considers two silicon-based semiconductor devices: the semiconductor bridge (SCB) and the semiconductor junction igniter both consisting of etched silicon with vapor deposited aluminum structures. Electrical current passing through the device heats a narrow junction region to the point of vaporization creating an aluminum and silicon low-temperature plasma. This work will investigate the electrical characteristics of both devices and infer the plasma properties. Furthermore optical spectral measurements will be taken of the exploding devices to estimate the temperature and density of the plasma.

  2. Sparse and Large-Scale Learning Models and Algorithms for Mining Heterogeneous Big Data

    ERIC Educational Resources Information Center

    Cai, Xiao

    2013-01-01

    With the development of PC, internet as well as mobile devices, we are facing a data exploding era. On one hand, more and more features can be collected to describe the data, making the size of the data descriptor larger and larger. On the other hand, the number of data itself explodes and can be collected from multiple resources. When the data…

  3. Ocular injuries from exploding glass-bottled Coca-Cola® drinks in Port Harcourt, Nigeria

    PubMed Central

    Pedro-Egbe, Chinyere Nnenne; Ejimadu, Chibuike Sydney; Nwachukwu, Henrietta

    2011-01-01

    Background: Eye injuries and subsequent loss of vision from the glass and caps of exploding pressurized bottled drinks have been well reported, and as a result most developed countries now use mainly plastic bottles. In Nigeria, however, most drinks are still sold in glass bottles and ocular injuries from this source are therefore not uncommon. Aim: To retrospectively analyze ocular injuries resulting from exploding glass-bottled Coca-Cola® and propose ways of eliminating such injuries in future. Setting: Eye Clinic, University of Port Harcourt Teaching Hospital, Port Harcourt, Nigeria. Materials and methods: The medical records of all cases of ocular injury that presented at the Eye Clinic of the University of Port Harcourt Teaching Hospital over a 5-year period (January 2006 to December 2010) were retrieved and relevant data including age, sex, occupation, events surrounding bottle explosion, and type of ocular injury sustained were extracted. Results: A total of 426 cases of ocular injuries was seen during the period under review. There were 335 (78.6%) males and 91 (21.4%) females. Six patients had ocular injury from exploding glass-bottled Coca-Cola®, giving an incidence of 1.4%. The presenting visual acuities (VA) were light perception (2 cases), counting fingers (2 cases), and 1 VA of 6/24 and 1 VA of 6/12. There were 4 (66.7%) cases of corneoscleral laceration with uveal prolapse and 1 case of total hyphema. Conclusion: Because pressurized glass-bottles can explode with normal handling, legislation to ban the use of glass containers for bottling carbonated drinks will go a long way to reducing ocular morbidity from this source. Plastic bottles should be introduced as an alternative. PMID:21629570

  4. Revival of the fittest: exploding core-collapse supernovae from 12 to 25 M⊙

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vartanyan, David; Burrows, Adam; Radice, David

    Here, we present results of 2D axisymmetric core-collapse supernova simulations, employing the FORNAX code, of nine progenitor models spanning 12 to 25 M⊙. Four of the models explode with inelastic scattering off electrons and neutrons as well as the many-body correction to neutrino-nucleon scattering opacities. We show that these four models feature sharp Si–O interfaces in their density profiles, and that the corresponding dip in density reduces the accretion rate around the stalled shock and prompts explosion. The non-exploding models lack such a steep feature, highlighting the Si–O interface as one key to explosion. Furthermore, we show that all ofmore » the non-exploding models can be nudged to explosion with modest changes to macrophysical inputs, including moderate rotation and perturbations to infall velocities, as well as to microphysical inputs, including reasonable changes to neutrino-nucleon interaction rates, suggesting that all the models are perhaps close to criticality. Exploding models have energies of a few × 10 50 erg at the end of our simulation, and are rising, emphasizing the need to continue these simulations over larger grids and for longer times to reproduce the energies seen in nature. Morphology of the explosion contributes to the explosion energy, with more isotropic ejecta producing larger explosion energies. We do not find evidence for the Lepton-number Emission Self-sustained Asymmetry. Finally, we look at proto-neutron star (PNS) properties and explore the role of dimension in our simulations. We find that convection in the PNS produces larger PNS radii as well as greater ‘ν μ’ luminosities in 2D compared to 1D.« less

  5. Revival of the fittest: exploding core-collapse supernovae from 12 to 25 M⊙

    DOE PAGES

    Vartanyan, David; Burrows, Adam; Radice, David; ...

    2018-03-28

    Here, we present results of 2D axisymmetric core-collapse supernova simulations, employing the FORNAX code, of nine progenitor models spanning 12 to 25 M⊙. Four of the models explode with inelastic scattering off electrons and neutrons as well as the many-body correction to neutrino-nucleon scattering opacities. We show that these four models feature sharp Si–O interfaces in their density profiles, and that the corresponding dip in density reduces the accretion rate around the stalled shock and prompts explosion. The non-exploding models lack such a steep feature, highlighting the Si–O interface as one key to explosion. Furthermore, we show that all ofmore » the non-exploding models can be nudged to explosion with modest changes to macrophysical inputs, including moderate rotation and perturbations to infall velocities, as well as to microphysical inputs, including reasonable changes to neutrino-nucleon interaction rates, suggesting that all the models are perhaps close to criticality. Exploding models have energies of a few × 10 50 erg at the end of our simulation, and are rising, emphasizing the need to continue these simulations over larger grids and for longer times to reproduce the energies seen in nature. Morphology of the explosion contributes to the explosion energy, with more isotropic ejecta producing larger explosion energies. We do not find evidence for the Lepton-number Emission Self-sustained Asymmetry. Finally, we look at proto-neutron star (PNS) properties and explore the role of dimension in our simulations. We find that convection in the PNS produces larger PNS radii as well as greater ‘ν μ’ luminosities in 2D compared to 1D.« less

  6. Ocular injuries from exploding glass-bottled Coca-Cola® drinks in Port Harcourt, Nigeria.

    PubMed

    Pedro-Egbe, Chinyere Nnenne; Ejimadu, Chibuike Sydney; Nwachukwu, Henrietta

    2011-01-01

    Eye injuries and subsequent loss of vision from the glass and caps of exploding pressurized bottled drinks have been well reported, and as a result most developed countries now use mainly plastic bottles. In Nigeria, however, most drinks are still sold in glass bottles and ocular injuries from this source are therefore not uncommon. To retrospectively analyze ocular injuries resulting from exploding glass-bottled Coca-Cola® and propose ways of eliminating such injuries in future. Eye Clinic, University of Port Harcourt Teaching Hospital, Port Harcourt, Nigeria. The medical records of all cases of ocular injury that presented at the Eye Clinic of the University of Port Harcourt Teaching Hospital over a 5-year period (January 2006 to December 2010) were retrieved and relevant data including age, sex, occupation, events surrounding bottle explosion, and type of ocular injury sustained were extracted. A total of 426 cases of ocular injuries was seen during the period under review. There were 335 (78.6%) males and 91 (21.4%) females. Six patients had ocular injury from exploding glass-bottled Coca-Cola®, giving an incidence of 1.4%. The presenting visual acuities (VA) were light perception (2 cases), counting fingers (2 cases), and 1 VA of 6/24 and 1 VA of 6/12. There were 4 (66.7%) cases of corneoscleral laceration with uveal prolapse and 1 case of total hyphema. Because pressurized glass-bottles can explode with normal handling, legislation to ban the use of glass containers for bottling carbonated drinks will go a long way to reducing ocular morbidity from this source. Plastic bottles should be introduced as an alternative.

  7. Electron-induced chemistry in imidazole clusters embedded in helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Kuhn, Martin; Raggl, Stefan; Martini, Paul; Gitzl, Norbert; Darian, Masoomeh Mahmoodi; Goulart, Marcelo; Postler, Johannes; Feketeová, Linda; Scheier, Paul

    2018-02-01

    Electron-induced chemistry in imidazole (IMI) clusters embedded in helium nanodroplets (with an average size of 2 × 105 He atoms) has been investigated with high-resolution time-of-flight mass spectrometry. The formation of both, negative and positive, ions was monitored as a function of the cluster size n. In both ion spectra a clear series of peaks with IMI cluster sizes up to at least 25 are observed. While the anions are formed by collisions of IMI n with He*-, the cations are formed through ionization of IMI n by He+ as the measured onset for the cation formation is observed at 24.6 eV (ionization energy of He). The most abundant series of anions are dehydrogenated anions IMI n-1(IMI-H)-, while other anion series are IMI clusters involving CN and C2H4 moieties. The formation of cations is dominated by the protonated cluster ions IMI n H+, while the intensity of parent cluster cations IMI n + is also observed preferentially for the small cluster size n. The observation of series of cluster cations [IMI n CH3]+ suggests either CH3+ cation to be solvated by n neutral IMI molecules, or the electron-induced chemistry has led to the formation of protonated methyl-imidazole solvated by ( n - 1) neutral IMI molecules.

  8. WITHDRAWN: Fragmentation of charged aqueous nanodroplets

    NASA Astrophysics Data System (ADS)

    Ichiki, Kengo

    2005-11-01

    The whole evaporating process of charged aqueous nanodroplets is studied by systematic molecular dynamics simulations until most of the solvent molecules are evaporated. % The solvent evaporation makes the droplet smaller and smaller, and at a certain point the repulsive force among ions causes an instability, where typically single ion and 10 to 20 water molecules are disintegrated from the main droplet. % This ion fragmentation occurs around 70 to 80% of the charge predicted by the Rayleigh theory [Lord Rayleigh, Phil. Mag. 14, 184 (1882)]. % The numerical results are summarized in the function R(z) which is the fragmentation radius at the charge z. From the fitting by the power law Rz^β, we find that at lower temperature T=350 and 370 K the result is close to the Rayleigh theory β= 2/3, while at higher temperature T=400 and 450 K it is like β= 1/2. % Another fitting on R(z) by the extended ion evaporation mechanism [M. Gamero-Castaño and J. Fern'andez de la Mora, Anal. Chim. Acta 406, 67 (2000)] works well for both cases. % The final state of the evaporation process is typically a single ion with several water molecules. If we put an alanine dipeptide in zwitterionic form at the beginning, two charges remain in some cases.

  9. New approach for local cancer treatment using pulsed high-intensity focused ultrasound and phase-change nanodroplets.

    PubMed

    Ashida, Reiko; Kawabata, Ken-Ichi; Maruoka, Takashi; Asami, Rei; Yoshikawa, Hideki; Takakura, Rena; Ioka, Tatsuya; Katayama, Kazuhiro; Tanaka, Sachiko

    2015-10-01

    The aim of this study was to investigate the combination effects of pulsed HIFU (pHIFU) and phase-change nanodroplets (PCND) as a sensitizer on efficient induction of mechanical effects of pHIFU and chemically enhanced tumor growth inhibition for local anti-tumor therapy. Changes in growth of colon 26 tumor tissue inoculated onto CDF1 mice were evaluated by the following treatments. (1) pHIFU exposure (1.1 MHz, 3.2 kW/cm(2), 300 cycles, and 50 ms interval) for 60 s, (2) PCND (1 %) injection, (3) adriamycin (4 mg/kg) injection, (4) pHIFU exposure after PCND injection, and (5) pHIFU exposure after PCND + adriamycin injection simultaneously. Significant changes in tumor growth were observed in the group with combination of pHIFU and PCND, although single therapy did not show any significant difference. PCND enhanced mechanical tissue fractionation by pHIFU, which was detectable by Real-time tissue elastography. Moreover, the combination of pHIFU and PCND + Adriamycin suppressed the tumor growth for 2 weeks, and 3 of 4 mice did not show any sign of regrowth during the 30-day observation. The combination of pHIFU and PCND exerted a significant anti-tumor effect and may be a new candidate for treatment of locally advanced cancer.

  10. Dimer formation of perylene: An ultracold spectroscopic and computational study

    NASA Astrophysics Data System (ADS)

    Birer, Ö.; Yurtsever, E.

    2015-10-01

    The electronic spectra of perylene inside helium nanodroplets recorded by the depletion method are presented. The results show two broad peaks in addition to sharp monomer vibronic transitions due to dimer formation. In order to understand the details of the spectra, first the dimer formation is studied by DFT and SCS-MP2 calculations and then the electronic spectra are calculated at the minima of the potential energy surface (PES). Theoretical calculations show that there are two low-lying energetically degenerate dimer structures; namely a parallel displaced one and a rotated stacked one. PES around these minima is very flat with a number of local minima at higher energies which at the experimental temperatures cannot be populated. Even though thermodynamically these two structures are equally populated, dynamical considerations point out that in helium droplet the parallel displaced geometry is encouraged by the natural alignment of the molecules due to the acquired angular momentum following the pick-up process. The calculated spectrum of the parallel displaced geometry predicts the positions of the dimer transitions within 30 nm of the experimental spectrum. Furthermore, the difference between the two dimer transitions is accurately predicted to be about 25 nm while the experimental difference was about 20 nm. Such a small difference could only be detected due to the ultracold conditions helium nanodroplets provided.

  11. Electron-Induced Chemistry of Cobalt Tricarbonyl Nitrosyl (Co(CO)3NO) in Liquid Helium Nanodroplets

    PubMed Central

    2015-01-01

    Electron addition to cobalt tricarbonyl nitrosyl (Co(CO3NO) and its clusters has been explored in helium nanodroplets. Anions were formed by adding electrons with controlled energies, and reaction products were identified by mass spectrometry. Dissociative electron attachment (DEA) to the Co(CO)3NO monomer gave reaction products similar to those reported in earlier gas phase experiments. However, loss of NO was more prevalent than loss of CO, in marked contrast to the gas phase. Since the Co–N bond is significantly stronger than the Co–C bond, this preference for NO loss must be driven by selective reaction dynamics at low temperature. For [Co(CO)3NO]N clusters, the DEA chemistry is similar to that of the monomer, but the anion yields as a function of electron energy show large differences, with the relatively sharp resonances of the monomer being replaced by broad profiles peaking at much higher electron energies. A third experiment involved DEA of Co(CO)3NO on a C60 molecule in an attempt to simulate the effect of a surface. Once again, broad ion yield curves are seen, but CO loss now becomes the most probable reaction channel. The implication of these findings for understanding focused electron beam induced deposition of cobalt is described. PMID:26401190

  12. Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge

    NASA Astrophysics Data System (ADS)

    Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng

    2018-04-01

    Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm2, the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.

  13. Growth of metal oxide nanowires from supercooled liquid nanodroplets.

    PubMed

    Kim, Myung Hwa; Lee, Byeongdu; Lee, Sungsik; Larson, Christopher; Baik, Jeong Min; Yavuz, Cafer T; Seifert, Sönke; Vajda, Stefan; Winans, Randall E; Moskovits, Martin; Stucky, Galen D; Wodtke, Alec M

    2009-12-01

    Nanometer-sized liquid droplets formed at temperatures below the bulk melting point become supercooled as they grow through Ostwald ripening or coalescence and can be exploited to grow nanowires without any catalyst. We used this simple approach to synthesize a number of highly crystalline metal oxide nanowires in a chemical or physical vapor deposition apparatus. Examples of nanowires made in this way include VO(2), V(2)O(5), RuO(2), MoO(2), MoO(3), and Fe(3)O(4), some of which have not been previously reported. Direct evidence of this new mechanism of nanowire growth is found from in situ 2-dimensional GISAXS (grazing incidence small angle X-ray scattering) measurements of VO(2) nanowire growth, which provides quantitative information on the shapes and sizes of growing nanowires as well as direct evidence of the presence of supercooled liquid droplets. We observe dramatic changes in nanowire growth by varying the choice of substrate, reflecting the influence of wetting forces on the supercooled nanodroplet shape and mobility as well as substrate-nanowire lattice matching on the definition of nanowire orientation. Surfaces with defects can also be used to pattern the growth of the nanowires. The simplicity of this synthesis concept suggests it may be rather general in its application.

  14. Lithium atoms on helium nanodroplets: Rydberg series and ionization dynamics

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Krois, Günter; Ernst, Wolfgang E.

    2017-11-01

    The electronic excitation spectrum of lithium atoms residing on the surface of helium nanodroplets is presented and analyzed employing a Rydberg-Ritz approach. Utilizing resonant two-photon ionization spectroscopy, two different Rydberg series have been identified: one assigned to the nS(Σ) series and the other with predominantly nP(Π) character. For high Rydberg states, which have been resolved up to n = 13, the surrounding helium effectively screens the valence electron from the Li ion core, as indicated by the apparent red-shift of Li transitions and lowered quantum defects on the droplet with respect to their free atom counterparts. For low n states, the screening effect is weakened and the prevailing repulsive interaction gives rise to strongly broadened and blue-shifted transitions. The red-shifts originate from the polarization of nearby He atoms by the positive Li ion core. As a consequence of this effect, the ionization threshold is lowered by 116 ± 10 cm-1 for Li on helium droplets with a radius of about 40 Å. Upon single-photon ionization, heavy complexes corresponding to Li ions attached to intact helium droplets are detected. We conclude that ionization close to the on-droplet ionization threshold triggers a dynamic process in which the Li ion core undergoes a transition from a surface site into the droplet.

  15. Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge.

    PubMed

    Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng

    2018-04-19

    Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm 2 , the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.

  16. Competency Development Detonator Development and Design

    DTIC Science & Technology

    2007-09-01

    required. Exploding foil initiators ( EFI or Slapper) - The benefits of using an EFI is that the metal bridge is separated from the explosive, the explosive...to the materials ignition temperature to begin a burning reaction that propagates to the next material in the initiator . Exploding bridgewire (EBW...principles "* Initiation capabilities of the MEMS scale detonator DETONATOR BACKGROUND In a typical detonator, an explosive train is used. The explosive train

  17. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star.

    PubMed

    Nugent, Peter E; Sullivan, Mark; Cenko, S Bradley; Thomas, Rollin C; Kasen, Daniel; Howell, D Andrew; Bersier, David; Bloom, Joshua S; Kulkarni, S R; Kandrashoff, Michael T; Filippenko, Alexei V; Silverman, Jeffrey M; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard T; Maguire, Kate; Suzuki, Nao; Tarlton, James E; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J; Parrent, Jerod T; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B; Dilday, Benjamin; Graham, Melissa L; Lyman, Joe; James, Phil; Kasliwal, Mansi M; Law, Nicholas M; Quimby, Robert M; Hook, Isobel M; Walker, Emma S; Mazzali, Paolo; Pian, Elena; Ofek, Eran O; Gal-Yam, Avishay; Poznanski, Dovi

    2011-12-14

    Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

  18. 23. "A CAPTIVE ATLAS MISSILE EXPLODED DURING THE TEST ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. "A CAPTIVE ATLAS MISSILE EXPLODED DURING THE TEST ON TEST STAND 1-A, 27 MARCH 1959, PUTTING THAT TEST STAND OUT-OF-COMMISSION. STAND WAS NOT REPAIRED FOR THE ATLAS PROGRAM BUT TRANSFERRED TO ROCKETDYNE AND MODIFIED FOR THE F-l ENGINE PROGRAM." - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  19. The Fermi Gamma-Ray Space Telescope, Exploding Stars, Neutron Stars, and Black Holes

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    Since August, 2008, the Fermi Gamma-ray Space Telescope has been scanning the sky, producing a full-sky image every three hours. These cosmic gamma-rays come from extreme astrophysical phenomena, many related to exploding stars (supernovae) or what these explosions leave behind: supernova remnants, neutron stars, and black holes. This talk uses sample Fermi results, plus simple demonstrations, to illustrate the exotic properties of these endpoints of stellar evolution.

  20. [The exploding head syndrome].

    PubMed

    Bongers, K M; ter Bruggen, J P; Franke, C L

    1991-04-06

    The case is reported of a 47-year old female suffering from the exploding head syndrome. This syndrome consists of a sudden awakening due to a loud noise shortly after falling asleep, sometimes accompanied by a flash of light. The patient is anxious and experiences palpitations and excessive sweating. Most patients are more than fifty years of age. Further investigations do not reveal any abnormality. The pathogenesis is unknown, and no therapy other than reassurance is necessary.

  1. Exploding head syndrome followed by sleep paralysis: a rare migraine aura.

    PubMed

    Evans, Randolph W

    2006-04-01

    A 26-year-old patient is described with a unique migraine aura. She described an 8-year history of episodes occurring 1 to 2 times yearly of exploding head syndrome followed by sleep paralysis followed by a migraine headache. She also had identical headaches without aura about once per week. Both aura symptoms, which may occur in the brainstem, resulted in activation of the trigeminovascular system through an unknown mechanism.

  2. Effect of thickness of insulation coating on temperature of electrically exploded tungsten wires in vacuum

    NASA Astrophysics Data System (ADS)

    Shi, Huantong; Zou, Xiaobing; Wang, Xinxin

    2017-07-01

    This paper reports an interesting observation of great differences in the temperature of exploded wires with insulation coating of different thicknesses. Two kinds of polyimide-coated tungsten wires were used with the same conductive diameter 12.5 μm but a different thickness of coating, 0.75-2.25 μm and 2.25-4.25 μm, respectively. The specific energy reconstructed from the current and voltage signals was quite close for the tested wires. However, the exploding scenario, obtained from Mach-Zehnder interferograms, showed great differences: a neutral outer-layer was observed around the thick-coated wire, which was absent for the thin-coated wire; and the calculated electron density and local thermal equilibrium temperature were much higher for thick-coated wires. The heat-preserving neutral layer formed by the decomposition of the insulation was supposed to be the cause of this phenomenon.

  3. High fidelity studies of exploding foil initiator bridges, Part 3: ALEGRA MHD simulations

    NASA Astrophysics Data System (ADS)

    Neal, William; Garasi, Christopher

    2017-01-01

    Simulations of high voltage detonators, such as Exploding Bridgewire (EBW) and Exploding Foil Initiators (EFI), have historically been simple, often empirical, one-dimensional models capable of predicting parameters such as current, voltage, and in the case of EFIs, flyer velocity. Experimental methods have correspondingly generally been limited to the same parameters. With the advent of complex, first principles magnetohydrodynamic codes such as ALEGRA and ALE-MHD, it is now possible to simulate these components in three dimensions, and predict a much greater range of parameters than before. A significant improvement in experimental capability was therefore required to ensure these simulations could be adequately verified. In this third paper of a three part study, the experimental results presented in part 2 are compared against 3-dimensional MHD simulations. This improved experimental capability, along with advanced simulations, offer an opportunity to gain a greater understanding of the processes behind the functioning of EBW and EFI detonators.

  4. High fidelity studies of exploding foil initiator bridges, Part 2: Experimental results

    NASA Astrophysics Data System (ADS)

    Neal, William; Bowden, Mike

    2017-01-01

    Simulations of high voltage detonators, such as Exploding Bridgewire (EBW) and Exploding Foil Initiators (EFI), have historically been simple, often empirical, one-dimensional models capable of predicting parameters such as current, voltage, and in the case of EFIs, flyer velocity. Experimental methods have correspondingly generally been limited to the same parameters. With the advent of complex, first principles magnetohydrodynamic codes such as ALEGRA MHD, it is now possible to simulate these components in three dimensions and predict greater range of parameters than before. A significant improvement in experimental capability was therefore required to ensure these simulations could be adequately verified. In this second paper of a three part study, data is presented from a flexible foil EFI header experiment. This study has shown that there is significant bridge expansion before time of peak voltage and that heating within the bridge material is spatially affected by the microstructure of the metal foil.

  5. Difference analysis of the enzymatic hydrolysis performance of acid-catalyzed steam-exploded corn stover before and after washing with water.

    PubMed

    Zhu, Junjun; Shi, Linli; Zhang, Lingling; Xu, Yong; Yong, Qiang; Ouyang, Jia; Yu, Shiyuan

    2016-10-01

    The difference in the enzymatic hydrolysis yield of acid-catalyzed steam-exploded corn stover (ASC) before and after washing with water reached approximately 15 % under the same conditions. The reasons for the difference in the yield between ASC and washed ASC (wASC) were determined through the analysis of the composition of ASC prehydrolyzate and sugar concentration of enzymatic hydrolyzate. Salts produced by neutralization (CaSO4, Na2SO4, K2SO4, and (NH4)2SO4), sugars (polysaccharides, oligosaccharides, and monosaccharides), sugar-degradation products (weak acids and furans), and lignin-degradation products (ethyl acetate extracts and nine main lignin-degradation products) were back-added to wASC. Results showed that these products, except furans, exerted negative effect on enzymatic hydrolysis. According to the characteristics of acid-catalyzed steam explosion pretreatment, the five sugar-degradation products' mixture and salts [Na2SO4, (NH4)2SO4] showed minimal negative inhibition effect on enzymatic hydrolysis. By contrast, furans demonstrated a promotion effect. Moreover, soluble sugars, such as 13 g/L xylose (decreased by 6.38 %), 5 g/L cellobiose (5.36 %), 10 g/L glucose (3.67 %), as well as lignin-degradation products, and ethyl acetate extracts (4.87 %), exhibited evident inhibition effect on enzymatic hydrolysis. Therefore, removal of soluble sugars and lignin-degradation products could effectively promote the enzymatic hydrolysis performance.

  6. Kepler Supernova Remnant: A View from Spitzer Space Telescope

    NASA Image and Video Library

    2004-10-06

    This Spitzer false-color image is a composite of data from the 24 micron channel of Spitzer's multiband imaging photometer (red), and three channels of its infrared array camera: 8 micron (yellow), 5.6 micron (blue), and 4.8 micron (green). Stars are most prominent in the two shorter wavelengths, causing them to show up as turquoise. The supernova remnant is most prominent at 24 microns, arising from dust that has been heated by the supernova shock wave, and re-radiated in the infrared. The 8 micron data shows infrared emission from regions closely associated with the optically emitting regions. These are the densest regions being encountered by the shock wave, and probably arose from condensations in the surrounding material that was lost by the supernova star before it exploded. The composite above (PIA06908, PIA06909, and PIA06910) represent views of Kepler's supernova remnant taken in X-rays, visible light, and infrared radiation. Each top panel in the composite above shows the entire remnant. Each color in the composite represents a different region of the electromagnetic spectrum, from X-rays to infrared light. The X-ray and infrared data cannot be seen with the human eye. Astronomers have color-coded those data so they can be seen in these images. http://photojournal.jpl.nasa.gov/catalog/PIA06910

  7. Observation of 23 supernovae that exploded <300 pc from Earth during the past 300 kyr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firestone, R. B., E-mail: rbfirestone@lbl.gov

    2014-07-01

    Four supernovae (SNe), exploding ≤300 pc from Earth, were recorded 44, 37, 32, and 22 kyr ago in the radiocarbon ({sup 14}C) record during the past 50 kyr. Each SN left a nearly identical signature in the record, beginning with an initial sudden increase in atmospheric radiocarbon, when the SN exploded, followed by a hiatus of 1500 yr, and concluding with a sustained 2000 yr increase in global radiocarbon due to γ-rays produced by diffusive shock in the SN remnant (SNR). For the past 18 kyr excess radiocarbon has decayed with the {sup 14}C half-life. SN22kyrBP, is identified as themore » Vela SN that exploded 250 ± 30 pc from Earth. These SN are confirmed in the {sup 10}Be, {sup 26}Al, {sup 36}Cl, and NO{sub 3}{sup −} geologic records. The rate of near-Earth SNe is consistent with the observed rate of historical SNe giving a galactic rate of 14 ± 3 kyr{sup –1} assuming the Chandra Galactic Catalog SNR distribution. The Earth has been used as a calorimeter to determine that ≈2 × 10{sup 49} erg were released as γ-rays at the time of each SN explosion and ≈10{sup 50} erg in γ-rays following each SN. The background rate of {sup 14}C production by cosmic rays has been determined as 1.61 atoms cm{sup –2} s{sup –1}. Approximately 1/3 of the cosmic ray energy produced by diffusive shock in the SNR was observed to be emitted as high-energy γ-rays. Analysis of the {sup 10}Be/{sup 9}Be ratio in marine sediment identified 19 additional near-Earth SNe that exploded 50-300 kyr ago. Comparison of the radiocarbon record with global temperature variations indicated that each SN explosion is correlated with a concurrent global warming of ≈3°C-4°C.« less

  8. A Guide to Lexical Acquisition in the JANUS System.

    DTIC Science & Technology

    1986-02-01

    compounds and not verbs with case prepositions: Don’t tread on the banana peel It*- been trodden on already Go ahead, stare at me I like to be stared...agent is italicized. MIDDLE EFFECTIVE The bananas ripened The ,un ripened the bananas The bomb exploded The police exploded the bomb Mary believed the...verb is carried out. Bob rhythmically chopped the celery Christian peeled the tomatoes skillfully Slowly, Nancy melted the butter in the pan 4.2.4.4

  9. Torpedoes and Their Impact on Naval Warfare

    DTIC Science & Technology

    2017-01-01

    wind to get to their destinations. This meant ships were no Overview 11 longer at the mercy of nature since they were no longer dependent on wind and...ships had to slip their cables to avoid the exploding torpedoes. However, although 10 mines exploded, none of them came in contact with a French...ahead” just doesn’t have the same ring to it; this appears to be a case where it is better to be eloquent rather than technically accurate. The

  10. Dynamic Detection of Malicious Code in COTS Software

    DTIC Science & Technology

    2000-04-01

    run the following documented hostile applets or ActiveX of these tools work only on mobile code (Java, ActiveX , controls: 16-11 Hostile Applets Tiny...Killer App Exploder Runner ActiveX Check Spy eSafe Protect Desktop 9/9 blocked NB B NB 13/17 blocked NB Surfinshield Online 9/9 blocked NB B B 13/17...Exploder is an ActiveX control top (@). that performs a clean shutdown of your computer. The interface is attractive, although rather complex, as McLain’s

  11. PHASE-SHIFT, STIMULI-RESPONSIVE PERFLUOROCARBON NANODROPLETS FOR DRUG DELIVERY TO CANCER

    PubMed Central

    2012-01-01

    This review focuses on phase-shift perfluorocarbon nanoemulsions whose action depends on an ultrasound-triggered phase shift from a liquid to gas state. For drug-loaded perfluorocarbon nanoemulsions, microbubbles are formed under the action of tumor-directed ultrasound and drug is released locally into tumor volume in this process. This review covers in detail mechanisms involved in the droplet-to-bubble transition as well as mechanisms of ultrasound-mediated drug delivery. PMID:22730185

  12. Helium induced fine structure in the electronic spectra of anthracene derivatives doped into superfluid helium nanodroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pentlehner, D.; Slenczka, A., E-mail: alkwin.slenczka@chemie.uni-regensburg.de

    2015-01-07

    Electronic spectra of organic molecules doped into superfluid helium nanodroplets show characteristic features induced by the helium environment. Besides a solvent induced shift of the electronic transition frequency, in many cases, a spectral fine structure can be resolved for electronic and vibronic transitions which goes beyond the expected feature of a zero phonon line accompanied by a phonon wing as known from matrix isolation spectroscopy. The spectral shape of the zero phonon line and the helium induced phonon wing depends strongly on the dopant species. Phonon wings, for example, are reported ranging from single or multiple sharp transitions to broadmore » (Δν > 100 cm{sup −1}) diffuse signals. Despite the large number of example spectra in the literature, a quantitative understanding of the helium induced fine structure of the zero phonon line and the phonon wing is missing. Our approach is a systematic investigation of related molecular compounds, which may help to shed light on this key feature of microsolvation in superfluid helium droplets. This paper is part of a comparative study of the helium induced fine structure observed in electronic spectra of anthracene derivatives with particular emphasis on a spectrally sharp multiplet splitting at the electronic origin. In addition to previously discussed species, 9-cyanoanthracene and 9-chloroanthracene will be presented in this study for the first time.« less

  13. Spectroscopy of Cold LiCa Molecules Formed on Helium Nanodroplets

    PubMed Central

    2013-01-01

    We report on the formation of mixed alkali–alkaline earth molecules (LiCa) on helium nanodroplets and present a comprehensive experimental and theoretical study of the ground and excited states of LiCa. Resonance enhanced multiphoton ionization time-of-flight (REMPI-TOF) spectroscopy and laser induced fluorescence (LIF) spectroscopy were used for the experimental investigation of LiCa from 15000 to 25500 cm–1. The 42Σ+ and 32Π states show a vibrational structure accompanied by distinct phonon wings, which allows us to determine molecular parameters as well as to study the interaction of the molecule with the helium droplet. Higher excited states (42Π, 52Σ+, 52Π, and 62Σ+) are not vibrationally resolved and vibronic transitions start to overlap. The experimental spectrum is well reproduced by high-level ab initio calculations. By using a multireference configuration interaction (MRCI) approach, we calculated the 19 lowest lying potential energy curves (PECs) of the LiCa molecule. On the basis of these calculations, we could identify previously unobserved transitions. Our results demonstrate that the helium droplet isolation approach is a powerful method for the characterization of tailor-made alkali–alkaline earth molecules. In this way, important contributions can be made to the search for optimal pathways toward the creation of ultracold alkali–alkaline earth ground state molecules from the corresponding atomic species. Furthermore, a test for PECs calculated by ab initio methods is provided. PMID:24028555

  14. Enhanced cavitation and heating of flowing polymer- and lipid-shelled microbubbles and phase-shift nanodroplets during focused ultrasound exposures

    NASA Astrophysics Data System (ADS)

    Zhang, Siyuan; Cui, Zhiwei; Li, Chong; Zhou, Fanyu; Zong, Yujin; Wang, Supin; Wan, Mingxi

    2017-03-01

    Cavitation and heating are the primary mechanisms of numerous therapeutic applications of ultrasound. Various encapsulated microbubbles (MBs) and phase-shift nanodroplets (NDs) have been used to enhance local cavitation and heating, creating interests in developing ultrasound therapy using these encapsulated MBs and NDs. This work compared the efficiency of flowing polymer- and lipid-shelled MBs and phase-shift NDs in cavitation and heating during focused ultrasound (FUS) exposures. Cavitation activity and temperature were investigated when the solution of polymer- and lipid-shelled MBs and NDs flowed through the vessel in a tissue-mimicking phantom with varying flow velocities when exposed to FUS at various acoustic power levels. The inertial cavitation dose (ICD) for the encapsulated MBs and NDs were higher than those for the saline. Temperature initially increased with increasing flow velocities of the encapsulated MBs, followed by a decrease of the temperature with increasing flow velocities when the velocity was much higher. Meanwhile, ICD showed a trend of increases with increasing flow velocity. For the phase-shift NDs, ICD after the first FUS exposure was lower than those after the second FUS exposure. For the encapsulated MBs, ICD after the first FUS exposure was higher than those after the second FUS exposure. Further studies are necessary to investigate the treatment efficiency of different encapsulated MBs and phase-shift NDs in cavitation and heating.

