Sample records for exploding massive stars

  1. Constraining the Final Fates of Massive Stars by Oxygen and Iron Enrichment History in the Galaxy

    NASA Astrophysics Data System (ADS)

    Suzuki, Akihiro; Maeda, Keiichi

    2018-01-01

    Recent observational studies of core-collapse supernovae suggest that only stars with zero-age main-sequence masses smaller than 16–18 {M}ȯ explode when they are red supergiants, producing Type IIP supernovae. This may imply that more massive stars produce other types of supernovae or they simply collapse to black holes without giving rise to bright supernovae. This failed supernova hypothesis can lead to significantly inefficient oxygen production because oxygen abundantly produced in inner layers of massive stars with zero-age main-sequence masses around 20–30 {M}ȯ might not be ejected into the surrounding interstellar space. We first assume an unspecified population of oxygen injection events related to massive stars and obtain a model-independent constraint on how much oxygen should be released in a single event and how frequently such events should happen. We further carry out one-box galactic chemical enrichment calculations with different mass ranges of massive stars exploding as core-collapse supernovae. Our results suggest that the model assuming that all massive stars with 9–100 {M}ȯ explode as core-collapse supernovae is still most appropriate in explaining the solar abundances of oxygen and iron and their enrichment history in the Galaxy. The oxygen mass in the Galaxy is not explained when assuming that only massive stars with zero-age main-sequence masses in the range of 9–17 {M}ȯ contribute to the galactic oxygen enrichment. This finding implies that a good fraction of stars more massive than 17 {M}ȯ should eject their oxygen layers in either supernova explosions or some other mass-loss processes.

  2. Massive Star Goes Out With a Whimper Instead of a Bang (Artist's Concept)

    NASA Image and Video Library

    2017-05-25

    Every second a star somewhere out in the universe explodes as a supernova. But some extremely massive stars go out with a whimper instead of a bang. When they do, they can collapse under the crushing tug of gravity and vanish out of sight, only to leave behind a black hole. The doomed star N6946-BH1 was 25 times as massive as our sun. It began to brighten weakly in 2009. But, by 2015, it appeared to have winked out of existence. By a careful process of elimination, based on observations by the Large Binocular Telescope and NASA's Hubble and Spitzer space telescopes, researchers eventually concluded that the star must have become a black hole. This may be the fate for extremely massive stars in the universe. This illustration shows the final stages in the life of a supermassive star that fails to explode as a supernova, but instead implodes to form a black hole. https://photojournal.jpl.nasa.gov/catalog/PIA21466

  3. NASA's Chandra Sees Brightest Supernova Ever

    NASA Astrophysics Data System (ADS)

    2007-05-01

    WASHINGTON - The brightest stellar explosion ever recorded may be a long-sought new type of supernova, according to observations by NASA's Chandra X-ray Observatory and ground-based optical telescopes. This discovery indicates that violent explosions of extremely massive stars were relatively common in the early universe, and that a similar explosion may be ready to go off in our own galaxy. "This was a truly monstrous explosion, a hundred times more energetic than a typical supernova," said Nathan Smith of the University of California at Berkeley, who led a team of astronomers from California and the University of Texas in Austin. "That means the star that exploded might have been as massive as a star can get, about 150 times that of our sun. We've never seen that before." Chandra X-ray Image of SN 2006gy Chandra X-ray Image of SN 2006gy Astronomers think many of the first generation of stars were this massive, and this new supernova may thus provide a rare glimpse of how the first stars died. It is unprecedented, however, to find such a massive star and witness its death. The discovery of the supernova, known as SN 2006gy, provides evidence that the death of such massive stars is fundamentally different from theoretical predictions. "Of all exploding stars ever observed, this was the king," said Alex Filippenko, leader of the ground-based observations at the Lick Observatory at Mt. Hamilton, Calif., and the Keck Observatory in Mauna Kea, Hawaii. "We were astonished to see how bright it got, and how long it lasted." The Chandra observation allowed the team to rule out the most likely alternative explanation for the supernova: that a white dwarf star with a mass only slightly higher than the sun exploded into a dense, hydrogen-rich environment. In that event, SN 2006gy should have been 1,000 times brighter in X-rays than what Chandra detected. Animation of SN 2006gy Animation of SN 2006gy "This provides strong evidence that SN 2006gy was, in fact, the death of an extremely massive star," said Dave Pooley of the University of California at Berkeley, who led the Chandra observations. The star that produced SN 2006gy apparently expelled a large amount of mass prior to exploding. This large mass loss is similar to that seen from Eta Carinae, a massive star in our galaxy, raising suspicion that Eta Carinae may be poised to explode as a supernova. Although SN 2006gy is intrinsically the brightest supernova ever, it is in the galaxy NGC 1260, some 240 million light years away. However, Eta Carinae is only about 7,500 light years away in our own Milky Way galaxy. "We don't know for sure if Eta Carinae will explode soon, but we had better keep a close eye on it just in case," said Mario Livio of the Space Telescope Science Institute in Baltimore, who was not involved in the research. "Eta Carinae's explosion could be the best star-show in the history of modern civilization." A New Line of Stellar Evolution A New Line of Stellar Evolution Supernovas usually occur when massive stars exhaust their fuel and collapse under their own gravity. In the case of SN 2006gy, astronomers think that a very different effect may have triggered the explosion. Under some conditions, the core of a massive star produces so much gamma ray radiation that some of the energy from the radiation converts into particle and anti-particle pairs. The resulting drop in energy causes the star to collapse under its own huge gravity. After this violent collapse, runaway thermonuclear reactions ensue and the star explodes, spewing the remains into space. The SN 2006gy data suggest that spectacular supernovas from the first stars - rather than completely collapsing to a black hole as theorized - may be more common than previously believed. "In terms of the effect on the early universe, there's a huge difference between these two possibilities," said Smith. "One pollutes the galaxy with large quantities of newly made elements and the other locks them up forever in a black hole." The results from Smith and his colleagues will appear in The Astrophysical Journal. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  4. Massive stars in their death throes.

    PubMed

    Eldridge, John J

    2008-12-13

    The study of the stars that explode as supernovae used to be a forensic study, working backwards from the remnants of the star. This changed in 1987 when the first progenitor star was identified in pre-explosion images. Currently, there are eight detected progenitors with another 21 non-detections, for which only a limit on the pre-explosion luminosity can be placed. This new avenue of supernova research has led to many interesting conclusions, most importantly that the progenitors of the most common supernovae, type IIP, are red supergiants, as theory has long predicted. However, no progenitors have been detected thus far for the hydrogen-free type Ib/c supernovae, which, given the expected progenitors, is an unlikely result. Also, observations have begun to show evidence that luminous blue variables, which are among the most massive stars, may directly explode as supernovae. These results contradict the current stellar evolution theory. This suggests that we may need to update our understanding.

  5. Mass Chart for Dead Stars and Black Holes

    NASA Image and Video Library

    2014-10-08

    This chart illustrates relative masses of super-dense cosmic objects, ranging from white dwarfs to supermassive black holes encased in the cores of most galaxies. The first three dead stars left all form when stars more massive than our sun explode.

  6. Beacons of X-ray Light Animation

    NASA Image and Video Library

    2014-10-08

    This image shows a neutron star -- the core of a star that exploded in a massive supernova. This particular neutron star is known as a pulsar because it sends out rotating beams of X-rays that sweep past Earth like lighthouse beacons.

  7. A giant outburst two years before the core-collapse of a massive star.

    PubMed

    Pastorello, A; Smartt, S J; Mattila, S; Eldridge, J J; Young, D; Itagaki, K; Yamaoka, H; Navasardyan, H; Valenti, S; Patat, F; Agnoletto, I; Augusteijn, T; Benetti, S; Cappellaro, E; Boles, T; Bonnet-Bidaud, J-M; Botticella, M T; Bufano, F; Cao, C; Deng, J; Dennefeld, M; Elias-Rosa, N; Harutyunyan, A; Keenan, F P; Iijima, T; Lorenzi, V; Mazzali, P A; Meng, X; Nakano, S; Nielsen, T B; Smoker, J V; Stanishev, V; Turatto, M; Xu, D; Zampieri, L

    2007-06-14

    The death of massive stars produces a variety of supernovae, which are linked to the structure of the exploding stars. The detection of several precursor stars of type II supernovae has been reported (see, for example, ref. 3), but we do not yet have direct information on the progenitors of the hydrogen-deficient type Ib and Ic supernovae. Here we report that the peculiar type Ib supernova SN 2006jc is spatially coincident with a bright optical transient that occurred in 2004. Spectroscopic and photometric monitoring of the supernova leads us to suggest that the progenitor was a carbon-oxygen Wolf-Rayet star embedded within a helium-rich circumstellar medium. There are different possible explanations for this pre-explosion transient. It appears similar to the giant outbursts of luminous blue variable stars (LBVs) of 60-100 solar masses, but the progenitor of SN 2006jc was helium- and hydrogen-deficient (unlike LBVs). An LBV-like outburst of a Wolf-Rayet star could be invoked, but this would be the first observational evidence of such a phenomenon. Alternatively, a massive binary system composed of an LBV that erupted in 2004, and a Wolf-Rayet star exploding as SN 2006jc, could explain the observations.

  8. Massive stars: flare activity due to infalls of comet-like bodies

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon; Ibodov, Firuz S.

    2015-01-01

    Passages of comet-like bodies through the atmosphere/chromosphere of massive stars at velocities more than 600 km/s will be accompanied, due to aerodynamic effects as crushing and flattening, by impulse generation of hot plasma within a relatively very thin layer near the stellar surface/photosphere as well as ``blast'' shock wave, i.e., impact-generated photospheric stellar/solar flares. Observational manifestations of such high-temperature phenomena will be eruption of the explosive layer's hot plasma, on materials of the star and ``exploding'' comet nuclei, into the circumstellar environment and variable anomalies in chemical abundances of metal atoms/ions like Fe, Si etc. Interferometric and spectroscopic observations/monitoring of young massive stars with dense protoplanetary discs are of interest for massive stars physics/evolution, including identification of mechanisms for massive stars variability.

  9. The Case of Missing Iron in Cassiopeia A

    NASA Image and Video Library

    2014-02-19

    When astronomers first looked at images of a supernova remnant called Cassiopeia A, captured by NASA NuSTAR. The mystery of Cassiopeia A Cas A, a massive star that exploded in a supernova more than 11,000 years ago continues to confound scientists.

  10. The 3D Death of a Massive Star

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-07-01

    What happens at the very end of a massive star's life, just before its core's collapse? A group led by Sean Couch (California Institute of Technology and Michigan State University) claim to have carried out the first three-dimensional simulations of these final few minutes — revealing new clues about the factors that can lead a massive star to explode in a catastrophic supernova at the end of its life. A Giant Collapses In dying massive stars, in-falling matter bounces off the of collapsed core, creating a shock wave. If the shock wave loses too much energy as it expands into the star, it can stall out — but further energy input can revive it and result in a successful explosion of the star as a core-collapse supernova. In simulations of this process, however, theorists have trouble getting the stars to consistently explode: the shocks often stall out and fail to revive. Couch and his group suggest that one reason might be that these simulations usually start at core collapse assuming spherical symmetry of the progenitor star. Adding Turbulence Couch and his collaborators suspect that the key is in the final minutes just before the star collapses. Models that assume a spherically-symmetric star can't include the effects of convection as the final shell of silicon is burned around the core — and those effects might have a significant impact! To test this hypothesis, the group ran fully 3D simulations of the final three minutes of the life of a 15 solar-mass star, ending with core collapse, bounce, and shock-revival. The outcome was striking: the 3D modeling introduced powerful turbulent convection (with speeds of several hundred km/s!) in the last few minutes of silicon-shell burning. As a result, the initial structure and motions in the star just before core collapse were very different from those in core-collapse simulations that use spherically-symmetric initial conditions. The turbulence was then further amplified during collapse and formation of the shock, generating pressure that aided the shock expansion — which should ultimately help the star explode! The group cautions that their simulations are still very idealized, but these results clearly indicate that the 3D structure of massive stellar cores has an important impact on the core-collapse supernova mechanism. Citation Sean M. Couch et al. 2015 ApJ 808 L21 doi:10.1088/2041-8205/808/1/L21

  11. Once an Onion, Always an Onion (Artist Concept)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This artist's concept illustrates a massive star before and after it blew up in a cataclysmic 'supernova' explosion. NASA's Spitzer Space Telescope found evidence that this star -- the remains of which are named Cassiopeia A -- exploded with some degree of order, preserving chunks of its onion-like layers as it blasted apart.

    Cassiopeia A is located 10,000 light-years away in the constellation Cassiopeia. It was once a massive star 15 to 20 times larger than our sun. Its fiery death would have been viewable from Earth about 340 years ago.

    The top figure shows the star before it died, when its layers of elements were stacked neatly, with the heaviest at the core and the lightest at the top. Spitzer found evidence that these layers were preserved when the star exploded, flinging outward in all directions, but not at the same speeds. As a result, some chunks of the layered material traveled farther out than others, as illustrated in the bottom drawing.

    The infrared observatory was able to see the tossed-out layers, because they light up upon ramming into a 'reverse' shock wave created in the aftermath of the explosion. When a massive star explodes, it creates two types of shock waves. The forward shock wave darts out quickest, and, in the case of Cassiopeia A, is now traveling at supersonic speeds up to 7,500 kilometers per second (4,600 miles/second). The reverse shock wave is produced when the forward shock wave slams into a shell of surrounding material expelled before the star died. It tags along behind the forward shock wave at slightly slower speeds.

    Chunks of the star that were thrown out fastest hit the shock wave sooner and have had more time to heat up to scorching temperatures previously detected by X-ray and visible-light telescopes. Chunks of the star that lagged behind hit the shock wave later, so they are cooler and radiate infrared light that was not seen until Spitzer came along. These lagging chunks are made up of gas and dust containing neon, oxygen and aluminum -- elements from the middle layers of the original star.

  12. Supernovae, supernebulae, and nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Wheeler, J. Craig; Harkness, Robert P.; Barkat, Zalman; Swartz, Douglas

    1986-10-01

    Supernova atmosphere calculations continue to show that variants of previously calculated carbon-deflagration models provide a good representation of the maximum light spectra of classical type Ia supernovae including the ultraviolet deficit. Careful consideration of the conditions leading to central thermonuclear runaway of degenerate carbon shows that runaway can, however, lead to detonation and direct conflict with observations. As witnessed by the spectra of type Ib supernovae, massive stars are expected to be the primary source of oxygen. Estimates of the absolute production of oxygen in massive stars suggest that if all stars more massive than ≡12 M_sun; explode as supernovae, oxygen would be overproduced in the solar neighborhood, an effect exacerbated by the recent increase in the reaction rate for 12C(α, γ)16O.

  13. A Massive Star Census of the Starburst Cluster R136

    NASA Astrophysics Data System (ADS)

    Crowther, Paul

    2011-10-01

    We propose to carry out a comprehensive census of the most massive stars in the central parsec {4"} of the starburst cluster, R136, which powers the Tarantula Nebula in the LMC. R136 is both sufficiently massive that the upper mass function is richly populated and young enough that its most massive stars have yet to explode as supernovae. The identification of very massive stars in R136, up to 300 solar masses, raises general questions of star formation, binarity and feedback in young massive clusters. The proposed STIS spectral survey of 36 stars more massive than 50 solar masses within R136 is ground-breaking, of legacy value, and is specifically tailored to a} yield physical properties; b} detect the majority of binaries by splitting observations between Cycles 19 and 20; c} measure rotational velocities, relevant for predictions of rotational mixing; d} quantify mass-loss properties for very massive stars; e} determine surface compositions; f} measure radial velocities, relevant for runaway stars and cluster dynamics; g} quantify radiative and mechanical feedback. This census will enable the mass function of very massive stars to be measured for the first time, as a result of incomplete and inadequate spectroscopy to date. It will also perfectly complement our Tarantula Survey, a ground-based VLT Large Programme, by including the most massive stars that are inaccessible to ground-based visual spectroscopy due to severe crowding. These surveys, together with existing integrated UV and optical studies will enable 30 Doradus to serve as a bona-fide template for unresolved extragalactic starburst regions.

  14. A Massive Star Census of the Starburst Cluster R136

    NASA Astrophysics Data System (ADS)

    Crowther, Paul

    2012-10-01

    We propose to carry out a comprehensive census of the most massive stars in the central parsec {4"} of the starburst cluster, R136, which powers the Tarantula Nebula in the LMC. R136 is both sufficiently massive that the upper mass function is richly populated and young enough that its most massive stars have yet to explode as supernovae. The identification of very massive stars in R136, up to 300 solar masses, raises general questions of star formation, binarity and feedback in young massive clusters. The proposed STIS spectral survey of 36 stars more massive than 50 solar masses within R136 is ground-breaking, of legacy value, and is specifically tailored to a} yield physical properties; b} detect the majority of binaries by splitting observations between Cycles 19 and 20; c} measure rotational velocities, relevant for predictions of rotational mixing; d} quantify mass-loss properties for very massive stars; e} determine surface compositions; f} measure radial velocities, relevant for runaway stars and cluster dynamics; g} quantify radiative and mechanical feedback. This census will enable the mass function of very massive stars to be measured for the first time, as a result of incomplete and inadequate spectroscopy to date. It will also perfectly complement our Tarantula Survey, a ground-based VLT Large Programme, by including the most massive stars that are inaccessible to ground-based visual spectroscopy due to severe crowding. These surveys, together with existing integrated UV and optical studies will enable 30 Doradus to serve as a bona-fide template for unresolved extragalactic starburst regions.

  15. SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Li, Weidong; Foley, Ryan J.; Wheeler, J. Craig; Pooley, David; Chornock, Ryan; Filippenko, Alexei V.; Silverman, Jeffrey M.; Quimby, Robert; Bloom, Joshua S.; Hansen, Charles

    2007-09-01

    We report the discovery and early observations of the peculiar Type IIn supernova (SN) 2006gy in NGC 1260. With a peak visual magnitude of about -22, it is the most luminous supernova ever recorded. Its very slow rise to maximum took ~70 days, and it stayed brighter than -21 mag for about 100 days. It is not yet clear what powers the enormous luminosity and the total radiated energy of ~1051 erg, but we argue that any known mechanism-thermal emission, circumstellar interaction, or 56Ni decay-requires a very massive progenitor star. The circumstellar interaction hypothesis would require truly exceptional conditions around the star, which, in the decades before its death, must have experienced a luminous blue variable (LBV) eruption like the 19th century eruption of η Carinae. However, this scenario fails to explain the weak and unabsorbed soft X-rays detected by Chandra. Radioactive decay of 56Ni may be a less objectionable hypothesis, but it would imply a large Ni mass of ~22 Msolar, requiring SN 2006gy to have been a pair-instability supernova where the star's core was obliterated. While this is still uncertain, SN 2006gy is the first supernova for which we have good reason to suspect a pair-instability explosion. Based on a number of lines of evidence, we eliminate the hypothesis that SN 2006gy was a ``Type IIa'' event, that is, a white dwarf exploding inside a hydrogen envelope. Instead, we propose that the progenitor was a very massive evolved object like η Carinae that, contrary to expectations, failed to shed its hydrogen envelope. SN 2006gy implies that some of the most massive stars can explode prematurely during the LBV phase, never becoming Wolf-Rayet stars. SN 2006gy also suggests that they can create brilliant supernovae instead of experiencing ignominious deaths through direct collapse to a black hole. If such a fate is common among the most massive stars, then observable supernovae from Population III stars in the early universe will be more numerous than previously believed.

  16. A solar-type star polluted by calcium-rich supernova ejecta inside the supernova remnant RCW 86

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Langer, Norbert; Fossati, Luca; Bock, Douglas C.-J.; Castro, Norberto; Georgiev, Iskren Y.; Greiner, Jochen; Johnston, Simon; Rau, Arne; Tauris, Thomas M.

    2017-06-01

    When a massive star in a binary system explodes as a supernova, its companion star may be polluted with heavy elements from the supernova ejecta. Such pollution has been detected in a handful of post-supernova binaries 1 , but none of them is associated with a supernova remnant. We report the discovery of a binary G star strongly polluted with calcium and other elements at the position of the candidate neutron star [GV2003] N within the young galactic supernova remnant RCW 86. Our discovery suggests that the progenitor of the supernova that produced RCW 86 could have been a moving star, which exploded near the edge of its wind bubble and lost most of its initial mass because of common-envelope evolution shortly before core collapse, and that the supernova explosion might belong to the class of calcium-rich supernovae — faint and fast transients 2,3 , the origin of which is strongly debated 4-6 .

  17. A new way to make Thorne-Zytkow objects

    NASA Technical Reports Server (NTRS)

    Leonard, Peter J. T.; Hills, Jack G.; Dewey, Rachel J.

    1994-01-01

    We have found a new way to make Thorne-Zytkow objects, which are massive stars with degenerate neutron cores. The asymmetric kick given to the neutron star formed when the primary of a massive tight binary system explodes as a supernova sometimes has the appropriate direction and amplitude to place the newly formed neutron star into a bound orbit with a pericenter distance smaller than the radius of the secondary. Consequently, the neutron star becomes embedded in the secondary. Thorne-Zytkow objects are expected to look like extreme M-type supergiants, assuming that they can avoid a runaway neutrino instability. Accretion onto the embedded neutron star will produce either an isolated, spun-up neutron star (possibly a short-period pulsar) or a black hole. Whether neutron star or black hole remnants predominate depends on the lifetime of Thorne-Zytkow objects, the accretion rates involved, and the maximum neutron star mass, none of which are definitively understood.

  18. A massive hypergiant star as the progenitor of the supernova SN 2005gl.

    PubMed

    Gal-Yam, A; Leonard, D C

    2009-04-16

    Our understanding of the evolution of massive stars before their final explosions as supernovae is incomplete, from both an observational and a theoretical standpoint. A key missing piece in the supernova puzzle is the difficulty of identifying and studying progenitor stars. In only a single case-that of supernova SN 1987A in the Large Magellanic Cloud-has a star been detected at the supernova location before the explosion, and been subsequently shown to have vanished after the supernova event. The progenitor of SN 1987A was a blue supergiant, which required a rethink of stellar evolution models. The progenitor of supernova SN 2005gl was proposed to be an extremely luminous object, but the association was not robustly established (it was not even clear that the putative progenitor was a single luminous star). Here we report that the previously proposed object was indeed the progenitor star of SN 2005gl. This very massive star was likely a luminous blue variable that standard stellar evolution predicts should not have exploded in that state.

  19. Possible Detection of a Pair Instability Supernova in the Modern Universe, and Implications for the First Stars

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2008-03-01

    SN 2006gy radiated far more energy in visual light than any other supernova so far, and potential explanations for its energy demands have implications for galactic chemical evolution and the deaths of the first stars. It remained bright for over 200 days, longer than any normal supernova, and it radiated more than 1051 ergs of luminous energy at visual wavelengths. I argue that this Type IIn supernova was probably the explosion of an extremely massive star like Eta Carinae that retained its hydrogen envelope when it exploded, having suffered relatively little mass loss during its lifetime. That this occurred at roughly Solar metallicity challenges current paradigms for mass loss in massive-star evolution. I explore a few potential explanations for SN2006gy's power source, involving either circumstellar interaction, or instead, the decay of 56Ni to 56Co to 56Fe. If SN 2006gy was powered by the conversion of shock energy into light, then the conditions must be truly extraordinary and traditional interaction models don't work. If SN 2006gy was powered by radioactive decay, then the uncomfortably huge 56Ni mass requires that the star exploded as a pair instability supernova. The mere possibility of this makes SN 2006gy interesting, especially at this meeting, because it is the first good candidate for a genuine pair instability supernova.

  20. THE DISCOVERY OF A RARE WO-TYPE WOLF-RAYET STAR IN THE LARGE MAGELLANIC CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neugent, Kathryn F.; Massey, Philip; Morrell, Nidia, E-mail: kneugent@lowell.edu, E-mail: phil.massey@lowell.edu, E-mail: nmorrell@lco.cl

    While observing OB stars within the most crowded regions of the Large Magellanic Cloud, we happened upon a new Wolf-Rayet (WR) star in Lucke-Hodge 41, the rich OB association that contains S Doradus and numerous other massive stars. At first glance the spectrum resembled that of a WC4 star, but closer examination showed strong O VI {lambda}{lambda}3811, 34 lines, leading us to classify it as a WO4. This is only the second known WO in the LMC, and the first known WO4 (the other being a WO3). This rarity is to be expected due to these stars' short lifespans asmore » they represent the most advanced evolutionary stage in a massive star's lifetime before exploding as supernovae. This discovery shows that while the majority of WRs within the LMC have been discovered, there may be a few WRs left to be found.« less

  1. The mystery of a supposed massive star exploding in a brightest cluster galaxy

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Griffin

    2017-08-01

    Most of the diversity of core-collapse supernovae results from late-stage mass loss by their progenitor stars. Supernovae that interact with circumstellar material (CSM) are a particularly good probe of these last stages of stellar evolution. Type Ibn supernovae are a rare and poorly understood class of hydrogen-poor explosions that show signs of interaction with helium-rich CSM. The leading hypothesis is that they are explosions of very massive Wolf-Rayet stars in which the supernova ejecta excites material previously lost by stellar winds. These massive stars have very short lifetimes, and therefore should only found in actively star-forming galaxies. However, PS1-12sk is a Type Ibn supernova found on the outskirts of a giant elliptical galaxy. As this is extraordinary unlikely, we propose to obtain deep UV images of the host environment of PS1-12sk in order to map nearby star formation and/or find a potential unseen star-forming host. If star formation is detected, its amount and location will provide deep insights into the progenitor picture for the poorly-understood Type Ibn class. If star formation is still not detected, these observations would challenge the well-accepted hypothesis that these are core-collapse supernovae at all.

  2. On The Origin Of Two-Shell Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii

    2007-07-01

    The proper motion of massive stars could cause them to explode far from the geometric centers of their wind-driven bubbles and thereby could affect the symmetry of the resulting diffuse supernova remnants (SNRs). We use this fact to explain the origin of SNRs consisting of two partially overlapping shells (e.g. Cygnus Loop, 3C 400.2, etc.).

  3. A hydrodynamical model of the circumstellar bubble created by two massive stars

    NASA Astrophysics Data System (ADS)

    van Marle, A. J.; Meliani, Z.; Marcowith, A.

    2012-05-01

    Context. Numerical models of the wind-blown bubble of massive stars usually only account for the wind of a single star. However, since massive stars are usually formed in clusters, it would be more realistic to follow the evolution of a bubble created by several stars. Aims: We develop a two-dimensional (2D) model of the circumstellar bubble created by two massive stars, a 40 M⊙ star and a 25 M⊙ star, and follow its evolution. The stars are separated by approximately 16 pc and surrounded by a cold medium with a density of 20 particles per cm3. Methods: We use the MPI-AMRVAC hydrodynamics code to solve the conservation equations of hydrodynamics on a 2D cylindrical grid using time-dependent models for the wind parameters of the two stars. At the end of the stellar evolution (4.5 and 7.0 million years for the 40 and 25 M⊙ stars, respectively), we simulate the supernova explosion of each star. Results: Each star initially creates its own bubble. However, as the bubbles expand they merge, creating a combined, aspherical bubble. The combined bubble evolves over time, influenced by the stellar winds and supernova explosions. Conclusions: The evolution of a wind-blown bubble created by two stars deviates from that of the bubbles around single stars. In particular, once one of the stars has exploded, the bubble is too large for the wind of the remaining star to maintain and the outer shell starts to disintegrate. The lack of thermal pressure inside the bubble also changes the behavior of circumstellar features close to the remaining star. The supernovae are contained inside the bubble, which reflects part of the energy back into the circumstellar medium. Movies are available in electronic form at http://www.aanda.org

  4. The Detection Rate of Early UV Emission from Supernovae: A Dedicated Galex/PTF Survey and Calibrated Theoretical Estimates

    NASA Astrophysics Data System (ADS)

    Ganot, Noam; Gal-Yam, Avishay; Ofek, Eran. O.; Sagiv, Ilan; Waxman, Eli; Lapid, Ofer; Kulkarni, Shrinivas R.; Ben-Ami, Sagi; Kasliwal, Mansi M.; The ULTRASAT Science Team; Chelouche, Doron; Rafter, Stephen; Behar, Ehud; Laor, Ari; Poznanski, Dovi; Nakar, Ehud; Maoz, Dan; Trakhtenbrot, Benny; WTTH Consortium, The; Neill, James D.; Barlow, Thomas A.; Martin, Christofer D.; Gezari, Suvi; the GALEX Science Team; Arcavi, Iair; Bloom, Joshua S.; Nugent, Peter E.; Sullivan, Mark; Palomar Transient Factory, The

    2016-03-01

    The radius and surface composition of an exploding massive star, as well as the explosion energy per unit mass, can be measured using early UV observations of core-collapse supernovae (SNe). We present the first results from a simultaneous GALEX/PTF search for early ultraviolet (UV) emission from SNe. Six SNe II and one Type II superluminous SN (SLSN-II) are clearly detected in the GALEX near-UV (NUV) data. We compare our detection rate with theoretical estimates based on early, shock-cooling UV light curves calculated from models that fit existing Swift and GALEX observations well, combined with volumetric SN rates. We find that our observations are in good agreement with calculated rates assuming that red supergiants (RSGs) explode with fiducial radii of 500 R ⊙, explosion energies of 1051 erg, and ejecta masses of 10 M ⊙. Exploding blue supergiants and Wolf-Rayet stars are poorly constrained. We describe how such observations can be used to derive the progenitor radius, surface composition, and explosion energy per unit mass of such SN events, and we demonstrate why UV observations are critical for such measurements. We use the fiducial RSG parameters to estimate the detection rate of SNe during the shock-cooling phase (<1 day after explosion) for several ground-based surveys (PTF, ZTF, and LSST). We show that the proposed wide-field UV explorer ULTRASAT mission is expected to find >85 SNe per year (˜0.5 SN per deg2), independent of host galaxy extinction, down to an NUV detection limit of 21.5 mag AB. Our pilot GALEX/PTF project thus convincingly demonstrates that a dedicated, systematic SN survey at the NUV band is a compelling method to study how massive stars end their life.

  5. An outburst from a massive star 40 days before a supernova explosion.

    PubMed

    Ofek, E O; Sullivan, M; Cenko, S B; Kasliwal, M M; Gal-Yam, A; Kulkarni, S R; Arcavi, I; Bildsten, L; Bloom, J S; Horesh, A; Howell, D A; Filippenko, A V; Laher, R; Murray, D; Nakar, E; Nugent, P E; Silverman, J M; Shaviv, N J; Surace, J; Yaron, O

    2013-02-07

    Some observations suggest that very massive stars experience extreme mass-loss episodes shortly before they explode as supernovae, as do several models. Establishing a causal connection between these mass-loss episodes and the final explosion would provide a novel way to study pre-supernova massive-star evolution. Here we report observations of a mass-loss event detected 40 days before the explosion of the type IIn supernova SN 2010mc (also known as PTF 10tel). Our photometric and spectroscopic data suggest that this event is a result of an energetic outburst, radiating at least 6 × 10(47) erg of energy and releasing about 10(-2) solar masses of material at typical velocities of 2,000 km s(-1). The temporal proximity of the mass-loss outburst and the supernova explosion implies a causal connection between them. Moreover, we find that the outburst luminosity and velocity are consistent with the predictions of the wave-driven pulsation model, and disfavour alternative suggestions.

  6. An asymptotic-giant-branch star in the progenitor system of a type Ia supernova.

    PubMed

    Hamuy, Mario; Phillips, M M; Suntzeff, Nicholas B; Maza, José; González, L E; Roth, Miguel; Krisciunas, Kevin; Morrell, Nidia; Green, E M; Persson, S E; McCarthy, P J

    2003-08-07

    Stars that explode as supernovae come in two main classes. A type Ia supernova is recognized by the absence of hydrogen and the presence of elements such as silicon and sulphur in its spectrum; this class of supernova is thought to produce the majority of iron-peak elements in the Universe. They are also used as precise 'standard candles' to measure the distances to galaxies. While there is general agreement that a type Ia supernova is produced by an exploding white dwarf star, no progenitor system has ever been directly observed. Significant effort has gone into searching for circumstellar material to help discriminate between the possible kinds of progenitor systems, but no such material has hitherto been found associated with a type Ia supernova. Here we report the presence of strong hydrogen emission associated with the type Ia supernova SN2002ic, indicating the presence of large amounts of circumstellar material. We infer from this that the progenitor system contained a massive asymptotic-giant-branch star that lost several solar masses of hydrogen-rich gas before the supernova explosion.

  7. Hubble Finds Supernova Companion Star after Two Decades of Searching

    NASA Image and Video Library

    2017-12-08

    This is an artist's impression of supernova 1993J, an exploding star in the galaxy M81 whose light reached us 21 years ago. The supernova originated in a double-star system where one member was a massive star that exploded after siphoning most of its hydrogen envelope to its companion star. After two decades, astronomers have at last identified the blue helium-burning companion star, seen at the center of the expanding nebula of debris from the supernova. The Hubble Space Telescope identified the ultraviolet glow of the surviving companion embedded in the fading glow of the supernova. More info: Using NASA’s Hubble Space Telescope, astronomers have discovered a companion star to a rare type of supernova. The discovery confirms a long-held theory that the supernova, dubbed SN 1993J, occurred inside what is called a binary system, where two interacting stars caused a cosmic explosion. "This is like a crime scene, and we finally identified the robber," said Alex Filippenko, professor of astronomy at University of California (UC) at Berkeley. "The companion star stole a bunch of hydrogen before the primary star exploded." SN 1993J is an example of a Type IIb supernova, unusual stellar explosions that contains much less hydrogen than found in a typical supernova. Astronomers believe the companion star took most of the hydrogen surrounding the exploding main star and continued to burn as a super-hot helium star. “A binary system is likely required to lose the majority of the primary star’s hydrogen envelope prior to the explosion. The problem is that, to date, direct observations of the predicted binary companion star have been difficult to obtain since it is so faint relative to the supernova itself,” said lead researcher Ori Fox of UC Berkeley. Read more: 1.usa.gov/1Az5Qb9 Credit: NASA, ESA, G. Bacon (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Spatially resolved analysis of superluminous supernovae PTF 11hrq and PTF 12dam host galaxies

    NASA Astrophysics Data System (ADS)

    Cikota, Aleksandar; De Cia, Annalisa; Schulze, Steve; Vreeswijk, Paul M.; Leloudas, Giorgos; Gal-Yam, Avishay; Perley, Daniel A.; Cikota, Stefan; Kim, Sam; Patat, Ferdinando; Lunnan, Ragnhild; Quimby, Robert; Yaron, Ofer; Yan, Lin; Mazzali, Paolo A.

    2017-08-01

    Superluminous supernovae (SLSNe) are the most luminous supernovae in the Universe. They are found in extreme star-forming galaxies and are probably connected with the death of massive stars. One hallmark of very massive progenitors would be a tendency to explode in very dense, UV-bright and blue regions. In this paper, we investigate the resolved host galaxy properties of two nearby hydrogen-poor SLSNe, PTF 11hrq and PTF 12dam. For both galaxies Hubble Space Telescope multifilter images were obtained. Additionally, we perform integral field spectroscopy of the host galaxy of PTF 11hrq using the Very Large Telescope Multi Unit Spectroscopic Explorer (VLT/MUSE), and investigate the line strength, metallicity and kinematics. Neither PTF 11hrq nor PTF 12dam occurred in the bluest part of their host galaxies, although both galaxies have overall blue UV-to-optical colours. The MUSE data reveal a bright starbursting region in the host of PTF 11hrq, although far from the SN location. The SN exploded close to a region with disturbed kinematics, bluer colour, stronger [O III] and lower metallicity. The host galaxy is likely interacting with a companion. PTF 12dam occurred in one of the brightest pixels, in a starbursting galaxy with a complex morphology and a tidal tail, where interaction is also very likely. We speculate that SLSN explosions may originate from stars generated during star formation episodes triggered by interaction. High-resolution imaging and integral field spectroscopy are fundamental for a better understanding of SLSNe explosion sites and how star formation varies across their host galaxies.

  9. Yet Another Model for the Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Leonard, P. J. T.

    2000-05-01

    We consider whether a gamma-ray burst can result from a merger between a neutron star and a massive main-sequence star in a binary system following a supernova explosion. The scenario for how this can happen is outlined in Leonard, Hills & Dewey 1994, ApJ, 423, L19-L22. The initially more massive star in a massive binary system evolves and undergoes core collapse to produce a neutron star and supernova. Since the outer layers of the originally more massive star have been transferred to the other star, then the supernova may be hydrogen deficient. The newly-formed neutron star receives a random kick during the explosion. In a small fraction of the cases, the kick has the appropriate direction and amplitude to remove most of the orbital angular momentum of the post-supernova binary system. The result is an orbit with a pericenter smaller than the radius of the non-exploding star. The neutron star rather quickly becomes embedded in the other star, and sinks to its center, giving the envelope of the merged object a lot of rotational angular momentum in the process. Leonard, Hills & Dewey estimate the rate of this process in the Galaxy to be 0.06 per square kpc per Myr for secondaries more massive than 15 solar masses. The fate of the merged object has been the source of much speculation, and we shall assume that a collapsar-like scenario results. That is, the neutron star experiences runaway accretion, collapses into a black hole, which continues to accrete, and produces a pair of jets that bore their way out of the merged object. Observers who lie in the direction of either jet will see a gamma-ray burst. Roughly 1% of supernovae in massive binary systems result in neutron stars quickly becoming embedded in the secondaries, and of those which produce black holes, only 1% would be observable as gamma-ray bursts, if the jets are beamed into 1% of the sky.

  10. THE PROGENITOR OF GW150914

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woosley, S. E., E-mail: woosley@ucolick.org

    2016-06-10

    The spectacular detection of gravitational waves (GWs) from GW150914 and its reported association with a gamma-ray burst (GRB) offer new insights into the evolution of massive stars. Here, it is shown that no single star of any mass and credible metallicity is likely to produce the observed GW signal. Stars with helium cores in the mass range 35–133 M {sub ⊙} encounter the pair instability and either explode or pulse until the core mass is less than 45 M {sub ⊙}, smaller than the combined mass of the observed black holes. The rotation of more massive helium cores is eithermore » braked by interaction with a slowly rotating hydrogen envelope, if one is present, or by mass loss, if one is not. The very short interval between the GW signal and the observed onset of the putative GRB in GW150914 is also too short to have come from a single star. A more probable model for making the gravitational radiation is the delayed merger of two black holes made by 70 and 90 M {sub ⊙} stars in a binary system. The more massive component was a pulsational-pair instability supernova before making the first black hole.« less

  11. CSI in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Chu, You-Hua

    2017-02-01

    Supernovae (SNe) explode in environments that have been significantly modified by the SN progenitors. For core-collapse SNe, the massive progenitors ionize the ambient interstellar medium (ISM) via UV radiation and sweep the ambient ISM via fast stellar winds during the main sequence phase, replenish the surroundings with stellar material via slow winds during the luminous blue variable (LBV) or red supergiant (RSG) phase, and sweep up the circumstellar medium (CSM) via fast winds during the Wolf-Rayet (WR) phase. If a massive progenitor was in a close binary system, the binary interaction could have caused mass ejection in certain preferred directions, such as the orbital plane, and even bipolar outflow/jet. As a massive star finally explodes, the SN ejecta interacts first with the CSM that was ejected and shaped by the star itself. As the newly formed supernova remnant (SNR) expands further, it encounters interstellar structures that were shaped by the progenitor from earlier times. Therefore, the structure and evolution of a SNR is largely dependent on the initial mass and close binarity of the SN progenitor. The Large Magellanic Cloud (LMC) has an excellent sample of over 50 confirmed SNRs that are well resolved by Hubble Space Telescope, Chandra X-ray Observatory, and Spitzer Space Telescope. These multi-wavelength observations allow us to conduct stellar forensics in SNRs and understand the wide variety of morphologies and physical properties of SNRs observed.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaron, O.; Perley, D. A.; Gal-Yam, A.

    With the advent of new wide-field, high-cadence optical transient surveys, our understanding of the diversity of core-collapse supernovae has grown tremendously in the last decade. However, the pre-supernova evolution of massive stars, that sets the physical backdrop to these violent events, is theoretically not well understood and difficult to probe observationally. Here we report the discovery of the supernova iPTF 13dqy = SN 2013fs a mere ~3 hr after explosion. Our rapid follow-up observations, which include multiwavelength photometry and extremely early (beginning at ~6 hr post-explosion) spectra, map the distribution of material in the immediate environment (≲ 10 15 cm)more » of the exploding star and establish that it was surrounded by circumstellar material (CSM) that was ejected during the final ~1 yr prior to explosion at a high rate, around 10 -3 solar masses per year. The complete disappearance of flash-ionised emission lines within the first several days requires that the dense CSM be confined to within ≲10 15 cm, consistent with radio non-detections at 70–100 days. The observations indicate that iPTF 13dqy was a regular Type II SN; thus, the finding that the probable red supergiant (RSG) progenitor of this common explosion ejected material at a highly elevated rate just prior to its demise suggests that pre-supernova instabilities may be common among exploding massive stars.« less

  13. Confined dense circumstellar material surrounding a regular type II supernova

    NASA Astrophysics Data System (ADS)

    Yaron, O.; Perley, D. A.; Gal-Yam, A.; Groh, J. H.; Horesh, A.; Ofek, E. O.; Kulkarni, S. R.; Sollerman, J.; Fransson, C.; Rubin, A.; Szabo, P.; Sapir, N.; Taddia, F.; Cenko, S. B.; Valenti, S.; Arcavi, I.; Howell, D. A.; Kasliwal, M. M.; Vreeswijk, P. M.; Khazov, D.; Fox, O. D.; Cao, Y.; Gnat, O.; Kelly, P. L.; Nugent, P. E.; Filippenko, A. V.; Laher, R. R.; Wozniak, P. R.; Lee, W. H.; Rebbapragada, U. D.; Maguire, K.; Sullivan, M.; Soumagnac, M. T.

    2017-02-01

    With the advent of new wide-field, high-cadence optical transient surveys, our understanding of the diversity of core-collapse supernovae has grown tremendously in the last decade. However, the pre-supernova evolution of massive stars, which sets the physical backdrop to these violent events, is theoretically not well understood and difficult to probe observationally. Here we report the discovery of the supernova iPTF 13dqy = SN 2013fs a mere ~3 h after explosion. Our rapid follow-up observations, which include multiwavelength photometry and extremely early (beginning at ~6 h post-explosion) spectra, map the distribution of material in the immediate environment (<~1015 cm) of the exploding star and establish that it was surrounded by circumstellar material (CSM) that was ejected during the final ~1 yr prior to explosion at a high rate, around 10-3 solar masses per year. The complete disappearance of flash-ionized emission lines within the first several days requires that the dense CSM be confined to within <~1015 cm, consistent with radio non-detections at 70-100 days. The observations indicate that iPTF 13dqy was a regular type II supernova; thus, the finding that the probable red supergiant progenitor of this common explosion ejected material at a highly elevated rate just prior to its demise suggests that pre-supernova instabilities may be common among exploding massive stars.

  14. The origin of the Crab Nebula and the electron capture supernova in 8-10 M solar mass stars

    NASA Technical Reports Server (NTRS)

    Nomoto, K.

    1981-01-01

    The chemical composition of the Crab Nebula is compared with several presupernova models. The small carbon and oxygen abundances in the helium-rich nebula are consistent with only the presupernova model of the star whose main sequence mass was MMS approximately 8-9.5 M. More massive stars contain too much carbon in the helium layer and smaller mass stars do not leave neutron stars. The progenitor star of the Crab Nebula lost appreciable part of the hydrogen-rich envelope before the hydrogen-rich and helium layers were mixed by convection. Finally it exploded as the electron capture supernova; the O+Ne+Mg core collapsed to form a neutron star and only the extended helium-rich envelope was ejected by the weak shock wave.

  15. Theories of central engine for long gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Nagataki, Shigehiro

    2018-02-01

    Long GRBs are the most powerful explosions in the universe since the Big Bang. At least, some fraction of long GRBs are born from the death of massive stars. Likewise, only some fraction of massive stars that satisfy additional special conditions explode as long GRBs associated with supernovae/hypernovae. In this paper, we discuss the explosion mechanism of long GRBs associated with hypernovae: ‘the central engine of long GRBs’. The central engine of long GRBs is very different from that of core-collapse supernovae, although the mechanism of the engine is still not firmly established. In this paper, we review theoretical studies of the central engine of long GRBs. First, we discuss possible progenitor stars. Then several promising mechanisms of the central engine—such as black hole and magnetar formation—will be reviewed. We will also mention some more exotic models. Finally, we describe prospects for future studies of the central engine of long GRBs.

  16. Chemical Evolution of Binary Stars

    NASA Astrophysics Data System (ADS)

    Izzard, R. G.

    2013-02-01

    Energy generation by nuclear fusion is the fundamental process that prevents stars from collapsing under their own gravity. Fusion in the core of a star converts hydrogen to heavier elements from helium to uranium. The signature of this nucleosynthesis is often visible in a single star only for a very short time, for example while the star is a red giant or, in massive stars, when it explodes. Contrarily, in a binary system nuclear-processed matter can captured by a secondary star which remains chemically polluted long after its more massive companion star has evolved and died. By probing old, low-mass stars we gain vital insight into the complex nucleosynthesis that occurred when our Galaxy was much younger than it is today. Stellar evolution itself is also affected by the presence of a companion star. Thermonuclear novae and type Ia supernovae result from mass transfer in binary stars, but big questions still surround the nature of their progenitors. Stars may even merge and one of the challenges for the future of stellar astrophysics is to quantitatively understand what happens in such extreme systems. Binary stars offer unique insights into stellar, galactic and extragalactic astrophysics through their plethora of exciting phenomena. Understanding the chemical evolution of binary stars is thus of high priority in modern astrophysics.

  17. Neutrino signal from pair-instability supernovae

    NASA Astrophysics Data System (ADS)

    Wright, Warren P.; Gilmer, Matthew S.; Fröhlich, Carla; Kneller, James P.

    2017-11-01

    A very massive star with a carbon-oxygen core in the range of 64M ⊙

  18. A very energetic supernova associated with the gamma-ray burst of 29 March 2003.

    PubMed

    Hjorth, Jens; Sollerman, Jesper; Møller, Palle; Fynbo, Johan P U; Woosley, Stan E; Kouveliotou, Chryssa; Tanvir, Nial R; Greiner, Jochen; Andersen, Michael I; Castro-Tirado, Alberto J; Castro Cerón, José María; Fruchter, Andrew S; Gorosabel, Javier; Jakobsson, Páll; Kaper, Lex; Klose, Sylvio; Masetti, Nicola; Pedersen, Holger; Pedersen, Kristian; Pian, Elena; Palazzi, Eliana; Rhoads, James E; Rol, Evert; van den Heuvel, Edward P J; Vreeswijk, Paul M; Watson, Darach; Wijers, Ralph A M J

    2003-06-19

    Over the past five years evidence has mounted that long-duration (>2 s) gamma-ray bursts (GRBs)-the most luminous of all astronomical explosions-signal the collapse of massive stars in our Universe. This evidence was originally based on the probable association of one unusual GRB with a supernova, but now includes the association of GRBs with regions of massive star formation in distant galaxies, the appearance of supernova-like 'bumps' in the optical afterglow light curves of several bursts and lines of freshly synthesized elements in the spectra of a few X-ray afterglows. These observations support, but do not yet conclusively demonstrate, the idea that long-duration GRBs are associated with the deaths of massive stars, presumably arising from core collapse. Here we report evidence that a very energetic supernova (a hypernova) was temporally and spatially coincident with a GRB at redshift z = 0.1685. The timing of the supernova indicates that it exploded within a few days of the GRB, strongly suggesting that core-collapse events can give rise to GRBs, thereby favouring the 'collapsar' model.

  19. Stellar Work of Art

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Poster Version

    This painterly portrait of a star-forming cloud, called NGC 346, is a combination of multiwavelength light from NASA's Spitzer Space Telescope (infrared), the European Southern Observatory's New Technology Telescope (visible), and the European Space Agency's XMM-Newton space telescope (X-ray).

    The infrared observations highlight cold dust in red, visible data show glowing gas in green, and X-rays show very warm gas in blue. Ordinary stars appear as blue spots with white centers, while young stars enshrouded in dust appear as red spots with white centers.

    The colorful picture demonstrates that stars in this region are being created by two different types of triggered star formation one involving wind, and the other, radiation. Triggered star formation occurs when massive stars spur new, smaller stars into existence. The first radiation-based mechanism is demonstrated near the center of the cloud. There, radiation from the massive stars is eating away at the surrounding dust cloud, creating shock waves that compress gas and dust into new stars. This compressed material appears as an arc-shaped orange-red filament, while the new stars within this filament are still blanketed with dust and cannot be seen.

    The second wind-based mechanism is at play higher up in the cloud. The isolated, pinkish blob of stars at the upper left was triggered by winds from a massive star located to the left of it. This massive star blew up in a supernova explosion 50,000 years ago, but before it died, its winds pushed gas and dust together into new stars. While this massive star cannot be seen in the image, a bubble created when it exploded can be seen near the large, white spot with a blue halo at the upper left (this white spot is actually a collection of three stars).

    NGC 346 is the brightest star-forming region in the Small Magellanic Cloud, an irregular dwarf galaxy that orbits our Milky Way galaxy, 210,000 light-years away.

  20. Stellar alchemy. The celestial origin of atoms

    NASA Astrophysics Data System (ADS)

    Cassé, Michel

    Why do the stars shine? What messages can we read in the light they send to us from the depths of the night? Nuclear astrophysics is a fascinating discipline, and enables connections to be made between atoms, stars, and human beings. Through modern astronomy, scientists have managed to unravel the full history of the chemical elements, and to understand how they originated and evolved into all the elements that compose our surroundings today. The transformation of metals into gold, something once dreamed of by alchemists, is a process commonly occurring in the cores of massive stars. But the most exciting revelation is the intimate connection that humanity itself has with the debris of exploded stars. This engaging account of nucleosynthesis in stars, and the associated chemical evolution of the Universe, is suitable for the general reader.

  1. Supernova shock breakout from a red supergiant.

    PubMed

    Schawinski, Kevin; Justham, Stephen; Wolf, Christian; Podsiadlowski, Philipp; Sullivan, Mark; Steenbrugge, Katrien C; Bell, Tony; Röser, Hermann-Josef; Walker, Emma S; Astier, Pierre; Balam, Dave; Balland, Christophe; Carlberg, Ray; Conley, Alex; Fouchez, Dominique; Guy, Julien; Hardin, Delphine; Hook, Isobel; Howell, D Andrew; Pain, Reynald; Perrett, Kathy; Pritchet, Chris; Regnault, Nicolas; Yi, Sukyoung K

    2008-07-11

    Massive stars undergo a violent death when the supply of nuclear fuel in their cores is exhausted, resulting in a catastrophic "core-collapse" supernova. Such events are usually only detected at least a few days after the star has exploded. Observations of the supernova SNLS-04D2dc with the Galaxy Evolution Explorer space telescope reveal a radiative precursor from the supernova shock before the shock reached the surface of the star and show the initial expansion of the star at the beginning of the explosion. Theoretical models of the ultraviolet light curve confirm that the progenitor was a red supergiant, as expected for this type of supernova. These observations provide a way to probe the physics of core-collapse supernovae and the internal structures of their progenitor stars.

  2. Confined dense circumstellar material surrounding a regular type II supernova

    DOE PAGES

    Yaron, O.; Perley, D. A.; Gal-Yam, A.; ...

    2017-02-13

    With the advent of new wide-field, high-cadence optical transient surveys, our understanding of the diversity of core-collapse supernovae has grown tremendously in the last decade. However, the pre-supernova evolution of massive stars, that sets the physical backdrop to these violent events, is theoretically not well understood and difficult to probe observationally. Here we report the discovery of the supernova iPTF 13dqy = SN 2013fs a mere ~3 hr after explosion. Our rapid follow-up observations, which include multiwavelength photometry and extremely early (beginning at ~6 hr post-explosion) spectra, map the distribution of material in the immediate environment (≲ 10 15 cm)more » of the exploding star and establish that it was surrounded by circumstellar material (CSM) that was ejected during the final ~1 yr prior to explosion at a high rate, around 10 -3 solar masses per year. The complete disappearance of flash-ionised emission lines within the first several days requires that the dense CSM be confined to within ≲10 15 cm, consistent with radio non-detections at 70–100 days. The observations indicate that iPTF 13dqy was a regular Type II SN; thus, the finding that the probable red supergiant (RSG) progenitor of this common explosion ejected material at a highly elevated rate just prior to its demise suggests that pre-supernova instabilities may be common among exploding massive stars.« less

  3. THE DETECTION RATE OF EARLY UV EMISSION FROM SUPERNOVAE: A DEDICATED GALEX/PTF SURVEY AND CALIBRATED THEORETICAL ESTIMATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganot, Noam; Gal-Yam, Avishay; Ofek, Eran O.

    The radius and surface composition of an exploding massive star, as well as the explosion energy per unit mass, can be measured using early UV observations of core-collapse supernovae (SNe). We present the first results from a simultaneous GALEX/PTF search for early ultraviolet (UV) emission from SNe. Six SNe II and one Type II superluminous SN (SLSN-II) are clearly detected in the GALEX near-UV (NUV) data. We compare our detection rate with theoretical estimates based on early, shock-cooling UV light curves calculated from models that fit existing Swift and GALEX observations well, combined with volumetric SN rates. We find thatmore » our observations are in good agreement with calculated rates assuming that red supergiants (RSGs) explode with fiducial radii of 500 R{sub ⊙}, explosion energies of 10{sup 51} erg, and ejecta masses of 10 M{sub ⊙}. Exploding blue supergiants and Wolf–Rayet stars are poorly constrained. We describe how such observations can be used to derive the progenitor radius, surface composition, and explosion energy per unit mass of such SN events, and we demonstrate why UV observations are critical for such measurements. We use the fiducial RSG parameters to estimate the detection rate of SNe during the shock-cooling phase (<1 day after explosion) for several ground-based surveys (PTF, ZTF, and LSST). We show that the proposed wide-field UV explorer ULTRASAT mission is expected to find >85 SNe per year (∼0.5 SN per deg{sup 2}), independent of host galaxy extinction, down to an NUV detection limit of 21.5 mag AB. Our pilot GALEX/PTF project thus convincingly demonstrates that a dedicated, systematic SN survey at the NUV band is a compelling method to study how massive stars end their life.« less

  4. Massive Star Burps, Then Explodes

    NASA Astrophysics Data System (ADS)

    2007-04-01

    Berkeley -- In a galaxy far, far away, a massive star suffered a nasty double whammy. On Oct. 20, 2004, Japanese amateur astronomer Koichi Itagaki saw the star let loose an outburst so bright that it was initially mistaken for a supernova. The star survived, but for only two years. On Oct. 11, 2006, professional and amateur astronomers witnessed the star actually blowing itself to smithereens as Supernova 2006jc. Swift UVOT Image Swift UVOT Image (Credit: NASA / Swift / S.Immler) "We have never observed a stellar outburst and then later seen the star explode," says University of California, Berkeley, astronomer Ryan Foley. His group studied the event with ground-based telescopes, including the 10-meter (32.8-foot) W. M. Keck telescopes in Hawaii. Narrow helium spectral lines showed that the supernova's blast wave ran into a slow-moving shell of material, presumably the progenitor's outer layers ejected just two years earlier. If the spectral lines had been caused by the supernova's fast-moving blast wave, the lines would have been much broader. artistic rendering This artistic rendering depicts two years in the life of a massive blue supergiant star, which burped and spewed a shell of gas, then, two years later, exploded. When the supernova slammed into the shell of gas, X-rays were produced. (Credit: NASA/Sonoma State Univ./A.Simonnet) Another group, led by Stefan Immler of NASA's Goddard Space Flight Center, Greenbelt, Md., monitored SN 2006jc with NASA's Swift satellite and Chandra X-ray Observatory. By observing how the supernova brightened in X-rays, a result of the blast wave slamming into the outburst ejecta, they could measure the amount of gas blown off in the 2004 outburst: about 0.01 solar mass, the equivalent of about 10 Jupiters. "The beautiful aspect of our SN 2006jc observations is that although they were obtained in different parts of the electromagnetic spectrum, in the optical and in X-rays, they lead to the same conclusions," says Immler. "This event was a complete surprise," added Alex Filippenko, leader of the UC Berkeley/Keck supernova group and a member of NASA'S Swift team. "It opens up a fascinating new window on how some kinds of stars die." All the observations suggest that the supernova's blast wave took only a few weeks to reach the shell of material ejected two years earlier, which did not have time to drift very far from the star. As the wave smashed into the ejecta, it heated the gas to millions of degrees, hot enough to emit copious X-rays. The Swift satellite saw the supernova continue to brighten in X-rays for 100 days, something that has never been seen before in a supernova. All supernovae previously observed in X-rays have started off bright and then quickly faded to invisibility. "You don't need a lot of mass in the ejecta to produce a lot of X-rays," notes Immler. Swift's ability to monitor the supernova's X-ray rise and decline over six months was crucial to his team's mass determination. But he adds that Chandra's sharp resolution enabled his group to resolve the supernova from a bright X-ray source that appears in the field of view of Swift's X-ray Telescope. "We could not have made this measurement without Chandra," says Immler, who will submit his team's paper next week to the Astrophysical Journal. "The synergy between Swift's fast response and its ability to observe a supernova every day for a long period, and Chandra's high spatial resolution, is leading to a lot of interesting results." Foley and his colleagues, whose paper appears in the March 10 Astrophysical Journal Letters, propose that the star recently transitioned from a Luminous Blue Variable (LBV) star to a Wolf-Rayet star. An LBV is a massive star in a brief but unstable phase of stellar evolution. Similar to the 2004 eruption, LBVs are prone to blow off large amounts of mass in outbursts so extreme that they are frequently mistaken for supernovae, events dubbed "supernova impostors." Wolf-Rayet stars are hot, highly evolved stars that have shed their outer envelopes. Swift XRT Image Swift XRT Image (Credit: NASA / GSFC / CXC /S.Immler) Most astronomers did not expect that a massive star would explode so soon after a major outburst, or that a Wolf-Rayet star would produce such a luminous eruption, so SN 2006jc represents a puzzle for theorists. "It challenges some aspects of our current model of stellar evolution," says Foley. "We really don't know what caused this star to have such a large eruption so soon before it went supernova." "SN 2006jc provides us with an important clue that LBV-style eruptions may be related to the deaths of massive stars, perhaps more closely than we used to think," adds coauthor and UC Berkeley astronomer Nathan Smith. "The fact that we have no well-established theory for what actually causes these outbursts is the elephant in the living room that nobody is talking about." SN 2006jc occurred in galaxy UGC 4904, located 77 million light years from Earth in the constellation Lynx. The supernova explosion, a peculiar variant of a Type Ib, was first sighted by Itagaki, American amateur astronomer Tim Puckett and Italian amateur astronomer Roberto Gorelli. See also NASA Goddard press release at: http://www.nasa.gov/centers/goddard/news/topstory/ 2007/supernova_imposter.html

  5. A surge of light at the birth of a supernova.

    PubMed

    Bersten, M C; Folatelli, G; García, F; Van Dyk, S D; Benvenuto, O G; Orellana, M; Buso, V; Sánchez, J L; Tanaka, M; Maeda, K; Filippenko, A V; Zheng, W; Brink, T G; Cenko, S B; de Jaeger, T; Kumar, S; Moriya, T J; Nomoto, K; Perley, D A; Shivvers, I; Smith, N

    2018-02-21

    It is difficult to establish the properties of massive stars that explode as supernovae. The electromagnetic emission during the first minutes to hours after the emergence of the shock from the stellar surface conveys important information about the final evolution and structure of the exploding star. However, the unpredictable nature of supernova events hinders the detection of this brief initial phase. Here we report the serendipitous discovery of a newly born, normal type IIb supernova (SN 2016gkg), which reveals a rapid brightening at optical wavelengths of about 40 magnitudes per day. The very frequent sampling of the observations allowed us to study in detail the outermost structure of the progenitor of the supernova and the physics of the emergence of the shock. We develop hydrodynamical models of the explosion that naturally account for the complete evolution of the supernova over distinct phases regulated by different physical processes. This result suggests that it is appropriate to decouple the treatment of the shock propagation from the unknown mechanism that triggers the explosion.

  6. A surge of light at the birth of a supernova

    NASA Astrophysics Data System (ADS)

    Bersten, M. C.; Folatelli, G.; García, F.; van Dyk, S. D.; Benvenuto, O. G.; Orellana, M.; Buso, V.; Sánchez, J. L.; Tanaka, M.; Maeda, K.; Filippenko, A. V.; Zheng, W.; Brink, T. G.; Cenko, S. B.; de Jaeger, T.; Kumar, S.; Moriya, T. J.; Nomoto, K.; Perley, D. A.; Shivvers, I.; Smith, N.

    2018-02-01

    It is difficult to establish the properties of massive stars that explode as supernovae. The electromagnetic emission during the first minutes to hours after the emergence of the shock from the stellar surface conveys important information about the final evolution and structure of the exploding star. However, the unpredictable nature of supernova events hinders the detection of this brief initial phase. Here we report the serendipitous discovery of a newly born, normal type IIb supernova (SN 2016gkg), which reveals a rapid brightening at optical wavelengths of about 40 magnitudes per day. The very frequent sampling of the observations allowed us to study in detail the outermost structure of the progenitor of the supernova and the physics of the emergence of the shock. We develop hydrodynamical models of the explosion that naturally account for the complete evolution of the supernova over distinct phases regulated by different physical processes. This result suggests that it is appropriate to decouple the treatment of the shock propagation from the unknown mechanism that triggers the explosion.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, R. M.; Hankins, M. J.; Herter, T. L.

    Massive, evolved stars play a crucial role in the metal enrichment, dust budget, and energetics of the interstellar medium; however, the details of their evolution are uncertain because of their rarity and short lifetimes before exploding as supernovae. Discrepancies between theoretical predictions from single-star evolutionary models and observations of massive stars have evoked a shifting paradigm that implicates the importance of binary interaction. We present mid- to far-infrared observations from the Stratospheric Observatory for Infrared Astronomy of a conical “helix” of warm dust (∼180 K) that appears to extend from the Wolf–Rayet star WR102c. Our interpretation of the helix ismore » a precessing, collimated outflow that emerged from WR102c during a previous evolutionary phase as a rapidly rotating luminous blue variable. We attribute the precession of WR102c to gravitational interactions with an unseen compact binary companion whose orbital period can be constrained to 800 days < P < 1400 days from the inferred precession period, τ{sub p} ∼ 1.4 × 10{sup 4} yr, and limits imposed on the stellar and orbital parameters of the system. Our results concur with the range of orbital periods (P ≲ 1500 days) where spin-up via mass exchange is expected to occur for massive binary systems.« less

  8. Order Amidst Chaos of Star's Explosion

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Order Amidst Chaos of Star's Explosion

    This artist's animation shows the explosion of a massive star, the remains of which are named Cassiopeia A. NASA's Spitzer Space Telescope found evidence that the star exploded with some degree of order, preserving chunks of its onion-like layers as it blasted apart.

    Cassiopeia A is what is known as a supernova remnant. The original star, about 15 to 20 times more massive than our sun, died in a cataclysmic 'supernova' explosion viewable from Earth about 340 years ago. The remnant is located 10,000 light-years away in the constellation Cassiopeia.

    The movie begins by showing the star before it died, when its layers of elements (shown in different colors) were stacked neatly, with the heaviest at the core and the lightest at the top. The star is then shown blasting to smithereens. Spitzer found evidence that the star's original layers were preserved, flinging outward in all directions, but not at the same speeds. In other words, some chunks of the star sped outward faster than others, as illustrated by the animation.

    The movie ends with an actual picture of Cassiopeia A taken by Spitzer. The colored layers containing different elements are seen next to each other because they traveled at different speeds.

    The infrared observatory was able to see the tossed-out layers because they light up upon ramming into a 'reverse' shock wave created in the aftermath of the explosion. When a massive star explodes, it creates two types of shock waves. The forward shock wave darts out quickest, and, in the case of Cassiopeia A, is now traveling at supersonic speeds up to 7,500 kilometers per second (4,600 miles/second). The reverse shock wave is produced when the forward shock wave slams into a shell of surrounding material expelled before the star died. It tags along behind the forward shock wave at slightly slower speeds.

    Chunks of the star that were thrown out fastest hit the shock wave sooner and have had more time to heat up to scorching temperatures previously detected by X-ray and visible-light telescopes. Chunks of the star that lagged behind hit the shock wave later, so they are cooler and radiate infrared light that was not seen until Spitzer came along. These lagging chunks are seen in false colors in the Spitzer picture of Cassiopeia A. They are made up of gas and dust containing neon, oxygen and aluminum -- elements from the middle layers of the original star.

  9. The Quiet Explosion

    NASA Astrophysics Data System (ADS)

    2008-07-01

    A European-led team of astronomers are providing hints that a recent supernova may not be as normal as initially thought. Instead, the star that exploded is now understood to have collapsed into a black hole, producing a weak jet, typical of much more violent events, the so-called gamma-ray bursts. The object, SN 2008D, is thus probably among the weakest explosions that produce very fast moving jets. This discovery represents a crucial milestone in the understanding of the most violent phenomena observed in the Universe. Black Hole ESO PR Photo 23a/08 A Galaxy and two Supernovae These striking results, partly based on observations with ESO's Very Large Telescope, will appear tomorrow in Science Express, the online version of Science. Stars that were at birth more massive than about 8 times the mass of our Sun end their relatively short life in a cosmic, cataclysmic firework lighting up the Universe. The outcome is the formation of the densest objects that exist, neutron stars and black holes. When exploding, some of the most massive stars emit a short cry of agony, in the form of a burst of very energetic light, X- or gamma-rays. In the early afternoon (in Europe) of 9 January 2008, the NASA/STFC/ASI Swift telescope discovered serendipitously a 5-minute long burst of X-rays coming from within the spiral galaxy NGC 2770, located 90 million light-years away towards the Lynx constellation. The Swift satellite was studying a supernova that had exploded the previous year in the same galaxy, but the burst of X-rays came from another location, and was soon shown to arise from a different supernova, named SN 2008D. Researchers at the Italian National Institute for Astrophysics (INAF), the Max-Planck Institute for Astrophysics (MPA), ESO, and at various other institutions have observed the supernova at great length. The team is led by Paolo Mazzali of INAF's Padova Observatory and MPA. "What made this event very interesting," says Mazzali, "is that the X-ray signal was very weak and 'soft' [1], very different from a gamma-ray burst and more in line with what is expected from a normal supernova." So, after the supernova was discovered, the team rapidly observed it from the Asiago Observatory in Northern Italy and established that it was a Type Ic supernova. "These are supernovae produced by stars that have lost their hydrogen and helium-rich outermost layers before exploding, and are the only type of supernovae which are associated with (long) gamma-ray bursts," explains Mazzali. "The object thus became even more interesting!" Earlier this year, an independent team of astronomers reported in the journal Nature that SN 2008D is a rather normal supernova. The fact that X-rays were detected was, they said, because for the first time, astronomers were lucky enough to catch the star in the act of exploding. Mazzali and his team think otherwise. "Our observations and modeling show this to be a rather unusual event, to be better understood in terms of an object lying at the boundary between normal supernovae and gamma-ray bursts." The team set up an observational campaign to monitor the evolution of the supernova using both ESO and national telescopes, collecting a large quantity of data. The early behaviour of the supernova indicated that it was a highly energetic event, although not quite as powerful as a gamma-ray burst. After a few days, however, the spectra of the supernova began to change. In particular Helium lines appeared, showing that the progenitor star was not stripped as deeply as supernovae associated with gamma-ray bursts. Over the years, Mazzali and his group have developed theoretical models to analyse the properties of supernovae. When applied to SN2008D, their models indicated that the progenitor star was at birth as massive as 30 times the Sun, but had lost so much mass that at the time of the explosion the star had a mass of only 8-10 solar masses. The likely result of the collapse of such a massive star is a black hole. "Since the masses and energies involved are smaller than in every known gamma-ray burst related supernova, we think that the collapse of the star gave rise to a weak jet, and that the presence of the Helium layer made it even more difficult for the jet to remain collimated, so that when it emerged from the stellar surface the signal was weak," says Massimo Della Valle, co-author. "The scenario we propose implies that gamma-ray burst-like inner engine activity exists in all supernovae that form a black hole," adds co-author Stefano Valenti. "As our X-ray and gamma-ray instruments become more advanced, we are slowly uncovering the very diverse properties of stellar explosions," explains Guido Chincarini, co-author and the Principal Investigator of the Italian research on gamma-ray bursts. "The bright gamma-ray bursts were the easiest to discover, and now we are seeing variations on a theme that link these special events to more normal ones." These are however very important discoveries, as they continue to paint a picture of how massive star end their lives, producing dense objects, and injecting new chemical elements back into the gas from which new stars will be formed.

  10. FOC Imaging of the Dusty Envelopes of Mass-Losing Supergiants

    NASA Astrophysics Data System (ADS)

    Kastner, Joel

    1996-07-01

    Stars more massive than 10 M_odot are destined to explode as supernovae {SN}. Pre-SN mass loss can prolong core buildup, and the rate and duration of mass loss therefore largely determines a massive star's post-main sequence evolution and its position in the H-R diagram prior to SN detonation. The envelope ejected by a mass-losing supergiant also plays an important role in the formation and evolution of a SN remnant. We propose to investigate these processes with HST. We will use the FOC to image two massive stars that are in different stages of post-main sequence evolution: VY CMa, the prototype for a class of heavily mass-losing OH/IR supergiants, and HD 179821, a post-red supergiant that is likely in transition to the Wolf-Rayet phase. Both are known to possess compact reflection nebulae, but ground-based techniques are unable to separate the inner nebulosities from the PSF of the central stars. We will use the unparalleled resolution of the FOC to probe the structure of these nebulae at subarcsecond scales. These data will yield the mass loss histories of the central stars and will demonstrate the presence or absence of axisymmetric mass loss and circumstellar disks. In so doing, our HST/FOC program will define the role of mass loss in determining the fates of SN progenitors and SN remnants.

  11. Smoking Gun Found for Gamma-Ray Burst in Milky Way

    NASA Astrophysics Data System (ADS)

    2004-06-01

    Combined data from NASA's Chandra X-ray Observatory and infrared observations with the Palomar 200-inch telescope have uncovered evidence that a gamma-ray burst, one of nature's most catastrophic explosions, occurred in our Galaxy a few thousand years ago. The supernova remnant, W49B, may also be the first remnant of a gamma-ray burst discovered in the Milky Way. W49B is a barrel-shaped nebula located about 35,000 light years from Earth. The new data reveal bright infrared rings, like hoops around a barrel, and intense X-radiation from iron and nickel along the axis of the barrel. "These results provide intriguing evidence that an extremely massive star exploded in two powerful, oppositely directed jets that were rich in iron," said Jonathan Keohane of NASA's Jet Propulsion Laboratory at a press conference at the American Astronomical Society meeting in Denver. "This makes W49B a prime candidate for being the remnant of a gamma ray burst involving a black hole collapsar." "The nearest known gamma-ray burst to Earth is several million light years away - most are billions of light years distant - so the detection of the remnant of one in our galaxy would be a major breakthrough," said William Reach, one of Keohane's collaborators from the California Institute of Technology. According to the collapsar theory, gamma-ray bursts are produced when a massive star runs out of nuclear fuel and the star's core collapses to form a black hole surrounded by a disk of extremely hot, rapidly rotating, magnetized gas. Much of this gas is pulled into the black hole, but some is flung away in oppositely directed jets of gas traveling at near the speed of light. An observer aligned with one these jets would see a gamma-ray burst, a blinding flash in which the concentrated power equals that of ten quadrillion Suns for a minute or so. The view perpendicular to the jets is a less astonishing, although nonetheless spectacular supernova explosion. For W49B, the jet is tilted out of the plane of the sky by about 20 degrees. W49B Chandra Fe K-line Image of W49B Four rings about 25 light years in diameter can be identified in the infrared image. These rings, which are due to warm gas, were presumably flung out by the rapid rotation of the massive star a few hundred thousand years before the star exploded. The rings were pushed outward by a hot wind from the star a few thousand years before it exploded. Chandra's image and spectral data show that the jets of multimillion-degree-Celsius gas extending along the axis of the barrel are rich in iron and nickel ions, consistent with their being ejected from the center of the star. This distinguishes the explosion from a conventional type II supernova in which most of the Fe and Ni goes into making the neutron star, and the outer part of the star is what is flung out. In contrast, in the collapsar model of gamma ray bursts iron and nickel from the center is ejected along the jet. At the ends of the barrel, the X-ray emission flares out to make a hot cap. The X-ray cap is surrounded by a flattened cloud of hydrogen molecules detected in the infrared. These features indicate that the shock wave produced by the explosion has encountered a large, dense cloud of gas and dust. The scenario that emerges is one in which a massive star formed from a dense cloud of dust, shone brightly for a few million years while spinning off rings of gas and pushing them away, forming a nearly empty cavity around the star. The star then underwent a collapsar-type supernova explosion that resulted in a gamma-ray burst. The observations of W49B may help to resolve a problem that has bedeviled the collapsar model for gamma-ray bursts. On the one hand, the model is based on the collapse of a massive star, which is normally formed from a dense cloud. On the other hand, observations of the afterglow of many gamma-ray bursts indicate that the explosion occurred in a low-density gas. Based on the W49B data, the resolution proposed by Keohane and colleagues is that the star had carved out an extensive low-density cavity in which the explosion subsequently occurred. "This star appears to have exploded inside a bubble it had created," said Keohane. "In a sense, it dug its own grave." NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. The image and additional information are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  12. Heaviest Stellar Black Hole Discovered in Nearby Galaxy

    NASA Astrophysics Data System (ADS)

    2007-10-01

    Astronomers have located an exceptionally massive black hole in orbit around a huge companion star. This result has intriguing implications for the evolution and ultimate fate of massive stars. The black hole is part of a binary system in M33, a nearby galaxy about 3 million light years from Earth. By combining data from NASA's Chandra X-ray Observatory and the Gemini telescope on Mauna Kea, Hawaii, the mass of the black hole, known as M33 X-7, was determined to be 15.7 times that of the Sun. This makes M33 X-7 the most massive stellar black hole known. A stellar black hole is formed from the collapse of the core of a massive star at the end of its life. Chandra X-ray Image of M33 X-7 Chandra X-ray Image of M33 X-7 "This discovery raises all sorts of questions about how such a big black hole could have been formed," said Jerome Orosz of San Diego State University, lead author of the paper appearing in the October 18th issue of the journal Nature. M33 X-7 orbits a companion star that eclipses the black hole every three and a half days. The companion star also has an unusually large mass, 70 times that of the Sun. This makes it the most massive companion star in a binary system containing a black hole. Hubble Optical Image of M33 X-7 Hubble Optical Image of M33 X-7 "This is a huge star that is partnered with a huge black hole," said coauthor Jeffrey McClintock of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "Eventually, the companion will also go supernova and then we'll have a pair of black holes." The properties of the M33 X-7 binary system - a massive black hole in a close orbit around a massive companion star - are difficult to explain using conventional models for the evolution of massive stars. The parent star for the black hole must have had a mass greater than the existing companion in order to have formed a black hole before the companion star. Gemini Optical Image of M33 X-7 Gemini Optical Image of M33 X-7 Such a massive star would have had a radius larger than the present separation between the stars, so the stars must have been brought closer while sharing a common outer atmosphere. This process typically results in a large amount of mass being lost from the system, so much that the parent star should not have been able to form a 15.7 solar-mass black hole. The black hole's progenitor must have shed gas at a rate about 10 times less than predicted by models before it exploded. If even more massive stars also lose very little material, it could explain the incredibly luminous supernova seen recently as SN 2006gy. The progenitor for SN 2006gy is thought to have been about 150 times the mass of the Sun when it exploded. Artist's Illustration of M33 X-7 Artist's Illustration of M33 X-7 "Massive stars can be much less extravagant than people think by hanging onto a lot more of their mass toward the end of their lives," said Orosz. "This can have a big effect on the black holes that these stellar time-bombs make." Coauthor Wolfgang Pietsch was also the lead author of an article in the Astrophysical Journal that used Chandra observations to report that M33 X-7 is the first black hole in a binary system observed to undergo eclipses. The eclipsing nature enables unusually accurate estimates for the mass of the black hole and its companion. "Because it's eclipsing and because it has such extreme properties, this black hole is an incredible test-bed for studying astrophysics," said Pietsch. The length of the eclipse seen by Chandra gives information about the size of the companion. The scale of the companion's motion, as inferred from the Gemini observations, gives information about the mass of the black hole and its companion. Other observed properties of the binary were used to constrain the mass estimates. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Gemini is an international partnership managed by the Association of Universities for Research in Astronomy under a cooperative agreement with the National Science Foundation.