  15. Spatially resolved proteome mapping of laser capture microdissected tissue with automated sample transfer to nanodroplets.

    PubMed

    Zhu, Ying; Dou, Maowei; Piehowski, Paul D; Liang, Yiran; Wang, Fangjun; Chu, Rosalie K; Chrisler, Will; Smith, Jordan N; Schwarz, Kaitlynn C; Shen, Yufeng; Shukla, Anil K; Moore, Ronald J; Smith, Richard D; Qian, Wei-Jun; Kelly, Ryan T

    2018-06-24

    Current mass spectrometry (MS)-based proteomics approaches are ineffective for mapping protein expression in tissue sections with high spatial resolution due to the limited overall sensitivity of conventional workflows. Here we report an integrated and automated method to advance spatially resolved proteomics by seamlessly coupling laser capture microdissection (LCM) with a recently developed nanoliter-scale sample preparation system termed nanoPOTS (Nanodroplet Processing in One pot for Trace Samples). The workflow is enabled by prepopulating nanowells with DMSO, which serves as a sacrificial capture liquid for microdissected tissues. The DMSO droplets efficiently collect laser-pressure catapulted LCM tissues as small as 20 µm in diameter with success rates >87%. We also demonstrate that tissue treatment with DMSO can significantly improve proteome coverage, likely due to its ability to dissolve lipids from tissue and enhance protein extraction efficiency. The LCM-nanoPOTS platform was able to identify 180, 695, and 1827 protein groups on average from 12-µm-thick rat brain cortex tissue sections with diameters of 50, 100, and 200 µm, respectively. We also analyzed 100-µm-diameter sections corresponding to 10-18 cells from three different regions of rat brain and comparatively quantified ~1000 proteins, demonstrating the potential utility for high-resolution spatially resolved mapping of protein expression in tissues. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Toward Femtosecond Time-Resolved Studies of Solvent-Solute Energy Transfer in Doped Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Bacellar, C.; Ziemkiewicz, M. P.; Leone, S. R.; Neumark, D. M.; Gessner, O.

    2015-05-01

    Superfluid helium nanodroplets provide a unique cryogenic matrix for high resolution spectroscopy and ultracold chemistry applications. With increasing photon energy and, in particular, in the increasingly important Extreme Ultraviolet (EUV) regime, the droplets become optically dense and, therefore, participate in the EUV-induced dynamics. Energy- and charge-transfer mechanisms between the host droplets and dopant atoms, however, are poorly understood. Static energy domain measurements of helium droplets doped with noble gas atoms (Xe, Kr) indicate that Penning ionization due to energy transfer from the excited droplet to dopant atoms may be a significant relaxation channel. We have set up a femtosecond time-resolved photoelectron imaging experiment to probe these dynamics directly in the time-domain. Droplets containing 104 to 106 helium atoms and a small percentage (<10-4) of dopant atoms (Xe, Kr, Ne) are excited to the 1s2p Rydberg band by 21.6 eV photons produced by high harmonic generation (HHG). Transiently populated states are probed by 1.6 eV photons, generating time-dependent photoelectron kinetic energy distributions, which are monitored by velocity map imaging (VMI). The results will provide new information about the dynamic timescales and the different relaxation channels, giving access to a more complete physical picture of solvent-solute interactions in the superfluid environment. Prospects and challenges of the novel experiment as well as preliminary experimental results will be discussed.

  17. Effect of steam explosion and microbial fermentation on cellulose and lignin degradation of corn stover.

    PubMed

    Chang, Juan; Cheng, Wei; Yin, Qingqiang; Zuo, Ruiyu; Song, Andong; Zheng, Qiuhong; Wang, Ping; Wang, Xiao; Liu, Junxi

    2012-01-01

    In order to increase nutrient values of corn stover, effects of steam explosion (2.5 MPa, 200 s) and Aspergillus oryzae (A. oryzae) fermentation on cellulose and lignin degradation were studied. The results showed the contents of cellulose, hemicellulose and lignin in the exploded corn stover were 8.47%, 50.45% and 36.65% lower than that in the untreated one, respectively (P<0.05). The contents of cellulose and hemicellulose in the exploded and fermented corn stover (EFCS) were decreased by 24.36% and 69.90%, compared with the untreated one (P<0.05); decreased by 17.35% and 38.59%, compared with the exploded one (P<0.05). The scanning electron microscope observations demonstrated that the combined steam explosion and fermentation destructed corn stover. The activities of enzymes in EFCS were increased. The metabolic experiment showed that about 8% EFCS could be used to replace corn meal in broiler diets, which made EFCS become animal feedstuff possible. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. High fidelity studies of exploding foil initiator bridges, Part 1: Experimental method

    NASA Astrophysics Data System (ADS)

    Bowden, Mike; Neal, William

    2017-01-01

    Simulations of high voltage detonators, such as Exploding Bridgewire (EBW) and Exploding Foil Initiators (EFI), have historically been simple, often empirical, one-dimensional models capable of predicting parameters such as current, voltage and in the case of EFIs, flyer velocity. Correspondingly, experimental methods have in general been limited to the same parameters. With the advent of complex, first principles magnetohydrodynamic codes such as ALEGRA and ALE-MHD, it is now possible to simulate these components in three dimensions, predicting a much greater range of parameters than before. A significant improvement in experimental capability was therefore required to ensure these simulations could be adequately validated. In this first paper of a three part study, the experimental method for determining the current, voltage, flyer velocity and multi-dimensional profile of detonator components is presented. This improved capability, along with high fidelity simulations, offer an opportunity to gain a greater understanding of the processes behind the functioning of EBW and EFI detonators.

  19. Study of Electric Explosion of Flat Micron-Thick Foils at Current Densities of (5-50)×108 A/cm2

    NASA Astrophysics Data System (ADS)

    Shelkovenko, T. A.; Pikuz, S. A.; Tilikin, I. N.; Mingaleev, A. R.; Atoyan, L.; Hammer, D. A.

    2018-02-01

    Electric explosions of flat Al, Ti, Ni, Cu, and Ta foils with thicknesses of 1-16 μm, widths of 1-8 mm, and lengths of 5-11 mm were studied experimentally on the BIN, XP, and COBRA high-current generators at currents of 40-1000 kA and current densities of (5-50) × 108 A/cm2. The images of the exploded foils were taken at different angles to the foil surface by using point projection radiography with an X-pinch hot spot as the radiation source, the spatial resolution and exposure time being 3 μm and 50 ps, respectively, as well by the laser probing method with a spatial resolution of 20 μm and an exposure time of 180 ps. In the course of foil explosion, rapidly expanding objects resembling the core and corona of an exploded wire were observed. It is shown that the core of the exploded foil has a complicated time-varying structure.

  20. Characterizing detonator output using dynamic witness plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Michael John; Adrian, Ronald J

    2009-01-01

    A sub-microsecond, time-resolved micro-particle-image velocimetry (PIV) system is developed to investigate the output of explosive detonators. Detonator output is directed into a transparent solid that serves as a dynamic witness plate and instantaneous shock and material velocities are measured in a two-dimensional plane cutting through the shock wave as it propagates through the solid. For the case of unloaded initiators (e.g. exploding bridge wires, exploding foil initiators, etc.) the witness plate serves as a surrogate for the explosive material that would normally be detonated. The velocity-field measurements quantify the velocity of the shocked material and visualize the geometry of themore » shocked region. Furthermore, the time-evolution of the velocity-field can be measured at intervals as small as 10 ns using the PIV system. Current experimental results of unloaded exploding bridge wire output in polydimethylsiloxane (PDMS) witness plates demonstrate 20 MHz velocity-field sampling just 300 ns after initiation of the wire.« less

  1. Understanding the Electrical Interplay Between a Firing Set and Exploding Metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Malley, Patrick D.; Garasi, Christopher J.

    There is a significant body of work going back centuries that describes in detail the workings of metals that are rapidly transitioned from a solid to a vapor and beyond. These are known as exploding metals and have a variety of applications. A common way to cause metals to explode is through the use of a capacitive discharge circuit (CDC). In the past, methods have been used to simplify the complex, non-linear interaction between the CDC and the metal but in the process some important physics has been lost. This report provides insight into the complex interplay of the metalmore » and the various elements of the CDC. In explaining the basic phenomena in greater detail than has been done before, other interesting cases such as "dwell" are understood in a new light. The net result is a detailed look at the mechanisms which shape the current pulses that scientists and engineers have observed for many decades.« less

  2. Did René Descartes Have Exploding Head Syndrome?

    PubMed

    Otaiku, Abidemi Idowu

    2018-04-15

    René Descartes (1596-1650), "the Father of Modern Philosophy" and advocate of mind-body dualism, had three successive dreams on November 10, 1619 that changed the trajectory of his life and the trajectory of human thought. Descartes' influential dreams have been of interest to a number of commentators including the famous neurologist and psychoanalyst Sigmund Freud. Descartes' second dream in particular, in which he heard a loud noise in his head before seeing a bright flash of light upon awakening, has been discussed extensively. Commentators have employed psychoanalytic and medical explanations to account for Descartes' unusual nocturnal experience. In this tradition, I propose that Descartes' second dream was not a dream at all; rather, it was an episode of exploding head syndrome; a benign and relatively common parasomnia. I further suggest that Adrien Baillet's account of Descartes' experience constitutes the earliest description of exploding head syndrome, predating the account described by Silas Weir Mitchell in 1876 by nearly 200 years. © 2018 American Academy of Sleep Medicine.

  3. The origin of the Crab Nebula and the electron capture supernova in 8-10 M solar mass stars

    NASA Technical Reports Server (NTRS)

    Nomoto, K.

    1981-01-01

    The chemical composition of the Crab Nebula is compared with several presupernova models. The small carbon and oxygen abundances in the helium-rich nebula are consistent with only the presupernova model of the star whose main sequence mass was MMS approximately 8-9.5 M. More massive stars contain too much carbon in the helium layer and smaller mass stars do not leave neutron stars. The progenitor star of the Crab Nebula lost appreciable part of the hydrogen-rich envelope before the hydrogen-rich and helium layers were mixed by convection. Finally it exploded as the electron capture supernova; the O+Ne+Mg core collapsed to form a neutron star and only the extended helium-rich envelope was ejected by the weak shock wave.

  4. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1998-01-01

    This is a computer rendering of the fully developed Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  5. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1995-01-14

    This is an artist's concept of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), fully developed in orbit in a star field with Earth. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  6. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-01-01

    This is a computer rendering of the fully developed Chandra X-ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), in orbit in a star field. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  7. Development of Laser-Mediated Nanodroplet Real-Time PCR on Circulating Tumor Cells (CTC) by Microfilter Platform

    DTIC Science & Technology

    2015-06-01

    DNA hybridization using fluorescence,”   Biopolymers 95(7), 472–486 (2011). 26. J.-L. Mergny and L. Lacroix,  “Analysis of thermal melting curves...Microfilter Platform PRINCIPAL INVESTIGATOR: Gregory W. Faris, Ph.D. CONTRACTING ORGANIZATION : SRI International Menlo Park, CA 94025 REPORT DATE...Ph.D. 5e. TASK NUMBER E-Mail: ! ! 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) SRI International AND ADDRESS(ES) 8

  8. An integral condition for core-collapse supernova explosions

    DOE PAGES

    Murphy, Jeremiah W.; Dolence, Joshua C.

    2017-01-10

    Here, we derive an integral condition for core-collapse supernova (CCSN) explosions and use it to construct a new diagnostic of explodability. The fundamental challenge in CCSN theory is to explain how a stalled accretion shock revives to explode a star. In this manuscript, we assume that the shock revival is initiated by the delayed-neutrino mechanism and derive an integral condition for spherically symmetric shock expansion, v s > 0. One of the most useful one-dimensional explosion conditions is the neutrino luminosity and mass-accretion rate (more » $${L}_{\

  9. Computer modeling of electrical performance of detonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furnberg, C.M.; Peevy, G.R.; Brigham, W.P.

    1995-05-01

    An empirical model of detonator electrical performance which describes the resistance of the exploding bridgewire (EBW) or exploding foil initiator (EFI or slapper) as a function of energy, deposition will be described. This model features many parameters that can be adjusted to obtain a close fit to experimental data. This has been demonstrated using recent experimental data taken with the cable discharge system located at Sandia National Laboratories. This paper will be a continuation of the paper entitled ``Cable Discharge System for Fundamental Detonator Studies`` presented at the 2nd NASA/DOD/DOE Pyrotechnic Workshop.

  10. Use of Ni63 Overvoltage Gap Switches in the Flight Termination Systems on Boosters Launched from U.S. Army Kwajalein Atoll (USAKA)

    DTIC Science & Technology

    1990-05-01

    J3 w c’f oz us~ w - 0n fn 00:1 0 Ic 0 L o 0j 0 0I LL 0 Iof the less than adequate reliability of the earlier Exploding Foil Initiator ( EFI ) design...Action and Alternatives EFI Exploding Foil Initiator Environmental Assessment (EA) A concise public document in which a Federal agency provides...Interceptor (GBI) firing unit (the Explosive Foil Initiator ) was built and tested, it operated unreliably. Many hardware development problems were

  11. Magnetohydrodynamic modelling of exploding foil initiators

    NASA Astrophysics Data System (ADS)

    Neal, William

    2015-06-01

    Magnetohydrodynamic (MHD) codes are currently being developed, and used, to predict the behaviour of electrically-driven flyer-plates. These codes are of particular interest to the design of exploding foil initiator (EFI) detonators but there is a distinct lack of comparison with high-fidelity experimental data. This study aims to compare a MHD code with a collection of temporally and spatially resolved diagnostics including PDV, dual-axis imaging and streak imaging. The results show the code's excellent representation of the flyer-plate launch and highlight features within the experiment that the model fails to capture.

  12. Exploding Head Syndrome as Aura of Migraine with Brainstem Aura: A Case Report.

    PubMed

    Rossi, Fabian H; Gonzalez, Elizabeth; Rossi, Elisa Marie; Tsakadze, Nina

    2018-01-01

    This article reports a case of exploding head syndrome (EHS) as an aura of migraine with brainstem aura (MBA). A middle-aged man presented with intermittent episodes of a brief sensation of explosion in the head, visual flashing, vertigo, hearing loss, tinnitus, confusion, ataxia, dysarthria, and bilateral visual impairment followed by migraine headache. The condition was diagnosed as MBA. Explosive head sensation, sensory phenomena, and headaches improved over time with nortriptyline. This case shows that EHS can present as a primary aura symptom in patients with MBA.

  13. Hybrid materials science: a promised land for the integrative design of multifunctional materials

    NASA Astrophysics Data System (ADS)

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-05-01

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of ``hybrid organic-inorganic'' nanocomposites exploded in the second half of the 20th century with the expansion of the so-called ``chimie douce'' which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented.

  14. Shock Initiated Reactions of Reactive Multiphase Blast Explosives

    NASA Astrophysics Data System (ADS)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2015-06-01

    This paper describes a new class of reactive multiphase blast explosives (RMBX) and characterization of their blast characteristics. These RMBXs are non-ideal explosive compositions of perfluoropolyether (PFPE), nano aluminum, and a micron-size high-density reactive metal - Tantalum, Zirconium, or Zinc in mass loadings of 66 to 83 percent. Unlike high explosives, these PFPE-metal compositions release energy via a fast self-oxidized combustion wave (rather than a true self-sustaining detonation) that is shock dependent, and can be overdriven to control energy release rate. The term ``reactive multiphase blast'' refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts momentum; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. The RMBX formulations were tested in two spherical core-shell geometries - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.

  15. Hybrid materials science: a promised land for the integrative design of multifunctional materials.

    PubMed

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-06-21

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of "hybrid organic-inorganic" nanocomposites exploded in the second half of the 20th century with the expansion of the so-called "chimie douce" which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented.

  16. Dead Star Rumbles

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Composite of Supernova Remnant Cassiopeia A This Spitzer Space Telescope composite shows the supernova remnant Cassiopeia A (white ball) and surrounding clouds of dust (gray, orange and blue). It consists of two processed images taken one year apart. Dust features that have not changed over time appear gray, while those that have changed are colored blue or orange. Blue represents an earlier time and orange, a later time.

    These observations illustrate that a blast of light from Cassiopeia A is waltzing outward through the dusty skies. This dance, called an 'infrared echo,' began when the remnant erupted about 50 years ago.

    Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion 325 years ago. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died. This remnant is located 10,000 light-years away in the northern constellation Cassiopeia.

    An infrared echo is created when a star explodes or erupts, flashing light into surrounding clumps of dust. As the light zips through the dust clumps, it heats them up, causing them to glow successively in infrared, like a chain of Christmas bulbs lighting up one by one. The result is an optical illusion, in which the dust appears to be flying outward at the speed of light. This apparent motion can be seen here by the shift in colored dust clumps.

    Echoes are distinct from supernova shockwaves, which are made up material that is swept up and hurled outward by exploding stars.

    This infrared echo is the largest ever seen, stretching more than 50 light-years away from Cassiopeia A. If viewed from Earth, the entire movie frame would take up the same amount of space as two full moons.

    Hints of an older infrared echo from Cassiopeia A's supernova explosion hundreds of years ago can also be seen.

    The earlier Spitzer image was taken on November 30, 2003, and the later, on December 2, 2004.

  17. The Limit of Magnetic-Shear Energy in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald; Falconer, David; Sterling, Alphonse

    2012-01-01

    It has been found previously, by measuring from active-region magnetograms a proxy of the free energy in the active region's magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region's magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a coronal mass ejection/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy-limit line in (flux content, free-energy proxy) phase space. Here, we present evidence that specifies the underlying magnetic condition that gives rise to the free-energy limit and the accompanying main sequence of explosive active regions. Using a suitable free-energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free-energy limit, the ratio of magnetic-shear free energy to the non-free magnetic energy the potential field would have is of the order of one in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free-energy limit. Evidently, most active regions in which this core-field energy ratio is much less than one cannot be triggered to explode; as this ratio approaches one, most active regions become capable of exploding; and when this ratio is one, most active regions are compelled to explode.

  18. The Limit of Magnetic-Shear Energy in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, David A.; Sterling, Alphonse C.

    2013-01-01

    It has been found previously, by measuring from active ]region magnetograms a proxy of the free energy in the active region fs magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main ]sequence path bordering the free ]energy ]limit line in (flux content, free ]energy proxy) phase space. Here we present evidence that specifies the underlying magnetic condition that gives rise to the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free ]energy limit, the ratio of magnetic ]shear free energy to the non ]free magnetic energy the potential field would have is of order 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. Evidently, most active regions in which this core ]field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1, most active regions are compelled to explode.

  19. Rotational Dynamics of the Methyl Radical in Superfluid 4He Nanodroplets

    DOE PAGES

    Morrison, Alexander M.; Raston, Paul L.; Douberly, Gary E.

    2012-12-07

    Here, we report the ro-vibrational spectrum of the ν 3(e') band of the methyl radical (CH 3) solvated in superfluid 4He nanodroplets. Five allowed transitions produce population in the N K = 0 0, 1 1, 1 0, 2 2 and 2 0 rotational levels. The observed transitions exhibit variable Lorentzian line shapes, consistent with state specific homogeneous broadening effects. Population relaxation of the 00 and 11 levels is only allowed through vibrationally inelastic decay channels, and the PP 1(1) and RR 0(0) transitions accessing these levels have 4.12(1) and 4.66(1) GHz full-width at half-maximum line widths, respectively. The linemore » widths of the PR 1(1) and RR 1(1) transitions are comparatively broader (8.6(1) and 57.0(6) GHz, respectively), consistent with rotational relaxation of the 2 0 and 2 2 levels within the vibrationally excited manifold. The nuclear spin symmetry allowed rotational relaxation channel for the excited 1 0 level has an energy difference similar to those associated with the 2 0 and 2 2 levels. However, the PQ 1(1) transition that accesses the 1 0 level is 2.3 and 15.1 times narrower than the PR 1(1) and RR 1(1) lines, respectively. The relative line widths of these transitions are rationalized in terms of the anisotropy in the He-CH 3 potential energy surface, which couples the molecule rotation to the collective modes of the droplet.« less

  20. Coronal Heating by Magnetic Explosions

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, D. A.; Porter, Jason G.; Suess, Steven T.

    1998-01-01

    We build a case for the persistent strong coronal heating in active regions and the pervasive quasi-steady heating of the corona in quiet regions and coronal holes being driven in basically the same way as the intense transient heating in solar flares: by explosions of sheared magnetic fields in the cores of initially closed bipoles. We begin by summarizing the observational case for exploding sheared core fields being the drivers of a wide variety of flare events, with and without coronal mass ejections. We conclude that the arrangement of an event's flare heating, whether there is a coronal mass ejection, and the time and place of the ejection relative to the flare heating are all largely determined by four elements of the form and action the magnetic field: (1) the arrangement of the impacted, interacting bipoles participating in the event, (2) which of these bipoles are active (have sheared core fields that explode) and which are passive (are heated by injection from impacted active bipoles), (3) which core field explodes first, and (4) which core-field explosions are confined within the closed field of their bipoles and which ejectively open their bipoles.

  1. Using of fiber-array diagnostic to measure the propagation of fast axial ionization wave during breakdown of electrically exploding tungsten wire in vacuum.

    PubMed

    Shi, Huantong; Zou, Xiaobing; Wang, Xinxin

    2017-12-01

    The physical process of electrical explosion of wires in vacuum is featured with the surface discharge along the wire, which generates the corona plasma layer and terminates the Joule heating of the wire core. In this paper, a fiber-array probe was designed to directly measure the radiation of surface arc with spatial and temporal resolution. The radiation of the exploding wire was casted to the section of an optical-fiber-array by a lens and transmitted to PIN diodes and finally collected with an oscilloscope. This probe enables direct diagnostics of the evolution of surface discharge with high temporal resolution and certain spatial resolution. The radiation of a tungsten wire driven by a positive current pulse was measured, and results showed that surface discharge initiates near the cathode and propagates toward the anode with a speed of 7.7 ± 1.6 mm/ns; further estimations showed that this process is responsible for the "conical" structure of the exploding wire.

  2. Study of Electric Explosion of Flat Micron-Thick Foils at Current Densities of (5-50)×10 8A/cm 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelkovenko, T. A.; Pikuz, S. A.; Tilikin, I. N.

    Electric explosions of flat Al, Тi, Ni, Cu, and Та foils with thicknesses of 1-16 μm, widths of 1-8 mm, and lengths of 5-11 mm were studied experimentally on the BIN, XP, and COBRA high-current generators at currents of 40-1000 kA and current densities of (5–50) × 10 8 A/cm 2. The images of the exploded foils were taken at different angles to the foil surface by using point projection radiography with an X-pinch hot spot as the radiation source, the spatial resolution and exposure time being 3 μm and 50 ps, respectively, as well by the laser probing methodmore » with a spatial resolution of 20 μm and an exposure time of 180 ps. In the course of foil explosion, rapidly expanding objects resembling the core and corona of an exploded wire were observed. It is shown that the core of the exploded foil has a complicated time-varying structure.« less

  3. Study of Electric Explosion of Flat Micron-Thick Foils at Current Densities of (5-50)×10 8A/cm 2

    DOE PAGES

    Shelkovenko, T. A.; Pikuz, S. A.; Tilikin, I. N.; ...

    2018-01-01

    Electric explosions of flat Al, Тi, Ni, Cu, and Та foils with thicknesses of 1-16 μm, widths of 1-8 mm, and lengths of 5-11 mm were studied experimentally on the BIN, XP, and COBRA high-current generators at currents of 40-1000 kA and current densities of (5–50) × 10 8 A/cm 2. The images of the exploded foils were taken at different angles to the foil surface by using point projection radiography with an X-pinch hot spot as the radiation source, the spatial resolution and exposure time being 3 μm and 50 ps, respectively, as well by the laser probing methodmore » with a spatial resolution of 20 μm and an exposure time of 180 ps. In the course of foil explosion, rapidly expanding objects resembling the core and corona of an exploded wire were observed. It is shown that the core of the exploded foil has a complicated time-varying structure.« less

  4. Using of fiber-array diagnostic to measure the propagation of fast axial ionization wave during breakdown of electrically exploding tungsten wire in vacuum

    NASA Astrophysics Data System (ADS)

    Shi, Huantong; Zou, Xiaobing; Wang, Xinxin

    2017-12-01

    The physical process of electrical explosion of wires in vacuum is featured with the surface discharge along the wire, which generates the corona plasma layer and terminates the Joule heating of the wire core. In this paper, a fiber-array probe was designed to directly measure the radiation of surface arc with spatial and temporal resolution. The radiation of the exploding wire was casted to the section of an optical-fiber-array by a lens and transmitted to PIN diodes and finally collected with an oscilloscope. This probe enables direct diagnostics of the evolution of surface discharge with high temporal resolution and certain spatial resolution. The radiation of a tungsten wire driven by a positive current pulse was measured, and results showed that surface discharge initiates near the cathode and propagates toward the anode with a speed of 7.7 ± 1.6 mm/ns; further estimations showed that this process is responsible for the "conical" structure of the exploding wire.

  5. Production of D-lactic acid from sugarcane bagasse using steam-explosion

    NASA Astrophysics Data System (ADS)

    Sasaki, Chizuru; Okumura, Ryosuke; Asakawa, Ai; Asada, Chikako; Nakamura, Yoshitoshi

    2012-03-01

    This study investigated the production of D-lactic acid from unutilized sugarcane bagasse using steam explosion pretreatment. The optimal steam pressure for a steaming time of 5 min was determined. By enzymatic saccharification using Meicellase, the highest recovery of glucose from raw bagasse, 73.7%, was obtained at a steam pressure of 20 atm. For residue washed with water after steam explosion, the glucose recovery increased up to 94.9% at a steam pressure of 20 atm. These results showed that washing with water is effective in removing enzymatic reaction inhibitors. After steam pretreatment (steam pressure of 20 atm), D-lactic acid was produced by Lactobacillus delbrueckii NBRC 3534 from the enzymatic hydrolyzate of steam-exploded bagasse and washed residue. The conversion rate of D-lactic acid obtained from the initial glucose concentration was 66.6% for the hydrolyzate derived from steam-exploded bagasse and 90.0% for that derived from the washed residue after steam explosion. These results also demonstrated that the hydrolyzate of steam-exploded bagasse (without washing with water) contains fermentation inhibitors and washing with water can remove them.

  6. Experimental investigation on the energy deposition and morphology of the electrical explosion of copper wire in vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Zongqian; Shi, Yuanjie; Wang, Kun

    2016-03-15

    This paper presents the experimental results of the electrical explosion of copper wires in vacuum using negative nanosecond-pulsed current with magnitude of 1–2 kA. The 20 μm-diameter copper wires with different lengths are exploded with three different current rates. A laser probe is applied to construct the shadowgraphy and interferometry diagnostics to investigate the distribution and morphology of the exploding product. The interference phase shift is reconstructed from the interferogram, by which the atomic density distribution is calculated. Experimental results show that there exist two voltage breakdown modes depending on the amount of the specific energy deposition. For the strong-shunting mode, shuntingmore » breakdown occurs, leading to the short-circuit-like current waveform. For the weak-shunting mode with less specific energy deposition, the plasma generated during the voltage breakdown is not enough to form a conductive plasma channel, resulting in overdamped declining current waveform. The influence of the wire length and current rate on the characteristics of the exploding wires is also analyzed.« less

  7. Improved enzymatic saccharification of steam exploded cotton stalk using alkaline extraction and fermentation of cellulosic sugars into ethanol.

    PubMed

    Keshav, Praveen K; Naseeruddin, Shaik; Rao, L Venkateswar

    2016-08-01

    Cotton stalk, a widely available and cheap agricultural residue lacking economic alternatives, was subjected to steam explosion in the range 170-200°C for 5min. Steam explosion at 200°C and 5min led to significant hemicellulose solubilization (71.90±0.10%). Alkaline extraction of steam exploded cotton stalk (SECOH) using 3% NaOH at room temperature for 6h led to 85.07±1.43% lignin removal with complete hemicellulose solubilization. Besides, this combined pretreatment allowed a high recovery of the cellulosic fraction from the biomass. Enzymatic saccharification was studied between steam exploded cotton stalk (SECS) and SECOH using different cellulase loadings. SECOH gave a maximum of 785.30±8.28mg/g reducing sugars with saccharification efficiency of 82.13±0.72%. Subsequently, fermentation of SECOH hydrolysate containing sugars (68.20±1.16g/L) with Saccharomyces cerevisiae produced 23.17±0.84g/L ethanol with 0.44g/g yield. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Decorating Graphene Oxide with Ionic Liquid Nanodroplets: An Approach Leading to Energy-Dense, High-Voltage Supercapacitors.

    PubMed

    She, Zimin; Ghosh, Debasis; Pope, Michael A

    2017-10-24

    A major stumbling block in the development of high energy density graphene-based supercapacitors has been maintaining high ion-accessible surface area combined with high electrode density. Herein, we develop an ionic liquid (IL)-surfactant microemulsion system that is found to facilitate the spontaneous adsorption of IL-filled micelles onto graphene oxide (GO). This adsorption distributes the IL over all available surface area and provides an aqueous formulation that can be slurry cast onto current collectors, leaving behind a dense nanocomposite film of GO/IL/surfactant. By removing the surfactant and reducing the GO through a low-temperature (360 °C) heat treatment, the IL plays a dual role of spacer and electrolyte. We study the effect of IL content and operating temperature on the performance, demonstrating a record high gravimetric capacitance (302 F/g at 1 A/g) for 80 wt % IL composites. At 60 wt % IL, combined high capacitance and bulk density (0.76 g/cm 3 ), yields one of the highest volumetric capacitances (218 F/cm 3 , at 1 A/g) ever reported for a high-voltage IL-based supercapacitor. While achieving promising rate performance and cycle-life, the approach also eliminates the long and costly electrolyte imbibition step of cell assembly as the electrolyte is cast directly with the electrode material.

  9. Development and characterization of nanostructured mists with potential for actively targeting poorly water-soluble compounds into the lungs.

    PubMed

    Nesamony, Jerry; Kalra, Ashish; Majrad, Mohamed S; Boddu, Sai Hanuman Sagar; Jung, Rose; Williams, Frederick E; Schnapp, Alaina M; Nauli, Surya M; Kalinoski, Andrea L

    2013-10-01

    To formulate nanoemulsions (NE) with potential for delivering poorly water-soluble drugs to the lungs. A self nanoemulsifying composition consisting of cremophor RH 40, PEG 400 and labrafil M 2125 CS was selected after screening potential excipients. The solubility of carbamazepine, a poorly water-soluble drug, was tested in the formulation components. Oil-in-water (o/w) NEs were characterized using dynamic light scattering, electrophoretic light scattering, transmission electron microscopy (TEM) and differential scanning calorimetry. NEs were nebulized into a mist using a commercial nebulizer and characterized using laser diffraction and TEM. An aseptic method was developed for preparing sterile NEs. Biocompatibility of the formulation was evaluated on NIH3T3 cells using MTT assay. In vitro permeability of the formulation was tested in zebra fish eggs, HeLa cells, and porcine lung tissue. NEs had neutrally charged droplets of less than 20 nm size. Nebulized NEs demonstrated an o/w nanostructure. The mist droplets were of size less than 5 μm. Sterility testing and cytotoxicity results validated that the NE was biocompatible and sterile. In vitro tests indicated oil nanodroplets penetrating intracellularly through biological membranes. The nanoemulsion mist has the potential for use as a pulmonary delivery system for poorly water-soluble drugs.

  10. Controlled assembly of high-order nanoarray metal structures on bulk copper surface by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Qin, Wanwan; Yang, Jianjun

    2017-07-01

    We report a new one-step maskless method to fabricate high-order nanoarray metal structures comprising periodic grooves and particle chains on a single-crystal Cu surface using femtosecond laser pulses at the central wavelength of 400 nm. Remarkably, when a circularly polarized infrared femtosecond laser pulse (spectrally centered at 800 nm) pre-irradiates the sample surface, the geometric dimensions of the composite structure can be well controlled. With increasing the energy fluence of the infrared laser pulse, both the groove width and particle diameter are observed to reduce, while the measured spacing-to-diameter ratio of the nanoparticles tends to present an increasing tendency. A physical scenario is proposed to elucidate the underlying mechanisms: as the infrared femtosecond laser pulse pre-irradiates the target, the copper surface is triggered to display anomalous transient physical properties, on which the subsequently incident Gaussian blue laser pulse is spatially modulated into fringe-like energy depositions via the excitation of ultrafast surface plasmon. During the following relaxation processes, the periodically heated thin-layer regions can be transferred into the metastable liquid rivulets and then they break up into nanodroplet arrays owing to the modified Rayleigh-like instability. This investigation indicates a simple integrated approach for active designing and large-scale assembly of complexed functional nanostructures on bulk materials.

  11. Crumpling of graphene oxide through evaporative confinement in nanodroplets produced by electrohydrodynamic aerosolization

    NASA Astrophysics Data System (ADS)

    Kavadiya, Shalinee; Raliya, Ramesh; Schrock, Michael; Biswas, Pratim

    2017-02-01

    Restacking of graphene oxide (GO) nanosheets results in loss of surface area and creates limitations in its widespread use for applications. Previously, two-dimensional (2D) GO sheets have been crumpled into 3D structures to prevent restacking using different techniques. However, synthesis of nanometer size crumpled graphene particles and their direct deposition onto a substrate have not been demonstrated under room temperature condition so far. In this work, the evaporative crumpling of GO sheets into very small size (<100 nm) crumpled structures using an electrohydrodynamic atomization technique is described. Systematic study of the effect of different electrohydrodynamic atomization parameters, such as (1) substrate-to-needle distance, (2) GO concentration in the precursor solution, and (3) flow rate (droplet size) on the GO crumpling, is explored. Crumpled GO (CGO) particles are characterized online using a scanning mobility particle sizer (SMPS) and off-line using electron microscopy. The relation between the confinement force and the factors affecting the crumpled structure is established. Furthermore, to expand the application horizons of the structure, crumpled GO-TiO2 nanocomposites are synthesized. The method described here allows a simple and controlled production of graphene-based particles/composites with direct deposition onto any kind of substrate for a variety of applications.

  12. Non-detonable and non-explosive explosive simulators

    DOEpatents

    Simpson, Randall L.; Pruneda, Cesar O.

    1997-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable or explodable. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive.

  13. Helium Nanodroplet Isolation and Infrared Spectroscopy of the Isolated Ion-Pair 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

    DTIC Science & Technology

    2013-09-01

    Use in Lithium Metal-Polymer Electrolyte Batteries. J. Electrochem. Soc. 2005, 152, A978-A983.     4. Henderson, W. A.; Shin, J. H.; Passerini, S...Chen, L. Q.; Hu, Y. S.; Li, H.; Huang, X. J. Novel Room Temperature Molten Salt Electrolyte Based on Litfsi and Acetamide for Lithium Batteries...the Structure of Ionic Liquid 1-Ethyl-3- Methylimidazolium Hexafluorophosphate . Chinese J. Struc. Chem. 2005, 24, 576-580.     37. Liu, K. H.; Pu, M

  14. Laser spectroscopy of phonons and rotons in superfluid helium doped with Dy atoms

    NASA Astrophysics Data System (ADS)

    Moroshkin, P.; Borel, A.; Kono, K.

    2018-03-01

    We report the results of a high-resolution laser-spectroscopy study of dysprosium atoms injected into superfluid 4He. A special attention is paid to the transitions between the inner 4 f and 5 d electronic shells of Dy. The characteristic gap is observed between the zero-phonon line and the phonon wing in the experimental excitation spectrum that arises due to the peculiar structure of the phonon-roton spectrum of superfluid He. This observation resolves the longstanding discrepancy between the studies of bulk superfluid He and He nanodroplets.

  15. Wetting kinetics of nanodroplets on lyophilic nanopillar-arrayed surfaces: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Zong, Diyuan; Yang, Zhen; Duan, Yuanyuan

    2017-10-01

    Wetting kinetics of water droplets on substrates with lyophilic nanopillars was investigated using molecular dynamics simulations. Early spreading of the droplet is hindered by the nanopillars because of the penetration of the liquid which induce an extra dissipation in the droplet. Droplet spreading is mainly controlled by liquid viscosity and surface tension and not dependent on solid wettability. Propagation of the fringe film is hindered by the enhanced solid wettability because of the energy barrier introduced by the interaction between water molecules and nanopillars which increase with solid wettability.

  16. Chromospheric impact of an exploding solar granule

    NASA Astrophysics Data System (ADS)

    Fischer, C. E.; Bello González, N.; Rezaei, R.

    2017-06-01

    Context. Observations of multi-wavelength and therefore height-dependent information following events throughout the solar atmosphere and unambiguously assigning a relation between these rapidly evolving layers are rare and difficult to obtain. Yet, they are crucial for our understanding of the physical processes that couple the different regimes in the solar atmosphere. Aims: We characterize the exploding granule event with simultaneous observations of Hinode spectroplarimetric data in the solar photosphere and Hinode broadband Ca II H images combined with Interface Region Imaging Spectrograph (IRIS) slit spectra. We follow the evolution of an exploding granule and its connectivity throughout the atmosphere and analyze the dynamics of a magnetic element that has been affected by the abnormal granule. Methods: In addition to magnetic flux maps we use a local correlation tracking method to infer the horizontal velocity flows in the photosphere and apply a wavelet analysis on several IRIS chromospheric emission features such as Mg II k2v and Mg II k3 to detect oscillatory phenomena indicating wave propagation. Results: During the vigorous expansion of the abnormal granule we detect radially outward horizontal flows, causing, together with the horizontal flows from the surrounding granules, the magnetic elements in the bordering intergranular lanes to be squeezed and elongated. In reaction to the squeezing, we detect a chromospheric intensity and velocity oscillation pulse which we identify as an upward traveling hot shock front propagating clearly through the IRIS spectral line diagnostics of Mg II h&k. Conclusions: Exploding granules can trigger upward-propagating shock fronts that dissipate in the chromosphere. Movies associated to Figs. A.1 and A.2 are available in electronic form at http://www.aanda.org

  17. Energy Deposition and Condition of the Metal Core in Exploding Wire Experiments

    NASA Astrophysics Data System (ADS)

    Sarkisov, G. S.; Rosenthal, S. E.; Struve, K. W.; McDaniel, D. H.; Waisman, E. M.; Sasorov, P. V.

    2002-11-01

    Measurements of the Joule energy deposition into exploding wire and its relation with condition of the expanding wire core are presented. Wires of nine different metals with diameters of 10-30 microns, have been exploded by fast 150A/ns and slow 20A/ns pulses, in vacuum and in air. It has been shown by interferometry and light emission that expanding wire core has different conditions. The substances with small atomization enthalpy (Ag, Al, Cu, Au) demonstrate full vaporization of the wire core. The refractory metals (Ti, Pt, Mo, W) demonstrates that core consists from vapor and small and hot microparticles. In this case we observe "firework effect" when large radiation from the wire exceed the energy deposition time in a three order of magnitude. For non-refractory metals radiation dropping fast in 100 ns time scale due to effective adiabatic cooling. It is possible if main part of the metal core was vaporized. The interferometrical investigation of the refraction coefficient of expanding metal core is proof this conclusion. It has been shown that energy deposition before surface breakdown dependent strongly from current rate, surface coatings, environment, wire diameter and radial electric field. The regime of wire explosion in vacuum without shunting plasma shell has been realized for fast exploding mode. In this case we observe anomaly high energy deposition in to the wire core exceeding regular value in almost 20 times. The experimental results for Al wire have been compared with ALEGRA 2D MHD simulations. *Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL8500.

  18. A comparison study of exploding a Cu wire in air, water, and solid powders

    NASA Astrophysics Data System (ADS)

    Han, Ruoyu; Wu, Jiawei; Ding, Weidong; Zhou, Haibin; Qiu, Aici; Wang, Yanan

    2017-11-01

    In this paper, an experimental study on exploding a copper wire in air, water, incombustible powders, and energetic materials is performed. We examined the effects of the surrounding media on the explosion process and its related phenomena. Experiments were first carried out with copper wire explosions driven by microsecond timescale pulsed currents in air, water, and the half-half case. Then, the copper wires were exploded in air, water, SiO2 powders, quartz sand, NaCl powders, and energetic-material cylinders, respectively. Our experimental results indicated that the explosion process was significantly influenced by the surrounding media, resulting in noticeable differences in energy deposition, optical emission, and shock waves. In particular, incombustible powders could throttle the current flow completely when a fine wire was adopted. We also found that an air or incombustible-powder layer could drastically attenuate the shock wave generated by a wire explosion. As for energetic-material loads, obvious discrepancies were found in voltage/current waveforms from vaporization when compared with a wire explosion in air/water, which meant the metal vapor/liquid drops play a significant role in the ignition process.

  19. Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Séguin, F. H.

    Measurements of yield, ion temperature, areal density (ρR), shell convergence, and bang time have been obtained in shock-driven, D{sub 2} and D{sup 3}He gas-filled “exploding-pusher” inertial confinement fusion (ICF) implosions at the National Ignition Facility to assess the impact of ion kinetic effects. These measurements probed the shock convergence phase of ICF implosions, a critical stage in hot-spot ignition experiments. The data complement previous studies of kinetic effects in shock-driven implosions. Ion temperature and fuel ρR inferred from fusion-product spectroscopy are used to estimate the ion-ion mean free path in the gas. A trend of decreasing yields relative to themore » predictions of 2D DRACO hydrodynamics simulations with increasing Knudsen number (the ratio of ion-ion mean free path to minimum shell radius) suggests that ion kinetic effects are increasingly impacting the hot fuel region, in general agreement with previous results. The long mean free path conditions giving rise to ion kinetic effects in the gas are often prevalent during the shock phase of both exploding pushers and ablatively driven implosions, including ignition-relevant implosions.« less

  20. The exploded hand syndrome: a report of five industrial injury cases.

    PubMed

    Al-Qattan, M M

    2013-10-01

    The term 'exploded hand syndrome' refers to a specific type of crush injury to the hand in which a high compressive force excessively flattens the hand leading to thenar muscle extrusion through burst lacerations. Out of 89 crushed hands seen over a period of seven years, only five had exploded hand syndrome. They were all male industrial workers ranging in age between 24 and 55 years. All patients had thenar muscle extrusion. Other concurrent injuries included fractures/dislocations, compartment syndrome, and ischaemia. All patients were treated by excision of the extruded intrinsic muscles, as well as primary management of concurrent injuries. All patients had functional assessment including: motor power and sensory testing, range of motion of hand joints, and the quick DASH score. Objective testing showed reduced sensibility in the thumb, reduced grip strength (mean 52% of contralateral hand), reduced pinch strength (mean of 27% of contralateral hand), reduced thumb opposition (the mean Kapandji Score was 5 out of 10), and deficits in the range of motion of the metacarpophalangeal and interphalangeal joints of the thumb. The quick DASH score ranged from 11 to 49 and only two patients were able to go back to regular manual work.

  1. A Test Study to Display Buried Anti-Tank Landmines with GPR and Research Soil Characteristics with CRS

    NASA Astrophysics Data System (ADS)

    Kadioglu, Selma; Kagan Kadioglu, Yusuf

    2014-05-01

    An anti-tank mine (AT mine) is a type of land mine designed to damage or destroy vehicles including tanks and armored fighting vehicles. Anti-tank mines typically have a much larger explosive charge, and a fuze designed only to be triggered by vehicles or, in some cases, tampering with the mine. There are a lot of AT mine types. In our test study, MK4 and MK5 AT mine types has been used. The Mk 5 was a cylindrical metal cased U.K. anti-tank blast mine that entered service in 1943, during the Second World War. General Specifications of them are 203 mm diameter, 127 mm height, 4.4-5.7 kg weight, 2.05-3.75 kg of TNT explosive content and 350 lbs operating pressure respectively. The aims of the test study were to image anti-tank landmine with GPR method and to analyse the soil characteristics before the mines made explode and after made be exploded and determine changing of the soil characteristics. We realized data measurement on the real 6 unexploded anti-tank landmine buried approximately 15 cm in depth. The mines spaced 3 m were buried in two lines. Space between lines was 1.5 m. We gathered data on the profiles, approximately 7 m, with a Ramac CUII system and 800 MHz shielded antenna. We collected soil samples on the mines, near and around the mines, on the area in village. We collected soil samples before exploding and after exploding mines. We imaged anti-tank landmines on the depth slices of the GPR data and in their interactive transparent 3D subsets successfully. We used polarized microscope and confocal Raman spectroscopy (CRS) to identify soil characteristic before and after exploitation. The results presented that GPR method and its 3D imaging were successful to determine AT mines, and there was no important changing on mineralogical and petrographical characterization of the soil before and after exploding processing. This project has been supported by Ankara University under grant no 11B6055002. The study is a contribution to the EU funded COST action TU1208, "Civil Engineering Applications of Ground penetrating Radar".

  2. Valorization of lignin and cellulose in acid-steam-exploded corn stover by a moderate alkaline ethanol post-treatment based on an integrated biorefinery concept.

    PubMed

    Yang, Sheng; Zhang, Yue; Yue, Wen; Wang, Wei; Wang, Yun-Yan; Yuan, Tong-Qi; Sun, Run-Cang

    2016-01-01

    Due to the unsustainable consumption of fossil resources, great efforts have been made to convert lignocellulose into bioethanol and commodity organic compounds through biological methods. The conversion of cellulose is impeded by the compactness of plant cell wall matrix and crystalline structure of the native cellulose. Therefore, appropriate pretreatment and even post-treatment are indispensable to overcome this problem. Additionally, an adequate utilization of coproduct lignin will be important for improving the economic viability of modern biorefinery industries. The effectiveness of moderate alkaline ethanol post-treatment on the bioconversion efficiency of cellulose in the acid-steam-exploded corn stover was investigated in this study. Results showed that an increase of the alcoholic sodium hydroxide (NaOH) concentration from 0.05 to 4% led to a decrease in the lignin content in the post-treated samples from 32.8 to 10.7%, while the cellulose digestibility consequently increased. The cellulose conversion of the 4% alcoholic NaOH integrally treated corn stover reached up to 99.3% after 72 h, which was significantly higher than that of the acid steam exploded corn stover without post-treatment (57.3%). In addition to the decrease in lignin content, an expansion of cellulose I lattice induced by the 4% alcoholic NaOH post-treatment played a significant role in promoting the enzymatic hydrolysis of corn stover. More importantly, the lignin fraction (AL) released during the 4% alcoholic NaOH post-treatment and the lignin-rich residue (EHR) remained after the enzymatic hydrolysis of the 4% alcoholic NaOH post-treated acid-steam-exploded corn stover were employed to synthesize lignin-phenol-formaldehyde (LPF) resins. The plywoods prepared with the resins exhibit satisfactory performances. An alkaline ethanol system with an appropriate NaOH concentration could improve the removal of lignin and modification of the crystalline structure of cellulose in acid-steam-exploded corn stover, and consequently significantly improve the conversion of cellulose through enzymatic hydrolysis for biofuel production. The lignin fractions obtained as byproducts could be applied in high performance LPF resin preparation. The proposed model for the integral valorization of corn stover in this study is worth of popularization.

  3. Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network

    PubMed Central

    Zhu, Chongqin; Gao, Yurui; Li, Hui; Meng, Sheng; Li, Lei; Francisco, Joseph S.; Zeng, Xiao Cheng

    2016-01-01

    Hydrophobicity of macroscopic planar surface is conventionally characterized by the contact angle of water droplets. However, this engineering measurement cannot be directly extended to surfaces of proteins, due to the nanometer scale of amino acids and inherent nonplanar structures. To measure the hydrophobicity of side chains of proteins quantitatively, numerous parameters were developed to characterize behavior of hydrophobic solvation. However, consistency among these parameters is not always apparent. Herein, we demonstrate an alternative way of characterizing hydrophobicity of amino acid side chains in a protein environment by constructing a monolayer of amino acids (i.e., artificial planar peptide network) according to the primary and the β-sheet secondary structures of protein so that the conventional engineering measurement of the contact angle of a water droplet can be brought to bear. Using molecular dynamics simulations, contact angles θ of a water nanodroplet on the planar peptide network, together with excess chemical potentials of purely repulsive methane-sized Weeks−Chandler−Andersen solute, are computed. All of the 20 types of amino acids and the corresponding planar peptide networks are studied. Expectedly, all of the planar peptide networks with nonpolar amino acids are hydrophobic due to θ > 90°, whereas all of the planar peptide networks of the polar and charged amino acids are hydrophilic due to θ < 90°. Planar peptide networks of the charged amino acids exhibit complete-wetting behavior due to θ = 0°. This computational approach for characterization of hydrophobicity can be extended to artificial planar networks of other soft matter. PMID:27803319

  4. Shock wave induced condensation in fuel-rich gaseous and gas-particles mixtures

    NASA Astrophysics Data System (ADS)

    Fomin, P. A.

    2018-03-01

    The possibility of fuel vapor condensation in shock waves in fuel-rich (cyclohexane-oxygen) gaseous mixtures and explosion safety aspects of this effect are discussed. It is shown, that condensation process can essentially change the chemical composition of the gas. For example, the molar fraction of the oxidizer can increase in a few times. As a result, mixtures in which the initial concentration of fuel vapor exceeds the Upper Flammability Limit can, nevertheless, explode, if condensation shifts the composition of the mixture into the ignition region. The rate of the condensation process is estimated. This process can be fast enough to significantly change the chemical composition of the gas and shift it into the flammable range during the compression phase of blast waves, generated by explosions of fuel-vapor clouds or rapture of pressurized chemical reactors, with characteristic size of a few meters. It is shown that the presence of chemically inert microparticles in the gas mixtures under consideration increases the degree of supercooling and the mass of fuel vapors that have passed into the liquid and reduces the characteristic condensation time in comparison with the gas mixture without microparticles. The fuel vapor condensation should be taken into account in estimation the explosion hazard of chemical reactors, industrial and civil constructions, which may contain fuel-rich gaseous mixtures of heavy hydrocarbons with air.

  5. Lighting up a Dead Star's Layers

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image from NASA's Spitzer Space Telescope shows the scattered remains of an exploded star named Cassiopeia A. Spitzer's infrared detectors 'picked' through these remains and found that much of the star's original layering had been preserved.

    In this false-color image, the faint, blue glow surrounding the dead star is material that was energized by a shock wave, called the forward shock, which was created when the star blew up. The forward shock is now located at the outer edge of the blue glow. Stars are also seen in blue. Green, yellow and red primarily represent material that was ejected in the explosion and heated by a slower shock wave, called the reverse shock wave.

    The picture was taken by Spitzer's infrared array camera and is a composite of 3.6-micron light (blue); 4.5-micron light (green); and 8.0-micron light (red).

  6. Non-detonable and non-explosive explosive simulators

    DOEpatents

    Simpson, R.L.; Pruneda, C.O.

    1997-07-15

    A simulator which is chemically equivalent to an explosive, but is not detonable or explodable is disclosed. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive. 11 figs.

  7. Thermal explosion violence of HMX-based explosives -- effect of composition, confinement and phase transition using the scaled thermal explosion experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maienschein, J L; Wardell, J F; Reaugh, J E

    We developed the Scaled Thermal Explosion Experiment (STEX) to provide a database of reaction violence from thermal explosion of explosives of interest. A cylinder of explosive, 1, 2 or 4 inches in diameter, is confined in a steel cylinder with heavy end caps, and heated under controlled conditions until it explodes. Reaction violence is quantified by micropower radar measurement of the cylinder wall velocity, and by strain gauge data at reaction onset. Here we describe the test concept and design, show that the conditions are well understood, and present initial data with HMX-based explosives. The HMX results show that anmore » explosive with high binder content yields less-violent reactions that an explosive with low binder content, and that the HMX phase at the time of explosion plays a key role in reaction violence.« less

  8. Diagnostics of underwater electrical wire explosion through a time- and space-resolved hard x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheftman, D.; Shafer, D.; Efimov, S.

    2012-10-15

    A time- and space-resolved hard x-ray source was developed as a diagnostic tool for imaging underwater exploding wires. A {approx}4 ns width pulse of hard x-rays with energies of up to 100 keV was obtained from the discharge in a vacuum diode consisting of point-shaped tungsten electrodes. To improve contrast and image quality, an external pulsed magnetic field produced by Helmholtz coils was used. High resolution x-ray images of an underwater exploding wire were obtained using a sensitive x-ray CCD detector, and were compared to optical fast framing images. Future developments and application of this diagnostic technique are discussed.

  9. Impact of the lateral boundary conditions resolution on dynamical downscaling of precipitation in mediterranean spain

    NASA Astrophysics Data System (ADS)

    Amengual, A.; Romero, R.; Homar, V.; Ramis, C.; Alonso, S.

    2007-08-01

    Studies using transparent, polymeric witness plates consisting of polydimethlysiloxane (PDMS) have been conducted to measure the output of exploding bridge wire (EBW) detonators and exploding foil initiators (EFI). Polymeric witness plates are utilized to alleviate particle response issues that arise in gaseous flow fields containing shock waves and to allow measurements of shock-induced material velocities to be made using particle image velocimetry (PIV). Quantitative comparisons of velocity profiles across the shock waves in air and in PDMS demonstrate the improved response achieved by the dynamic witness plate method. Schlieren photographs complement the analysis through direct visualization of detonator-induced shock waves in the witness plates.

  10. Particle response to shock waves in solids: dynamic witness plate/PIV method for detonations

    NASA Astrophysics Data System (ADS)

    Murphy, Michael J.; Adrian, Ronald J.

    2007-08-01

    Studies using transparent, polymeric witness plates consisting of polydimethlysiloxane (PDMS) have been conducted to measure the output of exploding bridge wire (EBW) detonators and exploding foil initiators (EFI). Polymeric witness plates are utilized to alleviate particle response issues that arise in gaseous flow fields containing shock waves and to allow measurements of shock-induced material velocities to be made using particle image velocimetry (PIV). Quantitative comparisons of velocity profiles across the shock waves in air and in PDMS demonstrate the improved response achieved by the dynamic witness plate method. Schlieren photographs complement the analysis through direct visualization of detonator-induced shock waves in the witness plates.

  11. The curious case of exploding quantum dots: anomalous migration and growth behaviors of Ge under Si oxidation

    PubMed Central

    2013-01-01

    We have previously demonstrated the unique migration behavior of Ge quantum dots (QDs) through Si3N4 layers during high-temperature oxidation. Penetration of these QDs into the underlying Si substrate however, leads to a completely different behavior: the Ge QDs ‘explode,’ regressing back almost to their origins as individual Ge nuclei as formed during the oxidation of the original nanopatterned SiGe structures used for their generation. A kinetics-based model is proposed to explain the anomalous migration behavior and morphology changes of the Ge QDs based on the Si flux generated during the oxidation of Si-containing layers. PMID:23618165

  12. Diagnostics of underwater electrical wire explosion through a time- and space-resolved hard x-ray source.

    PubMed

    Sheftman, D; Shafer, D; Efimov, S; Gruzinsky, K; Gleizer, S; Krasik, Ya E

    2012-10-01

    A time- and space-resolved hard x-ray source was developed as a diagnostic tool for imaging underwater exploding wires. A ~4 ns width pulse of hard x-rays with energies of up to 100 keV was obtained from the discharge in a vacuum diode consisting of point-shaped tungsten electrodes. To improve contrast and image quality, an external pulsed magnetic field produced by Helmholtz coils was used. High resolution x-ray images of an underwater exploding wire were obtained using a sensitive x-ray CCD detector, and were compared to optical fast framing images. Future developments and application of this diagnostic technique are discussed.

  13. Quantum levitation of nanoparticles seen with ultracold neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesvizhevsky, V. V., E-mail: nesvizhevsky@ill.eu; Voronin, A. Yu.; Lambrecht, A.

    2013-09-15

    Analyzing new experiments with ultracold neutrons (UCNs) we show that physical adsorption of nanoparticles/nanodroplets, levitating in high-excited states in a deep and broad potential well formed by van der Waals/Casimir-Polder (vdW/CP) forces results in new effects on a cross-road of the fields of fundamental interactions, neutron, surface and nanoparticle physics. Accounting for the interaction of UCNs with nanoparticles explains a recently discovered intriguing so-called 'small heating' of UCNs in traps. It might be relevant to the striking conflict of the neutron lifetime experiments with smallest reported uncertainties by adding false effects there.

  14. Microsolvation of phthalocyanine molecules in superfluid helium nanodroplets as revealed by the optical line shape at electronic origin.

    PubMed

    Fuchs, S; Fischer, J; Slenczka, A; Karra, M; Friedrich, B

    2018-04-14

    We investigate the solvent shift of phthalocyanine (Pc) doped into superfluid helium droplets and probed by optical spectroscopy at the electronic origin. Our present work complements extant studies and provides results that in part contradict previous conclusions. In particular, the solvent shift does not increase monotonously with droplet radius all the way up to the bulk limit, but exhibits just the reverse dependence instead. Moreover, a substructure is resolved, whose characteristics depend on the droplet size. This behavior can hardly be reconciled with that of a freely rotating Pc-helium complex.

  15. Application of dynamic light scattering for studying the evolution of micro- and nano-droplets

    NASA Astrophysics Data System (ADS)

    Derkachov, G.; Jakubczyk, D.; Kolwas, K.; Shopa, Y.; Woźniak, M.; Wojciechowski, T.

    2018-01-01

    The dynamic light scattering (DLS) technique was used for studying the processes of aggregation of spherical SiO2 particles in various diethylene glycol (DEG) suspensions. The suspensions were studied in a cuvette, in a millimeter-sized droplet and in a micrometer-sized droplet. For the first time DLS signals for droplets of picolitre volume, levitated in an electrodynamic quadrupole trap, were obtained. It is shown that the correlation analysis of light scattered from a micro-droplet allows monitoring the changes of its internal structure, as well as its motions: trap-constricted Brownian motions and random rotations.

  16. Sodium dopants in helium clusters: Structure, equilibrium and submersion kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvo, F.

    Alkali impurities bind to helium nanodroplets very differently depending on their size and charge state, large neutral or charged dopants being wetted by the droplet whereas small neutral impurities prefer to reside aside. Using various computational modeling tools such as quantum Monte Carlo and path-integral molecular dynamics simulations, we have revisited some aspects of the physical chemistry of helium droplets interacting with sodium impurities, including the onset of snowball formation in presence of many-body polarization forces, the transition from non-wetted to wetted behavior in larger sodium clusters, and the kinetics of submersion of small dopants after sudden ionization.

  17. Constructing simple yet accurate potentials for describing the solvation of HCl/water clusters in bulk helium and nanodroplets.

    PubMed

    Boese, A Daniel; Forbert, Harald; Masia, Marco; Tekin, Adem; Marx, Dominik; Jansen, Georg

    2011-08-28

    The infrared spectroscopy of molecules, complexes, and molecular aggregates dissolved in superfluid helium clusters, commonly called HElium NanoDroplet Isolation (HENDI) spectroscopy, is an established, powerful experimental technique for extracting high resolution ro-vibrational spectra at ultra-low temperatures. Realistic quantum simulations of such systems, in particular in cases where the solute is undergoing a chemical reaction, require accurate solute-helium potentials which are also simple enough to be efficiently evaluated over the vast number of steps required in typical Monte Carlo or molecular dynamics sampling. This precludes using global potential energy surfaces as often parameterized for small complexes in the realm of high-resolution spectroscopic investigations that, in view of the computational effort imposed, are focused on the intermolecular interaction of rigid molecules with helium. Simple Lennard-Jones-like pair potentials, on the other hand, fall short in providing the required flexibility and accuracy in order to account for chemical reactions of the solute molecule. Here, a general scheme of constructing sufficiently accurate site-site potentials for use in typical quantum simulations is presented. This scheme employs atom-based grids, accounts for local and global minima, and is applied to the special case of a HCl(H(2)O)(4) cluster solvated by helium. As a first step, accurate interaction energies of a helium atom with a set of representative configurations sampled from a trajectory following the dissociation of the HCl(H(2)O)(4) cluster were computed using an efficient combination of density functional theory and symmetry-adapted perturbation theory, i.e. the DFT-SAPT approach. For each of the sampled cluster configurations, a helium atom was placed at several hundred positions distributed in space, leading to an overall number of about 400,000 such quantum chemical calculations. The resulting total interaction energies, decomposed into several energetic contributions, served to fit a site-site potential, where the sites are located at the atomic positions and, additionally, pseudo-sites are distributed along the lines joining pairs of atom sites within the molecular cluster. This approach ensures that this solute-helium potential is able to describe both undissociated molecular and dissociated (zwitter-) ionic configurations, as well as the interconnecting reaction pathway without re-adjusting partial charges or other parameters depending on the particular configuration. Test calculations of the larger HCl(H(2)O)(5) cluster interacting with helium demonstrate the transferability of the derived site-site potential. This specific potential can be readily used in quantum simulations of such HCl/water clusters in bulk helium or helium nanodroplets, whereas the underlying construction procedure can be generalized to other molecular solutes in other atomic solvents such as those encountered in rare gas matrix isolation spectroscopy.

  18. Phase stability and photocatalytic activity of Zr-doped anatase synthesized in miniemulsion

    NASA Astrophysics Data System (ADS)

    Schiller, Renate; Weiss, Clemens K.; Landfester, Katharina

    2010-10-01

    A series of mesoporous anatase-type TiO2 doped with zirconium (0-50 mol% Zr) was synthesized by combining the sol-gel process with the inverse miniemulsion technique. Nanoparticles between 100 and 300 nm were directly prepared from acidic precursor solutions of titanium glycolate (EGMT) and zirconium isopropoxide. The miniemulsion technique is a simple and convenient method to synthesize nanoparticles of homogeneous size because the reactions (here hydrolysis and condensation) take place in the confined space of nanodroplets (several hundreds of nanometres) and therefore in a highly controlled manner. For low doping levels (0-7.1 mol% Zr), ZrxTi1 - xO2 solid solutions were formed where Zr was uniformly dispersed into the anatase framework. For higher amounts of zirconium (Zr >= 7.1 mol%), the crystallization of zirconium titanate (ZrTiO4) occurred at a low temperature of 650 °C and it was obtained as a pure material for 47.4 mol% <= Zr <= 50 mol%. The influence of the amount of zirconium on the crystallinity, crystallite size, phase composition and stability, morphology and specific surface area was investigated. For the characterization transmission electron microscopy (TEM), x-ray diffraction (XRD), nitrogen sorption (BET) and inductively coupled plasma-optical emission spectrometry (ICP-OES) were used. The photocatalytic activity of the crystalline mixed oxides (0-9.4 mol% Zr) was examined for the degradation of methylene blue under UV irradiation.

  19. Multifunctional role of osteopontin in directing intrafibrillar mineralization of collagen and activation of osteoclasts

    PubMed Central

    Rodriguez, Douglas E.; Thula-Mata, Taili; Toro, Edgardo J.; Yeh, Ya-Wen; Holt, Carl; Holliday, L. Shannon; Gower, Laurie B.

    2013-01-01

    Mineralized collagen composites are of interest because they have the potential to provide a bone-like scaffold that stimulates the natural processes of resorption and remodeling. Working toward this goal, our group has previously shown that the nanostructure of bone can be reproduced using a polymer-induced liquid-precursor (PILP) process, which enables intrafibrillar mineralization of collagen with hydroxyapatite (HA) to be achieved. This prior work used polyaspartic acid (pASP), a simple mimic for acidic non-collagenous proteins (NCPs), to generate nanodroplets/nanoparticles of an amorphous mineral precursor which can infiltrate the interstices of type-I collagen fibrils. In this study we show that osteopontin (OPN) can similarly serve as a process-directing agent for the intrafibrillar mineralization of collagen, even though OPN is generally considered a mineralization inhibitor. We also found that inclusion of OPN in the mineralization process promotes the interaction of mouse marrow-derived osteoclasts with PILP-remineralized bone that was previously demineralized, as measured by actin ring formation. While osteoclast activation occurred when pASP was used as the process-directing agent, using OPN resulted in a dramatic effect on osteoclast activation, presumably because of the inherent arginine-glycine-aspartate acid (RGD) ligands of OPN. By capitalizing on the multifunctionality of OPN, these studies may lead the way to producing biomimetic bone substitutes with the capability of tailorable bioresorption rates. PMID:24140612

  20. Influence of steaming explosion time on the physic-chemical properties of cellulose from Lespedeza stalks (Lespedeza crytobotrya).

    PubMed

    Wang, Kun; Jiang, Jian-Xin; Xu, Feng; Sun, Run-Cang

    2009-11-01

    The synergistic effect of steam explosion pretreatment and sodium hydroxide post-treatment of Lespedeza stalks (Lespedeza crytobotrya) has been investigated in this study. In this case, Lespedeza stalks were firstly exploded at a fixed steam pressure (22.5 kg/m(2)) for 2-10 min. Then the steam-exploded Lespedeza stalks was extracted with 1 M NaOH at 50 degrees C for 3 h with a shrub to water ratio of 1:20 (g/ml), which yielded 57.3%, 53.1%, 55.4%, 52.8%, 53.2%, and 56.4% (% dry weight) cellulose rich fractions, comparing to 68.0% from non-steam-exploded material. The content of glucose in cellulose rich residues increased with increment of the steaming time and reached to 94.10% at the most severity. The similar increasing trend occurred during the dissolution of hemicelluloses. It is evident that at shorter steam explosion time, autohydrolysis mainly occurred on the hemicelluloses and the amorphous area of cellulose. The crystalline region of cellulose was depolymerized under a prolonged incubation time. The characteristics of the cellulose rich fractions in terms of FT-IR and CP/MAS (13)C NMR spectroscopy and thermal analysis were discussed, and the surface structure was also investigated by SEM.

  1. Steam explosion of oil palm residues for the production of durable pellets

    DOE PAGES

    Lam, Pak Sui; Lam, Pak Yiu; Sokhansanj, Shahab; ...