  13. Evolution and fate of very massive stars

    NASA Astrophysics Data System (ADS)

    Yusof, Norhasliza; Hirschi, Raphael; Meynet, Georges; Crowther, Paul A.; Ekström, Sylvia; Frischknecht, Urs; Georgy, Cyril; Abu Kassim, Hasan; Schnurr, Olivier

    2013-08-01

    There is observational evidence that supports the existence of very massive stars (VMS) in the local universe. First, VMS (Mini ≲ 320 M⊙) have been observed in the Large Magellanic Clouds (LMC). Secondly, there are observed supernovae (SNe) that bear the characteristics of pair creation supernovae (PCSNe, also referred to as pair instability SN) which have VMS as progenitors. The most promising candidate to date is SN 2007bi. In order to investigate the evolution and fate of nearby VMS, we calculated a new grid of models for such objects, for solar, LMC and Small Magellanic Clouds (SMC) metallicities, which covers the initial mass range from 120 to 500 M⊙. Both rotating and non-rotating models were calculated using the GENEVA stellar evolution code and evolved until at least the end of helium burning and for most models until oxygen burning. Since VMS have very large convective cores during the main-sequence phase, their evolution is not so much affected by rotational mixing, but more by mass loss through stellar winds. Their evolution is never far from a homogeneous evolution even without rotational mixing. All the VMS, at all the metallicities studied here, end their life as WC(WO)-type Wolf-Rayet stars. Because of very important mass losses through stellar winds, these stars may have luminosities during the advanced phases of their evolution similar to stars with initial masses between 60 and 120 M⊙. A distinctive feature which may be used to disentangle Wolf-Rayet stars originating from VMS from those originating from lower initial masses would be the enhanced abundances of Ne and Mg at the surface of WC stars. This feature is however not always apparent depending on the history of mass loss. At solar metallicity, none of our models is expected to explode as a PCSN. At the metallicity of the LMC, only stars more massive than 300 M⊙ are expected to explode as PCSNe. At the SMC metallicity, the mass range for the PCSN progenitors is much larger and comprises stars with initial masses between about 100 and 290 M⊙. All VMS in the metallicity range studied here produce either a Type Ib SN or a Type Ic SN but not a Type II SN. We estimate that the progenitor of SN 2007bi, assuming a SMC metallicity, had an initial mass between 160 and 175 M⊙. None of models presented in this grid produces gamma-ray bursts or magnetars. They lose too much angular momentum by mass loss or avoid the formation of a black hole by producing a completely disruptive PCSN.

  14. Massive Stars in Interactive Binaries

    NASA Astrophysics Data System (ADS)

    St.-Louis, Nicole; Moffat, Anthony F. J.

    Massive stars start their lives above a mass of ~8 time solar, finally exploding after a few million years as core-collapse or pair-production supernovae. Above ~15 solar masses, they also spend most of their lives driving especially strong, hot winds due to their extreme luminosities. All of these aspects dominate the ecology of the Universe, from element enrichment to stirring up and ionizing the interstellar medium. But when they occur in close pairs or groups separated by less than a parsec, the interaction of massive stars can lead to various exotic phenomena which would not be seen if there were no binaries. These depend on the actual separation, and going from wie to close including colliding winds (with non-thermal radio emission and Wolf-Rayet dust spirals), cluster dynamics, X-ray binaries, Roche-lobe overflow (with inverse mass-ratios and rapid spin up), collisions, merging, rejuventation and massive blue stragglers, black-hole formation, runaways and gamma-ray bursts. Also, one wonders whether the fact that a massive star is in a binary affects its parameters compared to its isolated equivalent. These proceedings deal with all of these phenomena, plus binary statistics and determination of general physical properties of massive stars, that would not be possible with their single cousins. The 77 articles published in these proceedings, all based on oral talks, vary from broad revies to the lates developments in the field. About a third of the time was spent in open discussion of all participants, both for ~5 minutes after each talk and 8 half-hour long general dialogues, all audio-recorded, transcribed and only moderately edited to yield a real flavour of the meeting. The candid information in these discussions is sometimes more revealing than the article(s) that preceded them and also provide entertaining reading. The book is suitable for researchers and graduate students interested in stellar astrophysics and in various physical processes involved when stars occur in bound pairs, groups or tight clusters.

  15. Asymmetric core collapse of rapidly rotating massive star

    NASA Astrophysics Data System (ADS)

    Gilkis, Avishai

    2018-02-01

    Non-axisymmetric features are found in the core collapse of a rapidly rotating massive star, which might have important implications for magnetic field amplification and production of a bipolar outflow that can explode the star, as well as for r-process nucleosynthesis and natal kicks. The collapse of an evolved rapidly rotating MZAMS = 54 M⊙ star is followed in three-dimensional hydrodynamic simulations using the FLASH code with neutrino leakage. A rotating proto-neutron star (PNS) forms with a non-zero linear velocity. This can contribute to the natal kick of the remnant compact object. The PNS is surrounded by a turbulent medium, where high shearing is likely to amplify magnetic fields, which in turn can drive a bipolar outflow. Neutron-rich material in the PNS vicinity might induce strong r-process nucleosynthesis. The rapidly rotating PNS possesses a rotational energy of E_rot ≳ 10^{52} erg. Magnetar formation proceeding in a similar fashion will be able to deposit a portion of this energy later on in the supernova ejecta through a spin-down mechanism. These processes can be important for rare supernovae generated by rapidly rotating progenitors, even though a complete explosion is not simulated in the present study.

  16. HD271791: dynamical versus binary-supernova ejection scenario

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2009-05-01

    The atmosphere of the extremely high-velocity (530-920kms-1) early B-type star HD271791 is enriched in α-process elements, which suggests that this star is a former secondary component of a massive tight binary system and that its surface was polluted by the nucleosynthetic products after the primary star exploded in a supernova. It was proposed that the (asymmetric) supernova explosion unbind the system and that the secondary star (HD271791) was released at its orbital velocity in the direction of Galactic rotation. In this Letter, we show that to explain the Galactic rest-frame velocity of HD271791 within the framework of the binary-supernova scenario, the stellar remnant of the supernova explosion (a <~10Msolar black hole) should receive an unrealistically large kick velocity of >=750-1200kms-1. We therefore consider the binary-supernova scenario as highly unlikely and instead propose that HD271791 attained its peculiar velocity in the course of a strong dynamical three- or four-body encounter in the dense core of the parent star cluster. Our proposal implies that by the moment of encounter HD271791 was a member of a massive post-supernova binary.

  17. Fires of Galactic Youth Artist Animation

    NASA Image and Video Library

    2004-12-22

    This artist's animation shows a typical young galaxy, teeming with hot, newborn stars and exploding supernovas. The supernovas are seen as white flashes of light. NASA's Galaxy Evolution Explorer spotted three-dozen young galaxies like the one shown here in our corner of the universe. It was able to see them with the help of its highly sensitive ultraviolet detectors. Because newborn stars radiate ultraviolet light, young galaxies light up brilliantly when viewed in ultraviolet wavelengths. The findings came as a surprise, because astronomers had thought that the universe's "birth-rate" had declined, and that massive galaxies were no longer forming. http://photojournal.jpl.nasa.gov/catalog/PIA07144

  18. A High-resolution Study of Presupernova Core Structure

    NASA Astrophysics Data System (ADS)

    Sukhbold, Tuguldur; Woosley, S. E.; Heger, Alexander

    2018-06-01

    The density structure surrounding the iron core of a massive star when it dies is known to have a major effect on whether or not the star explodes. Here we repeat previous surveys of presupernova evolution with some important corrections to code physics and four to 10 times better mass resolution in each star. The number of presupernova masses considered is also much larger. Over 4000 models are calculated in the range from 12 to 60 M ⊙ with varying mass loss rates. The core structure is not greatly affected by the increased spatial resolution. The qualitative patterns of compactness measures and their extrema are the same, but with the increased number of models, the scatter seen in previous studies is replaced by several localized branches. More physics-based analyses by Ertl et al. and Müller et al. show these branches with less scatter than the single-parameter characterization of O’Connor & Ott. These branches are particularly apparent for stars in the mass ranges 14–19 and 22–24 M ⊙. The multivalued solutions are a consequence of interference between several carbon- and oxygen-burning shells during the late stages of evolution. For a relevant range of masses, whether a star explodes or not may reflect the small, almost random differences in its late evolution more than its initial mass. The large number of models allows statistically meaningful statements about the radius, luminosity, and effective temperatures of presupernova stars, their core structures, and their remnant mass distributions.

  19. Interacting supernovae and supernova impostors

    NASA Astrophysics Data System (ADS)

    Tartaglia, Leonardo

    2016-02-01

    Massive stars are thought to end their lives with spectacular explosions triggered by the gravitational collapse of their cores. Interacting supernovae are generally attributed to supernova explosions occurring in dense circumstellar media, generated through mass-loss which characterisie the late phases of the life of their progenitors. In the last two decades, several observational evidences revealed that mass-loss in massive stars may be related to violent eruptions involving their outer layers, such as the luminous blue variables. Giant eruptions of extragalactic luminous blue variables, similar to that observed in Eta Car in the 19th century, are usually labelled 'SN impostors', since they mimic the behaviour of genuine SNe, but are not the final act of the life of the progenitor stars. The mechanisms producing these outbursts are still not understood, although the increasing number of observed cases triggered the efforts of the astronomical community to find possible theoretical interpretations. More recently, a number of observational evidences suggested that also lower-mass stars can experience pre-supernova outbursts, hence becoming supernova impostors. Even more interestingly, there is growing evidence of a connection among massive stars, their outbursts and interacting supernovae. All of this inspired this research, which has been focused in particular on the characterisation of supernova impostors and the observational criteria that may allow us to safely discriminate them from interacting supernovae. Moreover, the discovery of peculiar transients, motivated us to explore the lowest range of stellar masses that may experience violent outbursts. Finally, the quest for the link among massive stars, their giant eruptions and interacting supernovae, led us to study the interacting supernova LSQ13zm, which possibly exploded a very short time after an LBV-like major outburst.

  20. Neutrino Emission from Supernovae

    NASA Astrophysics Data System (ADS)

    Janka, Hans-Thomas

    Supernovae are the most powerful cosmic sources of MeV neutrinos. These elementary particles play a crucial role when the evolution of a massive star is terminated by the collapse of its core to a neutron star or a black hole and the star explodes as supernova. The release of electron neutrinos, which are abundantly produced by electron captures, accelerates the catastrophic infall and causes a gradual neutronization of the stellar plasma by converting protons to neutrons as dominant constituents of neutron star matter. The emission of neutrinos and antineutrinos of all flavors carries away the gravitational binding energy of the compact remnant and drives its evolution from the hot initial to the cold final state. The absorption of electron neutrinos and antineutrinos in the surroundings of the newly formed neutron star can power the supernova explosion and determines the conditions in the innermost supernova ejecta, making them an interesting site for the nucleosynthesis of iron-group elements and trans-iron nuclei.

  1. COLORFUL FIREWORKS FINALE CAPS A STAR'S LIFE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Glowing gaseous streamers of red, white, and blue -- as well as green and pink -- illuminate the heavens like Fourth of July fireworks. The colorful streamers that float across the sky in this photo taken by NASA's Hubble Space Telescope were created by one of the biggest firecrackers seen to go off in our galaxy in recorded history, the titanic supernova explosion of a massive star. The light from the exploding star reached Earth 320 years ago, nearly a century before our United States celebrated its birth with a bang. The dead star's shredded remains are called Cassiopeia A, or 'Cas A' for short. Cas A is the youngest known supernova remnant in our Milky Way Galaxy and resides 10,000 light-years away in the constellation Cassiopeia, so the star actually blew up 10,000 years before the light reached Earth in the late 1600s. This stunning Hubble image of Cas A is allowing astronomers to study the supernova's remains with great clarity, showing for the first time that the debris is arranged into thousands of small, cooling knots of gas. This material eventually will be recycled into building new generations of stars and planets. Our own Sun and planets are constructed from the debris of supernovae that exploded billions of years ago. This photo shows the upper rim of the supernova remnant's expanding shell. Near the top of the image are dozens of tiny clumps of matter. Each small clump, originally just a small fragment of the star, is tens of times larger than the diameter of our solar system. The colors highlight parts of the debris where chemical elements are glowing. The dark blue fragments, for example, are richest in oxygen; the red material is rich in sulfur. The star that created this colorful show was a big one, about 15 to 25 times more massive than our Sun. Massive stars like the one that created Cas A have short lives. They use up their supply of nuclear fuel in tens of millions of years, 1,000 times faster than our Sun. With their fuel exhausted, heavy stars begin a complex chain of events that lead to the final dramatic explosion. Their cores rapidly collapse, releasing an enormous amount of gravitational energy. This sudden burst of energy reverses the collapse and tosses most of the star's mass into space. The ejected material can travel as fast as 45 million miles per hour (72 million kilometers per hour). The images were taken with the Wide Field and Planetary Camera 2 in January 2000 and January 2002. Image Credit: NASA and the Hubble Heritage Team (STScI/AURA) Acknowledgment: R. Fesen (Dartmouth) and J. Morse (Univ. of Colorado)

  2. Massive Stars and the Energy Balance of the Interstellar Medium. 1; The Impact of an Isolated 60 M. Star

    NASA Technical Reports Server (NTRS)

    Freyer, Tim; Hensler, Gerhard; Yorke, Harold W.

    2003-01-01

    We present results of numerical simulations carried out with a two-dimensional radiation hydrodynamics code in order to study the impact of massive stars on their surrounding interstellar medium. This first paper deals with the evolution of the circumstellar gas around an isolated 60 M. star. The interaction of the photo- ionized H II region with the stellar wind bubble forms a variety of interesting structures like shells, clouds, fingers, and spokes. These results demonstrate that complex structures found in H II regions are not necessarily relics from the time before the gas became ionized but may result from dynamical processes during the course of the H II region evolution. We have also analyzed the transfer and deposit of the stellar wind and radiation energy into the circumstellar medium until the star explodes as a supernova. Although the total mechanical wind energy supplied by the star is negligible compared to the accumulated energy of the Lyman continuum photons, the kinetic energy imparted to the circumstellar gas over the star s lifetime is 4 times higher than for a comparable windless simulation. Furthermore, the thermal energy of warm photoionized gas is lower by some 55%). Our results document the necessity to consider both ionizing radiation and stellar winds for an appropriate description of the interaction of OB stars with their circumstellar environment.

  3. NASA and Japanese X-ray observatories Clarify Origin of Cosmic Rays

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Recent observations from NASA and Japanese X-ray observatories have helped clarify one of the long-standing mysteries in astronomy -- the origin of cosmic rays. This image from Japan's Suzaku X-ray observatory shows RXJ1713.7-3946. This supernova remnant is the gaseous remnant of a massive star that exploded. The remnant is about 1,600 years old. The contour lines show where gamma-ray intensity is highest, as measured by the High Energy Stereoscopic System (HESS) in Namibia.

  4. Ex-companions of Supernovae Progenitors

    NASA Astrophysics Data System (ADS)

    Xue, Zinchao

    Supernovae (SNe) are titanic explosions that end the life of stars. Fast expanding ejecta can create brightness that is comparable to the entire luminosity of the host galaxy for weeks. Eventually, the ejecta run into the ambient medium, creating the so-called supernova remnant (SNR) that fades away in 10,000 years. SNe come from two completely different mechanisms. The Type Ia SNe (SNIa) are powered by thermonuclear runaway when a white dwarf (WD) in a binary system accretes enough mass from a companion star. The Core Collapse supernovae (CCSNe) are massive stars that run out of fuel at the end of their lives and collapse. The basic scenario for SNIa is well established, but the type of the binary system containing the WD is the long-debated 'Type Ia Progenitor Problem'. (1) Searching for an ex-companion within a SNIa SNR would directly solve this problem as a binary system including two WDs should leave nothing behind, while others should leave a non-degenerate star near the site of the explosion. One of the results from this thesis is the determination of the explosion site of Tycho's SN (SN 1572). From this, I reject popular ex-companion candidates, e.g. Tycho star 'G' and a few other ones as they are too far away from the explosion site I determined. (2) Another attempt to address this problem is carried out by studying a rare kind of Type Ia SNe. Detailed photometric and spectral analysis indicates that ASASSN-14dc resembles features from the so-called SN Ia-CSM, in which, a SNIa explodes inside of dense Hydrogen-rich Circumstellar Material (CSM). The origin of the CSM brings serious questions to the traditional views of SNIa formation as none of them can comfortably explain the derived mass and distribution of the CSM. A recent realization of a particular model might solve a lot of puzzles around this rare class of SNIa. (3) CCSNe are known to be massive stars that rapidly evolve off the main sequence and soon explode. Nearly 80% of such stars have one or more massive companion stars, and these companions will survive the SN event with nearly the same luminosity in most cases. Interestingly, there is a runaway O-type star, Muzzio 10, that sits just 18'' to the north of PSR B1509-58 in SNR G320.4-01.2. This makes Muzzio 10 a remarkable object for an ex-companion candidate. I will present the result from using HST and Chandra to measure both the O star and the pulsar's proper motion and to see whether they came from the same spot.

  5. Interacting supernovae from photoionization-confined shells around red supergiant stars

    NASA Astrophysics Data System (ADS)

    Mackey, Jonathan; Mohamed, Shazrene; Gvaramadze, Vasilii V.; Kotak, Rubina; Langer, Norbert; Meyer, Dominique M.-A.; Moriya, Takashi J.; Neilson, Hilding R.

    2014-08-01

    Betelgeuse, a nearby red supergiant, is a fast-moving star with a powerful stellar wind that drives a bow shock into its surroundings. This picture has been challenged by the discovery of a dense and almost static shell that is three times closer to the star than the bow shock and has been decelerated by some external force. The two physically distinct structures cannot both be formed by the hydrodynamic interaction of the wind with the interstellar medium. Here we report that a model in which Betelgeuse's wind is photoionized by radiation from external sources can explain the static shell without requiring a new understanding of the bow shock. Pressure from the photoionized wind generates a standing shock in the neutral part of the wind and forms an almost static, photoionization-confined shell. Other red supergiants should have much more massive shells than Betelgeuse, because the photoionization-confined shell traps up to 35 per cent of all mass lost during the red supergiant phase, confining this gas close to the star until it explodes. After the supernova explosion, massive shells dramatically affect the supernova light curve, providing a natural explanation for the many supernovae that have signatures of circumstellar interaction.

  6. Interacting supernovae from photoionization-confined shells around red supergiant stars.

    PubMed

    Mackey, Jonathan; Mohamed, Shazrene; Gvaramadze, Vasilii V; Kotak, Rubina; Langer, Norbert; Meyer, Dominique M-A; Moriya, Takashi J; Neilson, Hilding R

    2014-08-21

    Betelgeuse, a nearby red supergiant, is a fast-moving star with a powerful stellar wind that drives a bow shock into its surroundings. This picture has been challenged by the discovery of a dense and almost static shell that is three times closer to the star than the bow shock and has been decelerated by some external force. The two physically distinct structures cannot both be formed by the hydrodynamic interaction of the wind with the interstellar medium. Here we report that a model in which Betelgeuse's wind is photoionized by radiation from external sources can explain the static shell without requiring a new understanding of the bow shock. Pressure from the photoionized wind generates a standing shock in the neutral part of the wind and forms an almost static, photoionization-confined shell. Other red supergiants should have much more massive shells than Betelgeuse, because the photoionization-confined shell traps up to 35 per cent of all mass lost during the red supergiant phase, confining this gas close to the star until it explodes. After the supernova explosion, massive shells dramatically affect the supernova light curve, providing a natural explanation for the many supernovae that have signatures of circumstellar interaction.

  7. The quest for blue supergiants : The evolution of the progenitor of SN 1987A

    NASA Astrophysics Data System (ADS)

    Menon, Athira; Heger, Alexander

    2015-08-01

    SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The nuclear yields and light curve of the explosion are then compared with the observed data of SN 1987A.

  8. Core collapse supernovae from blue supergiant progenitors : The evolutionary history of SN 1987A

    NASA Astrophysics Data System (ADS)

    Menon, Athira

    2015-08-01

    SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The nuclear yields and light curve of the explosion are then compared with the observed data of SN 1987A.

  9. The Evolution of Low-Metallicity Massive Stars

    NASA Astrophysics Data System (ADS)

    Szécsi, Dorottya

    2016-07-01

    Massive star evolution taking place in astrophysical environments consisting almost entirely of hydrogen and helium - in other words, low-metallicity environments - is responsible for some of the most intriguing and energetic cosmic phenomena, including supernovae, gamma-ray bursts and gravitational waves. This thesis aims to investigate the life and death of metal-poor massive stars, using theoretical simulations of the stellar structure and evolution. Evolutionary models of rotating, massive stars (9-600 Msun) with an initial metal composition appropriate for the low-metallicity dwarf galaxy I Zwicky 18 are presented and analyzed. We find that the fast rotating models (300 km/s) become a particular type of objects predicted only at low-metallicity: the so-called Transparent Wind Ultraviolet INtense (TWUIN) stars. TWUIN stars are fast rotating massive stars that are extremely hot (90 kK), very bright and as compact as Wolf-Rayet stars. However, as opposed to Wolf-Rayet stars, their stellar winds are optically thin. As these hot objects emit intense UV radiation, we show that they can explain the unusually high number of ionizing photons of the dwarf galaxy I Zwicky 18, an observational quantity that cannot be understood solely based on the normal stellar population of this galaxy. On the other hand, we find that the most massive, slowly rotating models become another special type of object predicted only at low-metallicity: core-hydrogen-burning cool supergiant stars. Having a slow but strong stellar wind, these supergiants may be important contributors in the chemical evolution of young galactic globular clusters. In particular, we suggest that the low mass stars observed today could form in a dense, massive and cool shell around these, now dead, supergiants. This scenario is shown to explain the anomalous surface abundances observed in these low mass stars, since the shell itself, having been made of the mass ejected by the supergiant’s wind, contains nuclear burning products in the same ratio as observed today in globular clusters stars. Further elaborating the fast rotating TWUIN star models, we predict that some of them will become Wolf-Rayet stars near the end of their lives. From this we show that our models can self-consistently explain both the high ionizing flux and the number of Wolf-Rayet stars in I Zwicky 18. Moreover, some of our models are predicted to explode as long-duration gamma-ray bursts. Thus, we speculate that the high ionizing flux observed can be a signpost for upcoming gamma-ray bursts in dwarf galaxies. Although our models have been applied to interpret observations of globular clusters and dwarf galaxies, we point out that they could also be used in the context of other low-metallicity environments as well. Understanding the early Universe, for example, requires to have a solid knowledge of how massive stars at low-metallicity live and interact with their environments. Thus, we expect that the models and results presented in this thesis will be beneficial for not only the massive star community, but for the broader astronomy and cosmology community as well.

  10. Radiation hydrodynamical instabilities in cosmological and galactic ionization fronts

    NASA Astrophysics Data System (ADS)

    Whalen, Daniel J.; Norman, Michael L.

    2011-11-01

    Ionization fronts, the sharp radiation fronts behind which H/He ionizing photons from massive stars and galaxies propagate through space, were ubiquitous in the universe from its earliest times. The cosmic dark ages ended with the formation of the first primeval stars and galaxies a few hundred Myr after the Big Bang. Numerical simulations suggest that stars in this era were very massive, 25-500 solar masses, with H(II) regions of up to 30,000 light-years in diameter. We present three-dimensional radiation hydrodynamical calculations that reveal that the I-fronts of the first stars and galaxies were prone to violent instabilities, enhancing the escape of UV photons into the early intergalactic medium (IGM) and forming clumpy media in which supernovae later exploded. The enrichment of such clumps with metals by the first supernovae may have led to the prompt formation of a second generation of low-mass stars, profoundly transforming the nature of the first protogalaxies. Cosmological radiation hydrodynamics is unique because ionizing photons coupled strongly to both gas flows and primordial chemistry at early epochs, introducing a hierarchy of disparate characteristic timescales whose relative magnitudes can vary greatly throughout a given calculation. We describe the adaptive multistep integration scheme we have developed for the self-consistent transport of both cosmological and galactic ionization fronts.

  11. On The Origin Of Two-Shell Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2006-08-01

    It is known that proper motion of massive stars causes them to explode far from the geometric centers of their wind-driven bubbles and thereby affects the symmetry of the resulting diffuse supernova remnants (SNRs). We use this fact to explain the origin of SNRs consisting of two partially overlapping shells (e.g. 3C 400.2, Cygnus Loop, Kes32, etc.), whose unusual morphology is usually treated in terms of the collision (or superposition) of two separate SNRs or breakout phenomena in a region with a density discontinuity. We propose that a SNR of this type is a natural consequence of an off-centered cavity supernova (SN) explosion of a moving massive star, which ended its evolution near the edge of the main-sequence (MS) wind-driven bubble. Our proposal implies that one of the shells is the former MS bubble reenergized by the SN blast wave. The second shell, however, could originate in two somewhat different ways, depending on the initial mass of the SN progenitor star. It could be a shell swept-up by the SN blast wave expanding through the unperturbed ambient interstellar medium if the massive star ends its evolution as a red supergiant (RSG). Or it could be the remainder of a pre-existing shell (adjacent to the MS bubble) swept-up by the fast progenitor's wind during the late evolutionary phases if after the RSG phase the star evolves through the Wolf-Rayet phase. In both cases the resulting (two-shell) SNR should be associated only with one (young) neutron star (thus one can somewhat improve the statistics of neutron star/SNR associations since the two-shell SNRs are quite numerous). We discuss several criteria to discern the SNRs formed by SN explosion after the RSG or WR phase.

  12. Black Holes Categorization, Along with the Space(s) they Inhabit, to Explain the Astro-Geophysical Processes

    NASA Astrophysics Data System (ADS)

    Cimorelli, S. A.; Samuels, C.

    2011-12-01

    We define and categorize black holes (BH) and the space they inhabit. We describe mechanisms for their formation and mechanisms of black hole collisions and explosions/bursts, inside of the universe. These are linked to the formation of galaxies, stars, planets and planetary processes. Insight is gained regarding the formation and evolution of galaxies and the matter contained therein. Space itself must be categorized as to its purpose and properties as it relates to the various categories of black holes and processes ongoing within the space in which the processes occur. What we herein refer to as category-1 (c-1) black hole, formed the universe, by generating catagory-2 (c-2) black holes, say about 10% of which formed galaxies and 90% remain as dark matter in the form of c-2 BHs that are still evolving. C-1 BHs can explode/burst by collision or on their own, and give off great numbers (e.g., trillions) of c-2 BHs inside the universe, in c-2 space, which can become galaxies and which is the start of the universe. C-2 BHs can explode/burst and form a galaxy, containing c-3 space, filled with c-3 BHs. C-3 BHs are somewhat more modified and expanded than c-2 BHs and are formed from exploded/burst c-2 BHs on their own due to instabilities or by colliding with another c-2 BH and exploding/bursting to form gas and dust clouds peppered with c-3 BHs. Additionally, remnants from the exploded c-2 BH may include a range of sizes from minute particles that would contribute to the formation of massive gas and dust clouds peppered with the c-3 BHs; to about 10 to 20 solar masses that form large stars; and others, much smaller (tiny) stars that eventually become planets and moons. Some, eventually explode/burst inside the galaxy to produce the gas and dust clouds that we see inside the galaxy. These gas and dust clouds are peppered with c-4 BHs that eventually are seen as new stars forming in the dust clouds (described below). We envision three mechanisms (a,b,&c) for stellar origin, formation and evolution. The first type 'a' is well known (accepted); whereas, the other two 'b&c' are new and presented herein. The presently generally accepted process 'a,' consists of an accretion and gravitation process where mass comes together from interstellar gas and dust, left over from previous stars' deaths/explosions; or, from some other gas and dust accumulation. In addition, to this process, we propose a process 'b,' where a star originates as an expanded, modified Black Hole (BH) (described later with Figure 4) with none or little help from accretion/gravitation, begins to radiate, and continues to grow into a star. A third process 'c,' is also possible in which a star would originate from a combination of the two mechanisms 'a & b' described above. This latter mechanism is perhaps the most common type. This type starts as an expanded, modified BH inside of a gas and dust cloud. This, then serves as the nucleus that starts the subsequent accretion/gravitation process; however, it greatly accelerates the accretion/gravitation formation process as in the standard process. This mechanism could then explain how some super-cluster complexes, which have been estimated to take 40 to 60 billion years to form, can occur in a universe of a much younger age, as exists.

  13. Black Holes Categorization, along with the Space(s) they inhabit, to explain the Astro-Geophysical Processes

    NASA Astrophysics Data System (ADS)

    Cimorelli, S. A.; Samuels, C.

    2012-04-01

    We define and categorize black holes (BH) and the space they inhabit. We describe mechanisms for their formation and mechanisms of black hole collisions and explosions/bursts, inside of the universe. These are linked to the formation of galaxies, stars, planets and planetary processes. Insight is gained regarding the formation and evolution of galaxies and the matter contained therein. Space itself must be categorized as to its purpose and properties as it relates to the various categories of black holes and processes ongoing within the space in which the processes occur. What we herein refer to as category-1 (c-1) black hole, formed the universe, by generating catagory-2 (c-2) black holes, say about 10% of which formed galaxies and 90% remain as dark matter in the form of c-2 BHs that are still evolving. C-1 BHs can explode/burst by collision or on their own, and give off great numbers (e.g., trillions) of c-2 BHs inside the universe, in c-2 space, which can become galaxies and which is the start of the universe. C-2 BHs can explode/burst and form a galaxy, containing c-3 space, filled with c-3 BHs. C-3 BHs are somewhat more modified and expanded than c-2 BHs and are formed from exploded/burst c-2 BHs on their own due to instabilities or by colliding with another c-2 BH and exploding/bursting to form gas and dust clouds peppered with c-3 BHs. Additionally, remnants from the exploded c-2 BH may include a range of sizes from minute particles that would contribute to the formation of massive gas and dust clouds peppered with the c-3 BHs; to about 10 to 20 solar masses that form large stars; and others, much smaller (tiny) stars that eventually become planets and moons. Some, eventually explode/burst inside the galaxy to produce the gas and dust clouds that we see inside the galaxy. These gas and dust clouds are peppered with c-4 BHs that eventually are seen as new stars forming in the dust clouds (described below). We envision three mechanisms (a,b,&c) for stellar origin, formation and evolution. The first type 'a' is well known (accepted); whereas, the other two 'b&c' are new and presented herein. The presently generally accepted process 'a,' consists of an accretion and gravitation process where mass comes together from interstellar gas and dust, left over from previous stars' deaths/explosions; or, from some other gas and dust accumulation. In addition, to this process, we propose a process 'b,' where a star originates as an expanded, modified Black Hole (BH) (described later with Figure 4) with none or little help from accretion/gravitation, begins to radiate, and continues to grow into a star. A third process 'c,' is also possible in which a star would originate from a combination of the two mechanisms 'a & b' described above. This latter mechanism is perhaps the most common type. This type starts as an expanded, modified BH inside of a gas and dust cloud. This, then serves as the nucleus that starts the subsequent accretion/gravitation process; however, it greatly accelerates the accretion/gravitation formation process as in the standard process. This mechanism could then explain how some super-cluster complexes, which have been estimated to take 40 to 60 billion years to form, can occur in a universe of a much younger age of 13.5 billion, as exists.

  14. NASA's Swift Satellite Catches First Supernova in The Act of Exploding

    NASA Astrophysics Data System (ADS)

    2008-05-01

    GREENBELT, Md.- Thanks to a fortuitous observation with NASA’s Swift satellite, astronomers for the first time have caught a star in the act of exploding. Astronomers have previously observed thousands of stellar explosions, known as supernovae, but they have always seen them after the fireworks were well underway. "For years we have dreamed of seeing a star just as it was exploding, but actually finding one is a once in a lifetime event," says team leader Alicia Soderberg, a Hubble and Carnegie-Princeton Fellow at Princeton University in Princeton, N.J. "This newly born supernova is going to be the Rosetta stone of supernova studies for years to come." A typical supernova occurs when the core of a massive star runs out of nuclear fuel and collapses under its own gravity to form an ultradense object known as a neutron star. The newborn neutron star compresses and then rebounds, triggering a shock wave that plows through the star’s gaseous outer layers and blows the star to smithereens. Astronomers thought for nearly four decades that this shock "break-out" will produce bright X-ray emission lasting a few minutes. X-ray Image X-ray Images But until this discovery, astronomers have never observed this signal. Instead, they have observed supernovae brightening days or weeks later, when the expanding shell of debris is energized by the decay of radioactive elements forged in the explosion. "Seeing the shock break-out in X-rays can give a direct view of the exploding star in the last minutes of its life and also provide a signpost to which astronomers can quickly point their telescopes to watch the explosion unfold," says Edo Berger, a Carnegie-Princeton Fellow at Princeton University. Soderberg's discovery of the first shock breakout can be attributed to luck and Swift's unique design. On January 9, 2008, Soderberg and Berger were using Swift to observe a supernova known as SN 2007uy in the spiral galaxy NGC 2770, located 90 million light-years from Earth in the constellation Lynx. At 9:33 a.m. EST they spotted an extremely bright 5-minute X-ray outburst in NGC 2770. They quickly recognized that the X-rays were coming from another location in the same galaxy. People Who Read This Also Read... Black Holes Have Simple Feeding Habits Jet Power and Black Hole Assortment Revealed in New Chandra Image Chandra Data Reveal Rapidly Whirling Black Holes Ghostly Glow Reveals a Hidden Class of Long-Wavelength Radio Emitters In a paper submitted to Nature, Soderberg and 38 colleagues show that the energy and pattern of the X-ray outburst is consistent with a shock wave bursting through the surface of the progenitor star. This marks the birth of the supernova now known as SN 2008D. Although astronomers were lucky that Swift was observing NGC 2770 just at the moment when SN 2008D’s shock wave was blowing up the star, Swift is well equipped to study such an event because of its multiple instruments observing in gamma rays, X-rays, and ultraviolet light. "It was a gift of nature for Swift to be observing that patch of sky when the supernova exploded. But thanks to Swift's flexibility, we have been able to trace its evolution in detail every day since," says Swift lead scientist Neil Gehrels of NASA’s Goddard Space Flight Center in Greenbelt, Md. Due to the significance of the X-ray outburst, Soderberg immediately mounted an international observing campaign to study SN 2008D. Observations were made with major telescopes such as the Hubble Space Telescope, the Chandra X-ray Observatory, the Very Large Array in New Mexico, the Gemini North telescope in Hawaii, the Keck I telescope in Hawaii, the 200-inch and 60-inch telescopes at the Palomar Observatory in California, and the 3.5-meter telescope at the Apache Point Observatory in New Mexico. The combined observations helped Soderberg and her colleagues pin down the energy of the initial X-ray outburst, which will help theorists better understand supernovae. The observations also show that SN 2008D is an ordinary Type Ibc supernova, which occurs when a massive, compact star explodes. Significantly, radio and X-ray observations found no evidence that a jet played a role in the explosion, ruling out a rare type of stellar explosion known as a gamma-ray burst. "This was a typical supernova," says Swift team member Stefan Immler of NASA Goddard. "The significance is not the explosion itself, but the fact that we were able to see the star blow up in real time, which gives us unprecedented insight into the explosion process."

  15. THE PROPERTIES OF DYNAMICALLY EJECTED RUNAWAY AND HYPER-RUNAWAY STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perets, Hagai B.; Subr, Ladislav

    2012-06-01

    Runaway stars are stars observed to have large peculiar velocities. Two mechanisms are thought to contribute to the ejection of runaway stars, both of which involve binarity (or higher multiplicity). In the binary supernova scenario, a runaway star receives its velocity when its binary massive companion explodes as a supernova (SN). In the alternative dynamical ejection scenario, runaway stars are formed through gravitational interactions between stars and binaries in dense, compact clusters or cluster cores. Here we study the ejection scenario. We make use of extensive N-body simulations of massive clusters, as well as analytic arguments, in order to characterizemore » the expected ejection velocity distribution of runaway stars. We find that the ejection velocity distribution of the fastest runaways (v {approx}> 80 km s{sup -1}) depends on the binary distribution in the cluster, consistent with our analytic toy model, whereas the distribution of lower velocity runaways appears independent of the binaries' properties. For a realistic log constant distribution of binary separations, we find the velocity distribution to follow a simple power law: {Gamma}(v){proportional_to}v{sup -8/3} for the high-velocity runaways and v{sup -3/2} for the low-velocity ones. We calculate the total expected ejection rates of runaway stars from our simulated massive clusters and explore their mass function and their binarity. The mass function of runaway stars is biased toward high masses and strongly depends on their velocity. The binarity of runaways is a decreasing function of their ejection velocity, with no binaries expected to be ejected with v > 150 km s{sup -1}. We also find that hyper-runaways with velocities of hundreds of km s{sup -1} can be dynamically ejected from stellar clusters, but only at very low rates, which cannot account for a significant fraction of the observed population of hyper-velocity stars in the Galactic halo.« less

  16. Hubble Sees a Star Set to Explode

    NASA Image and Video Library

    2014-01-10

    Floating at the center of this new Hubble image is a lidless purple eye, staring back at us through space. This ethereal object, known officially as [SBW2007] 1 but sometimes nicknamed SBW1, is a nebula with a giant star at its center. The star was originally twenty times more massive than our sun, and is now encased in a swirling ring of purple gas, the remains of the distant era when it cast off its outer layers via violent pulsations and winds. But the star is not just any star; scientists say that it is destined to go supernova. Twenty-six years ago, another star with striking similarities went supernova — SN 1987A. Early Hubble images of SN 1987A show eerie similarities to SBW1. Both stars had identical rings of the same size and age, which were travelling at similar speeds; both were located in similar HII regions; and they had the same brightness. In this way SBW1 is a snapshot of SN1987a's appearance before it exploded, and unsurprisingly, astronomers love studying them together. At a distance of more than 20 000 light-years it will be safe to watch when the supernova goes off. If we are very lucky it may happen in our own lifetimes. Credit: ESA/NASA, acknowledgement: Nick Rose NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. On Al-26 and other short-lived interstellar radioactivity

    NASA Technical Reports Server (NTRS)

    Clayton, Donald D.; Hartmann, Dieter H.; Leising, Mark D.

    1993-01-01

    Several authors have shown that massive stars exploding at a rate of about three per century can account for a large portion, if not all, of the observed interstellar Al-26. In a separate argument using models of Galactic chemical evolution, Clayton (1984) showed that the Al-26/Al-27 production ratio was not large enough to maintain enough Al-26 in the Galactic disk gas of about 10 exp 10 solar masses having solar composition. We present a resolution of those conflicting arguments. A past history of Galactic infall growing the Galactic disk so dilutes the stable Al-27 concentration that the two approaches can be brought into near agreement. If massive stars dominate the production of Al-26, we suggest that the apparent shortfall of their Al-26/Al-27 yield ratio is to be interpreted as evidence for significant growth of the Galactic disk. We also discuss the implications of these arguments for other extinct radioactivities in meteorites, using I-129 and Sm-146 as examples.

  18. Cosmic ray electrons and positrons from supernova explosions of massive stars.

    PubMed

    Biermann, P L; Becker, J K; Meli, A; Rhode, W; Seo, E S; Stanev, T

    2009-08-07

    We attribute the recently discovered cosmic ray electron and cosmic ray positron excess components and their cutoffs to the acceleration in the supernova shock in the polar cap of exploding Wolf-Rayet and red supergiant stars. Considering a spherical surface at some radius around such a star, the magnetic field is radial in the polar cap as opposed to most of 4pi (the full solid angle), where the magnetic field is nearly tangential. This difference yields a flatter spectrum, and also an enhanced positron injection for the cosmic rays accelerated in the polar cap. This reasoning naturally explains the observations. Precise spectral measurements will be the test, as this predicts a simple E;{-2} spectrum for the new components in the source, steepened to E;{-3} in observations with an E;{-4} cutoff.

  19. Astronomers Find the First 'Wind Nebula' Around a Rare Ultra-Magnetic Neutron Star

    NASA Image and Video Library

    2016-06-21

    Astronomers have discovered a vast cloud of high-energy particles called a wind nebula around a rare ultra-magnetic neutron star, or magnetar, for the first time. The find offers a unique window into the properties, environment and outburst history of magnetars, which are the strongest magnets in the universe. A neutron star is the crushed core of a massive star that ran out of fuel, collapsed under its own weight, and exploded as a supernova. Each one compresses the equivalent mass of half a million Earths into a ball just 12 miles (20 kilometers) across, or about the length of New York's Manhattan Island. Neutron stars are most commonly found as pulsars, which produce radio, visible light, X-rays and gamma rays at various locations in their surrounding magnetic fields. When a pulsar spins these regions in our direction, astronomers detect pulses of emission, hence the name. Credit: ESA/XMM-Newton/Younes et al. 2016

  20. The Fermi Gamma-Ray Space Telescope discovers the pulsar in the young galactic supernova remnant CTA 1.

    PubMed

    Abdo, A A; Ackermann, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bogaert, G; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Carlson, P; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dormody, M; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Focke, W B; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Harding, A K; Hartman, R C; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Kanai, Y; Kanbach, G; Katagiri, H; Kawai, N; Kerr, M; Kishishita, T; Kiziltan, B; Knödlseder, J; Kocian, M L; Komin, N; Kuehn, F; Kuss, M; Latronico, L; Lemoine-Goumard, M; Longo, F; Lonjou, V; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; McGlynn, S; Meurer, C; Michelson, P F; Mineo, T; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piano, G; Pieri, L; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Parkinson, P M Saz; Schalk, T L; Sellerholm, A; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Thorsett, S E; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Usher, T L; Van Etten, A; Vilchez, N; Vitale, V; Wang, P; Watters, K; Winer, B L; Wood, K S; Yasuda, H; Ylinen, T; Ziegler, M

    2008-11-21

    Energetic young pulsars and expanding blast waves [supernova remnants (SNRs)] are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 milliseconds and a period derivative of 3.614 x 10(-13) seconds per second. Its characteristic age of 10(4) years is comparable to that estimated for the SNR. We speculate that most unidentified Galactic gamma-ray sources associated with star-forming regions and SNRs are such young pulsars.

  1. All That Remains of Exploded Star

    NASA Image and Video Library

    2011-10-24

    Infrared images from NASA Spitzer Space Telescope and Wide-field Infrared Survey Explorer are combined in this image of RCW 86, the dusty remains of the oldest documented example of an exploding star, or supernova.

  2. A weight limit emerges for neutron stars

    NASA Astrophysics Data System (ADS)

    Cho, Adrian

    2018-02-01

    Astrophysicists have long wondered how massive a neutron star—the corpse of certain exploding stars—could be without collapsing under its own gravity to form a black hole. Now, four teams have independently deduced a mass limit for neutron stars of about 2.2 times the mass of the sun. To do so, all four groups analyzed last year's blockbuster observations of the merger of two neutron stars, spied on 17 September 2017 by dozens of observatories. That approach may seem unpromising, as it might appear that the merging neutron stars would have immediately produced a black hole. However, the researchers argue that the merger first produced a spinning, overweight neutron star momentarily propped up by centrifugal force. They deduce that just before it collapsed, the short-lived neutron star had to be near the maximum mass for one spinning as a solid body. That inference allowed them to use a scaling relationship to estimate the maximum mass of a nonrotating, stable neutron star, starting from the total mass of the original pair and the amount of matter spewed into space.

  3. Hubble Space Telescope Image, Supernova Remnant Cassiopeia A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The colorful streamers that float across the sky in this photo taken by NASA's Hubble Space Telescope (HST) were created by the universe's biggest firecracker, the titanic supernova explosion of a massive star. The light from the exploding star reached Earth 320 years ago, nearly a century before the United States celebrated its birth with a bang. The dead star's shredded remains are called Cassiopeia A, or 'Cas A' for short. Cas A is the youngest known supernova remnant in our Milky Way Galaxy and resides 10,000 light-years away in the constellation Cassiopeia, so the star actually blew up 10,000 years before the light reached Earth in the late 1600s. This HST image of Cas A shows for the first time that the debris is arranged into thousands of small, cooling knots of gas. This material eventually will be recycled into building new generations of stars and planets. Our own Sun and planets are constructed from the debris of supernovae that exploded billions of years ago. This photo shows the upper rim of the super nova remnant's expanding shell. Near the top of the image are dozens of tiny clumps of matter. Each small clump, originally just a small fragment of the star, is tens of times larger than the diameter of our solar system. The colors highlight parts of the debris where chemical elements are glowing. The dark blue fragments, for example, are richest in oxygen; the red material is rich in sulfur. The images were taken with the Wide Field and Planetary Camera 2 in January 2000 and January 2002. Image Credit: NASA and HST team (Stoics/AURA). Acknowledgment: R. Fesen (Darmouth) and J. Morse ( Univ. of Colorado).

  4. Space Science

    NASA Image and Video Library

    2000-01-01

    The colorful streamers that float across the sky in this photo taken by NASA's Hubble Space Telescope (HST) were created by the universe's biggest firecracker, the titanic supernova explosion of a massive star. The light from the exploding star reached Earth 320 years ago, nearly a century before the United States celebrated its birth with a bang. The dead star's shredded remains are called Cassiopeia A, or "Cas A" for short. Cas A is the youngest known supernova remnant in our Milky Way Galaxy and resides 10,000 light-years away in the constellation Cassiopeia, so the star actually blew up 10,000 years before the light reached Earth in the late 1600s. This HST image of Cas A shows for the first time that the debris is arranged into thousands of small, cooling knots of gas. This material eventually will be recycled into building new generations of stars and planets. Our own Sun and planets are constructed from the debris of supernovae that exploded billions of years ago. This photo shows the upper rim of the super nova remnant's expanding shell. Near the top of the image are dozens of tiny clumps of matter. Each small clump, originally just a small fragment of the star, is tens of times larger than the diameter of our solar system. The colors highlight parts of the debris where chemical elements are glowing. The dark blue fragments, for example, are richest in oxygen; the red material is rich in sulfur. The images were taken with the Wide Field and Planetary Camera 2 in January 2000 and January 2002. Image Credit: NASA and HST team (Stoics/AURA). Acknowledgment: R. Fesen (Darmouth) and J. Morse ( Univ. of Colorado).

  5. A Year in the Life of an Infrared Echo

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: Supernova Remnant Cassiopeia A One Year Apart

    These Spitzer Space Telescope images, taken one year apart, show the supernova remnant Cassiopeia A (yellow ball) and surrounding clouds of dust (reddish orange). The pictures illustrate that a blast of light from Cassiopeia A is waltzing outward through the dusty skies. This dance, called an 'infrared echo,' began when the remnant erupted about 50 years ago.

    Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion 325 years ago. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died. This remnant is located 10,000 light-years away in the northern constellation Cassiopeia.

    Infrared echoes are created when a star explodes or erupts, flashing light into surrounding clumps of dust. As the light zips through the dust clumps, it heats them up, causing them to glow successively in infrared, like a chain of Christmas bulbs lighting up one by one. The result is an optical illusion, in which the dust appears to be flying outward at the speed of light. Echoes are distinct from supernova shockwaves, which are made up material that is swept up and hurled outward by exploding stars.

    This infrared echo is the largest ever seen, stretching more than 50 light-years away from Cassiopeia A. If viewed from Earth, the entire movie frame would take up the same amount of space as two full moons.

    Hints of an older infrared echo from Cassiopeia A's supernova explosion hundreds of years ago can also be seen.

    The top Spitzer image was taken on November 30, 2003, and the bottom, on December 2, 2004.

  6. Hubble Space Telescope Imaging of the Mass-losing Supergiant VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Kastner, Joel H.; Weintraub, David A.

    1998-04-01

    The highly luminous M supergiant VY CMa is a massive star that appears to be in its final death throes, losing mass at high rate en route to exploding as a supernova. Subarcsecond-resolution optical images of VY CMa, obtained with the Faint Object Camera (FOC) aboard the Hubble Space Telescope, vividly demonstrate that mass loss from VY CMa is highly anisotropic. In the FOC images, the optical ``star'' VY CMa constitutes the bright, well-resolved core of an elongated reflection nebula. The imaged nebula is ~3" (~4500 AU) in extent and is clumpy and highly asymmetric. The images indicate that the bright core, which lies near one edge of the nebula, is pure scattered starlight. We conclude that at optical wavelengths VY CMa is obscured from view along our line of sight by its own dusty envelope. The presence of the extended reflection nebula then suggests that this envelope is highly flattened and/or that the star is surrounded by a massive circumstellar disk. Such axisymmetric circumstellar density structure should have profound effects on post-red supergiant mass loss from VY CMa and, ultimately, on the shaping of the remnant of the supernova that will terminate its post-main-sequence evolution.

  7. Stellar Evolutionary Effects on the Abundance of PAHS and SN-Condensed Dust in Galaxies

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2007-01-01

    Spectral aid photometric observations of nearby galaxies show a correlation between the strength of their mid-IR aromatic features and their metal abundance, and a deficiency of these features in low-metallicity galaxies. The aromatic features are most commonly attributed to emission from PAH molecules. In this paper, we suggest that the observed correlation represents a trend of PAH abundance with galactic age, reflecting the delayed injection of PAHs and carbon dust into the ISM, by AGB stars in their final, post-AGB phase of their evolution. These AGB stars are the primary sources of PAHs and carbon dust in galaxies, and recycle their ejecta back to the interstellar medium only after a few hundred million years of evolution on the main sequence. In contrast, more massive stars that explode as Type II supernovae inject their metals and dust almost instantaneously after their formation. After determining the PAH abundances in 35 nearby galaxies, we use a chemical evolution model to show that the delayed injection of carbon dust by AGB stars provides a natural explanation to the dependence of the PAH content, in galaxies with metallicity. We also show that larger dust particles giving rise to the far-IR emission follow a distinct evolutionary trend closely related to the injection of dust by massive stars into the ISM.

  8. A youthful cluster

    NASA Image and Video Library

    2015-08-24

    Shown here in a new image taken with the Advanced Camera for Surveys (ACS) on board the NASA/ESA Hubble Space Telescope, is the globular cluster NGC 1783. This is one of the biggest globular clusters in the Large Magellanic Cloud, a satellite galaxy of our own galaxy, the Milky Way, in the southern hemisphere constellation of Dorado. First observed by John Herschel in 1835, NGC 1783 is nearly 160 000 light-years from Earth, and has a mass around 170 000 times that of the Sun. Globular clusters are dense collections of stars held together by their own gravity, which orbit around galaxies like satellites. The image clearly shows the symmetrical shape of NGC 1783 and the concentration of stars towards the centre, both typical features of globular clusters. By measuring the colour and brightness of individual stars, astronomers can deduce an overall age for a cluster and a picture of its star formation history. NGC 1783 is thought to be under one and a half billion years old — which is very young for globular clusters, which are typically several billion years old. During that time, it is thought to have undergone at least two periods of star formation, separated by 50 to 100 million years. This ebb and flow of star-forming activity is an indicator of how much gas is available for star formation at any one time. When the most massive stars created in the first burst of formation explode as supernovae they blow away the gas needed to form further stars, but the gas reservoir can later be replenished by less massive stars which last longer and shed their gas less violently. After this gas flows to the dense central regions of the star cluster, a second phase of star formation can take place and once again the short-lived massive stars blow away any leftover gas. This cycle can continue a few times, at which time the remaining gas reservoir is thought to be too small to form any new stars. A version of this image was entered into the Hubble's Hidden Treasures image pr

  9. 'Tertiary' nuclear burning - Neutron star deflagration?

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis

    1988-01-01

    A motivation is presented for the idea that dense nuclear matter can burn to a new class of stable particles. One of several possibilities is an 'octet' particle which is the 16 baryon extension of alpha particle, but now composed of a pair of each of the two nucleons, (3Sigma, Delta, and 2Xi). Such 'tertiary' nuclear burning (here 'primary' is H-He and 'secondary' is He-Fe) may lead to neutron star explosions rather than collapse to a black hole, analogous to some Type I supernovae models wherein accreting white dwarfs are pushed over the Chandrasekhar mass limit but explode rather than collapse to form neutron stars. Such explosions could possibly give gamma-ray bursts and power quasars, with efficient particle acceleration in the resultant relativistic shocks. The new stable particles themselves could possibly be the sought-after weakly interacting, massive particles (WIMPs) or 'dark' matter.

  10. Supernova remnant evolution in wind bubbles: A closer look at Kes 27

    NASA Astrophysics Data System (ADS)

    Dwarkadas, V. V.; Dewey, D.

    2013-03-01

    Massive Stars (>8M⊙) lose mass in the form of strong winds. These winds accumulate around the star, forming wind-blown bubbles. When the star explodes as a supernova (SN), the resulting shock wave expands within this wind-blown bubble, rather than the interstellar medium. The properties of the resulting remnant, its dynamics and kinematics, the morphology, and the resulting evolution, are shaped by the structure and properties of the wind-blown bubble. In this article we focus on Kes 27, a supernova remnant (SNR) that has been proposed by [1] to be evolving in a wind-blown bubble, explore its properties, and investigate whether the X-Ray properties could be ascribed to evolution of a SNR in a wind-blown bubble. Our initial model does not support the scenario proposed by [1], due to the fact that the reflected shock is expanding into much lower densities.

  11. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star.

    PubMed

    Nugent, Peter E; Sullivan, Mark; Cenko, S Bradley; Thomas, Rollin C; Kasen, Daniel; Howell, D Andrew; Bersier, David; Bloom, Joshua S; Kulkarni, S R; Kandrashoff, Michael T; Filippenko, Alexei V; Silverman, Jeffrey M; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard T; Maguire, Kate; Suzuki, Nao; Tarlton, James E; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J; Parrent, Jerod T; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B; Dilday, Benjamin; Graham, Melissa L; Lyman, Joe; James, Phil; Kasliwal, Mansi M; Law, Nicholas M; Quimby, Robert M; Hook, Isobel M; Walker, Emma S; Mazzali, Paolo; Pian, Elena; Ofek, Eran O; Gal-Yam, Avishay; Poznanski, Dovi

    2011-12-14

    Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

  12. Delay-time distribution of core-collapse supernovae with late events resulting from binary interaction

    NASA Astrophysics Data System (ADS)

    Zapartas, E.; de Mink, S. E.; Izzard, R. G.; Yoon, S.-C.; Badenes, C.; Götberg, Y.; de Koter, A.; Neijssel, C. J.; Renzo, M.; Schootemeijer, A.; Shrotriya, T. S.

    2017-05-01

    Most massive stars, the progenitors of core-collapse supernovae, are in close binary systems and may interact with their companion through mass transfer or merging. We undertake a population synthesis study to compute the delay-time distribution of core-collapse supernovae, that is, the supernova rate versus time following a starburst, taking into account binary interactions. We test the systematic robustness of our results by running various simulations to account for the uncertainties in our standard assumptions. We find that a significant fraction, %, of core-collapse supernovae are "late", that is, they occur 50-200 Myr after birth, when all massive single stars have already exploded. These late events originate predominantly from binary systems with at least one, or, in most cases, with both stars initially being of intermediate mass (4-8 M⊙). The main evolutionary channels that contribute often involve either the merging of the initially more massive primary star with its companion or the engulfment of the remaining core of the primary by the expanding secondary that has accreted mass at an earlier evolutionary stage. Also, the total number of core-collapse supernovae increases by % because of binarity for the same initial stellar mass. The high rate implies that we should have already observed such late core-collapse supernovae, but have not recognized them as such. We argue that φ Persei is a likely progenitor and that eccentric neutron star - white dwarf systems are likely descendants. Late events can help explain the discrepancy in the delay-time distributions derived from supernova remnants in the Magellanic Clouds and extragalactic type Ia events, lowering the contribution of prompt Ia events. We discuss ways to test these predictions and speculate on the implications for supernova feedback in simulations of galaxy evolution.

  13. The Fermi Gamma-Ray Space Telescope Discovers the Pulsar in the Young Galactic Supernova Remnant CTA 1

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Atwood, W. B.; ...

    2008-11-21

    Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 ms, a period derivative of 3.614 x 10 -13 s s -1 . Its characteristic age of 10 4 years is comparable to that estimated for the SNR. It is conjectured that most unidentified Galactic gamma raymore » sources associated with star-forming regions and SNRs are such young pulsars.« less

  14. Music of the Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-01

    Scientists are quite familiar with what a supernova looks like — when these stars are destroyed in the most massive explosions in the universe, they leave their mark as one of the brightest objects in space, at least for several weeks. While the supernova can be seen, it cant be heard, as sound waves cannot travel through space. But what if the light waves emitted by the exploding star and other cosmological phenomena could be translated into sound? That's the idea behind a Rhythms of the Universe, a musical project to sonify the universe by Grateful Dead percussionist and Grammymore » award-winning artist Mickey Hart that caught the attention of Nobel Prize-winning astrophysicist George Smoot of Lawrence Berkeley National Laboratory. Sounds courtesy of Keith Jackson. Images courtesy of NASA.« less

  15. The Fermi Gamma Ray Space Telescope discovers the Pulsar in the Young Galactic Supernova-Remnant CTA 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, Aous A.; Ackermann, M.; Atwood, W.B.

    Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 ms, a period derivative of 3.614 x 10{sup -13} s s{sup -1}. Its characteristic age of 10{sup 4} years is comparable to that estimated for the SNR. It is conjectured that most unidentified Galactic gamma ray sourcesmore » associated with star-forming regions and SNRs are such young pulsars.« less

  16. Born from the Wind

    NASA Astrophysics Data System (ADS)

    2008-10-01

    Telescopes on the ground and in space have teamed up to compose a colourful image that offers a fresh look at the history of the star-studded region NGC 346. This new, ethereal portrait, in which different wavelengths of light swirl together like watercolours, reveals new information about how stars form. Sharpening Up Jupiter ESO PR Photo 34/08 Star-Forming Region NGC 346 The picture combines infrared, visible and X-ray light from NASA's Spitzer Space Telescope, ESO's New Technology Telescope (NTT) and the European Space Agency's XMM-Newton orbiting X-ray telescope, respectively. The NTT visible-light images allowed astronomers to uncover glowing gas in the region and the multi-wavelength image reveals new insights that appear only thanks to this unusual combination of information. NGC 346 is the brightest star-forming region in the Small Magellanic Cloud, an irregular dwarf galaxy that orbits the Milky Way at a distance of 210 000 light-years. "NGC 346 is a real astronomical zoo," says Dimitrios Gouliermis of the Max Planck Institute for Astronomy in Heidelberg, Germany, and lead author of the paper describing the observations. "When we combined data at various wavelengths, we were able to tease apart what's going on in different parts of this intriguing region." Small stars are scattered throughout the NGC 346 region, while massive stars populate its centre. These massive stars and most of the small ones formed at the same time out of one dense cloud, while other less massive stars were created later through a process called "triggered star formation". Intense radiation from the massive stars ate away at the surrounding dusty cloud, triggering gas to expand and create shock waves that compressed nearby cold dust and gas into new stars. The red-orange filaments surrounding the centre of the image show where this process has occurred. But another set of younger low-mass stars in the region, seen as a pinkish blob at the top of the image, couldn't be explained by this mechanism. "We were particularly interested to know what caused this seemingly isolated group of stars to form," says Gouliermis. By combining multi-wavelength data of NGC 346, Gouliermis and his team were able to pinpoint the trigger as a very massive star that blasted apart in a supernova explosion about 50 000 years ago. Fierce winds from the massive dying star, and not radiation, pushed gas and dust together, compressing it into new stars, bringing the isolated young stars into existence. While the remains of this massive star cannot be seen in the image, a bubble created when it exploded can be seen near the large, white spot with a blue halo at the upper left (this white spot is actually a collection of three stars). The finding demonstrates that both wind- and radiation-induced triggered star formation are at play in the same cloud. According to Gouliermis, "the result shows us that star formation is a far more complicated process than we used to think, comprising different competitive or collaborative mechanisms." The analysis was only possible thanks to the combination of information obtained through very different techniques and equipments. It reveals the power of such collaborations and the synergy between ground- and space-based observatories.

  17. Dance of the Light Echoes

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version

    This composite image from NASA's Spitzer Space Telescope shows the remnant of a star that exploded, called Cassiopeia A (center) and its surrounding 'light echoes' -- dances of light through dusty clouds, created when stars blast apart. The light echoes are colored and the surrounding clouds of dust are gray.

    In figure 1, dramatic changes are highlighted in phenomena referred to as light echoes (colored areas) around the Cassiopeia A supernova remnant (center). Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died.

    A light echo occurs when a star explodes, acting like a cosmic flashbulb. The light from this explosion zips through nearby dust clumps, illuminating and heating them up slightly. This brief period of warming causes them to glow in infrared, like a chain of Christmas bulbs lighting up one by one. The result is an optical illusion, in which the dust appears to be flying outward at the speed of light. In figure 1, this apparent motion can be seen here by the shift in colored dust clumps

    Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died. This remnant is located 11,000 light-years away in the northern constellation Cassiopeia.

    This composite consists of six processed images taken over a time span of three years. Dust features that have not changed over time appear gray, while those that have changed are colored blue or orange. Bluer colors represent an earlier time and redder ones, a later time. The progression of the light echo through the dust can be seen here by the shift in colored dust clumps.

    This light echo is the largest ever seen, stretching more than 300 light-years away from Cassiopeia A. If viewed from Earth, the entire frame would take up the same amount of space as seven full moons. The supernova remnant is located 11,000 light-years away in the northern constellation Cassiopeia.

    The earliest Spitzer image shown here was taken in February 2005, and the latest one in January 2008. The image was processed to emphasize the light echo by enhancing the areas that change, which appear in color, and dimming regions that remain constant, seen in grayscale. Spurious color artifacts such as diffraction spikes around stars were removed by hand.

  18. Neutron Star Discovered Where a Black Hole Was Expected

    NASA Astrophysics Data System (ADS)

    2005-11-01

    A very massive star collapsed to form a neutron star and not a black hole as expected, according to new results from NASA's Chandra X-ray Observatory. This discovery shows that nature has a harder time making black holes than previously thought. Scientists found this neutron star -- a dense whirling ball of neutrons about 12 miles in diameter -- in an extremely young star cluster. Astronomers were able to use well-determined properties of other stars in the cluster to deduce that the progenitor of this neutron star was at least 40 times the mass of the Sun. ESO Optical Image of Westerlund 1 ESO Optical Image of Westerlund 1 "Our discovery shows that some of the most massive stars do not collapse to form black holes as predicted, but instead form neutron stars," said Michael Muno, a UCLA postdoctoral Hubble Fellow and lead author of a paper to be published in The Astrophysical Journal Letters. When very massive stars make neutron stars and not black holes, they will have a greater influence on the composition of future generations of stars. When the star collapses to form the neutron star, more than 95% of its mass, much of which is metal-rich material from its core, is returned to the space around it. "This means that enormous amounts of heavy elements are put back into circulation and can form other stars and planets," said J. Simon Clark of the Open University in the United Kingdom. Animation: Dissolve from Optical to X-ray Image of Westerlund 1 Animation: Dissolve from Optical to X-ray Image of Westerlund 1 Astronomers do not completely understand how massive a star must be to form a black hole rather than a neutron star. The most reliable method for estimating the mass of the progenitor star is to show that the neutron star or black hole is a member of a cluster of stars, all of which are close to the same age. Because more massive stars evolve faster than less massive ones, the mass of a star can be estimated from if its evolutionary stage is known. Neutron stars and black holes are the end stages in the evolution of a star, so their progenitors must have been among the most massive stars in the cluster. Muno and colleagues discovered a pulsing neutron star in a cluster of stars known as Westerlund 1. This cluster contains a hundred thousand or more stars in a region only 30 light years across, which suggests that all the stars were born in a single episode of star formation. Based on optical properties such as brightness and color some of the normal stars in the cluster are known to have masses of about 40 suns. Since the progenitor of the neutron star has already exploded as a supernova, its mass must have been more than 40 solar masses. 2MASS Infrared Image of Westerlund 1 2MASS Infrared Image of Westerlund 1 Introductory astronomy courses sometimes teach that stars with more than 25 solar masses become black holes -- a concept that until recently had no observational evidence to test it. However, some theories allow such massive stars to avoid becoming black holes. For example, theoretical calculations by Alexander Heger of the University of Chicago and colleagues indicate that extremely massive stars blow off mass so effectively during their lives that they leave neutron stars when they go supernovae. Assuming that the neutron star in Westerlund 1 is one of these, it raises the question of where the black holes observed in the Milky Way and other galaxies come from. Other factors, such as the chemical composition of the star, how rapidly it is rotating, or the strength of its magnetic field might dictate whether a massive star leaves behind a neutron star or a black hole. The theory for stars of normal chemical composition leaves a small window of initial masses - between about 25 and somewhat less than 40 solar masses - for the formation of black holes from the evolution of single massive stars. The identification of additional neutron stars or the discovery of black holes in young star clusters should further constrain the masses and properties of neutron star and black hole progenitors. The work described by Muno was based on two Chandra observations on May 22 and June 18, 2005. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  19. Chromium isotopic anomalies in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.

    1986-01-01

    Abundances of the chromium isotopes in terrestrial and bulk meteorite samples are identical to 0.01 percent. However, Ca-Al-rich inclusions from the Allende meteorite show endemic isotopic anomalies in chromium which require at least three nucleosynthetic components. Large anomalies at Cr-54 in a special class of inclusions are correlated with large anomalies at Ca-48 and Ti-50 and provide strong support for a component reflecting neutron-rich nucleosynthesis at nuclear statistical equilibrium. This correlation suggests that materials from very near the core of an exploding massive star may be injected into the interstellar medium.

  20. The Fermi Gamma-Ray Space Telescope, Exploding Stars, Neutron Stars, and Black Holes

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    Since August, 2008, the Fermi Gamma-ray Space Telescope has been scanning the sky, producing a full-sky image every three hours. These cosmic gamma-rays come from extreme astrophysical phenomena, many related to exploding stars (supernovae) or what these explosions leave behind: supernova remnants, neutron stars, and black holes. This talk uses sample Fermi results, plus simple demonstrations, to illustrate the exotic properties of these endpoints of stellar evolution.

  1. Capturing Neutrinos from a Star's Final Hours

    NASA Astrophysics Data System (ADS)

    Hensley, Kerry

    2018-04-01

    What happens on the last day of a massive stars life? In the hours before the star collapses and explodes as a supernova, the rapid evolution of material in its core creates swarms of neutrinos. Observing these neutrinos may help us understand the final stages of a massive stars life but theyve never been detected.A view of some of the 1,520 phototubes within the MiniBooNE neutrino detector. Observations from this and other detectors are helping to illuminate the nature of the mysterious neutrino. [Fred Ullrich/FNAL]Silent Signposts of Stellar EvolutionThe nuclear fusion that powers stars generates tremendous amounts of energy. Much of this energy is emitted as photons, but a curious and elusive particle the neutrino carries away most of the energy in the late stages of stellar evolution.Stellar neutrinos can be created through two processes: thermal processesand beta processes. Thermal processes e.g.,pair production, in which a particle/antiparticle pair are created depend on the temperature and pressure of the stellar core. Beta processes i.e.,when a proton converts to a neutron, or vice versa are instead linked to the isotopic makeup of the stars core. This means that, if we can observe them, beta-process neutrinos may be able to tell us about the last steps of stellar nucleosynthesis in a dying star.But observing these neutrinos is not so easilydone. Neutrinos arenearly massless, neutral particles that interact only feebly with matter; out of the whopping 1060neutrinos released in a supernova explosion, even the most sensitive detectors only record the passage of just a few. Do we have a chance of detectingthe beta-process neutrinos that are released in the final few hours of a stars life, beforethe collapse?Neutrino luminosities leading up to core collapse. Shortly before collapse, the luminosity of beta-process neutrinos outshines that of any other neutrino flavor or origin. [Adapted from Patton et al. 2017]Modeling Stellar CoresTo answer this question, Kelly Patton (University of Washington) and collaborators first used a stellar evolution model to explore neutrino production in massive stars. They modeled the evolution of two massive stars 15 and 30 times the mass of our Sun from the onset of nuclear fusion to the moment of collapse.The authors found that in the last few hours before collapse, during which the material in the stars cores is rapidly upcycled into heavier elements, the flux from beta-process neutrinos rivals that of thermal neutrinos and even exceeds it at high energies. So now we know there are many beta-process neutrinos but can we spot them?Neutrino and antineutrino fluxes at Earth from the last 2 hours of a 30-solar-mass stars life compared to the flux from background sources. The rows represent calculations using two different neutrino mass hierarchies. Click to enlarge. [Patton et al. 2017]Observing Elusive NeutrinosFor an imminent supernova at a distance of 1 kiloparsec, the authors find that the presupernova electron neutrino flux rises above the background noise from the Sun, nuclear reactors, and radioactive decay within the Earth in the final two hours before collapse.Based on these calculations, current and future neutrino observatories should be able to detect tens of neutrinos from a supernova within 1 kiloparsec, about 30% of which would be beta-process neutrinos. As the distance to the star increases, the time and energy window within which neutrinos can be observed gradually narrows, until it closes for stars at a distance of about 30 kiloparsecs.Are there any nearby supergiants soon to go supernova so these predictions can be tested? At a distance of only 650 light-years, the red supergiant star Betelgeuse should produce detectable neutrinos when it explodes an exciting opportunity for astronomers in the far future!CitationKelly M. Patton et al 2017ApJ8516. doi:10.3847/1538-4357/aa95c4

  2. The rotational shear in pre-collapse cores of massive stars

    NASA Astrophysics Data System (ADS)

    Zilberman, Noa; Gilkis, Avishai; Soker, Noam

    2018-02-01

    We evolve stellar models to study the rotational profiles of the pre-explosion cores of single massive stars that are progenitors of core collapse supernovae (CCSNe), and find large rotational shear above the iron core that might play an important role in the jet feedback explosion mechanism by amplifying magnetic fields before and after collapse. Initial masses of 15 and 30 M⊙ and various values of the initial rotation velocity are considered, as well as a reduced mass-loss rate along the evolution and the effect of core-envelope coupling through magnetic fields. We find that the rotation profiles just before core collapse differ between models, but share the following properties. (1) There are narrow zones of very large rotational shear adjacent to convective zones. (2) The rotation rate of the inner core is slower than required to form a Keplerian accretion disc. (3) The outer part of the core and the envelope have non-negligible specific angular momentum compared to the last stable orbit around a black hole (BH). Our results suggest the feasibility of magnetic field amplification which might aid a jet-driven explosion leaving behind a neutron star. Alternatively, if the inner core fails in exploding the star, an accretion disc from the outer parts of the core might form and lead to a jet-driven CCSN which leaves behind a BH.

  3. STELLAR 'FIREWORKS FINALE' CAME FIRST IN EARLY UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is an artist's impression of how the very early universe (less than 1 billion years old) might have looked when it went through a voracious onset of star formation, converting primordial hydrogen into myriad stars at an unprecedented rate. Back then the sky would have looked markedly different from the sea of quiescent galaxies around us today. The sky is ablaze with primeval starburst galaxies; giant elliptical and spiral galaxies have yet to form. Within the starburst galaxies, bright knots of hot blue stars come and go like bursting fireworks shells. Regions of new starbirth glow intensely red under a torrent of ultraviolet radiation. The most massive stars self-detonate as supernovas, which explode across the sky like a string of firecrackers. A foreground starburst galaxy at lower right is sculpted with hot bubbles from supernova explosions and torrential stellar winds. Unlike today there is very little dust in these galaxies, because the heavier elements have not yet been cooked up through nucleosynthesis in stars. Recent analysis of Hubble Space Telescope deep sky images supports the theory that the first stars in the universe appeared in an abrupt eruption of star formation, rather than at a gradual pace. Painting Credit: Adolf Schaller for STScI

  4. The high-redshift gamma-ray burst GRB 140515A

    DOE PAGES

    Melandri, A.; Bernardini, M. G.; D'Avanzo, P. D.; ...

    2015-09-09

    High-redshift gamma-ray bursts (GRBs) offer several advantages when studying the distant Universe, providing unique information about the structure and properties of the galaxies in which they exploded. Spectroscopic identification with large ground-based telescopes has improved our knowledge of this kind of distant events. We present the multi-wavelength analysis of the high-zSwift GRB GRB 140515A (z = 6.327). The best estimate of the neutral hydrogen fraction of the intergalactic medium towards the burst is x HI ≤ 0.002. The spectral absorption lines detected for this event are the weakest lines ever observed in GRB afterglows, suggesting that GRB 140515A exploded inmore » a very low-density environment. Its circum-burst medium is characterised by an average extinction (AV ~ 0.1) that seems to be typical of z ≥ 6 events. The observed multi-band light curves are explained either with a very hard injected spectrum (p = 1.7) or with a multi-component emission (p = 2.1). In the second case a long-lasting central engine activity is needed in order to explain the late time X-ray emission. Furthermore, the possible origin of GRB 140515A in a Pop III (or in a Pop II star with a local environment enriched by Pop III) massive star is unlikely.« less

  5. The SILCC project - III. Regulation of star formation and outflows by stellar winds and supernovae

    NASA Astrophysics Data System (ADS)

    Gatto, Andrea; Walch, Stefanie; Naab, Thorsten; Girichidis, Philipp; Wünsch, Richard; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Peters, Thomas; Derigs, Dominik; Baczynski, Christian; Puls, Joachim

    2017-04-01

    We study the impact of stellar winds and supernovae on the multiphase interstellar medium using three-dimensional hydrodynamical simulations carried out with FLASH. The selected galactic disc region has a size of (500 pc)2 × ±5 kpc and a gas surface density of 10 M⊙ pc-2. The simulations include an external stellar potential and gas self-gravity, radiative cooling and diffuse heating, sink particles representing star clusters, stellar winds from these clusters that combine the winds from individual massive stars by following their evolution tracks, and subsequent supernova explosions. Dust and gas (self-) shielding is followed to compute the chemical state of the gas with a chemical network. We find that stellar winds can regulate star (cluster) formation. Since the winds suppress the accretion of fresh gas soon after the cluster has formed, they lead to clusters that have lower average masses (102-104.3 M⊙) and form on shorter time-scales (10-3-10 Myr). In particular, we find an anticorrelation of cluster mass and accretion time-scale. Without winds, the star clusters easily grow to larger masses for ˜5 Myr until the first supernova explodes. Overall, the most massive stars provide the most wind energy input, while objects beginning their evolution as B-type stars contribute most of the supernova energy input. A significant outflow from the disc (mass loading ≳1 at 1 kpc) can be launched by thermal gas pressure if more than 50 per cent of the volume near the disc mid-plane can be heated to T > 3 × 105 K. Stellar winds alone cannot create a hot volume-filling phase. The models that are in best agreement with observed star formation rates drive either no outflows or weak outflows.

  6. Combining collective, MSW, and turbulence effects in supernova neutrino flavor evolution

    NASA Astrophysics Data System (ADS)

    Lund, Tina; Kneller, James P.