    2015-01-03

    Here we investigated the effect of steam explosion pretreatment on the physical and mechanical properties of the pellets made from empty fruit bunch (EFB) and palm kernel shell (PKS) and we compared to that of softwood Douglas fir (DF). We found that the high heating value of the empty fruit bunch was increased by 21% after steam explosion pretreatment. The pellet density of EFB and Douglas fir pellets did not change while the pellet density of PKS increased from 1.13 to 1.21 g/cm 3 after steam explosion. That may be attributed to the rapid volatilization of high mass fraction extractivesmore » during high pressure steaming and lead to the shrinkage of micropores of the PKS fibers. The maximum brealdng strength of steam exploded EFB and PKS were increased by 63% and 45%, respectively. The required compaction energy for the steam exploded EFB pellet is 44.50 J/g while that of the untreated EFB pellet is 30.15 J/g. Similar to Douglas fir, the required extrusion energy for the steam exploded EFB pellet was about 6 times than that of the untreated EFB pellet. The increased extrusion energy is mainly contributed by the increase in mono-saccharides by auto-hydrolysis during steam explosion pretreatment.« less

  2. Steam explosion of oil palm residues for the production of durable pellets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Pak Sui; Lam, Pak Yiu; Sokhansanj, Shahab

    Here we investigated the effect of steam explosion pretreatment on the physical and mechanical properties of the pellets made from empty fruit bunch (EFB) and palm kernel shell (PKS) and we compared to that of softwood Douglas fir (DF). We found that the high heating value of the empty fruit bunch was increased by 21% after steam explosion pretreatment. The pellet density of EFB and Douglas fir pellets did not change while the pellet density of PKS increased from 1.13 to 1.21 g/cm 3 after steam explosion. That may be attributed to the rapid volatilization of high mass fraction extractivesmore » during high pressure steaming and lead to the shrinkage of micropores of the PKS fibers. The maximum brealdng strength of steam exploded EFB and PKS were increased by 63% and 45%, respectively. The required compaction energy for the steam exploded EFB pellet is 44.50 J/g while that of the untreated EFB pellet is 30.15 J/g. Similar to Douglas fir, the required extrusion energy for the steam exploded EFB pellet was about 6 times than that of the untreated EFB pellet. The increased extrusion energy is mainly contributed by the increase in mono-saccharides by auto-hydrolysis during steam explosion pretreatment.« less

  3. The Limit of Free Magnetic Energy in Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2012-01-01

    By measuring from active-region magnetograms a proxy of the free energy in the active region fs magnetic field, it has been found previously that (1) there is an abrupt upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region fs magnetic flux content, and (2) the free energy is usually near its limit when the field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy ]limit line in (flux content, free-energy proxy) phase space. Here, from measurement of Marshall Space Flight Center vector magnetograms, we find the magnetic condition that underlies the free ]energy limit and the accompanying main sequence of explosive active regions. Using a suitable free ]energy proxy measured from vector magnetograms of 44 active regions, we find that (1) in active regions at and near their free ]energy limit, the ratio of magnetic-shear free energy to the non ]free magnetic energy the potential field would have is approximately 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free ]energy limit. This shows that most active regions in which this core-field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1 or greater, most active regions are compelled to explode. From these results we surmise the magnetic condition that determines the free ]energy limit is the ratio of the free magnetic energy to the non-free energy the active region fs field would have were it completely relaxed to its potential ]field configuration, and that this ratio is approximately 1 at the free-energy limit and in the main sequence of explosive active regions.

  4. Construction Management--Exploding Some Myths.

    ERIC Educational Resources Information Center

    Kluenker, Charles

    1986-01-01

    Construction management on educational facility projects provides boards of education with documentation showing the project is on track. Eight "myths" surrounding construction management are explained. (MLF)

  5. Rydberg States of Alkali Metal Atoms on Superfluid Helium Droplets - Theoretical Considerations

    NASA Astrophysics Data System (ADS)

    Pototschnig, Johann V.; Lackner, Florian; Hauser, Andreas W.; Ernst, Wolfgang E.

    2017-06-01

    The bound states of electrons on the surface of superfluid helium have been a research topic for several decades. One of the first systems treated was an electron bound to an ionized helium cluster. Here, a similar system is considered, which consists of a helium droplet with an ionized dopant inside and an orbiting electron on the outside. In our theoretical investigation we select alkali metal atoms (AK) as central ions, stimulated by recent experimental studies of Rydberg states for Na, Rb, and Cs attached to superfluid helium nanodroplets. Experimental spectra , obtained by electronic excitation and subsequent ionization, showed blueshifts for low lying electronic states and redshifts for Rydberg states. In our theoretical treatment the diatomic AK^+-He potential energy curves are first computed with ab initio methods. These potentials are then used to calculate the solvation energy of the ion in a helium droplet as a function of the number of atoms. Additional potential terms, derived from the obtained helium density distribution, are added to the undisturbed atomic pseudopotential in order to simulate a 'modified' potential felt by the outermost electron. This allows us to compute a new set of eigenstates and eigenenergies, which we compare to the experimentally observed energy shifts for highly excited alkali metal atoms on helium nanodroplets. A. Golov and S. Sekatskii, Physica B, 1994, 194, 555-556 E. Loginov, C. Callegari, F. Ancilotto, and M. Drabbels, J. Phys. Chem. A, 2011, 115, 6779-6788 F. Lackner, G. Krois, M. Koch, and W. E. Ernst, J. Phys. Chem. Lett., 2012, 3, 1404-1408 F. Lackner, G. Krois, M. Theisen, M. Koch, and W. E. Ernst, Phys. Chem. Chem. Phys., 2011, 13, 18781-18788

  6. Direct NMR Monitoring of Phase Separation Behavior of Highly Supersaturated Nifedipine Solution Stabilized with Hypromellose Derivatives.

    PubMed

    Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu

    2017-07-03

    We investigated the phase separation behavior and maintenance mechanism of the supersaturated state of poorly water-soluble nifedipine (NIF) in hypromellose (HPMC) derivative solutions. Highly supersaturated NIF formed NIF-rich nanodroplets through phase separation from aqueous solution containing HPMC derivative. Dissolvable NIF concentration in the bulk water phase was limited by the phase separation of NIF from the aqueous solution. HPMC derivatives stabilized the NIF-rich nanodroplets and maintained the NIF supersaturation with phase-separated NIF for several hours. The size of the NIF-rich phase was different depending on the HPMC derivatives dissolved in aqueous solution, although the droplet size had no correlation with the time for which NIF supersaturation was maintained without NIF crystallization. HPMC acetate and HPMC acetate succinate (HPMC-AS) effectively maintained the NIF supersaturation containing phase-separated NIF compared with HPMC. Furthermore, HPMC-AS stabilized NIF supersaturation more effectively in acidic conditions. Solution 1 H NMR measurements of NIF-supersaturated solution revealed that HPMC derivatives distributed into the NIF-rich phase during the phase separation of NIF from the aqueous solution. The hydrophobicity of HPMC derivative strongly affected its distribution into the NIF-rich phase. Moreover, the distribution of HPMC-AS into the NIF-rich phase was promoted at lower pH due to the lower aqueous solubility of HPMC-AS. The distribution of a large amount of HPMC derivatives into NIF-rich phase induced the strong inhibition of NIF crystallization from the NIF-rich phase. Polymer distribution into the drug-rich phase directly monitored by solution NMR technique can be a useful index for the stabilization efficiency of drug-supersaturated solution containing a drug-rich phase.

  7. Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network.

    PubMed

    Zhu, Chongqin; Gao, Yurui; Li, Hui; Meng, Sheng; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-11-15

    Hydrophobicity of macroscopic planar surface is conventionally characterized by the contact angle of water droplets. However, this engineering measurement cannot be directly extended to surfaces of proteins, due to the nanometer scale of amino acids and inherent nonplanar structures. To measure the hydrophobicity of side chains of proteins quantitatively, numerous parameters were developed to characterize behavior of hydrophobic solvation. However, consistency among these parameters is not always apparent. Herein, we demonstrate an alternative way of characterizing hydrophobicity of amino acid side chains in a protein environment by constructing a monolayer of amino acids (i.e., artificial planar peptide network) according to the primary and the β-sheet secondary structures of protein so that the conventional engineering measurement of the contact angle of a water droplet can be brought to bear. Using molecular dynamics simulations, contact angles θ of a water nanodroplet on the planar peptide network, together with excess chemical potentials of purely repulsive methane-sized Weeks-Chandler-Andersen solute, are computed. All of the 20 types of amino acids and the corresponding planar peptide networks are studied. Expectedly, all of the planar peptide networks with nonpolar amino acids are hydrophobic due to θ [Formula: see text] 90°, whereas all of the planar peptide networks of the polar and charged amino acids are hydrophilic due to θ [Formula: see text] 90°. Planar peptide networks of the charged amino acids exhibit complete-wetting behavior due to θ [Formula: see text] 0°. This computational approach for characterization of hydrophobicity can be extended to artificial planar networks of other soft matter.

  8. Stimulated phase-shift acoustic nanodroplets enhance vancomycin efficacy against methicillin-resistant Staphylococcus aureus biofilms.

    PubMed

    Guo, Hao; Wang, Ziming; Du, Quanyin; Li, Pan; Wang, Zhigang; Wang, Aimin

    2017-01-01

    Bacterial biofilms on the surface of prostheses are becoming a rising concern in managing prosthetic joint infections. The inherent resistant features of biofilms render traditional antimicrobial therapy unproductive and revision surgery outcomes uncertain. This situation has prompted the exploration of novel antimicrobial strategies. The synergy of ultrasound microbubbles and vancomycin has been proposed as an efficient alternative for biofilm eradication. The purpose of this study was to evaluate the anti-biofilm effect of stimulated phase-shift acoustic nanodroplets (NDs) combined with vancomycin. We fabricated lipid phase-shift NDs with a core of liquid perfluoropentane. A new phase change mode for NDs incorporating an initial unfocused low-intensity pulsed ultrasound for 5 minutes and a subsequent incubation at 37°C into a 24-hour duration was developed. Methicillin-resistant Staphylococcus aureus (MRSA) biofilms were incubated with vancomycin and NDs under the hybrid stimulation. Biofilm morphology following treatment was determined using confocal laser scanning microscopy and scanning electron microscopy. Resazurin assay was used to quantify bactericidal efficacy against MRSA biofilm bacteria. NDs treated sequentially with ultrasound and heating at 37°C achieved gradual and substantial ND vaporization and cavitation in a successive process. NDs after stimulation were capable of generating stronger destruction on biofilm structure which was best characterized by residual circular arc margins and more dead bacteria. Furthermore, NDs combined with vancomycin contributed to significantly decreasing the metabolic activity of bacteria in MRSA biofilms ( P <0.05). Phase-shift acoustic NDs could exert a significant bactericidal effect against MRSA biofilms through a new stimulation mode. Acoustic NDs present advantages over microbubbles for biofilm damage. This anti-biofilm strategy could be used either alone or as an enhancer of traditional antibiotics in the control of prosthetic joint infections.

  9. Quantum cascade laser spectroscopy of OCS isotopologues in 4He nanodroplets: A test of adiabatic following for a heavy rotor

    NASA Astrophysics Data System (ADS)

    Faulkner, Ty; Miller, Isaac; Raston, Paul L.

    2018-01-01

    We report high-resolution infrared spectra of OCS isotopologues embedded in helium nanodroplets that were recorded with a newly built spectrometer. For the normal isotopologue, we observed the relatively weak third bending overtone band, in addition to new high J transitions in the C-O stretching fundamental, which has previously been investigated by diode laser spectroscopy [S. Grebenev et al., J. Chem. Phys. 112, 4485 (2000)]. Similar to the gas phase, the overtone band is (only) 45 cm-1 higher in energy than the fundamental, and this leads to additional broadening due to rapid vibrational relaxation that is accompanied by the creation of real/virtual phonon excitations. We also observed spectra in the C-O stretching fundamental for several minor isotopologues of OCS, including 18OCS, O13CS, and OC33S, in addition to some new peaks for OC34S. A rovibrational analysis allowed for determination of the moment of inertia of helium (ΔIHe) that couples to the rotation of OCS for each isotopologue. In the context of the adiabatic following approximation, the helium density structure that follows the rotation of OCS should essentially remain unchanged between the isotopologues, i.e., there should be no dependence of ΔIHe on the gas phase moment of inertia of OCS (IG). While this behavior was expected for the "heavy" OCS rotor investigated here, we instead found an approximately linear 1:1 relation between ΔIHe and IG, which suggests partial breakdown of the adiabatic following approximation, making OCS the heaviest molecule for which evidence for this effect has been obtained.

  10. Power and energy of exploding wires

    DOE PAGES

    Valancius, Cole J.; Garasi, Christopher J.; O?Malley, Patrick D.

    2017-01-01

    Exploding wires are used in many high-energy applications, such as initiating explosives. Previous work analyzing gold wire burst in detonator applications has shown burst current and action metrics to be inconsistent with burst phenomenon across multiple firing-sets. Energy density better captures the correlation between different wire geometries, different electrical inputs, and explosive initiation. This idea has been expanded upon, to analyze the burst properties in power-energy space. Further inconsistencies in the understanding of wire burst and its relation to peak voltage have been found. An argument will be made for redefining the definition of burst. The result is a moremore » broad understanding of rapid metal phase transition and the initiation of explosives in EBW applications.« less

  11. Records for conversion of laser energy to nuclear energy in exploding nanostructures

    NASA Astrophysics Data System (ADS)

    Jortner, Joshua; Last, Isidore

    2017-09-01

    Table-top nuclear fusion reactions in the chemical physics laboratory can be driven by high-energy dynamics of Coulomb exploding, multicharged, deuterium containing nanostructures generated by ultraintense, femtosecond, near-infrared laser pulses. Theoretical-computational studies of table-top laser-driven nuclear fusion of high-energy (up to 15 MeV) deuterons with 7Li, 6Li and D nuclei demonstrate the attainment of high fusion yields within a source-target reaction design, which constitutes the highest table-top fusion efficiencies obtained up to date. The conversion efficiency of laser energy to nuclear energy (0.1-1.0%) for table-top fusion is comparable to that for DT fusion currently accomplished for 'big science' inertial fusion setups.

  12. Detonator Performance Characterization using Multi-Frame Laser Schlieren Imaging

    NASA Astrophysics Data System (ADS)

    Clarke, Steven; Landon, Colin; Murphy, Michael; Martinez, Michael; Mason, Thomas; Thomas, Keith

    2009-06-01

    Multi-frame Laser Schlieren Imaging of shock waves produced by detonators in transparent witness materials can be used to evaluate detonator performance. We use inverse calculations of the 2D propagation of shock waves in the EPIC finite element model computer code to calculate a temporal-spatial-pressure profile on the surface of the detonator that is consistent with the experimental shock waves from the schlieren imaging. Examples of calculated 2D temporal-spatial-pressure profiles from a range of detonator types (EFI --exploding foil initiators, DOI -- direct optical initiation, EBW -- exploding bridge wire, hotwire), detonator HE materials (PETN, HMX, etc), and HE densities. Also pressure interaction profiles from the interaction of multiple shock waves will be shown. LA-UR-09-00909.

  13. Power and energy of exploding wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valancius, Cole J.; Garasi, Christopher J.; O?Malley, Patrick D.

    Exploding wires are used in many high-energy applications, such as initiating explosives. Previous work analyzing gold wire burst in detonator applications has shown burst current and action metrics to be inconsistent with burst phenomenon across multiple firing-sets. Energy density better captures the correlation between different wire geometries, different electrical inputs, and explosive initiation. This idea has been expanded upon, to analyze the burst properties in power-energy space. Further inconsistencies in the understanding of wire burst and its relation to peak voltage have been found. An argument will be made for redefining the definition of burst. The result is a moremore » broad understanding of rapid metal phase transition and the initiation of explosives in EBW applications.« less

  14. Three Great Eyes on Kepler's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Composite

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Chandra X-Ray Data (blue) Chandra X-Ray Data (green)Hubble Telescope (visible-light)Spitzer Telescope (infrared)

    NASA's three Great Observatories -- the Hubble Space Telescope, the Spitzer Space Telescope, and the Chandra X-ray Observatory -- joined forces to probe the expanding remains of a supernova, called Kepler's supernova remnant, first seen 400 years ago by sky watchers, including astronomer Johannes Kepler.

    The combined image unveils a bubble-shaped shroud of gas and dust that is 14 light-years wide and is expanding at 4 million miles per hour (2,000 kilometers per second). Observations from each telescope highlight distinct features of the supernova remnant, a fast-moving shell of iron-rich material from the exploded star, surrounded by an expanding shock wave that is sweeping up interstellar gas and dust.

    Each color in this image represents a different region of the electromagnetic spectrum, from X-rays to infrared light. These diverse colors are shown in the panel of photographs below the composite image. The X-ray and infrared data cannot be seen with the human eye. By color-coding those data and combining them with Hubble's visible-light view, astronomers are presenting a more complete picture of the supernova remnant.

    Visible-light images from the Hubble telescope (colored yellow) reveal where the supernova shock wave is slamming into the densest regions of surrounding gas. The bright glowing knots are dense clumps from instabilities that form behind the shock wave. The Hubble data also show thin filaments of gas that look like rippled sheets seen edge-on. These filaments reveal where the shock wave is encountering lower-density, more uniform interstellar material.

    The Spitzer telescope shows microscopic dust particles (colored red) that have been heated by the supernova shock wave. The dust re-radiates the shock wave's energy as infrared light. The Spitzer data are brightest in the regions surrounding those seen in detail by the Hubble telescope.

    The Chandra X-ray data show regions of very hot gas, and extremely high-energy particles. The hottest gas (higher-energy X-rays, colored blue) is located primarily in the regions directly behind the shock front. These regions also show up in the Hubble observations, and also align with the faint rim of glowing material seen in the Spitzer data. The X-rays from the region on the lower left (colored blue) may be dominated by extremely high-energy electrons that were produced by the shock wave and are radiating at radio through X-ray wavelengths as they spiral in the intensified magnetic field behind the shock front. Cooler X-ray gas (lower-energy X-rays, colored green) resides in a thick interior shell and marks the location of heated material expelled from the exploded star.

    Kepler's supernova, the last such object seen to explode in our Milky Way galaxy, resides about 13,000 light-years away in the constellation Ophiuchus.

    The Chandra observations were taken in June 2000, the Hubble in August 2003; and the Spitzer in August 2004.

  15. Competing Liquid Phase Instabilities during Pulsed Laser Induced Self-Assembly of Copper Rings into Ordered Nanoparticle Arrays on SiO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Y.; Fowlkes, J. D.; Roberts, N. A.

    Nanoscale copper rings of different radii, thicknesses, and widths were synthesized on silicon dioxide thin films and were subsequently liquefied via a nanosecond pulse laser treatment. During the nanoscale liquid lifetimes, the rings experience competing retraction dynamics and thin film and/or Rayleigh-Plateau types of instabilities, which lead to arrays of ordered nanodroplets. Surprisingly, the results are significantly different from those of similar experiments carried out on a Si surface.(1) We use hydrodynamic simulations to elucidate how the different liquid/solid interactions control the different instability mechanisms in the present problem.

  16. Small-angle x-ray scattering measurement of a mist of ethanol nanodroplets: An approach to understanding ultrasonic separation of ethanol-water mixtures

    NASA Astrophysics Data System (ADS)

    Yano, Yohko F.; Matsuura, Kazuo; Fukazu, Tetsuo; Abe, Fusatsugu; Wakisaka, Akihiro; Kobara, Hitomi; Kaneko, Kazuyuki; Kumagai, Atsushi; Katsuya, Yoshio; Tanaka, Masahiko

    2007-07-01

    Small-angle x-ray scattering measurements using a brilliant x-ray source revealed nanometer sized liquid droplets in a mist formed by ultrasonic atomization. Ultrasonic atomization of ethanol-water mixtures produced a combination of water-rich droplets of micrometer order and ethanol-rich droplets as small as 1nm, which is 10-3 times smaller than the predicted size. These sizes were also obtained for mists generated from the pure liquids. These results will help to clarify the mechanism of "ultrasonic ethanol separation," which has the potential to become an alternative to distillation.

  17. Three types of cavitation caused by air seeding.

    PubMed

    Shen, Fanyi; Wang, Yuansheng; Cheng, Yanxia; Zhang, Li

    2012-11-01

    There are different opinions of the dynamics of an air bubble entering a xylem conduit. In this paper, we present a thorough mechanical analysis and conclude that there are three types of cavitation caused by air seeding. After an air seed enters a conduit at high xylem pressure P'(1), along with the drop of the water potential, it will expand gradually to a long-shaped bubble and extend continually. This is the first type of air seeding, or the type of expanding gradually. When the xylem pressure is moderate, right after an air seed enters a conduit, it will expand first. Then, as soon as the pressure reaches a threshold the bubble will blow up to form a bubble in long shape, accompanied by acoustic (or ultra-acoustic) emission. It will extend further as xylem pressure decreases continually. This is the second type of air seeding, or the type of expanding-exploding, becoming a long-shaped bubble-lengthening by degrees. In the range of P'(1) ≤ - 3P(o) (P(o) is atmospheric pressure), soon after an air seed is sucked into a conduit it will explode immediately and the conduit will be full of the gas of the bubble instantly. This is the third type of air seeding, or the type of sudden exploding and filling conduit instantly. The third type is the frequent event in daily life of plant.

  18. Effects of load voltage on voltage breakdown modes of electrical exploding aluminum wires in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jian; Li, Xingwen, E-mail: xwli@mail.xjtu.edu.cn; Yang, Zefeng

    The effects of the load voltage on the breakdown modes are investigated in exploding aluminum wires driven by a 1 kA, 0.1 kA/ns pulsed current in air. From laser probing images taken by laser shadowgraphy, schlieren imaging, and interferometry, the position of the shockwave front, the plasma channel, and the wire core edge of the exploding product can be determined. The breakdown mode makes a transition from the internal mode, which involves breakdown inside the wire core, to the shunting mode, which involves breakdown in the compressed air, with decreasing charging voltage. The breakdown electrical field for a gaseous aluminum wire coremore » of nearly solid density is estimated to be more than 20 kV/cm, while the value for gaseous aluminum of approximately 0.2% solid density decreases to 15–20 kV/cm. The breakdown field in shunting mode is less than 20 kV/cm and is strongly affected by the vaporized aluminum, the desorbed gas, and the electrons emitted from the wire core during the current pause. Ohmic heating during voltage collapses will induce further energy deposition in the current channel and thus will result in different expansion speeds for both the wire core and the shockwave front in the different modes.« less

  19. Household Chemical Emergencies

    MedlinePlus

    ... ammonia, may react, ignite or explode. Never use hair spray, cleaning solutions, paint products, or pesticides near an open flame Clean up any chemical spill immediately. Allow the fumes in the rags ...

  20. Breakdown dynamics of electrically exploding thin metal wires in vacuum

    NASA Astrophysics Data System (ADS)

    Sarkisov, G. S.; Caplinger, J.; Parada, F.; Sotnikov, V. I.

    2016-10-01

    Using a two-frame intensified charge coupled device (iCCD) imaging system with a 2 ns exposure time, we observed the dynamics of voltage breakdown and corona generation in experiments of fast ns-time exploding fine Ni and stainless-steel (SS) wires in a vacuum. These experiments show that corona generation along the wire surface is subjected to temporal-spatial inhomogeneity. For both metal wires, we observed an initial generation of a bright cathode spot before the ionization of the entire wire length. This cathode spot does not expand with time. For 25.4 μm diameter Ni and SS wire explosions with positive polarity, breakdown starts from the ground anode and propagates to the high voltage cathode with speeds approaching 3500 km/s or approximately one percent of light speed.

  1. Fireworks and the eye.

    PubMed Central

    Vernon, S A

    1988-01-01

    A prospective study involving all casualty departments in Trent Region and 81% of the major eye units in UK was performed to determine ocular morbidity from the use of fireworks during 1986. A serious injury was defined as involving admission to hospital and/or intraocular damage. Of all the injuries from fireworks, 16.7% seen at major eye units were serious and were caused by rockets or exploding fireworks (P less than 0.001). Only 53% of all injuries and 12.5% of serious injuries involved children, and in contrast to the 1950s and early 1960s, young adults appear at greatest risk in the 1980s. Legislation to reduce ocular morbidity should concentrate on restricting the use of rockets and exploding fireworks and encouraging the use of suitable eye protection. PMID:3184088

  2. Exploding head syndrome: a case report.

    PubMed

    Ganguly, Gautam; Mridha, Banshari; Khan, Asif; Rison, Richard Alan

    2013-01-01

    Exploding head syndrome (EHS) is a rare parasomnia in which affected individuals awaken from sleep with the sensation of a loud bang. The etiology is unknown, but other conditions including primary and secondary headache disorders and nocturnal seizures need to be excluded. A 57-year-old Indian male presented with four separate episodes of awakening from sleep at night after hearing a flashing sound on the right side of his head over the last 2 years. These events were described 'as if there are explosions in my head'. A neurologic examination, imaging studies, and a polysomnogram ensued, and the results led to the diagnosis of EHS. EHS is a benign, uncommon, predominately nocturnal disorder that is self-limited. No treatment is generally required. Reassurance to the patient is often all that is needed.

  3. On the Initiation Mechanism in Exploding Bridgewire and Laser Detonators

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott; Thomas, Keith A.; Clarke, S.; Mallett, H.; Martin, E.; Martinez, M.; Munger, A.; Saenz, Juan

    2006-07-01

    Since its invention by Los Alamos during the Manhattan Project era the exploding bridgewire detonator (EBW) has seen tremendous use and study. Recent development of a laser-powered device with detonation properties similar to an EBW is reviving interest in the basic physics of the deflagration-to-detonation (DDT) process in both of these devices. Cutback experiments using both laser interferometry and streak camera observations are providing new insight into the initiation mechanism in EBWs. These measurements are being correlated to a DDT model of compaction to detonation and shock to detonation developed previously by Xu and Stewart. The DDT model is incorporated into a high-resolution, multi-material model code for simulating the complete process. Model formulation and the modeling issues required to describe the test data will be discussed.

  4. Black Holes Categorization, Along with the Space(s) they Inhabit, to Explain the Astro-Geophysical Processes

    NASA Astrophysics Data System (ADS)

    Cimorelli, S. A.; Samuels, C.

    2011-12-01

    We define and categorize black holes (BH) and the space they inhabit. We describe mechanisms for their formation and mechanisms of black hole collisions and explosions/bursts, inside of the universe. These are linked to the formation of galaxies, stars, planets and planetary processes. Insight is gained regarding the formation and evolution of galaxies and the matter contained therein. Space itself must be categorized as to its purpose and properties as it relates to the various categories of black holes and processes ongoing within the space in which the processes occur. What we herein refer to as category-1 (c-1) black hole, formed the universe, by generating catagory-2 (c-2) black holes, say about 10% of which formed galaxies and 90% remain as dark matter in the form of c-2 BHs that are still evolving. C-1 BHs can explode/burst by collision or on their own, and give off great numbers (e.g., trillions) of c-2 BHs inside the universe, in c-2 space, which can become galaxies and which is the start of the universe. C-2 BHs can explode/burst and form a galaxy, containing c-3 space, filled with c-3 BHs. C-3 BHs are somewhat more modified and expanded than c-2 BHs and are formed from exploded/burst c-2 BHs on their own due to instabilities or by colliding with another c-2 BH and exploding/bursting to form gas and dust clouds peppered with c-3 BHs. Additionally, remnants from the exploded c-2 BH may include a range of sizes from minute particles that would contribute to the formation of massive gas and dust clouds peppered with the c-3 BHs; to about 10 to 20 solar masses that form large stars; and others, much smaller (tiny) stars that eventually become planets and moons. Some, eventually explode/burst inside the galaxy to produce the gas and dust clouds that we see inside the galaxy. These gas and dust clouds are peppered with c-4 BHs that eventually are seen as new stars forming in the dust clouds (described below). We envision three mechanisms (a,b,&c) for stellar origin, formation and evolution. The first type 'a' is well known (accepted); whereas, the other two 'b&c' are new and presented herein. The presently generally accepted process 'a,' consists of an accretion and gravitation process where mass comes together from interstellar gas and dust, left over from previous stars' deaths/explosions; or, from some other gas and dust accumulation. In addition, to this process, we propose a process 'b,' where a star originates as an expanded, modified Black Hole (BH) (described later with Figure 4) with none or little help from accretion/gravitation, begins to radiate, and continues to grow into a star. A third process 'c,' is also possible in which a star would originate from a combination of the two mechanisms 'a & b' described above. This latter mechanism is perhaps the most common type. This type starts as an expanded, modified BH inside of a gas and dust cloud. This, then serves as the nucleus that starts the subsequent accretion/gravitation process; however, it greatly accelerates the accretion/gravitation formation process as in the standard process. This mechanism could then explain how some super-cluster complexes, which have been estimated to take 40 to 60 billion years to form, can occur in a universe of a much younger age, as exists.

  5. Black Holes Categorization, along with the Space(s) they inhabit, to explain the Astro-Geophysical Processes

    NASA Astrophysics Data System (ADS)

    Cimorelli, S. A.; Samuels, C.

    2012-04-01

    We define and categorize black holes (BH) and the space they inhabit. We describe mechanisms for their formation and mechanisms of black hole collisions and explosions/bursts, inside of the universe. These are linked to the formation of galaxies, stars, planets and planetary processes. Insight is gained regarding the formation and evolution of galaxies and the matter contained therein. Space itself must be categorized as to its purpose and properties as it relates to the various categories of black holes and processes ongoing within the space in which the processes occur. What we herein refer to as category-1 (c-1) black hole, formed the universe, by generating catagory-2 (c-2) black holes, say about 10% of which formed galaxies and 90% remain as dark matter in the form of c-2 BHs that are still evolving. C-1 BHs can explode/burst by collision or on their own, and give off great numbers (e.g., trillions) of c-2 BHs inside the universe, in c-2 space, which can become galaxies and which is the start of the universe. C-2 BHs can explode/burst and form a galaxy, containing c-3 space, filled with c-3 BHs. C-3 BHs are somewhat more modified and expanded than c-2 BHs and are formed from exploded/burst c-2 BHs on their own due to instabilities or by colliding with another c-2 BH and exploding/bursting to form gas and dust clouds peppered with c-3 BHs. Additionally, remnants from the exploded c-2 BH may include a range of sizes from minute particles that would contribute to the formation of massive gas and dust clouds peppered with the c-3 BHs; to about 10 to 20 solar masses that form large stars; and others, much smaller (tiny) stars that eventually become planets and moons. Some, eventually explode/burst inside the galaxy to produce the gas and dust clouds that we see inside the galaxy. These gas and dust clouds are peppered with c-4 BHs that eventually are seen as new stars forming in the dust clouds (described below). We envision three mechanisms (a,b,&c) for stellar origin, formation and evolution. The first type 'a' is well known (accepted); whereas, the other two 'b&c' are new and presented herein. The presently generally accepted process 'a,' consists of an accretion and gravitation process where mass comes together from interstellar gas and dust, left over from previous stars' deaths/explosions; or, from some other gas and dust accumulation. In addition, to this process, we propose a process 'b,' where a star originates as an expanded, modified Black Hole (BH) (described later with Figure 4) with none or little help from accretion/gravitation, begins to radiate, and continues to grow into a star. A third process 'c,' is also possible in which a star would originate from a combination of the two mechanisms 'a & b' described above. This latter mechanism is perhaps the most common type. This type starts as an expanded, modified BH inside of a gas and dust cloud. This, then serves as the nucleus that starts the subsequent accretion/gravitation process; however, it greatly accelerates the accretion/gravitation formation process as in the standard process. This mechanism could then explain how some super-cluster complexes, which have been estimated to take 40 to 60 billion years to form, can occur in a universe of a much younger age of 13.5 billion, as exists.

  6. Characterization of lignin during oxidative and hydrothermal pre-treatment processes of wheat straw and corn stover.

    PubMed

    Kaparaju, Prasad; Felby, Claus

    2010-05-01

    The objective of the study was to characterize and map changes in lignin during hydrothermal and wet explosion pre-treatments of wheat straw and corn stover. Chemical composition, microscopic (atomic force microscopy and scanning electron microscopy) and spectroscopic (attenuated total reflectance Fourier transform infrared spectroscopy, ATR-FTIR) analyses were performed. Results showed that both pre-treatments improved the cellulose and lignin content with substantial removal of hemicellulose in the pre-treated biomasses. These values were slightly higher for hydrothermal compared to wet explosion pre-treatment. ATR-FTIR analyses also confirmed these results. Microscopic analysis showed that pre-treatments affected the biomass by partial difibration. Lignin deposition on the surface of the hydrothermally pre-treated fibre was very distinct while severe loss of fibril integrity was noticed with wet exploded fibre. The present study thus revealed that the lignin cannot be removed by the studied pre-treatments. However, both pre-treatments improved the accessibility of the biomass towards enzymatic hydrolysis. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Improved efficiency of butanol production by absorbed lignocellulose fermentation.

    PubMed

    He, Qin; Chen, Hongzhang

    2013-03-01

    Alkali-treated steam-exploded corn stover (SECSAT) was used as solid substrate for acetone-butanol-ethanol (ABE) production by absorbed lignocellulose fermentation (ALF) using Clostridium acetobutylicum ATCC 824. The ABE concentration in ALF culture had increased by 47% compared with that in submerged culture. More surprisingly, the acetone production was promoted and ethanol production was lower in the presence of SECSAT than that in its absence. ALF was also successfully in cofermentation of glucose and xylose, although decreased fermentability with an increase in the proportion of xylose. An invariable chemical composition and dry weight of SECSAT was found in ALF. Partial simultaneous saccharification and fermentation of SECSAT using a certain amount of cellulase could not only enhance the ABE concentration by 71%, but also significantly increase the area proportion of fiber cells in SECSAT from 53% to 90%, which would be an excellent paper making material. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. On Al-26 and other short-lived interstellar radioactivity

    NASA Technical Reports Server (NTRS)

    Clayton, Donald D.; Hartmann, Dieter H.; Leising, Mark D.

    1993-01-01

    Several authors have shown that massive stars exploding at a rate of about three per century can account for a large portion, if not all, of the observed interstellar Al-26. In a separate argument using models of Galactic chemical evolution, Clayton (1984) showed that the Al-26/Al-27 production ratio was not large enough to maintain enough Al-26 in the Galactic disk gas of about 10 exp 10 solar masses having solar composition. We present a resolution of those conflicting arguments. A past history of Galactic infall growing the Galactic disk so dilutes the stable Al-27 concentration that the two approaches can be brought into near agreement. If massive stars dominate the production of Al-26, we suggest that the apparent shortfall of their Al-26/Al-27 yield ratio is to be interpreted as evidence for significant growth of the Galactic disk. We also discuss the implications of these arguments for other extinct radioactivities in meteorites, using I-129 and Sm-146 as examples.