    2013-07-01

    In order to decode the neutrino burst signal from a Galactic core-collapse supernova (ccSN) and reveal the complicated inner workings of the explosion we need a thorough understanding of the neutrino flavor evolution from the proto-neutron star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution in three different progenitors and include collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein (MSW) conversion due to the shock wave passage through the star, and the impact of turbulence. We consider both normal and inverted neutrino mass hierarchies and a value of θ13 close to the current experimental measurements. In the Oxygen-Neon-Magnesium (ONeMg) supernova we find that the impact of turbulence is both brief and slight during a window of 1-2 seconds post bounce. This is because the shock races through the star extremely quickly and the turbulence amplitude is expected to be small, less than 10%, since these stars do not require multidimensional physics to explode. Thus the spectral features of collective and shock effects in the neutrino signals from Oxygen-Neon-Magnesium supernovae may be almost turbulence free making them the easiest to interpret. For the more massive progenitors we again find that small amplitude turbulence, up to 10%, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence is added, 30% and 50%, which is justified by the requirement of multidimensional physics in order to make these stars explode, the features of collective and shock wave effects in the high (H) density resonance channel are almost completely obscured at late times. Yet at the same time we find the other mixing channels—the low (L) density resonance channel and the nonresonant channels—begin to develop turbulence signatures. Large amplitude turbulent motions in the outer layers of more massive, iron core-collapse supernovae may obscure the most obvious fingerprints of collective and shock wave effects in the neutrino signal but cannot remove them completely, and additionally bring about new features in the signal.

  7. Where Galactic Snakes Live

    NASA Image and Video Library

    2006-10-27

    This infrared image from NASA's Spitzer Space Telescope shows what astronomers are referring to as a "snake" (upper left) and its surrounding stormy environment. The sinuous object is actually the core of a thick, sooty cloud large enough to swallow dozens of solar systems. In fact, astronomers say the "snake's belly" may be harboring beastly stars in the process of forming. The galactic creepy crawler to the right of the snake is another thick cloud core, in which additional burgeoning massive stars might be lurking. The colorful regions below the two cloud cores are less dense cloud material, in which dust has been heated by starlight and glows with infrared light. Yellow and orange dots throughout the image are monstrous developing stars; the red star on the "belly" of the snake is 20 to 50 times as massive as our sun. The blue dots are foreground stars. The red ball at the bottom left is a "supernova remnant," the remains of massive star that died in a fiery blast. Astronomers speculate that radiation and winds from the star before it died, in addition to a shock wave created when it exploded, might have played a role in creating the snake. Spitzer was able to spot the two black cloud cores using its heat-seeking infrared vision. The objects are hiding in the dusty plane of our Milky Way galaxy, invisible to optical telescopes. Because their heat, or infrared light, can sneak through the dust, they first showed up in infrared images from past missions. The cloud cores are so thick with dust that if you were to somehow transport yourself into the middle of them, you would see nothing but black, not even a star in the sky. Now, that's spooky! Spitzer's view of the region provides the best look yet at the massive embryonic stars hiding inside the snake. Astronomers say these observations will ultimately help them better understand how massive stars form. By studying the clustering and range of masses of the stellar embryos, they hope to determine if the stars were born in the same way that our low-mass sun was formed - out of a collapsing cloud of gas and dust - or by another mechanism in which the environment plays a larger role. The snake is located about 11,000 light-years away in the constellation Sagittarius. This false-color image is a composite of infrared data taken by Spitzer's infrared array camera and multiband imaging photometer. Blue represents 3.6-micron light; green shows light of 8 microns; and red is 24-micron light. http://photojournal.jpl.nasa.gov/catalog/PIA01318

  8. Where Galactic Snakes Live

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This infrared image from NASA's Spitzer Space Telescope shows what astronomers are referring to as a 'snake' (upper left) and its surrounding stormy environment. The sinuous object is actually the core of a thick, sooty cloud large enough to swallow dozens of solar systems. In fact, astronomers say the 'snake's belly' may be harboring beastly stars in the process of forming.

    The galactic creepy crawler to the right of the snake is another thick cloud core, in which additional burgeoning massive stars might be lurking. The colorful regions below the two cloud cores are less dense cloud material, in which dust has been heated by starlight and glows with infrared light. Yellow and orange dots throughout the image are monstrous developing stars; the red star on the 'belly' of the snake is 20 to 50 times as massive as our sun. The blue dots are foreground stars.

    The red ball at the bottom left is a 'supernova remnant,' the remains of massive star that died in a fiery blast. Astronomers speculate that radiation and winds from the star before it died, in addition to a shock wave created when it exploded, might have played a role in creating the snake.

    Spitzer was able to spot the two black cloud cores using its heat-seeking infrared vision. The objects are hiding in the dusty plane of our Milky Way galaxy, invisible to optical telescopes. Because their heat, or infrared light, can sneak through the dust, they first showed up in infrared images from past missions. The cloud cores are so thick with dust that if you were to somehow transport yourself into the middle of them, you would see nothing but black, not even a star in the sky. Now, that's spooky!

    Spitzer's new view of the region provides the best look yet at the massive embryonic stars hiding inside the snake. Astronomers say these observations will ultimately help them better understand how massive stars form. By studying the clustering and range of masses of the stellar embryos, they hope to determine if the stars were born in the same way that our low-mass sun was formed - out of a collapsing cloud of gas and dust - or by another mechanism in which the environment plays a larger role.

    The snake is located about 11,000 light-years away in the constellation Sagittarius.

    This false-color image is a composite of infrared data taken by Spitzer's infrared array camera and multiband imaging photometer. Blue represents 3.6-micron light; green shows light of 8 microns; and red is 24-micron light.

  9. Fastest Rotating Star Found in Neighboring Galaxy

    NASA Image and Video Library

    2017-12-08

    NASA image release December 5, 2011 This is an artist's concept of the fastest rotating star found to date. The massive, bright young star, called VFTS 102, rotates at a million miles per hour, or 100 times faster than our Sun does. Centrifugal forces from this dizzying spin rate have flattened the star into an oblate shape and spun off a disk of hot plasma, seen edge on in this view from a hypothetical planet. The star may have "spun up" by accreting material from a binary companion star. The rapidly evolving companion later exploded as a supernova. The whirling star lies 160,000 light-years away in the Large Magellanic Cloud, a satellite galaxy of our Milky Way. The team will use NASA's Hubble Space Telescope to make precise measurements of the star's proper motion across space. To read more go to: hubblesite.org/newscenter/archive/releases/2011/39/full/ Image Type: Artwork Credit: NASA, ESA, and G. Bacon (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Measuring the Progenitor Masses and Dense Circumstellar Material of Type II Supernovae

    NASA Astrophysics Data System (ADS)

    Morozova, Viktoriya; Piro, Anthony L.; Valenti, Stefano

    2018-05-01

    Recent modeling of hydrogen-rich Type II supernova (SN II) light curves suggests the presence of dense circumstellar material (CSM) surrounding the exploding progenitor stars. This has important implications for the activity and structure of massive stars near the end of their lives. Since previous work focused on just a few events, here we expand to a larger sample of 20 well-observed SNe II. For each event we are able to constrain the progenitor zero-age main-sequence (ZAMS) mass, explosion energy, and the mass and radial extent of the dense CSM. We then study the distribution of each of these properties across the full sample of SNe. The inferred ZAMS masses are found to be largely consistent with a Salpeter distribution with minimum and maximum masses of 10.4 and 22.9 M ⊙, respectively. We also compare the individual ZAMS masses we measure with specific SNe II that have pre-explosion imaging to check their consistency. Our masses are generally comparable to or higher than the pre-explosion imaging masses, potentially helping ease the red supergiant problem. The explosion energies vary from (0.1–1.3) × 1051 erg, and for ∼70% of the SNe we obtain CSM masses in the range between 0.18 and 0.83 M ⊙. We see a potential correlation between the CSM mass and explosion energy, which suggests that pre-explosion activity has a strong impact on the structure of the star. This may be important to take into account in future studies of the ability of the neutrino mechanism to explode stars. We also see a possible correlation between the CSM radial extent and ZAMS mass, which could be related to the time with respect to explosion when the CSM is first generated.

  11. Helium-Shell Nucleosynthesis and Extinct Radioactivities

    NASA Technical Reports Server (NTRS)

    Meyer, B. S.; The, L.-S.; Clayton, D. D.; ElEid, M. F.

    2004-01-01

    Although the exact site for the origin of the r-process isotopes remains mysterious, most thinking has centered on matter ejected from the cores of massive stars in core-collapse supernovae [13]. In the 1970's and 1980's, however, difficulties in understanding the yields from such models led workers to consider the possibility of r-process nucleosynthesis farther out in the exploding star, in particular, in the helium burning shell [4,5]. The essential idea was that shock passage through this shell would heat and compress this material to the point that the reactions 13C(alpha; n)16O and, especially, 22Ne(alpha; n)25Mg would generate enough neutrons to capture on preexisting seed nuclei and drive an "n process" [6], which could reproduce the r-process abundances. Subsequent work showed that the required 13C and 22Ne abundances were too large compared to the amounts available in realistic models [7] and recent thinking has returned to supernova core material or matter ejected from neutron star-neutron star collisions as the more likely r-process sites.

  12. Stellar family in crowded, violent neighbourhood proves to be surprisingly normal

    NASA Astrophysics Data System (ADS)

    2009-06-01

    Using ESO's Very Large Telescope, astronomers have obtained one of the sharpest views ever of the Arches Cluster -- an extraordinary dense cluster of young stars near the supermassive black hole at the heart of the Milky Way. Despite the extreme conditions astronomers were surprised to find the same proportions of low- and high-mass young stars in the cluster as are found in more tranquil locations in our Milky Way. ESO PR Photo 21a/09 The Arches Cluster ESO PR Photo 21b/09 The Centre of the Milky Way ESO PR Photo 21c/09 Around the Arches Cluster ESO PR Video 21a/09 A voyage to the heart of the Milky Way The massive Arches Cluster is a rather peculiar star cluster. It is located 25 000 light-years away towards the constellation of Sagittarius (the Archer), and contains about a thousand young, massive stars, less than 2.5 million years old [1]. It is an ideal laboratory to study how massive stars are born in extreme conditions as it is close to the centre of our Milky Way, where it experiences huge opposing forces from the stars, gas and the supermassive black hole that reside there. The Arches Cluster is ten times heavier than typical young star clusters scattered throughout our Milky Way and is enriched with chemical elements heavier than helium. Using the NACO adaptive optics instrument on ESO's Very Large Telescope, located in Chile, astronomers scrutinised the cluster in detail. Thanks to adaptive optics, astronomers can remove most of the blurring effect of the atmosphere, and so the new NACO images of the Arches Cluster are even crisper than those obtained with telescopes in space. Observing the Arches Cluster is very challenging because of the huge quantities of absorbing dust between Earth and the Galactic Centre, which visible light cannot penetrate. This is why NACO was used to observe the region in near-infrared light. The new study confirms the Arches Cluster to be the densest cluster of massive young stars known. It is about three light-years across with more than a thousand stars packed into each cubic light-year -- an extreme density a million times greater than in the Sun's neighbourhood. Astronomers studying clusters of stars have found that higher mass stars are rarer than their less massive brethren, and their relative numbers are the same everywhere, following a universal law. For many years, the Arches Cluster seemed to be a striking exception. "With the extreme conditions in the Arches Cluster, one might indeed imagine that stars won't form in the same way as in our quiet solar neighbourhood," says Pablo Espinoza, the lead author of the paper reporting the new results. "However, our new observations showed that the masses of stars in this cluster actually do follow the same universal law". In this image the astronomers could also study the brightest stars in the cluster. "The most massive star we found has a mass of about 120 times that of the Sun," says co-author Fernando Selman. "We conclude from this that if stars more massive than 130 solar masses exist, they must live for less than 2.5 million years and end their lives without exploding as supernovae, as massive stars usually do." The total mass of the cluster seems to be about 30 000 times that of the Sun, much more than was previously thought. "That we can see so much more is due to the exquisite NACO images," says co-author Jorge Melnick. Note [1] The name "Arches" does not come from the constellation the cluster is located in (Sagittarius, i.e., the Archer), but because it is located next to arched filaments detected in radio maps of the centre of the Milky Way.

  13. FAILURE OF A NEUTRINO-DRIVEN EXPLOSION AFTER CORE-COLLAPSE MAY LEAD TO A THERMONUCLEAR SUPERNOVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushnir, Doron; Katz, Boaz, E-mail: kushnir@ias.edu

    We demonstrate that ∼10 s after the core-collapse of a massive star, a thermonuclear explosion of the outer shells is possible for some (tuned) initial density and composition profiles, assuming that the neutrinos failed to explode the star. The explosion may lead to a successful supernova, as first suggested by Burbidge et al. We perform a series of one-dimensional (1D) calculations of collapsing massive stars with simplified initial density profiles (similar to the results of stellar evolution calculations) and various compositions (not similar to 1D stellar evolution calculations). We assume that the neutrinos escaped with a negligible effect on themore » outer layers, which inevitably collapse. As the shells collapse, they compress and heat up adiabatically, enhancing the rate of thermonuclear burning. In some cases, where significant shells of mixed helium and oxygen are present with pre-collapsed burning times of ≲100 s (≈10 times the free-fall time), a thermonuclear detonation wave is ignited, which unbinds the outer layers of the star, leading to a supernova. The energy released is small, ≲10{sup 50} erg, and negligible amounts of synthesized material (including {sup 56}Ni) are ejected, implying that these 1D simulations are unlikely to represent typical core-collapse supernovae. However, they do serve as a proof of concept that the core-collapse-induced thermonuclear explosions are possible, and more realistic two-dimensional and three-dimensional simulations are within current computational capabilities.« less

  14. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-08-01

    This x-ray image of the Cassiopeia A (CAS A) supernova remnant is the official first light image of the Chandra X-Ray Observatory (CXO). The 5,000-second image was made with the Advanced Charged Coupled Device (CCD) Image Spectrometer (ACIS). Two shock waves are visible: A fast outer shock and a slower irner shock. The inner shock wave is believed to be due to the collision of ejecta from the supernova explosion with a circumstellar shell of material, heating it to a temperature of 10 million-degrees Celsius. The outer shock wave is analogous to an awesome sonic boom resulting from this collision The x-rays reveal a bright object near the center, which may be the long-sought neutron star or black hole remnant of the explosion that produced Cassiopeia A. Cassiopeia A is the 320-year-old remnant of a massive star that exploded. Located in the constellation Cassiopeia, it is 10 light-years across and 10,000 light-years from Earth. A supernova occurs when a massive star has used up its nuclear fuel and the pressure drops in the central core of the star. The matter in the core is crushed by gravity to higher and higher densities, and temperatures reach billions of degrees. Under these extreme conditions, nuclear reactions occur violently and catastrophically, reversing the collapse. A thermonuclear shock wave races through the now expanding stellar debris, fusing lighter elements into heavier ones and producing a brilliant visual outburst.

  15. Young Galaxy Surrounded by Material Needed to Make Stars, VLA Reveals

    NASA Astrophysics Data System (ADS)

    2001-01-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered a massive reservoir of cold gas from which a primeval galaxy formed its first stars. Looking more than 12 billion years into the past, the scientists found that the young galaxy experiencing a "burst" of star formation was surrounded by enough cold molecular gas to make 100 billion suns. Optical and Radio Images of APM 08279+5255 at About the Same Scale "This is the first time anyone has seen the massive reservoir of cold gas required for these incredible 'starbursts' to produce a galaxy," said Chris Carilli, an astronomer at the NSF's National Radio Astronomy Observatory (NRAO) in Socorro, NM. "There is much more gas here than we anticipated," Carilli added. The research team was led by Padeli Papadoupoulos of Leiden Observatory in the Netherlands and also included Rob Ivison of University College London and Geraint Lewis of the Anglo-Australian Observatory in Australia. The scientists reported their findings in the January 4 edition of the journal Nature. The astronomers found the gas when studying a quasar called APM 08279+5255, discovered in 1998. Observations with optical and infrared telescopes revealed that the quasar, a young galaxy with a voracious black hole at its center, was forming new stars rapidly in a starburst. At a distance of more than 12 billion light-years, the quasar is seen as it was more than 12 billion years ago, just a billion or so years after the Big Bang. "This thing is at the edge of the dark ages," before the first stars in the universe were born, said Carilli. The year after its discovery, APM 08279+5255 was found to have warm carbon monoxide (CO) gas near its center, heated by the energy released as the galaxy's black hole devours material. The VLA observations revealed cold CO gas much more widely distributed than its warmer counterpart. Based on observations of closer objects, the astronomers presume the CO gas is accompanied by large amounts of molecular hydrogen gas (H2). Cold CO gas never has been detected before in such a distant object. Though APM 08279+5255 is a young galaxy undergoing its first massive burst of star formation, the CO gas indicates that very massive stars formed quickly, lived through their short lifetimes, and exploded as supernovae. Carbon and Oxygen, the component elements of CO, are formed in the cores of stars, so their presence in the cold gas tells the astronomers that massive, short-lived stars had to have exploded already, spreading these elements throughout the galaxy's interstellar gas. "The original discovery of this quasar was quite a surprise, as observations revealed it is among the most luminous objects known in the universe. The discovery of this massive reservoir of cold gas is equally surprising. It provides vital clues to the birth of galaxies, such as our own Milky Way," Lewis said. Discovery of the gas was made possible by the galaxy's great distance. The expansion of the universe "stretches" light and radio waves to longer wavelengths -- the more distant the object, the more stretching is seen. Radio waves emitted by the cold CO gas originally had wavelengths of about 1.3 and 2.6 millimeters, but were "redshifted" to wavelengths of 7 and 13 millimeters -- wavelengths the VLA can receive. "It took eight years to refine this technique, but the effort has been worthwhile. This is the golden age of cosmology. We are learning more and more about our universe, from the smallest planets to the largest galaxy clusters. This new result is a crucial piece in the jigsaw and may help resolve many misconceptions about how galaxies form and evolve" Ivison said. "Because of its sensitivity and its ability to make detailed images, the VLA is the only telescope able to unveil these large reservoirs of cold molecular gas in the distant universe," Carilli said. "In addition, as we expand the technical capabilities of the VLA in the coming years, making it even more sensitive and able to show more detail, it will become the world's premier tool for studying this vital aspect of the young universe." The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  16. Dark gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Brdar, Vedran; Kopp, Joachim; Liu, Jia

    2017-03-01

    Many theories of dark matter (DM) predict that DM particles can be captured by stars via scattering on ordinary matter. They subsequently condense into a DM core close to the center of the star and eventually annihilate. In this work, we trace DM capture and annihilation rates throughout the life of a massive star and show that this evolution culminates in an intense annihilation burst coincident with the death of the star in a core collapse supernova. The reason is that, along with the stellar interior, also its DM core heats up and contracts, so that the DM density increases rapidly during the final stages of stellar evolution. We argue that, counterintuitively, the annihilation burst is more intense if DM annihilation is a p -wave process than for s -wave annihilation because in the former case, more DM particles survive until the supernova. If among the DM annihilation products are particles like dark photons that can escape the exploding star and decay to standard model particles later, the annihilation burst results in a flash of gamma rays accompanying the supernova. For a galactic supernova, this "dark gamma-ray burst" may be observable in the Čerenkov Telescope Array.

  17. An extremely luminous X-ray outburst at the birth of a supernova

    NASA Astrophysics Data System (ADS)

    Soderberg, A. M.; Berger, E.; Page, K. L.; Schady, P.; Parrent, J.; Pooley, D.; Wang, X.-Y.; Ofek, E. O.; Cucchiara, A.; Rau, A.; Waxman, E.; Simon, J. D.; Bock, D. C.-J.; Milne, P. A.; Page, M. J.; Barentine, J. C.; Barthelmy, S. D.; Beardmore, A. P.; Bietenholz, M. F.; Brown, P.; Burrows, A.; Burrows, D. N.; Byrngelson, G.; Cenko, S. B.; Chandra, P.; Cummings, J. R.; Fox, D. B.; Gal-Yam, A.; Gehrels, N.; Immler, S.; Kasliwal, M.; Kong, A. K. H.; Krimm, H. A.; Kulkarni, S. R.; Maccarone, T. J.; Mészáros, P.; Nakar, E.; O'Brien, P. T.; Overzier, R. A.; de Pasquale, M.; Racusin, J.; Rea, N.; York, D. G.

    2008-05-01

    Massive stars end their short lives in spectacular explosions-supernovae-that synthesize new elements and drive galaxy evolution. Historically, supernovae were discovered mainly through their `delayed' optical light (some days after the burst of neutrinos that marks the actual event), preventing observations in the first moments following the explosion. As a result, the progenitors of some supernovae and the events leading up to their violent demise remain intensely debated. Here we report the serendipitous discovery of a supernova at the time of the explosion, marked by an extremely luminous X-ray outburst. We attribute the outburst to the `break-out' of the supernova shock wave from the progenitor star, and show that the inferred rate of such events agrees with that of all core-collapse supernovae. We predict that future wide-field X-ray surveys will catch each year hundreds of supernovae in the act of exploding.

  18. Red supergiants as supernova progenitors

    NASA Astrophysics Data System (ADS)

    Davies, Ben

    2017-09-01

    It is now well-established from pre-explosion imaging that red supergiants (RSGs) are the direct progenitors of Type-IIP supernovae. These images have been used to infer the physical properties of the exploding stars, yielding some surprising results. In particular, the differences between the observed and predicted mass spectrum has provided a challenge to our view of stellar evolutionary theory. However, turning what is typically a small number of pre-explosion photometric points into the physical quantities of stellar luminosity and mass requires a number of assumptions about the spectral appearance of RSGs, as well as their evolution in the last few years of life. Here I will review what we know about RSGs, with a few recent updates on how they look and how their appearance changes as they approach supernova. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  19. Red supergiants as supernova progenitors.

    PubMed

    Davies, Ben

    2017-10-28

    It is now well-established from pre-explosion imaging that red supergiants (RSGs) are the direct progenitors of Type-IIP supernovae. These images have been used to infer the physical properties of the exploding stars, yielding some surprising results. In particular, the differences between the observed and predicted mass spectrum has provided a challenge to our view of stellar evolutionary theory. However, turning what is typically a small number of pre-explosion photometric points into the physical quantities of stellar luminosity and mass requires a number of assumptions about the spectral appearance of RSGs, as well as their evolution in the last few years of life. Here I will review what we know about RSGs, with a few recent updates on how they look and how their appearance changes as they approach supernova.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).

  20. An extremely luminous X-ray outburst at the birth of a supernova.

    PubMed

    Soderberg, A M; Berger, E; Page, K L; Schady, P; Parrent, J; Pooley, D; Wang, X-Y; Ofek, E O; Cucchiara, A; Rau, A; Waxman, E; Simon, J D; Bock, D C-J; Milne, P A; Page, M J; Barentine, J C; Barthelmy, S D; Beardmore, A P; Bietenholz, M F; Brown, P; Burrows, A; Burrows, D N; Bryngelson, G; Byrngelson, G; Cenko, S B; Chandra, P; Cummings, J R; Fox, D B; Gal-Yam, A; Gehrels, N; Immler, S; Kasliwal, M; Kong, A K H; Krimm, H A; Kulkarni, S R; Maccarone, T J; Mészáros, P; Nakar, E; O'Brien, P T; Overzier, R A; de Pasquale, M; Racusin, J; Rea, N; York, D G

    2008-05-22

    Massive stars end their short lives in spectacular explosions--supernovae--that synthesize new elements and drive galaxy evolution. Historically, supernovae were discovered mainly through their 'delayed' optical light (some days after the burst of neutrinos that marks the actual event), preventing observations in the first moments following the explosion. As a result, the progenitors of some supernovae and the events leading up to their violent demise remain intensely debated. Here we report the serendipitous discovery of a supernova at the time of the explosion, marked by an extremely luminous X-ray outburst. We attribute the outburst to the 'break-out' of the supernova shock wave from the progenitor star, and show that the inferred rate of such events agrees with that of all core-collapse supernovae. We predict that future wide-field X-ray surveys will catch each year hundreds of supernovae in the act of exploding.

  1. Supernova 2007bi as a pair-instability explosion.

    PubMed

    Gal-Yam, A; Mazzali, P; Ofek, E O; Nugent, P E; Kulkarni, S R; Kasliwal, M M; Quimby, R M; Filippenko, A V; Cenko, S B; Chornock, R; Waldman, R; Kasen, D; Sullivan, M; Beshore, E C; Drake, A J; Thomas, R C; Bloom, J S; Poznanski, D; Miller, A A; Foley, R J; Silverman, J M; Arcavi, I; Ellis, R S; Deng, J

    2009-12-03

    Stars with initial masses such that 10M[symbol: see text] or= 140M[symbol: see text] (if such exist) develop oxygen cores with masses, M(core), that exceed 50M[symbol: see text], where high temperatures are reached at relatively low densities. Conversion of energetic, pressure-supporting photons into electron-positron pairs occurs before oxygen ignition and leads to a violent contraction which triggers a nuclear explosion that unbinds the star in a pair-instability supernova. Transitional objects with 100M[symbol: see text] < M(initial) < 140M[symbol: see text] may end up as iron-core-collapse supernovae following violent mass ejections, perhaps as a result of brief episodes of pair instability, and may already have been identified. Here we report observations of supernova SN 2007bi, a luminous, slowly evolving object located within a dwarf galaxy. We estimate the exploding core mass to be M(core) approximately 100M[symbol: see text], in which case theory unambiguously predicts a pair-instability supernova. We show that >3M[symbol: see text] of radioactive (56)Ni was synthesized during the explosion and that our observations are well fitted by models of pair-instability supernovae. This indicates that nearby dwarf galaxies probably host extremely massive stars, above the apparent Galactic stellar mass limit, which perhaps result from processes similar to those that created the first stars in the Universe.

  2. Core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Mueller, Bernhard

    2017-01-01

    Core-collapse supernovae, the deaths of massive stars, are among the most spectacular phenomena in astrophysics: Not only can supernovae outshine their host galaxy for weeks; they are also laboratories for the behavior of matter at supranuclear densities, and one of the few environments where collective neutrino effects can become important. Moreover, supernovae play a central role in the cosmic matter cycle, e.g., as the dominant producers of oxygen in the Universe. Yet the mechanism by which massive stars explode has eluded us for decades, partly because classical astronomical observations across the electromagnetic spectrum cannot directly probe the supernovae ``engine''. Numerical simulations are thus our primary tool for understanding the explosion mechanism(s) of massive stars. Rigorous modeling needs to take a host of important physical ingredients into account, such as the emission and partial reabsorption of neutrinos from the young proto-neutron star, multi-dimensional fluid motions, general relativistic gravity, the equation of state of nuclear matter, and magnetic fields. This is a challenging multi-physics problem that has not been fully solved yet. Nonetheless, as I shall argue in this talk, recent first-principle 3D simulations have gone a long way towards demonstrating the viability of the most popular explosion scenario, the ``neutrino-driven mechanism''. Focusing on successful explosion models of the MPA-QUB-Monash collaboration, I will discuss possible requirements for robust explosions across a wide range of progenitors, such as accurate neutrino opacities, stellar rotation, and seed asymmetries from convective shell burning. With the advent of successful explosion models, supernova theory can also be confronted with astronomical observations. I will show that recent 3D models come closer to matching observed explosion parameters (explosion energies, neutron star kicks) than older 2D models, although there are still discrepancies. This work has been supported by the ARC (grant DE150101145), NSF (PHY-1430152, JINA-CEE) and the supercomputing centers/initiatives NCI, Pawsey, and DiRAC.

  3. Hubble Sees a Youthful Cluster

    NASA Image and Video Library

    2017-12-08

    Shown here in a new image taken with the Advanced Camera for Surveys (ACS) on board the NASA/ESA Hubble Space Telescope is the globular cluster NGC 1783. This is one of the biggest globular clusters in the Large Magellanic Cloud, a satellite galaxy of our own galaxy, the Milky Way, in the southern hemisphere constellation of Dorado. First observed by John Herschel in 1835, NGC 1783 is nearly 160,000 light-years from Earth, and has a mass around 170,000 times that of the sun. Globular clusters are dense collections of stars held together by their own gravity, which orbit around galaxies like satellites. The image clearly shows the symmetrical shape of NGC 1783 and the concentration of stars towards the center, both typical features of globular clusters. By measuring the color and brightness of individual stars, astronomers can deduce an overall age for a cluster and a picture of its star formation history. NGC 1783 is thought to be less than one and a half billion years old — which is very young for globular clusters, which are typically several billion years old. During that time, it is thought to have undergone at least two periods of star formation, separated by 50 to 100 million years. This ebb and flow of star-forming activity is an indicator of how much gas is available for star formation at any one time. When the most massive stars created in the first burst of formation explode as supernovae they blow away the gas needed to form further stars, but the gas reservoir can later be replenished by less massive stars which last longer and shed their gas less violently. After this gas flows to the dense central regions of the star cluster, a second phase of star formation can take place and once again the short-lived massive stars blow away any leftover gas. This cycle can continue a few times, at which time the remaining gas reservoir is thought to be too small to form any new stars. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Dead Star Rumbles

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Composite of Supernova Remnant Cassiopeia A This Spitzer Space Telescope composite shows the supernova remnant Cassiopeia A (white ball) and surrounding clouds of dust (gray, orange and blue). It consists of two processed images taken one year apart. Dust features that have not changed over time appear gray, while those that have changed are colored blue or orange. Blue represents an earlier time and orange, a later time.

    These observations illustrate that a blast of light from Cassiopeia A is waltzing outward through the dusty skies. This dance, called an 'infrared echo,' began when the remnant erupted about 50 years ago.

    Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion 325 years ago. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died. This remnant is located 10,000 light-years away in the northern constellation Cassiopeia.

    An infrared echo is created when a star explodes or erupts, flashing light into surrounding clumps of dust. As the light zips through the dust clumps, it heats them up, causing them to glow successively in infrared, like a chain of Christmas bulbs lighting up one by one. The result is an optical illusion, in which the dust appears to be flying outward at the speed of light. This apparent motion can be seen here by the shift in colored dust clumps.

    Echoes are distinct from supernova shockwaves, which are made up material that is swept up and hurled outward by exploding stars.

    This infrared echo is the largest ever seen, stretching more than 50 light-years away from Cassiopeia A. If viewed from Earth, the entire movie frame would take up the same amount of space as two full moons.

    Hints of an older infrared echo from Cassiopeia A's supernova explosion hundreds of years ago can also be seen.

    The earlier Spitzer image was taken on November 30, 2003, and the later, on December 2, 2004.

  5. EVIDENCE THAT GAMMA-RAY BURST 130702A EXPLODED IN A DWARF SATELLITE OF A MASSIVE GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Patrick L.; Filippenko, Alexei V.; Fox, Ori D.

    2013-09-20

    GRB 130702A is a nearby long-duration gamma-ray burst (LGRB) discovered by the Fermi satellite whose associated afterglow was detected by the Palomar Transient Factory. Subsequent photometric and spectroscopic monitoring has identified a coincident broad-lined Type Ic supernova (SN), and nebular emission detected near the explosion site is consistent with a redshift of z = 0.145. The SN-GRB exploded at an offset of {approx}7.''6 from the center of an inclined r = 18.1 mag red disk-dominated galaxy, and {approx}0.''6 from the center of a much fainter r = 23 mag object. We obtained Keck-II DEIMOS spectra of the two objects andmore » find a 2{sigma} upper limit on their line-of-sight velocity offset of {approx}<60 km s{sup -1}. If we calculate the inclination angle of the massive red galaxy from its axis ratio and assume that its light is dominated by a very thin disk, the explosion would have a {approx}60 kpc central offset, or {approx}9 times the galaxy's half-light radius. A significant bulge or a thicker disk would imply a higher inclination angle and greater central offset. The substantial offset suggests that the faint source is a separate dwarf galaxy. The star-formation rate of the dwarf galaxy is {approx}0.05 M{sub Sun} yr{sup -1}, and we place an upper limit on its oxygen abundance of 12 + log(O/H) < 8.16 dex. The identification of an LGRB in a dwarf satellite of a massive, metal-rich primary galaxy suggests that recent detections of LGRBs spatially coincident with metal-rich galaxies may be, in some cases, superpositions.« less

  6. Experimental design to understand the interaction of stellar radiation with molecular clouds

    NASA Astrophysics Data System (ADS)

    VanDervort, Robert; Davis, Josh; Trantham, Matt; Klein, Sallee; Frank, Yechiel; Raicher, Erez; Fraenkel, Moshe; Shvarts, Dov; Keiter, Paul; Drake, R. Paul

    2017-06-01

    Enhanced star formation triggered by local O and B type stars is an astrophysical problem of interest. O and B type stars are massive, hot stars that emit an enormous amount of radiation. This radiation acts to either compress or blow apart clumps of gas in the interstellar media. For example, in the optically thick limit, when the x-ray radiation in the gas clump has a short mean free path length the x-ray radiation is absorbed near the clump edge and compresses the clump. In the optically thin limit, when the mean free path is long, the radiation is absorbed throughout acting to heat the clump. This heating explodes the gas clump. Careful selection of parameters, such as foam density or source temperature, allow the experimental platform to access different hydrodynamic regimes. The stellar radiation source is mimicked by a laser irradiated thin gold foil. This will provide a source of thermal x-rays (around ~100 eV). The gas clump is mimicked by a low-density foam around 0.150 g/cc. Simulations were done using radiation hydrodynamics codes to tune the experimental parameters. The experiment will be carried out at the Omega laser facility on OMEGA 60.

  7. Chandra Reveals Rich Oxygen Supply

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This striking Chandra X-Ray Observatory image of supernova remnant SNR0103-72.6 reveals a nearly perfect ring about 150 light years in diameter surrounding a cloud of gas enriched in oxygen and shock-heated to millions of degrees Celsius. The ring marks the outer limits of a shock wave produced as material ejected in the supernova explosion collides with the interstellar gas. The size of the ring indicates that we see the supernova remnant as it was about 10,000 years after its progenitor star exploded. Located in the Small Magenellanic Cloud (SMC), SNR 0103-72.6 is about 190,000 light years from Earth. The x-rays take about 190,000 years to reach us from the SMC, so the supernova explosion occurred about 200,000 years ago, as measured on Earth. Scientists have know for years that oxygen and many other elements necessary for life are created in massive stars and dispersed in supernova explosions, but few remnants rich in these elements have been observed. This supernova remnant will hence become an important laboratory for studying how stars forge the elements necessary for life.

  8. Origins Of The Elements - An Educational Web Site

    NASA Astrophysics Data System (ADS)

    Samarasingha, Iranga; Ivans, I. I.

    2011-01-01

    This poster introduces a new and unique web site "ORIGINS OF THE ELEMENTS" to the astronomy and physics communities. The main objective of our site is to provide a useful reference guide to the origins of the elements for researchers, educators and students. Only a very few of the lightest elements have their origins at the earliest cosmological ages of the Universe, the Big Bang. Most of the elements found on the Earth, and in the rest of the Universe, owe their primary existence to stellar nucleosynthesis, either during the course of the energy generation lifetimes of stars, or in the exploding supernovae of stars at the end of their lives. A by-product of stellar energy generation and exploding supernovae is alchemy -- the ashes of the energy generation contribution of one element is another, more massive element. Although various reference sources are available to learn about nucleosynthesis, it's a challenging task to uncover appropriate study materials. In this single site, we present both data and recent research results in a concise and attractive structure. Using tables and charts, the material is presented in a multi-level style. For each of the elements in the periodic table, and for each of the stable isotopes in the chart of the nuclides, the site gives a clear visualization of their corresponding nucleosynthetic origins. As a consequence, the charts afford an insight into the patterns of nucleosynthesis. Moreover, the web site provides the student with an intuition to the relative distributions of those elements. Another important feature of our site is that users have direct access to the tabulated elemental abundances (both theoretical and observed) of stars and meteorites.

  9. Shocked molecular gas and the origin of cosmic rays

    NASA Astrophysics Data System (ADS)

    Reach, William; Gusdorf, Antoine; Richter, Matthew

    2018-06-01

    When massive stars reach the end of their ability to remain stable with core nuclear fusion, they explode in supernovae that drive powerful shocks into their surroundings. Because massive stars form in and remain close to molecular clouds they often drive shocks into dense gas, which is now believed to be the origin of a significant fraction of galactic cosmic rays. The nature of the supernova-molecular cloud interaction is not well understood, though observations are gradually elucidating their nature. The range of interstellar densities, and the inclusion of circumstellar matter from the late-phase mass-loss of the stars before their explosions, leads to a wide range of possible appearances and outcomes. In particular, it is not even clear what speed or physical type of shocks are present: are they dense, magnetically-mediated shocks where H2 is not dissociated, or are they faster shocks that dissociate molecules and destroy some of the grains? SOFIA is observing some of the most significant (in terms of cosmic ray production potential and infrared energy output) supernova-molecular cloud interactions for measurement of the line widths of key molecular shocks tracers: H2, [OI], and CO. The presence of gas at speeds 100 km/s or greater would indicate dissociative shocks, while speeds 30 km/s and slower retain most molecules. The shock velocity is a key ingredient in modeling the interaction between supernovae and molecular clouds including the potential for formation of cosmic rays.

  10. Interacting supernovae and supernova impostors. LSQ13zm: an outburst heralds the death of a massive star

    DOE PAGES

    Tartaglia, L.; Pastorello, A.; Sullivan, M.; ...

    2016-03-23

    Here we report photometric and spectroscopic observations of the optical transient LSQ13zm. Historical data reveal the presence of an eruptive episode (that we label as ‘2013a’) followed by a much brighter outburst (‘2013b’) three weeks later, that we argue to be the genuine supernova explosion. This sequence of events closely resemble those observed for SN 2010mc and (in 2012) SN 2009ip. Furthermore, the absolute magnitude reached by LSQ13zm during 2013a (MR = -14.87 ± 0.25 mag) is comparable with those of supernova impostors, while that of the 2013b event (M R = -18.46 ± 0.21 mag) is consistent with thosemore » of interacting supernovae. Our spectra reveal the presence of a dense and structured circumstellar medium, probably produced through numerous pre-supernova mass-loss events. In addition, we find evidence for high-velocity ejecta, with a fraction of gas expelled at more than 20 000 km s -1. The spectra of LSQ13zm show remarkable similarity with those of well-studied core-collapse supernovae. From the analysis of the available photometric and spectroscopic data, we conclude that we first observed the last event of an eruptive sequence from a massive star, likely a Luminous Blue Variable, which a short time later exploded as a core-collapse supernova. Our detailed analysis of archival images suggests that the host galaxy is a star-forming Blue Dwarf Compact Galaxy.« less

  11. Interacting supernovae and supernova impostors. LSQ13zm: an outburst heralds the death of a massive star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartaglia, L.; Pastorello, A.; Sullivan, M.

    Here we report photometric and spectroscopic observations of the optical transient LSQ13zm. Historical data reveal the presence of an eruptive episode (that we label as ‘2013a’) followed by a much brighter outburst (‘2013b’) three weeks later, that we argue to be the genuine supernova explosion. This sequence of events closely resemble those observed for SN 2010mc and (in 2012) SN 2009ip. Furthermore, the absolute magnitude reached by LSQ13zm during 2013a (MR = -14.87 ± 0.25 mag) is comparable with those of supernova impostors, while that of the 2013b event (M R = -18.46 ± 0.21 mag) is consistent with thosemore » of interacting supernovae. Our spectra reveal the presence of a dense and structured circumstellar medium, probably produced through numerous pre-supernova mass-loss events. In addition, we find evidence for high-velocity ejecta, with a fraction of gas expelled at more than 20 000 km s -1. The spectra of LSQ13zm show remarkable similarity with those of well-studied core-collapse supernovae. From the analysis of the available photometric and spectroscopic data, we conclude that we first observed the last event of an eruptive sequence from a massive star, likely a Luminous Blue Variable, which a short time later exploded as a core-collapse supernova. Our detailed analysis of archival images suggests that the host galaxy is a star-forming Blue Dwarf Compact Galaxy.« less

  12. Constraining Core-collapse Supernova Theory Predictions with 400 Progenitor Masses

    NASA Astrophysics Data System (ADS)

    Murphy, Jeremiah

    2017-08-01

    A new era is emerging in which we will have hundreds of progenitor masses for supernovae (SNe) and supernova remnants (SNRs); we propose to develop the statistical and theoretical tools needed to interpret this data. Two of the fundamental predictions of stellar evolution theory are that stars more massive than about 8 solar masses will explode and that some of these stars will not explode and form black holes. These statements are clear and simple, yet constraining them with observations has remained elusive until recently. For many years, the rate of progenitor discovery was steady but slow; each progenitor discovery required rare serendipitous pre-cursor imaging. With this steady drip of direct imaging, the number of progenitor masses numbered no more than 20. Recently, we developed a technique that increased the number of progenitor masses by a factor of 10 or more. In this new technique, we use HST photometry to age-date the stellar populations surrounding SNRs. From this age, we derive a progenitor mass for each SNR. We currently have progenitor masses for 115 SNRs in M31 and M33, soon we will have 300 more from M83, and there are hundreds more SNRs that could be analyzed in other nearby galaxies. To prepare for this watershed, we propose to develop the Bayesian framework needed to properly infer the progenitor mass distribution. This work will culminate in a direct constraint on the predictions of core-collapse supernova theory.

  13. Sloshing Star Goes Supernova

    NASA Image and Video Library

    2014-02-19

    NuSTAR has provided the first observational evidence in support of a theory that says exploding stars slosh around before detonating. That theory, referred to as mild asymmetries, is shown here in a simulation by Christian Ott.

  14. VLA Observations Confirm Origin of Gamma Ray Bursts in Short-Lived Stars

    NASA Astrophysics Data System (ADS)

    1998-06-01

    Radio telescope studies of the fiery afterglow of a Gamma Ray Burst have provided astronomers with the best clues yet about the origins of these tremendous cosmic cataclysms since their discovery more than 30 years ago. Observations with the National Science Foundation's (NSF) Very Large Array (VLA) radio telescope confirm that a blast seen to occur on March 29 had its origin in a star-forming region in a distant galaxy. "There are two leading theories for the causes of Gamma Ray Bursts," said Dale Frail of the NSF National Radio Astronomy Observatory (NRAO) in Socorro, NM. "According to one theory, the blasts occur in the death throes of pairs of old stars. The other requires them to arise from exploding, massive, short-lived stars that still reside within the star-forming gas and dust from which they formed. The VLA studies of the burst show that at least this one almost certainly occurred within a star-forming region. This result also explains why half of the Gamma Ray Burst afterglows are not detected by optical telescopes." Frail heads a VLA observing team including Greg Taylor, also of NRAO, and Shri Kulkarni of Caltech, that reported its findings to the American Astronomical Society meeting in San Diego, CA. The March 29 burst was seen clearly by radio telescopes (the accompanying image is GRB 980329 as seen by the VLA) but only very faintly with optical instruments. "That is extremely important," said Taylor. "This burst was very faint at visible wavelengths, brighter at infrared wavelengths and brighter still at radio wavelengths. This is a clear indication that the exploding object was surrounded by dust. Dust is most commonly found in star-forming regions." This strongly favors one of the two leading theories about Gamma Ray Bursts over the other. One explanation for these tremendously energetic fireballs is that a pair of superdense neutron stars collides. The other is that a single, very massive star explodes in a "hypernova," more powerful than a supernova, at the end of its normal life. The hypernova explosion, scientists believe, would come only a few million years after the giant star was formed, while it is still within the cloud of gas and dust from which it formed. Neutron stars, on the other hand, are formed by supernova explosions that give a "kick" to the resulting neutron star, propelling it at high speeds. An orbiting pair of neutron stars, astronomers think, would collide only after hundreds of millions of years of orbital decay, by which time they would be far away from the gas and dust of their birthplace. "The observations already have provided crucial insight; we intend to continue observing the relic of the March 29 burst with the VLA, and in the coming months, we will gain new information that will help further refine our ideas about these fireballs," Frail said. "We're going to learn about the size and expansion rate of the fireball and test predictions made by the models." "These observations indicate the extraordinary importance of radio astronomy for providing information that can be gained in no other way about one of the major frontier areas of astrophysics," said Hugh Van Horn, Director of the NSF's Division of Astronomical Sciences. The March 29 burst (GRB 980329) was the second such blast to have its afterglow detected at radio wavelengths. Last year, the VLA made the first radio detection of a GRB afterglow, finding radio emission coming from the location of a Gamma Ray Burst on May 8, 1997 (GRB 970508). "Of the world's radio telescopes, only the VLA has the sensitivity and resolving power to quickly detect these radio afterglows of Gamma Ray Bursts and study them in detail over extended periods of time," Taylor said. "Even so, we only see the brightest one-third of them. With upgraded capabilities at the VLA, as planned by NRAO, we will see them all." The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  15. Herschel Detects a Massive Dust Reservoir in Supernova 1987A

    NASA Technical Reports Server (NTRS)

    Matsuura, M.; Dwek, E.; Meixner, M.; Otsuka, M.; Babler, B.; Barlow, M. J.; Roman-Duval, J.; Engelbracht, C.; Sandstrom K.; Lakicevic, M.; hide

    2011-01-01

    We report far-infrared and submillimeter observations of Supernova 1987A, the star that exploded on February 23, 1987 in the Large Magellanic Cloud, a galaxy located 160,000 light years away. The observations reveal the presence of a population of cold dust grains radiating with a temperature of approx.17-23 K at a rate of about 220 stellar luminosity. The intensity and spectral energy distribution of the emission suggests a dust mass of approx.0.4-0.7 stellar mass. The radiation must originate from the SN ejecta and requires the efficient precipitation of all refractory material into dust. Our observations imply that supernovae can produce the large dust masses detected in young galaxies at very high red shifts.

  16. LISA Pathfinder Spacecraft Artist Concept

    NASA Image and Video Library

    2015-12-03

    This artist's concept shows ESA's LISA Pathfinder spacecraft, which launched on Dec. 3, 2015, from Kourou, French Guiana, will help pave the way for a mission to detect gravitational waves. LISA Pathfinder, led by the European Space Agency (ESA), is designed to test technologies that could one day detect gravitational waves. Gravitational waves, predicted by Einstein's theory of general relativity, are ripples in spacetime produced by any accelerating body. But the waves are so weak that Earth- or space-based observatories would likely only be able to directly detect such signals coming from massive astronomical systems, such as binary black holes or exploding stars. Detecting gravitational waves would be an important piece in the puzzle of how our universe began. http://photojournal.jpl.nasa.gov/catalog/PIA20196

  17. NuSTAR Captures the Beat of a Dead Star Animation

    NASA Image and Video Library

    2014-10-08

    The brightest pulsar detected to date is shown in this frame from an animation that flips back and forth between images captured by NASA NuSTAR. A pulsar is a type of neutron star, the leftover core of a star that exploded in a supernova.

  18. Lighting up a Dead Star Layers

    NASA Image and Video Library

    2006-10-26

    This image from NASA Spitzer Space Telescope shows the scattered remains of an exploded star named Cassiopeia A. Spitzer infrared detectors picked through these remains and found that much of the star original layering had been preserved.

  19. Gaia TGAS search for Large Magellanic Cloud runaway supergiant stars. Candidate hypervelocity star discovery and the nature of R 71

    NASA Astrophysics Data System (ADS)

    Lennon, Daniel J.; van der Marel, Roeland P.; Ramos Lerate, Mercedes; O'Mullane, William; Sahlmann, Johannes

    2017-07-01

    Aims: Our research aims to search for runaway stars in the Large Magellanic Cloud (LMC) among the bright Hipparcos supergiant stars included in the Gaia DR1 Tycho-Gaia astrometric solution (TGAS) catalogue. Methods: We compute the space velocities of the visually brightest stars in the Large Magellanic Cloud that are included in the TGAS proper motion catalogue. This sample of 31 stars contains a luminous blue variable (LBV), emission line stars, blue and yellow supergiants, and an SgB[e] star. We combine these results with published radial velocities to derive their space velocities, and by comparing with predictions from stellar dynamical models we obtain each star's (peculiar) velocity relative to its local stellar environment. Results: Two of the 31 stars have unusually high proper motions. Of the remaining 29 stars we find that most objects in this sample have velocities that are inconsistent with a runaway nature, being in very good agreement with model predictions of a circularly rotating disk model. Indeed the excellent fit to the model implies that the TGAS uncertainty estimates are likely overestimated. The fastest outliers in this subsample contain the LBV R 71 and a few other well known emission line objects though in no case do we derive velocities consistent with fast ( 100 km s-1) runaways. On the contrary our results imply that R 71 in particular has a moderate deviation from the local stellar velocity field (40 km s-1) lending support to the proposition that this object cannot have evolved as a normal single star since it lies too far from massive star forming complexes to have arrived at its current position during its lifetime. Our findings therefore strengthen the case for this LBV being the result of binary evolution. Of the two stars with unusually high proper motions we find that one, the isolated B1.5 Ia+ supergiant Sk-67 2 (HIP 22237), is a candidate hypervelocity star, the TGAS proper motion implying a very large peculiar transverse velocity ( 360 km s-1) directed radially away from the LMC centre. If confirmed, for example by Gaia Data Release 2, it would imply that this massive supergiant, on the periphery of the LMC, is leaving the galaxy where it will explode as a supernova.

  20. How Much Mass Makes a Black Hole? - Astronomers Challenge Current Theories

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Using ESO's Very Large Telescope, European astronomers have for the first time demonstrated that a magnetar - an unusual type of neutron star - was formed from a star with at least 40 times as much mass as the Sun. The result presents great challenges to current theories of how stars evolve, as a star as massive as this was expected to become a black hole, not a magnetar. This now raises a fundamental question: just how massive does a star really have to be to become a black hole? To reach their conclusions, the astronomers looked in detail at the extraordinary star cluster Westerlund 1 [1], located 16 000 light-years away in the southern constellation of Ara (the Altar). From previous studies (eso0510), the astronomers knew that Westerlund 1 was the closest super star cluster known, containing hundreds of very massive stars, some shining with a brilliance of almost one million suns and some two thousand times the diameter of the Sun (as large as the orbit of Saturn). "If the Sun were located at the heart of this remarkable cluster, our night sky would be full of hundreds of stars as bright as the full Moon," says Ben Ritchie, lead author of the paper reporting these results. Westerlund 1 is a fantastic stellar zoo, with a diverse and exotic population of stars. The stars in the cluster share one thing: they all have the same age, estimated at between 3.5 and 5 million years, as the cluster was formed in a single star-formation event. A magnetar (eso0831) is a type of neutron star with an incredibly strong magnetic field - a million billion times stronger than that of the Earth, which is formed when certain stars undergo supernova explosions. The Westerlund 1 cluster hosts one of the few magnetars known in the Milky Way. Thanks to its home in the cluster, the astronomers were able to make the remarkable deduction that this magnetar must have formed from a star at least 40 times as massive as the Sun. As all the stars in Westerlund 1 have the same age, the star that exploded and left a magnetar remnant must have had a shorter life than the surviving stars in the cluster. "Because the lifespan of a star is directly linked to its mass - the heavier a star, the shorter its life - if we can measure the mass of any one surviving star, we know for sure that the shorter-lived star that became the magnetar must have been even more massive," says co-author and team leader Simon Clark. "This is of great significance since there is no accepted theory for how such extremely magnetic objects are formed." The astronomers therefore studied the stars that belong to the eclipsing double system W13 in Westerlund 1 using the fact that, in such a system, masses can be directly determined from the motions of the stars. By comparison with these stars, they found that the star that became the magnetar must have been at least 40 times the mass of the Sun. This proves for the first time that magnetars can evolve from stars so massive we would normally expect them to form black holes. The previous assumption was that stars with initial masses between about 10 and 25 solar masses would form neutron stars and those above 25 solar masses would produce black holes. "These stars must get rid of more than nine tenths of their mass before exploding as a supernova, or they would otherwise have created a black hole instead," says co-author Ignacio Negueruela. "Such huge mass losses before the explosion present great challenges to current theories of stellar evolution." "This therefore raises the thorny question of just how massive a star has to be to collapse to form a black hole if stars over 40 times as heavy as our Sun cannot manage this feat," concludes co-author Norbert Langer. The formation mechanism preferred by the astronomers postulates that the star that became the magnetar - the progenitor - was born with a stellar companion. As both stars evolved they would begin to interact, with energy derived from their orbital motion expended in ejecting the requisite huge quantities of mass from the progenitor star. While no such companion is currently visible at the site of the magnetar, this could be because the supernova that formed the magnetar caused the binary to break apart, ejecting both stars at high velocity from the cluster. "If this is the case it suggests that binary systems may play a key role in stellar evolution by driving mass loss - the ultimate cosmic 'diet plan' for heavyweight stars, which shifts over 95% of their initial mass," concludes Clark. Notes [1] The open cluster Westerlund 1 was discovered in 1961 from Australia by Swedish astronomer Bengt Westerlund, who later moved from there to become ESO Director in Chile (1970-74). This cluster is behind a huge interstellar cloud of gas and dust, which blocks most of its visible light. The dimming factor is more than 100 000, and this is why it has taken so long to uncover the true nature of this particular cluster. Westerlund 1 is a unique natural laboratory for the study of extreme stellar physics, helping astronomers to find out how the most massive stars in our Milky Way live and die. From their observations, the astronomers conclude that this extreme cluster most probably contains no less than 100 000 times the mass of the Sun, and all of its stars are located within a region less than 6 light-years across. Westerlund 1 thus appears to be the most massive compact young cluster yet identified in the Milky Way galaxy. All stars so far analysed in Westerlund 1 have masses at least 30-40 times that of the Sun. Because such stars have a rather short life - astronomically speaking - Westerlund 1 must be very young. The astronomers determine an age somewhere between 3.5 and 5 million years. So, Westerlund 1 is clearly a "newborn" cluster in our galaxy. More information The research presented in this ESO Press Release will soon appear in the research journal Astronomy and Astrophysics ("A VLT/FLAMES survey for massive binaries in Westerlund 1: II. Dynamical constraints on magnetar progenitor masses from the eclipsing binary W13", by B. Ritchie et al.). The same team published a first study of this object in 2006 ("A Neutron Star with a Massive Progenitor in Westerlund 1", by M.P. Muno et al., Astrophysical Journal, 636, L41). The team is composed of Ben Ritchie and Simon Clark (The Open University, UK), Ignacio Negueruela (Universidad de Alicante, Spain), and Norbert Langer (Universität Bonn, Germany, and Universiteit Utrecht, the Netherlands). The astronomers used the FLAMES instrument on ESO's Very Large Telescope at Paranal, Chile to study the stars in the Westerlund 1 cluster. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  1. The Creation of Titanium in Stars

    NASA Image and Video Library

    2014-02-19

    This diagram illustrates why NASA NuSTAR can see radioactivity in the remains of exploded stars for the first time. The observatory detects high-energy X-ray photons that are released by a radioactive substance called titanium-44.

  2. A Galactic Spectacle

    NASA Image and Video Library

    2010-08-05

    NASA image release August 5, 2010 A beautiful new image of two colliding galaxies has been released by NASA's Great Observatories. The Antennae galaxies, located about 62 million light-years from Earth, are shown in this composite image from the Chandra X-ray Observatory (blue), the Hubble Space Telescope (gold and brown), and the Spitzer Space Telescope (red). The Antennae galaxies take their name from the long antenna-like "arms," seen in wide-angle views of the system. These features were produced by tidal forces generated in the collision. The collision, which began more than 100 million years ago and is still occurring, has triggered the formation of millions of stars in clouds of dusts and gas in the galaxies. The most massive of these young stars have already sped through their evolution in a few million years and exploded as supernovas. The X-ray image from Chandra shows huge clouds of hot, interstellar gas that have been injected with rich deposits of elements from supernova explosions. This enriched gas, which includes elements such as oxygen, iron, magnesium, and silicon, will be incorporated into new generations of stars and planets. The bright, point-like sources in the image are produced by material falling onto black holes and neutron stars that are remnants of the massive stars. Some of these black holes may have masses that are almost one hundred times that of the Sun. The Spitzer data show infrared light from warm dust clouds that have been heated by newborn stars, with the brightest clouds lying in the overlapping region between the two galaxies. The Hubble data reveal old stars and star-forming regions in gold and white, while filaments of dust appear in brown. Many of the fainter objects in the optical image are clusters containing thousands of stars. The Chandra image was taken in December 1999. The Spitzer image was taken in December 2003. The Hubble image was taken in July 2004, and February 2005. Credit: NASA, ESA, SAO, CXC, JPL-Caltech, and STScI Acknowledgment: G. Fabbiano and Z. Wang (Harvard-Smithsonian CfA), and B. Whitmore (STScI)

  3. Interacting supernovae and supernova impostors: Evidence of incoming supernova explosions?

    NASA Astrophysics Data System (ADS)

    Tartaglia, L.

    2015-02-01

    Violent eruptions, and consequently major mass loss, are a common feature of the so-called Luminous Blue Variable (LBV) stars. During major eruptive episodes LBVs mimic the behavior of real type IIn supernovae (SNe), showing comparable radiated energy and similar spectroscopic properties. For this reason these events are frequently labelled as SN impostors. Type IIn SN spectra are characterized by the presence of prominent narrow Balmer lines in emission. In most cases, SNe IIn arise from massive stars (M>8⊙) exploding in a dense H-rich circumstellar medium (CSM), produced by progenitor's mass loss prior to the SN explosion. Although the mechanisms triggering these eruptions are still unknown, recently we had direct proofs of the connection between very massive stars, their eruptions and ejecta-CSM interacting SNe. SNe 2006jc, 2010mc, 2011ht and the controversial SN 2009ip are famous cases in which we observed the explosion of the star months to years after major outbursts. In this context, the case of a recent transient event, LSQ13zm, is extremely interesting since we observed an outburst just ˜3 weeks before the terminal SN explosion. All of this may suggest that SN impostors occasionally herald true SN explosions. Nonetheless, there are several cases where major eruptions are followed by a quiescent phase in the LBV life. The impostor SN 2007sv is one of these cases, since it showed a single outburst event. Its photometric (a relatively faint absolute magnitude at the maximum) and spectroscopic properties (low velocity and temperature of the ejecta, and the absence of the typical elements produced in the explosive nucleosynthesis) strongly suggest that SN 2007sv was the giant eruption of an LBV, which has then returned in a quiescent stage.

  4. Metal enrichment of the intracluster medium: SN-driven galactic winds

    NASA Astrophysics Data System (ADS)

    Baumgartner, V.; Breitschwerdt, D.

    2009-12-01

    % We investigate the role of supernova (SN)-driven galactic winds in the chemical enrichment of the intracluster medium (ICM). Such outflows on galactic scales have their origin in huge star forming regions and expel metal enriched material out of the galaxies into their surroundings as observed, for example, in the nearby starburst galaxy NGC 253. As massive stars in OB-associations explode sequentially, shock waves are driven into the interstellar medium (ISM) of a galaxy and merge, forming a superbubble (SB). These SBs expand in a direction perpendicular to the disk plane following the density gradient of the ISM. We use the 2D analytical approximation by Kompaneets (1960) to model the expansion of SBs in an exponentially stratified ISM. This is modified in order to describe the sequence of SN-explosions as a time-dependent process taking into account the main-sequence life-time of the SN-progenitors and using an initial mass function to get the number of massive stars per mass interval. The evolution of the bubble in space and time is calculated analytically, from which the onset of Rayleigh-Taylor instabilities in the shell can be determined. In its further evolution, the shell will break up and high-metallicity gas will be ejected into the halo of the galaxy and even into the ICM. We derive the number of stars needed for blow-out depending on the scale height and density of the ambient medium, as well as the fraction of alpha- and iron peak elements contained in the hot gas. Finally, the amount of metals injected by Milky Way-type galaxies to the ICM is calculated confirming the importance of this enrichment process.

  5. Interacting supernovae and supernova impostors: Evidence of incoming supernova explosions?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartaglia, L.

    2015-02-24

    Violent eruptions, and consequently major mass loss, are a common feature of the so–called Luminous Blue Variable (LBV) stars. During major eruptive episodes LBVs mimic the behavior of real type IIn supernovae (SNe), showing comparable radiated energy and similar spectroscopic properties. For this reason these events are frequently labelled as SN impostors. Type IIn SN spectra are characterized by the presence of prominent narrow Balmer lines in emission. In most cases, SNe IIn arise from massive stars (M>8{sub ⊙}) exploding in a dense H–rich circumstellar medium (CSM), produced by progenitor’s mass loss prior to the SN explosion. Although the mechanismsmore » triggering these eruptions are still unknown, recently we had direct proofs of the connection between very massive stars, their eruptions and ejecta-CSM interacting SNe. SNe 2006jc, 2010mc, 2011ht and the controversial SN 2009ip are famous cases in which we observed the explosion of the star months to years after major outbursts. In this context, the case of a recent transient event, LSQ13zm, is extremely interesting since we observed an outburst just ∼3 weeks before the terminal SN explosion. All of this may suggest that SN impostors occasionally herald true SN explosions. Nonetheless, there are several cases where major eruptions are followed by a quiescent phase in the LBV life. The impostor SN 2007sv is one of these cases, since it showed a single outburst event. Its photometric (a relatively faint absolute magnitude at the maximum) and spectroscopic properties (low velocity and temperature of the ejecta, and the absence of the typical elements produced in the explosive nucleosynthesis) strongly suggest that SN 2007sv was the giant eruption of an LBV, which has then returned in a quiescent stage.« less

  6. Stellar Rubble May be Planetary Building Blocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on the image for animation Birth of 'Phoenix' Planets?

    This artist's concept depicts a type of dead star called a pulsar and the surrounding disk of rubble discovered by NASA's Spitzer Space Telescope. The pulsar, called 4U 0142+61, was once a massive star until about 100,000 years ago when it blew up in a supernova explosion and scattered dusty debris into space. Some of that debris was captured into what astronomers refer to as a 'fallback disk,' now circling the remaining stellar core, or pulsar. The disk resembles protoplanetary disks around young stars, out of which planets are thought to be born.

    Supernovas are a source of iron, nitrogen and other 'heavy metals' in the universe. They spray these elements out into space, where they eventually come together in clouds that give rise to new stars and planets. The Spitzer finding demonstrates that supernovas might also contribute heavy metals to their own planets, a possibility that was first suggested when astronomers discovered planets circling a pulsar called PSR B1257+12 in 1992.

    Birth of 'Phoenix' Planets? About the Movie This artist's animation depicts the explosive death of a massive star, followed by the creation of a disk made up of the star's ashes. NASA's Spitzer Space Telescope was able to see the warm glow of such a dusty disk using its heat-seeking infrared vision. Astronomers believe planets might form in this dead star's disk, like the mythical Phoenix rising up out of the ashes.

    The movie begins by showing a dying massive star called a red giant. This bloated star is about 15 times more massive than our sun, and approximately 40 times bigger in diameter. When the star runs out of nuclear fuel, it collapses and ultimately blows apart in what is called a supernova. A lone planet around the star is shown being incinerated by the fiery blast. Astronomers do not know if stars of this heft host planets, but if they do, the planets would probably be destroyed when the stars explode.

    All that remains of the dead star is its shrunken corpse, called a neutron star. Neutron stars are incredibly dense, with masses nearly one-and-one-half times that of our sun squeezed into bodies roughly 10 miles wide (16 kilometers). They are so dense that their gravity causes light to bend and warp around them. The particular neutron star depicted here, called a pulsar, spins and pulses with X-ray radiation.

    Some debris, or ashes, from the supernova can be seen settling into a disk in orbit around the pulsar. This material never reached the velocity needed to escape the gravity of the pulsar, and can be thought of as falling back toward the star. The resulting 'fallback disk' resembles protoplanetary disks around young stars, out of which planets are thought to form.

    The pulsar observed by Spitzer, called 4U 0142+61, is13,000 light-years away in the northern constellation Cassiopeia. Its disk orbits about 1 million miles (1.6 million kilometers) away from it, and probably contains about 10 Earth-masses of material -- only a few millionths of the mass of the material expelled in the supernova.

    At the end of the movie, small asteroids begin to form within the disk. This first step towards planet formation might be happening in this system already.

  7. Gamma-ray Bursts May Originate in Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    2001-04-01

    New findings from two X-ray satellites suggest that gamma-ray bursts, some of the most intense blasts in the universe, may be created in the same area where stars are born. Dr. Luigi Piro of the Consiglio Nazionale delle Ricerche (CNR) in Rome, Italy, presented data from NASA's Chandra X-ray Observatory and the Italian-Dutch ASI BeppoSAX observatory today at the Gamma Ray 2001 conference in Baltimore, MD. "We know that when a gamma-ray burst explodes, it produces a blast of material called a fireball, which expands at relativistic speeds like a rapidly inflating bubble," said Piro, who works within CNR's Istituto di Astrofisica Spaziale. "Our team found evidence that the blast wave caused by the fireball brakes against a wall of very dense gas, which we believe is the crowded region where stars form." Several theories exist about what causes gamma-ray bursts. Among more popular theories are that gamma-ray bursts come from various combinations of merging neutron stars and black holes, or, from the explosion of massive stars, called hypernovae. "Because gamma-ray bursts are going off in extremely distant galaxies, it is difficult to 'see' the regions that harbor them," said Piro. "We can only gather circumstantial evidence as to where and how they form." Piro's observations support the hypernova model. Scientists believe that within dense star-forming regions, the massive star required for a hypernova explosion evolves extremely rapidly. On astronomical time scales, the supermassive star would evolve over the course of only about one million years. Thus, the hypernova explosion may occur in the same stellar environment that originally produced the massive star itself, and perhaps may trigger even more star formation. The hint that gamma-ray bursts can occur in dense media came during a Chandra observation of an afterglow that occurred on September 26, 2000. Prof. Gordon Garmire of Pennsylvania State University, University Park, PA, found X-ray emission to be greater than that expected by the standard scenario of a fireball in a low-density medium - an important clue that the explosion occurred in a dense region. Next, on February 22, 2001, Piro said that Chandra observations of the burst's afterglow, one of the brightest bursts ever observed by BeppoSAX, provided evidence of a fireball expanding in a very dense gas. These recent results supported data from four other gamma-ray bursts observed by BeppoSAX and Chandra (GRB970508, GRB990705, GRB991216, and GRB000214). In these bursts, Piro and his team found evidence indicating that the burst had encountered an extremely dense gas. The properties of this gas suggest that it originated from a very massive progenitor before it exploded as a gamma-ray burst. A key element in the success of these observations has been the perfect timing and liaison between the two satellites, Chandra and BeppoSAX, according to Piro. Piro is the Mission Scientist for BeppoSAX, the instrument that first detected X-ray afterglows from gamma-ray bursts. Currently, astronomers are not usually notified about gamma-ray bursts until an hour or so after they occur. These bursts last only for a few milliseconds to about a minute, although their afterglow can linger in X-ray and optical light for days or weeks. The HETE-2 satellite, launched in October 2000, and Swift, scheduled for a 2003 launch, will provide nearly instant notification of bursts in action, providing satellites such as Chandra a better opportunity to study the afterglow phenomenon in depth. The ACIS X-ray camera was developed for NASA by Penn State and the Massachusetts Institute of Technology. The High Energy Transmission Grating Spectrometer was built by MIT. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov

  8. Stellar Forensics with Striking Image from Chandra

    NASA Astrophysics Data System (ADS)

    2007-10-01

    A spectacular new image shows how complex a star's afterlife can be. By studying the details of this image made from a long observation by NASA's Chandra X-ray Observatory, astronomers can better understand how some stars die and disperse elements like oxygen into the next generation of stars and planets. At a distance of about 20,000 light years, G292.0+1.8 is one of only three supernova remnants in the Milky Way known to contain large amounts of oxygen. The image shows a rapidly expanding, intricately structured, debris field that contains, along with oxygen, other elements such as neon and silicon that were forged in the star before it exploded. Hard X-ray Image of G292.0+1.8 Hard X-ray Image of G292.0+1.8 "We are finding that, just like snowflakes, each supernova remnant is complicated and beautiful in its own way," said Sangwook Park of Penn State who led the work, released in conjunction with the "8 Years of Chandra" symposium in Huntsville, Ala. The new, deep Chandra image - equaling nearly 6 days worth of observing time - shows an incredibly complex structure. Understanding the details of G292.0+1.8 is especially important because astronomers have considered it to be a "textbook" case of a supernova created by the death of a massive star. Chandra X-ray Image of G292.0+1.8 Chandra X-ray Image of G292.0+1.8 By mapping the distribution of X-rays in different energy bands, the Chandra image traces the distribution of chemical elements ejected in the supernova. The results imply that the explosion was not symmetrical. For example, blue (silicon and sulfur) and green (magnesium) are seen strongly in the upper right, while yellow and orange (oxygen) dominate the lower left. These elements light up at different temperatures, indicating that the temperature is higher in the upper right portion of G292.0+1.8. Slightly below and to the left of the center of G292.0+1.8 is a pulsar, a dense, rapidly rotating neutron star that remained behind after the original star exploded. Assuming that the pulsar was born at the center of the remnant, it is thought that recoil from the lopsided explosion may have kicked the pulsar in this direction. Pulsar Wind Nebula in G292.0+1.8 Pulsar Wind Nebula in G292.0+1.8 Surrounding the pulsar is a so-called pulsar wind nebula, a magnetized bubble of high-energy particles. The narrow, jet-like feature running from north to south in the image is likely parallel to the spin axis of the pulsar. This structure is most easily seen in high energy X-rays. In the case of G292.0+1.8, the spin direction and the kick direction do not appear to be aligned, in contrast to apparent spin-kick alignments in some other supernova remnants. Another intriguing feature of this remnant is the bright equatorial belt of X-ray emission that extends across the center of the remnant. This structure is thought to have been created when the star - before it died - expelled material from around its equator via winds. The orientation of the equatorial belt suggests that the parent star maintained the same spin axis both before and after it exploded. DSS Optical Image of G292.0+1.8 DSS Optical Image of G292.0+1.8 "The detection of the pulsar and its wind nebula confirms that the supernova that led to G292 produced a neutron star through the collapse of the core of a massive star," said coauthor John Hughes of Rutgers University, "The ability to study the asymmetry of the original explosion using X-ray images of the remnant gives us a powerful new technique for learning about these cataclysmic events." These results will appear in an upcoming issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

  9. Supernova Explosions Stay In Shape

    NASA Astrophysics Data System (ADS)

    2009-12-01

    At a very early age, children learn how to classify objects according to their shape. Now, new research suggests studying the shape of the aftermath of supernovas may allow astronomers to do the same. A new study of images from NASA's Chandra X-ray Observatory on supernova remnants - the debris from exploded stars - shows that the symmetry of the remnants, or lack thereof, reveals how the star exploded. This is an important discovery because it shows that the remnants retain information about how the star exploded even though hundreds or thousands of years have passed. "It's almost like the supernova remnants have a 'memory' of the original explosion," said Laura Lopez of the University of California at Santa Cruz, who led the study. "This is the first time anyone has systematically compared the shape of these remnants in X-rays in this way." Astronomers sort supernovas into several categories, or "types", based on properties observed days after the explosion and which reflect very different physical mechanisms that cause stars to explode. But, since observed remnants of supernovas are leftover from explosions that occurred long ago, other methods are needed to accurately classify the original supernovas. Lopez and colleagues focused on the relatively young supernova remnants that exhibited strong X-ray emission from silicon ejected by the explosion so as to rule out the effects of interstellar matter surrounding the explosion. Their analysis showed that the X-ray images of the ejecta can be used to identify the way the star exploded. The team studied 17 supernova remnants both in the Milky Way galaxy and a neighboring galaxy, the Large Magellanic Cloud. For each of these remnants there is independent information about the type of supernova involved, based not on the shape of the remnant but, for example, on the elements observed in it. The researchers found that one type of supernova explosion - the so-called Type Ia - left behind relatively symmetric, circular remnants. This type of supernova is thought to be caused by a thermonuclear explosion of a white dwarf, and is often used by astronomers as "standard candles" for measuring cosmic distances. On the other hand, the remnants tied to the "core-collapse" supernova explosions were distinctly more asymmetric. This type of supernova occurs when a very massive, young star collapses onto itself and then explodes. "If we can link supernova remnants with the type of explosion", said co-author Enrico Ramirez-Ruiz, also of University of California, Santa Cruz, "then we can use that information in theoretical models to really help us nail down the details of how the supernovas went off." Models of core-collapse supernovas must include a way to reproduce the asymmetries measured in this work and models of Type Ia supernovas must produce the symmetric, circular remnants that have been observed. Out of the 17 supernova remnants sampled, ten were classified as the core-collapse variety, while the remaining seven of them were classified as Type Ia. One of these, a remnant known as SNR 0548-70.4, was a bit of an "oddball". This one was considered a Type Ia based on its chemical abundances, but Lopez finds it has the asymmetry of a core-collapse remnant. "We do have one mysterious object, but we think that is probably a Type Ia with an unusual orientation to our line of sight," said Lopez. "But we'll definitely be looking at that one again." While the supernova remnants in the Lopez sample were taken from the Milky Way and its close neighbor, it is possible this technique could be extended to remnants at even greater distances. For example, large, bright supernova remnants in the galaxy M33 could be included in future studies to determine the types of supernova that generated them. The paper describing these results appeared in the November 20 issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  10. At the Heart of Blobs

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This artist's concept illustrates one possible answer to the puzzle of the 'giant galactic blobs.' These blobs (red), first identified about five years ago, are mammoth clouds of intensely glowing material that surround distant galaxies (white). Astronomers using visible-light telescopes can see the glow of the blobs, but they didn't know what provides the energy to light them up. NASA's Spitzer Space Telescope set its infrared eyes on one well-known blob located 11 billion light-years away, and discovered three tremendously bright galaxies, each shining with the light of more than one trillion Suns, headed toward each other.

    Spitzer also observed three other blobs in the same galactic neighborhood and found equally bright galaxies within them. One of these blobs is also known to contain galaxies merging together. The findings suggest that galactic mergers might be the mysterious source of blobs.

    If so, then one explanation for how mergers produce such large clouds of material is that they trigger intense bursts of star formation. This star formation would lead to exploding massive stars, or supernovae, which would then shoot gases outward in a phenomenon known as superwinds. Blobs produced in this fashion are illustrated in this artist's concept.

  11. A Runaway Yellow Supergiant Star in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Neugent, Kathryn F.; Massey, Philip; Morrell, Nidia I.; Skiff, Brian; Georgy, Cyril

    2018-05-01

    We recently discovered a yellow supergiant (YSG) in the Small Magellanic Cloud (SMC) with a heliocentric radial velocity of ∼300 km s‑1, which is much larger than expected for a star at its location in the SMC. This is the first runaway YSG ever discovered and only the second evolved runaway star discovered in a galaxy other than the Milky Way. We classify the star as G5-8 I and use de-reddened broad-band colors with model atmospheres to determine an effective temperature of 4700 ± 250 K, consistent with what is expected from its spectral type. The star’s luminosity is then log L/L ⊙ ∼ 4.2 ± 0.1, consistent with it being a ∼30 Myr 9 M ⊙ star according to the Geneva evolution models. The star is currently located in the outer portion of the SMC’s body, but if the star’s transverse peculiar velocity is similar to its peculiar radial velocity, in 10 Myr the star would have moved 1.°6 across the disk of the SMC and could easily have been born in one of the SMC’s star-forming regions. Based on its large radial velocity, we suggest it originated in a binary system where the primary exploded as a supernovae, thus flinging the runaway star out into space. Such stars may provide an important mechanism for the dispersal of heavier elements in galaxies given the large percentage of massive stars that are runaways. In the future, we hope to look into additional evolved runaway stars that were discovered as part of our other past surveys. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  12. Astronomers Find the First 'Wind Nebula' Around a Rare Ultra-Magnetic Neutron Star

    NASA Image and Video Library

    2017-12-08

    Astronomers have discovered a vast cloud of high-energy particles called a wind nebula around a rare ultra-magnetic neutron star, or magnetar, for the first time. The find offers a unique window into the properties, environment and outburst history of magnetars, which are the strongest magnets in the universe. A neutron star is the crushed core of a massive star that ran out of fuel, collapsed under its own weight, and exploded as a supernova. Each one compresses the equivalent mass of half a million Earths into a ball just 12 miles (20 kilometers) across, or about the length of New York's Manhattan Island. Neutron stars are most commonly found as pulsars, which produce radio, visible light, X-rays and gamma rays at various locations in their surrounding magnetic fields. When a pulsar spins these regions in our direction, astronomers detect pulses of emission, hence the name. Read more: go.nasa.gov/28PVUop Credit: ESA/XMM-Newton/Younes et al. 2016 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Kepler, S. O.

    2014-10-01

    White dwarfs are the evolutionary endpoint for nearly 95% of all stars born in our Galaxy, the final stages of evolution of all low- and intermediate mass stars, i.e., main sequence stars with masses below (8.5± 1.5) M_{odot}, depending on metallicity of the progenitor, mass loss and core overshoot. Massive white dwarfs are intrinsically rare objects, tand produce a gap in the determination of the initial vs. final mass relation at the high mass end (e.g. Weidemann 2000 A&A, 363, 647; Kalirai et al. 2008, ApJ, 676, 594; Williams, Bolte & Koester 2009, ApJ, 693, 355). Main sequences stars with higher masses will explode as SNII (Smartt S. 2009 ARA&A, 47, 63), but the limit does depend on the metallicity of the progenitor. Massive white dwarfs are probably SNIa progenitors through accretion or merger. They are rare, being the final product of massive stars (less common) and have smaller radius (less luminous). Kepler et al. 2007 (MNRAS, 375, 1315), Kleinman et al. 2013 (ApJS, 204, 5) estimate only 1-2% white dwarfs have masses above 1 M_{odot}. The final stages of evolution after helium burning are a race between core growth and loss of the H-rich envelope in a stellar wind. When the burning shell is exposed, the star rapidly cools and burning ceases, leaving a white dwarf. As they cool down, the magnetic field freezes in, ranging from a few kilogauss to a gigagauss. Peculiar type Ia SN 2006gz, SN 2007if, SN 2009dc, SN 2003fg suggest progenitors in the range 2.4-2.8 M_{odot}, and Das U. & Mukhopadhyay B. (2012, Phys. Rev. D, 86, 042001) estimate that the Chandrasekhar limit increases to 2.3-2.6 M_{odot} for extremely high magnetic field stars, but differential rotation induced by accretion could also increase it, according to Hachisu I. et al. 2012 (ApJ, 744, 69). García-Berro et al. 2012, ApJ, 749, 25, for example, proposes double degenerate mergers are the progenitors of high-field magnetic white dwarfs. We propose magnetic fields enhance the line broadening in WDs, causing an overestimated surface gravity, and ultimately determine if these magnetic fields are likely developed through the star's own surface convection zone, or inherited from massive Ap/Bp progenitors. We discovered around 20 000 spectroscopic white dwarfs with the Sloan Digital Sky Survey (SDSS), with a corresponding increase in relatively rare varieties of white dwarfs, including the massive ones (Kleinman et al. 2013, ApJS, 204, 5, Kepler et al. 2013, MNRAS, 439, 2934). The mass distributions of the hydrogen-rich (DA) measured from fitting the spectra with model atmospheres calculated using unidimensinal mixing lenght-theory (MLT) shows the average mass (as measured by the surface gravity) increases apparently below 13 000K for DAs (e.g. Bergeron et al. 1991, ApJ, 367, 253; Tremblay et al. 2011, ApJ, 730, 128; Kleinman et al. 2013). Only with the tridimensional (3D) convection calculations of Tremblay et al. 2011 (A&A, 531, L19) and 2013 (A&A, 552, 13; A&A, 557, 7; arXiv 1309.0886) the problem has finally been solved, but the effects of magnetic fields are not included yet in the mass determinations. Pulsating white dwarf stars are used to measure their interior and envelope properties through seismology, and together with the luminosity function of white dwarf stars in clusters and around the Sun are valuable tools for the study of high density physics, and the history of stellar formation.

  14. Kepler Beyond Planets: Finding Exploding Stars (Type Ia Supernova from a White Dwarf Stealing Matter)

    NASA Image and Video Library

    2018-03-26

    This frame from an animation shows a gigantic star exploding in a "core collapse" supernova. As atoms fuse inside the star, eventually the star can't support its own weight anymore. Gravity makes the star collapse on itself. Core collapse supernovae are called type Ib, Ic, or II depending on the chemical elements present. Stellar explosions forge and distribute materials that make up the world in which we live, and also hold clues to how fast the universe is expanding. By understanding supernovae, scientists can unlock mysteries that are key to what we are made of and the fate of our universe. But to get the full picture, scientists must observe supernovae from a variety of perspectives, especially in the first moments of the explosion. That's really difficult -- there's no telling when or where a supernova might happen next. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22352

  15. EIA: A splintering, exploding discipline with a massive new constituency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Eric P., E-mail: ejohnson@ecosite.co.uk

    2015-02-15

    After serving 18 years as Editor-in-Chief of Environmental Impact Assessment Review, the author observes that the period 1997–2014, the discipline of EIA: splintered, exploded and saw the rise of the developing-world authors. Publishing has also changed, with shifts from quantity to quality, the rise of open access, and an ever-increasing shortage of reviewers.

  16. Dance of the Light Echoes

    NASA Image and Video Library

    2008-05-29

    This composite image from NASA Spitzer Space Telescope shows the remnant of a star that exploded, called Cassiopeia A center and its surrounding light echoes -- dances of light through dusty clouds, created when stars blast apart.

  17. Space Science

    NASA Image and Video Library

    2002-01-01

    This is an artist's impression of how the very early universe (less than one billion years old) might have looked when it went through a voracious onset of star formation, converting primordial hydrogen into myriad stars at an unprecedented rate. The deepest views of the cosmos from the Hubble Space Telescope (HST) yield clues that the very first stars may have burst into the universe as brilliantly and spectacularly as a firework finale. Except in this case, the finale came first, long before Earth, the Sun ,and the Milky Way Galaxy formed. Studies of HST's deepest views of the heavens lead to the preliminary conclusion that the universe made a significant portion of its stars in a torrential firestorm of star birth, which abruptly lit up the pitch-dark heavens just a few hundred million years after the "big bang," the tremendous explosion that created the cosmos. Within the starburst galaxies, bright knots of hot blue stars come and go like bursting fireworks shells. Regions of new starbirth glow intensely red under torrent of ultraviolet radiation. The most massive stars self-detonate as supernovas, which explode across the sky like a string of firecrackers. A foreground starburst galaxy at lower right is sculpted with hot bubbles from supernova explosions and torrential stellar winds. Unlike today there is very little dust in these galaxies, because the heavier elements have not yet been cooked up through nucleosynthesis in stars. Recent analysis of HST deep sky images supports the theory that the first stars in the universe appeared in an abrupt eruption of star formation, rather than at a gradual pace. Science Credit: NASA and K. Lanzetta (SUNY). Artwork Credit: Adolf Schaller for STScI.

  18. Artist's Concept of Early Universe

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is an artist's impression of how the very early universe (less than one billion years old) might have looked when it went through a voracious onset of star formation, converting primordial hydrogen into myriad stars at an unprecedented rate. The deepest views of the cosmos from the Hubble Space Telescope (HST) yield clues that the very first stars may have burst into the universe as brilliantly and spectacularly as a firework finale. Except in this case, the finale came first, long before Earth, the Sun ,and the Milky Way Galaxy formed. Studies of HST's deepest views of the heavens lead to the preliminary conclusion that the universe made a significant portion of its stars in a torrential firestorm of star birth, which abruptly lit up the pitch-dark heavens just a few hundred million years after the 'big bang,' the tremendous explosion that created the cosmos. Within the starburst galaxies, bright knots of hot blue stars come and go like bursting fireworks shells. Regions of new starbirth glow intensely red under torrent of ultraviolet radiation. The most massive stars self-detonate as supernovas, which explode across the sky like a string of firecrackers. A foreground starburst galaxy at lower right is sculpted with hot bubbles from supernova explosions and torrential stellar winds. Unlike today there is very little dust in these galaxies, because the heavier elements have not yet been cooked up through nucleosynthesis in stars. Recent analysis of HST deep sky images supports the theory that the first stars in the universe appeared in an abrupt eruption of star formation, rather than at a gradual pace. Science Credit: NASA and K. Lanzetta (SUNY). Artwork Credit: Adolf Schaller for STScI.

  19. Luck Reveals Stellar Explosion's First Moments

    NASA Astrophysics Data System (ADS)

    2008-05-01

    Through a stroke of luck, astronomers have witnessed the first violent moments of a stellar explosion known as a supernova. Astronomers have seen thousands of these stellar explosions, but all previous supernovae were discovered days after the event had begun. This is the first time scientists have been able to study a supernova from its very beginning. Seeing one just moments after the event began is a major breakthrough that points the way to unraveling longstanding mysteries about how such explosions really work. Galaxy Before Supernova Explosion NASA's Swift satellite took these images of SN 2007uy in galaxy NGC 2770 before SN 2008D exploded. An X-ray image is on the left; image at right is in visible light. CREDIT: NASA/Swift Science Team/Stefan Immler. Large Image With Labels Large Image Without Labels Galaxy After Supernova Explosion On January 9, 2008, Swift caught a bright X-ray burst from an exploding star. A few days later, SN 2008D appeared in visible light. CREDIT: NASA/Swift Science Team/Stefan Immler. Large Image With Labels Large Image Without Labels "For years, we have dreamed of seeing a star just as it was exploding," said team leader Alicia Soderberg, a Hubble and Carnegie-Princeton Fellow at Princeton University. "This newly-born supernova is going to be the Rosetta Stone of supernova studies for years to come." Theorists had predicted for four decades that a bright burst of X-rays should be produced as the shock wave from a supernova blasts out of the star and through dense material surrounding the star. However, in order to see this burst, scientists faced the nearly-impossible challenge of knowing in advance where to point their telescopes to catch a supernova in the act of exploding. On January 9, luck intervened. Soderberg and her colleagues were making a scheduled observation of the galaxy NGC 2770, 88 million light-years from Earth, using the X-ray telescope on NASA's Swift satellite. During that observation, a bright burst of X-rays came from one of the galaxy's spiral arms. Soderberg led a 38-person international scientific team that quickly began an intensive effort to study the new object using both orbiting and ground-based telescopes. In order to conclude that they had, in fact, seen the predicted early burst of X-rays from a supernova, they needed to eliminate alternative explanations, such as a gamma-ray burst, and then to show that, as time went on, the object behaved like a normal supernova. The scientists scrutinized the object with Swift's gamma-ray instrument, the Chandra X-ray Observatory, and the Hubble Space Telescope. On the ground, they used the Gemini North telescope and the Keck I telescope in Hawaii, the 200-inch and 60-inch telescopes at Palomar Observatory in California, the 3.5-meter telescope at Apache Point Observatory in New Mexico, and the National Science Foundation's Very Large Array (VLA) and Very Long Baseline Array (VLBA) radio telescopes. The VLA and VLBA provided key information that showed the object evolving in a pattern similar to other supernovae. "The data from all these telescopes confirmed that what we were seeing is indeed a supernova and not some new type of object. That initial X-ray burst thus is the earliest observation ever of an exploding star," Soderberg said. The scientists are excited at the prospects of learning vital new details that will help them settle longstanding controversies about the mechanisms of supernova explosions. Stars much more massive than our Sun end their lives in supernova explosions, as they run out of fuel for the thermonuclear reactions that power them. With no more energy being released at the star's core, the core collapses. Further collapse of the star is thought to cause a violent rebound that blasts most of the stars's material into space. What remains is a superdense neutron star or a black hole. The details of this scenario, however, are not well understood, and astronomers differ over the exact mechanisms. Much of the difficulty in understanding the process comes from the fact that, until now, supernovae were only detected after the initial explosion was over. "We think that every core-collapse supernova will show an X-ray burst like this one. If so, with the right instruments, we should be able to discover and study several hundred of them every year. Astronomical instruments planned for the future should then allow us to finally unravel the mystery of how these explosions occur," Soderberg said. The scientists are reporting their findings in an article in the journal Nature. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  20. OXYGEN-RICH SUPERNOVA REMNANT IN THE LARGE MAGELLANIC CLOUD

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a NASA Hubble Space Telescope image of the tattered debris of a star that exploded 3,000 years ago as a supernova. This supernova remnant, called N132D, lies 169,000 light-years away in the satellite galaxy, the Large Magellanic Cloud. A Hubble Wide Field Planetary Camera 2 image of the inner regions of the supernova remnant shows the complex collisions that take place as fast moving ejecta slam into cool, dense interstellar clouds. This level of detail in the expanding filaments could only be seen previously in much closer supernova remnants. Now, Hubble's capabilities extend the detailed study of supernovae out to the distance of a neighboring galaxy. Material thrown out from the interior of the exploded star at velocities of more than four million miles per hour (2,000 kilometers per second) plows into neighboring clouds to create luminescent shock fronts. The blue-green filaments in the image correspond to oxygen-rich gas ejected from the core of the star. The oxygen-rich filaments glow as they pass through a network of shock fronts reflected off dense interstellar clouds that surrounded the exploded star. These dense clouds, which appear as reddish filaments, also glow as the shock wave from the supernova crushes and heats the clouds. Supernova remnants provide a rare opportunity to observe directly the interiors of stars far more massive than our Sun. The precursor star to this remnant, which was located slightly below and left of center in the image, is estimated to have been 25 times the mass of our Sun. These stars 'cook' heavier elements through nuclear fusion, including oxygen, nitrogen, carbon, iron etc., and the titanic supernova explosions scatter this material back into space where it is used to create new generations of stars. This is the mechanism by which the gas and dust that formed our solar system became enriched with the elements that sustain life on this planet. Hubble spectroscopic observations will be used to determine the exact chemical composition of this nuclear- processed material, and thereby test theories of stellar evolution. The image shows a region of the remnant 50 light-years across. The supernova explosion should have been visible from Earth's southern hemisphere around 1,000 B.C., but there are no known historical records that chronicle what would have appeared as a 'new star' in the heavens. This 'true color' picture was made by superposing images taken on 9-10 August 1994 in three of the strongest optical emission lines: singly ionized sulfur (red), doubly ionized oxygen (green), and singly ionized oxygen (blue). Photo credit: Jon A. Morse (STScI) and NASA Investigating team: William P. Blair (PI; JHU), Michael A. Dopita (MSSSO), Robert P. Kirshner (Harvard), Knox S. Long (STScI), Jon A. Morse (STScI), John C. Raymond (SAO), Ralph S. Sutherland (UC-Boulder), and P. Frank Winkler (Middlebury). Image files in GIF and JPEG format may be accessed via anonymous ftp from oposite.stsci.edu in /pubinfo: GIF: /pubinfo/GIF/N132D.GIF JPEG: /pubinfo/JPEG/N132D.jpg The same images are available via World Wide Web from links in URL http://www.stsci.edu/public.html.

  1. The Type IIP SN 2005ay: An Extensive Study From UltraViolet To Near-IR

    NASA Astrophysics Data System (ADS)

    Bufano, F. M.; Turatto, M.; Zampieri, L.; Gal-Yam, A.

    2006-08-01

    Several supernova types are thought to explode via the gravitational collapse of the core of massive stars at the end of their lifetimes. The great observational diversity has not been fully understood even if it clearly involves the progenitor masses and configurations at the time of explosion. These Supernovae, called Core Collapse Supernovae (CC SNe), are expected to dominate the counts of SNe observed at high redshifts and to be the only observable probe of the first generation stars (Pop III). Recently indicated as reliable distance indicators (Hamuy 02, Pastorello `03), CC SNe are objects of great interest but significantly less studied in comparison with the Termonuclear ones. With the aim to understand better the reasons of the heterogeneous behaviour , we have started an extensive study of the properties of SN II with different observational features (luminosity, velocity, etc..). Here we present the last results on our first observed target, SN2005ay, a Type IIP supernova observed in an extended way from the Ultraviolet wavelengths, provided by the GALEX , to the Optical and near-IR , obtained with IISP (Italian Intensive Supernova Program).

  2. Cosmic gamma-ray bursts from primordial stars: A new renaissance in astrophysics?

    NASA Astrophysics Data System (ADS)

    Chardonnet, Pascal; Filina, Anastasia; Chechetkin, Valery; Popov, Mikhail; Baranov, Andrey

    2015-10-01

    The cosmic gamma-ray bursts are certainly an enigma in astrophysics. The “standard fireball” scenario developed during many years has provided a possible explanation of this phenomena. The aim of this work is simply to explore a new possible interpretation by developing a coherent scenario inside the global picture of stellar evolution. At the basis of our scenario, is the fact that maybe we have not fully understood how the core of a pair instability supernova explodes. In such way, we have proposed a new paradigm assuming that the core of such massive star, instead of doing a symmetrical explosion, is completely fragmented in hot spots of burning nuclear matter. We have tested our scenario with observational data like GRB spectra, lightcurves, Amati relation and GRB-SN connection, and for each set of data we have proposed a possible physical interpretation. We have also suggested some possible test of this scenario by measurement at high redshifts. If this scenario is correct, it tells us simply that the cosmic gamma-ray bursts are a missing link in stellar evolution, related to an unusual explosion.

  3. The binary progenitors of short and long GRBs and their gravitational-wave emission

    NASA Astrophysics Data System (ADS)

    Rueda, J. A.; Ruffini, R.; Rodriguez, J. F.; Muccino, M.; Aimuratov, Y.; Barres de Almeida, U.; Becerra, L.; Bianco, C. L.; Cherubini, C.; Filippi, S.; Kovacevic, M.; Moradi, R.; Pisani, G. B.; Wang, Y.

    2018-01-01

    We have sub-classified short and long-duration gamma-ray bursts (GRBs) into seven families according to the binary nature of their progenitors. Short GRBs are produced in mergers of neutron-star binaries (NS-NS) or neutron star-black hole binaries (NS-BH). Long GRBs are produced via the induced gravitational collapse (IGC) scenario occurring in a tight binary system composed of a carbon-oxygen core (COcore) and a NS companion. The COcore explodes as type Ic supernova (SN) leading to a hypercritical accretion process onto the NS: if the accretion is sufficiently high the NS reaches the critical mass and collapses forming a BH, otherwise a massive NS is formed. Therefore long GRBs can lead either to NS-BH or to NS-NS binaries depending on the entity of the accretion. We discuss for the above compact-object binaries: 1) the role of the NS structure and the nuclear equation of state; 2) the occurrence rates obtained from X and gamma-rays observations; 3) the predicted annual number of detections by the Advanced LIGO interferometer of their gravitational-wave emission.

  4. Spacelab

    NASA Image and Video Library

    1990-12-01

    In this photograph, the instruments of the Astro-1 Observatory are erected in the cargo bay of the Columbia orbiter. Astro-1 was launched aboard the the Space Shuttle Orbiter Columbia (STS-35) mission on December 2, 1990. The Astro Observatory was designed to explore the universe by observing and measuring the ultraviolet radiation from celestial objects. Astronomical targets of observation selected for Astro missions included planets, stars, star clusters, galaxies, clusters of galaxies, quasars, remnants of exploded stars (supernovae), clouds of gas and dust (nebulae), and the interstellar medium. Astro-1 used a Spacelab pallet system with an instrument pointing system and a cruciform structure for bearing the three ultraviolet instruments mounted in a parallel configuration. The three instruments were:The Hopkins Ultraviolet Telescope (HUT), the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE), and the Ultraviolet Imaging Telescope (UIT). Also in the payload bay was the Broad Band X-Ray Telescope (BBXRT). Scientific return included approximately 1,000 photographs of the ultraviolet sky in the most extensive ultraviolet imagery ever attempted, the longest ultraviolet spectral observation of a comet ever made, and data never before seen on types of active galaxies called Seyfert galaxies. The mission also provided data on a massive supergiant star captured in outburst and confirmed that a spectral feature observed in the interstellar medium was due to graphite. In addition, Astro-1 acquired superb observations of the Jupiter magnetic interaction with one of its satellites.

  5. Stellar survivor from explosion in 1572 AD

    NASA Astrophysics Data System (ADS)

    2004-10-01

    hi-res Size hi-res: 1051 kb Credits: NASA/ESA, CXO and P. Ruiz-Lapuente (University of Barcelona) Tycho's Supernova, SN 1572A These images show the location of a suspected runaway companion star to a titanic supernova explosion witnessed in the year 1572 by the Danish astronomer Tycho Brahe and other astronomers of that era. This discovery provides the first direct evidence supporting the long-held belief that Type Ia supernovae come from binary star systems containing a normal star and a burned-out white dwarf star. When the dwarf ultimately explodes by being overfueled by the companion star, the companion is slung away from the demised star. The Hubble Space Telescope played a key role by precisely measuring the surviving star's motion against the sky background. Right: A Hubble Space Telescope Wide Field Planetary Camera 2 image of a small section of sky containing the candidate star. The star is like our Sun except several thousand million years older. It is moving through space at three times the speed of the other stars in its neighbourhood. Hubble's sharp view allowed for a measurement of the star's motion, based on images taken in 1999 and 2003. The image consists of a single greyscale Hubble exposure colourised with the help of data from Digitized Sky Survey 2. Left: The Hubble view is superimposed on this wide-field view of the region enveloped by the expanding bubble of the supernova explosion; the bubble and candidate star are at approximately the same distance, 10 000 light-years. The star is noticeably offset from the geometric centre of the bubble. The colours in the Chandra X-Ray image of the hot bubble show different X-ray energies, with red, green and blue representing low, medium and high energies, respectively. (The image is cut off at the bottom because the southernmost region of the remnant fell outside the field of view of the Chandra camera.) hi-res Size hi-res: 1059 kb Credits: NASA/ESA and P. Ruiz-Lapuente (University of Barcelona) The 'runaway' star in Tycho's supernova A Hubble Space Telescope Wide Field Planetary Camera 2 image of a small section of sky containing a suspected runaway companion star to a massive supernova explosion witnessed in the year 1572 by the Danish astronomer Tycho Brahe. The star, just left of centre in this image, is like our Sun except several thousand million years older. It is moving through space at three times the speed of the other stars in its neighbourhood. Hubble's sharp view allowed for a measurement of the star's motion, based on images taken in 1999 and 2003. The image consists of a single greyscale Hubble exposure colourised with the help of data from Digitized Sky Survey 2. hi-res Size hi-res: 400 kb Credits: NASA/ESA, CXO and P. Ruiz-Lapuente (University of Barcelona) Tycho's Supernova, SN 1572A This is a wide-field view of the region around Tycho's Supernova showing the expanding bubble of the supernova explosion. The colours in this Chandra X-Ray image of the hot bubble show different X-ray energies, with red, green and blue representing low, medium and high energies, respectively. (The image is cut off at the bottom because the southernmost region of the remnant fell outside the field of view of the Chandra camera.) hi-res Size hi-res: 2605 kb Credits: NASA/ESA, Digitized Survey 2 and P. Ruiz-Lapuente (University of Barcelona) Area of sky to find Tycho's Supernova, SN 1572A This area, two degrees across, is centred on the area where the famous Tycho's Supernova, also known as SN 1572A, exploded in 1572. The region lies in the constellation of Cassiopeia in the northern sky. The image was composed from two exposure from the Digitized Survey 2. The red exposure is shown in blue and the infrared in red. In this optical and near-infrared image the supernova remnant itself is not visible. A new discovery provides the first direct evidence supporting the long-held belief that Type Ia supernovae originate in binary star systems that contain a normal star and a burned-out 'white dwarf' star. The normal star spills material onto the dwarf, eventually triggering an explosion. The results of this research, led by Pilar Ruiz-Lapuente of the University of Barcelona, Spain, are published in the 28 October issue of the British science journal Nature. "There was no previous evidence pointing to any specific kind of companion star out of the many that had been proposed. Here we have identified a clear path: the feeding star is similar to our sun, but slightly older," said Ruiz-Lapuente. "The high speed of the star called our attention to it," she added. Type Ia supernovae are used to measure the history of the expansion rate of the Universe and so are fundamental in helping astronomers understand the behaviour of 'dark energy', an unknown force that is accelerating the expansion of the Universe. Finding evidence to confirm the theory as to how Type Ia supernovae explode is critical to assuring astronomers that the objects can be better understood as reliable calibrators of the expansion of space. Although today's astronomers are looking at this event 432 years too late, they were still able to see a star rushing away from the location of the explosion (which is now enveloped in a vast bubble of hot gas called 'Tycho's Supernova Remnant'). The runaway star and its surroundings have been studied with a variety of telescopes for the past seven years. The NASA/ESA Hubble Space Telescope played a key role in the process by measuring the star's motion against the sky background precisely. The star is breaking the speed limit for that particular region of the Milky Way Galaxy by moving three times faster than the surrounding stars. When the system was disrupted by the white dwarf's explosion, the companion star went hurtling off into space, like a stone thrown by a sling, retaining the velocity of its orbital motion. However there are alternative explanations for this motion. It could be falling into the region from the galactic halo that surrounds the Milky Way's disk at a high velocity. But spectra obtained with the 4.2-metre William Herschel Telescope in La Palma and the 10-metre WM Keck telescopes in Hawaii show that the star has the high heavy-element content typical of stars that dwell in the Milky Way's disk, not the halo. The star found by the Ruiz-Lapuente team is an aging version of our own Sun. The star has begun to expand in diameter as it progresses toward a 'red giant' phase (the end stage of a Sun-like star's lifetime). The star turns out to fit the profile of those in one of the proposed supernova conjectures. In Type Ia supernova binary systems, the more massive star of the pair will age faster and eventually becomes a white dwarf star. When the slower-evolving companion star subsequently ages to the point where it begins to balloon in size, it spills hydrogen onto the dwarf. The hydrogen accumulates, gradually fusing into heavier elements until it reaches a critical and precise mass threshold, called the 'Chandrasekhar limit', where it explodes like a massive nuclear fusion bomb. The energy output of this explosion is so well known that it can be used as a standard candle for measuring vast astronomical distances (an astronomical 'standard candle' is any type of luminous object whose intrinsic power is so accurately determined that it can be used to make distance measurements based on the rate the light dims over astronomical distances). "Among the various systems containing white dwarfs that receive material from a solar-mass companion, some are believed to be viable progenitors of Type Ia supernovae, on theoretical grounds. A system called U Scorpii has a white dwarf and a star similar to the one found here. These results would confirm that such binaries will end up in an explosion like the one observed by Tycho Brahe, but that would occur several hundreds of thousands of years from now," says Ruiz-Lapuente. An alternative theory of Type Ia supernovae is that two white dwarfs orbit each other, gradually losing energy through the emission of gravitational radiation ('gravity waves'). As they lose energy, they spiral in toward each other and eventually merge, resulting in a white dwarf whose mass reaches the Chandrasekhar limit, and explodes. "Tycho's supernova does not appear to have been produced by this mechanism, since a probable surviving companion has been found," says Alex Filippenko of the University of California at Berkeley, a co-author on this research. He says that, nevertheless, it is still possible there are two different evolutionary paths to Type Ia supernovae. On 11 November 1572, Tycho Brahe noticed a star in the constellation Cassiopeia that was as bright as the planet Jupiter (which was in the night sky in Pisces). No such star had ever been observed at this location before. It soon equalled Venus in brightness (which was at -4.5 magnitude in the predawn sky). For about two weeks the star could be seen in daylight. At the end of November it began to fade and change colour, from bright white to yellow and orange to faint reddish light, finally fading away from visibility in March 1574, having been visible to the naked eye for about 16 months. Tycho's meticulous record of the brightening and dimming of the supernova now allows astronomers to identify its 'light signature' as that of a Type Ia supernova. Tycho Brahe's supernova was very important in that it helped 16th century astronomers abandon the idea of the immutability of the heavens. At the present time, Type Ia supernovae remain key players in the newest cosmological discoveries. To learn more about them and their explosion mechanism, and to make them even more useful as 'cosmological probes', a current Hubble Space Telescope project led by Filippenko is studying a sample of supernovae in other galaxies at the very time they explode.

  6. Massive Stars

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Villaver, Eva

    2009-11-01

    Participants; Preface Mario Livio and Eva Villaver; 1. High-mass star formation by gravitational collapse of massive cores M. R. Krumholz; 2. Observations of massive star formation N. A. Patel; 3. Massive star formation in the Galactic center D. F. Figer; 4. An X-ray tour of massive star-forming regions with Chandra L. K. Townsley; 5. Massive stars: feedback effects in the local universe M. S. Oey and C. J. Clarke; 6. The initial mass function in clusters B. G. Elmegreen; 7. Massive stars and star clusters in the Antennae galaxies B. C. Whitmore; 8. On the binarity of Eta Carinae T. R. Gull; 9. Parameters and winds of hot massive stars R. P. Kudritzki and M. A. Urbaneja; 10. Unraveling the Galaxy to find the first stars J. Tumlinson; 11. Optically observable zero-age main-sequence O stars N. R. Walborn; 12. Metallicity-dependent Wolf-Raynet winds P. A. Crowther; 13. Eruptive mass loss in very massive stars and Population III stars N. Smith; 14. From progenitor to afterlife R. A. Chevalier; 15. Pair-production supernovae: theory and observation E. Scannapieco; 16. Cosmic infrared background and Population III: an overview A. Kashlinsky.

  7. Cosmic Spider is Good Mother

    NASA Astrophysics Data System (ADS)

    2006-04-01

    Hanging above the Large Magellanic Cloud (LMC) - one of our closest galaxies - in what some describe as a frightening sight, the Tarantula nebula is worth looking at in detail. Also designated 30 Doradus or NGC 2070, the nebula owes its name to the arrangement of its brightest patches of nebulosity that somewhat resemble the legs of a spider. This name, of the biggest spiders on Earth, is also very fitting in view of the gigantic proportions of the celestial nebula - it measures nearly 1,000 light years across! ESO PR Photo 11/06 ESO PR Photo 13b/06 Tarantula's Central Cluster, R136 The Tarantula nebula is the largest emission nebula in the sky and also one of the largest known star-forming regions in all the Milky Way's neighbouring galaxies. Located about 170,000 light-years away, in the southern constellation Dorado (The Swordfish), it can be seen with the unaided eye. As shown in this image obtained with the FORS1 multi-mode instrument on ESO's Very Large Telescope, its structure is fascinatingly complex, with a large number of bright arcs and apparently dark areas in between. Inside the giant emission nebula lies a cluster of young, massive and hot stars, denoted R 136, whose intense radiation and strong winds make the nebula glow, shaping it into the form of a giant arachnid. The cluster is about 2 to 3 million years old, that is, almost from 'yesterday' in the 13.7 billion year history of the Universe. Several of the brighter members in the immediate surroundings of the dense cluster are among the most massive stars known, with masses well above 50 times the mass of our Sun. The cluster itself contains more than 200 massive stars. ESO PR Photo 11/06 ESO PR Photo 13c/06 The Stellar Cluster Hodge 301 In the upper right of the image, another cluster of bright, massive stars is seen. Known to astronomers as Hodge 301, it is about 20 million years old, or about 10 times older than R136. The more massive stars of Hodge 301 have therefore already exploded as supernovae, blasting material away at tremendous speed and creating a web of entangled filaments. More explosions will come soon - in astronomical terms - as three red supergiants are indeed present in Hodge 301 that will end their life in the gigantic firework of a supernova within the next million years. ESO PR Photo 13d/06 ESO PR Photo 13d/06 Gas Pillars in Tarantula Nebula While some stars are dying in this spidery cosmic inferno, others are yet to be born. Some structures, seen in the lower part of the image, have the appearance of elephant trunks, not unlike the famous and fertile "Pillars of Creation" at the top of which stars are forming. In fact, it seems that stars form all over the place in this gigantic stellar nursery and in all possible masses, at least down to the mass of our Sun. In some places, in a marvellous recycling process, it is the extreme radiation from the hot and massive stars and the shocks created by the supernova explosions that has compressed the gas to such extent to allow stars to form. To the right and slightly below the central cluster, a red bubble is visible. The star that blows the material making this bubble is thought to be 20 times more massive, 130 000 times more luminous, 10 times larger and 6 times hotter than our Sun. A possible fainter example of such a bubble is also visible just above the large red bubble in the image. ESO PR Photo 13e/06 ESO PR Photo 13e/06 Red Bubbles in Tarantula Nebula Earlier colour composite images of the Tarantula nebula have been made with other instruments and/or filters at ESO's telescopes, e.g. PR Photo 05a/00 in visual light with FORS2 at the VLT at Paranal, and PR Photos 14a-g/02 and 34a-h/04 with the Wide-Field Imager at the ESO/MPG 2.2-m telescope at La Silla.

  8. About cosmic gamma ray lines

    NASA Astrophysics Data System (ADS)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  9. Dark Secrets: What Science Tells Us About the Hidden Universe (LBNL Science at the Theater)

    ScienceCinema

    Permutter, Saul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)] (ORCID:0000000244364661); Schlegel, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leauthaud, Alexie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2018-06-12

    No mystery is bigger than dark energy - the elusive force that makes up three-quarters of the Universe and is causing it to expand at an accelerating rate. KTVU Channel 2 health and science editor John Fowler will moderate a panel of Lawrence Berkeley National Laboratory scientists who use phenomena such as exploding stars and gravitational lenses to explore the dark cosmos. Saul Perlmutter heads the Supernova Cosmology Project, which pioneered the use of precise observations of exploding stars to study the expansion of the Universe. His international team was one of two groups who independently discovered the amazing phenomenon known as dark energy, and he led a collaboration that designed a satellite to study the nature of this dark force. He is an astrophysicist at Berkeley Lab and a professor of physics at UC Berkeley. David Schlegel is a Berkeley Lab astrophysicist and the principal investigator of Baryon Oscillation Spectroscopic Survey (BOSS), the largest of four night-sky surveys being conducted in the third phase of the Sloan Digital Sky Survey, known as SDSS-III. BOSS will generate a 3-D map of two million galaxies and quasars, using a specially built instrument outfitted with 1,000 optical fibers and mounted on the SDSS telescope in New Mexico. Alexie Leauthaud is Chamberlain Fellow at Berkeley Lab. Her work probes dark matter in the Universe using a technique called gravitational lensing. When gravity from a massive object such as a cluster of galaxies warps space around it, this can distort our view of the light from an even more distant object. The scale and direction of this distortion allows astronomers to directly measure the properties of both dark matter and dark energy.

  10. A Stellar Appulse by Exploding Comet 17P/Holmes

    NASA Astrophysics Data System (ADS)

    Lacerda, Pedro; Jewitt, D.

    2012-10-01

    Comet 17P/Holmes suffered a massive outburst in October 2007. Its total brightness increased from about 17th to 2nd magnitude over a period of only two days as 17P released about 1-10% of its mass into space in the form of dust. Several theories have been proposed to explain the event but the exact cause for the outburst remains unknown. 17P had suffered a similar outburst more than one century ago, which led to its discovery. These unusual and violent explosions have rendered this otherwise unremarkable Jupiter family comet an interesting target of study, because it may provide clues to the activity in other comets. On 29 October 2007, the optocenter of outbursting 17P passed within 1" of a background star. We used observations taken at the Univ. of Hawaii 2.2m telescope located atop Mauna Kea to measure the brightness of the star as it crossed the coma of 17P in an attempt to estimate the optical depth of the dust. The time sampling was 10-15 min. In addition, we used two-band photometry to look for colour variation as the star crossed the dust cloud. These measurements place the most stringent constraints on the extinction optical depth of any cometary coma.

  11. At the Heart of Blobs Artist Concept

    NASA Image and Video Library

    2005-01-11

    This artist's concept illustrates one possible answer to the puzzle of the "giant galactic blobs." These blobs (red), first identified about five years ago, are mammoth clouds of intensely glowing material that surround distant galaxies (white). Astronomers using visible-light telescopes can see the glow of the blobs, but they didn't know what provides the energy to light them up. NASA's Spitzer Space Telescope set its infrared eyes on one well-known blob located 11 billion light-years away, and discovered three tremendously bright galaxies, each shining with the light of more than one trillion Suns, headed toward each other. Spitzer also observed three other blobs in the same galactic neighborhood and found equally bright galaxies within them. One of these blobs is also known to contain galaxies merging together. The findings suggest that galactic mergers might be the mysterious source of blobs. If so, then one explanation for how mergers produce such large clouds of material is that they trigger intense bursts of star formation. This star formation would lead to exploding massive stars, or supernovae, which would then shoot gases outward in a phenomenon known as superwinds. Blobs produced in this fashion are illustrated in this artist's concept. http://photojournal.jpl.nasa.gov/catalog/PIA07221

  12. Chandra's Cosmos: Dark Matter, Black Holes, and Other Wonders Revealed by NASA's Premier X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Tucker, Wallace H.

    2017-03-01

    On July 23, 1999, the Chandra X-Ray Observatory, the most powerful X-ray telescope ever built, was launched aboard the space shuttle Columbia. Since then, Chandra has given us a view of the universe that is largely hidden from telescopes sensitive only to visible light. In Chandra's Cosmos, the Smithsonian Astrophysical Observatory's Chandra science spokesperson Wallace H. Tucker uses a series of short, connected stories to describe the telescope's exploration of the hot, high-energy face of the universe. The book is organized in three parts: "The Big," covering the cosmic web, dark energy, dark matter, and massive clusters of galaxies; "The Bad," exploring neutron stars, stellar black holes, and supermassive black holes; and "The Beautiful," discussing stars, exoplanets, and life. Chandra has imaged the spectacular, glowing remains of exploded stars and taken spectra showing the dispersal of their elements. Chandra has observed the region around the supermassive black hole in the center of our Milky Way and traced the separation of dark matter from normal matter in the collision of galaxies, contributing to both dark matter and dark energy studies. Tucker explores the implications of these observations in an entertaining, informative narrative aimed at space buffs and general readers alike.

  13. Stars Form Surprisingly Close to Milky Way's Black Hole

    NASA Astrophysics Data System (ADS)

    2005-10-01

    The supermassive black hole at the center of the Milky Way has surprisingly helped spawn a new generation of stars, according to observations from NASA's Chandra X-ray Observatory. This novel mode of star formation may solve several mysteries about the supermassive black holes that reside at the centers of nearly all galaxies. "Massive black holes are usually known for violence and destruction," said Sergei Nayakshin of the University of Leicester, United Kingdom, and coauthor of a paper on this research in an upcoming issue of the Monthly Notices of the Royal Astronomical Society. "So it's remarkable that this black hole helped create new stars, not just destroy them." Black holes have earned their fearsome reputation because any material -- including stars -- that falls within the so-called event horizon is never seen again. However, these new results indicate that the immense disks of gas known to orbit many black holes at a "safe" distance from the event horizon can help nurture the formation of new stars. Animation of Stars Forming Around Black Hole Animation of Stars Forming Around Black Hole This conclusion came from new clues that could only be revealed in X-rays. Until the latest Chandra results, astronomers have disagreed about the origin of a mysterious group of massive stars discovered by infrared astronomers to be orbiting less than a light year from the Milky Way's central black hole, a.k.a. Sagittarius A*, or Sgr A*. At such close distances to Sgr A*, the standard model for star formation predicts that gas clouds from which stars form should have been ripped apart by tidal forces from the black hole. Two models to explain this puzzle have been proposed. In the disk model, the gravity of a dense disk of gas around Sgr A* offsets the tidal forces and allows stars to form; in the migration model, the stars formed in a star cluster far away from the black hole and migrated in to form the ring of massive stars. The migration scenario predicts about a million low mass, sun-like stars in and around the ring, whereas in the disk model, the number of low mass stars could be much less. Nayakshin and his coauthor, Rashid Sunyaev of the Max Plank Institute for Physics in Garching, Germany, used Chandra observations to compare the X-ray glow from the region around Sgr A* to the X-ray emission from thousands of young stars in the Orion Nebula star cluster. They found that the Sgr A* star cluster contains only about 10,000 low mass stars, thereby ruling out the migration model. "We can now say that the stars around Sgr A* were not deposited there by some passing star cluster, rather they were born there," said Sunyaev . "There have been theories that this was possible, but this is the first real evidence. Many scientists are going to be very surprised by these results." Because the Galactic Center is shrouded in dust and gas, it has not been possible to look for the low-mass stars in optical observations. In contrast, X-ray data have allowed astronomers to penetrate the veil of gas and dust and look for these low mass stars. Scenario Dismissed by Chandra Results Scenario Dismissed by Chandra Results "In one of the most inhospitable places in our Galaxy, stars have prevailed," said Nayakshin. "It appears that star formation is much more tenacious than we previously believed." The results suggest that the "rules" of star formation change when stars form in the disk of a giant black hole. Because this environment is very different from typical star formation regions, there is a change in the proportion of stars that form. For example, there is a much higher percentage of massive stars in the disks around black holes. And, when these massive stars explode as supernovae, they will "fertilize" the region with heavy elements such as oxygen. This may explain the large amounts of such elements observed in the disks of young supermassive black holes. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  14. Tracing Titanium Escape

    NASA Image and Video Library

    2015-05-07

    The plot of data from NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR (right), amounts to a "smoking gun" of evidence in the mystery of how massive stars explode. The observations indicate that supernovae belonging to a class called Type II or core-collapse blast apart in a lopsided fashion, with the core of the star hurtling in one direction, and the ejected material mostly expanding the other way (see diagram in Figure 1). NuSTAR made the most precise measurements yet of a radioactive element, called titanium-44, in the supernova remnant called 1987A. NuSTAR sees high-energy X-rays, as shown here in the plot ranging from 60 to more than 80 kiloelectron volts. The spectral signature of titanium-44 is apparent as the two tall peaks. The white line shows where one would expect to see these spectral signatures if the titanium were not moving. The fact that the spectral peaks have shifted to lower energies indicates that the titanium has "redshifted," and is moving way from us. This is similar to what happens to a train's whistle as the train leaves the station. The whistle's sound shifts to lower frequencies. NuSTAR's detection of redshifted titanium reveals that the bulk of material ejected in the 1987A supernova is flying way from us at a velocity of 1.6 million miles per hour (2.6 million kilometers per hour). Had the explosion been spherical in nature, the titanium would have been seen flying uniformly in all directions. This is proof that this explosion occurred in an asymmetrical fashion. http://photojournal.jpl.nasa.gov/catalog/PIA19335

  15. Cauldron of Light

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image to view the animation

    In this animation, a seething cauldron of light appears to bubble and ooze around the remains of a giant star that astronomers have been watching tear itself apart for the last 300 years. This movie flips quickly between different observations taken over three years by NASA's Spitzer Space Telescope.

    Beginning in the center, the well-studied Cassiopeia A supernova remnant is shown. Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died.

    Panning outward, 'light echoes' create the illusion of motion in the clouds, as different areas of the material are lit up in succession by the light flash of the supernova. A light echo occurs when a star explodes, acting like a cosmic flashbulb. The light from this explosion zips through nearby dust clumps, illuminating and heating them up slightly. This brief period of warming causes them to glow in infrared, like a chain of Christmas bulbs lighting up one by one. The result is an optical illusion, in which the dust appears to be flying outward at the speed of light.

    In reality, the clouds are stationary, at least in the brief time over which these observations were taken. The inclination of the clouds cause some light echoes to appear to expand away from the supernova remnant, while others move towards it or boil in many directions with seeming turbulence.

  16. Hydrodynamic simulations of mechanical stellar feedback in a molecular cloud formed by thermal instability

    NASA Astrophysics Data System (ADS)

    Wareing, C. J.; Pittard, J. M.; Falle, S. A. E. G.

    2017-09-01

    We have used the AMR hydrodynamic code, mg, to perform 3D hydrodynamic simulations with self-gravity of stellar feedback in a spherical clumpy molecular cloud formed through the action of thermal instability. We simulate the interaction of the mechanical energy input from 15, 40, 60 and 120 M⊙ stars into a 100 pc diameter 16 500 M⊙ cloud with a roughly spherical morphology with randomly distributed high-density condensations. The stellar winds are introduced using appropriate non-rotating Geneva stellar evolution models. In the 15 M⊙ star case, the wind has very little effect, spreading around a few neighbouring clumps before becoming overwhelmed by the cloud collapse. In contrast, in the 40, 60 and 120 M⊙ star cases, the more powerful stellar winds create large cavities and carve channels through the cloud, breaking out into the surrounding tenuous medium during the wind phase and considerably altering the cloud structure. After 4.97, 3.97 and 3.01 Myr, respectively, the massive stars explode as supernovae (SNe). The wind-sculpted surroundings considerably affect the evolution of these SN events as they both escape the cloud along wind-carved channels and sweep up remaining clumps of cloud/wind material. The 'cloud' as a coherent structure does not survive the SN from any of these stars, but only in the 120 M⊙ case is the cold molecular material completely destabilized and returned to the unstable thermal phase. In the 40 and 60 M⊙ cases, coherent clumps of cold material are ejected from the cloud by the SN, potentially capable of further star formation.

  17. A Novel Theory For The Origin And Evolution Of Stars And Planets, Including Earth, Which Asks, 'Was The Earth Once A Small Bright Star?'

    NASA Astrophysics Data System (ADS)

    Cimorelli, S. A.; Samuels, C.

    2001-12-01

    Improved prediction methods for earthquakes and volcanic activity will naturally follow from our theory, based on new concepts of the earth's interior composition, state and activity. In this paper we present a novel hypothesis for the formation and evolution of galaxies, stars (including black holes (BHs), neutron stars, giant, mid-size, dwarf, dying and dead stars), planets (including earth), and moons. Present day phenomenon will be used to substantiate the validity of this hypothesis. Every `body' is a multiple type of star, generated from modified pieces called particle proliferators, of a dislodged/expanded BH (of category 2 (c-2)) which explodes due to a collision with another expanded BH (or explodes on its own). This includes the sun, and the planet earth, which is a type of dead star. Such that, if we remove layers of the earth, starting with the crust, we will find evidence of each preceding star formation, from brown to blue, and the remains of the particle proliferator as the innermost core is reached. We show that the hypothesis is consistent with both the available astronomical data regarding stellar evolution and planetary formation; as well as the evolution of the earth itself, by considerations of the available geophysical data. Where data is not available, reasonably simple experiments are suggested to demonstrate further the consistency and viability of the hypothesis. Theories are presented to help define and explain phenomenon such as how two (or more) c-2 BHs expand and collide to form a small `big bang' (It is postulated that there was a small big bang to form each galaxy, similar to the big bang from a category 1 BH(s) that may have formed our universe. The Great Attractors would be massive c-2 BHs and act on galaxy clusters similar to the massive c-3 BHs at the center of Galaxies acting on stars.). This in turn afforded the material/matter to form all the galactic bodies, including the dark matter inside the galaxies that we catalogue as category-3 BH(s). We conceive that c-3 BHs form gas and dust clouds, inside galaxies, that are the incubators for new stars and planets. The start and development of the planet earth, initially as an emergent piece from the colliding c-2 BHs, is given special attention to explain the continuing expansion/growth that takes place in all stars and planets. We present a new cross section of the earth (as a dead star). Although the dimensions of the inner core, outer core, and the mantle (inner and outer) are about the same as presently known, new insight is given to their formation, evolution and composition. We explain the formation of the land, the growing/expanding earth (proportional to the ocean bed growth), the division of the continents, and the formation of the ocean beds (possibly long before the oceans existed). Attempts will be made to explain the source of the supply of water on earth. We explain various planetary phenomenon including: how/why the earth is growing/expanding (not based on current plate tectonic theory) causing it to retard its rotation; why the oceans are different sizes (the Pacific is about twice the Atlantic); why the masses at the poles are shifting into the Atlantic Ocean (may provide an alternative explanation for the ice ages); why various types of earthquakes occur (a new source is presented), why volcanoes occur (two types are discussed); and improved prediction methods for earthquakes and volcanic eruptions; the making/forming of the mountains from bending and compression buckling, and shear failures of the outer surfaces of the earth's brittle outer skin of the 1st crust (and also from eruptions) due to reduction in curvature of the crust.

  18. Binary interaction dominates the evolution of massive stars.

    PubMed

    Sana, H; de Mink, S E; de Koter, A; Langer, N; Evans, C J; Gieles, M; Gosset, E; Izzard, R G; Le Bouquin, J-B; Schneider, F R N

    2012-07-27

    The presence of a nearby companion alters the evolution of massive stars in binary systems, leading to phenomena such as stellar mergers, x-ray binaries, and gamma-ray bursts. Unambiguous constraints on the fraction of massive stars affected by binary interaction were lacking. We simultaneously measured all relevant binary characteristics in a sample of Galactic massive O stars and quantified the frequency and nature of binary interactions. More than 70% of all massive stars will exchange mass with a companion, leading to a binary merger in one-third of the cases. These numbers greatly exceed previous estimates and imply that binary interaction dominates the evolution of massive stars, with implications for populations of massive stars and their supernovae.

  19. Search of massive star formation with COMICS

    NASA Astrophysics Data System (ADS)

    Okamoto, Yoshiko K.

    2004-04-01

    Mid-infrared observations is useful for studies of massive star formation. Especially COMICS offers powerful tools: imaging survey of the circumstellar structures of forming massive stars such as massive disks and cavity structures, mass estimate from spectroscopy of fine structure lines, and high dispersion spectroscopy to census gas motion around formed stars. COMICS will open the next generation infrared studies of massive star formation.

  20. Supernovae: lights in the darkness

    NASA Astrophysics Data System (ADS)

    Every year, at the end of the summer, the Section of Physics and Technique of the "Institut Menorquí d'Estudis" and the "Societat Catalana de Física" organize the "Trobades Científiques de la Mediterrània" with the support of several academic institutions. The 2007 edition has been devoted to stellar explosions, the true evolutionary engines of galaxies. Whenever a star explodes, it injects into the interstellar medium a kinetic energy of 1051 erg and between one and several solar masses of newly synthesized elements as a result of the thermonuclear reactions that have taken place within the stellar interior. Two mechanisms are able to provide these enormous amounts of energy: one of them thermonuclear and the other, gravitational. Thermonuclear supernovae are the result of the incineration of a carbon-oxygen white dwarf that is the compact star of a binary stellar system. If the two stars are sufficiently close to each other, the white dwarf accretes matter from its companion, approaches the mass of Chandrasekhar, and ends up exploding. The processes previous to the explosion, the explosion itself, as well as the exact nature of the double stellar system that explodes, are still a matter of discussion. This point is particularly important because these explosions, known as Type Ia Supernovae, are very homogenous and can be used to measure cosmological distances. The most spectacular result obtained, is the discovery of the accelerated expansion of the Universe, but it still feels uncomfortable that such a fundamental result is based on a "measuring system" whose origin and behaviour in time is unknown. At the end of their lives, massive stars generate an iron nucleus that gets unstable when approaching the Chandrasekhar mass. Its collapse gives rise to the formation of a neutron star or a black hole, and the external manifestation of the energy that is released, about a 1053 erg, consists of a Type II or Ib/c supernova, of a Gamma Ray Burst (GRB) or even of both things. From the beginning of the nineties, when CGRO discovered the cosmological character of these phenomena, the GRB have constituted one of the most exciting problems of modern Astrophysics. The stellar end products that leave supernovae, are as interesting as supernovae themselves. On one hand, as we previously said, they completely determine the chemical evolution of the Galaxy, which is fundamental for the formation of planets or, even, for the appearance of life. On the other hand, they leave collapsed objects such as neutron stars and black holes that give rise to a wide range of violent phenomena: x-rays eruptions, microquasars, acceleration of particles to high energies, etc. The goal of this workshop was to bring together scientists with a deep insight into these topics and advanced PhD students, with the purpose of discussing in depth the remaining problems. The organizers are specially grateful to DIUE-Generalitat de Catalunya, Ministerio de Educación y Ciencia, Balearic Island University, Barcelona University, Polythecnical University of Catalonia, Valencia University, CSIC and IFAE for their economical support.

  1. Rise of the First Super-Massive Stars

    NASA Astrophysics Data System (ADS)

    Regan, John A.; Downes, Turlough P.

    2018-05-01

    We use high resolution adaptive mesh refinement simulations to model the formation of massive metal-free stars in the early Universe. By applying Lyman-Werner (LW) backgrounds of 100 J21 and 1000 J21 respectively we construct environments conducive to the formation of massive stars. We find that only in the case of the higher LW backgrounds are super-critical accretion rates realised that are necessary for super-massive star (SMS) formation. Mild fragmentation is observed for both backgrounds. Violent dynamical interactions between the stars that form in the more massive halo formed (1000 J21 background) results in the eventual expulsion of the two most massive stars from the halo. In the smaller mass halo (100 J21 background) mergers of stars occur before any multibody interactions and a single massive Pop III star is left at the centre of the halo at the end of our simulation. Feedback from the very massive Pop III stars is not effective in generating a large HII region with ionising photons absorbed within a few thousand AU of the star. In all cases a massive black hole seed is the expected final fate of the most massive objects. The seed of the massive Pop III star which remained at the centre of the less massive halo experiences steady accretion rates of almost 10-2M_{⊙}/yr and if these rates continue could potentially experience super-Eddington accretion rates in the immediate aftermath of collapsing into a black hole.

  2. THE PREVALENCE AND IMPACT OF WOLF–RAYET STARS IN EMERGING MASSIVE STAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokal, Kimberly R.; Johnson, Kelsey E.; Indebetouw, Rémy

    We investigate Wolf–Rayet (WR) stars as a source of feedback contributing to the removal of natal material in the early evolution of massive star clusters. Despite previous work suggesting that massive star clusters clear out their natal material before the massive stars evolve into the WR phase, WR stars have been detected in several emerging massive star clusters. These detections suggest that the timescale for clusters to emerge can be at least as long as the time required to produce WR stars (a few million years), and could also indicate that WR stars may be providing the tipping point inmore » the combined feedback processes that drive a massive star cluster to emerge. We explore the potential overlap between the emerging phase and the WR phase with an observational survey to search for WR stars in emerging massive star clusters hosting WR stars. We select candidate emerging massive star clusters from known radio continuum sources with thermal emission and obtain optical spectra with the 4 m Mayall Telescope at Kitt Peak National Observatory and the 6.5 m MMT.{sup 4} We identify 21 sources with significantly detected WR signatures, which we term “emerging WR clusters.” WR features are detected in ∼50% of the radio-selected sample, and thus we find that WR stars are commonly present in currently emerging massive star clusters. The observed extinctions and ages suggest that clusters without WR detections remain embedded for longer periods of time, and may indicate that WR stars can aid, and therefore accelerate, the emergence process.« less

  3. The bright optical afterglow of the nearby gamma-ray burst of 29 March 2003.

    PubMed

    Price, P A; Fox, D W; Kulkarni, S R; Peterson, B A; Schmidt, B P; Soderberg, A M; Yost, S A; Berger, E; Djorgovski, S G; Frail, D A; Harrison, F A; Sari, R; Blain, A W; Chapman, S C

    2003-06-19

    Past studies of cosmological gamma-ray bursts (GRBs) have been hampered by their extreme distances, resulting in faint afterglows. A nearby GRB could potentially shed much light on the origin of these events, but GRBs with a redshift z

  4. SN 2015ba: a Type IIP supernova with a long plateau.

    NASA Astrophysics Data System (ADS)

    Dastidar, Raya; Misra, Kuntal; Hosseinzadeh, G.; Pastorello, A.; Pumo, M. L.; Valenti, S.; McCully, C.; Tomasella, L.; Arcavi, I.; Elias-Rosa, N.; Singh, Mridweeka; Gangopadhyay, Anjasha; Howell, D. A.; Morales-Garoffolo, Antonia; Zampieri, L.; Kumar, Brijesh; Turatto, M.; Benetti, S.; Tartaglia, L.; Ochner, P.; Sahu, D. K.; Anupama, G. C.; Pandey, S. B.

    2018-06-01

    We present optical photometry and spectroscopy from about a week after explosion to ˜272 d of an atypical Type IIP supernova, SN 2015ba, which exploded in the edge-on galaxy IC 1029. SN 2015ba is a luminous event with an absolute V-band magnitude of -17.1 ± 0.2 mag at 50 d since explosion and has a long plateau lasting for ˜123 d. The distance to the SN is estimated to be 34.8 ± 0.7 Mpc using the expanding photosphere and standard candle methods. High-velocity H Balmer components constant with time are observed in the late-plateau phase spectra of SN 2015ba, which suggests a possible role of circumstellar interaction at these phases. Both hydrodynamical and analytical modelling suggest a massive progenitor of SN 2015ba with a pre-explosion mass of 24-26 M⊙. However, the nebular spectra of SN 2015ba exhibit insignificant levels of oxygen, which is otherwise expected from a massive progenitor. This might be suggestive of the non-monotonical link between O-core masses and the zero-age main-sequence mass of pre-supernova stars and/or uncertainties in the mixing scenario in the ejecta of supernovae.

  5. Explosions of Thorne-Żytkow objects

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.

    2018-03-01

    We propose that massive Thorne-Żytkow objects can explode. A Thorne-Żytkow object is a theoretically predicted star that has a neutron core. When nuclear reactions supporting a massive Thorne-Żytkow object terminate, a strong accretion occurs towards the central neutron core. The accretion rate is large enough to sustain a super-Eddington accretion towards the neutron core. The neutron core may collapse to a black hole after a while. A strong large-scale outflow or a jet can be launched from the super-Eddington accretion disc and the collapsing Thorne-Żytkow object can be turned into an explosion. The ejecta have about 10 M⊙ but the explosion energy depends on when the accretion is suppressed. We presume that the explosion energy could be as low as ˜1047 erg and such a low-energy explosion could be observed like a failed supernova. The maximum possible explosion energy is ˜1052 erg and such a high-energy explosion could be observed as an energetic Type II supernova or a superluminous supernova. Explosions of Thorne-Żytkow objects may provide a new path to spread lithium and other heavy elements produced through the irp process such as molybdenum in the Universe.

  6. The Destructive Birth of Massive Stars and Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Rosen, Anna; Krumholz, Mark; McKee, Christopher F.; Klein, Richard I.; Ramirez-Ruiz, Enrico

    2017-01-01

    Massive stars play an essential role in the Universe. They are rare, yet the energy and momentum they inject into the interstellar medium with their intense radiation fields dwarfs the contribution by their vastly more numerous low-mass cousins. Previous theoretical and observational studies have concluded that the feedback associated with massive stars' radiation fields is the dominant mechanism regulating massive star and massive star cluster (MSC) formation. Therefore detailed simulation of the formation of massive stars and MSCs, which host hundreds to thousands of massive stars, requires an accurate treatment of radiation. For this purpose, we have developed a new, highly accurate hybrid radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform a suite of three-dimensional radiation-hydrodynamic simulations of the formation of massive stars and MSCs. For individual massive stellar systems, we simulate the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channeled to the massive stellar system via gravitational and Rayleigh-Taylor (RT) instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of RT instability, but does not suppress it entirely provided the edges of the radiation-dominated bubbles are adequately resolved. RT instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. To model MSC formation, we simulate the collapse of a dense, turbulent, magnetized Mcl = 106 M⊙ molecular cloud. We find that the influence of the magnetic pressure and radiative feedback slows down star formation. Furthermore, we find that star formation is suppressed along dense filaments where the magnetic field is amplified. Our results suggest that the combined effect of turbulence, magnetic pressure, and radiative feedback from massive stars is responsible for the low star formation efficiencies observed in molecular clouds.

  7. 3D NLTE analysis of the most iron-deficient star, SMSS0313-6708

    NASA Astrophysics Data System (ADS)

    Nordlander, T.; Amarsi, A. M.; Lind, K.; Asplund, M.; Barklem, P. S.; Casey, A. R.; Collet, R.; Leenaarts, J.

    2017-01-01

    Context. Models of star formation in the early universe require a detailed understanding of accretion, fragmentation and radiative feedback in metal-free molecular clouds. Different simulations predict different initial mass functions of the first stars, ranging from predominantly low-mass (0.1-10 M⊙), to massive (10-100 M⊙), or even supermassive (100-1000 M⊙). The mass distribution of the first stars should lead to unique chemical imprints on the low-mass second and later generation metal-poor stars still in existence. The chemical composition of SMSS0313-6708, which has the lowest abundances of Ca and Fe of any star known, indicates it was enriched by a single massive supernova. Aims: The photospheres of metal-poor stars are relatively transparent in the UV, which may lead to large three-dimensional (3D) effects as well as departures from local thermodynamical equilibrium (LTE), even for weak spectral lines. If 3D effects and departures from LTE (NLTE) are ignored or treated incorrectly, errors in the inferred abundances may significantly bias the inferred properties of the polluting supernovae. We redetermine the chemical composition of SMSS0313-6708by means of the most realistic methods available, and compare the results to predicted supernova yields. Methods: A 3D hydrodynamical Staggermodel atmosphere and 3D NLTE radiative transfer were applied to obtain accurate abundances for Li, Na, Mg, Al, Ca and Fe. The model atoms employ realistic collisional rates, with no calibrated free parameters. Results: We find significantly higher abundances in 3D NLTE than 1D LTE by 0.8 dex for Fe, and 0.5 dex for Mg, Al and Ca, while Li and Na are unaffected to within 0.03 dex. In particular, our upper limit for [Fe/H] is now a factor ten larger, at [Fe/H] < -6.53 (3σ), than previous estimates based on ⟨ 3D ⟩NLTE (I.e., using averaged 3D models). This higher estimate is due to a conservative upper limit estimation, updated NLTE data, and 3D-⟨ 3D ⟩NLTE differences, all of which lead to a higher abundance determination. Conclusions: We find that supernova yields for models in a wide range of progenitor masses reproduce the revised chemical composition. In addition to massive progenitors of 20-60 M⊙ exploding with low energies (1-2 B, where 1 B = 1051 erg), we also find good fits for progenitors of 10 M⊙, with very low explosion energies (<1 B). We cannot reconcile the new abundances with supernovae or hypernovae with explosion energies above 2.5 B, nor with pair-instability supernovae.

  8. Essential Ingredients in Core-collapse Supernovae

    DOE PAGES

    Hix, William Raphael; Lentz, E. J.; Endeve, Eirik; ...

    2014-03-27

    Marking the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae bring together physics at a wide range in spatial scales, from kilometer-sized hydrodynamic motions (eventually growing to gigameter scale) down to femtometer scale nuclear reactions. Carrying 10more » $$^{44}$$ joules of kinetic energy and a rich-mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up ourselves and our solar system. We will discuss our emerging understanding of the convectively unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino-radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Recent multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.« less

  9. X-Ray Illumination of the Ejecta of Supernova 1987A

    NASA Technical Reports Server (NTRS)

    Larsson, J.; Fransson, C.; Oestlin, G.; Groeningsson, P.; Jerkstrand, A.; Kozma, C.; Sollerman, J.; Challis, P.; Kirshner, R. P.; Chevalier, R. A.; hide

    2011-01-01

    When a massive star explodes as a supernova, substantial amounts of radioactive elements-primarily Ni-56, Ni-57 and Ti-44 are produced. After the initial from shock heating, the light emitted by the supernova is due to the decay of these elements. However, after decades, the energy powering a supernova remnant comes from the shock interaction between the ejecta and the surrounding medium. The transition to this phase has hitherto not been observed: supernovae occur too infrequently in the Milky Way to provide a young example, and extragalactic supernovae are generally too faint and too small. Here we report observations that show this transition in the supernova SN 1987A in the Large Magellan Cloud. From 1994 to 200l, the ejecta faded owing to radioactive decay of Ti-44 as predicted. Then the flux started to increase, more than doubling by the end of 2009. We show that this increase is the result of heat deposited by X-rays produced as the ejecta interacts with the surrounding material. In time, the X-rays will penetrate farther into the ejects, enabling us to analyse the structure and chemistry of the vanished star.

  10. Astronomers Discover Most Massive Neutron Star Yet Known

    NASA Astrophysics Data System (ADS)

    2010-10-01

    Astronomers using the National Science Foundation's Green Bank Telescope (GBT) have discovered the most massive neutron star yet found, a discovery with strong and wide-ranging impacts across several fields of physics and astrophysics. "This neutron star is twice as massive as our Sun. This is surprising, and that much mass means that several theoretical models for the internal composition of neutron stars now are ruled out," said Paul Demorest, of the National Radio Astronomy Observatory (NRAO). "This mass measurement also has implications for our understanding of all matter at extremely high densities and many details of nuclear physics," he added. Neutron stars are the superdense "corpses" of massive stars that have exploded as supernovae. With all their mass packed into a sphere the size of a small city, their protons and electrons are crushed together into neutrons. A neutron star can be several times more dense than an atomic nucleus, and a thimbleful of neutron-star material would weigh more than 500 million tons. This tremendous density makes neutron stars an ideal natural "laboratory" for studying the most dense and exotic states of matter known to physics. The scientists used an effect of Albert Einstein's theory of General Relativity to measure the mass of the neutron star and its orbiting companion, a white dwarf star. The neutron star is a pulsar, emitting lighthouse-like beams of radio waves that sweep through space as it rotates. This pulsar, called PSR J1614-2230, spins 317 times per second, and the companion completes an orbit in just under nine days. The pair, some 3,000 light-years distant, are in an orbit seen almost exactly edge-on from Earth. That orientation was the key to making the mass measurement. As the orbit carries the white dwarf directly in front of the pulsar, the radio waves from the pulsar that reach Earth must travel very close to the white dwarf. This close passage causes them to be delayed in their arrival by the distortion of spacetime produced by the white dwarf's gravitation. This effect, called the Shapiro Delay, allowed the scientists to precisely measure the masses of both stars. "We got very lucky with this system. The rapidly-rotating pulsar gives us a signal to follow throughout the orbit, and the orbit is almost perfectly edge-on. In addition, the white dwarf is particularly massive for a star of that type. This unique combination made the Shapiro Delay much stronger and thus easier to measure," said Scott Ransom, also of NRAO. The astronomers used a newly-built digital instrument called the Green Bank Ultimate Pulsar Processing Instrument (GUPPI), attached to the GBT, to follow the binary stars through one complete orbit earlier this year. Using GUPPI improved the astronomers' ability to time signals from the pulsar severalfold. The researchers expected the neutron star to have roughly one and a half times the mass of the Sun. Instead, their observations revealed it to be twice as massive as the Sun. That much mass, they say, changes their understanding of a neutron star's composition. Some theoretical models postulated that, in addition to neutrons, such stars also would contain certain other exotic subatomic particles called hyperons or condensates of kaons. "Our results rule out those ideas," Ransom said. Demorest and Ransom, along with Tim Pennucci of the University of Virginia, Mallory Roberts of Eureka Scientific, and Jason Hessels of the Netherlands Institute for Radio Astronomy and the University of Amsterdam, reported their results in the October 28 issue of the scientific journal Nature. Their result has further implications, outlined in a companion paper, scheduled for publication in the Astrophysical Journal Letters. "This measurement tells us that if any quarks are present in a neutron star core, they cannot be 'free,' but rather must be strongly interacting with each other as they do in normal atomic nuclei," said Feryal Ozel of the University of Arizona, lead author of the second paper. There remain several viable hypotheses for the internal composition of neutron stars, but the new results put limits on those, as well as on the maximum possible density of cold matter. The scientific impact of the new GBT observations also extends to other fields beyond characterizing matter at extreme densities. A leading explanation for the cause of one type of gamma-ray burst -- the "short-duration" bursts -- is that they are caused by colliding neutron stars. The fact that neutron stars can be as massive as PSR J1614-2230 makes this a viable mechanism for these gamma-ray bursts. Such neutron-star collisions also are expected to produce gravitational waves that are the targets of a number of observatories operating in the United States and Europe. These waves, the scientists say, will carry additional valuable information about the composition of neutron stars. "Pulsars in general give us a great opportunity to study exotic physics, and this system is a fantastic laboratory sitting out there, giving us valuable information with wide-ranging implications," Ransom explained. "It is amazing to me that one simple number -- the mass of this neutron star -- can tell us so much about so many different aspects of physics and astronomy," he added.

  11. A Galactic Spectacle

    NASA Image and Video Library

    2017-12-08

    NASA image release August 5, 2010 A beautiful new image of two colliding galaxies has been released by NASA's Great Observatories. The Antennae galaxies, located about 62 million light-years from Earth, are shown in this composite image from the Chandra X-ray Observatory (blue), the Hubble Space Telescope (gold and brown), and the Spitzer Space Telescope (red). The Antennae galaxies take their name from the long antenna-like "arms," seen in wide-angle views of the system. These features were produced by tidal forces generated in the collision. The collision, which began more than 100 million years ago and is still occurring, has triggered the formation of millions of stars in clouds of dusts and gas in the galaxies. The most massive of these young stars have already sped through their evolution in a few million years and exploded as supernovas. The X-ray image from Chandra shows huge clouds of hot, interstellar gas that have been injected with rich deposits of elements from supernova explosions. This enriched gas, which includes elements such as oxygen, iron, magnesium, and silicon, will be incorporated into new generations of stars and planets. The bright, point-like sources in the image are produced by material falling onto black holes and neutron stars that are remnants of the massive stars. Some of these black holes may have masses that are almost one hundred times that of the Sun. The Spitzer data show infrared light from warm dust clouds that have been heated by newborn stars, with the brightest clouds lying in the overlapping region between the two galaxies. The Hubble data reveal old stars and star-forming regions in gold and white, while filaments of dust appear in brown. Many of the fainter objects in the optical image are clusters containing thousands of stars. The Chandra image was taken in December 1999. The Spitzer image was taken in December 2003. The Hubble image was taken in July 2004, and February 2005. To read more go to: www.nasa.gov/mission_pages/chandra/multimedia/antennae.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook Credit: NASA, ESA, SAO, CXC, JPL-Caltech, and STScI Acknowledgment: G. Fabbiano and Z. Wang (Harvard-Smithsonian CfA), and B. Whitmore (STScI)

  12. Massive, wide binaries as tracers of massive star formation

    NASA Astrophysics Data System (ADS)

    Griffiths, Daniel W.; Goodwin, Simon P.; Caballero-Nieves, Saida M.

    2018-05-01

    Massive stars can be found in wide (hundreds to thousands au) binaries with other massive stars. We use N-body simulations to show that any bound cluster should always have approximately one massive wide binary: one will probably form if none are present initially, and probably only one will survive if more than one is present initially. Therefore, any region that contains many massive wide binaries must have been composed of many individual subregions. Observations of Cyg OB2 show that the massive wide binary fraction is at least a half (38/74), which suggests that Cyg OB2 had at least 30 distinct massive star formation sites. This is further evidence that Cyg OB2 has always been a large, low-density association. That Cyg OB2 has a normal high-mass initial mass function (IMF) for its total mass suggests that however massive stars form, they `randomly sample' the IMF (as the massive stars did not `know' about each other).

  13. On the origin of high-velocity runaway stars

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2009-06-01

    We explore the hypothesis that some high-velocity runaway stars attain their peculiar velocities in the course of exchange encounters between hard massive binaries and a very massive star (either an ordinary 50-100Msolar star or a more massive one, formed through runaway mergers of ordinary stars in the core of a young massive star cluster). In this process, one of the binary components becomes gravitationally bound to the very massive star, while the second one is ejected, sometimes with a high speed. We performed three-body scattering experiments and found that early B-type stars (the progenitors of the majority of neutron stars) can be ejected with velocities of >~200-400kms-1 (typical of pulsars), while 3-4Msolar stars can attain velocities of >~300-400kms-1 (typical of the bound population of halo late B-type stars). We also found that the ejected stars can occasionally attain velocities exceeding the Milky Ways's escape velocity.

  14. Triggering Star Formation: From the Pillars of Creation to the Formation of Our Solar System

    NASA Astrophysics Data System (ADS)

    Gritschneder, Matthias; Lin, Douglas N. C.

    We study the evolution of molecular clouds under the influence of ionizing radiation. We propose that the Pipe Nebula is an HII region shell swept up by the B2 IV β Cephei star θ Ophiuchi. After reviewing the recent observations, we perform a series of analytical calculations. We are able to show that the current size, mass and pressure of the region can be explained in this scenario. The Pipe Nebula can be best described by a three phase medium in pressure equilibrium. The pressure support is provided by the ionized gas and mediated by an atomic component to confine the cores at the observed current pressure. We then present simulations on the future evolution as soon as the massive star explodes in a supernova. We show that a surviving core at the border of the HII-region (D = 5 pc) is getting enriched sufficiently with supernova material and is triggered into collapse fast enough to be consistent with the tight constraints put by meteoritic data of e.g.26Al on the formation of our Solar System. We therefore propose that the formation of the Solar System was triggered by the shock wave of a type IIa supernova interacting with surviving cold structures similar to the Pillars of Creation at the border of HII-regions.

  15. Hydro-gravitational-dynamics cosmology is crucial to astrobiology and the biological big bang at two million years

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.

    2015-09-01

    Hydro-Gravitational-Dynamics (HGD) cosmology predicts that the 1012 s (30 Kyr) H-He4 plasma protogalaxies become, by viscous fragmentation, proto-globular-star-cluster PGC clumps of a trillion small planets, at the 1013 s transition to gas. Larger planets and stars result from mergers of these hot 3000 K hydrogen planets in the PGCs. Stardust oxides of life chemicals C, N, O, Fe, Si seed the planets when the stars explode as supernovae. Hydrogen reduces the metal oxides and silicates to metal and rocky planet cores with massive hot water oceans at critical water temperature 647 K in which organic chemistry and life can develop. Because information is continually exchanged between the merging planets, they form a cosmic soup. The biological big bang occurs between 2 Myr when liquid water rains hot deep oceans in the cooling cosmos, and 8 Myr when the oceans freeze6. Thus, HGD cosmology explains the Hoyle/Wickramasinghe concept of cometary panspermia by giving a vast, hot, nourishing, cosmological primordial soup for abiogenesis, and the means for transmitting the resulting life forms and their evolving RNA/DNA mechanisms widely throughout the universe. A primordial astrophysical basis is provided for astrobiology by HGD cosmology. Concordance ΛCDMHC cosmology is rendered obsolete by the observation of complex life on Earth.

  16. SN 2016X: a type II-P supernova with a signature of shock breakout from explosion of a massive red supergiant

    NASA Astrophysics Data System (ADS)

    Huang, F.; Wang, X.-F.; Hosseinzadeh, G.; Brown, P. J.; Mo, J.; Zhang, J.-J.; Zhang, K.-C.; Zhang, T.-M.; Howell, D.-A.; Arcavi, I.; McCully, C.; Valenti, S.; Rui, L.-M.; Song, H.; Xiang, D.-F.; Li, W.-X.; Lin, H.; Wang, L.-F.

    2018-04-01

    We present extensive ultraviolet (UV) and optical photometry, as well as dense optical spectroscopy, for type II Plateau (IIP) supernova SN 2016X that exploded in the nearby (˜15 Mpc) spiral galaxy UGC 08041. The observations span the period from 2 to 180 d after the explosion; in particular, the Swift UV data probably captured the signature of shock breakout associated with the explosion of SN 2016X. It shows very strong UV emission during the first week after explosion, with a contribution of ˜20-30 per cent to the bolometric luminosity (versus ≲15 per cent for normal SNe IIP). Moreover, we found that this supernova has an unusually long rise time of about 12.6 ± 0.5 d in the R band (versus ˜7.0 d for typical SNe IIP). The optical light curves and spectral evolution are quite similar to the fast-declining type IIP object SN 2013ej, except that SN 2016X has a relatively brighter tail. Based on the evolution of photospheric temperature as inferred from the Swift data in the early phase, we derive that the progenitor of SN 2016X has a radius of about 930 ± 70 R⊙. This large-size star is expected to be a red supergiant star with an initial mass of ≳19-20 M⊙ based on the mass-radius relation of the Galactic red supergiants, and it represents one of the most largest and massive progenitors found for SNe IIP.

  17. Mass loss and stellar superwinds

    NASA Astrophysics Data System (ADS)

    Vink, Jorick S.