  9. How many human proteoforms are there?

    PubMed

    Aebersold, Ruedi; Agar, Jeffrey N; Amster, I Jonathan; Baker, Mark S; Bertozzi, Carolyn R; Boja, Emily S; Costello, Catherine E; Cravatt, Benjamin F; Fenselau, Catherine; Garcia, Benjamin A; Ge, Ying; Gunawardena, Jeremy; Hendrickson, Ronald C; Hergenrother, Paul J; Huber, Christian G; Ivanov, Alexander R; Jensen, Ole N; Jewett, Michael C; Kelleher, Neil L; Kiessling, Laura L; Krogan, Nevan J; Larsen, Martin R; Loo, Joseph A; Ogorzalek Loo, Rachel R; Lundberg, Emma; MacCoss, Michael J; Mallick, Parag; Mootha, Vamsi K; Mrksich, Milan; Muir, Tom W; Patrie, Steven M; Pesavento, James J; Pitteri, Sharon J; Rodriguez, Henry; Saghatelian, Alan; Sandoval, Wendy; Schlüter, Hartmut; Sechi, Salvatore; Slavoff, Sarah A; Smith, Lloyd M; Snyder, Michael P; Thomas, Paul M; Uhlén, Mathias; Van Eyk, Jennifer E; Vidal, Marc; Walt, David R; White, Forest M; Williams, Evan R; Wohlschlager, Therese; Wysocki, Vicki H; Yates, Nathan A; Young, Nicolas L; Zhang, Bing

    2018-02-14

    Despite decades of accumulated knowledge about proteins and their post-translational modifications (PTMs), numerous questions remain regarding their molecular composition and biological function. One of the most fundamental queries is the extent to which the combinations of DNA-, RNA- and PTM-level variations explode the complexity of the human proteome. Here, we outline what we know from current databases and measurement strategies including mass spectrometry-based proteomics. In doing so, we examine prevailing notions about the number of modifications displayed on human proteins and how they combine to generate the protein diversity underlying health and disease. We frame central issues regarding determination of protein-level variation and PTMs, including some paradoxes present in the field today. We use this framework to assess existing data and to ask the question, "How many distinct primary structures of proteins (proteoforms) are created from the 20,300 human genes?" We also explore prospects for improving measurements to better regularize protein-level biology and efficiently associate PTMs to function and phenotype.

  10. The big science of stockpile stewardship

    NASA Astrophysics Data System (ADS)

    Reis, Victor; Hanrahan, Robert; Levedahl, Kirk

    2017-11-01

    In the quarter century since the US last exploded a nuclear weapon, an extensive research enterprise has maintained the resources and know-how needed to preserve confidence in the country's stockpile.

  11. Middle School Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Describes activities, demonstrations, and materials suitable for middle school science, including investigations on solar energy, surface tension, exploding cottages, worms and light, airplanes, depolarizing simple cells, and the thermal expansion of metals. (JN)

  12. The Big Science of stockpile stewardship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reis, Victor H.; Hanrahan, Robert J.; Levedahl, W. Kirk

    2016-08-15

    In the quarter century since the US last exploded a nuclear weapon, an extensive research enterprise has maintained the resources and know-how needed to preserve confidence in the country’s stockpile.

  13. Dynamics of Exploding Plasma Within a Magnetized Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimonte, G; Dipeso, G; Hewett, D

    2002-02-01

    This memo describes several possible laboratory experiments on the dynamics of an exploding plasma in a background magnetized plasma. These are interesting scientifically and the results are applicable to energetic explosions in the earth's ionosphere (DOE Campaign 7 at LLNL). These proposed experiments are difficult and can only be performed in the new LAPD device at UCLA. The purpose of these experiments would be to test numerical simulations, theory and reduced models for systems performance codes. The experiments are designed to investigate the affect of the background plasma on (1) the maximum diamagnetic bubble radius given by Eq. 9; andmore » (2) the Alfven wave radiation efficiency produced by the induced current J{sub A} (Eqs. 10-12) These experiments involve measuring the bubble radius using a fast gated optical imager as in Ref [1] and the Alfven wave profile and intensity as in Ref [2] for different values of the exploding plasma energy, background plasma density and temperature, and background magnetic field. These experiments extend the previously successful experiments [2] on Alfven wave coupling. We anticipate that the proposed experiments would require 1-2 weeks of time on the LAPD. We would perform PIC simulations in support of these experiments in order to validate the codes. Once validated, the PIC simulations would then be able to be extended to realistic ionospheric conditions with various size explosions and altitudes. In addition to the Alfven wave coupling, we are interested in the magnetic containment and transport of the exploding ''debris'' plasma to see if the shorting of the radial electric field in the magnetic bubble would allow the ions to propagate further. This has important implications in an ionospheric explosion because it defines the satellite damage region. In these experiments, we would field fast gated optical cameras to obtain images of the plasma expansion, which could then be correlated with magnetic probe measurements. In this regard, it would be most helpful to have a more powerful laser more than 10J in order to increase the extent of the magnetic bubble.« less

  14. The Coronal-Dimming Footprint of a Streamer-Puff Coronal Mass Ejection: Confirmation of the Magnetic-Arch-Blowout Scenario

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.

    2007-01-01

    In this paper, for a CME of the particular variety recently identified by Bemporad et al (2005), we present new evidence that strengthens the conclusion of Bemporad et al that for these CMEs the pre-eruption magnetic field that explodes to drive the CME is laterally far offset from the radial path of the full-blown CME in the outer corona. In CMEs of the particular variety of those found by Bemporad et al, the flare-site field that explodes is much more compact than the flare-site fields that explode in most major flares and large CMEs, and is located in a flank of the base of a streamer. After presenting our new evidence for how CMEs of this variety are produced, we cite and discuss examples of larger flare-producing magnetic explosions that are not necessarily in a flank of a streamer but occur together with a large CME that in the outer corona is laterally far offset from the flare. We conclude that there is a broad class of CMEs that come from flare-producing magnetic explosions of various sizes and that are laterally far offset from the flare. We propose that all CMEs of this broad class are produced in basically the same way as those of the particular variety of the one that we present in this paper. In this paper, it is therefore convenient and useful to refer to this broad class of CMEs (regardless of the pre-eruption size of the offset field that explodes and whether or not this field is in the flank of a streamer), as "over-and-out" CMEs. Because the lack of recognition of this class of CMEs has contributed to the confusion and controversy regarding the relation between flares and CMEs (e.g., Kahler 1992; Gosling 1993; Hudson et al 1995), it is important that this class of CME have an explicit name. We adopt the name over-and-out CME because it is a needed descriptive term, especially for the purpose of this paper.

  15. We All Work on the Network.

    ERIC Educational Resources Information Center

    Charuhas, Chris

    2002-01-01

    The number of companies offering computer, soft skills, and management training has exploded in the last decade. The Internet has fragmented the training marketing, creating ne niches and reducing barriers to access. (JOW)

  16. After the Explosion: Investigating Supernova Sites

    NASA Image and Video Library

    2015-03-26

    A new study analyzes several sites where dead stars once exploded. The explosions, called Type Ia supernovae, occurred within galaxies, six of which are shown in these images from the Sloan Digital Sky Survey.

  17. Sloshing Star Goes Supernova

    NASA Image and Video Library

    2014-02-19

    NuSTAR has provided the first observational evidence in support of a theory that says exploding stars slosh around before detonating. That theory, referred to as mild asymmetries, is shown here in a simulation by Christian Ott.

  18. ScienceCast 93: What Happened Over Russia?

    NASA Image and Video Library

    2013-02-25

    Two weeks after an asteroid exploded over Russia's Ural mountains, scientists are making progress understanding the origin and make-up of the unexpected space rock. This week's ScienceCast presents their latest results.

  19. X-ray imaging of fibers

    NASA Astrophysics Data System (ADS)

    Moosman, B.; Song, Y.; Weathers, L.; Wessel, F.

    1996-11-01

    A pulsed x-ray backlighter was developed to image exploding wires and cryogenic fibers. The x-ray pulse width is between 10-20 ns, with an output of 100-150 mJ, mostly in the Al k-shell (1.486 keV). The backlighter is located 50 cm from the 20-50 micron diameter target (typically, a copper wire). A 15 micron Al filter eliminates UV emission from the backlighter and target. It is placed 3 cm from the target with SB-5 film directly behind it. From the optical density of the film, target absorption and density can be calculated. The spatial resolution of this system is better than 40 microns. The wire is exploded using a 10 kA, 1 microsecond pulser. Analysis with simultaneous Moire imaging will also be presented. Supported by Los Alamos National Laboratories

  20. Shock ion acceleration by an ultrashort circularly polarized laser pulse via relativistic transparency in an exploded target.

    PubMed

    Kim, Young-Kuk; Cho, Myung-Hoon; Song, Hyung Seon; Kang, Teyoun; Park, Hyung Ju; Jung, Moon Youn; Hur, Min Sup

    2015-10-01

    We investigated ion acceleration by an electrostatic shock in an exploded target irradiated by an ultrashort, circularly polarized laser pulse by means of one- and three-dimensional particle-in-cell simulations. We discovered that the laser field penetrating via relativistic transparency (RT) rapidly heated the upstream electron plasma to enable the formation of a high-speed electrostatic shock. Owing to the RT-based rapid heating and the fast compression of the initial density spike by a circularly polarized pulse, a new regime of the shock ion acceleration driven by an ultrashort (20-40 fs), moderately intense (1-1.4 PW) laser pulse is envisaged. This regime enables more efficient shock ion acceleration under a limited total pulse energy than a linearly polarized pulse with crystal laser systems of λ∼1μm.

  1. Exploding Head Syndrome: A Case Report

    PubMed Central

    Ganguly, Gautam; Mridha, Banshari; Khan, Asif; Rison, Richard Alan

    2013-01-01

    Introduction Exploding head syndrome (EHS) is a rare parasomnia in which affected individuals awaken from sleep with the sensation of a loud bang. The etiology is unknown, but other conditions including primary and secondary headache disorders and nocturnal seizures need to be excluded. Case Presentation A 57-year-old Indian male presented with four separate episodes of awakening from sleep at night after hearing a flashing sound on the right side of his head over the last 2 years. These events were described ‘as if there are explosions in my head’. A neurologic examination, imaging studies, and a polysomnogram ensued, and the results led to the diagnosis of EHS. Conclusion EHS is a benign, uncommon, predominately nocturnal disorder that is self-limited. No treatment is generally required. Reassurance to the patient is often all that is needed. PMID:23467433

  2. Convection- and SASI-driven flows in parametrized models of core-collapse supernova explosions

    DOE PAGES

    Endeve, E.; Cardall, C. Y.; Budiardja, R. D.; ...

    2016-01-21

    We present initial results from three-dimensional simulations of parametrized core-collapse supernova (CCSN) explosions obtained with our astrophysical simulation code General Astrophysical Simulation System (GenASIS). We are interested in nonlinear flows resulting from neutrino-driven convection and the standing accretion shock instability (SASI) in the CCSN environment prior to and during the explosion. By varying parameters in our model that control neutrino heating and shock dissociation, our simulations result in convection-dominated and SASI-dominated evolution. We describe this initial set of simulation results in some detail. To characterize the turbulent flows in the simulations, we compute and compare velocity power spectra from convection-dominatedmore » and SASI-dominated (both non-exploding and exploding) models. When compared to SASI-dominated models, convection-dominated models exhibit significantly more power on small spatial scales.« less

  3. Electron-capture and Low-mass Iron-core-collapse Supernovae: New Neutrino-radiation-hydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Radice, David; Burrows, Adam; Vartanyan, David; Skinner, M. Aaron; Dolence, Joshua C.

    2017-11-01

    We present new 1D (spherical) and 2D (axisymmetric) simulations of electron-capture (EC) and low-mass iron-core-collapse supernovae (SN). We consider six progenitor models: the ECSN progenitor from Nomoto; two ECSN-like low-mass low-metallicity iron-core progenitors from A. Heger (2016, private communication); and the 9, 10, and 11 {M}⊙ (zero-age main-sequence) progenitors from Sukhbold et al. We confirm that the ECSN and ESCN-like progenitors explode easily even in 1D with explosion energies of up to a 0.15 Bethes (1 {{B}}\\equiv {10}51 {erg}), and are a viable mechanism for the production of very-low-mass neutron stars. However, the 9, 10, and 11 {M}⊙ progenitors do not explode in 1D and are not even necessarily easier to explode than higher-mass progenitor stars in 2D. We study the effect of perturbations and of changes to the microphysics and we find that relatively small changes can result in qualitatively different outcomes, even in 1D, for models sufficiently close to the explosion threshold. Finally, we revisit the impact of convection below the protoneutron star (PNS) surface. We analyze 1D and 2D evolutions of PNSs subject to the same boundary conditions. We find that the impact of PNS convection has been underestimated in previous studies and could result in an increase of the neutrino luminosity by up to factors of two.

  4. Electron-capture and Low-mass Iron-core-collapse Supernovae: New Neutrino-radiation-hydrodynamics Simulations

    DOE PAGES

    Radice, David; Burrows, Adam; Vartanyan, David; ...

    2017-11-15

    We present new 1D (spherical) and 2D (axisymmetric) simulations of electron-capture (EC) and low-mass iron-core-collapse supernovae (SN). We consider six progenitor models: the ECSN progenitor from Nomoto; two ECSN-like low-mass low-metallicity iron-core progenitors from A. Heger (2016, private communication); and the 9, 10, and 11more » $${M}_{\\odot }$$ (zero-age main-sequence) progenitors from Sukhbold et al. We confirm that the ECSN and ESCN-like progenitors explode easily even in 1D with explosion energies of up to a 0.15 Bethes ($$1\\ {\\rm{B}}\\equiv {10}^{51}\\ \\mathrm{erg}$$), and are a viable mechanism for the production of very-low-mass neutron stars. However, the 9, 10, and 11 $${M}_{\\odot }$$ progenitors do not explode in 1D and are not even necessarily easier to explode than higher-mass progenitor stars in 2D. We study the effect of perturbations and of changes to the microphysics and we find that relatively small changes can result in qualitatively different outcomes, even in 1D, for models sufficiently close to the explosion threshold. Finally, we revisit the impact of convection below the protoneutron star (PNS) surface. We analyze 1D and 2D evolutions of PNSs subject to the same boundary conditions. Lastly, we find that the impact of PNS convection has been underestimated in previous studies and could result in an increase of the neutrino luminosity by up to factors of two.« less

  5. Electron-capture and Low-mass Iron-core-collapse Supernovae: New Neutrino-radiation-hydrodynamics Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radice, David; Burrows, Adam; Vartanyan, David

    We present new 1D (spherical) and 2D (axisymmetric) simulations of electron-capture (EC) and low-mass iron-core-collapse supernovae (SN). We consider six progenitor models: the ECSN progenitor from Nomoto; two ECSN-like low-mass low-metallicity iron-core progenitors from A. Heger (2016, private communication); and the 9, 10, and 11more » $${M}_{\\odot }$$ (zero-age main-sequence) progenitors from Sukhbold et al. We confirm that the ECSN and ESCN-like progenitors explode easily even in 1D with explosion energies of up to a 0.15 Bethes ($$1\\ {\\rm{B}}\\equiv {10}^{51}\\ \\mathrm{erg}$$), and are a viable mechanism for the production of very-low-mass neutron stars. However, the 9, 10, and 11 $${M}_{\\odot }$$ progenitors do not explode in 1D and are not even necessarily easier to explode than higher-mass progenitor stars in 2D. We study the effect of perturbations and of changes to the microphysics and we find that relatively small changes can result in qualitatively different outcomes, even in 1D, for models sufficiently close to the explosion threshold. Finally, we revisit the impact of convection below the protoneutron star (PNS) surface. We analyze 1D and 2D evolutions of PNSs subject to the same boundary conditions. Lastly, we find that the impact of PNS convection has been underestimated in previous studies and could result in an increase of the neutrino luminosity by up to factors of two.« less

  6. How Turbulence Enables Core-collapse Supernova Explosions

    NASA Astrophysics Data System (ADS)

    Mabanta, Quintin A.; Murphy, Jeremiah W.

    2018-03-01

    An important result in core-collapse supernova (CCSN) theory is that spherically symmetric, one-dimensional simulations routinely fail to explode, yet multidimensional simulations often explode. Numerical investigations suggest that turbulence eases the condition for explosion, but how it does it is not fully understood. We develop a turbulence model for neutrino-driven convection, and show that this turbulence model reduces the condition for explosions by about 30%, in concordance with multidimensional simulations. In addition, we identify which turbulent terms enable explosions. Contrary to prior suggestions, turbulent ram pressure is not the dominant factor in reducing the condition for explosion. Instead, there are many contributing factors, with ram pressure being only one of them, but the dominant factor is turbulent dissipation (TD). Primarily, TD provides extra heating, adding significant thermal pressure and reducing the condition for explosion. The source of this TD power is turbulent kinetic energy, which ultimately derives its energy from the higher potential of an unstable convective profile. Investigating a turbulence model in conjunction with an explosion condition enables insight that is difficult to glean from merely analyzing complex multidimensional simulations. An explosion condition presents a clear diagnostic to explain why stars explode, and the turbulence model allows us to explore how turbulence enables explosion. Although we find that TD is a significant contributor to successful supernova explosions, it is important to note that this work is to some extent qualitative. Therefore, we suggest ways to further verify and validate our predictions with multidimensional simulations.

  7. Statistical properties of solar granulation from the SOUP instrument on Spacelab 2

    NASA Astrophysics Data System (ADS)

    Topka, K.; Title, A.; Tarbell, T.; Ferguson, S.; Shine, R.

    1988-11-01

    The Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 collected movies of solar granulation completely free from atmospheric blurring, and are not degraded by pointint jitter (the pointing stability was 0.003 sec root mean square). The movies illustrate that the solar five minute oscillation has a major role in the appearance of solar granulation and that exploding granules are a common feature of the granule evolution. Using 3-D Fourier filtering techniques the oscillations were removed and it was demonstrated that the autocorrelation lifetime of granulation is a factor of two greater in magnetic field regions than in field-free quiet sun. Horizontal velocities were measured and flow patterns were observed on the scale of meso- and super granulation. In quiet regions the mean flow velocity is 370 m/s while in the magnetic regions it is about 125 m/s. It was also found that the root mean square (RMS) fluctuating horizonal velocity field is substantially greater in quiet sun than in strong magnetic field regions. By superimposing the location of exploding granules on the average flow maps it was found that they appear almost exclusively in the center of mesogranulation size flow cells. Because of the nonuniformity of the distribution of exploding granules, the evolution of the granulation pattern in mesogranule cell centers and boundaries differs fundamentally. It is clear from this study there is neither a typical granule nor a typical granule evolution.

  8. Statistical properties of solar granulation from the SOUP instrument on Spacelab 2

    NASA Technical Reports Server (NTRS)

    Topka, K.; Title, A.; Tarbell, T.; Ferguson, S.; Shine, R.

    1988-01-01

    The Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 collected movies of solar granulation completely free from atmospheric blurring, and are not degraded by pointint jitter (the pointing stability was 0.003 sec root mean square). The movies illustrate that the solar five minute oscillation has a major role in the appearance of solar granulation and that exploding granules are a common feature of the granule evolution. Using 3-D Fourier filtering techniques the oscillations were removed and it was demonstrated that the autocorrelation lifetime of granulation is a factor of two greater in magnetic field regions than in field-free quiet sun. Horizontal velocities were measured and flow patterns were observed on the scale of meso- and super granulation. In quiet regions the mean flow velocity is 370 m/s while in the magnetic regions it is about 125 m/s. It was also found that the root mean square (RMS) fluctuating horizonal velocity field is substantially greater in quiet sun than in strong magnetic field regions. By superimposing the location of exploding granules on the average flow maps it was found that they appear almost exclusively in the center of mesogranulation size flow cells. Because of the nonuniformity of the distribution of exploding granules, the evolution of the granulation pattern in mesogranule cell centers and boundaries differs fundamentally. It is clear from this study there is neither a typical granule nor a typical granule evolution.

  9. Chemical Safety Alert: Catastrophic Failure of Storage Tanks

    EPA Pesticide Factsheets

    Aboveground, atmospheric storage tanks can fail when flammable vapors in the tank explode and break either the shell-to-bottom or side seam, resulting in hazardous release accidents. Proper maintenance practices can help prevent accidents.

  10. Lighting up a Dead Star Layers

    NASA Image and Video Library

    2006-10-26

    This image from NASA Spitzer Space Telescope shows the scattered remains of an exploded star named Cassiopeia A. Spitzer infrared detectors picked through these remains and found that much of the star original layering had been preserved.

  11. Initial Development of an Exploding Aerosol Can Simulator

    DTIC Science & Technology

    1998-04-01

    product quantities used. Although some mixes of antiperspirants and body sprays contain higher fractional concentrations of hydrocarbon propellant than... Antiperspirant HFC 152a 15-25% Hydrocarbon A-17 35-45% Cyclomethicone 25-27% Fragrance ə

  12. Camp Minden

    EPA Pesticide Factsheets

    Camp Minden is a Superfund Site located near the City of Minden, Louisiana. In October 2012, one of the storage bunkers exploded. In October 2014, the EPA signed a Settlement Agreement and selected a method to dispose of the remaining explosives.

  13. Eagle Nebula Flaunts its Infrared Feathers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 2 Figure 3

    This set of images from NASA's Spitzer Space Telescope shows the Eagle nebula in different hues of infrared light. Each view tells a different tale. The left picture shows lots of stars and dusty structures with clarity. Dusty molecules found on Earth called polycyclic aromatic hydrocarbons produce most of the red; gas is green and stars are blue.

    The middle view is packed with drama, because it tells astronomers that a star in this region violently erupted, or went supernova, heating surrounding dust (orange). This view also reveals that the hot dust is shell shaped, another indication that a star exploded.

    The final picture highlights the contrast between the hot, supernova-heated dust (green) and the cooler dust making up the region's dusty star-forming clouds and towers (red, blue and purple).

    The left image is a composite of infrared light with the following wavelengths: 3.6 microns (blue); 4.5 microns (green); 5.8 microns (orange); and 8 microns (red). The right image includes longer infrared wavelengths, and is a composite of light of 4.5 to 8.0 microns (blue); 24 microns (green); and 70 microns (red). The middle image is made up solely of 24-micron light.

  14. Characterization and source term assessments of radioactive particles from Marshall Islands using non-destructive analytical techniques

    NASA Astrophysics Data System (ADS)

    Jernström, J.; Eriksson, M.; Simon, R.; Tamborini, G.; Bildstein, O.; Marquez, R. Carlos; Kehl, S. R.; Hamilton, T. F.; Ranebo, Y.; Betti, M.

    2006-08-01

    Six plutonium-containing particles stemming from Runit Island soil (Marshall Islands) were characterized by non-destructive analytical and microanalytical methods. Composition and elemental distribution in the particles were studied with synchrotron radiation based micro X-ray fluorescence spectrometry. Scanning electron microscope equipped with energy dispersive X-ray detector and with wavelength dispersive system as well as a secondary ion mass spectrometer were used to examine particle surfaces. Based on the elemental composition the particles were divided into two groups: particles with pure Pu matrix, and particles where the plutonium is included in Si/O-rich matrix being more heterogenously distributed. All of the particles were identified as nuclear fuel fragments of exploded weapon components. As containing plutonium with low 240Pu/ 239Pu atomic ratio, less than 0.065, which corresponds to weapons-grade plutonium or a detonation with low fission yield, the particles were identified to originate from the safety test and low-yield tests conducted in the history of Runit Island. The Si/O-rich particles contained traces of 137Cs ( 239 + 240 Pu/ 137Cs activity ratio higher than 2500), which indicated that a minor fission process occurred during the explosion. The average 241Am/ 239Pu atomic ratio in the six particles was 3.7 × 10 - 3 ± 0.2 × 10 - 3 (February 2006), which indicated that plutonium in the different particles had similar age.

  15. The Year Ahead: Scholarship.

    ERIC Educational Resources Information Center

    Wheeler, David L., And Others

    1987-01-01

    Research concerns facing scholars are described including: in science--AIDS, exploding star, Ozone Hole, animal patents, Supernova 1987A, quasars, etc.--and in humanities and social sciences--theology, psychology of health, global environment, cognitive archaeology, classic African civilizations, feminism, etc. (MLW)

  16. Case studies of uncommon headaches.

    PubMed

    Evans, Randolph W

    2006-05-01

    The following interesting and uncommon headache disorders are presented through case studies: exploding head syndrome, hypnic headache, neck-tongue syndrome, "Alice in Wonderland" syndrome, nummular headache, red ear syndrome, burning mouth syndrome, spontaneous intracranial hypotension syndrome, and cardiac cephalalgia.

  17. Ignition of Hydrogen Balloons by Model-Rocket-Engine Igniters.

    ERIC Educational Resources Information Center

    Hartman, Nicholas T.

    2003-01-01

    Describes an alternative method for exploding hydrogen balloons as a classroom demonstration. Uses the method of igniting the balloons via an electronic match. Includes necessary materials to conduct the demonstration and discusses potential hazards. (SOE)

  18. The Creation of Titanium in Stars

    NASA Image and Video Library

    2014-02-19

    This diagram illustrates why NASA NuSTAR can see radioactivity in the remains of exploded stars for the first time. The observatory detects high-energy X-ray photons that are released by a radioactive substance called titanium-44.

  19. Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase.

    PubMed

    Moreno, Antonio D; Ibarra, David; Ballesteros, Ignacio; González, Alberto; Ballesteros, Mercedes

    2013-05-01

    In this study, the thermotolerant yeast Kluyveromyces marxianus CECT 10875 was compared to the industrial strain Saccharomyces cerevisiae Ethanol Red for lignocellulosic ethanol production. For it, whole slurry from steam-exploded wheat straw was used as raw material, and two process configurations, simultaneous saccharification and fermentation (SSF) and presaccharification and simultaneous saccharification and fermentation (PSSF), were evaluated. Compared to S. cerevisiae, which was able to produce ethanol in both process configurations, K. marxianus was inhibited, and neither growth nor ethanol production occurred during the processes. However, laccase treatment of the whole slurry removed specifically lignin phenols from the overall inhibitory compounds present in the slurry and triggered the fermentation by K. marxianus, attaining final ethanol concentrations and yields comparable to those obtained by S. cerevisiae. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Shockwave generation by a semiconductor bridge operation in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zvulun, E.; Toker, G.; Gurovich, V. Tz.

    2014-05-28

    A semiconductor bridge (SCB) is a silicon device, used in explosive systems as the electrical initiator element. In recent years, SCB plasma has been extensively studied, both electrically and using fast photography and spectroscopic imaging. However, the value of the pressure buildup at the bridge remains unknown. In this study, we operated SCB devices in water and, using shadow imaging and reference beam interferometry, obtained the velocity of the shock wave propagation and distribution of the density of water. These results, together with a self-similar hydrodynamic model, were used to calculate the pressure generated by the exploding SCB. In addition,more » the results obtained showed that the energy of the water flow exceeds significantly the energy deposited into the exploded SCB. The latter can be explained by the combustion of the aluminum and silicon atoms released in water, which acts as an oxidizing medium.« less

  1. Unique Migraine Subtypes, Rare Headache Disorders, and Other Disturbances.

    PubMed

    Goadsby, Peter J

    2015-08-01

    The medical aphorism that common things happen commonly makes unique (and less common) migraine subtypes especially appropriate to review for the general neurologist. This article also identifies some rare headache disorders and other disturbances, and offers strategies to manage them. This article discusses migraine with brainstem aura, which is troublesome clinically and has had a change in terminology in the International Classification of Headache Disorders, Third Edition, beta version (ICHD-3 beta), and hemiplegic migraine, which is also troublesome in practice. The rare headache disorder hypnic headache and the exploding head syndrome are also discussed. When hypnic headache is recognized, it is eminently treatable, while exploding head syndrome is a benign condition with no reported consequences. Unique migraine subtypes, rare headache disorders, and other disturbances present to neurologists. When recognized, they can often be managed very well, which offers significant benefits to patients and practice satisfaction to neurologists.

  2. Characterisation of an Exploding Foil Initiator (EFI) system

    NASA Astrophysics Data System (ADS)

    Davies, H. R.; Chapman, D. J.; Vine, T. A.; Proud, W. G.

    2009-06-01

    Exploding Foil Initiators (EFIs) provide a safe and reliable means of detonation of explosives. They are highly insensitive to mechanical shock and electrical interference, requiring a specific high current pulse for initiation. The use of only insensitive secondary explosives and not more sensitive primary explosives further improves safety. When a high current is passed through the metal bridge, a plasma is formed as the metal can not expand beyond the polymer film layer above. This causes the film to expand forming a bubble or shearing off to form a flyer. These flyers can then be used to initiate secondary explosives. Due to the very high speed at which these systems operate, high speed streak photography was used to characterise the behaviour of the polymer film flyers produced. This paper will report the preliminary findings on the mechanical, electrical and velocity changes seen in some proprietary systems.

  3. Cable Discharge System for fundamental detonator studies

    NASA Technical Reports Server (NTRS)

    Peevy, Gregg R.; Barnhart, Steven G.; Brigham, William P.

    1994-01-01

    Sandia National Laboratories has recently completed the modification and installation of a cable discharge system (CDS) which will be used to study the physics of exploding bridgewire (EBW) detonators and exploding foil initiators (EFI or slapper). Of primary interest are the burst characteristics of these devices when subjected to the constant current pulse delivered by this system. The burst process involves the heating of the bridge material to a conductive plasma and is essential in describing the electrical properties of the bridgewire foil for use in diagnostics or computer models. The CDS described herein is capable of delivering up to an 8000 A pulse of 3 micron duration. Experiments conducted with the CDS to characterize the EBW and EFI burst behavior are also described. In addition, the CDS simultaneous VISAR capability permits updating the EFI electrical Gurney analysis parameters used in our computer simulation codes. Examples of CDS generated data for a typical EFI and EBW detonator are provided.

  4. Plasma channel optical pumping device and method

    DOEpatents

    Judd, O.P.

    1983-06-28

    A device and method are disclosed for optically pumping a gaseous laser using blackbody radiation produced by a plasma channel which is formed from an electrical discharge between two electrodes spaced at opposite longitudinal ends of the laser. A preionization device which can comprise a laser or electron beam accelerator produces a preionization beam which is sufficient to cause an electrical discharge between the electrodes to initiate the plasma channel along the preionization path. The optical pumping energy is supplied by a high voltage power supply rather than by the preionization beam. High output optical intensities are produced by the laser due to the high temperature blackbody radiation produced by the plasma channel, in the same manner as an exploding wire type laser. However, unlike the exploding wire type laser, the disclosed invention can be operated in a repetitive manner by utilizing a repetitive pulsed preionization device. 5 figs.

  5. Exploding Nitromethane in Silico, in Real Time.

    PubMed

    Fileti, Eudes Eterno; Chaban, Vitaly V; Prezhdo, Oleg V

    2014-10-02

    Nitromethane (NM) is widely applied in chemical technology as a solvent for extraction, cleaning, and chemical synthesis. NM was considered safe for a long time, until a railroad tanker car exploded in 1958. We investigate the detonation kinetics and explosion reaction mechanisms in a variety of systems consisting of NM, molecular oxygen, and water vapor. Reactive molecular dynamics allows us to simulate reactions in time-domain, as they occur in real life. High polarity of the NM molecule is shown to play a key role, driving the first exothermic step of the reaction. Rapid temperature and pressure growth stimulate the subsequent reaction steps. Oxygen is important for faster oxidation, whereas its optimal concentration is in agreement with the proposed reaction mechanism. Addition of water (50 mol %) inhibits detonation; however, water does not prevent detonation entirely. The reported results provide important insights for improving applications of NM and preserving the safety of industrial processes.

  6. Massive stars in their death throes.

    PubMed

    Eldridge, John J

    2008-12-13

    The study of the stars that explode as supernovae used to be a forensic study, working backwards from the remnants of the star. This changed in 1987 when the first progenitor star was identified in pre-explosion images. Currently, there are eight detected progenitors with another 21 non-detections, for which only a limit on the pre-explosion luminosity can be placed. This new avenue of supernova research has led to many interesting conclusions, most importantly that the progenitors of the most common supernovae, type IIP, are red supergiants, as theory has long predicted. However, no progenitors have been detected thus far for the hydrogen-free type Ib/c supernovae, which, given the expected progenitors, is an unlikely result. Also, observations have begun to show evidence that luminous blue variables, which are among the most massive stars, may directly explode as supernovae. These results contradict the current stellar evolution theory. This suggests that we may need to update our understanding.

  7. Kepler Beyond Planets: Finding Exploding Stars (Type Ia Supernova from a White Dwarf Stealing Matter)

    NASA Image and Video Library

    2018-03-26

    This frame from an animation shows a gigantic star exploding in a "core collapse" supernova. As atoms fuse inside the star, eventually the star can't support its own weight anymore. Gravity makes the star collapse on itself. Core collapse supernovae are called type Ib, Ic, or II depending on the chemical elements present. Stellar explosions forge and distribute materials that make up the world in which we live, and also hold clues to how fast the universe is expanding. By understanding supernovae, scientists can unlock mysteries that are key to what we are made of and the fate of our universe. But to get the full picture, scientists must observe supernovae from a variety of perspectives, especially in the first moments of the explosion. That's really difficult -- there's no telling when or where a supernova might happen next. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22352

  8. Design of Measure and Control System for Precision Pesticide Deploying Dynamic Simulating Device

    NASA Astrophysics Data System (ADS)

    Liang, Yong; Liu, Pingzeng; Wang, Lu; Liu, Jiping; Wang, Lang; Han, Lei; Yang, Xinxin

    A measure and control system for precision deploying pesticide simulating equipment is designed in order to study pesticide deployment technology. The system can simulate every state of practical pesticide deployment, and carry through precise, simultaneous measure to every factor affecting pesticide deployment effects. The hardware and software incorporates a structural design of modularization. The system is divided into many different function modules of hardware and software, and exploder corresponding modules. The modules’ interfaces are uniformly defined, which is convenient for module connection, enhancement of system’s universality, explodes efficiency and systemic reliability, and make the program’s characteristics easily extended and easy maintained. Some relevant hardware and software modules can be adapted to other measures and control systems easily. The paper introduces the design of special numeric control system, the main module of information acquisition system and the speed acquisition module in order to explain the design process of the module.