    2017-09-01

    Mass loss bridges the gap between massive stars and supernovae (SNe) in two major ways: (i) theoretically, it is the amount of mass lost that determines the mass of the star prior to explosion and (ii) observations of the circumstellar material around SNe may teach us the type of progenitor that made the SN. Here, I present the latest models and observations of mass loss from massive stars, both for canonical massive O stars, as well as very massive stars that show Wolf-Rayet type features. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  18. Very massive runaway stars from three-body encounters

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Gualandris, Alessia

    2011-01-01

    Very massive stars preferentially reside in the cores of their parent clusters and form binary or multiple systems. We study the role of tight very massive binaries in the origin of the field population of very massive stars. We performed numerical simulations of dynamical encounters between single (massive) stars and a very massive binary with parameters similar to those of the most massive known Galactic binaries, WR 20a and NGC 3603-A1. We found that these three-body encounters could be responsible for the origin of high peculiar velocities (≥70 km s-1) observed for some very massive (≥60-70 M⊙) runaway stars in the Milky Way and the Large Magellanic Cloud (e.g. λ Cep, BD+43°3654, Sk -67°22, BI 237, 30 Dor 016), which can hardly be explained within the framework of the binary-supernova scenario. The production of high-velocity massive stars via three-body encounters is accompanied by the recoil of the binary in the opposite direction to the ejected star. We show that the relative position of the very massive binary R145 and the runaway early B-type star Sk-69°206 on the sky is consistent with the possibility that both objects were ejected from the central cluster, R136, of the star-forming region 30 Doradus via the same dynamical event - a three-body encounter.

  19. Seeing a Stellar Explosion in 3D

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Astronomers using ESO's Very Large Telescope have for the first time obtained a three-dimensional view of the distribution of the innermost material expelled by a recently exploded star. The original blast was not only powerful, according to the new results. It was also more concentrated in one particular direction. This is a strong indication that the supernova must have been very turbulent, supporting the most recent computer models. Unlike the Sun, which will die rather quietly, massive stars arriving at the end of their brief life explode as supernovae, hurling out a vast quantity of material. In this class, Supernova 1987A (SN 1987A) in the rather nearby Large Magellanic Cloud occupies a very special place. Seen in 1987, it was the first naked-eye supernova to be observed for 383 years (eso8704), and because of its relative closeness, it has made it possible for astronomers to study the explosion of a massive star and its aftermath in more detail than ever before. It is thus no surprise that few events in modern astronomy have been met with such an enthusiastic response by scientists. SN 1987A has been a bonanza for astrophysicists (eso8711 and eso0708). It provided several notable observational 'firsts', like the detection of neutrinos from the collapsing inner stellar core triggering the explosion, the localisation on archival photographic plates of the star before it exploded, the signs of an asymmetric explosion, the direct observation of the radioactive elements produced during the blast, observation of the formation of dust in the supernova, as well as the detection of circumstellar and interstellar material (eso0708). New observations making use of a unique instrument, SINFONI [1], on ESO's Very Large Telescope (VLT) have provided even deeper knowledge of this amazing event, as astronomers have now been able to obtain the first-ever 3D reconstruction of the central parts of the exploding material. This view shows that the explosion was stronger and faster in some directions than others, leading to an irregular shape with some parts stretching out further into space. The first material to be ejected from the explosion travelled at an incredible 100 million km per hour, which is about a tenth of the speed of light or around 100 000 times faster than a passenger jet. Even at this breakneck speed it has taken 10 years to reach a previously existing ring of gas and dust puffed out from the dying star. The images also demonstrate that another wave of material is travelling ten times more slowly and is being heated by radioactive elements created in the explosion. "We have established the velocity distribution of the inner ejecta of Supernova 1987A," says lead author Karina Kjær. "Just how a supernova explodes is not very well understood, but the way the star exploded is imprinted on this inner material. We can see that this material was not ejected symmetrically in all directions, but rather seems to have had a preferred direction. Besides, this direction is different to what was expected from the position of the ring." Such asymmetric behaviour was predicted by some of the most recent computer models of supernovae, which found that large-scale instabilities take place during the explosion. The new observations are thus the first direct confirmation of such models. SINFONI is the leading instrument of its kind, and only the level of detail it affords allowed the team to draw their conclusions. Advanced adaptive optics systems counteracted the blurring effects of the Earth's atmosphere while a technique called integral field spectroscopy allowed the astronomers to study several parts of the supernova's chaotic core simultaneously, leading to the build-up of the 3D image. "Integral field spectroscopy is a special technique where for each pixel we get information about the nature and velocity of the gas," says Kjær. "This means that besides the normal picture we also have the velocity along the line of sight. Because we know the time that has passed since the explosion, and because the material is moving outwards freely, we can convert this velocity into a distance. This gives us a picture of the inner ejecta as seen straight on and from the side." Notes [1] The team used the SINFONI (Spectrograph for INtegral Field Observations in the Near Infrared) instrument mounted on ESO's Very Large Telescope (VLT). SINFONI is a near-infrared (1.1-2.45 µm) integral field spectrograph fed by an adaptive optics module. More information This research will appear in Astronomy and Astrophysics ("The 3-D Structure of SN 1987A's inner Ejecta", by K. Kjær et al.). The team is composed of Karina Kjær (Queen's University Belfast, UK), Bruno Leibundgut and Jason Spyromilio (ESO), and Claes Fransson and Anders Jerkstrand (Stockholm University, Sweden). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  20. WR and LBV stars

    NASA Astrophysics Data System (ADS)

    Kochiashvili, Nino; Beradze, Sophie; Kochiashvili, Ia; Natsvlishvili, Rezo; Vardosanidze, Manana

    Evolutionary scenarios of massive stars were revised in recent decades, after finding "unusual", blue progenitor of SN 1987A and after detecting the more massive stars than the accepted 120 M ⊙ maximum limit of stellar masses. A very important relation exists between WR and LBV stars. They represent the earlier, pre-SN evolutionary states of massive stars. WR and LBV stars and "classic" evolutionary scheme of the relation between the different type massive stars are discussed in this article. There also exist the newest evolutionary scenarios for low metallicity massive stars, which give us a different picture of their post main-sequence evolution. There is a rather good tradition of observations and investigations of massive stars at Abastumani Astrophysical Observatory. The authors discuss the new findings on the fate of P Cygni, the LBV star. These results on the reddening of the star and about its next possible outburst in the near future were obtained on the basis of UBV long-term electrophotometric observations of P Cygni by Eugene Kharadze and Nino Magalashvili. The observations were held in 1951-1983 at Abastumani Observatory using 33-cm and 48-cm reflectors.

  1. Mass loss and stellar superwinds.

    PubMed

    Vink, Jorick S

    2017-10-28

    Mass loss bridges the gap between massive stars and supernovae (SNe) in two major ways: (i) theoretically, it is the amount of mass lost that determines the mass of the star prior to explosion and (ii) observations of the circumstellar material around SNe may teach us the type of progenitor that made the SN. Here, I present the latest models and observations of mass loss from massive stars, both for canonical massive O stars, as well as very massive stars that show Wolf-Rayet type features.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).

  2. Star Formation in the Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Oliveira, J. M.

    2008-12-01

    M16 (the Eagle Nebula) is a striking star forming region, with a complex morphology of gas and dust sculpted by the massive stars in NGC 6611. Detailed studies of the famous ``elephant trunks'' dramatically increased our understanding of the massive star feedback into the parent molecular cloud. A rich young stellar population (2-3 Myr) has been identified, from massive O-stars down to substellar masses. Deep into the remnant molecular material, embedded protostars, Herbig-Haro objects and maser sources bear evidence of ongoing star formation in the nebula, possibly triggered by the massive cluster members. M 16 is a excellent template for the study of star formation under the hostile environment created by massive O-stars. This review aims at providing an observational overview not only of the young stellar population but also of the gas remnant of the star formation process.

  3. Uncovering the secrets of the Quintuplet Cluster

    NASA Image and Video Library

    2015-07-13

    Although this cluster of stars gained its name due to its five brightest stars, it is home to hundreds more. The huge number of massive young stars in the cluster is clearly captured in this NASA/ESA Hubble Space Telescope image. The cluster is located close to the Arches Cluster and is just 100 light-years from the centre of our galaxy. The cluster’s proximity to the dust at the centre of the galaxy means that much of its visible light is blocked, which helped to keep the cluster unknown until its discovery in 1990, when it was revealed by observations in the infrared. Infrared images of the cluster, like the one shown here, allow us to see through the obscuring dust to the hot stars in the cluster. The Quintuplet Cluster hosts two extremely rare luminous blue variable stars: the Pistol Star and the lesser known V4650 Sgr. If you were to draw a line horizontally through the centre of this image from left to right, you could see the Pistol Star hovering just above the line about one third of the way along it. The Pistol Star is one of the most luminous known stars in the Milky Way and takes its name from the shape of the Pistol Nebula that it illuminates, but which is not visible in this infrared image. The exact age and future of the Pistol Star are uncertain, but it is expected to end in a supernova or even a hypernova in one to three million years. The cluster also contains a number of red supergiants. These stars are among the largest in the galaxy and are burning their fuel at an incredible speed, meaning they will have a very short lifetime. Their presence suggests an average cluster age of nearly four million years. At the moment these stars are on the verge of exploding as supernovae. During their spectacular deaths they will release vast amounts of energy which, in turn, will heat the material — dust and gas — between the other stars. This observation shows the Quintuplet Cluster in the infrared and demonstrates the leap in Hubble’s performance sinc

  4. A Look into the Hellish Cradles of Suns and Solar Systems

    NASA Astrophysics Data System (ADS)

    2009-09-01

    New images released today by ESO delve into the heart of a cosmic cloud, called RCW 38, crowded with budding stars and planetary systems. There, young stars bombard fledgling suns and planets with powerful winds and blazing light, helped in their task by short-lived, massive stars that explode as supernovae. In some cases, this onslaught cooks away the matter that may eventually form new solar systems. Scientists think that our own Solar System emerged from such an environment. The dense star cluster RCW 38 glistens about 5500 light years away in the direction of the constellation Vela (the Sails). Like the Orion Nebula Cluster, RCW 38 is an "embedded cluster", in that the nascent cloud of dust and gas still envelops its stars. Astronomers have determined that most stars, including the low mass, reddish ones that outnumber all others in the Universe, originate in these matter-rich locations. Accordingly, embedded clusters provide scientists with a living laboratory in which to explore the mechanisms of star and planetary formation. "By looking at star clusters like RCW 38, we can learn a great deal about the origins of our Solar System and others, as well as those stars and planets that have yet to come", says Kim DeRose, first author of the new study that appears in the Astronomical Journal. DeRose did her work on RCW 38 as an undergraduate student at the Harvard-Smithsonian Center for Astrophysics, USA. Using the NACO adaptive optics instrument on ESO's Very Large Telescope [1], astronomers have obtained the sharpest image yet of RCW 38. They focused on a small area in the centre of the cluster that surrounds the massive star IRS2, which glows in the searing, white-blue range, the hottest surface colour and temperatures possible for stars. These dramatic observations revealed that IRS2 is actually not one, but two stars - a binary system consisting of twin scorching stars, separated by about 500 times the Earth-Sun distance. In the NACO image, the astronomers found a handful of protostars - the faintly luminous precursors to fully realised stars - and dozens of other candidate stars that have eked out an existence here despite the powerful ultraviolet light radiated by IRS2. Some of these gestating stars may, however, not get past the protostar stage. IRS2's strong radiation energises and disperses the material that might otherwise collapse into new stars, or that has settled into so-called protoplanetary discs around developing stars. In the course of several million years, the surviving discs may give rise to the planets, moons and comets that make up planetary systems like our own. As if intense ultraviolet rays were not enough, crowded stellar nurseries like RCW 38 also subject their brood to frequent supernovae when giant stars explode at the ends of their lives. These explosions scatter material throughout nearby space, including rare isotopes - exotic forms of chemical elements that are created in these dying stars. This ejected material ends up in the next generation of stars that form nearby. Because these isotopes have been detected in our Sun, scientists have concluded that the Sun formed in a cluster like RCW 38, rather than in a more rural portion of the Milky Way. "Overall, the details of astronomical objects that adaptive optics reveals are critical in understanding how new stars and planets form in complex, chaotic regions like RCW 38", says co-author Dieter Nürnberger. Notes [1] The name "NACO" is a combination of the Nasmyth Adaptive Optics System (NAOS) and the Near-Infrared Imager and Spectrograph (CONICA). Adaptive optics cancels out most of the image-distorting turbulence in Earth's atmosphere caused by temperature variations and wind. More information This research was presented in a paper that appeared in the Astronomical Journal: A Very Large Telescope / NACO study of star formation in the massive embedded cluster RCW 38, by DeRose et al. (2009, AJ, 138, 33-45). The team is composed of K.L. DeRose, T.L. Bourke, R.A. Gutermuth and S.J. Wolk (Harvard-Smithsonian Center for Astrophysics, Cambridge, USA), S.T. Megeath (Department of Physics and Astronomy, The University of Toledo, USA), J. Alves (Centro Astronómico Hispano Alemán, Almeria, Spain), and D. Nürnberger (ESO). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  5. Cosmic Journeys: To the Edge of Gravity, Space and Time...

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2000-01-01

    A star explodes, blowing its contents into interstellar space. At its core, a black hole may form. Or maybe a neutron star or white dwarf, depending on the size of the original star. Over the next million years, a new star may form from the left over gas. The ever-changing Universe is the ultimate recycler. NASA's Cosmic Journeys is a set of missions that will of explore the Universe's many mysteries. An summary of future missions is presented.

  6. Stellar shrapnel

    NASA Image and Video Library

    2017-12-08

    Several thousand years ago, a star some 160,000 light-years away from us exploded, scattering stellar shrapnel across the sky. The aftermath of this energetic detonation is shown here in this striking image from the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3. The exploding star was a white dwarf located in the Large Magellanic Cloud, one of our nearest neighboring galaxies. Around 97 percent of stars within the Milky Way that are between a tenth and eight times the mass of the sun are expected to end up as white dwarfs. These stars can face a number of different fates, one of which is to explode as supernovae, some of the brightest events ever observed in the universe. If a white dwarf is part of a binary star system, it can siphon material from a close companion. After gobbling up more than it can handle — and swelling to approximately one and a half times the size of the sun — the star becomes unstable and ignites as a Type Ia supernova. This was the case for the supernova remnant pictured here, which is known as DEM L71. It formed when a white dwarf reached the end of its life and ripped itself apart, ejecting a superheated cloud of debris in the process. Slamming into the surrounding interstellar gas, this stellar shrapnel gradually diffused into the separate fiery filaments of material seen scattered across this skyscape. Image credit: ESA/Hubble & NASA, Y. Chu Text credit: European Space Agency NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Neutron stars structure in the context of massive gravity

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Bordbar, G. H.; Eslam Panah, B.; Panahiyan, S.

    2017-07-01

    Motivated by the recent interests in spin-2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into the structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.

  8. Bridging the gap: from massive stars to supernovae

    PubMed Central

    Crowther, Paul A.; Janka, Hans-Thomas; Langer, Norbert

    2017-01-01

    Almost since the beginning, massive stars and their resultant supernovae have played a crucial role in the Universe. These objects produce tremendous amounts of energy and new, heavy elements that enrich galaxies, encourage new stars to form and sculpt the shapes of galaxies that we see today. The end of millions of years of massive star evolution and the beginning of hundreds or thousands of years of supernova evolution are separated by a matter of a few seconds, in which some of the most extreme physics found in the Universe causes the explosive and terminal disruption of the star. Key questions remain unanswered in both the studies of how massive stars evolve and the behaviour of supernovae, and it appears the solutions may not lie on just one side of the explosion or the other or in just the domain of the stellar evolution or the supernova astrophysics communities. The need to view massive star evolution and supernovae as continuous phases in a single narrative motivated the Theo Murphy international scientific meeting ‘Bridging the gap: from massive stars to supernovae’ at Chicheley Hall, UK, in June 2016, with the specific purpose of simultaneously addressing the scientific connections between theoretical and observational studies of massive stars and their supernovae, through engaging astronomers from both communities. This article is part of the themed issue ‘Bridging the gap: from massive stars to supernovae’. PMID:28923995

  9. Bridging the gap: from massive stars to supernovae.

    PubMed

    Maund, Justyn R; Crowther, Paul A; Janka, Hans-Thomas; Langer, Norbert

    2017-10-28

    Almost since the beginning, massive stars and their resultant supernovae have played a crucial role in the Universe. These objects produce tremendous amounts of energy and new, heavy elements that enrich galaxies, encourage new stars to form and sculpt the shapes of galaxies that we see today. The end of millions of years of massive star evolution and the beginning of hundreds or thousands of years of supernova evolution are separated by a matter of a few seconds, in which some of the most extreme physics found in the Universe causes the explosive and terminal disruption of the star. Key questions remain unanswered in both the studies of how massive stars evolve and the behaviour of supernovae, and it appears the solutions may not lie on just one side of the explosion or the other or in just the domain of the stellar evolution or the supernova astrophysics communities. The need to view massive star evolution and supernovae as continuous phases in a single narrative motivated the Theo Murphy international scientific meeting 'Bridging the gap: from massive stars to supernovae' at Chicheley Hall, UK, in June 2016, with the specific purpose of simultaneously addressing the scientific connections between theoretical and observational studies of massive stars and their supernovae, through engaging astronomers from both communities.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).

  10. On the origin of the hypervelocity runaway star HD 271791

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2010-01-01

    We discuss the origin of the early-B-type runaway star HD 271791 and show that its extremely high velocity (≃530 - 920km s-1) cannot be explained within the framework of the binary-supernova ejection scenario. Instead, we suggest that HD 271791 attained its peculiar velocity in the course of a strong dynamical encounter between two hard, massive binaries or through an exchange encounter between a hard, massive binary and a very massive star, formed through runaway mergers of ordinary massive stars in the dense core of a young massive star cluster.

  11. Massive Stars in M31

    NASA Astrophysics Data System (ADS)

    Lomax, Jamie R.; Peters, Matthew; Wisniewski, John; Dalcanton, Julianne; Williams, Benjamin; Lutz, Julie; Choi, Yumi; Sigut, Aaron

    2017-11-01

    Massive stars are intrinsically rare and therefore present a challenge to understand from a statistical perspective, especially within the Milky Way. We recently conducted follow-up observations to the Panchromatic Hubble Andromeda Treasury (PHAT) survey that were designed to detect more than 10,000 emission line stars, including WRs, by targeting regions in M31 previously known to host large numbers of young, massive clusters and very young stellar populations. Because of the existing PHAT data, we are able to derive an effective temperature, bolarimetric luminosity, and extinction for each of our detected stars. We report on preliminary results of the massive star population of our dataset and discuss how our results compare to previous studies of massive stars in M31.

  12. MASGOMAS project: building a bona-fide catalog of massive star cluster candidates

    NASA Astrophysics Data System (ADS)

    Herrero, Artemio; Rübke, Klaus; Ramírez Alegría, Sebastián; Garcia, Miriam; Marín-Franch, Antonio

    2017-11-01

    MASGOMAS (MAssive Stars in Galactic Obscured MAssive clusterS) is a project aiming at discovering OB stars in Galactic, dust enshrouded, star-forming massive clusters (Marín-Franch et al. 2009, A&A 502, 559). The project has gone through different phases of increasing automatization, that have allowed us to discover massive clusters like MASGOMAS-1 (Ramírez Alegría et al. 2012, A&A 541, A75) (with M~20,000 M⊙).

  13. Towards a Unified View of Inhomogeneous Stellar Winds in Isolated Supergiant Stars and Supergiant High Mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Martínez-Núñez, Silvia; Kretschmar, Peter; Bozzo, Enrico; Oskinova, Lidia M.; Puls, Joachim; Sidoli, Lara; Sundqvist, Jon Olof; Blay, Pere; Falanga, Maurizio; Fürst, Felix; Gímenez-García, Angel; Kreykenbohm, Ingo; Kühnel, Matthias; Sander, Andreas; Torrejón, José Miguel; Wilms, Jörn

    2017-10-01

    Massive stars, at least ˜10 times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy. In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense "clumps". The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution. Supergiant high mass X-ray binaries (SgXBs) are among the brightest X-ray sources in the sky. A large number of them consist of a neutron star accreting from the wind of a massive companion and producing a powerful X-ray source. The characteristics of the stellar wind together with the complex interactions between the compact object and the donor star determine the observed X-ray output from all these systems. Consequently, the use of SgXBs for studies of massive stars is only possible when the physics of the stellar winds, the compact objects, and accretion mechanisms are combined together and confronted with observations. This detailed review summarises the current knowledge on the theory and observations of winds from massive stars, as well as on observations and accretion processes in wind-fed high mass X-ray binaries. The aim is to combine in the near future all available theoretical diagnostics and observational measurements to achieve a unified picture of massive star winds in isolated objects and in binary systems.

  14. Neutron Star/supernova Remnant Associations

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    We propose a new approach for studying the neutron star/supernova remnant associations, based on the idea that the (diffuse) supernova remnants (SNRs) can be products of an off-centred supernova (SN) explosion in a preexisting bubble created by the wind of a moving massive star. A cavity SN explosion of a moving star results in a considerable offset of the neutron star (NS) birth-place from the geometrical centre of the SNR. Therefore: a) the high transverse velocities inferred for a number of NSs (e.g. PSR B 1610-50, PSR B 1757-24, SGR 0525-66) through their association with SNRs can be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR. Taking into account of these two facts allow us to enlarge the circle of possible NS/SNR associations, and could significantly affect the results of previous studies of NS/SNR associations. The possibilities of our approach are illustrated with the example of the association between PSR B 1706-44 and SNR G 343.1-2.3. We show that this association could be real if both objects are the remnants of a SN exploded within a mushroom-like cavity (created by the SN progenitor wind breaking out of the parent molecular cloud and expanding into an intercloud medium of a much less density). We also show that the SN explosion sites in some middle-aged (shell-like) SNRs could be marked by (compact) nebulae of thermal X-ray emission. The possible detection of such nebulae within middle-aged SNRs could be used for the re-estimation of implied transverse velocities of known NSs or for the search of new stellar remnants possibly associated with these SNRs.

  15. Nearby star cluster yields insights into early universe

    NASA Astrophysics Data System (ADS)

    1998-07-01

    The nebula offers a unique opportunity for a close-up glimpse of the "firestorm" accompanying the birth of extremely massive stars, each blazing with the brilliance of 300,000 of our suns. Such galactic fireworks were much more common billions of years ago in the early universe, when most star formation took place. "This is giving us new insights into the physical mechanisms governing star formation in far away galaxies that existed long ago," says Mohammad Heydari-Malayeri (Paris Observatory, France), who headed the international team of astronomers who made the discovery using Hubble's Wide Field and Planetary Camera 2. Because these stars are deficient in heavier elements, they also evolve much like the universe's earliest stars, which were made almost exclusively of the primordial elements hydrogen and helium that were created in the big bang. The Small Magellanic Cloud is a unique laboratory for studying star formation in the early universe since it is the closest and best seen galaxy containing so-called "metal-poor" first- and second -generation type stars. These observations show that massive stars may form in groups. "As a result, it is more likely some of these stars are members of double and multiple star systems," says Heydari-Malayeri. "The multiple systems will affect stellar evolution considerably by ejecting a great deal of matter into space." This furious rate of mass loss from these stars is evident in the Hubble picture, which reveals dramatic shapes sculpted in the nebula's wall of glowing gases by violent stellar winds and shock waves. "This implies a very turbulent environment typical of young star formation regions," Heydari-Malayeri adds. He believes one of the members of the cluster may be an extremely rare and short-lived class of super-hot star (50,000 degrees Kelvin) called a Wolf-Rayet. This star represents a violent, transitional phase in the final years of a massive star's existence - before it ultimately explodes as a supernova. "If confirmed by future Hubble observations, this finding will have a far-reaching impact on stellar evolutionary models," says Heydari-Malayeri. "That's because the Wolf-Rayet candidate is fainter than other such stars in that galaxy, in contrast with the predictions of these models." Hubble's resolution allows astronomers to pinpoint 50 separate stars tightly packed in the nebula's core within a 10 light-year diameter -- slightly more than twice the distance between Earth and the nearest star to our sun. The closest pair of stars is only one-third of a light-year apart. Before the Hubble observations, N81 was simply dubbed, "The Blob" because its features were indistinguishable by other telescopes. The Hubble observations of N81 were conducted by the European astronomers Mohammed Heydari-Malayeri (Paris Observatory, France) and co-investigators Michael Rosa (Space Telescope-European Coordinating Facility, European Southern Observatory, Germany), Hans Zinnecker (Astrophysics Institute, Potsdam, Germany), Lise Deharveng (Marseille Observatory, France), and Vassilis Charmandaris (Paris Observatory). Their work will be shortly submitted for publication in the European journal Astronomy and Astrophysics. The Hubble Space Telescope is a project of international cooperation between ESA and NASA. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc. for NASA, under contract with NASA's Goddard Space Flight Center, Greenbelt, MD. Note to editors: A photo and caption associated with this release are available via the World-Wide Web at: http://oposite.stsci.edu/1998/25 or via links in: http://oposite.stsci.edu/pubinfo/latest.html or http://oposite.stsci.edu/pubinfo/pictures.html. Further information is available from: Mohammad Heydari-Malayeri Paris Observatory, Paris, France (Phone: 33-1-40-51-20-76)

  16. Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics

    NASA Astrophysics Data System (ADS)

    Smith, Matthew C.; Sijacki, Debora; Shen, Sijing

    2018-07-01

    While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disc galaxy set-ups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disc. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation, and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine-tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, and require a better star formation prescription or most likely some combination of these issues.

  17. Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics

    NASA Astrophysics Data System (ADS)

    Smith, Matthew C.; Sijacki, Debora; Shen, Sijing

    2018-04-01

    While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disk galaxy setups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disk. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, require a better star formation prescription or most likely some combination of these issues.

  18. Initial experiments to understand the interaction of stellar radiation with molecular clouds

    NASA Astrophysics Data System (ADS)

    Vandervort, Robert; Davis, Josh; Trantham, Matt; Klein, Sallee; Shvarts, Dov; Keiter, Paul; Drake, R. Paul

    2017-10-01

    Enhanced star formation triggered by local O and B type stars is an astrophysical problem of interest. O and B type stars are massive, hot stars that emit an enormous amount of radiation. This radiation acts to either compress or blow apart gas clumps in the interstellar media. For example, in the optically thick limit, when the radiation in the gas clump has a short mean free path, radiation is absorbed near the clump edge and compresses the clump. In the optically thin limit, when the mean free path is long, the radiation is absorbed throughout, acting to heat the clump. This heating explodes the gas clump. Careful selection of parameters, such as foam density or source temperature, allow the experimental platform to access different hydrodynamic regimes. 2D CRASH simulations guide our parameter selection. A stellar radiation source is mimicked by a laser-irradiated, thin, gold foil, providing a source of thermal x-rays around 100 eV. The gas clump is mimicked by low-density CRF foam. We plan to show the preliminary experimental results of this platform in the optically thick limit, from experiments scheduled in August. This work is funded by the U.S. DOE, through the NNSA-DS and SC-OFES Joint Program in HEDPLP, Grant No. DE-NA0002956, and the NLUF Program, Grant No. DE-NA0002719, and through LLE, University of Rochester by the NNSA/OICF under Cooperative Agreement No. DE-NA0001944. This work is funded by the Lawrence Livermore National Laboratory under subcontract B614207.

  19. Experimental design to understand the interaction of stellar radiation with molecular clouds

    NASA Astrophysics Data System (ADS)

    Vandervort, Robert; Davis, Josh; Trantham, Matt; Klein, Sallee; Frank, Yechiel; Raicher, Erez; Fraenkel, Moshe; Shvarts, Dov; Keiter, Paul; Drake, R. Paul

    2016-10-01

    Enhanced star formation triggered by local O and B type stars is an astrophysical problem of interest. O and B type stars are massive, hot stars that emit an enormous amount of radiation. This radiation acts to either compress or blow apart clumps of gas in the interstellar media. For example, in the optically thick limit, when the x-ray radiation in the gas clump has a short mean free path length the x-ray radiation is absorbed near the clump edge and compresses the clump. In the optically thin limit, when the mean free path is long, the radiation is absorbed throughout acting to heat the clump. This heating explodes the gas clump. Careful selection of parameters, such as foam density or source temperature, allow the experimental platform to access different hydrodynamic regimes. The stellar radiation source is mimicked by a laser irradiated thin gold foil. This will provide a source of thermal x-rays (around 100 eV). The gas clump is mimicked by a low-density foam around 0.12 g/cc. Simulations were done using radiation hydrodynamics codes to tune the experimental parameters. The experiment will be carried out at the Omega laser facility on OMEGA 60. Funding acknowledgements: This work is funded by the U.S. DOE, through the NNSA-DS and SC-OFES Joint Program in HEDPLP, Grant No. DE-NA0001840, and the NLUF Program, Grant No. DE-NA0000850, and through LLE, University of Rochester by the NNSA/OICF under Agreement No. DE-FC52-08NA28302.

  20. Variable interstellar radiation fields in simulated dwarf galaxies: supernovae versus photoelectric heating

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Yu; Naab, Thorsten; Glover, Simon C. O.; Walch, Stefanie; Clark, Paul C.

    2017-10-01

    We present high-resolution hydrodynamical simulations of isolated dwarf galaxies including self-gravity, non-equilibrium cooling and chemistry, interstellar radiation fields (ISRF) and shielding, star formation, and stellar feedback. This includes spatially and temporally varying photoelectric (PE) heating, photoionization, resolved supernova (SN) blast waves and metal enrichment. A new flexible method to sample the stellar initial mass function allows us to follow the contribution to the ISRF, the metal output and the SN delay times of individual massive stars. We find that SNe play the dominant role in regulating the global star formation rate, shaping the multiphase interstellar medium (ISM) and driving galactic outflows. Outflow rates (with mass-loading factors of a few) and hot gas fractions of the ISM increase with the number of SNe exploding in low-density environments where radiative energy losses are low. While PE heating alone can suppress star formation as efficiently as SNe alone can do, it is unable to drive outflows and reproduce the multiphase ISM that emerges naturally whenever SNe are included. We discuss the potential origins for the discrepancy between our results and another recent study that claimed that PE heating dominates over SNe. In the absence of SNe and photoionization (mechanisms to disperse dense clouds), the impact of PE heating is highly overestimated owing to the (unrealistic) proximity of dense gas to the radiation sources. This leads to a substantial boost of the infrared continuum emission from the UV-irradiated dust and a far-infrared line-to-continuum ratio too low compared to observations.

  1. Globular Cluster Formation at High Density: A Model for Elemental Enrichment with Fast Recycling of Massive-star Debris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmegreen, Bruce G., E-mail: bge@us.ibm.com

    The self-enrichment of massive star clusters by p -processed elements is shown to increase significantly with increasing gas density as a result of enhanced star formation rates and stellar scatterings compared to the lifetime of a massive star. Considering the type of cloud core where a globular cluster (GC) might have formed, we follow the evolution and enrichment of the gas and the time dependence of stellar mass. A key assumption is that interactions between massive stars are important at high density, including interactions between massive stars and massive-star binaries that can shred stellar envelopes. Massive-star interactions should also scattermore » low-mass stars out of the cluster. Reasonable agreement with the observations is obtained for a cloud-core mass of ∼4 × 10{sup 6} M {sub ⊙} and a density of ∼2 × 10{sup 6} cm{sup −3}. The results depend primarily on a few dimensionless parameters, including, most importantly, the ratio of the gas consumption time to the lifetime of a massive star, which has to be low, ∼10%, and the efficiency of scattering low-mass stars per unit dynamical time, which has to be relatively large, such as a few percent. Also for these conditions, the velocity dispersions of embedded GCs should be comparable to the high gas dispersions of galaxies at that time, so that stellar ejection by multistar interactions could cause low-mass stars to leave a dwarf galaxy host altogether. This could solve the problem of missing first-generation stars in the halos of Fornax and WLM.« less

  2. The Magnetic Properties of Galactic OB Stars from the Magnetism in Massive Stars Project

    NASA Astrophysics Data System (ADS)

    Wade, Gregg A.; Grunhut, Jason; Petit, Veronique; Neiner, Coralie; Alecian, Evelyne; Landstreet, John; MiMeS Collaboration

    2013-06-01

    The Magnetism in Massive Stars (MiMeS) project represents the largest systematic survey of stellar magnetism ever undertaken. Comprising nearly 4500 high resolution polarised spectra of nearly 550 Galactic B and O-type stars, the MiMeS survey aims to address interesting and fundamental questions about the magnetism of hot, massive stars: How and when are massive star magnetic fields generated, and how do they evolve throughout stellar evolution? How do magnetic fields couple to and interact with the powerful winds of OB stars, and what are the consequences for the wind structure, momentum flux and energetics? What are the detailed physical mechanisms that lead to the anomalously slow rotation of many magnetic massive stars? What is the ultimate impact of stellar magnetic fields -- both direct and indirect -- on the evolution of massive stars? In this talk we report results from the analysis of the B-type stars observed within the MiMeS survey. The sample consists of over 450 stars ranging in spectral type from B9 to B0, and in evolutionary stage from the pre-main sequence to the post-main sequence. In addition to general statistical results concerning field incidence, strength and topology, we will elaborate our conclusions for subsamples of special interest, including the Herbig and classical Be stars, pulsating B stars and chemically peculiar B stars.

  3. THE LOCATION, CLUSTERING, AND PROPAGATION OF MASSIVE STAR FORMATION IN GIANT MOLECULAR CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochsendorf, Bram B.; Meixner, Margaret; Chastenet, Jérémy

    Massive stars are key players in the evolution of galaxies, yet their formation pathway remains unclear. In this work, we use data from several galaxy-wide surveys to build an unbiased data set of ∼600 massive young stellar objects, ∼200 giant molecular clouds (GMCs), and ∼100 young (<10 Myr) optical stellar clusters (SCs) in the Large Magellanic Cloud. We employ this data to quantitatively study the location and clustering of massive star formation and its relation to the internal structure of GMCs. We reveal that massive stars do not typically form at the highest column densities nor centers of their parentmore » GMCs at the ∼6 pc resolution of our observations. Massive star formation clusters over multiple generations and on size scales much smaller than the size of the parent GMC. We find that massive star formation is significantly boosted in clouds near SCs. However, whether a cloud is associated with an SC does not depend on either the cloud’s mass or global surface density. These results reveal a connection between different generations of massive stars on timescales up to 10 Myr. We compare our work with Galactic studies and discuss our findings in terms of GMC collapse, triggered star formation, and a potential dichotomy between low- and high-mass star formation.« less

  4. Young Star Clusters: Keys to Understanding Massive Stars

    NASA Astrophysics Data System (ADS)

    Davies, B.

    2012-12-01

    Young, coeval clusters of stars provide the perfect laboratory in which to test our understanding of how massive stars evolve. Early optical observations limited us to a handful of low-mass clusters within 1kpc. However, thanks to the recent progress in infrared astronomy, the Milky Way's population of young massive star clusters is now beginning to be revealed. Here, I will review the recent progress made in this field, what it has told us about the evolution of massive stars to supernova and beyond, the prospects for this field, and some issues that should be taken into account when interpreting the results.

  5. Massive stars near Eta Carinae - The stellar content of TR 14 and TR 16

    NASA Astrophysics Data System (ADS)

    Massey, Philip; Johnson, Jennifer

    1993-03-01

    The stellar content of the region around the star Eta Carinae, including the two Galactic OB clusters Tr 14 and Tr 16, are investigated using CCD photometry and spectroscopy. A physical H-R diagram is constructed which shows that several stars are located above the 85-solar mass track, as well as that the location of Eta Carinae is consistent with the interpretation that it is a very massive star undergoing a normal evolutionary stage. The W-R star which is present in this region is lower in luminosity than expected. The initial mass function derived, which is similar to two other young Galactic clusters studied, has a slope flatter than some regions in the Magellanic Clouds that are also rich in massive stars. The most luminous and massive stars near Eta Carinae are not significantly more than the most luminous and massive stars found in the Magellanic Clouds.

  6. Massive Star Formation Viewed through Extragalactic-Tinted Glasses

    NASA Astrophysics Data System (ADS)

    Willis, Sarah; Marengo, M.; Smith, H. A.; Allen, L.

    2014-01-01

    Massive Galactic star forming regions are the local analogs to the luminous star forming regions that dominate the emission from star forming galaxies. Their proximity to us enables the characterization of the full range of stellar masses that form in these more massive environments, improving our understanding of star formation tracers used in extragalactic studies. We have surveyed a sample of massive star forming regions with a range of morphologies and luminosities to probe the star formation activity in a variety of environments. We have used Spitzer IRAC and deep ground based J, H, Ks observations to characterize the Young Stellar Object (YSO) content of 6 massive star forming regions. These YSOs provide insight into the rate and efficiency of star formation within these regions, and enable comparison with nearby, low mass star forming regions as well as extreme cases of Galactic star formation including ‘mini-starburst’ regions. In addition, we have conducted an in-depth analysis of NGC 6334 to investigate how the star formation activity varies within an individual star forming region, using Herschel data in the far-infrared to probe the earliest stages of the ongoing star formation activity.

  7. MASSIVE STARS IN THE LOCAL GROUP: Implications for Stellar Evolution and Star Formation

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    The galaxies of the Local Group serve as important laboratories for understanding the physics of massive stars. Here I discuss what is involved in identifying various kinds of massive stars in nearby galaxies: the hydrogen-burning O-type stars and their evolved He-burning evolutionary descendants, the luminous blue variables, red supergiants, and Wolf-Rayet stars. Primarily I review what our knowledge of the massive star population in nearby galaxies has taught us about stellar evolution and star formation. I show that the current generation of stellar evolutionary models do well at matching some of the observed features and provide a look at the sort of new observational data that will provide a benchmark against which new models can be evaluated.

  8. Predicting the nature of supernova progenitors

    NASA Astrophysics Data System (ADS)

    Groh, Jose H.

    2017-09-01

    Stars more massive than about 8 solar masses end their lives as a supernova (SN), an event of fundamental importance Universe-wide. The physical properties of massive stars before the SN event are very uncertain, both from theoretical and observational perspectives. In this article, I briefly review recent efforts to predict the nature of stars before death, in particular, by performing coupled stellar evolution and atmosphere modelling of single stars in the pre-SN stage. These models are able to predict the high-resolution spectrum and broadband photometry, which can then be directly compared with the observations of core-collapse SN progenitors. The predictions for the spectral types of massive stars before death can be surprising. Depending on the initial mass and rotation, single star models indicate that massive stars die as red supergiants, yellow hypergiants, luminous blue variables and Wolf-Rayet stars of the WN and WO subtypes. I finish by assessing the detectability of SN Ibc progenitors. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  9. The Abundances of the Fe Group Elements in Early B Stars in the Magellanic Clouds and Bridge

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.; Adelman, Saul J.

    2016-01-01

    The abundances of three Fe Group elements (V, Cr, and Fe) in 9 early main-sequence band B stars in the LMC, 7 in the SMC , and two in the Magellanic Bridge have been determined from archival FUSE observations and the Hubeny/Lanz NLTE programs TLUSTY/SYNSPEC. Lines from the Fe group elements, except for a few weak multiplets of Fe III, are not observable in the optical spectral region. The best set of lines in the FUSE spectral region are Fe III (UV1), V III 1150 Å, and Cr III 1137 Å. The abundances of these elements in early B stars are a marker for recent SNe Ia activity, as a single exploding white dwarf can deliver 0.5 solar masses of Ni-56 that decays into Fe to the ISM. The Fe group abundances in an older population of stars primarily reflect SNe II activity, in which a single explosion delivers only 0.07 solar masses of Ni-56 to the ISM (the rest remains trapped in the neutron star). The abundances of the Fe group elements in early B stars not only track SNe Ia activity but are also important for computing evolutionary tracks for massive stars. In general, the Fe abundance relative to the sun's value is comparable to the mean abundances for the lighter elements in the Clouds/Bridge but the values of [V,Cr/Fe]sun are smaller. This presentation will discuss the spatial distribution of the Fe Group elements in the Magellanic Clouds, and compare it with our galaxy in which the abundance of Fe declines with radial distance from the center. Support from NASA grants NAG5-13212, NNX10AD66G, STScI HST-GO-13346.22, and USC's Women in Science and Engineering (WiSE) program is greatly appreciated.

  10. The evolution of massive stars

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The hypotheses underlying theoretical studies of the evolution of massive model stars with and without mass loss are summarized. The evolutionary tracks followed by the models across theoretical Hertzsprung-Russell (HR) diagrams are compared with the observed distribution of B stars in an HR diagram. The pulsational properties of models of massive star are also described.

  11. Shock break-out: how a GRB revealed the beginnings of a supernova.

    PubMed

    Blustin, Alexander J

    2007-05-15

    In February 2006, Swift caught a gamma-ray burst (GRB) in the act of turning into a supernova, and made the first ever direct observations of the break-out and early expansion of a supernova shock wave. GRB 060218 began with an exceptionally long burst of non-thermal gamma-rays, lasting over 2000s, as a jet erupted through the surface of the star. While this was in progress, an optically-thick thermal component from the shock wave of the supernova explosion grew to prominence, and we were able to track the mildly relativistic expansion of this shell as the blackbody peak moved from the X-rays into the UV and optical bands. The initial radius of the shock implied that it was a blue supergiant that had exploded, but the lack of hydrogen emission lines in the supernova spectrum indicated a more compact star. The most likely scenario is that the shock ploughed into the massive stellar wind of a Wolf-Rayet progenitor, with the shock breaking-out and becoming visible to us once it reached the radius where the wind became optically-thin. I present the Swift observations of this landmark event, and discuss the new questions and answers it leaves us with.

  12. The diffuse source at the center of LMC SNR 0509–67.5 is a background galaxy at z = 0.031

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagnotta, Ashley; Walker, Emma S.; Schaefer, Bradley E., E-mail: pagnotta@amnh.org

    2014-06-20

    Type Ia supernovae (SNe Ia) are well-known for their use in the measurement of cosmological distances, but our continuing lack of concrete knowledge about their progenitor stars is both a matter of debate and a source of systematic error. In our attempts to answer this question, we presented unambiguous evidence that LMC SNR 0509–67.5, the remnant of an SN Ia that exploded in the Large Magellanic Cloud 400 ± 50 yr ago, did not have any point sources (stars) near the site of the original supernova explosion, from which we concluded that this particular supernova must have had a progenitormore » system consisting of two white dwarfs. There is, however, evidence of nebulosity near the center of the remnant, which could have been left over detritus from the less massive WD, or could have been a background galaxy unrelated to the supernova explosion. We obtained long-slit spectra of the central nebulous region using GMOS on Gemini South to determine which of these two possibilities is correct. The spectra show Hα emission at a redshift of z = 0.031, which implies that the nebulosity in the center of LMC SNR 0509–67.5 is a background galaxy, unrelated to the supernova.« less

  13. The Hooked Galaxy

    NASA Astrophysics Data System (ADS)

    2006-06-01

    Life is not easy, even for galaxies. Some indeed get so close to their neighbours that they get rather distorted. But such encounters between galaxies have another effect: they spawn new generations of stars, some of which explode. ESO's VLT has obtained a unique vista of a pair of entangled galaxies, in which a star exploded. Because of the importance of exploding stars, and particularly of supernovae of Type Ia [1], for cosmological studies (e.g. relating to claims of an accelerated cosmic expansion and the existence of a new, unknown, constituent of the universe - the so called 'Dark Energy'), they are a preferred target of study for astronomers. Thus, on several occasions, they pointed ESO's Very Large Telescope (VLT) towards a region of the sky that portrays a trio of amazing galaxies. MCG-01-39-003 (bottom right) is a peculiar spiral galaxy, with a telephone number name, that presents a hook at one side, most probably due to the interaction with its neighbour, the spiral galaxy NGC 5917 (upper right). In fact, further enhancement of the image reveals that matter is pulled off MCG-01-39-003 by NGC 5917. Both these galaxies are located at similar distances, about 87 million light-years away, towards the constellation of Libra (The Balance). ESO PR Photo 22/06 ESO PR Photo 22/06 The Hooked Galaxy and its Companion NGC 5917 (also known as Arp 254 and MCG-01-39-002) is about 750 times fainter than can be seen by the unaided eye and is about 40,000 light-years across. It was discovered in 1835 by William Herschel, who strangely enough, seems to have missed its hooked companion, only 2.5 times fainter. As seen at the bottom left of this exceptional VLT image, a still fainter and nameless, but intricately beautiful, barred spiral galaxy looks from a distance the entangled pair, while many 'island universes' perform a cosmic dance in the background. But this is not the reason why astronomers look at this region. Last year, a star exploded in the vicinity of the hook. The supernova, noted SN 2005cf as it was the 84th found that year, was discovered by astronomers Pugh and Li with the robotic KAIT telescope on 28 May. It appeared to be projected on top of a bridge of matter connecting MCG-01-39-003 with NGC5917. Further analysis with the Whipple Observatory 1.5m Telescope showed this supernova to be of the Ia type and that the material was ejected with velocities up to 15 000 km/s (that is, 54 million kilometres per hour!). Immediately after the discovery, the European Supernova Collaboration (ESC [2]), led by Wolfgang Hillebrandt (MPA-Garching, Germany) started an extensive observing campaign on this object, using a large number of telescopes around the world. There have been several indications about the fact that galaxy encounters and/or galaxy activity phenomena may produce enhanced star formation. As a consequence, the number of supernovae in this kind of system is expected to be larger with respect to isolated galaxies. Normally, this scenario should favour mainly the explosion of young, massive stars. Nevertheless, recent studies have shown that such phenomena could increase the number of stars that eventually explode as Type Ia supernovae. This notwithstanding, the discovery of supernovae in tidal tails connecting interacting galaxies remains quite an exceptional event. For this reason, the discovery of SN2005cf close to the 'tidal bridge' between MCG-01-39-002 and MCG-01-39-003 constitutes a very interesting case. The supernova was followed by the ESC team during its whole evolution, from about ten days before the object reached its peak luminosity until more than a year after the explosion. As the SN becomes fainter and fainter, larger and larger telescopes are needed. One year after the explosion, the object is indeed about 700 times fainter than at maximum. The supernova was observed with the VLT equipped with FORS1 by ESO astronomer Ferdinando Patat, who is also member of the team led by Massimo Turatto (INAF-Padua, Italy), and at a latter stage by the Paranal Science Team, with the aim of studying the very late phases of the supernova. These late stages are very important to probe the inner parts of the ejected material, in order to better understand the explosion mechanism and the elements produced during the explosion. The deep FORS1 images reveal a beautiful tidal structure in the form of a hook, with a wealth of details that probably include regions of star formation triggered by the close encounter between the two galaxies. "Curiously, the supernova appears to be outside of the tidal tail", says Ferdinando Patat. "The progenitor system was probably stripped out of one of the two galaxies and exploded far away from the place where it was born." Life may not be easy for galaxies, but it isn't much simpler for stars either. Technical information: ESO PR Photo 22/06 is a composite image based on data acquired with the FORS1 multi-mode instrument in April and May 2006 for the European Supernova Collaboration. The observations were made in four different filters (B, V, R, and I) that were combined to make a colour image. The field of view covers 5.6 x 8.3 arcmin. North is up and East is to the left. The observations were done by Ferdinando Patat and the Paranal Science team (ESO), and the final processing was done by Olivia Blanchemain, Henri Boffin and Haennes Heyer (ESO).

  14. Hyperfast pulsars as the remnants of massive stars ejected from young star clusters

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2008-04-01

    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of ~1100kms-1, which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of 106- 107starspc-3. Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.

  15. Runaway Massive Stars from R136: VFTS 682 is Very Likely a "Slow Runaway"

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran; Kroupa, Pavel; Oh, Seungkyung

    2012-02-01

    We conduct a theoretical study on the ejection of runaway massive stars from R136—the central massive, starburst cluster in the 30 Doradus complex of the Large Magellanic Cloud. Specifically, we investigate the possibility of the very massive star (VMS) VFTS 682 being a runaway member of R136. Recent observations of the above VMS, by virtue of its isolated location and its moderate peculiar motion, have raised the fundamental question of whether isolated massive star formation is indeed possible. We perform the first realistic N-body computations of fully mass-segregated R136-type star clusters in which all the massive stars are in primordial binary systems. These calculations confirm that the dynamical ejection of a VMS from an R136-like cluster, with kinematic properties similar to those of VFTS 682, is common. Hence, the conjecture of isolated massive star formation is unnecessary to account for this VMS. Our results are also quite consistent with the ejection of 30 Dor 016, another suspected runaway VMS from R136. We further note that during the clusters' evolution, mergers of massive binaries produce a few single stars per cluster with masses significantly exceeding the canonical upper limit of 150 M ⊙. The observations of such single super-canonical stars in R136, therefore, do not imply an initial mass function with an upper limit greatly exceeding the accepted canonical 150 M ⊙ limit, as has been suggested recently, and they are consistent with the canonical upper limit.

  16. Wolf-Rayet stars as starting points or as endpoints of the evolution of massive stars?

    NASA Technical Reports Server (NTRS)

    Lamers, H. J. G. L. M.; Maeder, A.; Schmutz, W.; Cassinelli, J. P.

    1991-01-01

    The paper investigates the evidence for the two interpretations of Wolf-Rayet stars suggested in the literature: (1) massive premain-sequence stars with disks and (2) massive stars which have lost most of their H-rich layers in a stellar wind is investigated. The abundance determinations which are done in two different ways and which lead to different conclusions are discussed. The composition is solar, which would suggest interpretation (1), or the CNO abundances are strongly anomalous, which would suggest interpretation (2). Results from evolutionary calculations, stellar statistics, the existence of Ofpe/WN9 transition stars and W-R stars with evolved companions show overwhelming evidence that W-R stars are not premain-sequence stars but that they are in a late stage of evolution. Moreover, the fact that W-R stars are usually in clear regions of space, whereas massive premain-sequence stars are embedded in ultracompact H II regions also shows that W-R stars are not young premain-sequence stars.

  17. T-ReX Spies the Stars of 30 Doradus

    NASA Astrophysics Data System (ADS)

    Broos, Patrick; Townsley, Leisa K.; Pollock, Andrew; Crowther, Paul

    2017-08-01

    30 Doradus (the Tarantula Nebula) is the Local Group's most massive young star-forming complex. At its heart is R136, the most massive resolved stellar cluster; R136 contains, in turn, the most massive stars known. The Chandra X-ray Observatory has recently observed 30 Dor for the 2-megasecond X-ray Visionary Project ``The Tarantula -- Revealed by X-rays'' (T-ReX). This deep observation exploits Chandra's fine spatial resolution to study the full complement of massive stars and the brightest pre-main sequence stars that trace 25 Myrs of star formation in this incomparable nearby starburst. Here we give preliminary results from the ongoing analyses of the data, focusing on the massive stars. While many remain undetected even in this deep ACIS-I observation, a few show dramatic X-ray lightcurves and/or high luminosities befitting this amazing starburst cluster.

  18. After the Explosion: Investigating Supernova Sites

    NASA Image and Video Library

    2015-03-26

    A new study analyzes several sites where dead stars once exploded. The explosions, called Type Ia supernovae, occurred within galaxies, six of which are shown in these images from the Sloan Digital Sky Survey.

  19. Electron-capture and Low-mass Iron-core-collapse Supernovae: New Neutrino-radiation-hydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Radice, David; Burrows, Adam; Vartanyan, David; Skinner, M. Aaron; Dolence, Joshua C.

    2017-11-01

    We present new 1D (spherical) and 2D (axisymmetric) simulations of electron-capture (EC) and low-mass iron-core-collapse supernovae (SN). We consider six progenitor models: the ECSN progenitor from Nomoto; two ECSN-like low-mass low-metallicity iron-core progenitors from A. Heger (2016, private communication); and the 9, 10, and 11 {M}⊙ (zero-age main-sequence) progenitors from Sukhbold et al. We confirm that the ECSN and ESCN-like progenitors explode easily even in 1D with explosion energies of up to a 0.15 Bethes (1 {{B}}\\equiv {10}51 {erg}), and are a viable mechanism for the production of very-low-mass neutron stars. However, the 9, 10, and 11 {M}⊙ progenitors do not explode in 1D and are not even necessarily easier to explode than higher-mass progenitor stars in 2D. We study the effect of perturbations and of changes to the microphysics and we find that relatively small changes can result in qualitatively different outcomes, even in 1D, for models sufficiently close to the explosion threshold. Finally, we revisit the impact of convection below the protoneutron star (PNS) surface. We analyze 1D and 2D evolutions of PNSs subject to the same boundary conditions. We find that the impact of PNS convection has been underestimated in previous studies and could result in an increase of the neutrino luminosity by up to factors of two.

  20. Electron-capture and Low-mass Iron-core-collapse Supernovae: New Neutrino-radiation-hydrodynamics Simulations

    DOE PAGES

    Radice, David; Burrows, Adam; Vartanyan, David; ...

    2017-11-15

    We present new 1D (spherical) and 2D (axisymmetric) simulations of electron-capture (EC) and low-mass iron-core-collapse supernovae (SN). We consider six progenitor models: the ECSN progenitor from Nomoto; two ECSN-like low-mass low-metallicity iron-core progenitors from A. Heger (2016, private communication); and the 9, 10, and 11more » $${M}_{\\odot }$$ (zero-age main-sequence) progenitors from Sukhbold et al. We confirm that the ECSN and ESCN-like progenitors explode easily even in 1D with explosion energies of up to a 0.15 Bethes ($$1\\ {\\rm{B}}\\equiv {10}^{51}\\ \\mathrm{erg}$$), and are a viable mechanism for the production of very-low-mass neutron stars. However, the 9, 10, and 11 $${M}_{\\odot }$$ progenitors do not explode in 1D and are not even necessarily easier to explode than higher-mass progenitor stars in 2D. We study the effect of perturbations and of changes to the microphysics and we find that relatively small changes can result in qualitatively different outcomes, even in 1D, for models sufficiently close to the explosion threshold. Finally, we revisit the impact of convection below the protoneutron star (PNS) surface. We analyze 1D and 2D evolutions of PNSs subject to the same boundary conditions. Lastly, we find that the impact of PNS convection has been underestimated in previous studies and could result in an increase of the neutrino luminosity by up to factors of two.« less

  1. Electron-capture and Low-mass Iron-core-collapse Supernovae: New Neutrino-radiation-hydrodynamics Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radice, David; Burrows, Adam; Vartanyan, David

    We present new 1D (spherical) and 2D (axisymmetric) simulations of electron-capture (EC) and low-mass iron-core-collapse supernovae (SN). We consider six progenitor models: the ECSN progenitor from Nomoto; two ECSN-like low-mass low-metallicity iron-core progenitors from A. Heger (2016, private communication); and the 9, 10, and 11more » $${M}_{\\odot }$$ (zero-age main-sequence) progenitors from Sukhbold et al. We confirm that the ECSN and ESCN-like progenitors explode easily even in 1D with explosion energies of up to a 0.15 Bethes ($$1\\ {\\rm{B}}\\equiv {10}^{51}\\ \\mathrm{erg}$$), and are a viable mechanism for the production of very-low-mass neutron stars. However, the 9, 10, and 11 $${M}_{\\odot }$$ progenitors do not explode in 1D and are not even necessarily easier to explode than higher-mass progenitor stars in 2D. We study the effect of perturbations and of changes to the microphysics and we find that relatively small changes can result in qualitatively different outcomes, even in 1D, for models sufficiently close to the explosion threshold. Finally, we revisit the impact of convection below the protoneutron star (PNS) surface. We analyze 1D and 2D evolutions of PNSs subject to the same boundary conditions. Lastly, we find that the impact of PNS convection has been underestimated in previous studies and could result in an increase of the neutrino luminosity by up to factors of two.« less

  2. High-velocity runaway stars from three-body encounters

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Gualandris, A.; Portegies Zwart, S.

    2010-01-01

    We performed numerical simulations of dynamical encounters between hard, massive binaries and a very massive star (VMS; formed through runaway mergers of ordinary stars in the dense core of a young massive star cluster) to explore the hypothesis that this dynamical process could be responsible for the origin of high-velocity (≥ 200 - 400 km s-1) early or late B-type stars. We estimated the typical velocities produced in encounters between very tight massive binaries and VMSs (of mass of ≥ 200 M⊙) and found that about 3 - 4% of all encounters produce velocities ≥ 400 km s-1, while in about 2% of encounters the escapers attain velocities exceeding the Milky Ways's escape velocity. We therefore argue that the origin of high-velocity (≥ 200 - 400 km s-1) runaway stars and at least some so-called hypervelocity stars could be associated with dynamical encounters between the tightest massive binaries and VMSs formed in the cores of star clusters. We also simulated dynamical encounters between tight massive binaries and single ordinary 50 - 100 M⊙ stars. We found that from 1 to ≃ 4% of these encounters can produce runaway stars with velocities of ≥ 300 - 400 km s-1 (typical of the bound population of high-velocity halo B-type stars) and occasionally (in less than 1% of encounters) produce hypervelocity (≥ 700 km s-1) late B-type escapers.

  3. The mass distribution of Population III stars

    NASA Astrophysics Data System (ADS)

    Fraser, M.; Casey, A. R.; Gilmore, G.; Heger, A.; Chan, C.

    2017-06-01

    Extremely metal-poor (EMP) stars are uniquely informative on the nature of massive Population III stars. Modulo a few elements that vary with stellar evolution, the present-day photospheric abundances observed in EMP stars are representative of their natal gas cloud composition. For this reason, the chemistry of EMP stars closely reflects the nucleosynthetic yields of supernovae from massive Population III stars. Here we collate detailed abundances of 53 EMP stars from the literature and infer the masses of their Population III progenitors. We fit a simple initial mass function (IMF) to a subset of 29 of the inferred Population III star masses, and find that the mass distribution is well represented by a power-law IMF with exponent α = 2.35^{+0.29}_{-0.24}. The inferred maximum progenitor mass for supernovae from massive Population III stars is M_{max} = 87^{+13}_{-33} M⊙, and we find no evidence in our sample for a contribution from stars with masses above ˜120 M⊙. The minimum mass is strongly consistent with the theoretical lower mass limit for Population III supernovae. We conclude that the IMF for massive Population III stars is consistent with the IMF of present-day massive stars and there may well have formed stars much below the supernova mass limit that could have survived to the present day.

  4. ATLASGAL - towards a complete sample of massive star forming clumps

    NASA Astrophysics Data System (ADS)

    Urquhart, J. S.; Moore, T. J. T.; Csengeri, T.; Wyrowski, F.; Schuller, F.; Hoare, M. G.; Lumsden, S. L.; Mottram, J. C.; Thompson, M. A.; Menten, K. M.; Walmsley, C. M.; Bronfman, L.; Pfalzner, S.; König, C.; Wienen, M.

    2014-09-01

    By matching infrared-selected, massive young stellar objects (MYSOs) and compact H II regions in the Red MSX Source survey to massive clumps found in the submillimetre ATLASGAL (APEX Telescope Large Area Survey of the Galaxy) survey, we have identified ˜1000 embedded young massive stars between 280° < ℓ < 350° and 10° < ℓ < 60° with | b | < 1.5°. Combined with an existing sample of radio-selected methanol masers and compact H II regions, the result is a catalogue of ˜1700 massive stars embedded within ˜1300 clumps located across the inner Galaxy, containing three observationally distinct subsamples, methanol-maser, MYSO and H II-region associations, covering the most important tracers of massive star formation, thought to represent key stages of evolution. We find that massive star formation is strongly correlated with the regions of highest column density in spherical, centrally condensed clumps. We find no significant differences between the three samples in clump structure or the relative location of the embedded stars, which suggests that the structure of a clump is set before the onset of star formation, and changes little as the embedded object evolves towards the main sequence. There is a strong linear correlation between clump mass and bolometric luminosity, with the most massive stars forming in the most massive clumps. We find that the MYSO and H II-region subsamples are likely to cover a similar range of evolutionary stages and that the majority are near the end of their main accretion phase. We find few infrared-bright MYSOs associated with the most massive clumps, probably due to very short pre-main-sequence lifetimes in the most luminous sources.

  5. Predicting the nature of supernova progenitors.

    PubMed

    Groh, Jose H

    2017-10-28

    Stars more massive than about 8 solar masses end their lives as a supernova (SN), an event of fundamental importance Universe-wide. The physical properties of massive stars before the SN event are very uncertain, both from theoretical and observational perspectives. In this article, I briefly review recent efforts to predict the nature of stars before death, in particular, by performing coupled stellar evolution and atmosphere modelling of single stars in the pre-SN stage. These models are able to predict the high-resolution spectrum and broadband photometry, which can then be directly compared with the observations of core-collapse SN progenitors. The predictions for the spectral types of massive stars before death can be surprising. Depending on the initial mass and rotation, single star models indicate that massive stars die as red supergiants, yellow hypergiants, luminous blue variables and Wolf-Rayet stars of the WN and WO subtypes. I finish by assessing the detectability of SN Ibc progenitors.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).

  6. RUNAWAY MASSIVE STARS FROM R136: VFTS 682 IS VERY LIKELY A 'SLOW RUNAWAY'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Sambaran; Kroupa, Pavel; Oh, Seungkyung, E-mail: sambaran@astro.uni-bonn.de, E-mail: pavel@astro.uni-bonn.de, E-mail: skoh@astro.uni-bonn.de

    2012-02-10

    We conduct a theoretical study on the ejection of runaway massive stars from R136-the central massive, starburst cluster in the 30 Doradus complex of the Large Magellanic Cloud. Specifically, we investigate the possibility of the very massive star (VMS) VFTS 682 being a runaway member of R136. Recent observations of the above VMS, by virtue of its isolated location and its moderate peculiar motion, have raised the fundamental question of whether isolated massive star formation is indeed possible. We perform the first realistic N-body computations of fully mass-segregated R136-type star clusters in which all the massive stars are in primordialmore » binary systems. These calculations confirm that the dynamical ejection of a VMS from an R136-like cluster, with kinematic properties similar to those of VFTS 682, is common. Hence, the conjecture of isolated massive star formation is unnecessary to account for this VMS. Our results are also quite consistent with the ejection of 30 Dor 016, another suspected runaway VMS from R136. We further note that during the clusters' evolution, mergers of massive binaries produce a few single stars per cluster with masses significantly exceeding the canonical upper limit of 150 M{sub Sun }. The observations of such single super-canonical stars in R136, therefore, do not imply an initial mass function with an upper limit greatly exceeding the accepted canonical 150 M{sub Sun} limit, as has been suggested recently, and they are consistent with the canonical upper limit.« less

  7. An integral condition for core-collapse supernova explosions

    DOE PAGES

    Murphy, Jeremiah W.; Dolence, Joshua C.

    2017-01-10

    Here, we derive an integral condition for core-collapse supernova (CCSN) explosions and use it to construct a new diagnostic of explodability. The fundamental challenge in CCSN theory is to explain how a stalled accretion shock revives to explode a star. In this manuscript, we assume that the shock revival is initiated by the delayed-neutrino mechanism and derive an integral condition for spherically symmetric shock expansion, v s > 0. One of the most useful one-dimensional explosion conditions is the neutrino luminosity and mass-accretion rate (more » $${L}_{\

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendi, S.H.; Bordbar, G.H.; Panah, B. Eslam

    Motivated by the recent interests in spin−2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into themore » structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.« less

  9. Re-examing the Upper Mass Limit of Very Massive Stars: VFTS 682, an isolated ~130 M ⊙ twin of R136's WN5h core stars

    NASA Astrophysics Data System (ADS)

    Rubio-Díez, M. M.; Najarro, F.; García, M.; Sundqvist, J. O.

    2017-11-01

    Recent studies of WNh stars at the cores of young massive clusters have challenged the previously accepted upper stellar mass limit (~150 M ⊙), suggesting some of these objects may have initial masses as high as 300 M ⊙. We investigated the possible existence of observed stars above ~150 M ⊙ by i) examining the nature and stellar properties of VFTS 682, a recently identified WNh5 very massive star, and ii) studying the uncertainties in the luminosity estimates of R136's core stars due to crowding. Our spectroscopic analysis reveals that the most massive members of R136 and VFTS 682 are very similar and our K-band photometric study of R136's core stars shows that the measurements seem to display higher uncertainties than previous studies suggested; moreover, for the most massive stars in the cluster, R136a1 and a2, we found previous magnitudes were underestimated by at least 0.4 mag. As such, luminosities and masses of these stars have to be significantly scaled down, which then also lowers the hitherto observed upper mass limit of stars.

  10. The Wolf-Rayet Content of the Andromeda Galaxy: What Do Massive Stars Really Do When the Metallicity is Above Solar?

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    2000-08-01

    We are proposing to survey M 31 for Wolf-Rayet stars (WRs) and red supergiants (RSGs), providing much needed information about how massive stars evolve at greater-than-solar metallicities. Our understanding of massive star evolution is hampered by the effects of mass-loss on these stars; at higher metallicities mass-loss effects become ever more pronounced. Our previous work on other Local Group galaxies (Massey & Johnson 1998) has shown that the number of RSGs to WRs correlates well with metallicity, changing by a factor of 6 from NGC 6822 (log O/H+12=8.3) to the inner parts of M 33 (8.7). Our study of five small regions in M 31 suggests that above this value the ratio of RSGs to WRs doesn't change: does this mean that no massive star that becomes a WR spends any time as a RSG at above solar metallicities? We fear instead that our sample (selected, afterall, for containing WR stars) was not sufficiently well-mixed in age to provide useful global values; the study we propose here will survey all of M 31. Detection of WRs will provide fundamental data not only on massive star evolution, but also act as tracers of the most massive stars, and improve our knowledge of recent star-formation in the Andromeda Galaxy.

  11. Properties of Massive Stars in Primitive Galaxies

    NASA Technical Reports Server (NTRS)

    Heap, Sara

    2012-01-01

    According to R. Dave, the phases of galaxy formation are distinguished by their halo mass and governing feedback mechanism. Galaxies in the birth phase (our "primitive galaxies") have a low halo mass (M<10(exp 9) Msun); and star formation is affected by photoionizing radiation of massive stars. In contrast, galaxies in the growth phase (e.g. Lyman Break galaxies) are more massive (M=10(exp 9)-10(exp 12) Msun); star formation is fueled by cold accretion but modulated by strong outflows from massive stars. I Zw 18 is a local blue, compact dwarf galaxy that meets the requirements for a birth-phase galaxy: halo mass <10(exp 9) Msun, strong photo ionizing radiation, no galactic outflow, and very low metallicity, log(O/H)=7.2. We will describe the properties of massive stars in I Zw 18 based on analysis of ultraviolet spectra obtained with HST.

  12. Massive stars in the Sagittarius Dwarf Irregular Galaxy

    NASA Astrophysics Data System (ADS)

    Garcia, Miriam

    2018-02-01

    Low metallicity massive stars hold the key to interpret numerous processes in the past Universe including re-ionization, starburst galaxies, high-redshift supernovae, and γ-ray bursts. The Sagittarius Dwarf Irregular Galaxy [SagDIG, 12+log(O/H) = 7.37] represents an important landmark in the quest for analogues accessible with 10-m class telescopes. This Letter presents low-resolution spectroscopy executed with the Gran Telescopio Canarias that confirms that SagDIG hosts massive stars. The observations unveiled three OBA-type stars and one red supergiant candidate. Pending confirmation from high-resolution follow-up studies, these could be the most metal-poor massive stars of the Local Group.

  13. Massive stars, disks, and clustered star formation

    NASA Astrophysics Data System (ADS)

    Moeckel, Nickolas Barry

    The formation of an isolated massive star is inherently more complex than the relatively well-understood collapse of an isolated, low-mass star. The dense, clustered environment where massive stars are predominantly found further complicates the picture, and suggests that interactions with other stars may play an important role in the early life of these objects. In this thesis we present the results of numerical hydrodynamic experiments investigating interactions between a massive protostar and its lower-mass cluster siblings. We explore the impact of these interactions on the orientation of disks and outflows, which are potentially observable indications of encounters during the formation of a star. We show that these encounters efficiently form eccentric binary systems, and in clusters similar to Orion they occur frequently enough to contribute to the high multiplicity of massive stars. We suggest that the massive protostar in Cepheus A is currently undergoing a series of interactions, and present simulations tailored to that system. We also apply the numerical techniques used in the massive star investigations to a much lower-mass regime, the formation of planetary systems around Solar- mass stars. We perform a small number of illustrative planet-planet scattering experiments, which have been used to explain the eccentricity distribution of extrasolar planets. We add the complication of a remnant gas disk, and show that this feature has the potential to stabilize the system against strong encounters between planets. We present preliminary simulations of Bondi-Hoyle accretion onto a protoplanetary disk, and consider the impact of the flow on the disk properties as well as the impact of the disk on the accretion flow.

  14. Multiplicity of Massive Stars

    NASA Astrophysics Data System (ADS)

    Zinnecker, Hans

    We review the multiplicity of massive stars by compiling the abstracts of the most relevant papers in the field. We start by discussing the massive stars in the Orion Trapezium Cluster and in other Galactic young clusters and OB associations, and end with the R136 cluster in the LMC. The multiplicity of field O-stars and runaway OB stars is also reviewed. The results of both visual and spectroscopic surveys are presented, as well as data for eclipsing systems. Among the latter, we find the most massive known binary system WR20a, with two ~,80M_⊙ components in a 3 day orbit. Some 80% of the wide visual binaries in stellar associations are in fact hierarchical triple systems, where typically the more massive of the binary components is itself a spectroscopic or even eclipsing binary pair. The multiplicity (number of companions) of massive star primaries is significantly higher than for low-mass solar-type primaries or for young low-mass T Tauri stars. There is also a striking preponderance of very close nearly equal mass binary systems (the origin of which has recently been explained in an accretion scenario). Finally, we offer a new idea as to the origin of massive Trapezium systems, frequently found in the centers of dense young clusters.

  15. Luminous Infrared Sources in the Local Group: Identifying the Missing Links in Massive Star Evolution

    NASA Astrophysics Data System (ADS)

    Britavskiy, N.; Bonanos, A. Z.; Mehner, A.

    2015-01-01

    We present the first systematic survey of dusty massive stars (RSGs, LBVs, sgB[e]) in nearby galaxies, with the goal of understanding their importance in massive star evolution. Using the fact that these stars are bright in mid-infrared colors due to dust, we provide a technique for selecting and identifying dusty evolved stars based on the results of Bonanos et al. (2009, 2010), Britavskiy et al. (2014), and archival Spitzer/IRAC photometry. We present the results of our spectroscopic follow-up of luminous infrared sources in the Local Group dwarf irregular galaxies: Pegasus, Phoenix, Sextans A and WLM. The survey aims to complete the census of dusty massive stars in the Local Group.

  16. An excess of massive stars in the local 30 Doradus starburst

    NASA Astrophysics Data System (ADS)

    Schneider, F. R. N.; Sana, H.; Evans, C. J.; Bestenlehner, J. M.; Castro, N.; Fossati, L.; Gräfener, G.; Langer, N.; Ramírez-Agudelo, O. H.; Sabín-Sanjulián, C.; Simón-Díaz, S.; Tramper, F.; Crowther, P. A.; de Koter, A.; de Mink, S. E.; Dufton, P. L.; Garcia, M.; Gieles, M.; Hénault-Brunet, V.; Herrero, A.; Izzard, R. G.; Kalari, V.; Lennon, D. J.; Maíz Apellániz, J.; Markova, N.; Najarro, F.; Podsiadlowski, Ph.; Puls, J.; Taylor, W. D.; van Loon, J. Th.; Vink, J. S.; Norman, C.

    2018-01-01

    The 30 Doradus star-forming region in the Large Magellanic Cloud is a nearby analog of large star-formation events in the distant universe. We determined the recent formation history and the initial mass function (IMF) of massive stars in 30 Doradus on the basis of spectroscopic observations of 247 stars more massive than 15 solar masses (M☉). The main episode of massive star formation began about 8 million years (My) ago, and the star-formation rate seems to have declined in the last 1 My. The IMF is densely sampled up to 200 M☉ and contains 32 ± 12% more stars above 30 M☉ than predicted by a standard Salpeter IMF. In the mass range of 15 to 200 M☉, the IMF power-law exponent is 1.90‑0.26+0.37, shallower than the Salpeter value of 2.35.

  17. An excess of massive stars in the local 30 Doradus starburst.

    PubMed

    Schneider, F R N; Sana, H; Evans, C J; Bestenlehner, J M; Castro, N; Fossati, L; Gräfener, G; Langer, N; Ramírez-Agudelo, O H; Sabín-Sanjulián, C; Simón-Díaz, S; Tramper, F; Crowther, P A; de Koter, A; de Mink, S E; Dufton, P L; Garcia, M; Gieles, M; Hénault-Brunet, V; Herrero, A; Izzard, R G; Kalari, V; Lennon, D J; Maíz Apellániz, J; Markova, N; Najarro, F; Podsiadlowski, Ph; Puls, J; Taylor, W D; van Loon, J Th; Vink, J S; Norman, C

    2018-01-05

    The 30 Doradus star-forming region in the Large Magellanic Cloud is a nearby analog of large star-formation events in the distant universe. We determined the recent formation history and the initial mass function (IMF) of massive stars in 30 Doradus on the basis of spectroscopic observations of 247 stars more massive than 15 solar masses ([Formula: see text]). The main episode of massive star formation began about 8 million years (My) ago, and the star-formation rate seems to have declined in the last 1 My. The IMF is densely sampled up to 200 [Formula: see text] and contains 32 ± 12% more stars above 30 [Formula: see text] than predicted by a standard Salpeter IMF. In the mass range of 15 to 200 [Formula: see text], the IMF power-law exponent is [Formula: see text], shallower than the Salpeter value of 2.35. Copyright © 2018, American Association for the Advancement of Science.

  18. Star Cluster Buzzing With Pulsars

    NASA Astrophysics Data System (ADS)

    2005-01-01

    A dense globular star cluster near the center of our Milky Way Galaxy holds a buzzing beehive of rapidly-spinning millisecond pulsars, according to astronomers who discovered 21 new pulsars in the cluster using the National Science Foundation's 100-meter Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The cluster, called Terzan 5, now holds the record for pulsars, with 24, including three known before the GBT observations. Pulsar Diagram Pulsar Diagram: Click on image for more detail. "We hit the jackpot when we looked at this cluster," said Scott Ransom, an astronomer at the National Radio Astronomy Observatory in Charlottesville, VA. "Not only does this cluster have a lot of pulsars -- and we still expect to find more in it -- but the pulsars in it are very interesting. They include at least 13 in binary systems, two of which are eclipsing, and the four fastest-rotating pulsars known in any globular cluster, with the fastest two rotating nearly 600 times per second, roughly as fast as a household blender," Ransom added. Ransom and his colleagues reported their findings to the American Astronomical Society's meeting in San Diego, CA, and in the online journal Science Express. The star cluster's numerous pulsars are expected to yield a bonanza of new information about not only the pulsars themselves, but also about the dense stellar environment in which they reside and probably even about nuclear physics, according to the scientists. For example, preliminary measurements indicate that two of the pulsars are more massive than some theoretical models would allow. "All these exotic pulsars will keep us busy for years to come," said Jason Hessels, a Ph.D student at McGill University in Montreal. Globular clusters are dense agglomerations of up to millions of stars, all of which formed at about the same time. Pulsars are spinning, superdense neutron stars that whirl "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is left after a massive star explodes as a supernova at the end of its life. The pulsars in Terzan 5 are the product of a complex history. The stars in the cluster formed about 10 billion years ago, the astronomers say. Some of the most massive stars in the cluster exploded and left the neutron stars as their remnants after only a few million years. Normally, these neutron stars would no longer be seen as swiftly-rotating pulsars: their spin would have slowed because of the "drag" of their intense magnetic fields until the "lighthouse" effect is no longer observable. The Green Bank Telescope The Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF (Click on image for GBT gallery) However, the dense concentration of stars in the cluster gave new life to the pulsars. In the core of a globular cluster, as many as a million stars may be packed into a volume that would fit easily between the Sun and our nearest neighbor star. In such close quarters, stars can pass near enough to form new binary pairs, split apart such pairs, and binary systems even can trade partners, like an elaborate cosmic square dance. When a neutron star pairs up with a "normal" companion star, its strong gravitational pull can draw material off the companion onto the neutron star. This also transfers some of the companion's spin, or angular momentum, to the neutron star, thereby "recycling" the neutron star into a rapidly-rotating millisecond pulsar. In Terzan 5, all the pulsars discovered are rotating rapidly as a result of this process. Astronomers previously had discovered three pulsars in Terzan 5, some 28,000 light-years distant in the constellation Sagittarius, but suspected there were more. On July 17, 2004, Ransom and his colleagues used the GBT, and, in a 6-hour observation, found 14 new pulsars, the most ever found in a single observation. "This was possible because of the great sensitivity of the GBT and the new capabilities of our backend processor," said Ingrid Stairs, a professor at the University of British Columbia in Vancouver. The processor, named, appropriately, the Pulsar Spigot, was built in a collaboration between the NRAO and the California Institute of Technology. The processor, which generates almost 100 GigaBytes of data per hour, allowed the astronomers to gather and analyze radio waves over a wide range of frequencies (1650-2250 MegaHertz), adding to the sensitivity of their system. Eight more observations between July and November of 2004 discovered seven additional pulsars in Terzan 5. In addition, the astronomers' data show evidence for several more pulsars that still need to be confirmed. Future studies of the pulsars in Terzan 5 will help scientists understand the nature of the cluster and the complex interactions of the stars at its dense core. Also, several of the pulsars offer a rich yield of new scientific information. The scientists suspect that one pulsar, which shows strange eclipses of its radio emission, has recently traded its original binary companion for another, and two others have white-dwarf companions that they believe may have been produced by the collision of a neutron star and a red-giant star. Subtle effects seen in these two systems can be explained by Einstein's general relativistic theory of gravity, and indicate that the neutron stars are more massive than some theories allow. The material in a neutron star is as dense as that in an atomic nucleus, so that fact has implications for nuclear physics as well as astrophysics. "Finding all these pulsars has been extremely exciting, but the excitement really has just begun," Ransom said. "Now we can start to use them as a rich and valuable cosmic laboratory," he added. In addition to Ransom, Hessels and Stairs, the research team included Paulo Freire of Arecibo Observatory in Puerto Rico, Fernando Camilo of Columbia University, Victoria Kaspi of McGill University, and David Kaplan of the Massachusetts Institute of Technology. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The pulsar research also was supported by the Canada Foundation for Innovation, Science and Engineering Research Canada, the Quebec Foundation for Research on Nature and Technology, the Canadian Institute for Advanced Research, Canada Research Chairs Program, and the National Science Foundation.

  19. Detection of a Red Supergiant Progenitor Star of a Type II-Plateau Supernova

    NASA Astrophysics Data System (ADS)

    Smartt, Stephen J.; Maund, Justyn R.; Hendry, Margaret A.; Tout, Christopher A.; Gilmore, Gerard F.; Mattila, Seppo; Benn, Chris R.

    2004-01-01

    We present the discovery of a red supergiant star that exploded as supernova 2003gd in the nearby spiral galaxy M74. The Hubble Space Telescope (HST) and the Gemini Telescope imaged this galaxy 6 to 9 months before the supernova explosion, and subsequent HST images confirm the positional coincidence of the supernova with a single resolved star that is a red supergiant of 8+4-2 solar masses. This confirms both stellar evolution models and supernova theories predicting that cool red supergiants are the immediate progenitor stars of type II-plateau supernovae.

  20. The Year Ahead: Scholarship.

    ERIC Educational Resources Information Center

    Wheeler, David L., And Others

    1987-01-01

    Research concerns facing scholars are described including: in science--AIDS, exploding star, Ozone Hole, animal patents, Supernova 1987A, quasars, etc.--and in humanities and social sciences--theology, psychology of health, global environment, cognitive archaeology, classic African civilizations, feminism, etc. (MLW)

  1. Radiation pressure in super star cluster formation

    NASA Astrophysics Data System (ADS)

    Tsang, Benny T.-H.; Milosavljević, Miloš

    2018-05-01

    The physics of star formation at its extreme, in the nuclei of the densest and the most massive star clusters in the universe—potential massive black hole nurseries—has for decades eluded scrutiny. Spectroscopy of these systems has been scarce, whereas theoretical arguments suggest that radiation pressure on dust grains somehow inhibits star formation. Here, we harness an accelerated Monte Carlo radiation transport scheme to report a radiation hydrodynamical simulation of super star cluster formation in turbulent clouds. We find that radiation pressure reduces the global star formation efficiency by 30-35%, and the star formation rate by 15-50%, both relative to a radiation-free control run. Overall, radiation pressure does not terminate the gas supply for star formation and the final stellar mass of the most massive cluster is ˜1.3 × 106 M⊙. The limited impact as compared to in idealized theoretical models is attributed to a radiation-matter anti-correlation in the supersonically turbulent, gravitationally collapsing medium. In isolated regions outside massive clusters, where the gas distribution is less disturbed, radiation pressure is more effective in limiting star formation. The resulting stellar density at the cluster core is ≥108 M⊙ pc-3, with stellar velocity dispersion ≳ 70 km s-1. We conclude that the super star cluster nucleus is propitious to the formation of very massive stars via dynamical core collapse and stellar merging. We speculate that the very massive star may avoid the claimed catastrophic mass loss by continuing to accrete dense gas condensing from a gravitationally-confined ionized phase.

  2. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    NASA Technical Reports Server (NTRS)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Assef, R. J.

    2011-01-01

    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars.We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks.We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  3. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    NASA Technical Reports Server (NTRS)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Asslef, R. J.

    2012-01-01

    We present the results of a mid-infrared survey of II outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  4. Scientists Track Collision of Powerful Stellar Winds

    NASA Astrophysics Data System (ADS)

    2005-04-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have tracked the motion of a violent region where the powerful winds of two giant stars slam into each other. The collision region moves as the stars, part of a binary pair, orbit each other, and the precise measurement of its motion was the key to unlocking vital new information about the stars and their winds. WR 140 Image Sequence Motion of Wind Collision Region Graphic superimposes VLBA images of wind collision region on diagram of orbit of Wolf-Rayet (WR) star and its giant (O) companion. Click on image for larger version (412K) CREDIT: Dougherty et al., NRAO/AUI/NSF In Motion: Shockwave File Animated Gif File AVI file Both stars are much more massive than the Sun -- one about 20 times the mass of the Sun and the other about 50 times the Sun's mass. The 20-solar-mass star is a type called a Wolf-Rayet star, characterized by a very strong wind of particles propelled outward from its surface. The more massive star also has a strong outward wind, but one less intense than that of the Wolf-Rayet star. The two stars, part of a system named WR 140, circle each other in an elliptical orbit roughly the size of our Solar System. "The spectacular feature of this system is the region where the stars' winds collide, producing bright radio emission. We have been able to track this collision region as it moves with the orbits of the stars," said Sean Dougherty, an astronomer at the Herzberg Institute for Astrophysics in Canada. Dougherty and his colleagues presented their findings in the April 10 edition of the Astrophysical Journal. The supersharp radio "vision" of the continent-wide VLBA allowed the scientists to measure the motion of the wind collision region and then to determine the details of the stars' orbits and an accurate distance to the system. "Our new calculations of the orbital details and the distance are vitally important to understanding the nature of these Wolf-Rayet stars and of the wind-collision region," Dougherty said. The stars in WR 140 complete an orbital cycle in 7.9 years. The astronomers tracked the system for a year and a half, noting dramatic changes in the wind collision region. "People have worked out theoretical models for these collision regions, but the models don't seem to fit what our observations have shown," said Mark Claussen, of the National Radio Astronomy Observatory in Socorro, New Mexico. "The new data on this system should provide the theorists with much better information for refining their models of how Wolf-Rayet stars evolve and how wind-collision regions work," Claussen added. The scientists watched the changes in the stellar system as the star's orbits carried them in paths that bring them nearly as close to each other as Mars is to the Sun and as far as Neptune is from the Sun. Their detailed analysis gave them new information on the Wolf-Rayet star's strong wind. At some points in the orbit, the wind collision region strongly emitted radio waves, and at other points, the scientists could not detect the collison region. Wolf-Rayet stars are giant stars nearing the time when they will explode as supernovae. "No other telescope in the world can see the details revealed by the VLBA," Claussen said. "This unmatched ability allowed us to determine the masses and other properties of the stars, and will help us answer some basic questions about the nature of Wolf-Rayet stars and how they develop." he added. The astronomers plan to continue observing WR 140 to follow the system's changes as the two massive stars continue to circle each other. Dougherty and Claussen worked with Anthony Beasley of the Atacama Large Millimeter Array office, Ashley Zauderer of the University of Maryland and Nick Bolingbroke of the University of Victoria, British Columbia. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  5. Ages of young star clusters, massive blue stragglers, and the upper mass limit of stars: Analyzing age-dependent stellar mass functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, F. R. N.; Izzard, R. G.; Langer, N.

    2014-01-10

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. Wemore » find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M {sub ☉} limit and observations of four stars with initial masses of 165-320 M {sub ☉} in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M {sub ☉} star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M {sub ☉}.« less

  6. Ages of Young Star Clusters, Massive Blue Stragglers, and the Upper Mass Limit of Stars: Analyzing Age-dependent Stellar Mass Functions

    NASA Astrophysics Data System (ADS)

    Schneider, F. R. N.; Izzard, R. G.; de Mink, S. E.; Langer, N.; Stolte, A.; de Koter, A.; Gvaramadze, V. V.; Hußmann, B.; Liermann, A.; Sana, H.

    2014-01-01

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M ⊙ limit and observations of four stars with initial masses of 165-320 M ⊙ in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M ⊙ star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M ⊙.

  7. Stars Just Got Bigger - A 300 Solar Mass Star Uncovered

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Using a combination of instruments on ESO's Very Large Telescope, astronomers have discovered the most massive stars to date, one weighing at birth more than 300 times the mass of the Sun, or twice as much as the currently accepted limit of 150 solar masses. The existence of these monsters - millions of times more luminous than the Sun, losing weight through very powerful winds - may provide an answer to the question "how massive can stars be?" A team of astronomers led by Paul Crowther, Professor of Astrophysics at the University of Sheffield, has used ESO's Very Large Telescope (VLT), as well as archival data from the NASA/ESA Hubble Space Telescope, to study two young clusters of stars, NGC 3603 and RMC 136a in detail. NGC 3603 is a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust, located 22 000 light-years away from the Sun (eso1005). RMC 136a (more often known as R136) is another cluster of young, massive and hot stars, which is located inside the Tarantula Nebula, in one of our neighbouring galaxies, the Large Magellanic Cloud, 165 000 light-years away (eso0613). The team found several stars with surface temperatures over 40 000 degrees, more than seven times hotter than our Sun, and a few tens of times larger and several million times brighter. Comparisons with models imply that several of these stars were born with masses in excess of 150 solar masses. The star R136a1, found in the R136 cluster, is the most massive star ever found, with a current mass of about 265 solar masses and with a birthweight of as much as 320 times that of the Sun. In NGC 3603, the astronomers could also directly measure the masses of two stars that belong to a double star system [1], as a validation of the models used. The stars A1, B and C in this cluster have estimated masses at birth above or close to 150 solar masses. Very massive stars produce very powerful outflows. "Unlike humans, these stars are born heavy and lose weight as they age," says Paul Crowther. "Being a little over a million years old, the most extreme star R136a1 is already 'middle-aged' and has undergone an intense weight loss programme, shedding a fifth of its initial mass over that time, or more than fifty solar masses." If R136a1 replaced the Sun in our Solar System, it would outshine the Sun by as much as the Sun currently outshines the full Moon. "Its high mass would reduce the length of the Earth's year to three weeks, and it would bathe the Earth in incredibly intense ultraviolet radiation, rendering life on our planet impossible," says Raphael Hirschi from Keele University, who belongs to the team. These super heavyweight stars are extremely rare, forming solely within the densest star clusters. Distinguishing the individual stars - which has now been achieved for the first time - requires the exquisite resolving power of the VLT's infrared instruments [2]. The team also estimated the maximum possible mass for the stars within these clusters and the relative number of the most massive ones. "The smallest stars are limited to more than about eighty times more than Jupiter, below which they are 'failed stars' or brown dwarfs," says team member Olivier Schnurr from the Astrophysikalisches Institut Potsdam. "Our new finding supports the previous view that there is also an upper limit to how big stars can get, although it raises the limit by a factor of two, to about 300 solar masses." Within R136, only four stars weighed more than 150 solar masses at birth, yet they account for nearly half of the wind and radiation power of the entire cluster, comprising approximately 100 000 stars in total. R136a1 alone energises its surroundings by more than a factor of fifty compared to the Orion Nebula cluster, the closest region of massive star formation to Earth. Understanding how high mass stars form is puzzling enough, due to their very short lives and powerful winds, so that the identification of such extreme cases as R136a1 raises the challenge to theorists still further. "Either they were born so big or smaller stars merged together to produce them," explains Crowther. Stars between about 8 and 150 solar masses explode at the end of their short lives as supernovae, leaving behind exotic remnants, either neutron stars or black holes. Having now established the existence of stars weighing between 150 and 300 solar masses, the astronomers' findings raise the prospect of the existence of exceptionally bright, "pair instability supernovae" that completely blow themselves apart, failing to leave behind any remnant and dispersing up to ten solar masses of iron into their surroundings. A few candidates for such explosions have already been proposed in recent years. Not only is R136a1 the most massive star ever found, but it also has the highest luminosity too, close to 10 million times greater than the Sun. "Owing to the rarity of these monsters, I think it is unlikely that this new record will be broken any time soon," concludes Crowther. Notes [1] The star A1 in NGC 3603 is a double star, with an orbital period of 3.77 days. The two stars in the system have, respectively, 120 and 92 times the mass of the Sun, which means that they have formed as stars weighing, respectively, 148 and 106 solar masses. [2] The team used the SINFONI, ISAAC and MAD instruments, all attached to ESO's Very Large Telescope at Paranal, Chile. [3] (note added on 26 July 2010) The "bigger" in the title does not imply that these stars are the biggest observed. Such stars, called red supergiants, can have radii up to about a thousand solar radii, while R136a1, which is blue, is about 35 times as large as the Sun. However, R136a1 is the star with the greatest mass known to date. More information This work is presented in an article published in the Monthly Notices of the Royal Astronomical Society ("The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 Msun stellar mass limit", by P. Crowther et al.). The team is composed of Paul A. Crowther, Richard J. Parker, and Simon P. Goodwin (University of Sheffield, UK), Olivier Schnurr (University of Sheffield and Astrophysikalisches Institut Potsdam, Germany), Raphael Hirschi (Keele University, UK), and Norhasliza Yusof and Hasan Abu Kassim (University of Malaya, Malaysia). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  8. What drives the formation of massive stars and clusters?

    NASA Astrophysics Data System (ADS)

    Ochsendorf, Bram; Meixner, Margaret; Roman-Duval, Julia; Evans, Neal J., II; Rahman, Mubdi; Zinnecker, Hans; Nayak, Omnarayani; Bally, John; Jones, Olivia C.; Indebetouw, Remy

    2018-01-01

    Galaxy-wide surveys allow to study star formation in unprecedented ways. In this talk, I will discuss our analysis of the Large Magellanic Cloud (LMC) and the Milky Way, and illustrate how studying both the large and small scale structure of galaxies are critical in addressing the question: what drives the formation of massive stars and clusters?I will show that ‘turbulence-regulated’ star formation models do not reproduce massive star formation properties of GMCs in the LMC and Milky Way: this suggests that theory currently does not capture the full complexity of star formation on small scales. I will also report on the discovery of a massive star forming complex in the LMC, which in many ways manifests itself as an embedded twin of 30 Doradus: this may shed light on the formation of R136 and 'Super Star Clusters' in general. Finally, I will highlight what we can expect in the next years in the field of star formation with large-scale sky surveys, ALMA, and our JWST-GTO program.

  9. Massive star winds interacting with magnetic fields on various scales

    NASA Astrophysics Data System (ADS)

    David-Uraz, A.; Petit, V.; Erba, C.; Fullerton, A.; Walborn, N.; MacInnis, R.

    2018-01-01

    One of the defining processes which govern massive star evolution is their continuous mass loss via dense, supersonic line-driven winds. In the case of those OB stars which also host a surface magnetic field, the interaction between that field and the ionized outflow leads to complex circumstellar structures known as magnetospheres. In this contribution, we review recent developments in the field of massive star magnetospheres, including current efforts to characterize the largest magnetosphere surrounding an O star: that of NGC 1624-2. We also discuss the potential of the "analytic dynamical magnetosphere" (ADM) model to interpret multi-wavelength observations. Finally, we examine the possible effects of — heretofore undetected — small-scale magnetic fields on massive star winds and compare their hypothetical consequences to existing, unexplained observations.

  10. Massive Young Star and its Cradle

    NASA Image and Video Library

    2010-07-14

    This star-forming region, captured by NASA Spitzer Space Telescope, is dominated by the bright, young star IRAS 13481-6124; it is the first massive baby star for which astronomers could obtain a detailed look at the dusty disk closely encircling it.

  11. The low-metallicity starburst NGC346: massive-star population and feedback

    NASA Astrophysics Data System (ADS)

    Oskinova, Lida

    2017-08-01

    The Small Magellanic Cloud (SMC) is ideal to study young, massive stars at low metallicity. The compact cluster NGC346 contains about half of all O-type stars in the entire SMC. The massive-star population of this cluster powers N66, the brightest and largest HII region in the SMC. We propose to use HST-STIS to slice NGC346 with 20 long-slit exposures, in order to obtain the UV spectra of most of the massive early-type stars of this cluster. Archival data of 13 exposures that cover already a minor part of this cluster will be included in our analyses. Our aim is to quantitatively analyze virtually the whole massive-star population of NGC346. We have already secured the optical spectra of all massive stars in the field with the integral-field spectrograph MUSE at the ESO-VLT. However, for the determination of the stellar-wind parameters, i.e. the mass-loss rates and the wind velocities, ultraviolet spectra are indispensable. Our advanced Potsdam Wolf-Rayet (PoWR) code will be used for modeling the stellar and wind spectra in the course of the analysis. Finally, we will obtain:(a) the fundamental stellar and wind parameters of all stars brighter than spectral type B2V in the field, which, e,g,, will constrain the initial mass function in this young low-metallicity starburst;(b) mass-loss rates of many more OB-type stars at SMC metallicity than hitherto known, allowing to better constrain their metallicity dependence;(c) the integrated feedback by ionizing radiation and stellar winds of the whole massive-star population of NGC346, which will be used as input to model the ecology of the giant HII region N66.These HST UV data will be of high legacy value.

  12. VizieR Online Data Catalog: Properties of OB associations in IC 1613 (Garcia+, 2010)

    NASA Astrophysics Data System (ADS)

    Garcia, M.; Herrero, A.; Castro, N.; Corral, L.; Rosenberg, A.

    2014-06-01

    To understand the structure and evolution of massive stars, systematic surveys of the Local Group galaxies have been undertaken, to find these objects in environments of different chemical abundances. We focus on the metal-poor irregular galaxy IC 1613 to analyze the stellar and wind structure of its low-metallicity massive stars. We ultimately aim to study the metallicity-dependent driving mechanism of the winds of blue massive stars and use metal-poor massive stars of the Local Volume as a proxy for the stars in the early Universe. In a previous paper we produced a list of OB associations in IC 1613. Their properties are not only a powerful aid towards finding the most interesting candidate massive stars, but also reveal the structure and recent star formation history of the galaxy. We characterize these OB associations and study their connection with the galactic global properties. The reddening-free Q parameter is a powerful tool in the photometric analysis of young populations of massive stars, since it exhibits a smaller degree of degeneracy with OB spectral types than the B-V color. The color-magnitude diagram (Q vs. V) of the OB associations in IC 1613 is studied to determine their age and mass, and confirm the population of young massive stars. We identified more than 10 stars with M>=50M⊙. Spectral classification available for some of them confirm their massive nature, yet we find the common discrepancy with the spectroscopically derived masses. There is a general increasing trend of the mass of the most massive member with the number of members of each association, but not with the stellar density. The average diameter of the associations of this catalog is 40pc, half the historically considered typical size of OB associations. Size increases with the association population. The distribution of the groups strongly correlates with that of neutral and ionized hydrogen. We find the largest dispersion of association ages in the bubble region of the galaxy where hydrogen is abundant, implying that recent star formation has proceeded over a longer period of time than in the rest of the galaxy, and is still ongoing. Very young associations are found at the west of the galaxy far from the bubble region, traditionally considered the sole locus of star formation, but still rich in neutral hydrogen. The contrast in the stellar properties derived from photometry and spectroscopy (when the latter is available) shows that the Q pseudo-color is very useful for estimating the parameters of OB stars when only photometric observations exist. This work helped define an extensive pool of candidate OB stars for subsequent spectroscopic analyses designed to study the structure and winds of metal-poor massive stars. (2 data files).

  13. The Rb problem in massive AGB stars.

    NASA Astrophysics Data System (ADS)

    Pérez-Mesa, V.; García-Hernández, D. A.; Zamora, O.; Plez, B.; Manchado, A.; Karakas, A. I.; Lugaro, M.

    2017-03-01

    The asymptotic giant branch (AGB) is formed by low- and intermediate-mass stars (0.8 M_{⊙} < M < 8 M_{⊙}) in their last nuclear-burning phase, when they develop thermal pulses (TP) and suffer extreme mass loss. AGB stars are the main contributor to the enrichment of the interstellar medium (ISM) and thus to the chemical evolution of galaxies. In particular, the more massive AGB stars (M > 4 M_{⊙}) are expected to produce light (e.g., Li, N) and heavy neutron-rich s-process elements (such as Rb, Zr, Ba, Y, etc.), which are not formed in lower mass AGB stars and Supernova explosions. Classical chemical analyses using hydrostatic atmospheres revealed strong Rb overabundances and high [Rb/Zr] ratios in massive AGB stars of our Galaxy and the Magellanic Clouds (MC), confirming for the first time that the ^{22}Ne neutron source dominates the production of s-process elements in these stars. The extremely high Rb abundances and [Rb/Zr] ratios observed in the most massive stars (specially in the low-metallicity MC stars) uncovered a Rb problem; such extreme Rb and [Rb/Zr] values are not predicted by the s-process AGB models, suggesting fundamental problems in our present understanding of their atmospheres. We present more realistic dynamical model atmospheres that consider a gaseous circumstellar envelope with a radial wind and we re-derive the Rb (and Zr) abundances in massive Galactic AGB stars. The new Rb abundances and [Rb/Zr] ratios derived with these dynamical models significantly resolve the problem of the mismatch between the observations and the theoretical predictions of the more massive AGB stars.

  14. Featured Image: Making a Rapidly Rotating Black Hole

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-10-01

    These stills from a simulation show the evolution (from left to right and top to bottom) of a high-mass X-ray binary over 1.1 days, starting after the star on the right fails to explode as a supernova and then collapses into a black hole. Many high-mass X-ray binaries like the well-known Cygnus X-1, the first source widely accepted to be a black hole host rapidly spinning black holes. Despite our observations of these systems, however, were still not sure how these objects end up with such high rotation speeds. Using simulations like that shown above, a team of scientists led by Aldo Batta (UC Santa Cruz) has demonstrated how a failed supernova explosion can result in such a rapidly spinning black hole. The authors work shows that in a binary where one star attempts to explode as a supernova and fails it doesnt succeed in unbinding the star the large amount of fallback material can interact with the companion star and then accrete onto the black hole, spinning it up in the process. You can read more about the authors simulations and conclusions in the paper below.CitationAldo Batta et al 2017 ApJL 846 L15. doi:10.3847/2041-8213/aa8506

  15. Molecular line study of massive star-forming regions from the Red MSX Source survey

    NASA Astrophysics Data System (ADS)

    Yu, Naiping; Wang, Jun-Jie

    2014-05-01

    In this paper, we have selected a sample of massive star-forming regions from the Red MSX Source survey, in order to study star formation activities (mainly outflow and inflow signatures). We have focused on three molecular lines from the Millimeter Astronomy Legacy Team Survey at 90 GHz: HCO+(1-0), H13CO+(1-0) and SiO(2-1). According to previous observations, our sources can be divided into two groups: nine massive young stellar object candidates (radio-quiet) and 10 H II regions (which have spherical or unresolved radio emissions). Outflow activities have been found in 11 sources, while only three show inflow signatures in all. The high outflow detection rate means that outflows are common in massive star-forming regions. The inflow detection rate was relatively low. We suggest that this was because of the beam dilution of the telescope. All three inflow candidates have outflow(s). The outward radiation and thermal pressure from the central massive star(s) do not seem to be strong enough to halt accretion in G345.0034-00.2240. Our simple model of G318.9480-00.1969 shows that it has an infall velocity of about 1.8 km s-1. The spectral energy distribution analysis agrees our sources are massive and intermediate-massive star formation regions.

  16. Investigating Students' Ideas about Plate Tectonics

    ERIC Educational Resources Information Center

    Ford, Brent; Taylor, Melanie

    2006-01-01

    Giant exploding volcanoes...asteroids crashing into Earth...continents floating across the oceans...massive pools of lava...violent earthquakes splitting continents--middle school students hold a variety of ideas about Earth, how it has changed over time, and what has caused these changes. Listening to students talk about how the world works is…

  17. Once an Onion, Always an Onion Artist Concept

    NASA Image and Video Library

    2006-10-26

    This artist concept shows that NASA Spitzer Space Telescope found evidence that this star, the remains of which are named Cassiopeia A, exploded with some degree of order, preserving chunks of its onion-like layers as it blasted apart.

  18. Nucleosynthesis in the first massive stars

    NASA Astrophysics Data System (ADS)

    Choplin, Arthur; Meynet, Georges; Maeder, André; Hirschi, Raphael; Chiappini, Cristina

    2018-01-01

    The nucleosynthesis in the first massive stars may be constrained by observing the surface composition of long-lived very iron-poor stars born around 10 billion years ago from material enriched by their ejecta. Many interesting clues on physical processes having occurred in the first stars can be obtained based on nuclear aspects. First, in these first massive stars, mixing must have occurred between the H-burning and the He-burning zone during their nuclear lifetimes; Second, only the outer layers of these massive stars have enriched the material from which the very iron-poor stars, observed today in the halo of the MilkyWay, have formed. These two basic requirements can be obtained by rotating stellar models at very low metallicity. In the present paper, we discuss the arguments supporting this view and illustrate the sensitivity of the results concerning the [Mg/Al] ratio on the rate of the reaction 23Na(p,γ)24Mg.

  19. The Effects of Single and Close Binary Evolution on the Stellar Mass Function

    NASA Astrophysics Data System (ADS)

    Schneider, R. N. F.; Izzard, G. R.; de Mink, S.; Langer, N., Stolte, A., de Koter, A.; Gvaramadze, V. V.; Hussmann, B.; Liermann, A.; Sana, H.

    2013-06-01

    Massive stars are almost exclusively born in star clusters, where stars in a cluster are expected to be born quasi-simultaneously and with the same chemical composition. The distribution of their birth masses favors lower over higher stellar masses, such that the most massive stars are rare, and the existence of an stellar upper mass limit is still debated. The majority of massive stars are born as members of close binary systems and most of them will exchange mass with a close companion during their lifetime. We explore the influence of single and binary star evolution on the high mass end of the stellar mass function using a rapid binary evolution code. We apply our results to two massive Galactic star clusters and show how the shape of their mass functions can be used to determine cluster ages and comment on the stellar upper mass limit in view of our new findings.

  20. Deepest Image of Exploded Star Uncovers Bipolar Jets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This spectacular Chandra X-Ray Observatory (CXO) image of the supernova remnant Cassiopeia A is the most detailed image ever made of the remains of an exploded star. The one-million-second image shows a bright outer ring (green) 10 light years in diameter that marks the location of a shock wave generated by the supernova explosion. In the upper left corner is a large jet-like structure that protrudes beyond the shock wave, and a counter-jet can be seen on the lower right. The x-ray spectra show that the jets are rich in silicon atoms, and relatively poor in iron atoms. This indicates that the jets formed soon after the initial explosion of the star, otherwise, the jets should have contained large quantities of iron from the star's central regions. The bright blue areas are composed almost purely of iron gas, which was produced in the central, hottest regions of the star and somehow ejected in a direction almost perpendicular to the jets. The bright source at the center of the image is presumed to be a neutron star created during the supernova. Unlike most others, this neutron star is quiet, faint, and so far shows no evidence of pulsed radiation. A working hypothesis is that the explosion that created Cassiopeia A produced high speed jets similar to, but less energetic than, the hyper nova jets thought to produce gamma-ray bursts. During the explosion, the star may have developed an extremely strong magnetic filed that helped to accelerate the jets and later stifled any pulsar wind activity. CXO project management is the responsibility of NASA's Marshall Space Flight Center in Huntsville, Alabama.

  1. Modeling populations of rotationally mixed massive stars

    NASA Astrophysics Data System (ADS)

    Brott, I.

    2011-02-01

    Massive stars can be considered as cosmic engines. With their high luminosities, strong stellar winds and violent deaths they drive the evolution of galaxies through-out the history of the universe. Despite the importance of massive stars, their evolution is still poorly understood. Two major issues have plagued evolutionary models of massive stars until today: mixing and mass loss On the main sequence, the effects of mass loss remain limited in the considered mass and metallicity range, this thesis concentrates on the role of mixing in massive stars. This thesis approaches this problem just on the cross road between observations and simulations. The main question: Do evolutionary models of single stars, accounting for the effects of rotation, reproduce the observed properties of real stars. In particular we are interested if the evolutionary models can reproduce the surface abundance changes during the main-sequence phase. To constrain our models we build a population synthesis model for the sample of the VLT-FLAMES Survey of Massive stars, for which star-formation history and rotational velocity distribution are well constrained. We consider the four main regions of the Hunter diagram. Nitrogen un-enriched slow rotators and nitrogen enriched fast rotators that are predicted by theory. Nitrogen enriched slow rotators and nitrogen unenriched fast rotators that are not predicted by our model. We conclude that currently these comparisons are not sufficient to verify the theory of rotational mixing. Physical processes in addition to rotational mixing appear necessary to explain the stars in the later two regions. The chapters of this Thesis have been published in the following Journals: Ch. 2: ``Rotating Massive Main-Sequence Stars I: Grids of Evolutionary Models and Isochrones'', I. Brott, S. E. de Mink, M. Cantiello, N. Langer, A. de Koter, C. J. Evans, I. Hunter, C. Trundle, J.S. Vink submitted to Astronomy & Astrop hysics Ch. 3: ``The VLT-FLAMES Survey of Massive Stars: Rotation and Nitrogen Enrichment as the Key to Understanding Massive Star Evolution'', I.Hunter, I.Brott, D.J. Lennon, N. Langer, C. Trundle, A. de Koter, C.J. Evans and R.S.I. Ryans The Astrophysical Journal, 2008, 676, L29-L32 Ch. 4: ``The VLT-FLAMES Survey of Massive Stars: Constraints on Stellar Evolution from the Chemical Compositions of Rapidly Rotating Galactic and Magellanic Cloud B-type Stars '', I. Hunter, I. Brott, N. Langer, D.J. Lennon, P.L. Dufton, I.D. Howarth R.S.I. Ryan, C. Trundle, C. Evans, A. de Koter and S.J. Smartt Published in Astronomy & Astropysics, 2009, 496, 841- 853 Ch. 5: ``Rotating Massive Main-Sequence Stars II: Simulating a Population of LMC early B-type Stars as a Test of Rotational Mixing '', I. Brott, C. J. Evans, I. Hunter, A. de Koter, N. Langer, P. L. Dufton, M. Cantiello, C. Trundle, D. J. Lennon, S.E. de Mink, S.-C. Yoon, P. Anders submitted to Astronomy & Astrophysics Ch 6: ``The Nature of B Supergiants: Clues From a Steep Drop in Rotation Rates at 22 000 K - The possibility of Bi-stability braking'', Jorick S. Vink, I. Brott, G. Graefener, N. Langer, A. de Koter, D.J. Lennon Astronomy & Astrophysics, 2010, 512, L7

  2. Luminous blue variables and the fates of very massive stars

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2017-09-01

    Luminous blue variables (LBVs) had long been considered massive stars in transition to the Wolf-Rayet (WR) phase, so their identification as progenitors of some peculiar supernovae (SNe) was surprising. More recently, environment statistics of LBVs show that most of them cannot be in transition to the WR phase after all, because LBVs are more isolated than allowed in this scenario. Additionally, the high-mass H shells around luminous SNe IIn require that some very massive stars above 40 M⊙ die without shedding their H envelopes, and the precursor outbursts are a challenge for understanding the final burning sequences leading to core collapse. Recent evidence suggests a clear continuum in pre-SN mass loss from super-luminous SNe IIn, to regular SNe IIn, to SNe II-L and II-P, whereas most stripped-envelope SNe seem to arise from a separate channel of lower-mass binary stars rather than massive WR stars. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  3. Imprints of fast-rotating massive stars in the Galactic Bulge.

    PubMed

    Chiappini, Cristina; Frischknecht, Urs; Meynet, Georges; Hirschi, Raphael; Barbuy, Beatriz; Pignatari, Marco; Decressin, Thibaut; Maeder, André

    2011-04-28

    The first stars that formed after the Big Bang were probably massive, and they provided the Universe with the first elements heavier than helium ('metals'), which were incorporated into low-mass stars that have survived to the present. Eight stars in the oldest globular cluster in the Galaxy, NGC 6522, were found to have surface abundances consistent with the gas from which they formed being enriched by massive stars (that is, with higher α-element/Fe and Eu/Fe ratios than those of the Sun). However, the same stars have anomalously high abundances of Ba and La with respect to Fe, which usually arises through nucleosynthesis in low-mass stars (via the slow-neutron-capture process, or s-process). Recent theory suggests that metal-poor fast-rotating massive stars are able to boost the s-process yields by up to four orders of magnitude, which might provide a solution to this contradiction. Here we report a reanalysis of the earlier spectra, which reveals that Y and Sr are also overabundant with respect to Fe, showing a large scatter similar to that observed in extremely metal-poor stars, whereas C abundances are not enhanced. This pattern is best explained as originating in metal-poor fast-rotating massive stars, which might point to a common property of the first stellar generations and even of the 'first stars'.

  4. Limits on Planets Orbiting Massive Stars from Radio Pulsar Timing

    NASA Technical Reports Server (NTRS)

    Thorsett, S. E.; Dewey, R. J.

    1993-01-01

    When a massive star collapses to a neutron star, rapidly losing over half its mass in a symmetric supernova explosiosn, any planets orbiting the star will be unbound. However, to explain the observed space velocity and binary fraction of radio pulsars, an asymmetric kick must be given to the neutron star of birth.

  5. Mid-Infrared Spectrally-Dispersed Visibilities of Massive Stars Observed with the MIDI Instrument on the VLTI

    NASA Astrophysics Data System (ADS)

    Wallace, D. J.; Rajagopal, J.; Barry, R.; Richardson, L. J.; Lopez, B.; Chesneau, O.; Danchi, W. C.

    The mechanism driving dust production in massive stars remains somewhat mysterious. However, recent aperture-masking and interferometric observations of late-type WC Wolf-Rayet (WR) stars strongly support the theory that dust formation in these objects is a result of colliding winds in binaries. Consistent with this theory, there is also evidence that suggests the prototypical Luminous Blue Variable (LBV) star, Eta Carinae, is a binary. To explore and quantify this possible explanation, we have conducted a high resolution interferometric survey of late-type massive stars utilizing the VLTI, Keck, and IOTA interferometers. We present here the motivation for this study as well as the first results from the MIDI instrument on the VLTI. (Details of the Keck Interferometer and IOTA interferometer observations are discussed in this workshop by Rajagopal et al.). Our VLTI study is aimed primarily at resolving and characterizing the dust around the WC9 star WR 85a and the LBV WR 122, both dust-producing but at different phases of massive star evolution. The pectrally-dispersed visibilities obtained with the MIDI observations will provide the first steps towards answering many outstanding issues in our understanding of this critical phase of massive star evolution

  6. Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.

    2011-11-01

    Dynamical few-body encounters in the dense cores of young massive star clusters are responsible for the loss of a significant fraction of their massive stellar content. Some of the escaping (runaway) stars move through the ambient medium supersonically and can be revealed via detection of their bow shocks (visible in the infrared, optical or radio). In this paper, which is the second of a series of papers devoted to the search for OB stars running away from young ( ≲ several Myr) Galactic clusters and OB associations, we present the results of the search for bow shocks around the star-forming region NGC 6357. Using the archival data of the Midcourse Space Experiment (MSX) satellite and the Spitzer Space Telescope, and the preliminary data release of the Wide-Field Infrared Survey Explorer (WISE), we discovered seven bow shocks, whose geometry is consistent with the possibility that they are generated by stars expelled from the young (~1-2 Myr) star clusters, Pismis 24 and AH03 J1725-34.4, associated with NGC 6357. Two of the seven bow shocks are driven by the already known OB stars, HD 319881 and [N78] 34. Follow-up spectroscopy of three other bow-shock-producing stars showed that they are massive (O-type) stars as well, while the 2MASS photometry of the remaining two stars suggests that they could be B0 V stars, provided that both are located at the same distance as NGC 6357. Detection of numerous massive stars ejected from the very young clusters is consistent with the theoretical expectation that star clusters can effectively lose massive stars at the very beginning of their dynamical evolution (long before the second mechanism for production of runaway stars, based on a supernova explosion in a massive tight binary system, begins to operate) and lends strong support to the idea that probably all field OB stars have been dynamically ejected from their birth clusters. A by-product of our search for bow shocks around NGC 6357 is the detection of three circular shells typical of luminous blue variable and late WN-type Wolf-Rayet stars.

  7. Pulsar Artist Concept

    NASA Image and Video Library

    2017-01-06

    This artist's concept shows a pulsar, which is like a lighthouse, as its light appears in regular pulses as it rotates. Pulsars are dense remnants of exploded stars, and are part of a class of objects called neutron stars. Magnetars are different kinds of neutron stars -- they have violent, high-energy outbursts of X-ray and gamma ray light. A mysterious object called PSR J1119-6127 has been seen behaving as both a pulsar and a magnetar, suggesting that it could be a "missing link" between these objects. http://photojournal.jpl.nasa.gov/catalog/PIA21085

  8. No evidence of disk destruction by OB stars

    NASA Astrophysics Data System (ADS)

    Richert, Alexander J. W.; Feigelson, Eric

    2015-01-01

    It has been suggested that the hostile environments observed in massive star forming regions are inhospitable to protoplanetary disks and therefore to the formation of planets. The Orion Proplyds show disk evaporation by extreme ultraviolet (EUV) photons from Theta1 Orionis C (spectral type O6). In this work, we examine the spatial distributions of disk-bearing and non-disk bearing young stellar objects (YSOs) relative to OB stars in 17 massive star forming regions in the MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) survey. Any tendency of disky YSOs, identified by their infrared excess, to avoid OB stars would reveal complete disk destruction.We consider a sample of MYStIX that includes 78 O3-O9 stars, 256 B stars, 5,606 disky YSOs, and 5,794 non-disky YSOs. For each OB star, we compare the cumulative distribution functions of distances to disky and non-disky YSOs. We find no significant avoidance of OB stars by disky YSOs. This result indicates that OB stars are not sufficiently EUV-luminous and long-lived to completely destroy a disk within its ordinary lifetime. We therefore conclude that massive star forming regions are not clearly hostile to the formation of planets.

  9. The MiMeS Survey of Magnetism in Massive Stars

    NASA Astrophysics Data System (ADS)

    Wade, G. A.; Grunhut, J. H.; MiMeS Collaboration

    2012-12-01

    The Magnetism in Massive Stars (MiMeS) survey represents a high-precision systematic search for magnetic fields in hot, massive OB stars. To date, MiMeS Large Programs (ESPaDOnS@CFHT, Narval@TBL, HARPSpol@ESO3.6 m) and associated PI programs (FORS@VLT) have yielded nearly 1200 circular spectropolarimetric observations of over 350 OB stars. Within this sample, 20 stars are detected as magnetic. Follow-up observations of new detections reveals (i) a large diversity of magnetic properties, (ii) ubiquitous evidence for magnetic wind confinement in optical spectra of all magnetic O stars, and (iii) the presence of strong, organized magnetic fields in all known Galactic Of?p stars, and iv) a complete absence of magnetic fields in classical Be stars.

  10. The Evolution of Massive Stars: a Selection of Facts and Questions

    NASA Astrophysics Data System (ADS)

    Vanbeveren, D.

    In the present paper we discuss a selection of facts and questions related to observations and evolutionary calculations of massive single stars and massive stars in interacting binaries. We focus on the surface chemical abundances, the role of stellar winds, the early Be-stars, the high mass X-ray binaries and the effects of rotation on stellar evolution. Finally, we present an unconventionally formed object scenario (UFO-scenario) of WR binaries in dense stellar environments.

  11. The Candidate Progenitor of the Type IIn SN 2010jl Is Not an Optically Luminous Star

    NASA Technical Reports Server (NTRS)

    Fox, Ori D.; Van Dyk, Schuyler D.; Dwek, Eli; Smith, Nathan; Filippenko, Alexei V.; Andrews, Jennifer; Arendt, Richard G.; Foley, Ryan J.; Kelly, Patrick L.; Miller, Adam; hide

    2017-01-01

    A blue source in pre-explosion Hubble Space Telescope (HST)/Wide-Field Planetary Camera 2 (WFPC2) images falls within the 5 Sigma astrometric error circle (approx. 0." 24) derived from post-explosion ground-based imaging of SN 2010jl. At the time the ground-based astrometry was published, however, the SN had not faded sufficiently forpost-explosion HST follow-up observations to determine a more precise astrometric solution and/or confirm if the pre-explosion source had disappeared, both of which are necessary to ultimately disentangle the possible progenitor scenarios. Here we present HST/WFC3 imaging of the SN 2010jl field obtained in 2014, 2015, and 2016 when the SN had faded sufficiently to allow for new constraints on the progenitor. The SN, which is still detected in the new images, is offset by 0."061(+/-) 0."008 (15 +/- 2 pc) from the underlying and extended source ofemission that contributes at least partially, if not entirely, to the blue source previously suggested as the candidate progenitor in the WFPC2 data. This point alone rules out the possibility that the blue source in the pre-explosion images is the exploding star, but may instead suggest an association with a young (less than 56 Myr) cluster and still argues for a massive (greater than 30 solar mass) progenitor. We obtain new upper limits on the flux from a single star at the SN position in the pre-explosion WFPC2 and Spitzer/IRAC images that may ultimately be used to constrain the progenitor properties.

  12. Hunting for Shooting Stars in 30 Doradus

    NASA Astrophysics Data System (ADS)

    de Mink, Selma E.; Lennon, D. J.; Sabbi, E.; Anderson, J.; Bedin, L. R.; Sohn, S.; van der Marel, R. P.; Walborn, N. R.; Bastian, N.; Bressert, E.; Crowther, P. A.; Evans, C. J.; Herrero, A.; Langer, N.; Sana, H.

    2012-01-01

    We are undertaking an ambitious proper motion survey of massive stars in the 30 Doradus region of the Large Magellanic Cloud using the unique capabilities of HST. We aim to derive the directions of motion of massive runaway stars, searching in particular for stars which have been ejected from the dense star cluster R136. These stars probe the dynamical processes in the core of the cluster. The core has been suggested as a formation site for very massive stars exceeding the canonical upper limit of the IMF. These are possible progenitors of intermediate-mass black holes. Furthermore, they provide insight about the origin of massive field stars, addressing open questions related to the poorly understood process of massive star formation. Some may originate from disrupted binary systems and bear the imprints of interaction with the original companion. They will end their life far away from their birth location as core collapse supernova or possibly even long gamma-ray bursts. Here we discuss the first epoch of observations, presenting a 16'x13' mosaic of the data, and initial results based on comparisons with archival data. SdM acknowledges the NASA Hubble Fellowship grant HST-HF-51270.01-A awarded by STScI, operated by AURA for NASA, contract NAS 5-26555.

  13. Colliding Winds in Massive Binaries

    NASA Astrophysics Data System (ADS)

    Thaller, M. L.

    1998-12-01

    In close binary systems of massive stars, the individual stellar winds will collide and form a bow shock between the stars, which may have significant impact on the mass-loss and evolution of the system. The existence of such a shock can be established through orbital-phase related variations in the UV resonance lines and optical emission lines. High density regions near the shock will produce Hα and Helium I emission which can be used to map the mass-flow structure of the system. The shock front between the stars may influence the balance of mass-loss versus mass-transfer in massive binary evolution, as matter lost to one star due to Roche lobe overflow may hit the shock and be deflected before it can accrete onto the surface of the other star. I have completed a high-resolution spectroscopic survey of 37 massive binaries, and compared the incidence and strength of emission to an independent survey of single massive stars. Binary stars show a statistically significant overabundance of optical emission, especially when one of the binary stars is in either a giant or supergiant phase of evolution. Seven systems in my survey exhibited clear signs of orbital phase related emission, and for three of the stars (HD 149404, HD 152248, and HD 163181), I present qualitative models of the mass-flow dynamics of the systems.

  14. Massive-Star Magnetospheres: Now in 3-D!

    NASA Astrophysics Data System (ADS)

    Townsend, Richard

    Magnetic fields are unexpected in massive stars, due to the absence of a dynamo convection zone beneath their surface layers. Nevertheless, kilogauss-strength, ordered fields were detected in a small subset of these stars over three decades ago, and the intervening years have witnessed the steady expansion of this subset. A distinctive feature of magnetic massive stars is that they harbor magnetospheres --- circumstellar environments where the magnetic field interacts strongly with the star's radiation-driven wind, confining it and channelling it into energetic shocks. A wide range of observational signatures are associated with these magnetospheres, in diagnostics ranging from X-rays all the way through to radio emission. Moreover, these magnetospheres can play an important role in massive-star evolution, by amplifying angular momentum loss in the wind. Recent progress in understanding massive-star magnetospheres has largely been driven by magnetohydrodynamical (MHD) simulations. However, these have been restricted to two- dimensional axisymmetric configurations, with three-dimensional configurations possible only in certain special cases. These restrictions are limiting further progress; we therefore propose to develop completely general three-dimensional models for the magnetospheres of massive stars, on the one hand to understand their observational properties and exploit them as plasma-physics laboratories, and on the other to gain a comprehensive understanding of how they influence the evolution of their host star. For weak- and intermediate-field stars, the models will be based on 3-D MHD simulations using a modified version of the ZEUS-MP code. For strong-field stars, we will extend our existing Rigid Field Hydrodynamics (RFHD) code to handle completely arbitrary field topologies. To explore a putative 'photoionization-moderated mass loss' mechanism for massive-star magnetospheres, we will also further develop a photoionization code we have recently prototyped. Simulation data from these codes will be used to synthesize observables, suitable for comparison with datasets from ground- and space-based facilities. Project results will be disseminated in the form of journal papers, presentations, data and visualizations, to facilitate the broad communication of our results. In addition, we will release the project codes under an open- source license, to encourage other groups' involvement in modeling massive-star magnetospheres. Through furthering our insights into these magnetospheres, the project is congruous with NASA's Strategic Goal 2, 'Expand scientific understanding of the Earth and the universe in which we live'. By making testable predictions of X-ray emission and UV line profiles, it is naturally synergistic with observational studies of magnetic massive stars using NASA's ROSAT, Chandra, IUE and FUSE missions. By exploring magnetic braking, it will have a direct impact on theoretical predictions of collapsar yields, and thereby help drive forward the analysis and interpretation of gamma-ray burst observations by NASA's Swift and Fermi missions. And, through its general contribution toward understanding the lifecycle of massive stars, the project will complement the past, present and future investments in studying these stars using NASA's other space-based observatories.

  15. Massive stars: Their lives in the interstellar medium; Proceedings of the Symposium, ASP Annual Meeting, 104th, Univ. of Wisconsin, Madison, June 23-25, 1992

    NASA Astrophysics Data System (ADS)

    Cassinelli, Joseph P.; Churchwell, Edward B.

    1993-01-01

    Various papers on massive stars and their relationship to the interstellar medium are presented. Individual topics addressed include: observations of newly formed massive stars, star formation with nonthermal motions, embedded stellar clusters in H II regions, a Milky Way concordance, NH3 and H2O masers, PIGs in the Trapezium, star formation in photoevaporating molecular clouds, massive star evolution, mass loss from cool supergiant stars, massive runaway stars, CNO abundances in three A-supergiants, mass loss from late-type supergiants, OBN stars and blue supergiant supernovae, the most evolved W-R stars, X-ray variability in V444 Cygni, highly polarized stars in Cassiopeia, H I bubbles around O stars, interstellar H I LY-alpha absorption, shocked ionized gas in 30 Doradus, wind mass and energy deposition. Also discussed are: stellar wind bow shocks, O stars giant bubbles in M33, Eridanus soft X-ray enhancement, wind-blown bubbles in ejecta medium, nebulae around W-R stars, highly ionized gas in the LMC, cold ionized gas around hot H II regions, initial mass function in the outer Galaxy, late stages in SNR evolution, possible LBV in NGC 1313, old SN-pulsar association, cold bright matter near SN1987A, starbursts in the nearby universe, giant H II regions, powering the superwind in NGC 253, obscuration effects in starburst Galactic nuclei, starburst propagation in dwarf galaxies, 30 Doradus, W-R content of NGC 595 and NGC 604, Cubic Cosmic X-ray Background Experiment.

  16. Formation and pre-MS Evolution of Massive Stars with Growing Accretion

    NASA Astrophysics Data System (ADS)

    Maeder, A.; Behrend, R.

    2002-10-01

    We briefly describe the three existing scenarios for forming massive stars and emphasize that the arguments often used to reject the accretion scenario for massive stars are misleading. It is usually not accounted for the fact that the turbulent pressure associated to large turbulent velocities in clouds necessarily imply relatively high accretion rates for massive stars. We show the basic difference between the formation of low and high mass stars based on the values of the free fall time and of the Kelvin-Helmholtz timescale, and define the concept of birthline for massive stars. Due to D-burning, the radius and location of the birthline in the HR diagram, as well as the lifetimes are very sensitive to the accretion rate dM/dt(accr). If a form dM/dt(accr) propto A(M/Msun)phi is adopted, the observations in the HR diagram and the lifetimes support a value of A approx 10-5 Msun/yr and a value of phi > 1. Remarkably, such a law is consistent with the relation found by Churchwell and Henning et al. between the outflow rates and the luminosities of ultracompact HII regions, if we assume that a fraction 0.15 to 0.3 of the global inflow is accreted. The above relation implies high dM/dt(accr) approx 10-3 Msun/yr for the most massive stars. The physical possibility of such high dM/dt(accr) is supported by current numerical models. Finally, we give simple analytical arguments in favour of the growth of dM/dt(accr) with the already accreted mass. We also suggest that due to Bondi-Hoyle accretion, the formation of binary stars is largely favoured among massive stars in the accretion scenario.

  17. Deepest Image of Exploded Star Uncovers Bipolar Jets

    NASA Astrophysics Data System (ADS)

    2004-08-01

    A spectacular new image of Cassiopeia A from NASA's Chandra X-ray Observatory released today has nearly 200 times more data than the "First Light" Chandra image of this object made five years ago. The new image reveals clues that the initial explosion caused by the collapse of a massive star was far more complicated than suspected. Chandra Broadband Image of Cassiopeia A Chandra Broadband Image of Cassiopeia A "Although this young supernova remnant has been intensely studied for years, this deep observation is the most detailed ever made of the remains of an exploded star," said Martin Laming of the Naval Research Laboratory in Washington, D.C. Laming is part of a team of scientists led by Una Hwang of the Goddard Space Flight Center in Greenbelt, Maryland. "It is a gold mine of data that astronomers will be panning through for years to come." The one-million-second (about 11.5-day) observation of Cassiopeia A uncovered two large, opposed jet-like structures that extend to about 10 light years from the center of the remnant. Clouds of iron that have remained nearly pure for the approximately 340 years since the explosion were also detected. "The presence of the bipolar jets suggests that jets could be more common in relatively normal supernova explosions than supposed by astronomers," said Hwang. A paper by Hwang, Laming and others on the Cassiopeia A observation will appear in an upcoming issue of The Astrophysical Journal Letters. Chandra Enhanced Silicon Image of Cassiopeia A Chandra Enhanced Silicon Image of Cassiopeia A X-ray spectra show that the jets are rich in silicon atoms and relatively poor in iron atoms. In contrast, fingers of almost pure iron gas extend in a direction nearly perpendicular to the jets. This iron was produced in the central, hottest regions of the star. The high silicon and low iron abundances in the jets indicate that massive, matter-dominated jets were not the immediate cause of the explosion, as these should have carried out large quantities of iron from the central regions of the star. A working hypothesis is that the explosion produced high-speed jets similar to those in hypernovae that produce gamma-ray bursts, but in this case, with much lower energies. The explosion also left a faint neutron star at the center of the remnant. Unlike the rapidly rotating neutron stars in the Crab Nebula and Vela supernova remnants that are surrounded by dynamic magnetized clouds of electrons, this neutron star is quiet and faint. Nor has pulsed radiation been detected from it. It may have a very strong magnetic field generated during the explosion that helped to accelerate the jets, and today resembles other strong-field neutron stars (a.k.a. "magnetars") in lacking a wind nebula. Chandra 3-color X-ray Image of Cassiopeia A Chandra 3-color X-ray Image of Cassiopeia A Chandra was launched aboard the Space Shuttle Columbia on July 23, 1999. Less than a month later, it was able to start taking science measurements along with its calibration data. The original Cassiopeia A observation was taken on August 19, 1999, and then released to the scientific community and the public one week later on August 26. At launch, Chandra's original mission was intended to be five years. Having successfully completed that objective, NASA announced last August that the mission would be extended for another five years. The data for this new Cassiopeia A image were obtained by Chandra's Advanced Charged Coupled Device Imaging Spectrometer (ACIS) instrument during the first half of 2004. Due to its value to the astronomical community, this rich dataset was made available immediately to the public. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  18. Dissecting Dust from Detonation of Dead Star

    NASA Image and Video Library

    2014-06-04

    This infrared image from NASA Spitzer Space Telescope shows N103B -- all that remains from a supernova that exploded a millennium ago in the Large Magellanic Cloud, a satellite galaxy 160,000 light-years away from our own Milky Way.

  19. Dissecting the Wake of a Supernova Explosion

    NASA Image and Video Library

    2007-12-20

    The elements and molecules that flew out of the Cassiopeia A star when it exploded about 300 years ago can be seen clearly for the first time in this plot of data, called a spectrum, taken by NASA Spitzer Space Telescope.

  20. Hubble Space Telescope Planetary Camera observations of Arp 220

    NASA Technical Reports Server (NTRS)

    Shaya, Edward J.; Dowling, Daniel M.; Currie, Douglas G.; Faber, S. M.; Groth, Edward J.

    1994-01-01

    Planetary Camera images of peculiar galaxy Arp 220 taken with V, R, and I band filters reveal a very luminous object near the position of the western radio continuum source, assumed to be the major nucleus, ans seven lesser objects within 2 sec of this position. The most luminous object is formally coincident with the radio source to within the errors of Hubble Space Telescope (HST) pointing accuracy, but we have found an alternate, more compelling alignment of maps in which the eastern radio source coincides with one of the lesser objects and the OH radio sources reside near the surfaces of other optical objects. The proposed centering places the most luminous object 150 pc (0.4 sec) away from the western radio source. We explore the possibilities that the objects are either holes in the dense dust distribution, dusty clouds reflecting a hidden bright nucleus, or associations of bright young stars. We favor the interpretation that at least the brightest two objects are massive young star associations with luminosities 10(exp 9) to 10(exp 11) solar luminosity, but highly extinguished by intervening dust. These massive associations should fall into the nucleus on a time scale of 10(exp 8) yr. About 10% of the enigmatic far-IR flux arises from the observed objects. In addition, if the diffuse starlight out to a radius of 8 sec is dominated by stars with typical ages of order 10(exp 8) yr (the time since the alleged merger of two galaxies), as indicated by the blue colors at larger radius, then the lower limit to the reradiation of diffuse starlight contributes 3 x 10(exp 11) solar luminosity to the far-infrared flux, or greater than or equal to 25% of the total far-IR flux. Three additional bright objects (M(sub V) approximately equals -13) located about 6 sec from the core are likely young globular clusters, but any of these could be recently exploded supernovae instead. The expected supernovae rate, if the dominant energy source is young stars, is about one per month for the region where the intense far-infrared flux originates. Also, individual giant dust clouds are visible in these images. Their typical size is 300 pc (1 sec).

  1. Massive Stars and Star Clusters in the Era of JWST

    NASA Astrophysics Data System (ADS)

    Klein, Richard

    Massive stars lie at the center of the web of physical processes that has shaped the universe as we know it, governing the evolution of the interstellar medium of galaxies, producing a majority of the heavy elements, and thereby determining the evolution of galaxies. Massive stars are also important as signposts, since they produce most of the light and almost all the ionizing radiation in regions of active star formation. A significant fraction of all stars form in massive clusters, which will be observable throughout the visible universe with JWST. Their luminosities are so high that the pressure of their light on interstellar dust grains is likely the dominant feedback mechanism regulating their formation. While this process has been studied in the local Universe, much less attention has been focused on how it behaves at high redshift, where the dust abundance is much lower due to the overall lower abundance of heavy elements. The high redshift Universe also differs from the nearby one in that observations imply that high redshift star formation occurs at significantly higher densities than are typically found locally. We propose to simulate the formation of individual massive stars from the high redshift universe to the present day universe spanning metallicities ranging from 0.001 to 1.0 and column densities from 0.1to 30.0 g/cm2 focusing on how the process depends on both the dust abundance and on the density of the star-forming gas. These simulations will be among the first to treat the formation of Population II stars, which form in regions of low metallicity. Based on these results, we shall then simulate the formation of clusters of stars across also cosmic time, both of moderate mass, such as the Orion Nebula Cluster, and of high mass, such as the super star clusters seen in starburst galaxies. These state-of-the-art simulations will be carried out using our newly developed advanced techniques in our radiation-magneto-hydrodynamic AMR code ORION, for radiative transfer with both ionizing and non-ionizing radiation that accurately handle both the direct radiation from stars and the diffuse infrared radiation field that builds up when direct radiation is reprocessed by dust grains. Our simulations include all of the relevant feedback effects such as radiative heating, radiation pressure, photodissociation and photoionization, protostellar outflows and stellar winds. The challenge in simulating the formation of massive stars and massive clusters is to include all these feedback effects self-consistently as they occur collectively. We are in an excellent position to do so. The results of these simulations will be directly relevant to the interpretation of observations with JWST, which will probe cluster formation in both the nearby and distant universe, and with SOFIA, which can observe high-mass star formation in the Galaxy. We shall make direct comparison with observations of massive protostars in the Galactic disk. We shall also compare with observations of star clusters that form in dense environments, such as the Galactic Center and in merging galaxies (e.g., the Antennae), and in low metallicity environments, such as the dwarf starburst galaxy I Zw 18. Once our simulations have been benchmarked with observations of massive protostars in the Galaxy and massive protoclusters in the local universe, they will provide the theoretical basis for interpreting observations of the formation of massive star clusters at high redshift with JWST. What determines the maximum mass of a star? How does stellar feedback affect the formation of individual stars and the formation of massive star clusters and how the answers to these questions evolve with cosmic time. The proposed research will provide high-resolution input to the study of stellar feedback on galaxy formation with a significantly more accurate treatment of the physics, particularly the radiative transfer that is so important for feedback.

  2. The Search for New Luminous Blue Variable Stars: Near-Infrared Spectroscopy of Stars With 24 micron Shells

    NASA Astrophysics Data System (ADS)

    Stringfellow, Guy; Gvaramadze, Vasilii

    2010-02-01

    Luminous Blue Variable (LBV) stars represent an extremely rare class of very luminous and massive stars. Only about a dozen confirmed Galactic LBV stars are known to date, which precludes us from determining a solid evolutionary connection between LBV and other intermediate (e.g. Ofpe/WN9, WNL) phases in the life of very massive stars. The known LBV stars each have their own unique properties, so new discoveries add insight into the properties and evolutionary status of LBVs and massive stars; even one new discovery of objects of this type could provide break-through results in the understanding of the intermediate stages of massive star evolution. We have culled a prime sample of possible LBV candidates from the Spitzer 24 (micron) archival data. All have circumstellar nebulae, rings, and shells (typical of LBVs and related stars) surrounding reddened central stars. Spectroscopic followup of about two dozen optically visible central stars associated with the shells from this sample showed that they are either candidate LBVs, late WN-type Wolf-Rayet stars or blue supergiants. We propose infrared spectroscopic observations of the central stars for a large fraction (23 stars) of our northern sample to determine their nature and discover additional LBV candidates. These stars have no plausible optical counterparts, so infrared spectra are needed. This program requires two nights of Hale time using TripleSpec.

  3. Cassiopeia A: Death Becomes Her

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This stunning false-color picture shows off the many sides of the supernova remnant Cassiopeia A. It is made up of images taken by three of NASA's Great Observatories, using three different wavebands of light. Infrared data from the Spitzer Space Telescope are colored red; visible data from the Hubble Space Telescope are yellow; and X-ray data from the Chandra X-ray Observatory are green and blue.

    Located 10,000 light-years away in the northern constellation Cassiopeia, Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion 325 years ago. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died. The neutron star can be seen in the Chandra data as a sharp turquoise dot in the center of the shimmering shell.

    Each Great Observatory highlights different characteristics of this celestial orb. While Spitzer reveals warm dust in the outer shell about a few hundred degrees Kelvin (80 degrees Fahrenheit) in temperature, Hubble sees the delicate filamentary structures of hot gases about 10,000 degrees Kelvin (18,000 degrees Fahrenheit). Chandra probes unimaginably hot gases, up to about 10 million degrees Kelvin (18 million degrees Fahrenheit). These extremely hot gases were created when ejected material from Cassiopeia A smashed into surrounding gas and dust. Chandra can also see Cassiopeia A's neutron star (turquoise dot at center of shell).

    Blue Chandra data were acquired using broadband X-rays (low to high energies); green Chandra data correspond to intermediate energy X-rays; yellow Hubble data were taken using a 900 nanometer-wavelength filter, and red Spitzer data are from the telescope's 24-micron detector.

    The animation begins with the false-color picture of the supernova remnant Cassiopeia A. It then pans out to show a Spitzer view of Cassiopeia A (yellow ball) and surrounding clouds of dust (reddish orange). Here, the animation flips back and forth between two Spitzer images taken one year apart. A blast of light from Cassiopeia A is seen waltzing through the dusty skies. Called an 'infrared echo,' this dance began when the remnant's dead star erupted, or 'turned in its grave,' about 50 years ago.

    Infrared echoes are created when a star explodes or erupts, flashing light into surrounding clumps of dust. As the light zips through the dust clumps, it heats them up, causing them to glow successively in infrared, like a chain of Christmas bulbs lighting up one by one. The result is an optical illusion, in which the dust appears to be flying outward at the speed of light. Echoes are distinct from supernova shockwaves, which are made up material that is swept up and hurled outward by exploding stars.

    This infrared echo is the largest ever seen, stretching more than 50 light-years away from Cassiopeia A. If viewed from Earth, the entire movie frame would take up the same amount of space as two full moons.

    Hints of an older infrared echo from Cassiopeia A's supernova explosion hundreds of years ago can also be seen.

    The earlier Spitzer image was taken on November 30, 2003, and the later, on December 2, 2004.

  4. Evolved massive stars in W33 and in GMC 23.3-0.3

    NASA Astrophysics Data System (ADS)

    Messineo, Maria; Clark, J. Simon; Figer, Donald F.; Menten, Karl M.; Kudritzki, Rolf-Peter; Najarro, Francisco; Rich, Michael; Ivanov, Valentin D.; Valenti, Elena; Trombley, Christine; Chen, Rosie; Davies, Ben; MacKenty, John W.

    2015-08-01

    We have conducted an infrared spectroscopic survey for massive evolved stars and/or clusters in the Galactic giant molecular clouds G23.3-0.3 and W33. A large number of extraordinary sub-clumps/clusters of massive stars were detected. The spatial and temporal distribution of these massive stars yields information on the star formation history of the clouds.In G23.3-0.3, we discovered a dozen massive O-type stars, one candidate luminous blue variable, and several red supergiants. The O-type stars have masses from 25 to 50 Msun and ages of 5-8 Myr, while the RSGs belong to a burst that occurred 20-30 Myr ago. Therefore, GMC G23.3-0.3 has had one of the longest known histories of star formation (20-30 Myr). GMC G23.3-0.3 is rich in HII regions and supernova remnants; we detected massive stars in the cores of SNR W41 and of SNR G22.7-0.2.In W33, we detected a few evolved O-type stars and one Wolf-Rayet star, but none of the late-type objects has the luminosity of a red supergiant. W33 is characterized by discrete sources and has had at least 3-5 Myr of star formation history, which is now propagating from west to east. While our detections of massive evolved stars in W33 are made on the west side of the cloud, several dense molecular cores that may harbor proto clusters have recently been detected on the east side of the cloud by Immer et al. (2014).Messineo, Maria; Menten, Karl M.; Figer, Donald F.; Davies, Ben; Clark, J. Simon; Ivanov, Valentin D.Kudritzki, Rolf-Peter; Rich, R. Michael; MacKenty, John W.; Trombley, Christine 2014A&A...569A..20MMessineo, Maria; Clark, J. Simon; Figer, Donald F.; Kudritzki, Rolf-Peter; Francisco, Najarro; Rich, R. Michael; Menten, Karl M.; Ivanov, Valentin D.; Valenti, Elena; Trombley, Christine; Chen, C.H. Rosie; Davies, Ben; submitted to ApJ.

  5. X-rays Provide a New Way to Investigate Exploding Stars

    NASA Astrophysics Data System (ADS)

    2007-05-01

    The European Space Agency's X-ray observatory XMM-Newton has revealed a new class of exploding stars - where the X-ray emission 'lives fast and dies young'. The identification of this particular class of explosion gives astronomers a valuable new constraint to help them understand stellar explosions. Exploding stars called novae remain a puzzle to astronomers. "Modelling these outbursts is very difficult," says Wolfgang Pietsch, Max Planck Institut für Extraterrestrische Physik. Now, ESA's XMM-Newton and NASA's Chandra have provided valuable information about when individual novae emit X-rays. Between July 2004 and February 2005, the X-ray observatories watched the heart of the nearby Andromeda Galaxy, known to astronomers as M31. During that time, Pietsch and his colleagues monitored novae, looking for the X-rays. X-ray Image of Andromeda Galaxy (M31) Chandra X-ray Image of Andromeda Galaxy (M31) They detected that eleven out of the 34 novae that had exploded in the galaxy during the previous year were shining X-rays into space. "X-rays are an important window onto novae. They show the atmosphere of the white dwarf," says Pietsch. White dwarfs are hot stellar corpses left behind after the rest of the star has been ejected into space. A typical white dwarf contains about the mass of the Sun, in a spherical volume little bigger than the Earth. It has a strong pull of gravity and, if it is in orbit around a normal star, can rip gas from it. This material builds up on the surface of the white dwarf until it reaches sufficient density to nuclear detonate. The resultant explosion creates a nova. However, these particular events are not strong enough to destroy the underlying white dwarf. The X-ray emission becomes visible some time after the detonation, when the matter ejected by the nova thins out enough to allow astronomers to peer down to the nuclear burning white dwarf atmosphere beneath. At the end of the process, the X-ray emission stops when the fuel is exhausted. The duration of this X-ray emission traces the amount of material left on the white dwarf after the nova explosion. Optical Image of Andromeda Galaxy (M31) Optical Image of Andromeda Galaxy (M31) A well determined start time of the optical nova outburst and the X-ray turn-on and turn-off times are therefore important benchmarks for replication in computer models of novae. Whilst monitoring the M31 novae, frequently over several months, for the appearance and subsequent disappearance of the X-rays, Pietsch made an important discovery. Some novae start to emit X-rays and then turn them off again within just a few months. "These novae are a new class. They would have been overlooked before," says Pietsch. That's because previous surveys looked only every six months or so. Within that time, the fast X-ray novae could have blinked both on and off. In addition to discovering the short-lived ones, the new survey also confirms that other novae generate X-rays over a much longer time. XMM-Newton detected seven novae that were still shining X-rays into space, up to a decade after the original eruption. The differing lengths of times are thought to reflect the masses of the white dwarfs at the heart of the nova explosion. The fastest evolving novae are thought to be those coming from the most massive white dwarfs. To investigate further, the team have been awarded more XMM-Newton and Chandra observing time. They now plan to monitor M31's novae every ten days for several months, starting in November 2007 to glean more information about these puzzling stellar explosions. Notes for editors: X-ray monitoring of optical novae in M31 from July 2004 to February 2005 by W. Pietsch et al. is published in Astronomy and Astrophysics, 465, 375-392 (2007). For more information: Wolfgang Pietsch wnp@mpe.mpg.de Norbert Schartel Norbert.Schartel@sciops.esa.int

  6. NGC 346: Looking in the Cradle of a Massive Star Cluster

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios A.; Hony, Sacha

    2017-03-01

    How does a star cluster of more than few 10,000 solar masses form? We present the case of the cluster NGC 346 in the Small Magellanic Cloud, still embedded in its natal star-forming region N66, and we propose a scenario for its formation, based on observations of the rich stellar populations in the region. Young massive clusters host a high fraction of early-type stars, indicating an extremely high star formation efficiency. The Milky Way galaxy hosts several young massive clusters that fill the gap between young low-mass open clusters and old massive globular clusters. Only a handful, though, are young enough to study their formation. Moreover, the investigation of their gaseous natal environments suffers from contamination by the Galactic disk. Young massive clusters are very abundant in distant starburst and interacting galaxies, but the distance of their hosting galaxies do not also allow a detailed analysis of their formation. The Magellanic Clouds, on the other hand, host young massive clusters in a wide range of ages with the youngest being still embedded in their giant HII regions. Hubble Space Telescope imaging of such star-forming complexes provide a stellar sampling with a high dynamic range in stellar masses, allowing the detailed study of star formation at scales typical for molecular clouds. Our cluster analysis on the distribution of newly-born stars in N66 shows that star formation in the region proceeds in a clumpy hierarchical fashion, leading to the formation of both a dominant young massive cluster, hosting about half of the observed pre-main-sequence population, and a self-similar dispersed distribution of the remaining stars. We investigate the correlation between stellar surface density (and star formation rate derived from star-counts) and molecular gas surface density (derived from dust column density) in order to unravel the physical conditions that gave birth to NGC 346. A power law fit to the data yields a steep correlation between these two parameters with a considerable scatter. The fraction of stellar over the total (gas plus young stars) mass is found to be systematically higher within the central 15 pc (where the young massive cluster is located) than outside, which suggests variations in the star formation efficiency within the same star-forming complex. This trend possibly reflects a change of star formation efficiency in N66 between clustered and non-clustered star formation. Our findings suggest that the formation of NGC 346 is the combined result of star formation regulated by turbulence and of early dynamical evolution induced by the gravitational potential of the dense interstellar medium.

  7. New Evidence Links Stellar Remains to Oldest Recorded Supernova

    NASA Astrophysics Data System (ADS)

    2006-09-01

    Recent observations have uncovered evidence that helps to confirm the identification of the remains of one of the earliest stellar explosions recorded by humans. The new study shows that the supernova remnant RCW 86 is much younger than previously thought. As such, the formation of the remnant appears to coincide with a supernova observed by Chinese astronomers in 185 A.D. The study used data from NASA's Chandra X-ray Observatory and the European Space Agency's XMM-Newton Observatory, "There have been previous suggestions that RCW 86 is the remains of the supernova from 185 A.D.," said Jacco Vink of University of Utrecht, the Netherlands, and lead author of the study. "These new X-ray data greatly strengthen the case." When a massive star runs out of fuel, it collapses on itself, creating a supernova that can outshine an entire galaxy. The intense explosion hurls the outer layers of the star into space and produces powerful shock waves. The remains of the star and the material it encounters are heated to millions of degrees and can emit intense X-ray radiation for thousands of years. Animation of a Massive Star Explosion Animation of a Massive Star Explosion In their stellar forensic work, Vink and colleagues studied the debris in RCW 86 to estimate when its progenitor star originally exploded. They calculated how quickly the shocked, or energized, shell is moving in RCW 86, by studying one part of the remnant. They combined this expansion velocity with the size of the remnant and a basic understanding of how supernovas expand to estimate the age of RCW 86. "Our new calculations tell us the remnant is about 2,000 years old," said Aya Bamba, a coauthor from the Institute of Physical and Chemical Research (RIKEN), Japan. "Previously astronomers had estimated an age of 10,000 years." The younger age for RCW 86 may explain an astronomical event observed almost 2000 years ago. In 185 AD, Chinese astronomers (and possibly the Romans) recorded the appearance of a new bright star. The Chinese noted that it sparkled like a star and did not appear to move in the sky, arguing against it being a comet. Also, the observers noticed that the star took about eight months to fade, consistent with modern observations of supernovas. RCW 86 had previously been suggested as the remnant from the 185 AD event, based on the historical records of the object's position. However, uncertainties about the age provided significant doubt about the association. "Before this work I had doubts myself about the link, but our study indicates that the age of RCW 86 matches that of the oldest known supernova explosion in recorded history," said Vink. "Astronomers are used to referencing results from 5 or 10 years ago, so it's remarkable that we can build upon work from nearly 2000 years ago." The smaller age estimate for the remnant follows directly from a higher expansion velocity. By examining the energy distribution of the X-rays, a technique known as spectroscopy, the team found most of the X-ray emission was caused by high-energy electrons moving through a magnetic field. This is a well-known process that normally gives rise to low-energy radio emission. However, only very high shock velocities can accelerate the electrons to such high energies that X-ray radiation is emitted. "The energies reached in this supernova remnant are extremely high," said Andrei Bykov, another team member from the Ioffe Institute, St. Peterburg, Russia. "In fact, the particle energies are greater than what can be achieved by the most modern particle accelerators." The difference in age estimates for RCW 86 is due to differences in expansion velocities measured for the supernova remnant. The authors speculate that these variations arise because RCW 86 is expanding into an irregular bubble blown by a wind from the progenitor star before it exploded. In some directions, the shock wave has encountered a dense region outside the bubble and slowed down, whereas in other regions the shock remains inside the bubble and is still moving rapidly. These regions give the most accurate estimate of the age. The study describing these results appeared in the September 1 issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory, Cambridge, Mass., controls science and flight operations from the Chandra X-ray Center, Cambridge, Mass. XMM-Newton is an European Space Agency science mission managed at the European Space Research and Technology Centre, Noordwijk, the Netherlands for the Directorate of the Scientific Programme. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  8. Hardy Star Survives Supernova Blast

    NASA Image and Video Library

    2014-03-20

    This composite image contains data from Chandra (purple) that provides evidence for the survival of a companion star from the blast of a supernova explosion. Chandra's X-rays reveal a point-like source in the supernova remnant at the location of a massive star. The data suggest that mass is being pulled away from the massive star towards a neutron star or a black hole companion. If confirmed, this would be only the third binary system containing both a massive star and a neutron star or black hole ever found in the aftermath of a supernova. This supernova remnant is found embedded in clouds of ionized hydrogen, which are shown in optical light (yellow and cyan) from the MCELS survey, along with additional optical data from the DSS (white).

  9. Gamma-ray bursts appear simpler than expected?

    NASA Astrophysics Data System (ADS)

    Chardonnet, P.; Filina, A. A.; Popov, M. V.; Chechetkin, V. M.; Baranov, A. A.

    The cosmic gamma-ray bursts are certainly an enigma in astrophysics. The "standard fireball" scenario developed during many years has provided a possible explanation of this phenomenon. The aim of this work is simply to explore a new possible interpretation by developing a coherent scenario inside the global picture of stellar evolution. At the basis of our scenario is the fact that maybe we have not fully understood how the core of a pair instability supernovae explode. In such a way, we have proposed a new paradigm assuming that the core of such massive star, instead of doing a symmetrical explosion, is completely fragmented in hot spots of burning nuclear matter. We have tested our scenario using some observational data like GRB spectrum, light curves, Amati relation and GRB-SN connection, and for each set of data we have proposed a possible physical interpretation. We have also suggested some possible tests of this scenario by measurement at high redshift. If this scenario is correct, it tells us simply that cosmic gamma-ray bursts are simply a missing link in stellar evolution.