  9. Base-metal saturation of refractory carbide coatings produced by enhanced ceramic jets in electrothermally exploded powder spray

    NASA Astrophysics Data System (ADS)

    Tamura, Hideki; Itaya, Masanobu

    2000-09-01

    Tungsten carbide and tantalum carbide were sprayed onto substrates of mild steel by the electrothermally exploded powder spray (ELTEPS) process. High-speed x-ray radiography revealed that tungsten-carbide jets of molten particles guided inside a nozzle exhibited denser flow than unguided jets at the substrate. The velocity of the jet was approximately 800 m/s at the early stage of jetting. The ceramic coatings obtained from the guided spray consisted of carbides of a few to tens of micrometers in size, which were saturated by the base metal up to the top of the coating. The coatings exhibited diffusion of the sprayed ceramics and base metal at the interface of the deposit and substrate. The enhancement of the jet flow formed a microstructure of the ceramic coating, which was saturated by the base metal even without post heat treatment.

  10. Semiconductor bridge (SCB) igniter

    DOEpatents

    Bickes, Jr., Robert W.; Schwarz, Alfred C.

    1987-01-01

    In an explosive device comprising an explosive material which can be made to explode upon activation by activation means in contact therewith; electrical activation means adaptable for activating said explosive material such that it explodes; and electrical circuitry in operation association with said activation means; there is an improvement wherein said activation means is an electrical material which, at an elevated temperature, has a negative temperature coefficient of electrical resistivity and which has a shape and size and an area of contact with said explosive material sufficient that it has an electrical resistance which will match the resistance requirements of said associated electrical circuitry when said electrical material is operationally associated with said circuitry, and wherein said electrical material is polycrystalline; or said electrical material is crystalline and (a) is mounted on a lattice matched substrate or (b) is partially covered with an intimately contacting metallization area which defines its area of contact with said explosive material.

  11. Stratification in Al and Cu foils exploded in vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baksht, R. B.; Electrical Discharge and Plasma Laboratory, Tel Aviv University, Tel Aviv 6997801; Rousskikh, A. G.

    2015-10-15

    An experiment with exploding foils was carried out at a current density of 0.7 × 10{sup 8} A/cm{sup 2} through the foil with a current density rise rate of about 10{sup 15} A/cm{sup 2} s. To record the strata arising during the foil explosions, a two-frame radiographic system was used that allowed tracing the dynamics of strata formation within one shot. The original striation wavelength was 20–26 μm. It was observed that as the energy deposition to a foil stopped, the striation wavelength increased at a rate of ∼(5–9) × 10{sup 3} cm/s. It is supposed that the most probable reason for the stratification is the thermal instabilitymore » that develops due to an increase in the resistivity of the metal with temperature.« less

  12. Listening to sounds from an exploding meteor and oceanic waves

    NASA Astrophysics Data System (ADS)

    Evers, L. G.; Haak, H. W.

    Low frequency sound (infrasound) measurements have been selected within the Comprehensive Nuclear-Test-Ban Treaty (CTBT) as a technique to detect and identify possible nuclear explosions. The Seismology Division of the Royal Netherlands Meteorological Institute (KNMI) operates since 1999 an experimental infrasound array of 16 micro-barometers. Here we show the rare detection and identification of an exploding meteor above Northern Germany on November 8th, 1999 with data from the Deelen Infrasound Array (DIA). At the same time, sound was radiated from the Atlantic Ocean, South of Iceland, due to the atmospheric coupling of standing ocean waves, called microbaroms. Occurring with only 0.04 Hz difference in dominant frequency, DIA proved to be able to discriminate between the physically different sources of infrasound through its unique lay-out and instruments. The explosive power of the meteor being 1.5 kT TNT is in the range of nuclear explosions and therefore relevant to the CTBT.

  13. Electronic Relaxation Processes of Transition Metal Atoms in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Kautsch, Andreas; Lindebner, Friedrich; Koch, Markus; Ernst, Wolfgang E.

    2014-06-01

    Spectroscopy of doped superfluid helium nanodroplets (He_N) gives information about the influence of this cold, chemically inert, and least interacting matrix environment on the excitation and relaxation dynamics of dopant atoms and molecules. We present the results from laser induced fluorescence (LIF), photoionization (PI), and mass spectroscopy of Cr and Cu doped He_N. From these results, we can draw a comprehensive picture of the complex behavior of such transition metal atoms in He_N upon photo-excitation. The strong Cr and Cu ground state transitions show an excitation blueshift and broadening with respect to the bare atom transitions which can be taken as indication for the solvation inside the droplet. From the originally excited states the atoms relax to energetically lower states and are ejected from the He_N. The relaxation processes include bare atom spin-forbidden transitions, which clearly bears the signature of the He_N influence. Two-color resonant two-photon ionization (2CR2PI) also shows the formation of bare atoms and small Cr-He_n and Cu-He_n clusters in their ground and metastable states ^c. Currently, Cr dimer excitation studies are in progress and a brief outlook on the available results will be given. C. Callegari and W. E. Ernst, Helium Droplets as Nanocryostats for Molecular Spectroscopy - from the Vacuum Ultraviolet to the Microwave Regime, in Handbook of High-Resolution Spectroscopy, eds. M. Quack and F. Merkt, John Wiley & Sons, Chichester, 2011. A. Kautsch, M. Koch, and W. E. Ernst, J. Phys. Chem. A, 117 (2013) 9621-9625, DOI: 10.1021/jp312336m F. Lindebner, A. Kautsch, M. Koch, and W. E. Ernst, Int. J. Mass Spectrom. (2014) in press, DOI: 10.1016/j.ijms.2013.12.022 M. Koch, A. Kautsch, F. Lackner, and W. E. Ernst, submitted to J. Phys. Chem. A

  14. Phase Behavior of Ritonavir Amorphous Solid Dispersions during Hydration and Dissolution.

    PubMed

    Purohit, Hitesh S; Taylor, Lynne S

    2017-12-01

    The aim of this research was to study the interplay of solid and solution state phase transformations during the dissolution of ritonavir (RTV) amorphous solid dispersions (ASDs). RTV ASDs with polyvinylpyrrolidone (PVP), polyvinylpyrrolidone vinyl acetate (PVPVA) and hydroxypropyl methylcellulose acetate succinate (HPMCAS) were prepared at 10-50% drug loading by solvent evaporation. The miscibility of RTV ASDs was studied before and after exposure to 97% relative humidity (RH). Non-sink dissolution studies were performed on fresh and moisture-exposed ASDs. RTV and polymer release were monitored using ultraviolet-visible spectroscopy. Techniques including fluorescence spectroscopy, confocal imaging, scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and nanoparticle tracking analysis (NTA) were utilized to monitor solid and the solution state phase transformations. All RTV-PVP and RTV-PVPVA ASDs underwent moisture-induced amorphous-amorphous phase separation (AAPS) on high RH storage whereas RTV-HPMCAS ASDs remained miscible. Non-sink dissolution of PVP- and PVPVA-based ASDs at low drug loadings led to rapid RTV and polymer release resulting in concentrations in excess of amorphous solubility, liquid-liquid phase separation (LLPS) and amorphous nanodroplet formation. High drug loading PVP- and PVPVA-based ASDs did not exhibit LLPS upon dissolution as a consequence of extensive AAPS in the hydrated ASD matrix. All RTV-HPMCAS ASDs led to LLPS upon dissolution. RTV ASD dissolution is governed by a competition between the dissolution rate and the rate of phase separation in the hydrated ASD matrix. LLPS was observed for ASDs where the drug release was polymer controlled and only ASDs that remained miscible during the initial phase of dissolution led to LLPS. Techniques such as fluorescence spectroscopy, confocal imaging and SEM were useful in understanding the phase behavior of ASDs upon hydration and dissolution and were helpful in elucidating the mechanism of generation of amorphous nanodroplets.

  15. High Resolution Infrared Spectroscopy of Propargyl Alcohol-Water Complex Embedded in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Mani, Devendra; Pal, Nitish; Kaufmann, Matin; Schwaab, Gerhard; Havenith, Martina

    2016-06-01

    Propargyl alcohol (hereafter abbreviated as PA) is a molecule of astrophysical interest and has been probed extensively using microwave spectroscopy.1,2 It is a multifunctional molecule and offers multiple sites for hydrogen bonding interactions. Therefore, it has also attracted the attention of groups interested in weak intermolecular interactions. Recently, the Ar…PA complex3 and PA-dimer4 have been studied using microwave spectroscopy. More recently, there have been matrix-isolation infrared spectroscopic studies on PA-water5 and PA-acetylene6 complexes. In the present work, clusters of PA and water were formed in the helium nanodroplets and probed using a combination of infrared spectroscopy and mass spectrometry. Using ab-initio quantum mechanical calculations, PA-water clusters were optimised and five minimum structures were found on the potential energy hypersurface, which were used as a guidance to the experiments. We used D2O for the experiments since our laser sources at Bochum do not cover the IR spectral region of H2O. IR spectra of PA-D2O complex were recorded in the region of symmetric and antisymmetric stretches of the bound D2O. Multiple signals were found in these regions which were dependent on the concentration of PA as well as D2O. Using pickup curves most of these signals could be assigned to 1:1 PA:D2O clusters. The ab-initio calculations helped in a definitive assignment of the spectra to the different conformers of PA-D2O complex. The details will be presented in the talk. References: 1. E. Hirota, J. Mol. Spec. 26, 335 (1968). 2. J.C. Pearson and B.J. Drouin, J. Mol. Spectrosc. 234, 149 (2005). 3. D. Mani and E. Arunan, ChemPhysChem 14, 754 (2013). 4. D. Mani and E. Arunan, J. Chem. Phys. 141, 164311 (2014). 5. J. Saini, K.S. Vishwanathan, J. Mol. Struct. 1118, 147 (2016). 6. K. Sundararajan et al., J. Mol. Struct. 1121, 26 (2016).

  16. Colobopsis explodens sp. n., model species for studies on “exploding ants” (Hymenoptera, Formicidae), with biological notes and first illustrations of males of the Colobopsis cylindrica group

    PubMed Central

    Laciny, Alice; Zettel, Herbert; Kopchinskiy, Alexey; Pretzer, Carina; Pal, Anna; Salim, Kamariah Abu; Rahimi, Mohammad Javad; Hoenigsberger, Michaela; Lim, Linda; Jaitrong, Weeyawat; Druzhinina, Irina S.

    2018-01-01

    Abstract A taxonomic description of all castes of Colobopsis explodens Laciny & Zettel, sp. n. from Borneo, Thailand, and Malaysia is provided, which serves as a model species for biological studies on “exploding ants” in Southeast Asia. The new species is a member of the Colobopsis cylindrica (COCY) group and falls into a species complex that has been repeatedly summarized under the name Colobopsis saundersi (Emery, 1889) (formerly Camponotus saundersi). The COCY species group is known under its vernacular name “exploding ants” for a unique behaviour: during territorial combat, workers of some species sacrifice themselves by rupturing their gaster and releasing sticky and irritant contents of their hypertrophied mandibular gland reservoirs to kill or repel rivals. This study includes first illustrations and morphometric characterizations of males of the COCY group: Colobopsis explodens Laciny & Zettel, sp. n. and Colobopsis badia (Smith, 1857). Characters of male genitalia and external morphology are compared with other selected taxa of Camponotini. Preliminary notes on the biology of C. explodens Laciny & Zettel, sp. n. are provided. To fix the species identity of the closely related C. badia, a lectotype from Singapore is designated. The following taxonomic changes within the C. saundersi complex are proposed: Colobopsis solenobia (Menozzi, 1926), syn. n. and Colobopsis trieterica (Menozzi, 1926), syn. n. are synonymized with Colobopsis corallina Roger, 1863, a common endemic species of the Philippines. Colobopsis saginata Stitz, 1925, stat. n., hitherto a subspecies of C. badia, is raised to species level. PMID:29706783

  17. Colobopsis explodens sp. n., model species for studies on "exploding ants" (Hymenoptera, Formicidae), with biological notes and first illustrations of males of the Colobopsis cylindrica group.

    PubMed

    Laciny, Alice; Zettel, Herbert; Kopchinskiy, Alexey; Pretzer, Carina; Pal, Anna; Salim, Kamariah Abu; Rahimi, Mohammad Javad; Hoenigsberger, Michaela; Lim, Linda; Jaitrong, Weeyawat; Druzhinina, Irina S

    2018-01-01

    A taxonomic description of all castes of Colobopsis explodens Laciny & Zettel, sp. n. from Borneo, Thailand, and Malaysia is provided, which serves as a model species for biological studies on "exploding ants" in Southeast Asia. The new species is a member of the Colobopsis cylindrica (COCY) group and falls into a species complex that has been repeatedly summarized under the name Colobopsis saundersi (Emery, 1889) (formerly Camponotus saundersi ). The COCY species group is known under its vernacular name "exploding ants" for a unique behaviour: during territorial combat, workers of some species sacrifice themselves by rupturing their gaster and releasing sticky and irritant contents of their hypertrophied mandibular gland reservoirs to kill or repel rivals. This study includes first illustrations and morphometric characterizations of males of the COCY group: Colobopsis explodens Laciny & Zettel, sp. n. and Colobopsis badia (Smith, 1857). Characters of male genitalia and external morphology are compared with other selected taxa of Camponotini. Preliminary notes on the biology of C. explodens Laciny & Zettel, sp. n. are provided. To fix the species identity of the closely related C. badia , a lectotype from Singapore is designated. The following taxonomic changes within the C. saundersi complex are proposed: Colobopsis solenobia (Menozzi, 1926), syn. n. and Colobopsis trieterica (Menozzi, 1926), syn. n. are synonymized with Colobopsis corallina Roger, 1863, a common endemic species of the Philippines. Colobopsis saginata Stitz, 1925, stat. n ., hitherto a subspecies of C. badia , is raised to species level.

  18. Cellulose-reinforced composites and SRIM and RTM modeling

    NASA Astrophysics Data System (ADS)

    Fahrurrozi, Mohammad

    Structural reaction injection molding (SRIM) cellulosic/polyurethane composites were prepared from various forms of cellulosic mats, and elastomeric polyurea-urethane (PUU) and rigid polyurethane (PU) formulations. Mats (woven and non-woven) prepared from different sources of fibers with lignin content ranging from zero (cotton) to at least 10% (sugar cane and kenaf fibers) performed comparably in PUU/cellulosic composites. Young's modulus and tensile strength of PUU/cellulosic composites were doubled with 5% and 7% fiber loading respectively. Young's modulus and tensile strength of PU/cellulosic composites were improved by 300% and 30%, respectively, with 7% fiber loading, whereas their bending moduli and strengths were improved up to 100% and 50%, respectively, with 18% fiber loading. However, the mechanical properties of PU composites were more sensitive to the fiber properties and fiber macroscopic arrangements. The study with chemical ratio variations indicates that as the fiber loading increases, the cellulose hydroxyl presence starts shifting the chemical balance and thus should be accounted for. Mats prepared from sugar cane fibers extracted from rind with low alkali concentration (0.2 N) followed by steam explosion require lower injection pressures compared to the ones prepared from fiber obtained from higher alkali treatment (above 0.5 N) without steam explosion. Hence, the steam exploded mats are more suitable for SRIM purposes. The PU kinetics was studied using an adiabatic temperature rise method. An Arrhenius type empirical equation was used to fit the data. The fitted equation was second order to the partial conversion, and the gelling time at adiabatic condition is less than 5 seconds (much quicker than the 10 to 12 seconds in mold gel time quoted by the manufacturer). FORTRAN programs were written to solve the SRIM model based on Darcy's equation. The model incorporated heat transfer and chemical reaction. The modeling was intended to aid in interpreting in-mold pressure data obtained from mat permeability characterization. The model also has other wider applications such as mold design and SRIM and resin transfer molding (RTM) simulation. The model predicts some experimental data from this work and the literature satisfactorily.

  19. Metamotivation-Leadership: Management's Newest Frontier

    ERIC Educational Resources Information Center

    Doris, Dennis A.

    1974-01-01

    The metamotivational theory of leadership streses a means toward increased individual, organizational, and social productivity coupled with increased individual, organizational, and social self-actualization. The metamotivation-leadership theory is self-energizing with inherent exploding-imploding potential--an explosion of increased productivity…

  20. Metal parts hydrosized by explosive force

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Large metal parts are sized by a charge exploded above a sealed container filled with evacuated die and water. Explosive hydrosizing achieves close dimensional tolerances, eliminates damage to the surface, and allows longer force application and more even pressure distribution.

  1. Inmarsat affiliate to operate medium-altitude satellite system

    NASA Astrophysics Data System (ADS)

    1994-05-01

    Inmarsat will form an affiliated company to develop its $2.4-billion Inmarsat-P program as a competitor to Motorola's Iridium and Loral's Globestar in the exploding mobile communications market. Various aspects of the program are briefly discussed.

  2. Once an Onion, Always an Onion Artist Concept

    NASA Image and Video Library

    2006-10-26

    This artist concept shows that NASA Spitzer Space Telescope found evidence that this star, the remains of which are named Cassiopeia A, exploded with some degree of order, preserving chunks of its onion-like layers as it blasted apart.

  3. Hubble Finds Supernova Companion Star after Two Decades of Searching

    NASA Image and Video Library

    2017-12-08

    This is an artist's impression of supernova 1993J, an exploding star in the galaxy M81 whose light reached us 21 years ago. The supernova originated in a double-star system where one member was a massive star that exploded after siphoning most of its hydrogen envelope to its companion star. After two decades, astronomers have at last identified the blue helium-burning companion star, seen at the center of the expanding nebula of debris from the supernova. The Hubble Space Telescope identified the ultraviolet glow of the surviving companion embedded in the fading glow of the supernova. More info: Using NASA’s Hubble Space Telescope, astronomers have discovered a companion star to a rare type of supernova. The discovery confirms a long-held theory that the supernova, dubbed SN 1993J, occurred inside what is called a binary system, where two interacting stars caused a cosmic explosion. "This is like a crime scene, and we finally identified the robber," said Alex Filippenko, professor of astronomy at University of California (UC) at Berkeley. "The companion star stole a bunch of hydrogen before the primary star exploded." SN 1993J is an example of a Type IIb supernova, unusual stellar explosions that contains much less hydrogen than found in a typical supernova. Astronomers believe the companion star took most of the hydrogen surrounding the exploding main star and continued to burn as a super-hot helium star. “A binary system is likely required to lose the majority of the primary star’s hydrogen envelope prior to the explosion. The problem is that, to date, direct observations of the predicted binary companion star have been difficult to obtain since it is so faint relative to the supernova itself,” said lead researcher Ori Fox of UC Berkeley. Read more: 1.usa.gov/1Az5Qb9 Credit: NASA, ESA, G. Bacon (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. New Edible Bionanocomposite Prepared by Pectin and Clove Essential Oil Nanoemulsions.

    PubMed

    Sasaki, Ronaldo S; Mattoso, Luiz H C; de Moura, Márcia Regina

    2016-06-01

    Nanocomposites are being extremely investigated to provide packaging with interesting characteristics for packages. Because of essential oils' natural occurrence and antibacterial activity, they are considered as an alternative for synthetic additives in the food industry. In this paper, we studied an edible bionanocomposite film made up of pectin and clove essential oil nanoemulsion for application as edible package. Mechanical properties, water vapor permeability (WVP), and antibacterial activity were analyzed. From mechanical and WVP analyses, we noticed an interesting improvement in film properties. In the antibacterial activity test, disk diffusion was used to assess the inhibition zones of Escherichia coli and Staphylococcus aureus. With these results, we concluded that the most interesting results were promoted by smaller nanodroplets (diameter of approximately 142 nm).

  5. Potential and problems in ultrasound-responsive drug delivery systems

    PubMed Central

    Zhao, Ying-Zheng; Du, Li-Na; Lu, Cui-Tao; Jin, Yi-Guang; Ge, Shu-Ping

    2013-01-01

    Ultrasound is an important local stimulus for triggering drug release at the target tissue. Ultrasound-responsive drug delivery systems (URDDS) have become an important research focus in targeted therapy. URDDS include many different formulations, such as microbubbles, nanobubbles, nanodroplets, liposomes, emulsions, and micelles. Drugs that can be loaded into URDDS include small molecules, biomacromolecules, and inorganic substances. Fields of clinical application include anticancer therapy, treatment of ischemic myocardium, induction of an immune response, cartilage tissue engineering, transdermal drug delivery, treatment of Huntington’s disease, thrombolysis, and disruption of the blood–brain barrier. This review focuses on recent advances in URDDS, and discusses their formulations, clinical application, and problems, as well as a perspective on their potential use in the future. PMID:23637531

  6. Photodegradation of surfactants on the nanosized TiO2 prepared by hydrolysis of the alkoxide titanium.

    PubMed

    Zhang, Rubing; Gao, Lian; Zhang, Qinghong

    2004-01-01

    Nanosized TiO(2) was synthesized by hydrolysis of titanium tetraisopropoxide in the nanodroplets of microemulsions. The microemulsion provided by functionalized surfactants derived from the mixture of the commercially available sodium dodecylbenzensulfonate (DBS) and sodium dodecyl sulfate (DS). The resulting TiO(2) nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, and differential thermal analysis. Nanosized TiO(2) of anatase was found to show good photocatalytic properties in the photodegradation of DBS and DS surfactants. The cleavage of the aromatic moiety, the intermediate products and ultimate mineralization to CO(2) were examined in the process of photodegradation. A mechanism is also proposed on the basis of these experimental results.

  7. Acoustic droplet vaporization of vascular droplets in gas embolotherapy

    NASA Astrophysics Data System (ADS)

    Bull, Joseph

    2016-11-01

    This work is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular droplets. Additionally, micro- or nano-droplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Functionalized droplets that are targeted to tumor vasculature are examined. The influence of fluid mechanical and acoustic parameters, as well as droplet functionalization, is explored. This work was supported by NIH Grant R01EB006476.

  8. Dissecting Dust from Detonation of Dead Star

    NASA Image and Video Library

    2014-06-04

    This infrared image from NASA Spitzer Space Telescope shows N103B -- all that remains from a supernova that exploded a millennium ago in the Large Magellanic Cloud, a satellite galaxy 160,000 light-years away from our own Milky Way.

  9. Dissecting the Wake of a Supernova Explosion

    NASA Image and Video Library

    2007-12-20

    The elements and molecules that flew out of the Cassiopeia A star when it exploded about 300 years ago can be seen clearly for the first time in this plot of data, called a spectrum, taken by NASA Spitzer Space Telescope.

  10. 33 CFR 401.68 - Explosives Permission Letter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... following cases: (1) For all vessels carrying any quantity of explosives with a mass explosive risk, up to a... and up to a maximum of 50 tonnes of explosives that do not explode en masse (IMO Class 1, Division 1.2...

  11. Mass Chart for Dead Stars and Black Holes

    NASA Image and Video Library

    2014-10-08

    This chart illustrates relative masses of super-dense cosmic objects, ranging from white dwarfs to supermassive black holes encased in the cores of most galaxies. The first three dead stars left all form when stars more massive than our sun explode.

  12. Beacons of X-ray Light Animation

    NASA Image and Video Library

    2014-10-08

    This image shows a neutron star -- the core of a star that exploded in a massive supernova. This particular neutron star is known as a pulsar because it sends out rotating beams of X-rays that sweep past Earth like lighthouse beacons.

  13. Optimization of uncatalyzed steam explosion pretreatment of rapeseed straw for biofuel production.

    PubMed

    López-Linares, Juan C; Ballesteros, Ignacio; Tourán, Josefina; Cara, Cristóbal; Castro, Eulogio; Ballesteros, Mercedes; Romero, Inmaculada

    2015-08-01

    Rapeseed straw constitutes an agricultural residue with great potential as feedstock for ethanol production. In this work, uncatalyzed steam explosion was carried out as a pretreatment to increase the enzymatic digestibility of rapeseed straw. Experimental statistical design and response surface methodology were used to evaluate the influence of the temperature (185-215°C) and the process time (2.5-7.5min). According to the rotatable central composite design applied, 215°C and 7.5min were confirmed to be the optimal conditions, considering the maximization of enzymatic hydrolysis yield as optimization criterion. These conditions led to a maximum yield of 72.3%, equivalent to 81% of potential glucose in pretreated solid. Different configurations for bioethanol production from steam exploded rapeseed straw were investigated using the pretreated solid obtained under optimal conditions as a substrate. As a relevant result, concentrations of ethanol as high as 43.6g/L (5.5% by volume) were obtained as a consequence of using 20% (w/v) solid loading, equivalent to 12.4g ethanol/100g biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Seeing biomass recalcitrance through fluorescence.

    PubMed

    Auxenfans, Thomas; Terryn, Christine; Paës, Gabriel

    2017-08-18

    Lignocellulosic biomass is the only renewable carbon resource available in sufficient amount on Earth to go beyond the fossil-based carbon economy. Its transformation requires controlled breakdown of polymers into a set of molecules to make fuels, chemicals and materials. But biomass is a network of various inter-connected polymers which are very difficult to deconstruct optimally. In particular, saccharification potential of lignocellulosic biomass depends on several complex chemical and physical factors. For the first time, an easily measurable fluorescence properties of steam-exploded biomass samples from miscanthus, poplar and wheat straw was shown to be directly correlated to their saccharification potential. Fluorescence can thus be advantageously used as a predictive method of biomass saccharification. The loss in fluorescence occurring after the steam explosion pretreatment and increasing with pretreatment severity does not originate from the loss in lignin content, but rather from a decrease of the lignin β-aryl-ether linkage content. Fluorescence lifetime analysis demonstrates that monolignols making lignin become highly conjugated after steam explosion pretreatment. These results reveal that lignin chemical composition is a more important feature to consider than its content to understand and to predict biomass saccharification.

  15. NASA's Chandra Sees Brightest Supernova Ever

    NASA Astrophysics Data System (ADS)

    2007-05-01

    WASHINGTON - The brightest stellar explosion ever recorded may be a long-sought new type of supernova, according to observations by NASA's Chandra X-ray Observatory and ground-based optical telescopes. This discovery indicates that violent explosions of extremely massive stars were relatively common in the early universe, and that a similar explosion may be ready to go off in our own galaxy. "This was a truly monstrous explosion, a hundred times more energetic than a typical supernova," said Nathan Smith of the University of California at Berkeley, who led a team of astronomers from California and the University of Texas in Austin. "That means the star that exploded might have been as massive as a star can get, about 150 times that of our sun. We've never seen that before." Chandra X-ray Image of SN 2006gy Chandra X-ray Image of SN 2006gy Astronomers think many of the first generation of stars were this massive, and this new supernova may thus provide a rare glimpse of how the first stars died. It is unprecedented, however, to find such a massive star and witness its death. The discovery of the supernova, known as SN 2006gy, provides evidence that the death of such massive stars is fundamentally different from theoretical predictions. "Of all exploding stars ever observed, this was the king," said Alex Filippenko, leader of the ground-based observations at the Lick Observatory at Mt. Hamilton, Calif., and the Keck Observatory in Mauna Kea, Hawaii. "We were astonished to see how bright it got, and how long it lasted." The Chandra observation allowed the team to rule out the most likely alternative explanation for the supernova: that a white dwarf star with a mass only slightly higher than the sun exploded into a dense, hydrogen-rich environment. In that event, SN 2006gy should have been 1,000 times brighter in X-rays than what Chandra detected. Animation of SN 2006gy Animation of SN 2006gy "This provides strong evidence that SN 2006gy was, in fact, the death of an extremely massive star," said Dave Pooley of the University of California at Berkeley, who led the Chandra observations. The star that produced SN 2006gy apparently expelled a large amount of mass prior to exploding. This large mass loss is similar to that seen from Eta Carinae, a massive star in our galaxy, raising suspicion that Eta Carinae may be poised to explode as a supernova. Although SN 2006gy is intrinsically the brightest supernova ever, it is in the galaxy NGC 1260, some 240 million light years away. However, Eta Carinae is only about 7,500 light years away in our own Milky Way galaxy. "We don't know for sure if Eta Carinae will explode soon, but we had better keep a close eye on it just in case," said Mario Livio of the Space Telescope Science Institute in Baltimore, who was not involved in the research. "Eta Carinae's explosion could be the best star-show in the history of modern civilization." A New Line of Stellar Evolution A New Line of Stellar Evolution Supernovas usually occur when massive stars exhaust their fuel and collapse under their own gravity. In the case of SN 2006gy, astronomers think that a very different effect may have triggered the explosion. Under some conditions, the core of a massive star produces so much gamma ray radiation that some of the energy from the radiation converts into particle and anti-particle pairs. The resulting drop in energy causes the star to collapse under its own huge gravity. After this violent collapse, runaway thermonuclear reactions ensue and the star explodes, spewing the remains into space. The SN 2006gy data suggest that spectacular supernovas from the first stars - rather than completely collapsing to a black hole as theorized - may be more common than previously believed. "In terms of the effect on the early universe, there's a huge difference between these two possibilities," said Smith. "One pollutes the galaxy with large quantities of newly made elements and the other locks them up forever in a black hole." The results from Smith and his colleagues will appear in The Astrophysical Journal. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  16. Understanding Government and Railroad Strategy for Crude Oil Transportation in North America

    DOT National Transportation Integrated Search

    2015-09-20

    On July 6, 2013, an oil-laden unit train derailed and exploded in Lac-Mgantic, Quebec, Canada, killing 47 people, shocking and saddening many, and leading to significantly increased public scrutiny of crude oil transported by rail. Simultaneously, ...

  17. Creativity, Curiosity, Exploded Chickens.

    ERIC Educational Resources Information Center

    Seal, David O.

    1995-01-01

    A discussion of creativity and curiosity, particularly in the context of college instruction, examines two psychological models of creativity, the cognitive approach of Howard Gardner and one aligned with depth psychology (James Hillman). Commonalities are noted: preference for mess over management and for boundaries transgressed rather than…

  18. Workbook for predicting pressure wave and fragment effects of exploding propellant tanks and gas storage vessels

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Kulesz, J. J.; Ricker, R. E.; Bessey, R. L.; Westine, P. S.; Parr, V. B.; Oldham, G. A.

    1975-01-01

    Technology needed to predict damage and hazards from explosions of propellant tanks and bursts of pressure vessels, both near and far from these explosions is introduced. Data are summarized in graphs, tables, and nomographs.

  19. The Case of Missing Iron in Cassiopeia A

    NASA Image and Video Library

    2014-02-19

    When astronomers first looked at images of a supernova remnant called Cassiopeia A, captured by NASA NuSTAR. The mystery of Cassiopeia A Cas A, a massive star that exploded in a supernova more than 11,000 years ago continues to confound scientists.

  20. The Future of Astronomy

    ERIC Educational Resources Information Center

    Greenstein, Jesse L.

    1973-01-01

    Presents a summary of the Reports of the Panels'' published by the Astronomy Survey Committee of the National Academy of Sciences in 1973, involving aspects of cosmology, quasars, exploding galaxies, stars, stellar evolution, solar system, organic molecules, life, and interstellar communication. Included are recommendations for scientific…

  1. Laboratory of plasma studies. Papers on high power particle beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    This book contains paper on Exploding metal film active anode sources experiments on the Lion extractor Ion Diode; Long conductor time plasma opening switch experiments; and Focusing studies of an applied B{sub r} extraction diode on the Lion accelerator.

  2. Conceptual Information Retrieval.

    DTIC Science & Technology

    1980-12-01

    A240 R I SS BYL U V CZC AM-PAL SKED 8 -18 -------- BY FERNANDO DEL MUNDO MANILA, PHILIPPINES (UPI)-A bomb exploded aboard a Philippine Airlines jetliner...understandinq Natural Lanquaqe, auto - matically organizing and reorqanizinq their memories, and usinq intelliqent heuristics for searching their memories

  3. Capitolizing on the Digital Divide.

    ERIC Educational Resources Information Center

    Roach, Ronald

    2000-01-01

    Discussion of opportunities for minorities in information technology (IT), especially in the Washington, DC area, focuses on the region's exploding IT growth, opportunities for public and private postsecondary institutions, outreach initiatives to attract underrepresented minorities to the IT field, government's role, and the role of black…

  4. Studies of an extractor geometry magnetically insulated ion diode with an exploding metal film anode plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rondeau, G.D.