  10. Supermassive population III supernovae and the birth of the first quasars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whalen, Daniel J.; Smidt, Joseph; Even, Wesley

    2013-11-20

    The existence of supermassive black holes as early as z ∼ 7 is one of the great, unsolved problems in cosmological structure formation. One leading theory argues that they are born during catastrophic baryon collapse in z ∼ 15 protogalaxies that form in strong Lyman-Werner UV backgrounds. Atomic line cooling in such galaxies fragments baryons into massive clumps that are thought to directly collapse to 10{sup 4}-10{sup 5} M {sub ☉} black holes. We have now discovered that some of these fragments can instead become supermassive stars that eventually explode as thermonuclear supernovae (SNe) with energies of ∼10{sup 55} erg,more » the most energetic explosions in the universe. We have calculated light curves and spectra for supermassive Pop III SNe with the Los Alamos RAGE and SPECTRUM codes. We find that they will be visible in near-infrared all-sky surveys by Euclid out to z ∼ 10-15 and by WFIRST and WISH out to z ∼ 15-20, perhaps revealing the birthplaces of the first quasars.« less

  11. The toll of toxics: investigating environmental contaminants

    USGS Publications Warehouse

    Sparling, Donald W.; Rattner, Barnett A.; Barclay, John S.

    2010-01-01

    On Earth Day of this year, the British Petroleum-operated Deepwater Horizon oil drilling rig exploded in the Gulf of Mexico, 41 miles off the Louisiana coast. The blast killed 11 workers, injured 17, launched a massive oil spill, and triggered an environmental catastrophe—the full impact of which may not be realized for years.

  12. The high-redshift gamma-ray burst GRB 140515A. A comprehensive X-ray and optical study

    NASA Astrophysics Data System (ADS)

    Melandri, A.; Bernardini, M. G.; D'Avanzo, P.; Sánchez-Ramírez, R.; Nappo, F.; Nava, L.; Japelj, J.; de Ugarte Postigo, A.; Oates, S.; Campana, S.; Covino, S.; D'Elia, V.; Ghirlanda, G.; Gafton, E.; Ghisellini, G.; Gnedin, N.; Goldoni, P.; Gorosabel, J.; Libbrecht, T.; Malesani, D.; Salvaterra, R.; Thöne, C. C.; Vergani, S. D.; Xu, D.; Tagliaferri, G.

    2015-09-01

    High-redshift gamma-ray bursts (GRBs) offer several advantages when studying the distant Universe, providing unique information about the structure and properties of the galaxies in which they exploded. Spectroscopic identification with large ground-based telescopes has improved our knowledge of this kind of distant events. We present the multi-wavelength analysis of the high-zSwift GRB GRB 140515A (z = 6.327). The best estimate of the neutral hydrogen fraction of the intergalactic medium towards the burst is xHI ≤ 0.002. The spectral absorption lines detected for this event are the weakest lines ever observed in GRB afterglows, suggesting that GRB 140515A exploded in a very low-density environment. Its circum-burst medium is characterised by an average extinction (AV ~ 0.1) that seems to be typical of z ≥ 6 events. The observed multi-band light curves are explained either with a very hard injected spectrum (p = 1.7) or with a multi-component emission (p = 2.1). In the second case a long-lasting central engine activity is needed in order to explain the late time X-ray emission. The possible origin of GRB 140515A in a Pop III (or in a Pop II star with a local environment enriched by Pop III) massive star is unlikely. Based on observations collected at the European Southern Observatory, ESO, the VLT/Kueyen telescope, Paranal, Chile (proposal code: 093.A-0069), on observations made with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofísica de Canarias (programme 49-008), and on observations made with the Italian 3.6-m Telescopio Nazionale Galileo (TNG), operated by the Fundación Galileo Galilei of the INAF (Instituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofísica de Canarias (programme A26TAC_63).Appendix A is available in electronic form at http://www.aanda.org

  13. No Evidence for Protoplanetary Disk Destruction By OB Stars in the MYStIX Sample

    NASA Astrophysics Data System (ADS)

    Richert, Alexander J. W.; Feigelson, Eric D.; Getman, Konstantin V.; Kuhn, Michael A.

    2015-09-01

    Hubble Space Telescope images of proplyds in the Orion Nebula, as well as submillimeter/radio measurements, show that the dominant O7 star {θ }1Ori C photoevaporates nearby disks around pre-main-sequence stars. Theory predicts that massive stars photoevaporate disks within distances of the order of 0.1 pc. These findings suggest that young, OB-dominated massive H ii regions are inhospitable to the survival of protoplanetary disks and, subsequently, to the formation and evolution of planets. In the current work, we test this hypothesis using large samples of pre-main-sequence stars in 20 massive star-forming regions selected with X-ray and infrared photometry in the MYStIX survey. Complete disk destruction would lead to a deficit of cluster members with an excess in JHKS and Spitzer/IRAC bands in the vicinity of O stars. In four MYStIX regions containing O stars and a sufficient surface density of disk-bearing sources to reliably test for spatial avoidance, we find no evidence for the depletion of inner disks around pre-main-sequence stars in the vicinity of O-type stars, even very luminous O2-O5 stars. These results suggest that massive star-forming regions are not very hostile to the survival of protoplanetary disks and, presumably, to the formation of planets.

  14. a UV Spectral Library of Metal-Poor Massive Stars

    NASA Astrophysics Data System (ADS)

    Robert, Carmelle

    1994-01-01

    We propose to use the FOS to build a snapshot library of UV spectra of a sample of about 50 metal-poor massive stars located in the Magellanic Clouds. The majority of libraries already existing contains spectra of hot stars with chemical abundances close to solar. The high spectral resolution achieves with the FOS will be a major factor for the uniqueness of this new library. UV spectral libraries represent fundamental tools for the study of the massive star populations of young star-forming regions. Massive stars, which are impossible to identify directly in the optical-IR part of a composite spectrum, display on the other hand key signatures in the UV region. These signatures are mainly broad, metallicity dependent spectral features formed in the hot star winds. They require a high spectral resolution (of the order of 200-300 km/s) for an adequate study. A spectral library of metal-poor massive stars represents also a unique source of data for a stellar atmosphere analysis. Within less then 10 min we will obtain a high signal-to-noise ratio of at least 30. Finally, since short exposure times are possible, this proposal makes extremely good use of the capabilities of HST. We designed an observing strategy which yields a maximum scientific return at a minimum cost of spacecraft time.

  15. The Future of Astronomy

    ERIC Educational Resources Information Center

    Greenstein, Jesse L.

    1973-01-01

    Presents a summary of the Reports of the Panels'' published by the Astronomy Survey Committee of the National Academy of Sciences in 1973, involving aspects of cosmology, quasars, exploding galaxies, stars, stellar evolution, solar system, organic molecules, life, and interstellar communication. Included are recommendations for scientific…

  16. Luminous blue variables and the fates of very massive stars.

    PubMed

    Smith, Nathan

    2017-10-28

    Luminous blue variables (LBVs) had long been considered massive stars in transition to the Wolf-Rayet (WR) phase, so their identification as progenitors of some peculiar supernovae (SNe) was surprising. More recently, environment statistics of LBVs show that most of them cannot be in transition to the WR phase after all, because LBVs are more isolated than allowed in this scenario. Additionally, the high-mass H shells around luminous SNe IIn require that some very massive stars above 40  M ⊙ die without shedding their H envelopes, and the precursor outbursts are a challenge for understanding the final burning sequences leading to core collapse. Recent evidence suggests a clear continuum in pre-SN mass loss from super-luminous SNe IIn, to regular SNe IIn, to SNe II-L and II-P, whereas most stripped-envelope SNe seem to arise from a separate channel of lower-mass binary stars rather than massive WR stars.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).

  17. Theoretical Near-IR Spectra for Surface Abundance Studies of Massive Stars

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Bouret, J.

    2011-01-01

    We present initial results of a study of abundance and mass loss properties of O-type stars based on theoretical near-IR spectra computed with state-of-the-art stellar atmosphere models. The James Webb Space Telescope (JWST) will be a powerful tool to obtain high signal-to-noise ratio near-IR (1-5 micron) spectra of massive stars in different environments of local galaxies. Our goal is to analyze model near-IR spectra corresponding to those expected from NIRspec on JWST in order to map the wind properties and surface composition across the parameter range of 0 stars and to determine projected rotational velocities. As a massive star evolves, internal coupling, related mixing, and mass loss impact its intrinsic rotation rate. These three parameters form an intricate loop, where enhanced rotation leads to more mixing which in turn changes the mass loss rate, the latter thus affecting the rotation rate. Since the effects of rotation are expected to be much more pronounced at low metallicity, we pay special attention to models for massive stars in the the Small Magellanic Cloud. This galaxy provides a unique opportunity to probe stellar evolution, and the feedback of massive stars on galactic evol.ution in conditions similar to the epoch of maximal star formation. Plain-Language Abstract: We present initial results of a study of abundance and mass loss properties of massive stars based on theoretical near-infrared (1-5 micron) spectra computed with state-of-the-art stellar atmosphere models. This study is to prepare for observations by the James Webb Space Telescope.

  18. Dynamical Models for High-Energy Emission from Massive Stars

    NASA Astrophysics Data System (ADS)

    Owocki, Stanley %FAA(University of Delaware)

    Massive stars are prominent sources of X-rays and gamma-rays detected by both targeted and survey observations from orbiting telescopes like Chandra, XMM/Newton, RXTE, and Fermi. Such high-energy emissions represent key probes of the dynamics of massive-star mass loss, and their penetration through many magnitudes of visible interstellar extinction makes them effective beacons of massive stars in distant reaches of the Galaxy, and in young, active star-forming regions. The project proposed here will develop a comprehensive theoretical framework for interpreting both surveys and targeted observations of high-energy emission from massive stars. It will build on our team's extensive experience in both theoretical models and observational analyses for three key types of emission mechanisms in the stellar wind outflows of these stars, namely: 1) Embedded Wind Shocks (EWS) arising from internal instabilities in the wind driving; 2) shocks in Colliding Wind Binary (CWB) systems; and 3) High-Mass X-ray Binaries (HMXB) systems with interaction between massive-star wind with a compact companion (neutron star or black hole). Taking advantage of commonalities in the treatment of radiative driving, hydrodynamics, shock heating and cooling, and radiation transport, we will develop radiation hydrodynamical models for the key observational signatures like energy distribution, emission line spectrum, and variability, with an emphasis on how these can be used in affiliated analyses of both surveys like the recent Chandra mapping of the Carina association, and targeted observations of galactic X-ray and gamma-ray sources associated with each of the above specific model types. The promises of new clumping-insensitive diagnostics of mass loss rates, and the connection to mass transfer and binarity, all have broad relevance for understanding the origin, evolution, and fate of massive stars, in concert with elements of NASA's Strategic Subgoal 3D. Building on our team's expertise, the project emphasizes training of a new generation of students and post-doctoral researchers to model and analyze observations by current and future NASA X-ray and gamma-ray observatories.

  19. A butterfly-shaped 'Papillon Nebula' yields secrets of massive star birth

    NASA Astrophysics Data System (ADS)

    1999-06-01

    The newly found massive newborn stars are in one of our satellite galaxies, the Large Magellanic Cloud (LMC), 170,000 light-years away - right in our cosmic backyard. The Hubble image shows a view of a turbulent cauldron of starbirth, unromantically called N159. Fierce stellar winds from the hot newborn massive stars sculpt ridges, arcs and filaments in the vast cloud, which is over 150 light-years across. This is the clearest image ever obtained of this region. Seen for the first time is the butterfly-shaped or 'Papillon' (French for butterfly) nebula, buried in the centre of the maelstrom of glowing gases and dark dust. The unprecedented details of the structure of the Papillon, itself less than 2 light-years in size (about 1/2000th of a degree in the sky), are seen in the inset. This bipolar shape might be explained by the outflow of gas from the massive star (over 10 times the mass of our Sun) hidden in the central absorption zone. Such stars are so hot and bright that the pressure created by their light halts the infall of gas and directs it away from the star in two opposite directions. This mechanism is not fully understood, but presumably the outflow is constrained around the star's equator and directed to escape along the star's rotation axis. This observation is part of a search for young massive stars in the LMC. This butterfly-shaped nebula is considered to be a rare class of compact 'blob' around newborn, massive stars. The red in this true-colour image comes from the emission of hydrogen and the yellow from hotter oxygen gas. The picture was taken on 5 September 1998 with Wide Field Planetary Camera 2.

  20. STAR CLUSTER FORMATION WITH STELLAR FEEDBACK AND LARGE-SCALE INFLOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzner, Christopher D.; Jumper, Peter H., E-mail: matzner@astro.utoronto.ca

    2015-12-10

    During star cluster formation, ongoing mass accretion is resisted by stellar feedback in the form of protostellar outflows from the low-mass stars and photo-ionization and radiation pressure feedback from the massive stars. We model the evolution of cluster-forming regions during a phase in which both accretion and feedback are present and use these models to investigate how star cluster formation might terminate. Protostellar outflows are the strongest form of feedback in low-mass regions, but these cannot stop cluster formation if matter continues to flow in. In more massive clusters, radiation pressure and photo-ionization rapidly clear the cluster-forming gas when itsmore » column density is too small. We assess the rates of dynamical mass ejection and of evaporation, while accounting for the important effect of dust opacity on photo-ionization. Our models are consistent with the census of protostellar outflows in NGC 1333 and Serpens South and with the dust temperatures observed in regions of massive star formation. Comparing observations of massive cluster-forming regions against our model parameter space, and against our expectations for accretion-driven evolution, we infer that massive-star feedback is a likely cause of gas disruption in regions with velocity dispersions less than a few kilometers per second, but that more massive and more turbulent regions are too strongly bound for stellar feedback to be disruptive.« less

  1. Fast and Luminous Transients from the Explosions of Long-lived Massive White Dwarf Merger Remnants

    NASA Astrophysics Data System (ADS)

    Brooks, Jared; Schwab, Josiah; Bildsten, Lars; Quataert, Eliot; Paxton, Bill; Blinnikov, Sergei; Sorokina, Elena

    2017-12-01

    We study the evolution and final outcome of long-lived (≈ {10}5 years) remnants from the merger of an He white dwarf (WD) with a more massive C/O or O/Ne WD. Using Modules for Experiments in Stellar Astrophysics ({\\mathtt{MESA}}), we show that these remnants have a red giant configuration supported by steady helium burning, adding mass to the WD core until it reaches {M}{core}≈ 1.12{--}1.20 {M}⊙ . At that point, the base of the surface convection zone extends into the burning layer, mixing the helium-burning products (primarily carbon and magnesium) throughout the convective envelope. Further evolution depletes the convective envelope of helium and dramatically slows the mass increase of the underlying WD core. The WD core mass growth re-initiates after helium depletion, as then an uncoupled carbon-burning shell is ignited and proceeds to burn the fuel from the remaining metal-rich extended envelope. For large enough initial total merger masses, O/Ne WD cores would experience electron-capture triggered collapse to neutron stars (NSs) after growing to near Chandrasekhar mass ({M}{Ch}). Massive C/O WD cores could suffer the same fate after a carbon-burning flame converts them to ONe. The NS formation would release ≈ {10}50 erg into the remaining extended low mass envelope. Using the STELLA radiative transfer code, we predict the resulting optical light curves from these exploded envelopes. Reaching absolute magnitudes of {M}V≈ -17, these transients are bright for about one week and have many features of the class of luminous, rapidly evolving transients studied by Drout and collaborators.

  2. The incidence of stellar mergers and mass gainers among massive stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Mink, S. E.; Sana, H.; Langer, N.

    2014-02-10

    Because the majority of massive stars are born as members of close binary systems, populations of massive main-sequence stars contain stellar mergers and products of binary mass transfer. We simulate populations of massive stars accounting for all major binary evolution effects based on the most recent binary parameter statistics and extensively evaluate the effect of model uncertainties. Assuming constant star formation, we find that 8{sub −4}{sup +9}% of a sample of early-type stars are the products of a merger resulting from a close binary system. In total we find that 30{sub −15}{sup +10}% of massive main-sequence stars are the productsmore » of binary interaction. We show that the commonly adopted approach to minimize the effects of binaries on an observed sample by excluding systems detected as binaries through radial velocity campaigns can be counterproductive. Systems with significant radial velocity variations are mostly pre-interaction systems. Excluding them substantially enhances the relative incidence of mergers and binary products in the non-radial velocity variable sample. This poses a challenge for testing single stellar evolutionary models. It also raises the question of whether certain peculiar classes of stars, such as magnetic O stars, are the result of binary interaction and it emphasizes the need to further study the effect of binarity on the diagnostics that are used to derive the fundamental properties (star-formation history, initial mass function, mass-to-light ratio) of stellar populations nearby and at high redshift.« less

  3. The association of GRB 060218 with a supernova and the evolution of the shock wave.

    PubMed

    Campana, S; Mangano, V; Blustin, A J; Brown, P; Burrows, D N; Chincarini, G; Cummings, J R; Cusumano, G; Della Valle, M; Malesani, D; Mészáros, P; Nousek, J A; Page, M; Sakamoto, T; Waxman, E; Zhang, B; Dai, Z G; Gehrels, N; Immler, S; Marshall, F E; Mason, K O; Moretti, A; O'Brien, P T; Osborne, J P; Page, K L; Romano, P; Roming, P W A; Tagliaferri, G; Cominsky, L R; Giommi, P; Godet, O; Kennea, J A; Krimm, H; Angelini, L; Barthelmy, S D; Boyd, P T; Palmer, D M; Wells, A A; White, N E

    2006-08-31

    Although the link between long gamma-ray bursts (GRBs) and supernovae has been established, hitherto there have been no observations of the beginning of a supernova explosion and its intimate link to a GRB. In particular, we do not know how the jet that defines a gamma-ray burst emerges from the star's surface, nor how a GRB progenitor explodes. Here we report observations of the relatively nearby GRB 060218 (ref. 5) and its connection to supernova SN 2006aj (ref. 6). In addition to the classical non-thermal emission, GRB 060218 shows a thermal component in its X-ray spectrum, which cools and shifts into the optical/ultraviolet band as time passes. We interpret these features as arising from the break-out of a shock wave driven by a mildly relativistic shell into the dense wind surrounding the progenitor. We have caught a supernova in the act of exploding, directly observing the shock break-out, which indicates that the GRB progenitor was a Wolf-Rayet star.

  4. Kepler Beyond Planets: Finding Exploding Stars (Type Felt Supernova)

    NASA Image and Video Library

    2018-03-26

    This frame from an animation shows a kind of stellar explosion called a Fast-Evolving Luminous Transient. In this case, a giant star "burps" out a shell of gas and dust about a year before exploding. Most of the energy from the supernova turns into light when it hits this previously ejected material, resulting in a short, but brilliant burst of radiation. Stellar explosions forge and distribute materials that make up the world in which we live, and also hold clues to how fast the universe is expanding. By understanding supernovae, scientists can unlock mysteries that are key to what we are made of and the fate of our universe. But to get the full picture, scientists must observe supernovae from a variety of perspectives, especially in the first moments of the explosion. That's really difficult -- there's no telling when or where a supernova might happen next. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22351

  5. Chandra Finds Oxygen and Neon Ring in Ashes of Exploded Star

    NASA Astrophysics Data System (ADS)

    2000-01-01

    NASA's Chandra X-ray Observatory has revealed an expanding ring-like structure of oxygen and neon that was hurled into space by the explosion of a massive star. The image of E0102-72 provides unprecedented details about the creation and dispersal of heavy elements necessary to form planets like Earth. The results were reported by Professor Claude Canizares of the Massachusetts Institute of Technology (MIT), Cambridge, at the 195th national meeting of the American Astronomical Society in Atlanta, Ga. Drs. Kathryn Flanagan, David Davis, and John Houck of MIT collaborated with Canizares in this investigation. E0102-72 is the remnant of a supernova explosion located in our neighbor galaxy, the Small Magellanic Cloud, nearly 200,000 light years away. It was created by the explosion of a star that was more than ten times as massive as our Sun. We are seeing the aftermath of the explosion a thousand or more years after the outburst. Shock waves are heating gas to temperatures of nearly 10 million degrees, so it glows with X-rays that are detected by Chandra's instruments. By using the High Energy Transmission Grating Spectrometer (HETG), astronomers were able to pinpoint the distribution of each chemical element individually and measure the velocities of different parts of the expanding ring. They also show the shock wave in a kind of "freeze-frame," revealing the progressive heating of the stellar matter as it plows into the surrounding gas. This is the first time such detailed X-ray information has ever been obtained for a supernova remnant, and should provide critical clues to the nature of supernovas. The grating spectrometer, which was built by an MIT team led by Canizares, spreads the X-rays according to their wavelength, giving distinct images of the object at specific wavelengths characteristic of each chemical element. Small wavelength shifts caused by the Doppler effect are used to measure the expansion velocities of each element independently. "We've been studying these supernova remnants for decades, but now we're getting the kind of information we need to really test the theories," said Canizares. "Understanding supernovas helps us to learn about the processes that formed chemical elements like those which are found on Earth and are necessary for life," said Flanagan. Most of the oxygen in the universe, for example, is synthesized in the interiors of relatively few massive stars like the one being studied here. When they explode, they expel the newly manufactured elements which become part of the raw material for new stars and planets. The amount of oxygen in the E0102-72 ring is enough for thousands of solar systems. By measuring the expansion velocity of the ring, the team can estimate the amount of energy liberated in the explosion. The expansion energy would be enough to power the Sun for 3 billion years. The ring has more complex structure and motion than can be explained by current simplified theories, suggesting complexity in the explosion itself or in the surrounding interstellar matter. The supernova remnant also provides a laboratory for atomic physics. The observations show how the atoms in the expelled matter behave when heated to such high temperatures. The images reveal the progressive stripping of electrons from the atoms after the super-sonic shock wave has passed. The Chandra observation was taken using the HETG in conjunction with the Advanced CCD Imaging Spectrometer (ACIS) on September 28 and October 10, 1999. ACIS was built by Pennsylvania State University, University Park, and the Massachusetts Institute of Technology, Cambridge. To follow Chandra's progress or download images visit the Chandra sites at http://chandra.harvard.edu/photo/2000/0015/index.html AND http://chandra.nasa.gov NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. High resolution digital versions of the X-ray image (JPG, 300 dpi TIFF ) and other information associated with this release are available on the Internet at: http://chandra.harvard.edu Further information on the HETG may be found at: http://space.mit.edu/CSR/hetg_info.html

  6. The massive stellar population of W49: A spectroscopic survey

    NASA Astrophysics Data System (ADS)

    Wu, Shi-Wei; Bik, Arjan; Bestenlehner, Joachim M.; Henning, Thomas; Pasquali, Anna; Brandner, Wolfgang; Stolte, Andrea

    2016-05-01

    Context. Massive stars form on different scales that range from large, dispersed OB associations to compact, dense starburst clusters. The complex structure of regions of massive star formation and the involved short timescales provide a challenge for our understanding of their birth and early evolution. As one of the most massive and luminous star-forming region in our Galaxy, W49 is the ideal place to study the formation of the most massive stars. Aims: By classifying the massive young stars that are deeply embedded in the molecular cloud of W49, we aim to investigate and trace the star formation history of this region. Methods: We analyse near-infrared K-band spectroscopic observations of W49 from LBT/LUCI combined with JHK images obtained with NTT/SOFI and LBT/LUCI. Based on JHK-band photometry and K-band spectroscopy, the massive stars are placed in a Hertzsprung Russell diagram. By comparison with evolutionary models, their age and hence the star formation history of W49 can be investigated. Results: Fourteen O-type stars, as well as two young stellar objects (YSOs), are identified by our spectroscopic survey. Eleven O stars are main sequence stars with subtypes ranging from O3 to O9.5 and masses ranging from ~20 M⊙ to ~120 M⊙. Three of the O stars show strong wind features and are considered to be Of-type supergiants with masses beyond 100 M⊙. The two YSOs show CO emission, which is indicative of the presence of circumstellar disks in the central region of the massive cluster. The age of the cluster is estimated as ~1.5 Myr, with star formation continuing in different parts of the region. The ionising photons from the central massive stars have not yet cleared the molecular cocoon surrounding the cluster. W49 is comparable to extragalactic star-forming regions, and it provides us with a unique chance to study a starburst in detail. Based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in Germany, Italy and the United States. LBT Corporation partners are: LBT Beteiligungsgesellschaft, Germany, representing the Max Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; Istituto Nazionale di Astrofisica, Italy; The University of Arizona on behalf of the Arizona university system; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota and University of Virginia.Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 67.C-0514 and 073.D-0837.The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A16

  7. IUE observations of luminous blue star associations in irregular galaxies

    NASA Technical Reports Server (NTRS)

    Lamb, S. A.; Hunter, D. A.; Gallagher, J. S., III

    1987-01-01

    Two regions of recent star formation in blue irregular galaxies were observed with the IUE in the short wavelength, low dispersion mode. The spectra indicate that the massive star content is similar in these regions and is best fit by massive stars formed in a burst and now approximately 2.5 to 3.0 million years old.

  8. LMC P3

    NASA Image and Video Library

    2016-10-10

    This composite image contains data from Chandra (purple) that provides evidence for the survival of a companion star from the blast of a supernova explosion. Chandra's X-rays reveal a point-like source in the supernova remnant at the location of a massive star. The data suggest that mass is being pulled away from the massive star towards a neutron star or a black hole companion. If confirmed, this would be only the third binary system containing both a massive star and a neutron star or black hole ever found in the aftermath of a supernova. This supernova remnant is found embedded in clouds of ionized hydrogen, which are shown in optical light (yellow and cyan) from the MCELS survey, along with additional optical data from the DSS (white).

  9. Star formation in infrared bright and infrared faint starburst interacting galaxies

    NASA Technical Reports Server (NTRS)

    Lamb, Susan A.; Bushouse, Howard A.; Towns, John W.

    1990-01-01

    Short wavelength IUE spectra of Arp 248b and UGC 8315N are combined with optical spectra and interpreted using a combination of spectrum synthesis and spectral diagnostics to place constraints on the massive star populations of the central regions of these galaxies and to deduce information about the star formation histories in the last 10(exp 8) years. The authors find that both galaxies have substantial fractions of their optical light coming from massive stars and that Arp 248b may be dominated in the UV by WR stars. The UV spectra are dominated by radiation from evolved massive stars and the authors place and age on the burst in Arp 248b of a few tens of millions of years.

  10. Progenitors of Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Hirschi, R.; Arnett, D.; Cristini, A.; Georgy, C.; Meakin, C.; Walkington, I.

    2017-02-01

    Massive stars have a strong impact on their surroundings, in particular when they produce a core-collapse supernova at the end of their evolution. In these proceedings, we review the general evolution of massive stars and their properties at collapse as well as the transition between massive and intermediate-mass stars. We also summarise the effects of metallicity and rotation. We then discuss some of the major uncertainties in the modelling of massive stars, with a particular emphasis on the treatment of convection in 1D stellar evolution codes. Finally, we present new 3D hydrodynamic simulations of convection in carbon burning and list key points to take from 3D hydrodynamic studies for the development of new prescriptions for convective boundary mixing in 1D stellar evolution codes.

  11. A Chandra ACIS Study of 30 Doradus. II. X-Ray Point Sources in the Massive Star Cluster R136 and Beyond

    NASA Astrophysics Data System (ADS)

    Townsley, Leisa K.; Broos, Patrick S.; Feigelson, Eric D.; Garmire, Gordon P.; Getman, Konstantin V.

    2006-04-01

    We have studied the X-ray point-source population of the 30 Doradus (30 Dor) star-forming complex in the Large Magellanic Cloud using high spatial resolution X-ray images and spatially resolved spectra obtained with the Advanced CCD Imaging Spectrometer (ACIS) on board the Chandra X-Ray Observatory. Here we describe the X-ray sources in a 17'×17' field centered on R136, the massive star cluster at the center of the main 30 Dor nebula. We detect 20 of the 32 Wolf-Rayet stars in the ACIS field. The cluster R136 is resolved at the subarcsecond level into almost 100 X-ray sources, including many typical O3-O5 stars, as well as a few bright X-ray sources previously reported. Over 2 orders of magnitude of scatter in LX is seen among R136 O stars, suggesting that X-ray emission in the most massive stars depends critically on the details of wind properties and the binarity of each system, rather than reflecting the widely reported characteristic value LX/Lbol~=10-7. Such a canonical ratio may exist for single massive stars in R136, but our data are too shallow to confirm this relationship. Through this and future X-ray studies of 30 Dor, the complete life cycle of a massive stellar cluster can be revealed.

  12. Probing Globular Cluster Formation in Low Metallicity Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey E.; Hunt, Leslie K.; Reines, Amy E.

    2008-12-01

    The ubiquitous presence of globular clusters around massive galaxies today suggests that these extreme star clusters must have been formed prolifically in the earlier universe in low-metallicity galaxies. Numerous adolescent and massive star clusters are already known to be present in a variety of galaxies in the local universe; however most of these systems have metallicities of 12 + log(O/H) > 8, and are thus not representative of the galaxies in which today's ancient globular clusters were formed. In order to better understand the formation and evolution of these massive clusters in environments with few heavy elements, we have targeted several low-metallicity dwarf galaxies with radio observations, searching for newly-formed massive star clusters still embedded in their birth material. The galaxies in this initial study are HS 0822+3542, UGC 4483, Pox 186, and SBS 0335-052, all of which have metallicities of 12 + log(O/H) < 7.75. While no thermal radio sources, indicative of natal massive star clusters, are found in three of the four galaxies, SBS 0335-052 hosts two such objects, which are incredibly luminous. The radio spectral energy distributions of these intense star-forming regions in SBS 0335-052 suggest the presence of ~12,000 equivalent O-type stars, and the implied star formation rate is nearing the maximum starburst intensity limit.

  13. Hubble Uncovering the Secrets of the Quintuplet Cluster

    NASA Image and Video Library

    2017-12-08

    Although this cluster of stars gained its name due to its five brightest stars, it is home to hundreds more. The huge number of massive young stars in the cluster is clearly captured in this NASA/ESA Hubble Space Telescope image. The cluster is located close to the Arches Cluster and is just 100 light-years from the center of our galaxy. The cluster’s proximity to the dust at the center of the galaxy means that much of its visible light is blocked, which helped to keep the cluster unknown until its discovery in 1990, when it was revealed by infrared observations. Infrared images of the cluster, like the one shown here, allow us to see through the obscuring dust to the hot stars in the cluster. The Quintuplet Cluster hosts two extremely rare luminous blue variable stars: the Pistol Star and the lesser known V4650 Sgr. If you were to draw a line horizontally through the center of this image from left to right, you could see the Pistol Star hovering just above the line about one third of the way along it. The Pistol Star is one of the most luminous known stars in the Milky Way and takes its name from the shape of the Pistol Nebula that it illuminates, but which is not visible in this infrared image. The exact age and future of the Pistol Star are uncertain, but it is expected to end in a supernova or even a hypernova in one to three million years. The cluster also contains a number of red supergiants. These stars are among the largest in the galaxy and are burning their fuel at an incredible speed, meaning they will have a very short lifetime. Their presence suggests an average cluster age of nearly four million years. At the moment these stars are on the verge of exploding as supernovae. During their spectacular deaths they will release vast amounts of energy which, in turn, will heat the material — dust and gas — between the other stars. This observation shows the Quintuplet Cluster in the infrared and demonstrates the leap in Hubble’s performance since its 1999 image of same object. Credit: ESA/NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Massive star evolution and SN 1987A

    NASA Technical Reports Server (NTRS)

    Arnett, David

    1991-01-01

    The evolution of massive stars through hydrogen and helium burning is addressed. A set of stellar evolutionary sequences for mass/solar mass of 15, 20, and 25, and metallicity of 0.002, 0.005, 0.007, 0.010, and 0.20 are presented; semiconvection is restricted to operating slower than the local thermal time scale. Using these sequences, simple models of the massive star content of the LMC are found to agree moderately well with the new observational data of Fitzpatrick and Garmany (1990). LMC supergiants were detected only in their postmain-sequence phases, so that 5-10 times more massive stars are there but not identified as such. It is argued that SN 1987A exhibits the normal evolution of a single star of about 20 solar mases having LMC abundances. Despite the variety of envelope behavior, the structure of the core at collapse is rather similar for the stars of a given mass. Variations due to different rates of mass loss are likely to be larger than those due to composition.

  15. Examining the Presence of Social Media on University Web Sites

    ERIC Educational Resources Information Center

    Greenwood, Grant

    2012-01-01

    Over the past few years, social networking has exploded into a massive medium that has captured the attention of a large portion of the American population. The ever-growing social networking site(s) (SNS) movement has filled a networking gap and thus, has presented higher education institutions with unique opportunities (Reid 2009) to further…

  16. On stars, galaxies and black holes in massive bigravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enander, Jonas; Mörtsell, Edvard, E-mail: enander@fysik.su.se, E-mail: edvard@fysik.su.se

    In this paper we study the phenomenology of stars and galaxies in massive bigravity. We give parameter conditions for the existence of viable star solutions when the radius of the star is much smaller than the Compton wavelength of the graviton. If these parameter conditions are not met, we constrain the ratio between the coupling constants of the two metrics, in order to give viable conditions for e.g. neutron stars. For galaxies, we put constraints on both the Compton wavelength of the graviton and the conformal factor and coupling constants of the two metrics. The relationship between black holes andmore » stars, and whether the former can be formed from the latter, is discussed. We argue that the different asymptotic structure of stars and black holes makes it unlikely that black holes form from the gravitational collapse of stars in massive bigravity.« less

  17. Sgr A* envelope explosion and the young stars in the centre of the Milky Way

    NASA Astrophysics Data System (ADS)

    Nayakshin, Sergei; Zubovas, Kastytis

    2018-05-01

    Sgr A* is the super massive black hole residing in the centre of the Milky Way. There is plenty of observational evidence that a massive gas cloud fell into the central parsec of the Milky Way ˜6 million years ago, triggering formation of a disc of young stars and activating Sgr A* . In addition to the disc, there is an unexplained population of young stars on randomly oriented orbits. Here we hypothesize that these young stars were formed by fragmentation of a massive quasi-spherical gas shell driven out from Sgr A* potential well by an energetic outflow. To account for the properties of the observed stars, the shell must be more massive than 105 Solar masses, be launched from inside ˜0.01 pc, and the feedback outflow has to be highly super-Eddington albeit for a brief period of time, producing kinetic energy of at least 1055 erg. The young stars in the central parsec of the Galaxy may be a unique example of stars formed from atomic rather than molecular hydrogen, and forged by extreme pressure of black hole outflows.

  18. The evolution of magnetic hot massive stars: Implementation of the quantitative influence of surface magnetic fields in modern models of stellar evolution

    NASA Astrophysics Data System (ADS)

    Keszthelyi, Zsolt; Wade, Gregg A.; Petit, Veronique

    2017-11-01

    Large-scale dipolar surface magnetic fields have been detected in a fraction of OB stars, however only few stellar evolution models of massive stars have considered the impact of these fossil fields. We are performing 1D hydrodynamical model calculations taking into account evolutionary consequences of the magnetospheric-wind interactions in a simplified parametric way. Two effects are considered: i) the global mass-loss rates are reduced due to mass-loss quenching, and ii) the surface angular momentum loss is enhanced due to magnetic braking. As a result of the magnetic mass-loss quenching, the mass of magnetic massive stars remains close to their initial masses. Thus magnetic massive stars - even at Galactic metallicity - have the potential to be progenitors of "heavy" stellar mass black holes. Similarly, at Galactic metallicity, the formation of pair instability supernovae is plausible with a magnetic progenitor.

  19. A Smoking Gun in the Carina Nebula

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Ezoe, Yuichiro; Townsley, Leisa; Broos, Patrick; Gruendl, Robert; Vaidya, Kaushar; White, Stephen M.; Petre, Rob; Chu, You-Hua

    2009-01-01

    The Carina Nebula is one of thc youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for approx.30 years. The soft X-ray spectrum. consistent with kT approx.130 eV blackbody radiation with mild extinction, and no counterpart in the near- and mid-infrared wavelengths indicate that it is a, approx. 10(exp 6)-year-old neutron star housed in the Carina Nebula. Current star formation theory does not suggest that the progenitor of the neutron star and massive stars in the Carina Nebula, in particular (eta)Car, are coeval. This result demonstrates that the Carina Nebula experienced at least two major episodes of massive star formation. The neutron star would be responsible for remnants of high energy activity seen in multiple wavelengths.

  20. How Massive Single Stars End Their Life

    NASA Technical Reports Server (NTRS)

    Heger, A.; Fryer, C. L.; Woosley, S. E.; Langer, N.; Hartmann, D. H.

    2003-01-01

    How massive stars die-what sort of explosion and remnant each produces-depends chiefly on the masses of their helium cores and hydrogen envelopes at death. For single stars, stellar winds are the only means of mass loss, and these are a function of the metallicity of the star. We discuss how metallicity, and a simplified prescription for its effect on mass loss, affects the evolution and final fate of massive stars. We map, as a function of mass and metallicity, where black holes and neutron stars are likely to form and where different types of supernovae are produced. Integrating over an initial mass function, we derive the relative populations as a function of metallicity. Provided that single stars rotate rapidly enough at death, we speculate on stellar populations that might produce gamma-ray bursts and jet-driven supernovae.

  1. SALT Spectroscopy of Evolved Massive Stars

    NASA Astrophysics Data System (ADS)

    Kniazev, A. Y.; Gvaramadze, V. V.; Berdnikov, L. N.

    2017-06-01

    Long-slit spectroscopy with the Southern African Large Telescope (SALT) of central stars of mid-infrared nebulae detected with the Spitzer Space Telescope and Wide-Field Infrared Survey Explorer (WISE) led to the discovery of numerous candidate luminous blue variables (cLBVs) and other rare evolved massive stars. With the recent advent of the SALT fiber-fed high-resolution echelle spectrograph (HRS), a new perspective for the study of these interesting objects is appeared. Using the HRS we obtained spectra of a dozen newly identified massive stars. Some results on the recently identified cLBV Hen 3-729 are presented.

  2. The Formation and Gravitational-wave Detection of Massive Stellar Black Hole Binaries

    NASA Astrophysics Data System (ADS)

    Belczynski, Krzysztof; Buonanno, Alessandra; Cantiello, Matteo; Fryer, Chris L.; Holz, Daniel E.; Mandel, Ilya; Miller, M. Coleman; Walczak, Marek

    2014-07-01

    If binaries consisting of two ~100 M ⊙ black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ~ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by the recent discovery of several >~ 150 M ⊙ stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.

  3. The Candidate Progenitor of the Type IIn SN 2010jl Is Not an Optically Luminous Star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Ori D.; Dyk, Schuyler D. Van; Dwek, Eli

    A blue source in pre-explosion Hubble Space Telescope ( HST )/Wide-Field Planetary Camera 2 (WFPC2) images falls within the 5 σ astrometric error circle (∼0.″24) derived from post-explosion ground-based imaging of SN 2010jl. At the time the ground-based astrometry was published, however, the SN had not faded sufficiently for post-explosion HST follow-up observations to determine a more precise astrometric solution and/or confirm if the pre-explosion source had disappeared, both of which are necessary to ultimately disentangle the possible progenitor scenarios. Here we present HST /WFC3 imaging of the SN 2010jl field obtained in 2014, 2015, and 2016 when the SNmore » had faded sufficiently to allow for new constraints on the progenitor. The SN, which is still detected in the new images, is offset by 0.″061 ± 0.″008 (15 ± 2 pc) from the underlying and extended source of emission that contributes at least partially, if not entirely, to the blue source previously suggested as the candidate progenitor in the WFPC2 data. This point alone rules out the possibility that the blue source in the pre-explosion images is the exploding star, but may instead suggest an association with a young (<5–6 Myr) cluster and still argues for a massive (>30 M {sub ⊙}) progenitor. We obtain new upper limits on the flux from a single star at the SN position in the pre-explosion WFPC2 and Spitzer /IRAC images that may ultimately be used to constrain the progenitor properties.« less

  4. The Stellar Origins of Supernovae

    NASA Astrophysics Data System (ADS)

    Van Dyk, Schuyler

    2015-10-01

    Supernovae (SNe) have a profound effect on galaxies, and have been used as precise cosmological probes, resulting in the Nobel-distinguished discovery of the accelerating Universe. They are clearly very important events deserving of intense study. Yet, even with over 6400 IAU-designated SNe, we know relatively little about the stars which give rise to these powerful explosions. The main limitation has been the lack of spatial resolution in pre-SN imaging data. However, our team has been at the vanguard of directly identifying SN progenitor stars in HST images. From this exciting line of study, we have learned that Type II-Plateau SNe appear to primarily arise from relatively low mass (8 to 20 Msun) red supergiants, leaving a puzzle as to what is happening to more massive stars. Additionally, evidence is accumulating that the progenitors of Type II-narrow SNe may be related to luminous blue variables. However, the nature of the progenitors of Type Ib/c SNe, a subset of which are associated with the amazing gamma-ray bursts, remains ambiguous. Furthermore, we remain in the continually embarrassing situation that we still do not yet know which progenitor systems explode as Type Ia SNe, which are being used for precision cosmology. In previous Cycles we have had great success with our approved ToO programs. As of this proposal deadline, we have had one trigger (SN 2014dt) completed so far and one pending (SN 2015G) with our Cycle 22 program. The compelling scientific questions lead us to continue this project to determine the identities of the progenitors of 4 SNe within, generally, about 20 Mpc, which we expect during Cycle 23, through ToO observations using WFC3/UVIS.

  5. Progenitor constraints for core-collapse supernovae from Chandra X-ray observations

    NASA Astrophysics Data System (ADS)

    Heikkilä, T.; Tsygankov, S.; Mattila, S.; Eldridge, J. J.; Fraser, M.; Poutanen, J.

    2016-03-01

    The progenitors of hydrogen-poor core-collapse supernovae (SNe) of Types Ib, Ic and IIb are believed to have shed their outer hydrogen envelopes either by extremely strong stellar winds, characteristic of classical Wolf-Rayet stars, or by binary interaction with a close companion star. The exact nature of the progenitors and the relative importance of these processes are still open questions. One relatively unexplored method to constrain the progenitors is to search for high-mass X-ray binaries (HMXBs) at SN locations in pre-explosion X-ray observations. In an HMXB, one star has already exploded as a core-collapse SN, producing a neutron star or a stellar mass black hole. It is likely that the second star in the system will also explode as an SN, which should cause a detectable long-term change in the system's X-ray luminosity. In particular, a pre-explosion detection of an HMXB coincident with an SN could be informative about the progenitor's nature. In this paper, we analyse pre-explosion ACIS observations of 18 nearby Type Ib, Ic and IIb SNe from the Chandra X-ray observatory public archive. Two sources that could potentially be associated with the SN are identified in the sample. Additionally we make similar post-explosion measurements for 46 SNe. Although our modelling indicates that progenitor systems with compact binary companions are probably quite rare, studies of this type can in the future provide more stringent constraints as the number of discovered nearby SNe and suitable pre-explosion X-ray data are both increasing.

  6. Hubble Sees the Remains of a Star Gone Supernova

    NASA Image and Video Library

    2017-12-08

    These delicate wisps of gas make up an object known as SNR B0519-69.0, or SNR 0519 for short. The thin, blood-red shells are actually the remnants from when an unstable progenitor star exploded violently as a supernova around 600 years ago. There are several types of supernovae, but for SNR 0519 the star that exploded is known to have been a white dwarf star — a Sun-like star in the final stages of its life. SNR 0519 is located over 150 000 light-years from Earth in the southern constellation of Dorado (The Dolphinfish), a constellation that also contains most of our neighboring galaxy the Large Magellanic Cloud (LMC). Because of this, this region of the sky is full of intriguing and beautiful deep sky objects. The LMC orbits the Milky Way galaxy as a satellite and is the fourth largest in our group of galaxies, the Local Group. SNR 0519 is not alone in the LMC; the NASA/ESA Hubble Space Telescope also came across a similar bauble a few years ago in SNR B0509-67.5, a supernova of the same type as SNR 0519 with a strikingly similar appearance. European Space Agency/NASA Hubble NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Thermal generation of the magnetic field in the surface layers of massive stars

    NASA Astrophysics Data System (ADS)

    Urpin, V.

    2017-11-01

    A new magnetic field-generation mechanism based on the Nernst effect is considered in hot massive stars. This mechanism can operate in the upper atmospheres of O and B stars where departures from the LTE form a region with the inverse temperature gradient.

  8. Role of Massive Stars in the Evolution of Primitive Galaxies

    NASA Technical Reports Server (NTRS)

    Heap, Sara

    2012-01-01

    An important factor controlling galaxy evolution is feedback from massive stars. It is believed that the nature and intensity of stellar feedback changes as a function of galaxy mass and metallicity. At low mass and metallicity, feedback from massive stars is mainly in the form of photoionizing radiation. At higher mass and metallicity, it is in stellar winds. IZw 18 is a local blue, compact dwarf galaxy that meets the requirements for a primitive galaxy: low halo mass greater than 10(exp 9)Msun, strong photoionizing radiation, no galactic outflow, and very low metallicity,log(O/H)+12=7.2. We will describe the properties of massive stars and their role in the evolution of IZw 18, based on analysis of ultraviolet images and spectra obtained with HST.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bianchi, Luciana; Efremova, Boryana; Hodge, Paul

    We present a comprehensive study of young stellar populations in six dwarf galaxies in or near the Local Group: Phoenix, Pegasus, Sextans A, Sextans B, WLM, and NGC 6822. Their star-forming regions, selected from GALEX wide-field far-UV imaging, were imaged (at sub-pc resolution) with the WFPC2 camera on board the Hubble Space Telescope (HST) in six bandpasses from far-UV to I to detect and characterize their hot massive star content. This study is part of HST treasury survey program HST-GO-11079; the general data characteristics and reduction procedures are detailed in this paper and results are presented for the first sixmore » galaxies. From a total of 180 HST images, we provide catalogs of the multi-band stellar photometry and derive the physical parameters of massive stars by analyzing it with model-atmosphere colors. We use the results to infer ages, number of massive stars, extinction, and spatial characteristics of the young stellar populations. The hot massive star content varies largely across our galaxy sample, from an inconspicuous presence in Phoenix and Pegasus to the highest relative abundance of young massive stars in Sextans A and WLM. Albeit to a largely varying extent, most galaxies show a very young population (a few Myrs, except for Phoenix), and older ones (a few 10{sup 7} years in Sextans A, Sextans B, NGC 6822, and WLM, {approx}10{sup 8}yr in Phoenix and Pegasus), suggesting discrete bursts of recent star formation in the mapped regions. The hot massive star content (indicative of the young populations) broadly correlates with the total galaxy stellar mass represented by the integrated optical magnitude, although it varies by a factor of {approx}3 between Sextans A, WLM, and Sextans B, which have similar M{sub V}. Extinction properties are also derived.« less

  10. [WN] central stars of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Todt, H.; Miszalski, B.; Toalá, J. A.; Guerrero, M. A.

    2017-10-01

    While most of the low-mass stars stay hydrogen-rich on their surface throughout their evolution, a considerable fraction of white dwarfs as well as central stars of planetary nebulae have a hydrogen-deficient surface composition. The majority of these H-deficient central stars exhibit spectra very similar to massive Wolf-Rayet stars of the carbon sequence, i.e. with broad emission lines of carbon, helium, and oxygen. In analogy to the massive Wolf-Rayet stars, they are classified as [WC] stars. Their formation, which is relatively well understood, is thought to be the result of a (very) late thermal pulse of the helium burning shell. It is therefore surprising that some H-deficient central stars which have been found recently, e.g. IC 4663 and Abell 48, exhibit spectra that resemble those of the massive Wolf-Rayet stars of the nitrogen sequence, i.e. with strong emission lines of nitrogen instead of carbon. This new type of central stars is therefore labelled [WN]. We present spectral analyses of these objects and discuss the status of further candidates as well as the evolutionary status and origin of the [WN] stars.

  11. New massive members of Cygnus OB2

    NASA Astrophysics Data System (ADS)

    Berlanas, S. R.; Herrero, A.; Comerón, F.; Pasquali, A.; Motta, C. Bertelli; Sota, A.

    2018-04-01

    Context. The Cygnus complex is one of the most powerful star forming regions at a close distance from the Sun ( 1.4 kpc). Its richest OB association Cygnus OB2 is known to harbor many tens of O-type stars and hundreds of B-type stars, providing a large homogeneous population of OB stars that can be analyzed. Many studies of its massive population have been developed in the last decades, although the total number of OB stars is still incomplete. Aim. Our aim is to increase the sample of O and B members of Cygnus OB2 and its surroundings by spectroscopically classifying 61 candidates as possible OB-type members of Cygnus OB2, using new intermediate resolution spectroscopy. Methods: We have obtained intermediate resolution (R 5000) spectra for all of the OB-type candidates between 2013 and 2017. We thus performed a spectral classification of the sample using HeI-II and metal lines rates, as well as the Marxist Ghost Buster (MGB) software for O-type stars and the IACOB standards catalog for B-type stars. Results: From the whole sample of 61 candidates, we have classified 42 stars as new massive OB-type stars, earlier than B3, in Cygnus OB2 and surroundings, including 11 O-type stars. The other candidates are discarded as they display later spectral types inconsistent with membership in the association. We have also obtained visual extinctions for all the new confirmed massive OB members, placing them in a Hertzsprung-Russell Diagram using calibrations for Teff and luminosity. Finally, we have studied the age and extinction distribution of our sample within the region. Conclusions: We have obtained new blue intermediate-resolution spectra suitable for spectral classification of 61 OB candidates in Cygnus OB2 and surroundings. The confirmation of 42 new OB massive stars (earlier than B3) in the region allows us to increase the young massive population known in the field. We have also confirmed the correlation between age and Galactic longitude previously found in the region. We conclude that many O and early B stars at B > 16 mag are still undiscovered in Cygnus.

  12. High molecular gas fractions in normal massive star-forming galaxies in the young Universe.

    PubMed

    Tacconi, L J; Genzel, R; Neri, R; Cox, P; Cooper, M C; Shapiro, K; Bolatto, A; Bouché, N; Bournaud, F; Burkert, A; Combes, F; Comerford, J; Davis, M; Schreiber, N M Förster; Garcia-Burillo, S; Gracia-Carpio, J; Lutz, D; Naab, T; Omont, A; Shapley, A; Sternberg, A; Weiner, B

    2010-02-11

    Stars form from cold molecular interstellar gas. As this is relatively rare in the local Universe, galaxies like the Milky Way form only a few new stars per year. Typical massive galaxies in the distant Universe formed stars an order of magnitude more rapidly. Unless star formation was significantly more efficient, this difference suggests that young galaxies were much more molecular-gas rich. Molecular gas observations in the distant Universe have so far largely been restricted to very luminous, rare objects, including mergers and quasars, and accordingly we do not yet have a clear idea about the gas content of more normal (albeit massive) galaxies. Here we report the results of a survey of molecular gas in samples of typical massive-star-forming galaxies at mean redshifts of about 1.2 and 2.3, when the Universe was respectively 40% and 24% of its current age. Our measurements reveal that distant star forming galaxies were indeed gas rich, and that the star formation efficiency is not strongly dependent on cosmic epoch. The average fraction of cold gas relative to total galaxy baryonic mass at z = 2.3 and z = 1.2 is respectively about 44% and 34%, three to ten times higher than in today's massive spiral galaxies. The slow decrease between z approximately 2 and z approximately 1 probably requires a mechanism of semi-continuous replenishment of fresh gas to the young galaxies.

  13. Progress on Magnetism in Massive Stars (MiMeS)

    NASA Astrophysics Data System (ADS)

    Neiner, C.; Alecian, E.; Mathis, S.

    2011-12-01

    We present the MiMeS project, which aims at studying all aspects of magnetism in massive stars to understand their characteristics, origin, incidence, evolution, and impact on other physical processes. We show examples of recent observational results obtained within this project on pulsating B stars (β Cephei and SPB stars) as well as Herbig Ae/Be stars. Recent theoretical progress obtained within MiMeS on the configuration and stability of magnetic fields is also summarized.

  14. Devastated Stellar Neighborhood

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from NASA's Spitzer Space Telescope shows the nasty effects of living near a group of massive stars: radiation and winds from the massive stars (white spot in center) are blasting planet-making material away from stars like our sun. The planetary material can be seen as comet-like tails behind three stars near the center of the picture. The tails are pointing away from the massive stellar furnaces that are blowing them outward.

    The picture is the best example yet of multiple sun-like stars being stripped of their planet-making dust by massive stars.

    The sun-like stars are about two to three million years old, an age when planets are thought to be growing out of surrounding disks of dust and gas. Astronomers say the dust being blown from the stars is from their outer disks. This means that any Earth-like planets forming around the sun-like stars would be safe, while outer planets like Uranus might be nothing more than dust in the wind.

    This image shows a portion of the W5 star-forming region, located 6,500 light-years away in the constellation Cassiopeia. It is a composite of infrared data from Spitzer's infrared array camera and multiband imaging photometer. Light with a wavelength of 3.5 microns is blue, while light from the dust of 24 microns is orange-red.

  15. The Most Massive Heartbeat: Finding the Pulse of ι Orionis

    NASA Astrophysics Data System (ADS)

    Pablo, Herbert; Richardson, Noel; Fuller, Jim; Moffat, Anthony F. J.; BEST and Ritter Observing Team

    2017-11-01

    ι Orionis is a massive binary system consisting of O9III + B1 III/IV stars. Though the system has been well studied, much about its fundamental properties have been difficult to determine. In this paper we report on the discovery of the heartbeat phenomenon in ι Orionis making it the most massive heartbeat system currently known. Using this phenomenon we have found empirical values for the masses and radii of both components. Moreover, we report the detection of tidally induced oscillations in an O-type star for the first time. These discoveries open a new avenue for exploring asteroseismology in massive stars.

  16. Color Composite Image of the Supernova Remnant

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image is a color composite of the supernova remnant E0102-72: x-ray (blue), optical (green), and radio (red). E0102-72 is the remnant of a star that exploded in a nearby galaxy known as the Small Magellanic Cloud. The star exploded outward at speeds in excess of 20 million kilometers per hour (12 million mph) and collided with surrounding gas. This collision produced two shock waves, or cosmic sonic booms, one traveling outward, and the other rebounding back into the material ejected by the explosion. The radio image, shown in red, was made using the Australia Telescope Compact Array. The radio waves are due to extremely high-energy electrons spiraling around magnetic field lines in the gas and trace the outward moving shock wave. The Chandra X-ray Observatory image, shown in blue, shows gas that has been heated to millions of degrees by the rebounding, or reverse shock wave. The x-ray data show that this gas is rich in oxygen and neon. These elements were created by nuclear reactions inside the star and hurled into space by the supernova. The Hubble Space Telescope optical image, shown in green, shows dense clumps of oxygen gas that have 'cooled' to about 30,000 degrees. Photo Credit: X-ray (NASA/CXC/SAO); optical (NASA/HST): radio: (ACTA)

  17. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2000-11-01

    This image is a color composite of the supernova remnant E0102-72: x-ray (blue), optical (green), and radio (red). E0102-72 is the remnant of a star that exploded in a nearby galaxy known as the Small Magellanic Cloud. The star exploded outward at speeds in excess of 20 million kilometers per hour (12 million mph) and collided with surrounding gas. This collision produced two shock waves, or cosmic sonic booms, one traveling outward, and the other rebounding back into the material ejected by the explosion. The radio image, shown in red, was made using the Australia Telescope Compact Array. The radio waves are due to extremely high-energy electrons spiraling around magnetic field lines in the gas and trace the outward moving shock wave. The Chandra X-ray Observatory image, shown in blue, shows gas that has been heated to millions of degrees by the rebounding, or reverse shock wave. The x-ray data show that this gas is rich in oxygen and neon. These elements were created by nuclear reactions inside the star and hurled into space by the supernova. The Hubble Space Telescope optical image, shown in green, shows dense clumps of oxygen gas that have "cooled" to about 30,000 degrees. Photo Credit: X-ray (NASA/CXC/SAO); optical (NASA/HST): radio: (ACTA)

  18. A New Mass Criterium for Electron Capture Supernovae

    NASA Astrophysics Data System (ADS)

    Poelarends, Arend

    2016-06-01

    Electron capture supernovae (ECSN) are thought to populate the mass range between massive white dwarf progenitors and core collapse supernovae. It is generally believed that the initial stellar mass range for ECSN from single stars is about 0.5-1.0 M⊙ wide and centered around a value of 8.5 or 9 M⊙, depending on the specifics of the physics of convection and mass loss one applies. Since mass loss in a binary system is able to delay or cancel the second dredge-up, it is also believed that the initial mass range for ECSN in binary systems is wider than in single stars, but an initial mass range has not been defined yet.The last phase of stars in this particular mass range, however, is challenging to compute, either due to recurring Helium shell flashes, or due to convectively bound flames in the degenerate interior of the star. It would be helpful, nevertheless, to know before we enter these computationally intensive phases whether a star will explode as an ECSN or not. The mass of the helium core after helium core burning is one such criterium (Nomoto, 1984), which predicts that ECSN will occur if the helium core mass is between 2.0 M⊙ and 2.5 M⊙. However, since helium cores can be subject to erosion due to mass loss — even during helium core burning, this criterium will not yield accurate predictions for stars in binary systems.We present a dense grid of stellar evolution models that allow us to put constraints on the final fate of their cores, based on a combination of Carbon/Oxygen core mass, the mass of the surrounding Helium layer and C/O abundance. We find that CO cores with masses between 1.365 and 1.420 M⊙ at the end of Carbon burning will result in ECSN, with some minor adjustments of these ranges due to the mass of the Helium layer and the C/O ratio. While detailed models of stars within the ECSN mass range remain necessary to understand the details of pre-ECSN evolution, our research refines the Helium core criterion and provides a useful way to determine the final fate of stars in this complicated mass range early on.

  19. Hubble:WFPC2 and ESO:2.2-m Composite Image of 30 Dor Runaway Star

    NASA Image and Video Library

    2017-12-08

    NASA image release May 11, 2010 Hubble Catches Heavyweight Runaway Star Speeding from 30 Doradus Image: Hubble/WFPC2 and ESO/2.2-m Composite Image of 30 Dor Runaway Star A blue-hot star, 90 times more massive than our Sun, is hurtling across space fast enough to make a round trip from Earth to the Moon in merely two hours. Though the speed is not a record-breaker, it is unique to find a homeless star that has traveled so far from its nest. The only way the star could have been ejected from the star cluster where it was born is through a tussle with a rogue star that entered the binary system where the star lived, which ejected the star through a dynamical game of stellar pinball. This is strong circumstantial evidence for stars as massive as 150 times our Sun's mass living in the cluster. Only a very massive star would have the gravitational energy to eject something weighing 90 solar masses. The runaway star is on the outskirts of the 30 Doradus nebula, a raucous stellar breeding ground in the nearby Large Magellanic Cloud. The finding bolsters evidence that the most massive stars in the local universe reside in 30 Doradus, making it a unique laboratory for studying heavyweight stars. 30 Doradus, also called the Tarantula Nebula, is roughly 170,000 light-years from Earth. To learn more about this image go to: www.nasa.gov/mission_pages/hubble/science/runaway-star.html Credit: NASA, ESA, J. Walsh (ST-ECF), and ESO NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  20. Massive star formation by accretion. II. Rotation: how to circumvent the angular momentum barrier?

    NASA Astrophysics Data System (ADS)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.; Klessen, R. S.

    2017-06-01

    Context. Rotation plays a key role in the star-formation process, from pre-stellar cores to pre-main-sequence (PMS) objects. Understanding the formation of massive stars requires taking into account the accretion of angular momentum during their PMS phase. Aims: We study the PMS evolution of objects destined to become massive stars by accretion, focusing on the links between the physical conditions of the environment and the rotational properties of young stars. In particular, we look at the physical conditions that allow the production of massive stars by accretion. Methods: We present PMS models computed with a new version of the Geneva Stellar Evolution code self-consistently including accretion and rotation according to various accretion scenarios for mass and angular momentum. We describe the internal distribution of angular momentum in PMS stars accreting at high rates and we show how the various physical conditions impact their internal structures, evolutionary tracks, and rotation velocities during the PMS and the early main sequence. Results: We find that the smooth angular momentum accretion considered in previous studies leads to an angular momentum barrier and does not allow the formation of massive stars by accretion. A braking mechanism is needed in order to circumvent this angular momentum barrier. This mechanism has to be efficient enough to remove more than two thirds of the angular momentum from the inner accretion disc. Due to the weak efficiency of angular momentum transport by shear instability and meridional circulation during the accretion phase, the internal rotation profiles of accreting stars reflect essentially the angular momentum accretion history. As a consequence, careful choice of the angular momentum accretion history allows circumvention of any limitation in mass and velocity, and production of stars of any mass and velocity compatible with structure equations.

  1. Near-Infrared Mass Loss Diagnostics for Massive Stars

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Bouret, J. C.

    2010-01-01

    Stellar wind mass loss is a key process which modifies surface abundances, luminosities, and other physical properties of hot, massive stars. Furthermore, mass loss has to be understood quantitatively in order to accurately describe and predict massive star evolution. Two urgent problems have been identified that challenge our understanding of line-driven winds, the so-called weak-wind problem and wind clumping. In both cases, mass-loss rates are drastically lower than theoretically expected (up to a factor 1001). Here we study how the expected spectroscopic capabilities of the James Webb Space Telescope (JWST), especially NIRSpec, could be used to significantly improve constraints on wind density structures (clumps) and deep-seated phenomena in stellar winds of massive stars, including OB, Wolf-Rayet and LBV stars. Since the IR continuum of objects with strong winds is formed in the wind, IR lines may sample different depths inside the wind than UV-optical lines and provide new information about the shape of the velocity field and clumping properties. One of the most important applications of IR line diagnostics will be the measurement of mass-loss rates in massive stars with very weak winds by means of the H I Bracket alpha line, which has been identified as one of the most promising diagnostics for this problem.

  2. Dynamic collapses of relativistic degenerate stellar cores and radiation pressure dominated stellar interiors

    NASA Astrophysics Data System (ADS)

    Shi, Chun-Hui; Lou, Yu-Qing

    2018-04-01

    We investigate and explore self-similar dynamic radial collapses of relativistic degenerate stellar cores (RDSCs) and radiation pressure dominated stellar interiors (RPDSIs) of spherical symmetry by invoking a conventional polytropic (CP) equation of state (EoS) with a constant polytropic index γ = 4 / 3 and by allowing free-fall non-zero RDSC or RPDSI surface mass density and pressure due to their sustained physical contact with the outer surrounding stellar envelopes also in contraction. Irrespective of the physical triggering mechanisms (including, e.g., photodissociation, electron-positron pair instability, general relativistic instability etc.) for initiating such a self-similar dynamically collapsing RDSC or RPDSI embedded within a massive star, a very massive star (VMS) or a supermassive star (SMS) in contraction and by comparing with the Schwarzschild radii associated with their corresponding RDSC/RPDSI masses, the emergence of central black holes in a wide mass range appears inevitable during such RDSC/RPDSI dynamic collapses inside massive stars, VMSs, and SMSs, respectively. Radial pulsations of progenitor cores or during a stellar core collapse may well leave imprints onto collapsing RDSCs/RPDSIs towards their self-similar dynamic evolution. Massive neutron stars may form during dynamic collapses of RDSC inside massive stars in contraction under proper conditions.

  3. By Hook or by MOOC: Lessons Learned and the Road Ahead

    ERIC Educational Resources Information Center

    Korsunsky, Boris; Li, Clara

    2017-01-01

    As online education has exploded in the past decade, the number of physics and physics-related massive open online courses (or MOOCs, to use the industry lingo) has grown substantially as well. Several such courses aim at high school students, especially those involved in the AP Physics program. One of us (BK) was involved in creating two such…

  4. Astronomers puzzle over a peculiar age-defying massive star

    NASA Image and Video Library

    2017-12-08

    An age-defying star designated as IRAS 19312+1950 exhibits features characteristic of a very young star and a very old star. The object stands out as extremely bright inside a large, chemically rich cloud of material, as shown in this image from NASA’s Spitzer Space Telescope. A NASA-led team of scientists thinks the star – which is about 10 times as massive as our sun and emits about 20,000 times as much energy – is a newly forming protostar. That was a big surprise because the region had not been known as a stellar nursery before. But the presence of a nearby interstellar bubble, which indicates the presence of a recently formed massive star, also supports this idea. Read more: go.nasa.gov/2bMza9d Image Credit: NASA/JPL-Caltech

  5. INTERNAL GRAVITY WAVES IN MASSIVE STARS: ANGULAR MOMENTUM TRANSPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T. M.; Lin, D. N. C.; McElwaine, J. N.

    2013-07-20

    We present numerical simulations of internal gravity waves (IGW) in a star with a convective core and extended radiative envelope. We report on amplitudes, spectra, dissipation, and consequent angular momentum transport by such waves. We find that these waves are generated efficiently and transport angular momentum on short timescales over large distances. We show that, as in Earth's atmosphere, IGW drive equatorial flows which change magnitude and direction on short timescales. These results have profound consequences for the observational inferences of massive stars, as well as their long term angular momentum evolution. We suggest IGW angular momentum transport may explainmore » many observational mysteries, such as: the misalignment of hot Jupiters around hot stars, the Be class of stars, Ni enrichment anomalies in massive stars, and the non-synchronous orbits of interacting binaries.« less

  6. Direct Measurement of the Supernova Rate in Starburst Galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Temi, Pasquale; Rank, David; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    Supernovae play a key role in the dynamics, structure, and chemical evolution of galaxies. The massive stars that end their lives as supernovae live for short times. Many are still associated with dusty star formation regions when they explode, making them difficult to observe at visible wavelengths. In active star forming regions (galactic nuclei and starburst regions), dust extintion is especially severe. Thus, determining the supernova rate in the active star forming regions of galaxies, where the supernova rate can be one or two orders of magnitude higher than the average, has proven to be difficult. From observations of SN1987A, we know that the [NiII] 6.63 micron emission line was the strongest line in the infrared spectrum for a period of a year and a half after the explosion. Since dust extintion is much less at 6.63 pm than at visible wavelengths (A(sub 6.63)/A(sub V) = 0.025), the NiII line can be used as a sensitive probe for the detection of recent supernovae. We have observed a sample of starburst galaxies at 6.63 micron using ISOCAM to search for the NiII emission line characteristic of recent supernovae. We did not detect any NiII line emission brighter than a 5sigma limit of 5 mJy. We can set upper limits to the supernova rate in our sample, scaled to the rate in M82, of less than 0.3 per year at the 90% confidence level using Bayesian methods. Assuming that a supernova would have a NiII with the same luminosity as observed in SN1987A, we find less than 0.09 and 0.15 per year at the 50% and 67% confidence levels. These rates are somewhat less if a more normal type II supernovae has a NiII line luminosity greater than the line in SN1987A.

  7. Electrically charged: An effective mechanism for soft EOS supporting massive neutron star

    NASA Astrophysics Data System (ADS)

    Jing, ZhenZhen; Wen, DeHua; Zhang, XiangDong

    2015-10-01

    The massive neutron star discoverer announced that strange particles, such as hyperons should be ruled out in the neutron star core as the soft Equation of State (EOS) can-not support a massive neutron star. However, many of the nuclear theories and laboratory experiments support that at high density the strange particles will appear and the corresponding EOS of super-dense matters will become soft. This situation promotes a challenge between the astro-observation and nuclear physics. In this work, we introduce an effective mechanism to answer this challenge, that is, if a neutron star is electrically charged, a soft EOS will be equivalently stiffened and thus can support a massive neutron star. By employing a representative soft EOS, it is found that in order to obtain an evident effect on the EOS and thus increasing the maximum stellar mass by the electrostatic field, the total net charge should be in an order of 1020 C. Moreover, by comparing the results of two kind of charge distributions, it is found that even for different distributions, a similar total charge: ~ 2.3 × 1020 C is needed to support a ~ 2.0 M ⊙ neutron star.

  8. Stellar Content and Star Formation in Young Clusters Influenced by Massive Stars

    NASA Astrophysics Data System (ADS)

    Jose, J.

    2014-09-01

    Star Formation (SF) in extreme environment is always challenging and can be significantly different from that in quiet environments. This study presents the comprehensive multi-wavelength (optical, NIR, MIR and radio) observational analysis of three Galactic starforming regions associated with H II regions/young clusters and located at > 2 kpc, which are found to be evolving under the influence of massive stars within their vicinity. The candidate massive stars, young stellar objects, their mass, age, age spread, the form of K-band Luminosity Function (KLF), Initial Mass Function (IMF) and a possible formation history of each region are studied. The major results on Sh2-252, an extended H II region that appears to be undergoing multiple episodes of SF, are highlighted. Our analysis shows that all the regions are undergoing complex SF activity and the new generation of stars in each region seem to be an outcome of the influence by the presence of massive stars within them. SF process in these regions are likely to be multi-fold and the results suggest that multiple modes of triggering mechanism and hierarchial modes of SF are a common phenomena within young clusters.

  9. Black-hole-regulated star formation in massive galaxies.

    PubMed

    Martín-Navarro, Ignacio; Brodie, Jean P; Romanowsky, Aaron J; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-18

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  10. Black-hole-regulated star formation in massive galaxies

    NASA Astrophysics Data System (ADS)

    Martín-Navarro, Ignacio; Brodie, Jean P.; Romanowsky, Aaron J.; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-01

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  11. Extended High Circular Polarization in the Orion Massive Star Forming Region: Implications for the Origin of Homochirality in the Solar System

    PubMed Central

    Tamura, Motohide; Kandori, Ryo; Kusakabe, Nobuhiko; Hough, James H.; Bailey, Jeremy; Whittet, Douglas C. B.; Lucas, Philip W.; Nakajima, Yasushi; Hashimoto, Jun

    2010-01-01

    We present a wide-field (∼6′ × 6′) and deep near-infrared (Ks band: 2.14 μm) circular polarization image in the Orion nebula, where massive stars and many low-mass stars are forming. Our results reveal that a high circular polarization region is spatially extended (∼0.4 pc) around the massive star-forming region, the BN/KL nebula. However, other regions, including the linearly polarized Orion bar, show no significant circular polarization. Most of the low-mass young stars do not show detectable extended structure in either linear or circular polarization, in contrast to the BN/KL nebula. If our solar system formed in a massive star-forming region and was irradiated by net circularly polarized radiation, then enantiomeric excesses could have been induced, through asymmetric photochemistry, in the parent bodies of the meteorites and subsequently delivered to Earth. These could then have played a role in the development of biological homochirality on Earth. PMID:20213160

  12. Probing massive stars around gamma-ray burst progenitors

    NASA Astrophysics Data System (ADS)

    Lu, Wenbin; Kumar, Pawan; Smoot, George F.

    2015-10-01

    Long gamma-ray bursts (GRBs) are produced by ultra-relativistic jets launched from core collapse of massive stars. Most massive stars form in binaries and/or in star clusters, which means that there may be a significant external photon field (EPF) around the GRB progenitor. We calculate the inverse-Compton scattering of EPF by the hot electrons in the GRB jet. Three possible cases of EPF are considered: the progenitor is (I) in a massive binary system, (II) surrounded by a Wolf-Rayet-star wind and (III) in a dense star cluster. Typical luminosities of 1046-1050 erg s-1 in the 1-100 GeV band are expected, depending on the stellar luminosity, binary separation (I), wind mass-loss rate (II), stellar number density (III), etc. We calculate the light curve and spectrum in each case, taking fully into account the equal-arrival time surfaces and possible pair-production absorption with the prompt γ-rays. Observations can put constraints on the existence of such EPFs (and hence on the nature of GRB progenitors) and on the radius where the jet internal dissipation process accelerates electrons.

  13. High Energy Interactions in Massive Binaries: An Application to a Most Mysterious Binary

    NASA Technical Reports Server (NTRS)

    Corcoran, Michael

    2013-01-01

    Extremely massive stars (50M and above) are exceedingly rare in the local Universe but are believed to have composed the entire first generation of stars, which lived fast, died young and left behind the first generation of black holes and set the stage for the formation of lower mass stars suitable to support life. There are significant uncertainties about how this happened (and how it still happens), mostly due to our poor knowledge of how stars change mass as they evolve. Extremely massive stars give mass back to the ISM via strong radiatively-driven winds and sometimes through sporadic eruptions of the most massive and brightest stars. Such mass loss plays an important role in the chemical and dynamical evolution of the local interstellar medium prior to the supernova explosion. Below we discuss how high energy thermal (and, in some cases, non-thermal) emission, along with modern simulations in 2 and 3 dimensions, can be used to help determine a physically realistic picture of mass loss in a well-studied, mysterious system.

  14. The RMS survey: galactic distribution of massive star formation

    NASA Astrophysics Data System (ADS)

    Urquhart, J. S.; Figura, C. C.; Moore, T. J. T.; Hoare, M. G.; Lumsden, S. L.; Mottram, J. C.; Thompson, M. A.; Oudmaijer, R. D.

    2014-01-01

    We have used the well-selected sample of ˜1750 embedded, young, massive stars identified by the Red MSX Source (RMS) survey to investigate the Galactic distribution of recent massive star formation. We present molecular line observations for ˜800 sources without existing radial velocities. We describe the various methods used to assign distances extracted from the literature and solve the distance ambiguities towards approximately 200 sources located within the solar circle using archival H I data. These distances are used to calculate bolometric luminosities and estimate the survey completeness (˜2 × 104 L⊙). In total, we calculate the distance and luminosity of ˜1650 sources, one third of which are above the survey's completeness threshold. Examination of the sample's longitude, latitude, radial velocities and mid-infrared images has identified ˜120 small groups of sources, many of which are associated with well-known star formation complexes, such as G305, G333, W31, W43, W49 and W51. We compare the positional distribution of the sample with the expected locations of the spiral arms, assuming a model of the Galaxy consisting of four gaseous arms. The distribution of young massive stars in the Milky Way is spatially correlated with the spiral arms, with strong peaks in the source position and luminosity distributions at the arms' Galactocentric radii. The overall source and luminosity surface densities are both well correlated with the surface density of the molecular gas, which suggests that the massive star formation rate per unit molecular mass is approximately constant across the Galaxy. A comparison of the distribution of molecular gas and the young massive stars to that in other nearby spiral galaxies shows similar radial dependences. We estimate the total luminosity of the embedded massive star population to be ˜0.76 × 108 L⊙, 30 per cent of which is associated with the 10 most active star-forming complexes. We measure the scaleheight as a function of the Galactocentric distance and find that it increases only modestly from ˜20-30 pc between 4 and 8 kpc, but much more rapidly at larger distances.

  15. High-Mass Stars in the Centers of Young Dense Clusters: Mass Segregation, Binary Mergers and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Zinnecker, H.

    We start by discussing dense, young star-clusters, particularly the 30 Doradus cluster with its core R136. The question of mass segregation and core collapse of the massive stars is addressed. Analytical estimates of relaxation times and collision times predict that the central N=10 subsystem of massive stars in the R136 core will evolve dynamically in such a way and fast enough (i.e. within their main-sequence lifetime of a few Myr) that a dominant massive binary system is formed whose orbit will shrink to a point where merging of the components appears inevitable. The merger product will be spinning rapidly, and we put forward the idea that this rare and very massive object might be the perfect precursor of a gamma-ray burst (collapsar).