    1989-01-01

    Magnetically insulated diodes (MIDs) are of interest as ion sources for inertial confinement fusion. The authors examined several issues that are of concern with MIDs, including ion turn-on delay and anode plasma production, and diode impedance history and particle current scaling with the applied magnetic field and gas spacing. The LION pulsed power generator (1.5 MV, 4 {Omega}, 40 ns pulse length) was used to power an extractor geometry magnetically insulated (radical magnetic field) ion beam diode. The diode was studied with three anode configurations. In the first, with epoxy-filled-groove (epoxy) anodes, scaling of the ion and electron currents withmore » the gap and the magnetic field was examined. He found that the observed ion current is consistent with a diode model that has been successful with barrel geometry MIDs. The electron leakage current scaled proportionally to 1/Bd{sup 2}, where d is the anode-cathode gap spacing and B is the magnetic field strength. Studies of ion beam propagation in vacuum showed that space charge non-neutrality near the magnetic field coils caused the beam to expand initially. Later in the ion pulse (20 to 30 ns), the beam expansion became much less severe. The second anode configuration utilized an electron collector protruding above an epoxy anode surface. With the collector, he observed less bremsstrahlung across the active anode region. The last anode configuration studied was the exploding metal film active anode plasma source (EMFAAPS). Current from the accelerator was directed by an electron collector or a plasma opening switch through a thin aluminum film, which exploded to form the anode plasma.« less

  5. The psychological effects of improvised explosive devices (IEDs) on UK military personnel in Afghanistan.

    PubMed

    Jones, Norman; Thandi, Gursimran; Fear, Nicola T; Wessely, Simon; Greenberg, Neil

    2014-07-01

    To explore the psychological consequences of improvised explosive device (IED) exposure as IEDs have been the greatest threat to UK military personnel in Afghanistan though the mental health consequences of IED exposure are largely unknown. Deployed UK military personnel completed a survey while deployed in Afghanistan. Combat personnel and those dealing specifically with the IED threat were compared with all other deployed personnel; the relationship between IED exposure, general combat experiences, Post Traumatic Stress Disorder (PTSD) Checklist-Civilian Version (PCL-C) and General Health Questionnaire scores were evaluated. The response rate was 98% (n=2794). Half reported IED-related concerns, a third experienced exploding IEDs and a quarter gave medical aid to IED casualties. Combat and counter-IED threat personnel had higher levels of IED exposure than other deployed personnel. 18.8% of personnel who witnessed exploding IEDs scored positive for common mental disorder (General Health Questionnaire-12 scores ≥4) and 7.6% scored positive for probable PTSD symptoms (PTSD Checklist-Civilian Version scores ≥44). After adjusting for general combat exposure and other observed confounders, PTSD symptoms were associated with IED exposure whereas common mental disorder symptoms were not. IED exposure, IED-related concerns and functional impairment accumulated during deployment but functional impairment was related to factors other than IED exposure alone. In Afghanistan, a substantial proportion of personnel were exposed to exploding IEDs however, the majority of exposed personnel were psychologically healthy. Psychological effects were similar for combat personnel and those dealing specifically with the IED threat but both groups were at greater psychological risk than other deployed personnel. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Constraining the Final Fates of Massive Stars by Oxygen and Iron Enrichment History in the Galaxy

    NASA Astrophysics Data System (ADS)

    Suzuki, Akihiro; Maeda, Keiichi

    2018-01-01

    Recent observational studies of core-collapse supernovae suggest that only stars with zero-age main-sequence masses smaller than 16–18 {M}ȯ explode when they are red supergiants, producing Type IIP supernovae. This may imply that more massive stars produce other types of supernovae or they simply collapse to black holes without giving rise to bright supernovae. This failed supernova hypothesis can lead to significantly inefficient oxygen production because oxygen abundantly produced in inner layers of massive stars with zero-age main-sequence masses around 20–30 {M}ȯ might not be ejected into the surrounding interstellar space. We first assume an unspecified population of oxygen injection events related to massive stars and obtain a model-independent constraint on how much oxygen should be released in a single event and how frequently such events should happen. We further carry out one-box galactic chemical enrichment calculations with different mass ranges of massive stars exploding as core-collapse supernovae. Our results suggest that the model assuming that all massive stars with 9–100 {M}ȯ explode as core-collapse supernovae is still most appropriate in explaining the solar abundances of oxygen and iron and their enrichment history in the Galaxy. The oxygen mass in the Galaxy is not explained when assuming that only massive stars with zero-age main-sequence masses in the range of 9–17 {M}ȯ contribute to the galactic oxygen enrichment. This finding implies that a good fraction of stars more massive than 17 {M}ȯ should eject their oxygen layers in either supernova explosions or some other mass-loss processes.

  7. Dance of the Light Echoes

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version

    This composite image from NASA's Spitzer Space Telescope shows the remnant of a star that exploded, called Cassiopeia A (center) and its surrounding 'light echoes' -- dances of light through dusty clouds, created when stars blast apart. The light echoes are colored and the surrounding clouds of dust are gray.

    In figure 1, dramatic changes are highlighted in phenomena referred to as light echoes (colored areas) around the Cassiopeia A supernova remnant (center). Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died.

    A light echo occurs when a star explodes, acting like a cosmic flashbulb. The light from this explosion zips through nearby dust clumps, illuminating and heating them up slightly. This brief period of warming causes them to glow in infrared, like a chain of Christmas bulbs lighting up one by one. The result is an optical illusion, in which the dust appears to be flying outward at the speed of light. In figure 1, this apparent motion can be seen here by the shift in colored dust clumps

    Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died. This remnant is located 11,000 light-years away in the northern constellation Cassiopeia.

    This composite consists of six processed images taken over a time span of three years. Dust features that have not changed over time appear gray, while those that have changed are colored blue or orange. Bluer colors represent an earlier time and redder ones, a later time. The progression of the light echo through the dust can be seen here by the shift in colored dust clumps.

    This light echo is the largest ever seen, stretching more than 300 light-years away from Cassiopeia A. If viewed from Earth, the entire frame would take up the same amount of space as seven full moons. The supernova remnant is located 11,000 light-years away in the northern constellation Cassiopeia.

    The earliest Spitzer image shown here was taken in February 2005, and the latest one in January 2008. The image was processed to emphasize the light echo by enhancing the areas that change, which appear in color, and dimming regions that remain constant, seen in grayscale. Spurious color artifacts such as diffraction spikes around stars were removed by hand.

  8. Creating Services for the Digital Library.

    ERIC Educational Resources Information Center

    Crane, Dennis J.

    The terms "virtual library,""digital library," and "electronic library" have received growing attention among professional librarians, researchers, and users of information over the past decade. The confluence of exploding sources of data, expanding technical capability, and constrained time and money will quickly move these concepts from…

  9. 77 FR 51773 - Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... from a launch, such as a hand-held pistol, and could include bird bombs, CAPA charges, screamers, and... bombs are expected to explode with a 100-dB report down range from the launch location. CAPA charges...

  10. How to detect an excited atom without disturbing it or how to locate a super-mine without exploding it

    NASA Technical Reports Server (NTRS)

    Vaidman, Lev

    1994-01-01

    Possible realistic implementations of a method for interaction-free measurements, due to Elitzur and Vaidman, are proposed and discussed. It is argued that the effect can be easily demonstrated in an optical laboratory.

  11. Maine belowground marsh destruction from the European green crab documented by computer-aided tomography

    EPA Science Inventory

    Invasive European green crab (Carcinus maenus) populations have exploded with devastating losses to Maine’s intertidal resources including soft-shell clams, eelgrass beds, and salt marshes. This project quantified the green crab abundance in three different marsh locations ...

  12. America's Success Syndrome

    ERIC Educational Resources Information Center

    Duplisea, Eric A.

    1974-01-01

    America's earliest schools taught career awareness and job skills, but for 200 years it was a speciality curriculum--cultivating a classical heritage predominated. Recently the hard sell message is that schooling and credentialism ensure entry into the "successful life". Vocational educators must become leaders, explode this myth, and redefine…

  13. A New Approach to Electrical Characterization of Exploding Foil Initiators

    DTIC Science & Technology

    1998-12-01

    processed to illustrate the methodology. RESUME Dans une etude precedente de 1a caracterisation electrique des detonateurs a element projete (DEP), on a...applicable a 1a caracterisation electrique des DEP et decrit la methodologie experimentale adequate. Cette methodologie est illustree par la

  14. DDT Characteristics of Laser Driven Exploding Bridgewire Detonators

    NASA Astrophysics Data System (ADS)

    Welle, Eric

    2005-07-01

    The initiation and performance characteristics of Laser Exploding Bridgewire (LEBW) detonators loaded with CL-20, CP and BNCP were examined. LEBW devices, in name, as well as in function, exhibit similarities to their electrically driven counterparts with the exception that the means for energy deposition into the driving metal media results from photon absorption instead of electrical joule heating. CP and BNCP were chosen due to their well-known propensity to rapidly undergo a deflagration-to-detonation transition (DDT) and CL-20 was chosen to explore its utility as a DDT explosive. The explosive loading within the LEBW detonators were similar in nature to traditional EBW devices with regard to %TMD loading of the initial increment as well as quantity of energetic materials. Comparisons of the energy fluences required for initiation of the explosives will be discussed. Additionally, streak camera measurements will be reviewed that were conducted at what would be considered ``hard-fire'' fluence levels as well as conditions closer to the mean firing fluence levels of initiation.

  15. The association of GRB 060218 with a supernova and the evolution of the shock wave.

    PubMed

    Campana, S; Mangano, V; Blustin, A J; Brown, P; Burrows, D N; Chincarini, G; Cummings, J R; Cusumano, G; Della Valle, M; Malesani, D; Mészáros, P; Nousek, J A; Page, M; Sakamoto, T; Waxman, E; Zhang, B; Dai, Z G; Gehrels, N; Immler, S; Marshall, F E; Mason, K O; Moretti, A; O'Brien, P T; Osborne, J P; Page, K L; Romano, P; Roming, P W A; Tagliaferri, G; Cominsky, L R; Giommi, P; Godet, O; Kennea, J A; Krimm, H; Angelini, L; Barthelmy, S D; Boyd, P T; Palmer, D M; Wells, A A; White, N E

    2006-08-31

    Although the link between long gamma-ray bursts (GRBs) and supernovae has been established, hitherto there have been no observations of the beginning of a supernova explosion and its intimate link to a GRB. In particular, we do not know how the jet that defines a gamma-ray burst emerges from the star's surface, nor how a GRB progenitor explodes. Here we report observations of the relatively nearby GRB 060218 (ref. 5) and its connection to supernova SN 2006aj (ref. 6). In addition to the classical non-thermal emission, GRB 060218 shows a thermal component in its X-ray spectrum, which cools and shifts into the optical/ultraviolet band as time passes. We interpret these features as arising from the break-out of a shock wave driven by a mildly relativistic shell into the dense wind surrounding the progenitor. We have caught a supernova in the act of exploding, directly observing the shock break-out, which indicates that the GRB progenitor was a Wolf-Rayet star.

  16. Kepler Beyond Planets: Finding Exploding Stars (Type Felt Supernova)

    NASA Image and Video Library

    2018-03-26

    This frame from an animation shows a kind of stellar explosion called a Fast-Evolving Luminous Transient. In this case, a giant star "burps" out a shell of gas and dust about a year before exploding. Most of the energy from the supernova turns into light when it hits this previously ejected material, resulting in a short, but brilliant burst of radiation. Stellar explosions forge and distribute materials that make up the world in which we live, and also hold clues to how fast the universe is expanding. By understanding supernovae, scientists can unlock mysteries that are key to what we are made of and the fate of our universe. But to get the full picture, scientists must observe supernovae from a variety of perspectives, especially in the first moments of the explosion. That's really difficult -- there's no telling when or where a supernova might happen next. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22351

  17. Biogas production from wheat straw and manure--impact of pretreatment and process operating parameters.

    PubMed

    Risberg, Kajsa; Sun, Li; Levén, Lotta; Horn, Svein Jarle; Schnürer, Anna

    2013-12-01

    Non-treated or steam-exploded straw in co-digestion with cattle manure was evaluated as a substrate for biogas production compared with manure as the sole substrate. All digestions were performed in laboratory-scale CSTR reactors (5L) operating with an organic loading late of approximately 2.8 g VS/L/day, independent of substrate mixture. The hydraulic retention was 25 days and an operating temperature of 37, 44 or 52°C. The co-digestion with steam exploded straw and manure was evaluated with two different mixtures, with different proportion. The results showed stable performance but low methane yields (0.13-0.21 N L CH4/kg VS) for both manure alone and in co-digestion with the straw. Straw appeared to give similar yield as manure and steam-explosion treatment of the straw did not increase gas yields. Furthermore, there were only slight differences at the different operating temperatures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Detonator Performance Characterization Using Multi-Frame Laser Schlieren Imaging

    NASA Astrophysics Data System (ADS)

    Clarke, S. A.; Landon, C. D.; Murphy, M. J.; Martinez, M. E.; Mason, T. A.; Thomas, K. A.

    2009-12-01

    Several experiments that are part of a phased plan to understand the evolution of detonation in a detonator from initiation shock through run to detonation to full detonation to transition to booster and booster detonation will be presented. High speed laser schlieren movies have been used to study several explosive initiation events, such as exploding bridgewires (EBW), exploding foil initiators (EFI) (or slappers), direct optical initiation (DOI), and electrostatic discharge (ESD). Additionally, a series of tests have been performed on "cut-back" detonators with varying initial pressing (IP) heights. We have also used this diagnostic to visualize a range of EBW, EFI, and DOI full-up detonators. Future applications to other explosive events such as boosters and IHE booster evaluation will be discussed. The EPIC hydrodynamic code has been used to analyze the shock fronts from the schlieren images to reverse calculate likely boundary or initial conditions to determine the temporal-spatial pressure profile across the output face of the detonator. LA-UR-05099

  19. Using Schlieren Visualization to Track Detonator Performance

    NASA Astrophysics Data System (ADS)

    Clarke, S. A.; Bolme, C. A.; Murphy, M. J.; Landon, C. D.; Mason, T. A.; Adrian, R. J.; Akinci, A. A.; Martinez, M. E.; Thomas, K. A.

    2007-12-01

    Several experiments will be presented that are part of a phased plan to understand the evolution of detonation in a detonator from initiation shock through run to detonation, to full detonation, to transition, to booster and booster detonation. High-speed multiframe schlieren imagery has been used to study several explosive initiation events, such as exploding bridgewires (EBWs), exploding foil initiators (EFIs or "slappers"), direct optical initiation (DOI), and electrostatic discharge. Additionally, a series of tests has been performed on "cut-back" detonators with varying initial pressing heights. We have also used this diagnostic to visualize a range of EBW, EFI, and DOI full-up detonators. Future applications to other explosive events, such as boosters and insensitive high explosives booster evaluation, will be discussed. The EPIC finite element code has been used to analyze the shock fronts from the schlieren images to solve iteratively for consistent boundary or initial conditions to determine the temporal-spatial pressure profile across the output face of the detonator.

  20. Using Schlieren Visualization to Track Detonator Performance

    NASA Astrophysics Data System (ADS)

    Clarke, Steven; Thomas, Keith; Martinez, Michael; Akinci, Adrian; Murphy, Michael; Adrian, Ronald

    2007-06-01

    Several experiments that are part of a phased plan to understand the evolution of detonation in a detonator from initiation shock through run to detonation to full detonation to transition to booster and booster detonation will be presented. High Speed Laser Schlieren Movies have been used to study several explosive initiation events, such as exploding bridgewires (EBW), Exploding Foil Initiators (EFI) (or slappers), Direct Optical Initiation (DOI), and ElectroStatic Discharge (ESD). Additionally, a series of tests have been performed on ``cut-back'' detonators with varying initial pressing (IP) heights. We have also used this diagnostic to visualize a range of EBW, EFI, and DOI full-up detonators. Future applications to other explosive events such as boosters and IHE booster evaluation will be discussed. EPIC Hydrodynamic code has been used to analyze the shock fronts from the Schlieren images to reverse calculate likely boundary or initial conditions to determine the temporal-spatial pressure profile across the output face of the detonator. LA-UR-07-1229

  1. A platform for exploding wires in different media

    NASA Astrophysics Data System (ADS)

    Han, Ruoyu; Wu, Jiawei; Qiu, Aici; Zhou, Haibin; Wang, Yanan; Yan, Jiaqi; Ding, Weidong

    2017-10-01

    A platform SWE-2 used for single wire explosion experiments has been designed, established, and commissioned. This paper describes the design and initial experiments of SWE-2. In summary, two pulsed current sources based on pulse capacitors and spark gaps are adopted to drive sub-microsecond and microsecond time scale wire explosions in a gaseous/liquid medium, respectively. In the initial experiments, a single copper wire was exploded in air, helium, and argon with a 0.1-0.3 MPa ambient pressure as well as tap water with a 283-323 K temperature, 184-11 000 μ S/cm conductivity, or 0.1-0.9 MPa hydrostatic pressure. In addition, the diagnostic system is introduced in detail. Energy deposition, optical emission, and shock wave characteristics are briefly discussed based on experimental results. The platform was demonstrated to operate successfully with a single wire load. These results provide the potential for further applications of this platform, such as plasma-matter interactions, shock wave effects, and reservoir simulations.

  2. A surge of light at the birth of a supernova.

    PubMed

    Bersten, M C; Folatelli, G; García, F; Van Dyk, S D; Benvenuto, O G; Orellana, M; Buso, V; Sánchez, J L; Tanaka, M; Maeda, K; Filippenko, A V; Zheng, W; Brink, T G; Cenko, S B; de Jaeger, T; Kumar, S; Moriya, T J; Nomoto, K; Perley, D A; Shivvers, I; Smith, N

    2018-02-21

    It is difficult to establish the properties of massive stars that explode as supernovae. The electromagnetic emission during the first minutes to hours after the emergence of the shock from the stellar surface conveys important information about the final evolution and structure of the exploding star. However, the unpredictable nature of supernova events hinders the detection of this brief initial phase. Here we report the serendipitous discovery of a newly born, normal type IIb supernova (SN 2016gkg), which reveals a rapid brightening at optical wavelengths of about 40 magnitudes per day. The very frequent sampling of the observations allowed us to study in detail the outermost structure of the progenitor of the supernova and the physics of the emergence of the shock. We develop hydrodynamical models of the explosion that naturally account for the complete evolution of the supernova over distinct phases regulated by different physical processes. This result suggests that it is appropriate to decouple the treatment of the shock propagation from the unknown mechanism that triggers the explosion.

  3. A surge of light at the birth of a supernova

    NASA Astrophysics Data System (ADS)

    Bersten, M. C.; Folatelli, G.; García, F.; van Dyk, S. D.; Benvenuto, O. G.; Orellana, M.; Buso, V.; Sánchez, J. L.; Tanaka, M.; Maeda, K.; Filippenko, A. V.; Zheng, W.; Brink, T. G.; Cenko, S. B.; de Jaeger, T.; Kumar, S.; Moriya, T. J.; Nomoto, K.; Perley, D. A.; Shivvers, I.; Smith, N.

    2018-02-01

    It is difficult to establish the properties of massive stars that explode as supernovae. The electromagnetic emission during the first minutes to hours after the emergence of the shock from the stellar surface conveys important information about the final evolution and structure of the exploding star. However, the unpredictable nature of supernova events hinders the detection of this brief initial phase. Here we report the serendipitous discovery of a newly born, normal type IIb supernova (SN 2016gkg), which reveals a rapid brightening at optical wavelengths of about 40 magnitudes per day. The very frequent sampling of the observations allowed us to study in detail the outermost structure of the progenitor of the supernova and the physics of the emergence of the shock. We develop hydrodynamical models of the explosion that naturally account for the complete evolution of the supernova over distinct phases regulated by different physical processes. This result suggests that it is appropriate to decouple the treatment of the shock propagation from the unknown mechanism that triggers the explosion.

  4. Enzymatic Pretreatment Coupled with the Addition of p-Hydroxyanisole Increased Levulinic Acid Production from Steam-Exploded Rice Straw Short Fiber.

    PubMed

    Ma, Li-Tong; Zhao, Zhi-Min; Yu, Bin; Chen, Hong-Zhang

    2016-11-01

    Levulinic acid production, directly from lignocellulosic biomass, resulted in low yields due to the poor substrate accessibility and occurrence of side reactions. The effects of reaction conditions, enzymatic pretreatment, and inhibitor addition on the conversion of steam-exploded rice straw (SERS) short fiber to levulinic acid catalyzed by solid superacid were investigated systematically. The results indicated that the optimal reaction conditions were temperature, time, and solid superacid concentration combinations of 200 °C, 15 min, and 7.5 %. Enzymatic pretreatment improved the substrate accessibility to solid superacid catalyst, and p-hydroxyanisole inhibitor reduced the side reactions during reaction processes, which helped to increase levulinic acid yield. The levulinic acid yield reached 25.2 % under the optimal conditions, which was 61.5 % higher than that without enzymatic pretreatment and inhibitor addition. Therefore, enzymatic pretreatment coupled with the addition of p-hydroxyanisole increased levulinic acid production effectively, which contributed to the value-added utilization of lignocellulosic biomass.

  5. Characteristic symptoms and associated features of exploding head syndrome in undergraduates.

    PubMed

    Sharpless, Brian A

    2018-03-01

    Background Exploding head syndrome (EHS) is characterized by loud noises or a sense of explosion in the head during sleep transitions. Though relatively common, little is known about its characteristic symptoms or associated features. Methods A cross-sectional study of 49 undergraduates with EHS was performed. A clinical interview established diagnosis. Results The most common accompanying symptoms were tachycardia, fear, and muscle jerks/twitches with the most severe associated with respiration difficulties. Visual phenomena were more common than expected (27%). EHS episodes were perceived as having a random course, but were most likely to occur during wake-sleep transitions and when sleeping in a supine position. Only 11% reported EHS to a professional, and 8% of those with recurrent EHS attempted to prevent episodes. Conclusions EHS episodes are complex (Mean (M) = 4.5 additional symptoms), often multisensorial, and usually associated with clinically-significant fear. They are rarely reported to professionals and treatment approaches are limited.

  6. Steam explosion treatment for ethanol production from branches pruned from pear trees by simultaneous saccharification and fermentation.

    PubMed

    Sasaki, Chizuru; Okumura, Ryosuke; Asada, Chikako; Nakamura, Yoshitoshi

    2014-01-01

    This study investigated the production of ethanol from unutilized branches pruned from pear trees by steam explosion pretreatment. Steam pressures of 25, 35, and 45 atm were applied for 5 min, followed by enzymatic saccharification of the extracted residues with cellulase (Cellic CTec2). High glucose recoveries, of 93.3, 99.7, and 87.1%, of the total sugar derived from the cellulose were obtained from water- and methanol-extracted residues after steam explosion at 25, 35, and 45 tm, respectively. These values corresponded to 34.9, 34.3, and 27.1 g of glucose per 100 g of dry steam-exploded branches. Simultaneous saccharification and fermentation experiments were done on water-extracted residues and water- and methanol-extracted residues by Kluyveromyces marxianus NBRC 1777. An overall highest theoretical ethanol yield of 76% of the total sugar derived from cellulose was achieved when 100 g/L of water- and methanol-washed residues from 35 atm-exploded pear branches was used as substrate.

  7. Massive Star Goes Out With a Whimper Instead of a Bang (Artist's Concept)

    NASA Image and Video Library

    2017-05-25

    Every second a star somewhere out in the universe explodes as a supernova. But some extremely massive stars go out with a whimper instead of a bang. When they do, they can collapse under the crushing tug of gravity and vanish out of sight, only to leave behind a black hole. The doomed star N6946-BH1 was 25 times as massive as our sun. It began to brighten weakly in 2009. But, by 2015, it appeared to have winked out of existence. By a careful process of elimination, based on observations by the Large Binocular Telescope and NASA's Hubble and Spitzer space telescopes, researchers eventually concluded that the star must have become a black hole. This may be the fate for extremely massive stars in the universe. This illustration shows the final stages in the life of a supermassive star that fails to explode as a supernova, but instead implodes to form a black hole. https://photojournal.jpl.nasa.gov/catalog/PIA21466

  8. A solar-type star polluted by calcium-rich supernova ejecta inside the supernova remnant RCW 86

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Langer, Norbert; Fossati, Luca; Bock, Douglas C.-J.; Castro, Norberto; Georgiev, Iskren Y.; Greiner, Jochen; Johnston, Simon; Rau, Arne; Tauris, Thomas M.

    2017-06-01

    When a massive star in a binary system explodes as a supernova, its companion star may be polluted with heavy elements from the supernova ejecta. Such pollution has been detected in a handful of post-supernova binaries 1 , but none of them is associated with a supernova remnant. We report the discovery of a binary G star strongly polluted with calcium and other elements at the position of the candidate neutron star [GV2003] N within the young galactic supernova remnant RCW 86. Our discovery suggests that the progenitor of the supernova that produced RCW 86 could have been a moving star, which exploded near the edge of its wind bubble and lost most of its initial mass because of common-envelope evolution shortly before core collapse, and that the supernova explosion might belong to the class of calcium-rich supernovae — faint and fast transients 2,3 , the origin of which is strongly debated 4-6 .

  9. Comparison of the efficiency of bacterial and fungal laccases in delignification and detoxification of steam-pretreated lignocellulosic biomass for bioethanol production.

    PubMed

    De La Torre, María; Martín-Sampedro, Raquel; Fillat, Úrsula; Eugenio, María E; Blánquez, Alba; Hernández, Manuel; Arias, María E; Ibarra, David

    2017-11-01

    This study evaluates the potential of a bacterial laccase from Streptomyces ipomoeae (SilA) for delignification and detoxification of steam-exploded wheat straw, in comparison with a commercial fungal laccase from Trametes villosa. When alkali extraction followed by SilA laccase treatment was applied to the water insoluble solids fraction, a slight reduction in lignin content was detected, and after a saccharification step, an increase in both glucose and xylose production (16 and 6%, respectively) was observed. These effects were not produced with T. villosa laccase. Concerning to the fermentation process, the treatment of the steam-exploded whole slurry with both laccases produced a decrease in the phenol content by up to 35 and 71% with bacterial and fungal laccases, respectively. The phenols reduction resulted in an improved performance of Saccharomyces cerevisiae during a simultaneous saccharification and fermentation (SSF) process, improving ethanol production rate. This enhancement was more marked with a presaccharification step prior to the SSF process.

  10. Magnetism and mineralogy of Almahata Sitta polymict ureilite (= asteroid 2008 TC3): Implications for the ureilite parent body magnetic field

    NASA Astrophysics Data System (ADS)

    Hoffmann, Viktor H.; Hochleitner, Rupert; Torii, Masayuki; Funaki, Minoru; Mikouchi, Takashi; Kaliwoda, Melanie; Jenniskens, Peter; Shaddad, Muawia H.

    2011-10-01

    The Almahata Sitta meteorite is the first case of recovered extraterrestrial material originating from an asteroid that was detected in near Earth space shortly before entering and exploding in the high atmosphere. The aims of our project within the 2008 TC3 consortium were investigating Almahata Sitta's (AS) magnetic signature, phase composition and mineralogy, focussing on the opaque minerals, and gaining new insights into the magnetism of the ureilite parent body (UPB). We report on the general magnetic properties and behavior of Almahata Sitta and try to place the results in context with the existing data set on ureilites and ureilite parent body models. The magnetic signature of AS is dominated by a set of low-Ni kamacites with large grain sizes. Additional contributions come from micron-sized kamacites, suessite, (Cr) troilite, and daubreelite, mainly found in the olivine grains adjacent to carbon-rich veins. Our results show that the paleomagnetic signal is of extraterrestrial origin as can be seen by comparing with laboratory produced magnetic records (IRM). Four types of kamacite (I-IV) have been recognized in the sample. The elemental composition of the ureilite vein metal Kamacite I (particularly Co) clearly differs from the other kamacites (II-IV), which are considered to be indigenous. Element ratios of kamacite I indicate that it was introduced into the UPB by an impactor, supporting the conclusions of Gabriel and Pack (2009).

  11. FAILURE OF A NEUTRINO-DRIVEN EXPLOSION AFTER CORE-COLLAPSE MAY LEAD TO A THERMONUCLEAR SUPERNOVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushnir, Doron; Katz, Boaz, E-mail: kushnir@ias.edu

    We demonstrate that ∼10 s after the core-collapse of a massive star, a thermonuclear explosion of the outer shells is possible for some (tuned) initial density and composition profiles, assuming that the neutrinos failed to explode the star. The explosion may lead to a successful supernova, as first suggested by Burbidge et al. We perform a series of one-dimensional (1D) calculations of collapsing massive stars with simplified initial density profiles (similar to the results of stellar evolution calculations) and various compositions (not similar to 1D stellar evolution calculations). We assume that the neutrinos escaped with a negligible effect on themore » outer layers, which inevitably collapse. As the shells collapse, they compress and heat up adiabatically, enhancing the rate of thermonuclear burning. In some cases, where significant shells of mixed helium and oxygen are present with pre-collapsed burning times of ≲100 s (≈10 times the free-fall time), a thermonuclear detonation wave is ignited, which unbinds the outer layers of the star, leading to a supernova. The energy released is small, ≲10{sup 50} erg, and negligible amounts of synthesized material (including {sup 56}Ni) are ejected, implying that these 1D simulations are unlikely to represent typical core-collapse supernovae. However, they do serve as a proof of concept that the core-collapse-induced thermonuclear explosions are possible, and more realistic two-dimensional and three-dimensional simulations are within current computational capabilities.« less

  12. Core/shell structured Zn/ZnO nanoparticles synthesized by gaseous laser ablation with enhanced photocatalysis efficiency

    NASA Astrophysics Data System (ADS)

    Song, Lu; Wang, Yafei; Ma, Jing; Zhang, Qinghua; Shen, Zhijian

    2018-06-01

    Zinc oxide (ZnO) is a competitive candidate in semiconductor photocatalysts, only if the efficiency could be fully optimized especially by tailored nanostructures. Here we report a kind of core/shell structured Zn/ZnO nanoparticles with enhanced photocatalysis efficiency, which were synthesized by a highly-productive gaseous laser ablation method. The nanodroplets generated by laser ablation would be reduced to zinc in the protective atmosphere, and further be oxidized at surface to form a specific core/shell structured Zn/ZnO nanoparticles within seconds. Thanks to the formation of this Zn-ZnO Schottky junction, the photocatalysis degradation efficiency of such core/shell Zn/ZnO nanostructure is significantly improved owing to the enhanced visible light absorption and inhibited carrier recombination by introducing the metallic zinc.

  13. Student Enrollment 1971-72

    ERIC Educational Resources Information Center

    Henderson, Bonnie C.

    1972-01-01

    In the academic year 1971-72: geology majors increased at all levels; geophysics majors dropped slightly; oceanographers showed substantial increases at the master's and doctoral levels; enrollment was down in graduate-degree programs for earth science teachers; environmental science exploded, more than tripling the total number of Ph.D.…

  14. A Deeper Shade of Green

    ERIC Educational Resources Information Center

    Schachter, Ron

    2009-01-01

    For many schools, "Going Green" once meant turning out the lights after leaving the classroom, filling the recycle bins, and celebrating Earth Day. Not anymore. Although such activities remain staples of environmentally conscious school systems, that consciousness has exploded in an era of high energy prices, global warming threats, and…

  15. CrossTalk: The Journal of Defense Software Engineering. Volume 26, Number 4

    DTIC Science & Technology

    2013-07-01

    quality of most software explode into the broader consciousness . This awareness came thanks to the coincidence of the rise of universal Internet...facilitates the accomplishment of stage 4, Continuous Improvement. A quantum advance for project management is readily avail- able through the

  16. Reaching and Teaching Autistic Kids

    ERIC Educational Resources Information Center

    Boutelle, Marsha

    2008-01-01

    Autism is called a "spectrum" of disorders because a variety of symptoms and degrees of disability are involved, with autism spectrum disorders (ASD) defined by the severity of impairment. Since the 1940s, the incidence of autism has exploded exponentially. Researchers are scrambling to find effective strategies for helping autistic…

  17. NuSTAR Captures the Beat of a Dead Star Animation

    NASA Image and Video Library

    2014-10-08

    The brightest pulsar detected to date is shown in this frame from an animation that flips back and forth between images captured by NASA NuSTAR. A pulsar is a type of neutron star, the leftover core of a star that exploded in a supernova.

  18. Student Control as a Planning and Design Factor in Educational Facilities.

    ERIC Educational Resources Information Center

    Lilley, H. Edward

    Appropriate school facility design promotes a balance between student freedom and control. This report evaluates research on architectural approaches affecting student control and offers design recommendations. Since 1960, school discipline and vandalism problems have exploded. Senator Birch Bayh's committee reported that certain crimes are…

  19. Saturn Apollo Program

    NASA Image and Video Library

    1970-01-01

    Apollo 13 astronauts Fred Haise, John Swigert, and James Lovell are pictured during the press conference after their ill-fated mission. The Apollo 13 mission (the third lunar landing mission) was aborted after 56 hours of flight, 205,000 miles from Earth, when an oxygen tank in the service module exploded.

  20. The Scapegoat Generation: America's War on Adolescents.

    ERIC Educational Resources Information Center

    Males, Mike A.

    Claiming that politicians, private interests, and the media unfairly blame adolescents for America's social problems, this book explodes various myths about teen pregnancy, violence, and risk behaviors. The chapters are: (1) "Impounding the Future," examining trends in various social indicators such as rising rates of child poverty…

  1. Influence of feeding alternative fiber sources on the gastrointestinal fermentation, digestive enzyme activities and mucosa morphology of growing Greylag geese.

    PubMed

    He, L W; Meng, Q X; Li, D Y; Zhang, Y W; Ren, L P

    2015-10-01

    The objective of this trial was to study the influence of dietary fiber sources on the gastrointestinal fermentation, digestive enzyme activity, and mucosa morphology of growing Greylag geese. In total, 240 Greylag geese (28-day-old) were allocated to 4 treatments (15 pens/treatment) differing in dietary fiber source: corn straw silage (CSS group), steam-exploded corn straw (SECS group), steam-exploded wheat straw (SEWS group), or steam-exploded rice straw (SERS group). At 112 days of age, 15 birds per group were euthanized to collect samples. No difference (P > 0.05) was found on all the gastrointestinal pH values and ammonia-nitrogen concentrations between the groups. The CSS and SERS groups had a lower (P < 0.05) proportion of acetic acid in the gizzard than the SECS and SEWS groups. The CSS group had a higher VFA concentration in the jejunum (P < 0.05) and acetic acid proportion (P < 0.01) in the ceca, and a lower (P < 0.01) butyric acid proportion than the other groups except for the SECS group. The SECS group had a higher (P < 0.01) acetic acid proportion and lower (P < 0.05) proportions of propionic acid and valeric acid in the ceca than the SEWS and SERS groups. Different fiber sources resulted in different VFA profiles, especially in the gizzard and ceca. Almost all gastrointestinal protease activities of the CSS group were higher (P < 0.05) than the other groups, along with lower (P < 0.01) amylase activities in the duodenum, jejunum, ileum, and ceca. Lipase activity in proventriculus was highest (P < 0.01) in the SEWS group and its cecal activity was lower (P < 0.01) in the SECS and SEWS groups than the CSS and SERS groups with a higher (P < 0.01) lipase activity in the CSS group than the SERS group. The SECS and SERS groups had a higher cellulase activity in the ceca than the CSS and SEWS groups, with a higher (P < 0.01) rectal cellulase activity in the SERS group than the other groups. There was no significant effect (P > 0.05) on the intestinal mucosa morphology. These results suggest that corn straw silage improves protein digestion while steam-exploded straw provides more energy. © 2015 Poultry Science Association Inc.

  2. From Foam Rubber to Volcanoes: The Physical Chemistry of Foam Formation

    NASA Astrophysics Data System (ADS)

    Hansen, Lee D.; McCarlie, V. Wallace

    2004-11-01

    Principles of physical chemistry and physical properties are used to describe foam formation. Foams are common in nature and in consumer products. The process of foam formation can be used to understand a wide variety of phenomena from exploding volcanoes to popping popcorn and making shoe soles.

  3. Story Games: Marrying Silicon, Celluloid, and CD-ROM.

    ERIC Educational Resources Information Center

    Gussin, Lawrence

    1994-01-01

    Reports on themes emphasized at the April 1994 Computer Game Developers Conference held in Santa Clara (California), including the exploding CD-ROM marketplace and the potential and challenge of using CD-ROM's multimedia capacity to build cinema-quality stories and characters into computer games. Strategies for introducing more complex plots are…

  4. Interventions to Prevent and Reduce Cyber Abuse of Youth: A Systematic Review

    ERIC Educational Resources Information Center

    Mishna, Faye; Cook, Charlene; Saini, Michael; Wu, Meng-Jia; MacFadden, Robert

    2011-01-01

    Objectives: The Internet has created a new communication tool, particularly for young people whose use of electronic communication is exploding worldwide. While there are many benefits that result from electronic-based communication, the Internet is concurrently a potential site for abuse and victimization. Methods: This paper systematically…

  5. The Uses of Rudeness.

    ERIC Educational Resources Information Center

    Machiavelli, Nick

    1992-01-01

    Exploding in anger has its charm, though putting sand in the social oil is not simple. Rudeness, like celebrity deaths, comes in threes: daily, demented, and inspired. Administrators should be forewarned: rudeness is effective only when coming from power. Powerless rude people are called nuts; powerful rude people are deemed eccentric. (MLH)

  6. The Citizen Science Toolbox: A One-Stop Resource for Air Sensor Technology

    EPA Science Inventory

    The air sensor technology market is exploding with new sensors in all kinds of forms. Developers are putting sensors in wristbands, headphones, and cell phone add-ons. Small, portable and lower-cost measurement devices using sensors are coming on the market with a wide variety of...

  7. Training Communication Graduates for Singapore's Media Research Market.

    ERIC Educational Resources Information Center

    Wolfe, Billy; Ying, Angeling Sim Zhi

    2000-01-01

    Presents preliminary findings from a needs assessment study of undergraduate communication and media training in Singapore. Content analyzes 372 relevant employment ads for 1998 and 1999. Finds nearly 60% were for marketing research, public opinion polling or other kinds of applied research. Suggests an exploding demand for graduates with…

  8. Hospital marketing and the Internet: revisited.

    PubMed

    Shepherd, C D; Fell, D

    1998-01-01

    In 1995 a study was conducted to explore the use of the Internet in hospital marketing. Use of the Internet has exploded since that study was published. This manuscript replicates the 1995 study and extends it by investigating several managerial and operational issues concerning the use of the Internet in hospital marketing.

  9. Literacy, Knowledge, Power, and Development--Multiple Connections.

    ERIC Educational Resources Information Center

    Bhola, H. S.

    Development must offer people not only release from poverty but also social esteem and political freedom. While knowledge production has exploded, its distribution and use is still limited, especially in the Third World. Literacy is the most promising means of bringing information and technology to common people in developing nations. Each country…

  10. Going Beyond, Going Further: Chemical Properties of Commonly Available Hydrocarbons.

    ERIC Educational Resources Information Center

    Perina, Ivo

    1985-01-01

    Background information, procedures used, and safety considerations are provided for experiments using natural gas. They include: (1) exploding a mixture of natural gas and oxygen; (2) testing for unsaturated hydrocarbons in natural gas; (3) substituting higher saturated hydrocarbons contained in kerosene with bromine; and (4) the pyrolysis of…

  11. The School Leader's Guide to Social Media

    ERIC Educational Resources Information Center

    Williamson, Ronald; Johnston, J. Howard

    2012-01-01

    Social media has exploded onto American culture--including our schools--giving educators a unique opportunity to shape this phenomenon into a powerful tool for improving educational leadership practices. With real-world examples and practical tips, this essential guide shows school leaders how to address both the potential benefits and common…

  12. Lightweight protective clothing for the safe handling of high-intensity pressurized lamps

    NASA Technical Reports Server (NTRS)

    Ewashinka, J. G.

    1975-01-01

    Five commercially available clothing materials, selected for their high cutting resistance, high strength, light weight and pliability, were tested by exposing them to exploding lamps located less than 60 cm (2 ft) away. Face shield material tested initially was commercial high-strength polycarbonate plastic.

  13. Test Standards for Contingency Base Waste-to-Energy Technologies

    DTIC Science & Technology

    2015-08-01

    test runs are preferred to allow a more comprehensive statistical evaluation of the results. In 8 • Minimize the complexity , difficulty, and...with water or, in the case of cyanide - or sulfide-bearing wastes, when exposed to mild acidic or basic conditions; 4) explode when subjected to a

  14. Rapid re-brightening of the red nova V4332 Sgr remnant

    NASA Astrophysics Data System (ADS)

    Goranskij, V. P.; Zharova, A. V.; Barsukova, E. A.; Valeev, A. F.

    2018-06-01

    V4332 Sgr is a luminous red nova exploded in 1994. We perform CCD BVRcIc photometry of its remnant since 2003, and medium resolution spectroscopy since 2005 using Russian 6 m telescope BTA, SAO 1 m Zeiss telescope and smaller telescopes of SAI Crimean Station.

  15. Achieving "Authentic" Pedagogy: Plan Units, Not Lessons

    ERIC Educational Resources Information Center

    Saye, John

    2014-01-01

    Social studies teachers have the principal responsibility for developing competent citizens who can reason together about the challenges of democratic life. Always complicated, informed reflective citizenship is even more difficult in an age of exploding information, often from sources whose credibility has not been subject to editorial review.…

  16. Vision for Excellence

    ERIC Educational Resources Information Center

    Fain, Paul

    2007-01-01

    Strategic plans migrated to higher education from the corporate world. Although some universities have been drafting them for at least 40 years, their use has exploded over the last decade, particularly in the last two years. Now virtually every institution, from research universities to community colleges, has a plan. Competition for students,…

  17. Classical biological control of invasive species: fighting fire with fire

    USDA-ARS?s Scientific Manuscript database

    Invasive species cost the US over $130 billion in losses and control costs every year. Exotic insects, weeds and pathogens are the primary invaders that frequently move across continents, exploding in numbers in areas where they have been newly introduced. There are many reasons that these pests r...

  18. The Soviet Withdrawal from Afghanistan: Strategic Context

    DTIC Science & Technology

    2013-12-10

    degree along Khalq-Parcham lines. The arrests exploded into a series of violent and bloody events called the Saur Revolution. The Saur Revolution...he made a promise to protect him. Yuri Andropov, the head of the KGB, was “mortified by his department’s failure to keep control of events” and...

  19. Investigating Functions Using Real-World Data

    ERIC Educational Resources Information Center

    Arnold, Stephen

    2006-01-01

    The possibilities for using graphic calculators to enhance the teaching and learning of mathematics are great. However, the boundaries explode when these powerful tools for learning are connected to data logging devices: a whole new approach to mathematics learning becomes possible. Using real world data to introduce the main functions (which are…

  20. Investigating Students' Ideas about Plate Tectonics

    ERIC Educational Resources Information Center

    Ford, Brent; Taylor, Melanie

    2006-01-01

    Giant exploding volcanoes...asteroids crashing into Earth...continents floating across the oceans...massive pools of lava...violent earthquakes splitting continents--middle school students hold a variety of ideas about Earth, how it has changed over time, and what has caused these changes. Listening to students talk about how the world works is…

  1. New Definitions for New Higher Education Institutions

    ERIC Educational Resources Information Center

    Meyer, Katrina A.

    2009-01-01

    New terms were exploding early in the development of distance learning and virtual universities. Distance learning, online learning, e-learning, and distributed learning were applied to the various new forms of learning using online or Web-based materials and processes. However, largely thanks to the immediate popularity of the Western Governors'…

  2. Beating the Moon: A Reflection on Media and Literacy.

    ERIC Educational Resources Information Center

    Fox, Roy F.

    1999-01-01

    Reflects on the influence of popular culture and mass media on young people, and argues for a broader notion of literacy that includes verbal and visual literacy as well as all manner of other "texts," because the teaching of literacy has exploded right along with satellite technology and microchips. (SR)

  3. Video Game-Based Methodology for Business Research

    ERIC Educational Resources Information Center

    Lawson, Larry L.; Lawson, Catherine L.

    2010-01-01

    Experimental research in business and economics has exploded in recent years in both laboratory and field settings. The generality of findings from field experiments is limited by the specificity of the experimental environment. Laboratory studies, on the other hand, are criticized for being devoid of the contextual cues that may indicate to…

  4. Toxiological Considerations in the Gulf of Mexico Oil Spill

    EPA Science Inventory

    The Deep Water Horizon oil rig exploded on April 20, 2010, resulting in an ongoing release of light sweet petroleum crude oil and methane into Gulf of Mexico waters. The release from the deepwater wellhead 41 miles from Louisiana is at approximately 1 mile depth, and flow rates e...

  5. Process optimization for maximizing the rheology modifying properties of pectic hydrocolloids recovered from steam exploded biomass

    USDA-ARS?s Scientific Manuscript database

    Pectic hydrocolloids from citrus peel waste are highly functional molecules whose utility and application have expanded well beyond their traditional use in jams and jellies. They are now finding applications in health, pharmaceutical and personal care products as well as functioning as emulsifiers,...

  6. A History of ESL Instruction in Madison, Wisconsin.

    ERIC Educational Resources Information Center

    Kuntz, Patricia S.

    This paper investigates the emergence of English-as-a- Second-Language (ESL) instruction in Madison, Wisconsin. Like other medium-sized, upper-midwest communities, the demand for ESL instruction has exploded. Despite some visa limitations placed on international students who wish to study English in the United States since September 2001, ESL…

  7. Tribal Government Records Management Manual.

    ERIC Educational Resources Information Center

    Reno/Sparks Indian Colony, Reno, NV.

    Following the passage of the 1972 Indian Self-Determination Act, the volume of tribal government records has exploded. This manual is a guide to establishing a system for the effective organization, maintenance, and disposition of such records. Section A discusses the major goals of a records management program, defines relevant terms, suggests…

  8. Low cost sensors: Field evaluations and multi-sensor approaches for emissions factors

    EPA Science Inventory

    The development, and application of low cost sensors to measure both particulate and gas-phase air pollutants is poised to explode over the next several years. The need for the sensors is driven by poor air quality experienced in inhabited regions throughout the world, in both de...

  9. Exploding the Hierarchical Fallacy: The Significance of Foundation-Level Courses

    ERIC Educational Resources Information Center

    Maimon, Elaine P.

    2017-01-01

    Reform in American higher education depends on recognizing freshman courses as the foundation of higher-order thinking and learning. These courses must be recognized for their intellectual significance and their inherent possibilities for multi-disciplinary scholarship. The Maimon Hierarchical Fallacy is a phrase coined by Elaine Maimon to refer…

  10. Method and system for making integrated solid-state fire-sets and detonators

    DOEpatents

    O'Brien, Dennis W.; Druce, Robert L.; Johnson, Gary W.; Vogtlin, George E.; Barbee, Jr., Troy W.; Lee, Ronald S.

    1998-01-01

    A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques.

  11. On Heating the Sun's Corona by Magnetic Explosions: Feasibility in Active Regions and prospects for Quiet Regions and Coronal Holes

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, D. A.; Porter, Jason G.; Suess, Steven T.

    1999-01-01

    We build a case for the persistent strong coronal heating in active regions and the pervasive quasi-steady heating of the corona in quiet regions and coronal holes being driven in basically the same way as the intense transient heating in solar flares: by explosions of sheared magnetic fields in the cores of initially closed bipoles. We begin by summarizing the observational case for exploding sheared core fields being the drivers of a wide variety of flare events, with and without coronal mass ejections. We conclude that the arrangement of an event's flare heating, whether there is a coronal mass ejection, and the time and place of the ejection relative to the flare heating are all largely determined by four elements of the form and action of the magnetic field: (1) the arrangement of the impacted, interacting bipoles participating in the event, (2) which of these bipoles are active (have sheared core fields that explode) and which are passive (are heated by injection from impacted active bipoles), (3) which core field explodes first, and (4) which core-field explosions are confined within the closed field of their bipoles and which ejectively open their bipoles. We then apply this magnetic-configuration framework for flare heating to the strong coronal heating observed by the Yohkoh Soft X-ray Telescope in an active region with strongly sheared core fields observed by the MSFC vector magnetograph. All of the strong coronal heating is in continually microflaring sheared core fields or in extended loops rooted against the active core fields. Thus, the strong heating occurs in field configurations consistent with the heating being driven by frequent core-field explosions that are smaller but similar to those in confined flares and flaring arches. From analysis of the thermal and magnetic energetics of two selected core-field microflares and a bright extended loop, we find that (1) it is energetically feasible for the sheared core fields to drive all of the coronal heating in the active region via a staccato of magnetic microexplosions, (2) the microflares at the feet of the extended loop behave as the flares at the feet of flaring arches in that more coronal heating is driven within the active bipole than in the extended loop, (3) the filling factor of the X-ray plasma in the core field microflares and in the extended loop is approximately 0.1, and (4) to release enough magnetic energy for a typical microflare (10^27 - 10^28 erg), a microflaring strand of sheared core field need expand and/or untwist by only a few percent at most. Finally, we point out that (1) the field configurations for strong coronal heating in our example active region (i.e., neutral-line core fields, many embedded in the feet of extended loops) are present in abundance in the magnetic network in quiet regions and coronal holes, and (2) it is known that many network bipoles do microflare and that many produce detectable coronal heating. We therefore propose that exploding sheared core fields are the drivers of most of the heating and dynamics of the solar atmosphere, ranging from the largest and most powerful coronal mass ejections and flares, to the vigorous microflaring and coronal heating in active regions, to the multitude of fine-scale explosive events in the magnetic network. The low-lysing exploding core fields in the network drive microflares, spicules, global coronal heating, and ,consequently, the solar wind.

  12. The Hooked Galaxy

    NASA Astrophysics Data System (ADS)

    2006-06-01

    Life is not easy, even for galaxies. Some indeed get so close to their neighbours that they get rather distorted. But such encounters between galaxies have another effect: they spawn new generations of stars, some of which explode. ESO's VLT has obtained a unique vista of a pair of entangled galaxies, in which a star exploded. Because of the importance of exploding stars, and particularly of supernovae of Type Ia [1], for cosmological studies (e.g. relating to claims of an accelerated cosmic expansion and the existence of a new, unknown, constituent of the universe - the so called 'Dark Energy'), they are a preferred target of study for astronomers. Thus, on several occasions, they pointed ESO's Very Large Telescope (VLT) towards a region of the sky that portrays a trio of amazing galaxies. MCG-01-39-003 (bottom right) is a peculiar spiral galaxy, with a telephone number name, that presents a hook at one side, most probably due to the interaction with its neighbour, the spiral galaxy NGC 5917 (upper right). In fact, further enhancement of the image reveals that matter is pulled off MCG-01-39-003 by NGC 5917. Both these galaxies are located at similar distances, about 87 million light-years away, towards the constellation of Libra (The Balance). ESO PR Photo 22/06 ESO PR Photo 22/06 The Hooked Galaxy and its Companion NGC 5917 (also known as Arp 254 and MCG-01-39-002) is about 750 times fainter than can be seen by the unaided eye and is about 40,000 light-years across. It was discovered in 1835 by William Herschel, who strangely enough, seems to have missed its hooked companion, only 2.5 times fainter. As seen at the bottom left of this exceptional VLT image, a still fainter and nameless, but intricately beautiful, barred spiral galaxy looks from a distance the entangled pair, while many 'island universes' perform a cosmic dance in the background. But this is not the reason why astronomers look at this region. Last year, a star exploded in the vicinity of the hook. The supernova, noted SN 2005cf as it was the 84th found that year, was discovered by astronomers Pugh and Li with the robotic KAIT telescope on 28 May. It appeared to be projected on top of a bridge of matter connecting MCG-01-39-003 with NGC5917. Further analysis with the Whipple Observatory 1.5m Telescope showed this supernova to be of the Ia type and that the material was ejected with velocities up to 15 000 km/s (that is, 54 million kilometres per hour!). Immediately after the discovery, the European Supernova Collaboration (ESC [2]), led by Wolfgang Hillebrandt (MPA-Garching, Germany) started an extensive observing campaign on this object, using a large number of telescopes around the world. There have been several indications about the fact that galaxy encounters and/or galaxy activity phenomena may produce enhanced star formation. As a consequence, the number of supernovae in this kind of system is expected to be larger with respect to isolated galaxies. Normally, this scenario should favour mainly the explosion of young, massive stars. Nevertheless, recent studies have shown that such phenomena could increase the number of stars that eventually explode as Type Ia supernovae. This notwithstanding, the discovery of supernovae in tidal tails connecting interacting galaxies remains quite an exceptional event. For this reason, the discovery of SN2005cf close to the 'tidal bridge' between MCG-01-39-002 and MCG-01-39-003 constitutes a very interesting case. The supernova was followed by the ESC team during its whole evolution, from about ten days before the object reached its peak luminosity until more than a year after the explosion. As the SN becomes fainter and fainter, larger and larger telescopes are needed. One year after the explosion, the object is indeed about 700 times fainter than at maximum. The supernova was observed with the VLT equipped with FORS1 by ESO astronomer Ferdinando Patat, who is also member of the team led by Massimo Turatto (INAF-Padua, Italy), and at a latter stage by the Paranal Science Team, with the aim of studying the very late phases of the supernova. These late stages are very important to probe the inner parts of the ejected material, in order to better understand the explosion mechanism and the elements produced during the explosion. The deep FORS1 images reveal a beautiful tidal structure in the form of a hook, with a wealth of details that probably include regions of star formation triggered by the close encounter between the two galaxies. "Curiously, the supernova appears to be outside of the tidal tail", says Ferdinando Patat. "The progenitor system was probably stripped out of one of the two galaxies and exploded far away from the place where it was born." Life may not be easy for galaxies, but it isn't much simpler for stars either. Technical information: ESO PR Photo 22/06 is a composite image based on data acquired with the FORS1 multi-mode instrument in April and May 2006 for the European Supernova Collaboration. The observations were made in four different filters (B, V, R, and I) that were combined to make a colour image. The field of view covers 5.6 x 8.3 arcmin. North is up and East is to the left. The observations were done by Ferdinando Patat and the Paranal Science team (ESO), and the final processing was done by Olivia Blanchemain, Henri Boffin and Haennes Heyer (ESO).

  13. Spectroscopy of LiCa and RbSr Molecules on Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Krois, Gunter; Ernst, Wolfgang E.

    2013-06-01

    We report on the investigation of mixed alkali metal (Ak) - alkaline earth metal (Ake) molecules on the surface of helium nanodroplets (He_{N}). These molecules have recently attracted considerable attention as candidates for the formation of ultracold molecules with a magnetic and an electronic dipole moment. In our experiments, LiCa and RbSr molecules are formed in a sequential pick-up process in their X^{2}Σ^{+} ground state and cool down rapidly to the droplet temperature of 0.38 K. Excitation spectra of LiCa and RbSr were recorded by using resonance enhanced multi-photon ionization time-of-flight (REMPI-TOF) spectroscopy and laser induced fluorescence (LIF) spectroscopy. On the helium droplet, vibronic transitions in Ak-Ake molecules are broadened and show a characteristic asymmetric peak form, which is caused by the interaction between the molecule and the superfluid He_{N} environment. For the lower electronic transitions in LiCa and RbSr progressions of vibrational bands excited from the X^{2}Σ^{+} (ν'' = 0) state are observed. The LiCa spectra can be compared to molecular beam experiments, which enables the assignment of three band systems near 15260 cm^{-1}, 19300 cm^{-1} and 22120 cm^{-1} as ^{2}Σ^{+}, ^{2}Π_{Ω} and ^{2}Π band, respectively. In the RbSr excitation spectrum we observe a vibrationally resolved band system near 14020 cm^{-1}. Upon electronic excitation, a fraction of the molecules desorb from the droplet surface and dispersed fluorescence spectra allow to study the X^{2}Σ^{+} ground state and excited states of free Ak-Ake molecules. H. Hara, Y. Takasu, Y. Yamaoka, J.M. Doyle, Y. Takahashi, Phys. Rev. Lett. 106, 205304 (2011) C. Callegari and W. E. Ernst, Helium Droplets as Nanocryostats for Molecular Spectroscopy - from the Vacuum Ultraviolet to the Microwave Regime, in: Handbook of High-Resolution Spectroscopy, eds. M. Quack and F. Merkt, John Wiley & Sons, Chichester, (2011) L. M. Russon, G. K. Rothschopf, M. D. Morse, A. I. Boldyrev, J. Simons, J. Chem. Phys. 109, 6655-6665 (1998)

  14. Molecular rotation and dynamics in superfluid helium-4 nanodroplets

    NASA Astrophysics Data System (ADS)

    Callegari, Carlo

    2000-11-01

    Cavity-enhanced laser radiation, coupled to molecular- beam bolometric detection has been used to study the spectroscopy of acetylenic molecules embedded in helium nanodroplets. The 2ν1 transition (CH stretch overtone) of HCN, DCCH, NCCCH, CH3CCH, CF3CCH, (CH 3)3CCCH, (CH3)3SiCCH, has been investigated in the 1.5 μm spectral region by means of a color center laser coupled to a resonant build-up cavity, which enhances the laser power experienced by the molecules in the beam by up to a factor of 400, thus overcoming the weakness of the (dipole forbidden) transitions. All molecules are observed to rotate freely in the liquid cluster environment, with strongly enhanced moments of inertia, but with negligible matrix induced shifts (less than 1 cm-1). We show that this enhancement is largely accounted for by hydrodynamic effects, which we have modeled and numerically calculated. While in the gas phase the rotational lines have instrument-limited widths (a few MHZ), in the droplets we have observed linewidths ranging from 600 MHz for (CH3)3SiCCH to 2.8GHz for (CH3) 3CCCH. To investigate the nature of the broadening (which was widely believed to be homogeneous), we have performed a series of infrared (IR) saturation experiments on the 2ν1 transition. We have also thoroughly investigated NCCCH by means of microwave (MW) single-resonance experiments (on rotational transitions) and double-resonance (MW-MW and MW-IR) experiments. The results demonstrate that the spectral features of molecules in He droplets are inhomogeneously broadened, and allow an estimate of the importance of the different broadening contributions. In particular, MW-IR measurements show that the size of the cluster greatly affects the way rotational energy is relaxed. Large clusters seem to follow a ``strong collision model'' where memory of the initial rotational state is completely lost after each ``relaxation'' event, while for smaller clusters relaxation rates are probably affected by the lower density of states available for the dissipation of energy.

  15. Molecular rotation and dynamics in superfluid ^4He nanodroplets

    NASA Astrophysics Data System (ADS)

    Callegari, Carlo

    2001-05-01

    Cavity-enhanced laser radiation, coupled to molecular-beam bolometric detection has been used to study the spectroscopy of acetylenic molecules embedded in helium nanodroplets. The 2ν1 transition (CH stretch overtone) of HCN, DCCH, NCCCH, CH_3CCH, CF_3CCH, (CH_3)_3CCCH, (CH_3)_3SiCCH, has been investigated in the 1.5 μm spectral region by means of a color center laser coupled to a resonant buildup cavity, which enhances the laser power experienced by the molecules in the beam by up to a factor of 400, thus overcoming the weakness of the (harmonically forbidden) transitions. All molecules are observed to rotate freely in the liquid cluster environment, with strongly enhanced moments of inertia, but with negligible matrix induced shifts (less than 1 cm-1). We show that this enhancement is largely accounted for by hydrodynamic effects, which we have modeled and numerically calculated. While in the gas phase the rotational lines have instrument-limited widths (a few MHz), in the droplets we have observed linewidths ranging from 600 MHz for (CH_3)_3SiCCH to 2.8 GHz for (CH_3)_3CCCH. To investigate the nature of the broadening (which was widely believed to be homogeneous), we have performed a series of infrared (IR) saturation experiments on the 2ν1 transition. We have also thoroughly investigated NCCCH by means of microwave (MW) single-resonance experiments (on rotational transitions) and double-resonance (MW-MW and MW-IR) experiments. The results demonstrate that the spectral features of molecules in He droplets are inhomogeneously broadened, and allow an estimate of the importance of the different broadening contributions. In particular, MW-IR measurements show that the size of the cluster greatly affects the way rotational energy is relaxed. Large clusters seem to follow a ``strong collision model'' where memory of the initial rotational state is completely lost after each ``relaxation'' event, while for smaller clusters relaxation rates are probably affected by the lower density of states available for the dissipation of energy.

  16. Formation and stability of nanoemulsions with mixed ionic-nonionic surfactants.

    PubMed

    Wang, Lijuan; Tabor, Rico; Eastoe, Julian; Li, Xuefeng; Heenan, Richard K; Dong, Jinfeng

    2009-11-14

    A simple, low-energy two-step dilution process has been applied with binary mixtures of ionic-nonionic surfactants to prepare nanoemulsions. The systems consist of water/DDAB-C(12)E(5)/decane. Nanoemulsions were obtained by dilution of concentrates located in bicontinuous microemulsion or lamellar liquid crystal phase regions. The nanoemulsions generated were investigated both by contrast-variation small-angle neutron scattering (SANS) and dynamic light scattering (DLS). The SANS profiles show that C(12)E(5) nanodroplets suffer essentially no structural change on incorporation of the cationic DDAB surfactant, except for increased electrostatic repulsive interactions. Interestingly, SANS indicated that the preferred droplet sizes were hardly affected by the surfactant mixture composition (up to a DDAB molar ratio (m(DDAB)/(m(DDAB) + m(C(12)E(5))) of 0.40) and droplet volume fraction, phi, between 0.006 and 0.120. No notable changes in the structure or radius of nanoemulsion droplets were observed by SANS over the test period of 1 d, although the droplet number intensity decreased significantly in systems stabilized by C(12)E(5) only. However, the DLS sizing shows a marked increase with time, with higher droplet volume fractions giving rise to the largest changes. The discrepancy between apparent nanoemulsion droplet size determined by DLS and SANS data can be attributed to long-range droplet interactions occurring outside of the SANS sensitivity range. The combined SANS and DLS results suggest flocculation is the main mechanism of instability for these nanoemulsions. The flocculation rate is shown to be significantly retarded by addition of the charged DDAB, which may be due to enhanced electrostatic repulsive forces between droplets, leading to improved stability of the nanoemulsions.

  17. Supernova Explosions Stay In Shape

    NASA Astrophysics Data System (ADS)

    2009-12-01

    At a very early age, children learn how to classify objects according to their shape. Now, new research suggests studying the shape of the aftermath of supernovas may allow astronomers to do the same. A new study of images from NASA's Chandra X-ray Observatory on supernova remnants - the debris from exploded stars - shows that the symmetry of the remnants, or lack thereof, reveals how the star exploded. This is an important discovery because it shows that the remnants retain information about how the star exploded even though hundreds or thousands of years have passed. "It's almost like the supernova remnants have a 'memory' of the original explosion," said Laura Lopez of the University of California at Santa Cruz, who led the study. "This is the first time anyone has systematically compared the shape of these remnants in X-rays in this way." Astronomers sort supernovas into several categories, or "types", based on properties observed days after the explosion and which reflect very different physical mechanisms that cause stars to explode. But, since observed remnants of supernovas are leftover from explosions that occurred long ago, other methods are needed to accurately classify the original supernovas. Lopez and colleagues focused on the relatively young supernova remnants that exhibited strong X-ray emission from silicon ejected by the explosion so as to rule out the effects of interstellar matter surrounding the explosion. Their analysis showed that the X-ray images of the ejecta can be used to identify the way the star exploded. The team studied 17 supernova remnants both in the Milky Way galaxy and a neighboring galaxy, the Large Magellanic Cloud. For each of these remnants there is independent information about the type of supernova involved, based not on the shape of the remnant but, for example, on the elements observed in it. The researchers found that one type of supernova explosion - the so-called Type Ia - left behind relatively symmetric, circular remnants. This type of supernova is thought to be caused by a thermonuclear explosion of a white dwarf, and is often used by astronomers as "standard candles" for measuring cosmic distances. On the other hand, the remnants tied to the "core-collapse" supernova explosions were distinctly more asymmetric. This type of supernova occurs when a very massive, young star collapses onto itself and then explodes. "If we can link supernova remnants with the type of explosion", said co-author Enrico Ramirez-Ruiz, also of University of California, Santa Cruz, "then we can use that information in theoretical models to really help us nail down the details of how the supernovas went off." Models of core-collapse supernovas must include a way to reproduce the asymmetries measured in this work and models of Type Ia supernovas must produce the symmetric, circular remnants that have been observed. Out of the 17 supernova remnants sampled, ten were classified as the core-collapse variety, while the remaining seven of them were classified as Type Ia. One of these, a remnant known as SNR 0548-70.4, was a bit of an "oddball". This one was considered a Type Ia based on its chemical abundances, but Lopez finds it has the asymmetry of a core-collapse remnant. "We do have one mysterious object, but we think that is probably a Type Ia with an unusual orientation to our line of sight," said Lopez. "But we'll definitely be looking at that one again." While the supernova remnants in the Lopez sample were taken from the Milky Way and its close neighbor, it is possible this technique could be extended to remnants at even greater distances. For example, large, bright supernova remnants in the galaxy M33 could be included in future studies to determine the types of supernova that generated them. The paper describing these results appeared in the November 20 issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  18. An introduction to microbiome analysis for human biology applications.

    PubMed

    Amato, Katherine R

    2017-01-01

    Research examining the gut microbiota is currently exploding, and results are providing new perspectives on human biology. Factors such as host diet and physiology influence the composition and function of the gut microbiota, which in turn affects human nutrition, health, and behavior via interactions with metabolism, the immune system, and the brain. These findings represent an exciting new twist on familiar topics, and as a result, gut microbiome research is likely to provide insight into unresolved biological mechanisms driving human health. However, much remains to be learned about the broader ecological and evolutionary contexts within which gut microbes and humans are affecting each other. Here, I outline the procedures for generating data describing the gut microbiota with the goal of facilitating the wider integration of microbiome analyses into studies of human biology. I describe the steps involved in sample collection, DNA extraction, PCR amplification, high-throughput sequencing, and bioinformatics. While this review serves only as an introduction to these topics, it provides sufficient resources for researchers interested in launching new microbiome initiatives. As knowledge of these methods spreads, microbiome analysis should become a standard tool in the arsenal of human biology research. © 2016 Wiley Periodicals, Inc.

  19. Gut-Brain Axis and Behavior.

    PubMed

    Martin, Clair R; Mayer, Emeran A

    2017-01-01

    In the last 5 years, interest in the interactions among the gut microbiome, brain, and behavior has exploded. Preclinical evidence supports a role of the gut microbiome in behavioral responses associated with pain, emotion, social interactions, and food intake. Limited, but growing, clinical evidence comes primarily from associations of gut microbial composition and function to behavioral and clinical features and brain structure and function. Converging evidence suggests that the brain and the gut microbiota are in bidirectional communication. Observed dysbiotic states in depression, chronic stress, and autism may reflect altered brain signaling to the gut, while altered gut microbial signaling to the brain may play a role in reinforcing brain alterations. On the other hand, primary dysbiotic states due to Western diets may signal to the brain, altering ingestive behavior. While studies performed in patients with depression and rodent models generated by fecal microbial transfer from such patients suggest causation, evidence for an influence of acute gut microbial alterations on human behavioral and clinical parameters is lacking. Only recently has an open-label microbial transfer therapy in children with autism tentatively validated the gut microbiota as a therapeutic target. The translational potential of preclinical findings remains unclear without further clinical investigation. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.

  20. Controlling protein release using biodegradable microparticles

    NASA Astrophysics Data System (ADS)

    Kline, Benjamin Patrick

    Research in the field of protein therapeutics has exploded over the past decade and continues to grow in both academia and in industry. Protein drugs have advantages of being highly specific and highly active making them coveted targets for high profile disease states like cancer and multiple sclerosis. Unfortunately, their many advantages are complemented by their obstacles. Because proteins are highly active and highly specific, the window between efficacy and toxicity is very narrow and drug development can be long and arduous. In addition, protein activity is dependent on its specific folding conformation that is easily disrupted by a variety of development processes. This research aimed to identify microparticle formulations to control protein release and also to determine which formulation parameters affected burst release, encapsulation, and steady-state release the most. It was found that polymer type and composition were two of the most important factors. Long-term controlled release of bovine serum albumin (BSA) was achieved as well as a wide variety of release profiles. A method was identified for micronizing protein at low cost to retain activity and coacervation was evaluated as a method for preparing protein loaded microspheres. This research provides a basis from which researchers can create better controlled release formulations for future protein therapeutics.

Top