  16. The formation and gravitational-wave detection of massive stellar black hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belczynski, Krzysztof; Walczak, Marek; Buonanno, Alessandra

    2014-07-10

    If binaries consisting of two ∼100 M{sub ☉} black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ∼ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by themore » recent discovery of several ≳ 150 M{sub ☉} stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.« less

  17. Supernova Relic Neutrinos and the Supernova Rate Problem: Analysis of Uncertainties and Detectability of ONeMg and Failed Supernovae

    NASA Astrophysics Data System (ADS)

    Mathews, Grant J.; Hidaka, Jun; Kajino, Toshitaka; Suzuki, Jyutaro

    2014-08-01

    Direct measurements of the core collapse supernova rate (R SN) in the redshift range 0 <= z <= 1 appear to be about a factor of two smaller than the rate inferred from the measured cosmic massive star formation rate (SFR). This discrepancy would imply that about one-half of the massive stars that have been born in the local observed comoving volume did not explode as luminous supernovae. In this work, we explore the possibility that one could clarify the source of this "supernova rate problem" by detecting the energy spectrum of supernova relic neutrinos with a next generation 106 ton water Čerenkov detector like Hyper-Kamiokande. First, we re-examine the supernova rate problem. We make a conservative alternative compilation of the measured SFR data over the redshift range 0 <=z <= 7. We show that by only including published SFR data for which the dust obscuration has been directly determined, the ratio of the observed massive SFR to the observed supernova rate R SN has large uncertainties {\\sim }1.8^{+1.6}_{-0.6} and is statistically consistent with no supernova rate problem. If we further consider that a significant fraction of massive stars will end their lives as faint ONeMg SNe or as failed SNe leading to a black hole remnant, then the ratio reduces to {\\sim }1.1^{+1.0}_{-0.4} and the rate problem is essentially solved. We next examine the prospects for detecting this solution to the supernova rate problem. We first study the sources of uncertainty involved in the theoretical estimates of the neutrino detection rate and analyze whether the spectrum of relic neutrinos can be used to independently identify the existence of a supernova rate problem and its source. We consider an ensemble of published and unpublished core collapse supernova simulation models to estimate the uncertainties in the anticipated neutrino luminosities and temperatures. We illustrate how the spectrum of detector events might be used to establish the average neutrino temperature and constrain SN models. We also consider supernova ν-process nucleosynthesis to deduce constraints on the temperature of the various neutrino flavors. We study the effects of neutrino oscillations on the detected neutrino energy spectrum and also show that one might distinguish the equation of state (EoS) as well as the cause of the possible missing luminous supernovae from the detection of supernova relic neutrinos. We also analyze a possible enhanced contribution from failed supernovae leading to a black hole remnant as a solution to the supernova rate problem. We conclude that indeed it might be possible (though difficult) to measure the neutrino temperature, neutrino oscillations, and the EoS and confirm this source of missing luminous supernovae by the detection of the spectrum of relic neutrinos.

  18. Supernova relic neutrinos and the supernova rate problem: Analysis of uncertainties and detectability of ONeMg and failed supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathews, Grant J.; Hidaka, Jun; Kajino, Toshitaka

    2014-08-01

    Direct measurements of the core collapse supernova rate (R{sub SN}) in the redshift range 0 ≤ z ≤ 1 appear to be about a factor of two smaller than the rate inferred from the measured cosmic massive star formation rate (SFR). This discrepancy would imply that about one-half of the massive stars that have been born in the local observed comoving volume did not explode as luminous supernovae. In this work, we explore the possibility that one could clarify the source of this 'supernova rate problem' by detecting the energy spectrum of supernova relic neutrinos with a next generation 10{supmore » 6} ton water Čerenkov detector like Hyper-Kamiokande. First, we re-examine the supernova rate problem. We make a conservative alternative compilation of the measured SFR data over the redshift range 0 ≤z ≤ 7. We show that by only including published SFR data for which the dust obscuration has been directly determined, the ratio of the observed massive SFR to the observed supernova rate R{sub SN} has large uncertainties ∼1.8{sub −0.6}{sup +1.6} and is statistically consistent with no supernova rate problem. If we further consider that a significant fraction of massive stars will end their lives as faint ONeMg SNe or as failed SNe leading to a black hole remnant, then the ratio reduces to ∼1.1{sub −0.4}{sup +1.0} and the rate problem is essentially solved. We next examine the prospects for detecting this solution to the supernova rate problem. We first study the sources of uncertainty involved in the theoretical estimates of the neutrino detection rate and analyze whether the spectrum of relic neutrinos can be used to independently identify the existence of a supernova rate problem and its source. We consider an ensemble of published and unpublished core collapse supernova simulation models to estimate the uncertainties in the anticipated neutrino luminosities and temperatures. We illustrate how the spectrum of detector events might be used to establish the average neutrino temperature and constrain SN models. We also consider supernova ν-process nucleosynthesis to deduce constraints on the temperature of the various neutrino flavors. We study the effects of neutrino oscillations on the detected neutrino energy spectrum and also show that one might distinguish the equation of state (EoS) as well as the cause of the possible missing luminous supernovae from the detection of supernova relic neutrinos. We also analyze a possible enhanced contribution from failed supernovae leading to a black hole remnant as a solution to the supernova rate problem. We conclude that indeed it might be possible (though difficult) to measure the neutrino temperature, neutrino oscillations, and the EoS and confirm this source of missing luminous supernovae by the detection of the spectrum of relic neutrinos.« less

  19. Massive binary stars as a probe of massive star formation

    NASA Astrophysics Data System (ADS)

    Kiminki, Daniel C.

    2010-10-01

    Massive stars are among the largest and most influential objects we know of on a sub-galactic scale. Binary systems, composed of at least one of these stars, may be responsible for several types of phenomena, including type Ib/c supernovae, short and long gamma ray bursts, high-velocity runaway O and B-type stars, and the density of the parent star clusters. Our understanding of these stars has met with limited success, especially in the area of their formation. Current formation theories rely on the accumulated statistics of massive binary systems that are limited because of their sample size or the inhomogeneous environments from which the statistics are collected. The purpose of this work is to provide a higher-level analysis of close massive binary characteristics using the radial velocity information of 113 massive stars (B3 and earlier) and binary orbital properties for the 19 known close massive binaries in the Cygnus OB2 Association. This work provides an analysis using the largest amount of massive star and binary information ever compiled for an O-star rich cluster like Cygnus OB2, and compliments other O-star binary studies such as NGC 6231, NGC 2244, and NGC 6611. I first report the discovery of 73 new O or B-type stars and 13 new massive binaries by this survey. This work involved the use of 75 successful nights of spectroscopic observation at the Wyoming Infrared Observatory in addition to observations obtained using the Hydra multi-object spectrograph at WIYN, the HIRES echelle spectrograph at KECK, and the Hamilton spectrograph at LICK. I use these data to estimate the spectrophotometric distance to the cluster and to measure the mean systemic velocity and the one-sided velocity dispersion of the cluster. Finally, I compare these data to a series of Monte Carlo models, the results of which indicate that the binary fraction of the cluster is 57 +/- 5% and that the indices for the power law distributions, describing the log of the periods, mass-ratios, and eccentricities, are --0.2 +/- 0.3, 0.3 +/- 0.3, and --0.8 +/- 0.3 respectively (or not consistent with a simple power law distribution). The observed distributions indicate a preference for short period systems with nearly circular orbits and companions that are not likely drawn from a standard initial mass function, as would be expected from random pairing. An interesting and unexpected result is that the period distribution is inconsistent with a standard power-law slope stemming mainly from an excess of periods between 3 and 5 days and an absence of periods between 7 and 14 days. One possible explanation of this phenomenon is that the binary systems with periods from 7--14 days are migrating to periods of 3--5 days. In addition, the binary distribution here is not consistent with previous suggestions in the literature that 45% of OB binaries are members of twin systems (mass ratio near 1).

  20. A CATALOG OF NEW SPECTROSCOPICALLY CONFIRMED MASSIVE OB STARS IN CARINA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Michael J.; Hanes, Richard J.; McSwain, M. Virginia

    2016-12-01

    The Carina star-forming region is one of the largest in the Galaxy, and its massive star population is still being unveiled. The large number of stars combined with high, and highly variable, interstellar extinction makes it inherently difficult to find OB stars in this type of young region. We present the results of a spectroscopic campaign to study the massive star population of the Carina Nebula, with the primary goal to confirm or reject previously identified Carina OB star candidates. A total of 141 known O- and B-type stars and 94 candidates were observed, of which 73 candidates had highmore » enough signal-to-noise ratio to classify. We find 23 new OB stars within the Carina Nebula, a 32% confirmation rate. One of the new OB stars has blended spectra and is suspected to be a double-lined spectroscopic binary (SB2). We also reclassify the spectral types of the known OB stars and discover nine new SB2s among this population. Finally, we discuss the spatial distribution of these new OB stars relative to known structures in the Carina Nebula.« less

  1. Beyond the Solar Circle - Tracing Trends in Massive Star Formation for the Inner and Outer Galaxy

    NASA Astrophysics Data System (ADS)

    Djordjevic, Julie; Thompson, Mark; Urquhart, James

    2018-01-01

    Observations towards nearby galaxies are biased towards massive stars, affecting simulations and typically overestimating models for galactic evolution and star formation rates. The Milky Way provides an ideal template for studying the key factors that affect these massive star formation rates and efficiencies at high resolution, fine-tuning those models. We examine trends in massive star formation through the Galactic distribution of compact and ultracompact HII regions (UC HII regions) identified and confirmed as genuine via multi-wavelength inspection of submillimeter, radio, and infrared survey data. Previous catalogs focused on the inner Galaxy (RGC ≤ 8.5 kpc) but results from the recently completed SASSy 850 µm survey with JCMT’s SCUBA-2 show potential star forming clumps out to ~20 kpc. We follow a similar approach to Urquhart et at. (2013) who compiled a catalog of UC HII regions by cross matching CORNISH 5 GHz data with ATLASGAL 870 µm and GLIMPSE 3-color images. The CORNISH survey, however, was limited to the range 10° < l < 60° . By utilizing the RMS radio and infrared catalogs which cover the entire Galactic plane, we can examine the remaining ATLASGAL regions (300° < l < 10° ) as well as the SASSy ranges (60° < l < 240°). With this method we more than doubled the sample size of the CORNISH study, finding a grand total of 539 embedded UC HII regions across the Galaxy. We derive their properties and also look at the parameters of the host clumps to determine the implications for massive star formation rates and efficiencies as a function of galactocentric radius. We find that there is no significant change in the rate of massive star formation in the outer vs inner Galaxy. However, many of the potentially star forming SASSy clumps have no available radio counterpart to confirm the presence of an HII region or other star formation tracer. This begs the question whether there really is less star formation in this area or whether simply a lack of available data. Hence, we also present early results from follow-up radio observations with the VLA on selected SASSy clumps.

  2. An Observational Study of Blended Young Stellar Clusters in the Galactic Plane - Do Massive Stars form First?

    NASA Astrophysics Data System (ADS)

    Martínez-Galarza, Rafael; Protopapas, Pavlos; Smith, Howard A.; Morales, Esteban

    2018-01-01

    From an observational point of view, the early life of massive stars is difficult to understand partly because star formation occurs in crowded clusters where individual stars often appear blended together in the beams of infrared telescopes. This renders the characterization of the physical properties of young embedded clusters via spectral energy distribution (SED) fitting a challenging task. Of particular relevance for the testing of star formation models is the question of whether the claimed universality of the IMF (references) is reflected in an equally universal integrated galactic initial mass function (IGIMF) of stars. In other words, is the set of all stellar masses in the galaxy sampled from a single universal IMF, or does the distribution of masses depend on the environment, making the IGIMF different from the canonical IMF? If the latter is true, how different are the two? We present a infrared SED analysis of ~70 Spitzer-selected, low mass ($<100~\\rm{M}_{\\odot}$), galactic blended clusters. For all of the clusters we obtain the most probable individual SED of each member and derive their physical properties, effectively deblending the confused emission from individual YSOs. Our algorithm incorporates a combined probabilistic model of the blended SEDs and the unresolved images in the long-wavelength end. We find that our results are compatible with competitive accretion in the central regions of young clusters, with the most massive stars forming early on in the process and less massive stars forming about 1Myr later. We also find evidence for a relationship between the total stellar mass of the cluster and the mass of the most massive member that favors optimal sampling in the cluster and disfavors random sampling for the canonical IMF, implying that star formation is self-regulated, and that the mass of the most massive star in a cluster depends on the available resources. The method presented here is easily adapted to future observations of clustered regions of star formation with JWST and other high resolution facilities.

  3. The Stars behind the Curtain

    NASA Astrophysics Data System (ADS)

    2010-02-01

    ESO is releasing a magnificent VLT image of the giant stellar nursery surrounding NGC 3603, in which stars are continuously being born. Embedded in this scenic nebula is one of the most luminous and most compact clusters of young, massive stars in our Milky Way, which therefore serves as an excellent "local" analogue of very active star-forming regions in other galaxies. The cluster also hosts the most massive star to be "weighed" so far. NGC 3603 is a starburst region: a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust. Located 22 000 light-years away from the Sun, it is the closest region of this kind known in our galaxy, providing astronomers with a local test bed for studying intense star formation processes, very common in other galaxies, but hard to observe in detail because of their great distance from us. The nebula owes its shape to the intense light and winds coming from the young, massive stars which lift the curtains of gas and clouds revealing a multitude of glowing suns. The central cluster of stars inside NGC 3603 harbours thousands of stars of all sorts (eso9946): the majority have masses similar to or less than that of our Sun, but most spectacular are several of the very massive stars that are close to the end of their lives. Several blue supergiant stars crowd into a volume of less than a cubic light-year, along with three so-called Wolf-Rayet stars - extremely bright and massive stars that are ejecting vast amounts of material before finishing off in glorious explosions known as supernovae. Using another recent set of observations performed with the SINFONI instrument on ESO's Very Large Telescope (VLT), astronomers have confirmed that one of these stars is about 120 times more massive than our Sun, standing out as the most massive star known so far in the Milky Way [1]. The clouds of NGC 3603 provide us with a family picture of stars in different stages of their life, with gaseous structures that are still growing into stars, newborn stars, adult stars and stars nearing the end of their life. All these stars have roughly the same age, a million years, a blink of an eye compared to our five billion year-old Sun and Solar System. The fact that some of the stars have just started their lives while others are already dying is due to their extraordinary range of masses: high-mass stars, being very bright and hot, burn through their existence much faster than their less massive, fainter and cooler counterparts. The newly released image, obtained with the FORS instrument attached to the VLT at Cerro Paranal, Chile, portrays a wide field around the stellar cluster and reveals the rich texture of the surrounding clouds of gas and dust. Notes [1] The star, NGC 3603-A1, is an eclipsing system of two stars orbiting around each other in 3.77 days. The most massive star has an estimated mass of 116 solar masses, while its companion has a mass of 89 solar masses. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  4. Massive Stars in the MCs: What They Tell Us about the IMF, Stellar Evolution, and Upper Mass "Cutoffs"

    NASA Astrophysics Data System (ADS)

    Massey, P.

    Massive stars in the Magellanic Clouds provide an instantaneous "snapshot" of star-formation. In this talk I will review what we have learned both about star formation, and stellar evolution. Studies over the past decade have shown that the initial mass function (IMF) is the same for massive stars born in OB associations in the LMC and SMC as in associations and clusters in the Milky Way; the slope of the IMF is essentially Salpeter (Gamma ~ -1.3), despite the factor of 10 difference in metallicity between these systems. Recent work on the R136 cluster (described in Hunter's review talk) suggest that there is no such thing as an upper mass cutoff to the IMF, at least not one that has been found observationally: for the youngest clusters (2 Myr and younger), the mass of the highest mass star present is simply dependent upon how populous the cluster is; i.e., the IMF is truncated by statistics, not physics. There does appear to be a significant population of massive stars that are born in the "field" (not part of a large OB association or cluster); the IMF of these stars is quite a bit steeper (Gamma ~ -4), although stars as massive as those found in associations are also found in the field. The mixed-age population of the MCs as a whole can be used to test stellar evolutionary models; the agreement with the work of the Geneva group is found to be excellent, for stars with masses >25 Mo, although the youngest stars may be missing in the HRD. The discovery that clusters born in associations are quite coeval (Delta tau <1-2 Myr) allows us to use the "turn-off masses" to determine what mass objects become Wolf-Rayet stars of various types, and new results will be reviewed.

  5. New Observational Evidence of Flash Mixing on the White Dwarf Cooling Curve

    NASA Technical Reports Server (NTRS)

    Brown, T. M.; Lanz, T.; Sweigart, A. V.; Cracraft, Misty; Hubeny, Ivan; Landsman, W. B.

    2011-01-01

    Blue hook stars are a class of subluminous extreme horizontal branch stars that were discovered in UV images of the massive globular clusters w Cen and NGC 2808. These stars occupy a region of the HR diagram that is unexplained by canonical stellar evolution theory. Using new theoretical evolutionary and atmospheric models, we have shown that the blue hook stars are very likely the progeny of stars that undergo extensive internal mixing during a late helium-core flash on the white dwarf cooling curve. This "flash mixing" produces hotter-than-normal EHB stars with atmospheres significantly enhanced in helium and carbon. The larger bolometric correction, combined with the decrease in hydrogen opacity, makes these stars appear sub luminous in the optical and UV. Flash mixing is more likely to occur in stars born with a high helium abundance, due to their lower mass at the main sequence turnoff. For this reason, the phenomenon is more common in those massive globular clusters that show evidence for secondary populations enhanced in helium. However, a high helium abundance does not, by itself, explain the presence of blue hook stars in massive globular clusters. Here, we present new observational evidence for flash mixing, using recent HST observations. These include UV color-magnitude diagrams of six massive globular clusters and far-UV spectroscopy of hot subdwarfs in one of these clusters (NGC 2808).

  6. Binary stars in the Galactic thick disc

    NASA Astrophysics Data System (ADS)

    Izzard, Robert G.; Preece, Holly; Jofre, Paula; Halabi, Ghina M.; Masseron, Thomas; Tout, Christopher A.

    2018-01-01

    The combination of asteroseismologically measured masses with abundances from detailed analyses of stellar atmospheres challenges our fundamental knowledge of stars and our ability to model them. Ancient red-giant stars in the Galactic thick disc are proving to be most troublesome in this regard. They are older than 5 Gyr, a lifetime corresponding to an initial stellar mass of about 1.2 M⊙. So why do the masses of a sizeable fraction of thick-disc stars exceed 1.3 M⊙, with some as massive as 2.3 M⊙? We answer this question by considering duplicity in the thick-disc stellar population using a binary population-nucleosynthesis model. We examine how mass transfer and merging affect the stellar mass distribution and surface abundances of carbon and nitrogen. We show that a few per cent of thick-disc stars can interact in binary star systems and become more massive than 1.3 M⊙. Of these stars, most are single because they are merged binaries. Some stars more massive than 1.3 M⊙ form in binaries by wind mass transfer. We compare our results to a sample of the APOKASC data set and find reasonable agreement except in the number of these thick-disc stars more massive than 1.3 M⊙. This problem is resolved by the use of a logarithmically flat orbital-period distribution and a large binary fraction.

  7. Intense and short-lived

    NASA Image and Video Library

    2015-06-29

    This NASA/ESA Hubble Space Telescope picture shows a galaxy named SBS 1415+437 or SDSS CGB 12067.1, located about 45 million light-years from Earth. SBS 1415+437 is a Wolf–Rayet galaxy, a type of starbursting galaxy with an unusually high number of extremely hot and massive stars known as Wolf–Rayet stars. These stars can be around 20 times as massive as the Sun, but seem to be on a mission to shed surplus mass as quickly as possible — they blast substantial winds of particles out into space, causing them to dwindle at a rapid rate. A typical star of this type can lose a mass equal to that of our Sun in just 100 000 years! These massive stars are also incredibly hot, with surface temperatures some 10 to 40 times that of the Sun, and very luminous, glowing at tens of thousands to several million times the brightness of the Sun. Many of the brightest and most massive stars in the Milky Way are Wolf–Rayet stars. Because these stars are so intense they do not last very long, burning up their fuel and blasting their bulk out into the cosmos on very short timescale ‒ only a few hundred thousand years. Because of this it is unusual to find more than a few of these stars per galaxy — except in Wolf–Rayet galaxies, like the one in this image.

  8. Interactions in Massive Colliding Wind Binaries

    NASA Technical Reports Server (NTRS)

    Corcoran, M.

    2012-01-01

    The most massive stars (M> 60 Solar Mass) play crucial roles in altering the chemical and thermodynamic properties of their host galaxies. Stellar mass is the fundamental stellar parameter that determines their ancillary properties and which ultimately determines the fate of these stars and their influence on their galactic environs. Unfortunately, stellar mass becomes observationally and theoretically less well constrained as it increases. Theory becomes uncertain mostly because very massive stars are prone to strong, variable mass loss which is difficult to model. Observational constraints are uncertain too. Massive stars are rare, and massive binary stars (needed for dynamical determination of mass) are rarer still: and of these systems only a fraction have suitably high orbital inclinations for direct photometric and spectroscopic radial-velocity analysis. Even in the small number of cases in which a high-inclination binary near the upper mass limit can be identified, rotational broadening and contamination of spectral line features from thick circumstellar material (either natal clouds or produced by strong stellar wind driven mass loss from one or both of he stellar components) biases the analysis. In the wilds of the upper HR diagram, we're often left with indirect and circumstantial means of determining mass, a rather unsatisfactory state of affairs.

  9. ESO 2.2-m WFI Image of the Tarantula Nebula

    NASA Image and Video Library

    2017-12-08

    NASA image release May 11, 2010 Hubble Catches Heavyweight Runaway Star Speeding from 30 Doradus Image: ESO 2.2-m WFI Image of the Tarantula Nebula A blue-hot star, 90 times more massive than our Sun, is hurtling across space fast enough to make a round trip from Earth to the Moon in merely two hours. Though the speed is not a record-breaker, it is unique to find a homeless star that has traveled so far from its nest. The only way the star could have been ejected from the star cluster where it was born is through a tussle with a rogue star that entered the binary system where the star lived, which ejected the star through a dynamical game of stellar pinball. This is strong circumstantial evidence for stars as massive as 150 times our Sun's mass living in the cluster. Only a very massive star would have the gravitational energy to eject something weighing 90 solar masses. The runaway star is on the outskirts of the 30 Doradus nebula, a raucous stellar breeding ground in the nearby Large Magellanic Cloud. The finding bolsters evidence that the most massive stars in the local universe reside in 30 Doradus, making it a unique laboratory for studying heavyweight stars. 30 Doradus, also called the Tarantula Nebula, is roughly 170,000 light-years from Earth. To learn more about this image go to: www.nasa.gov/mission_pages/hubble/science/runaway-star.html Credit: NASA/ESO, J. Alves (Calar Alto, Spain), and B. Vandame and Y. Beletski (ESO) NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  10. Lighting up a Dead Star's Layers

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image from NASA's Spitzer Space Telescope shows the scattered remains of an exploded star named Cassiopeia A. Spitzer's infrared detectors 'picked' through these remains and found that much of the star's original layering had been preserved.

    In this false-color image, the faint, blue glow surrounding the dead star is material that was energized by a shock wave, called the forward shock, which was created when the star blew up. The forward shock is now located at the outer edge of the blue glow. Stars are also seen in blue. Green, yellow and red primarily represent material that was ejected in the explosion and heated by a slower shock wave, called the reverse shock wave.

    The picture was taken by Spitzer's infrared array camera and is a composite of 3.6-micron light (blue); 4.5-micron light (green); and 8.0-micron light (red).

  11. Starburst clusters in the Galactic center

    NASA Astrophysics Data System (ADS)

    Habibi, Maryam

    2014-09-01

    The central region of the Galaxy is the most active site of star formation in the Milky Way, where massive stars have formed very recently and are still forming today. The rich population of massive stars in the Galactic center provide a unique opportunity to study massive stars in their birth environment and probe their initial mass function, which is the spectrum of stellar masses at their birth. The Arches cluster is the youngest among the three massive clusters in the Galactic center, providing a collection of high-mass stars and a very dense core which makes this cluster an excellent site to address questions about massive star formation, the stellar mass function and the dynamical evolution of massive clusters in the Galactic center. In this thesis, I perform an observational study of the Arches cluster using K_{s}-band imaging obtained with NAOS/CONICA at the VLT combined with Subaru/Cisco J-band data to gain a full understanding of the cluster mass distribution out to its tidal radius for the first time. Since the light from the Galactic center reaches us through the Galactic disc, the extinction correction is crucial when studying this region. I use a Bayesian method to construct a realistic extinction map of the cluster. It is shown in this study that the determination of the mass of the most massive star in the Arches cluster, which had been used in previous studies to establish an upper mass limit for the star formation process in the Milky Way, strongly depends on the assumed slope of the extinction law. Assuming the two regimes of widely used infrared extinction laws, I show that the difference can reach up to 30% for individually derived stellar masses and Δ A_{Ks}˜ 1 magnitude in acquired K_{s}-band extinction, while the present-day mass function slope changes by ˜ 0.17 dex. The present-day mass function slope derived assuming the more recent extinction law, which suggests a steeper wavelength dependence for the infrared extinction law, reveals an overpopulation of massive stars in the core (r<0.2 pc) with a flat slope of α_{Nishi}=-1.50 ±0.35 in comparison to the Salpeter slope of α=-2.3. The slope of the mass function increases to α_{Nishi}=-2.21 ±0.27 in the intermediate annulus (0.2

  12. The MYStIX Infrared-Excess Source Catalog

    NASA Astrophysics Data System (ADS)

    Povich, Matthew S.; Kuhn, Michael A.; Getman, Konstantin V.; Busk, Heather A.; Feigelson, Eric D.; Broos, Patrick S.; Townsley, Leisa K.; King, Robert R.; Naylor, Tim

    2013-12-01

    The Massive Young Star-Forming Complex Study in Infrared and X-rays (MYStIX) project provides a comparative study of 20 Galactic massive star-forming complexes (d = 0.4-3.6 kpc). Probable stellar members in each target complex are identified using X-ray and/or infrared data via two pathways: (1) X-ray detections of young/massive stars with coronal activity/strong winds or (2) infrared excess (IRE) selection of young stellar objects (YSOs) with circumstellar disks and/or protostellar envelopes. We present the methodology for the second pathway using Spitzer/IRAC, 2MASS, and UKIRT imaging and photometry. Although IRE selection of YSOs is well-trodden territory, MYStIX presents unique challenges. The target complexes range from relatively nearby clouds in uncrowded fields located toward the outer Galaxy (e.g., NGC 2264, the Flame Nebula) to more distant, massive complexes situated along complicated, inner Galaxy sightlines (e.g., NGC 6357, M17). We combine IR spectral energy distribution (SED) fitting with IR color cuts and spatial clustering analysis to identify IRE sources and isolate probable YSO members in each MYStIX target field from the myriad types of contaminating sources that can resemble YSOs: extragalactic sources, evolved stars, nebular knots, and even unassociated foreground/background YSOs. Applying our methodology consistently across 18 of the target complexes, we produce the MYStIX IRE Source (MIRES) Catalog comprising 20,719 sources, including 8686 probable stellar members of the MYStIX target complexes. We also classify the SEDs of 9365 IR counterparts to MYStIX X-ray sources to assist the first pathway, the identification of X-ray-detected stellar members. The MIRES Catalog provides a foundation for follow-up studies of diverse phenomena related to massive star cluster formation, including protostellar outflows, circumstellar disks, and sequential star formation triggered by massive star feedback processes.

  13. Networks, Netwar, and Information-Age Terrorism

    DTIC Science & Technology

    1999-01-01

    intermediate nodes. • The star, hub, or wheel network, as in a franchise or a cartel structure where a set of actors is tied to a central node or actor...Aviv and Jerusalem. On March 21, a Hamas satchel bomb exploded at a Tel Aviv cafe , killing three persons and injuring 48; on July 30, two Hamas

  14. The evolution of massive stars: bridging the gap in the Local Group

    NASA Astrophysics Data System (ADS)

    Massey, Philip; Neugent, Kathryn F.; Levesque, Emily M.

    2017-09-01

    The nearby galaxies of the Local Group can act as our laboratories in helping to bridge the gap between theory and observations. In this review, we will describe the complications of identifying samples of OB stars, yellow and red supergiants, and Wolf-Rayet stars, and what we have so far learned from these studies. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  15. Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Heger, A.; Woosley, S. E.; Spruit, H. C.

    2005-06-01

    As a massive star evolves through multiple stages of nuclear burning on its way to becoming a supernova, a complex, differentially rotating structure is set up. Angular momentum is transported by a variety of classic instabilities and also by magnetic torques from fields generated by the differential rotation. We present the first stellar evolution calculations to follow the evolution of rotating massive stars including, at least approximately, all these effects, magnetic and nonmagnetic, from the zero-age main sequence until the onset of iron-core collapse. The evolution and action of the magnetic fields is as described by Spruit in 2002, and a range of uncertain parameters is explored. In general, we find that magnetic torques decrease the final rotation rate of the collapsing iron core by about a factor of 30-50 when compared with the nonmagnetic counterparts. Angular momentum in that part of the presupernova star destined to become a neutron star is an increasing function of main-sequence mass. That is, pulsars derived from more massive stars rotate faster and rotation plays a more important role in the star's explosion. The final angular momentum of the core has been determined-to within a factor of 2-by the time the star ignites carbon burning. For the lighter stars studied, around 15 Msolar, we predict pulsar periods at birth near 15 ms, though a factor of 2 range is easily tolerated by the uncertainties. Several mechanisms for additional braking in a young neutron star, especially by fallback, are explored.

  16. A RAPIDLY EVOLVING REGION IN THE GALACTIC CENTER: WHY S-STARS THERMALIZE AND MORE MASSIVE STARS ARE MISSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xian; Amaro-Seoane, Pau, E-mail: Xian.Chen@aei.mpg.de, E-mail: Pau.Amaro-Seoane@aei.mpg.de

    2014-05-10

    The existence of ''S-stars'' within a distance of 1'' from Sgr A* contradicts our understanding of star formation, due to Sgr A* 's forbiddingly violent environment. A suggested possibility is that they form far away and were brought in by some fast dynamical process, since they are young. Nonetheless, all conjectured mechanisms either fail to reproduce their eccentricities—without violating their young age—or cannot explain the problem of {sup i}nverse mass segregation{sup :} the fact that lighter stars (the S-stars) are closer to Sgr A* and more massive ones, Wolf-Rayet (WR) and O-stars, are farther out. In this Letter we proposemore » that the mechanism responsible for both the distribution of the eccentricities and the paucity of massive stars is the Kozai-Lidov-like resonance induced by a sub-parsec disk recently discovered in the Galactic center. Considering that the disk probably extended to a smaller radius in the past, we show that in as short as (a few) 10{sup 6} yr, the stars populating the innermost 1'' region would redistribute in angular-momentum space and recover the observed ''super-thermal'' distribution. Meanwhile, WR and O-stars in the same region intermittently attain ample eccentricities that will lead to their tidal disruptions by the central massive black hole. Our results provide new evidences that Sgr A* was powered several millions years ago by an accretion disk as well as by tidal stellar disruptions.« less

  17. The Origin of IRS 16: Dynamically Driven In-Spiral of a Dense Star Cluster to the Galactic Center?

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, Simon F.; McMillan, Stephen L. W.; Gerhard, Ortwin

    2003-08-01

    We use direct N-body simulations to study the in-spiral and internal evolution of dense star clusters near the Galactic center. These clusters sink toward the center owing to dynamical friction with the stellar background and may go into core collapse before being disrupted by the Galactic tidal field. If a cluster reaches core collapse before disruption, its dense core, which has become rich in massive stars, survives to reach close to the Galactic center. When it eventually dissolves, the cluster deposits a disproportionate number of massive stars in the innermost parsec of the Galactic nucleus. Comparing the spatial distribution and kinematics of the massive stars with observations of IRS 16, a group of young He I stars near the Galactic center, we argue that this association may have formed in this way.

  18. Gravitational waves from remnant massive neutron stars of binary neutron star merger: Viscous hydrodynamics effects

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru; Kiuchi, Kenta

    2017-06-01

    Employing a simplified version of the Israel-Stewart formalism of general-relativistic shear-viscous hydrodynamics, we explore the evolution of a remnant massive neutron star of binary neutron star merger and pay special attention to the resulting gravitational waveforms. We find that for the plausible values of the so-called viscous alpha parameter of the order 10-2 the degree of the differential rotation in the remnant massive neutron star is significantly reduced in the viscous time scale, ≲5 ms . Associated with this, the degree of nonaxisymmetric deformation is also reduced quickly, and as a consequence, the amplitude of quasiperiodic gravitational waves emitted also decays in the viscous time scale. Our results indicate that for modeling the evolution of the merger remnants of binary neutron stars we would have to take into account magnetohydrodynamics effects, which in nature could provide the viscous effects.

  19. VLTI and KI Interferometric Observations of Massive Evolved Stars and Their Dusty Circumstellar Environments

    NASA Astrophysics Data System (ADS)

    Wallace, Debra J.; Danchi, W. C.; Rajagopal, J.; Chesneau, O.; Lopez, B.; Menut, J.; Monnier, J.; Tuthill, P.; Ireland, M.; Barry, R.; Richardson, L. J.

    2007-12-01

    Recent aperture-masking and interferometric observations of late-type WC Wolf-Rayet stars strongly support the theory that dust formation in these objects is a result of colliding winds in binary systems. To explore and quantify this possible explanation, we have conducted a high-resolution interferometric survey of late-type massive stars utilizing the VLTI, KI, IOTA, and FGS1r interferometers. We present here the motivation for this study. We also present the first results from the MIDI instrument on the VLTI, and the KI and IOTA observations. Our VLTI study is aimed primarily at resolving and characterizing the dust around the WC9 star WR 85a and the LBV WR 122, both dust-producing but at different phases of massive star evolution. Our IOTA and KI interferometric observations resolve the WR star WR 137 into a dust-producing binary system.

  20. Powerful Nearby Supernova Caught By Web

    NASA Astrophysics Data System (ADS)

    2008-09-01

    One of the nearest supernovas in the last 25 years has been identified over a decade after it exploded. This result was made possible by combining data from the vast online archives from many of the world's premier telescopes. The supernova was first singled out in 2001 by Franz Bauer, then at Penn State and now at Columbia University, who noticed a bright, variable object in the spiral galaxy Circinus using NASA's Chandra X-ray Observatory. Though the source displayed some exceptional properties, at the time Bauer and his Penn State colleagues could not confidently identify its nature. It was not until years later that Bauer and his team were able to confirm this object was a supernova. Clues in a spectrum from the European Southern Observatory's Very Large Telescope (VLT) led the team to search through data from 18 different telescopes, both in space and on the ground, nearly all of which was from archives. Because this object was found in a nearby galaxy, making it relatively easy to study, the public archives of these telescopes contained abundant data on this galaxy. The data show that this supernova, dubbed SN 1996cr, is among the brightest supernovas ever seen in radio and X-rays. It also bears many striking similarities to the famous supernova SN 1987A, which occurred in a galaxy only 160,000 light years from Earth. "This supernova appears to be a wild cousin of SN 1987A," said Bauer. "These two look alike in many ways, except this newer supernova is intrinsically a thousand times brighter in radio and X-rays." Optical images from the archives of the Anglo-Australian Telescope in Australia show that SN 1996cr exploded between February 28, 1995 and March 15, 1996, nearly a decade after SN 1987A. SN 1996cr may not have been noticed by astronomers at the time because it was only visible in the southern hemisphere, which is not as widely monitored as the northern. Among the five nearest supernovas of the last 25 years, it is the only one that was not seen shortly after the explosion. X-rayChandra X-ray Image SN 1996cr was not detected by other major X-ray observatories in orbit - ROSAT and ASCA - around the time of explosion. Rather, it wasn't until several years later that it was detected as an X-ray source by Chandra (launched in 1999), and has become steadily brighter ever since. Previously, SN 1987A had been the only known supernova with an X-ray output observed to increase over time. "Supernovas that are close enough to be studied in detail like this are quite rare and may only appear once a decade, so we don't want to miss such an important opportunity for discovery," said Bauer. "It's a bit of a coup to find SN 1996cr like we did, and we could never have nailed it without the serendipitous data taken by all of these telescopes. We've truly entered a new era of `Internet astronomy'." People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Dark Energy Found Stifling Growth in Universe Ghostly Glow Reveals a Hidden Class of Long-Wavelength Radio Emitters Jet Power and Black Hole Assortment Revealed in New Chandra Image The data, combined with theoretical work, has led the team to the following model. Before it exploded, the parent star cleared out a large cavity around it, either via a fast wind or an outburst from the star late in its life. Then, the blast wave from the explosion expanded relatively unimpeded into this cavity. Once the blast wave hit the dense material surrounding SN1996cr, the impact caused the system to glow brightly in X-ray and radio emission. The X-ray and radio emission from SN 1987A is fainter because the surrounding material is probably less compact. Astronomers think that both SN 1987A and SN 1996cr show evidence for these pre-explosion clear-outs by the star doomed to explode. Having two nearby examples suggests that this type of activity could be relatively common during the death of massive stars. "Not only does our work suggest that SN 1987A isn't as unusual as previously thought, but it also teaches us more about the tremendous upheavals that massive stars can undergo during their lifetime," said co-author Vikram Dwarkadas of the University of Chicago. SN 1996cr, at a distance of about 12 million light years, will be a compelling target for future work because it is nearby and so much brighter than a typical supernova. These results will appear in an upcoming issue of The Astrophysical Journal. Other co-authors on this paper include Niel Brandt (Penn State), Stefan Immler (NASA Goddard Space Flight Center), Norbert Bartel (York University, Canada), and Michael Bietenholz (York University and Hartebeesthoek Radio Observatory, South Africa). NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

  1. Formation of the First Star Clusters and Massive Star Binaries by Fragmentation of Filamentary Primordial Gas Clouds

    NASA Astrophysics Data System (ADS)

    Hirano, Shingo; Yoshida, Naoki; Sakurai, Yuya; Fujii, Michiko S.

    2018-03-01

    We perform a set of cosmological simulations of early structure formation incorporating baryonic streaming motions. We present a case where a significantly elongated gas cloud with ∼104 solar mass (M ⊙) is formed in a pre-galactic (∼107 M ⊙) dark halo. The gas streaming into the halo compresses and heats the massive filamentary cloud to a temperature of ∼10,000 Kelvin. The gas cloud cools rapidly by atomic hydrogen cooling, and then by molecular hydrogen cooling down to ∼400 Kelvin. The rapid decrease of the temperature and hence of the Jeans mass triggers fragmentation of the filament to yield multiple gas clumps with a few hundred solar masses. We estimate the mass of the primordial star formed in each fragment by adopting an analytic model based on a large set of radiation hydrodynamics simulations of protostellar evolution. The resulting stellar masses are in the range of ∼50–120 M ⊙. The massive stars gravitationally attract each other and form a compact star cluster. We follow the dynamics of the star cluster using a hybrid N-body simulation. We show that massive star binaries are formed in a few million years through multi-body interactions at the cluster center. The eventual formation of the remnant black holes will leave a massive black hole binary, which can be a progenitor of strong gravitational wave sources similar to those recently detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO).

  2. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2002-12-18

    At a distance of 6,000 light years from Earth, the star cluster RCW 38 is a relatively close star-forming region. This area is about 5 light years across, and contains thousands of hot, very young stars formed less than a million years ago, 190 of which exposed x-rays to Chandra. Enveloping the star cluster, the diffused cloud of x-rays shows an excess of high energy x-rays, which indicates that the x-rays come from trillion-volt electrons moving in a magnetic field. Such particles are typically produced by exploding stars, or in the strong magnetic fields around neutron stars or black holes, none of which are evident in RCW 38. One possible origin for the particles, could be an undetected supernova that occurred in the cluster, possibly thousands of years ago, producing a shock wave that is interacting with the young stars. Regardless of the origin of these energetic electrons, their presence could change the chemistry of the disks that will eventually form planets around the stars in the cluster.

  3. Neutron Stars Rip Each Other Apart to Form Black Hole

    NASA Image and Video Library

    2014-05-13

    This supercomputer simulation shows one of the most violent events in the universe: a pair of neutron stars colliding, merging and forming a black hole. A neutron star is the compressed core left behind when a star born with between eight and 30 times the sun's mass explodes as a supernova. Neutron stars pack about 1.5 times the mass of the sun — equivalent to about half a million Earths — into a ball just 12 miles (20 km) across. As the simulation begins, we view an unequally matched pair of neutron stars weighing 1.4 and 1.7 solar masses. They are separated by only about 11 miles, slightly less distance than their own diameters. Redder colors show regions of progressively lower density. As the stars spiral toward each other, intense tides begin to deform them, possibly cracking their crusts. Neutron stars possess incredible density, but their surfaces are comparatively thin, with densities about a million times greater than gold. Their interiors crush matter to a much greater degree densities rise by 100 million times in their centers. To begin to imagine such mind-boggling densities, consider that a cubic centimeter of neutron star matter outweighs Mount Everest. By 7 milliseconds, tidal forces overwhelm and shatter the lesser star. Its superdense contents erupt into the system and curl a spiral arm of incredibly hot material. At 13 milliseconds, the more massive star has accumulated too much mass to support it against gravity and collapses, and a new black hole is born. The black hole's event horizon — its point of no return — is shown by the gray sphere. While most of the matter from both neutron stars will fall into the black hole, some of the less dense, faster moving matter manages to orbit around it, quickly forming a large and rapidly rotating torus. This torus extends for about 124 miles (200 km) and contains the equivalent of 1/5th the mass of our sun. Scientists think neutron star mergers like this produce short gamma-ray bursts (GRBs). Short GRBs last less than two seconds yet unleash as much energy as all the stars in our galaxy produce over one year. The rapidly fading afterglow of these explosions presents a challenge to astronomers. A key element in understanding GRBs is getting instruments on large ground-based telescopes to capture afterglows as soon as possible after the burst. The rapid notification and accurate positions provided by NASA's Swift mission creates a vibrant synergy with ground-based observatories that has led to dramatically improved understanding of GRBs, especially for short bursts. This video is public domain and can be downloaded at: : svs.gsfc.nasa.gov/goto?11530

  4. Collisions in primordial star clusters. Formation pathway for intermediate mass black holes

    NASA Astrophysics Data System (ADS)

    Reinoso, B.; Schleicher, D. R. G.; Fellhauer, M.; Klessen, R. S.; Boekholt, T. C. N.

    2018-06-01

    Collisions were suggested to potentially play a role in the formation of massive stars in present day clusters, and have likely been relevant during the formation of massive stars and intermediate mass black holes within the first star clusters. In the early Universe, the first stellar clusters were particularly dense, as fragmentation typically only occurred at densities above 109 cm-3, and the radii of the protostars were enhanced as a result of larger accretion rates, suggesting a potentially more relevant role of stellar collisions. We present here a detailed parameter study to assess how the number of collisions and the mass growth of the most massive object depend on the properties of the cluster. We also characterize the time evolution with three effective parameters: the time when most collisions occur, the duration of the collisions period, and the normalization required to obtain the total number of collisions. We apply our results to typical Population III (Pop. III) clusters of about 1000 M⊙, finding that a moderate enhancement of the mass of the most massive star by a factor of a few can be expected. For more massive Pop. III clusters as expected in the first atomic cooling halos, we expect a more significant enhancement by a factor of 15-32. We therefore conclude that collisions in massive Pop. III clusters were likely relevant to form the first intermediate mass black holes.

  5. Light element production by low energy nuclei from massive stars

    NASA Technical Reports Server (NTRS)

    Vangioni-Flam, E.; Casse, M.; Ramaty, R.

    1997-01-01

    The Orion complex is a source of gamma rays attributed to the de-excitation of fast carbon and oxygen nuclei excited through interactions with ambient hydrogen and helium. This has consequences for the production and evolution of light isotopes in the Galaxy, as massive stars appear as prolific sources of C-O rich low energy nuclei. The different stages of massive star evolution are considered in relation to the acceleration of nuclei to moderate energies. It is concluded that the low energy nuclear component originating from massive stars plays a larger role than the usual Galactic cosmic rays in shaping the evolution of Li-6, Be-9, B-10 and B-11, especially in the early Galactic evolution. The enhancement of the B-11/B-10 ratio observed in meteorites and in the interstellar medium is attributed to the interaction of low energy carbon nuclei with ambient H and to a lesser degree, to neutrino spallation.

  6. Instability, finite amplitude pulsation and mass-loss in models of massive OB-type stars

    NASA Astrophysics Data System (ADS)

    Yadav, Abhay Pratap; Glatzel, Wolfgang

    2017-11-01

    Variability and mass-loss are common phenomena in massive OB-type stars. It is argued that they are caused by violent strange mode instabilities identified in corresponding stellar models. We present a systematic linear stability analysis with respect to radial perturbations of massive OB-type stars with solar chemical composition and masses between 23 and 100 M⊙. For selected unstable stellar models, we perform non-linear simulations of the evolution of the instabilities into the non-linear regime. Finite amplitude pulsations with periods in the range between hours and 100 d are found to be the final result of the instabilities. The pulsations are associated with a mean acoustic luminosity which can be the origin of a pulsationally driven wind. Corresponding mass-loss rates lie in the range between 10-9 and 10-4 M⊙ yr-1 and may thus affect the evolution of massive stars.

  7. The Massive Star-forming Regions Omnibus X-ray Catalog, Second Installment

    NASA Astrophysics Data System (ADS)

    Townsley, Leisa K.; Broos, Patrick S.; Garmire, Gordon P.; Anderson, Gemma E.; Feigelson, Eric D.; Naylor, Tim; Povich, Matthew S.

    2018-04-01

    We present the second installment of the Massive Star-forming Regions (MSFRs) Omnibus X-ray Catalog (MOXC2), a compilation of X-ray point sources detected in Chandra/ACIS observations of 16 Galactic MSFRs and surrounding fields. MOXC2 includes 13 ACIS mosaics, three containing a pair of unrelated MSFRs at different distances, with a total catalog of 18,396 point sources. The MSFRs sampled range over distances of 1.3 kpc to 6 kpc and populations varying from single massive protostars to the most massive Young Massive Cluster known in the Galaxy. By carefully detecting and removing X-ray point sources down to the faintest statistically significant limit, we facilitate the study of the remaining unresolved X-ray emission. Through comparison with mid-infrared images that trace photon-dominated regions and ionization fronts, we see that the unresolved X-ray emission is due primarily to hot plasmas threading these MSFRs, the result of feedback from the winds and supernovae of massive stars. The 16 MSFRs studied in MOXC2 more than double the MOXC1 sample, broadening the parameter space of ACIS MSFR explorations and expanding Chandra's substantial contribution to contemporary star formation science.

  8. Do All O Stars Form in Star Clusters?

    NASA Astrophysics Data System (ADS)

    Weidner, C.; Gvaramadze, V. V.; Kroupa, P.; Pflamm-Altenburg, J.

    The question whether or not massive stars can form in isolation or only in star clusters is of great importance for the theory of (massive) star formation as well as for the stellar initial mass function of whole galaxies (IGIMF-theory). While a seemingly easy question it is rather difficult to answer. Several physical processes (e.g. star-loss due to stellar dynamics or gas expulsion) and observational limitations (e.g. dust obscuration of young clusters, resolution) pose severe challenges to answer this question. In this contribution we will present the current arguments in favour and against the idea that all O stars form in clusters.

  9. NGC 6334 and NGC 6357. Insights from spectroscopy of their OB star populations

    NASA Astrophysics Data System (ADS)

    Russeil, D.; Adami, C.; Bouret, J. C.; Hervé, A.; Parker, Q. A.; Zavagno, A.; Motte, F.

    2017-11-01

    Aims: The formation of high-mass stars is still debated. For this reason, several projects such as Herschel-HOBYS are focussed on the study of the earliest phases of massive star formation. As a result, massive star-forming complexes such as NGC 6334 and NGC 6357 have been observed in the far-infrared to study their massive dense cores where massive stars are expected to form. However, to better characterise the environments of these cores we need to understand the previous massive star formation history. To better characterise the environment of these massive dense cores we study the previous high-mass star formation and how these stars act on their environments. Methods: This study is based on the spectral classification of the OB stars identified towards NGC 6334 and NGC 6357 with spectra taken with the AAOmega spectrograph on the Anglo-Australian Telescope (AAT). From the subsequent spectral classification of 109 stars across these regions we were able to evaluate the following: distance, age, mass, global star-forming efficiency (SFE), and star formation rate (SFR) of the regions. The physical conditions of the ionised gas for both complexes was also derived. Results: We confirm that NGC 6334 and NGC 6357 belong to the Saggitarius-Carina arm which, in this direction, extends from 1 kpc to 2.2 kpc. From the location of the stars in Hertzprung-Russell diagram we show that stars older than 10 Myr are broadly spread across these complexes, while younger stars are mainly located in the H II regions and stellar clusters. Our data also suggests that some of the young stars can be considered runaway stars. We evaluate a SFE of 0.019-0.007+0.008 and 0.021-0.003+0.004 and a SFR of 1.1 × 103 ± 300 M⊙ Myr-1 and 1.7 × 103 ± 400 M⊙ Myr-1 for NGC 6334 and NGC 6357, respectively. We note that 29 OB stars have X-ray counterparts, most of them belonging to NGC 6357. This suggests that molecular clouds in NGC 6357 are more impacted by X-ray flux and stellar winds than in NGC 6334. Finally, from the analysis of nebular lines (Hα, [NII], and [SII]) from spectra from several regions of ionised gas, we confirm that the filaments in NGC 6357 are shock heated. Full Tables 2 and A.1 and the normalised observed spectra displayed in Figs. B.1 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A86

  10. The Gobbling Dwarf that Exploded

    NASA Astrophysics Data System (ADS)

    2007-07-01

    A unique set of observations, obtained with ESO's VLT, has allowed astronomers to find direct evidence for the material that surrounded a star before it exploded as a Type Ia supernova. This strongly supports the scenario in which the explosion occurred in a system where a white dwarf is fed by a red giant. ESO PR Photo 31a/07 ESO PR Photo 31a/07 Evolution of SN 2006X Spectrum Because Type Ia supernovae are extremely luminous and quite similar to one another, these exploding events have been used extensively as cosmological reference beacons to trace the expansion of the Universe. However, despite significant recent progress, the nature of the stars that explode and the physics that governs these powerful explosions have remained very poorly understood. In the most widely accepted models of Type Ia supernovae the pre-explosion white dwarf star orbits another star. Due to the close interaction and the strong attraction produced by the very compact object, the companion star continuously loses mass, 'feeding' the white dwarf. When the mass of the white dwarf exceeds a critical value, it explodes. The team of astronomers studied in great detail SN 2006X, a Type Ia supernova that exploded 70 million light-years away from us, in the splendid spiral Galaxy Messier 100 (see ESO 08/06). Their observations led them to discover the signatures of matter lost by the normal star, some of which is transferred to the white dwarf. The observations were made with the Ultraviolet and Visual Echelle Spectrograph (UVES), mounted at ESO's 8.2-m Very Large Telescope, on four different occasions, over a time span of four months. A fifth observation at a different time was secured with the Keck telescope in Hawaii. The astronomers also made use of radio data obtained with NRAO's Very Large Array as well as images extracted from the NASA/ESA Hubble Space Telescope archive. ESO PR Photo 31b/07 ESO PR Photo 31b/07 SN 2006X, before and after the Type Ia Supernova explosion "No Type Ia supernova has ever been observed at this level of detail for more than four months after the explosion," says Ferdinando Patat, lead author of the paper reporting the results in this week's issue of Science Express, the online version of the Science research journal. "Our data set is really unique." The most remarkable findings are clear changes in the absorption of material, which has been ejected from the companion giant star. Such changes of interstellar material have never been observed before and demonstrate the effects a supernova explosion can have on its immediate environment. The astronomers deduce from the observations the existence of several gaseous shells (or clumps) which are material ejected as stellar wind from the giant star in the recent past. "The material we have uncovered probably lies in a series of shells having a radius of the order of 0.05 light-years, or roughly 3 000 times the distance between Earth and the Sun", explains Patat. "The material is moving with a velocity of 50 km/s, implying that the material would have been ejected some 50 years before the explosion." Such a velocity is typical for the winds of red giants. The system that exploded was thus most likely composed of a white dwarf that acted as a giant 'vacuum cleaner', drawing gas off its red giant companion. In this case however, the cannibal act proved fatal for the white dwarf. This is the first time that clear and direct evidence for material surrounding the explosion has been found. "One crucial issue is whether what we have seen in SN 2006X represents the rule or is rather an exceptional case," wonders Patat. "But given that this supernova has shown no optical, UV and radio peculiarity whatsoever, we conclude that what we have witnessed for this object is a common feature among normal SN Ia. Nevertheless, only future observations will give us answers to the many new questions these observations have posed to us." A high resolution image of SN 2006X in the spiral galaxy Messier 100 is available as ESO Press Photo 08a/06. More Information These results are reported in a paper in Science Express published on 12 July 2007 ("Detection of circumstellar material in a normal Type Ia Supernova", by F. Patat et al.). The team is composed of F. Patat and L. Pasquini (ESO), P. Chandra and R. Chevalier (University of Virginia, USA), S. Justham, Ph. Podsiadlowski , and C. Wolf (University of Oxford, UK), A. Gal-Yam and J.D. Simon (California Institute of Technology, Pasadena, USA), I.A. Crawford (Birkbeck College London, UK), P.A. Mazzali, W. Hillebrandt, and N. Elias-Rosa (Max-Planck-Institute for Astrophysics, Garching, Germany), A.W.A. Pauldrach (Ludwig-Maximilians University, Munich, Germany), K. Nomoto (University of Tokyo, Japan), S. Benetti, E. Cappellaro, A. Renzini , F. Sabbadin, and M. Turatto (INAF-Osservatorio Astronomico, Padova, Italy), D.C. Leonard (San Diego State University, USA), and A. Pastorello (Queen's University Belfast, UK). P.A. Mazzali is also associated with INAF/Trieste, Italy.

  11. What can be learned from a future supernova neutrino detection?

    NASA Astrophysics Data System (ADS)

    Horiuchi, Shunsaku; Kneller, James P.

    2018-04-01

    This year marks the 30th anniversary of the only supernova from which we have detected neutrinos—SN 1987A. The 20 or so neutrinos that were detected were mined to great depth in order to determine the events that occurred in the explosion and to place limits upon all manner of neutrino properties. Since 1987 the scale and sensitivity of the detectors capable of identifying neutrinos from a Galactic supernova have grown considerably so that current generation detectors are capable of detecting of order 10 000 neutrinos for a supernova at the Galactic Center. Next generation detectors will increase that yield by another order of magnitude. Simultaneous with the growth of neutrino detection capability, our understanding of how massive stars explode and how the neutrino interacts with hot and dense matter has also increased by a tremendous degree. The neutrino signal will contain much information on all manner of physics of interest to a wide community. In this review we describe the expected features of the neutrino signal, the detectors which will detect it, and the signatures one might try to look for in order to get at this physics.

  12. A hot compact dust disk around a massive young stellar object.

    PubMed

    Kraus, Stefan; Hofmann, Karl-Heinz; Menten, Karl M; Schertl, Dieter; Weigelt, Gerd; Wyrowski, Friedrich; Meilland, Anthony; Perraut, Karine; Petrov, Romain; Robbe-Dubois, Sylvie; Schilke, Peter; Testi, Leonardo

    2010-07-15

    Circumstellar disks are an essential ingredient of the formation of low-mass stars. It is unclear, however, whether the accretion-disk paradigm can also account for the formation of stars more massive than about 10 solar masses, in which strong radiation pressure might halt mass infall. Massive stars may form by stellar merging, although more recent theoretical investigations suggest that the radiative-pressure limit may be overcome by considering more complex, non-spherical infall geometries. Clear observational evidence, such as the detection of compact dusty disks around massive young stellar objects, is needed to identify unambiguously the formation mode of the most massive stars. Here we report near-infrared interferometric observations that spatially resolve the astronomical-unit-scale distribution of hot material around a high-mass ( approximately 20 solar masses) young stellar object. The image shows an elongated structure with a size of approximately 13 x 19 astronomical units, consistent with a disk seen at an inclination angle of approximately 45 degrees . Using geometric and detailed physical models, we found a radial temperature gradient in the disk, with a dust-free region less than 9.5 astronomical units from the star, qualitatively and quantitatively similar to the disks observed in low-mass star formation. Perpendicular to the disk plane we observed a molecular outflow and two bow shocks, indicating that a bipolar outflow emanates from the inner regions of the system.

  13. SOUTHERN MASSIVE STARS AT HIGH ANGULAR RESOLUTION: OBSERVATIONAL CAMPAIGN AND COMPANION DETECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sana, H.; Le Bouquin, J.-B.; Duvert, G.

    2014-11-01

    Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at separations between 1 and 100 milliarcsec (mas) remain mostly unknown due to intrinsic observational limitations. At a typical distance of 2 kpc, this corresponds to projected physical separations of 2-200 AU. The Southern MAssive Stars at High angular resolution survey (SMaSH+) was designed to fill this gap by providing the first systematic interferometric survey of Galactic massive stars. We observed 117 O-type stars with VLTI/PIONIER and 162 O-type stars with NACO/Sparse Aperturemore » Masking (SAM), probing the separation ranges 1-45 and 30-250 mas and brightness contrasts of ΔH < 4 and ΔH < 5, respectively. Taking advantage of NACO's field of view, we further uniformly searched for visual companions in an 8'' radius down to ΔH = 8. This paper describes observations and data analysis, reports the discovery of almost 200 new companions in the separation range from 1 mas to 8'' and presents a catalog of detections, including the first resolved measurements of over a dozen known long-period spectroscopic binaries. Excluding known runaway stars for which no companions are detected, 96 objects in our main sample (δ < 0°; H < 7.5) were observed both with PIONIER and NACO/SAM. The fraction of these stars with at least one resolved companion within 200 mas is 0.53. Accounting for known but unresolved spectroscopic or eclipsing companions, the multiplicity fraction at separation ρ < 8'' increases to f {sub m} = 0.91 ± 0.03. The fraction of luminosity class V stars that have a bound companion reaches 100% at 30 mas while their average number of physically connected companions within 8'' is f {sub c} = 2.2 ± 0.3. This demonstrates that massive stars form nearly exclusively in multiple systems. The nine non-thermal radio emitters observed by SMaSH+ are all resolved, including the newly discovered pairs HD 168112 and CPD–47°2963. This lends strong support to the universality of the wind-wind collision scenario to explain the non-thermal emission from O-type stars.« less

  14. RCW 108: Massive Young Stars Trigger Stellar Birth

    NASA Technical Reports Server (NTRS)

    2008-01-01

    RCW 108 is a region where stars are actively forming within the Milky Way galaxy about 4,000 light years from Earth. This is a complicated region that contains young star clusters, including one that is deeply embedded in a cloud of molecular hydrogen. By using data from different telescopes, astronomers determined that star birth in this region is being triggered by the effect of nearby, massive young stars.

    This image is a composite of X-ray data from NASA's Chandra X-ray Observatory (blue) and infrared emission detected by NASA's Spitzer Space Telescope (red and orange). More than 400 X-ray sources were identified in Chandra's observations of RCW 108. About 90 percent of these X-ray sources are thought to be part of the cluster and not stars that lie in the field-of-view either behind or in front of it. Many of the stars in RCW 108 are experiencing the violent flaring seen in other young star-forming regions such as the Orion nebula. Gas and dust blocks much of the X-rays from the juvenile stars located in the center of the image, explaining the relative dearth of Chandra sources in this part of the image.

    The Spitzer data show the location of the embedded star cluster, which appears as the bright knot of red and orange just to the left of the center of the image. Some stars from a larger cluster, known as NGC 6193, are also visible on the left side of the image. Astronomers think that the dense clouds within RCW 108 are in the process of being destroyed by intense radiation emanating from hot and massive stars in NGC 6193.

    Taken together, the Chandra and Spitzer data indicate that there are more massive star candidates than expected in several areas of this image. This suggests that pockets within RCW 108 underwent localized episodes of star formation. Scientists predict that this type of star formation is triggered by the effects of radiation from bright, massive stars such as those in NGC 6193. This radiation may cause the interior of gas clouds in RCW 108 to be compressed, leading to gravitational collapse and the formation of new stars.

  15. Massive star formation in 100,000 years from turbulent and pressurized molecular clouds.

    PubMed

    McKee, Christopher F; Tan, Jonathan C

    2002-03-07

    Massive stars (with mass m* > 8 solar masses Mmiddle dot in circle) are fundamental to the evolution of galaxies, because they produce heavy elements, inject energy into the interstellar medium, and possibly regulate the star formation rate. The individual star formation time, t*f, determines the accretion rate of the star; the value of the former quantity is currently uncertain by many orders of magnitude, leading to other astrophysical questions. For example, the variation of t*f with stellar mass dictates whether massive stars can form simultaneously with low-mass stars in clusters. Here we show that t*f is determined by the conditions in the star's natal cloud, and is typically about 105yr. The corresponding mass accretion rate depends on the pressure within the cloud--which we relate to the gas surface density--and on both the instantaneous and final stellar masses. Characteristic accretion rates are sufficient to overcome radiation pressure from about 100M middle dot in circle protostars, while simultaneously driving intense bipolar gas outflows. The weak dependence of t*f on the final mass of the star allows high- and low-mass star formation to occur nearly simultaneously in clusters.

  16. Highly accurate quantitative spectroscopy of massive stars in the Galaxy

    NASA Astrophysics Data System (ADS)

    Nieva, María-Fernanda; Przybilla, Norbert

    2017-11-01

    Achieving high accuracy and precision in stellar parameter and chemical composition determinations is challenging in massive star spectroscopy. On one hand, the target selection for an unbiased sample build-up is complicated by several types of peculiarities that can occur in individual objects. On the other hand, composite spectra are often not recognized as such even at medium-high spectral resolution and typical signal-to-noise ratios, despite multiplicity among massive stars is widespread. In particular, surveys that produce large amounts of automatically reduced data are prone to oversight of details that turn hazardous for the analysis with techniques that have been developed for a set of standard assumptions applicable to a spectrum of a single star. Much larger systematic errors than anticipated may therefore result because of the unrecognized true nature of the investigated objects, or much smaller sample sizes of objects for the analysis than initially planned, if recognized. More factors to be taken care of are the multiple steps from the choice of instrument over the details of the data reduction chain to the choice of modelling code, input data, analysis technique and the selection of the spectral lines to be analyzed. Only when avoiding all the possible pitfalls, a precise and accurate characterization of the stars in terms of fundamental parameters and chemical fingerprints can be achieved that form the basis for further investigations regarding e.g. stellar structure and evolution or the chemical evolution of the Galaxy. The scope of the present work is to provide the massive star and also other astrophysical communities with criteria to evaluate the quality of spectroscopic investigations of massive stars before interpreting them in a broader context. The discussion is guided by our experiences made in the course of over a decade of studies of massive star spectroscopy ranging from the simplest single objects to multiple systems.

  17. Massive Infrared-Quiet Dense Cores: Unveiling the Initial Conditions of High-Mass Star Formation

    NASA Astrophysics Data System (ADS)

    Motte, F.; Bontemps, S.; Schneider, N.; Schilke, P.; Menten, K. M.

    2008-05-01

    As Th. Henning said at the conference, cold precursors of high-mass stars are now ``hot topics''. We here propose some observational criteria to identify massive infrared-quiet dense cores which can host the high-mass analogs of Class~0 protostars and pre-stellar condensations. We also show how far-infrared to millimeter imaging surveys of entire complexes forming OB stars are starting to unveil the initial conditions of high-mass star formation.

  18. The evolution of massive stars: bridging the gap in the Local Group.

    PubMed

    Massey, Philip; Neugent, Kathryn F; Levesque, Emily M

    2017-10-28

    The nearby galaxies of the Local Group can act as our laboratories in helping to bridge the gap between theory and observations. In this review, we will describe the complications of identifying samples of OB stars, yellow and red supergiants, and Wolf-Rayet stars, and what we have so far learned from these studies.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).

  19. A neutron-star-driven X-ray flash associated with supernova SN 2006aj.

    PubMed

    Mazzali, Paolo A; Deng, Jinsong; Nomoto, Ken'ichi; Sauer, Daniel N; Pian, Elena; Tominaga, Nozomu; Tanaka, Masaomi; Maeda, Keiichi; Filippenko, Alexei V

    2006-08-31

    Supernovae connected with long-duration gamma-ray bursts (GRBs) are hyper-energetic explosions resulting from the collapse of very massive stars ( approximately 40 M\\circ, where M\\circ is the mass of the Sun) stripped of their outer hydrogen and helium envelopes. A very massive progenitor, collapsing to a black hole, was thought to be a requirement for the launch of a GRB. Here we report the results of modelling the spectra and light curve of SN 2006aj (ref. 9), which demonstrate that the supernova had a much smaller explosion energy and ejected much less mass than the other GRB-supernovae, suggesting that it was produced by a star whose initial mass was only approximately 20 M\\circ. A star of this mass is expected to form a neutron star rather than a black hole when its core collapses. The smaller explosion energy of SN 2006aj is matched by the weakness and softness of GRB 060218 (an X-ray flash), and the weakness of the radio flux of the supernova. Our results indicate that the supernova-GRB connection extends to a much broader range of stellar masses than previously thought, possibly involving different physical mechanisms: a 'collapsar' (ref. 8) for the more massive stars collapsing to a black hole, and magnetic activity of the nascent neutron star for the less massive stars.

  20. The Role of Rotation in the Evolution of Massive Stars

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lanz, Thierry M.

    2002-01-01

    Recent evolutionary models of massive stars predict important effects of rotation including: increasing the rate of mass-loss; lowering the effective gravity; altering the evolutionary track on the HRD; extending the main-sequence phase (both on the HR diagram and in time); and mixing of CNO-processed elements up to the stellar surface. Observations suggest that rotation is a more important factor at lower metallicities because of higher initial rotational velocities and weaker winds. This makes the SMC, a low-metallicity galaxy (Z= 0.2 solar Z), an excellent environment for discerning the role of rotation in massive stars. We report on a FUSE + STIS + optical spectral analysis of 17 O-type stars in the SMC, where we found an enormous range in N abundances. Three stars in the sample have the same (low) CN abundances as the nebular material out of which they formed, namely C = 0.085 solar C and N = 0.034 solar N. However, more than half show N approx. solar N, an enrichment factor of 30X! Such unexpectedly high levels of N have ramifications for the evolution of massive stars including precursors to supernovae. They also raise questions about the sources of nitrogen in the early universe.

  1. Isoscalar-vector interaction and hybrid quark core in massive neutron stars

    NASA Astrophysics Data System (ADS)

    Shao, G. Y.; Colonna, M.; Di Toro, M.; Liu, Y. X.; Liu, B.

    2013-05-01

    The hadron-quark phase transition in the core of massive neutron stars is studied with a newly constructed two-phase model. For nuclear matter, a nonlinear Walecka type model with general nucleon-meson and meson-meson couplings, recently calibrated by Steiner, Hemper and Fischer, is taken. For quark matter, a modified Polyakov-Nambu—Jona-Lasinio model, which gives consistent results with lattice QCD data, is used. Most importantly, we introduce an isoscalar-vector interaction in the description of quark matter, and we study its influence on the hadron-quark phase transition in the interior of massive neutron stars. With the constraints of neutron star observations, our calculation shows that the isoscalar-vector interaction between quarks is indispensable if massive hybrids star exist in the universe, and its strength determines the onset density of quark matter, as well as the mass-radius relations of hybrid stars. Furthermore, as a connection with heavy-ion-collision experiments we give some discussions about the strength of isoscalar-vector interaction and its effect on the signals of hadron-quark phase transition in heavy-ion collisions, in the energy range of the NICA at JINR-Dubna and FAIR at GSI-Darmstadt facilities.

  2. Analysis of Extreme Star Formation Environments in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Nayak, Omnarayani

    2018-01-01

    My thesis is on three extreme star forming environments in the Large Magellanic Cloud: 30 Doradus, N159, and N79. These three regions are at different evolutionary stage of forming stars. N79 is at a very young stage, just starting its star formation activity. N159 is currently actively forming several massive YSOs. And 30 Doradus has already passed it peak star formation, and several protostars are no longer shrouded by gas and dust, and are starting to be more visible in the optical wavelengths. I analyze the CO molecular gas clouds with ALMA in 30 Doradus, N159, and N79. I identify all massive YSOs within the ALMA footprint of all three regions. My thesis is on relating the star formation activity in 30 Doradus, N159, and N79 to the high density gas in which these protostars form. I find that not all massive young stellar objects are associated with CO gas, higher mass clumps tend to form higher mass stars, and lower mass clumps tend to not be gravitationally bound however the larger clouds are bound. I use ancillary SOFIA data and Magellan FIRE data to place constraints on the outflow rate from the massive protostars, constrain the temperature of the gas, determine the spectral type of the young stellar objects, and estimate the extinction. Looking at the interplay between dense molecular gas and the newly forming stars in a stellar nursery will shed light on how these stars formed: filamentary collision, monolithic collapse, or competitive accretion. The Large Magellanic Cloud has been the subject of star formation studies for decades due to its proximity to the Milky Way (50 kpc), a nearly face-on orientation, and a low metallicity (0.5 solar) similar to that of galaxies at the peak of star formation in the universe (z~2). Thus, my thesis probes the chemical and physical conditions necessary for massive star formation in an environment more typical of the peak of star formation in the universe.

  3. Magnetorotatioal Collapse of Supermassive Stars: Black Hole Formation and Jets

    NASA Astrophysics Data System (ADS)

    Sun, Lunan; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart

    2017-01-01

    We perform magnetohydrodynamic simulations in full general relativity of the collapse of radially unstable, uniformly rotating, massive stars to black holes. The stars spin at the mass-shedding limit, account for magnetic fields and obey a Γ = 4/3 EOS. The calculations lift the restriction of axisymmetry imposed in previous simulations. Our simulations model the direct collapse of supermassive stars to supermassive BHs (>=104M⊙) at high cosmological redshifts, which may explain the appearance of supermassive BHs and quasars by z 7. They also crudely model the collapse of massive Pop III stars to massive BHs, which could power some of the long gamma-ray bursts observed by FERMI and SWIFT at z 6-8. We analyze the properties of the electromagnetic and gravitational wave signatures of these events and discuss the detectability of such multimessenger sources.

  4. BD+43° 3654 - a blue straggler?

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Bomans, D. J.

    2008-07-01

    The astrometric data on the runaway star BD+43° 3654 are consistent with the origin of this O4If star in the center of the Cyg OB2 association, while BD+43° 3654 is younger than the association. To reconcile this discrepancy, we suggest that BD+43° 3654 is a blue straggler formed via a close encounter between two tight massive binaries in the core of Cyg OB2. A possible implication of this suggestion is that the very massive (and therefore apparently very young) stars in Cyg OB2 could be blue stragglers as well. We also suggest that the binary-binary encounter producing BD+43° 3654 might be responsible for ejection of two high-velocity stars (the stripped helium cores of massive stars) - the progenitors of the pulsars B2020+28 and B2021+51.

  5. The Tarantula Nebula as a template for extragalactic star forming regions from VLT/MUSE and HST/STIS

    NASA Astrophysics Data System (ADS)

    Crowther, Paul A.; Caballero-Nieves, Saida M.; Castro, Norberto; Evans, Christopher J.

    2017-11-01

    We present VLT/MUSE observations of NGC 2070, the dominant ionizing nebula of 30 Doradus in the LMC, plus HST/STIS spectroscopy of its central star cluster R136. Integral Field Spectroscopy (MUSE) and pseudo IFS (STIS) together provides a complete census of all massive stars within the central 30×30 parsec2 of the Tarantula. We discuss the integrated far-UV spectrum of R136, of particular interest for UV studies of young extragalactic star clusters. Strong He iiλ1640 emission at very early ages (1-2 Myr) from very massive stars cannot be reproduced by current population synthesis models, even those incorporating binary evolution and very massive stars. A nebular analysis of the integrated MUSE dataset implies an age of ~4.5 Myr for NGC 2070. Wolf-Rayet features provide alternative age diagnostics, with the primary contribution to the integrated Wolf-Rayet bumps arising from R140 rather than the more numerous H-rich WN stars in R136. Caution should be used when interpreting spatially extended observations of extragalactic star-forming regions.

  6. Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other. Panel 2: The red giant sheds much of its outer layers in a stellar wind. The white dwarf helps concentrate the wind along a thin equatorial plane. The white dwarf accretes some of this escaping gas forming a disk around the itself. Panel 3: When enough gas accumulates on the white dwarf's surface it explodes as a nova outburst. Most of the hot gas forms a pair of expanding bubbles above and below the equatorial disk. Panel 4: A few thousand years after the bubbles expand into space, the white dwarf goes through another nova outburst and makes another pair of bubbles, which form a distinctive hourglass shape.

  7. Massive Stars in the W33 Giant Molecular Complex

    NASA Astrophysics Data System (ADS)

    Messineo, Maria; Clark, J. Simon; Figer, Donald F.; Kudritzki, Rolf-Peter; Najarro, Francisco; Rich, R. Michael; Menten, Karl M.; Ivanov, Valentin D.; Valenti, Elena; Trombley, Christine; Chen, C.-H. Rosie; Davies, Ben

    2015-06-01

    Rich in H ii regions, giant molecular clouds are natural laboratories to study massive stars and sequential star formation. The Galactic star-forming complex W33 is located at l=˜ 12\\buildrel{\\circ}\\over{.} 8 and at a distance of 2.4 kpc and has a size of ≈ 10 pc and a total mass of ≈ (0.8-8.0) × {{10}5} M ⊙ . The integrated radio and IR luminosity of W33—when combined with the direct detection of methanol masers, the protostellar object W33A, and the protocluster embedded within the radio source W33 main—mark the region as a site of vigorous ongoing star formation. In order to assess the long-term star formation history, we performed an infrared spectroscopic search for massive stars, detecting for the first time 14 early-type stars, including one WN6 star and four O4-7 stars. The distribution of spectral types suggests that this population formed during the past ˜2-4 Myr, while the absence of red supergiants precludes extensive star formation at ages 6-30 Myr. This activity appears distributed throughout the region and does not appear to have yielded the dense stellar clusters that characterize other star-forming complexes such as Carina and G305. Instead, we anticipate that W33 will eventually evolve into a loose stellar aggregate, with Cyg OB2 serving as a useful, albeit richer and more massive, comparator. Given recent distance estimates, and despite a remarkably similar stellar population, the rich cluster Cl 1813-178 located on the northwest edge of W33 does not appear to be physically associated with W33.

  8. HOW TO FIND YOUNG MASSIVE CLUSTER PROGENITORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bressert, E.; Longmore, S.; Testi, L.

    2012-10-20

    We propose that bound, young massive stellar clusters form from dense clouds that have escape speeds greater than the sound speed in photo-ionized gas. In these clumps, radiative feedback in the form of gas ionization is bottled up, enabling star formation to proceed to sufficiently high efficiency so that the resulting star cluster remains bound even after gas removal. We estimate the observable properties of the massive proto-clusters (MPCs) for existing Galactic plane surveys and suggest how they may be sought in recent and upcoming extragalactic observations. These surveys will potentially provide a significant sample of MPC candidates that willmore » allow us to better understand extreme star-formation and massive cluster formation in the Local Universe.« less

  9. Chemical evolution with rotating massive star yields - I. The solar neighbourhood and the s-process elements

    NASA Astrophysics Data System (ADS)

    Prantzos, N.; Abia, C.; Limongi, M.; Chieffi, A.; Cristallo, S.

    2018-05-01

    We present a comprehensive study of the abundance evolution of the elements from H to U in the Milky Way halo and local disc. We use a consistent chemical evolution model, metallicity-dependent isotopic yields from low and intermediate mass stars and yields from massive stars which include, for the first time, the combined effect of metallicity, mass loss, and rotation for a large grid of stellar masses and for all stages of stellar evolution. The yields of massive stars are weighted by a metallicity-dependent function of the rotational velocities, constrained by observations as to obtain a primary-like 14N behaviour at low metallicity and to avoid overproduction of s-elements at intermediate metallicities. We show that the Solar system isotopic composition can be reproduced to better than a factor of 2 for isotopes up to the Fe-peak, and at the 10 per cent level for most pure s-isotopes, both light ones (resulting from the weak s-process in rotating massive stars) and the heavy ones (resulting from the main s-process in low and intermediate mass stars). We conclude that the light element primary process (LEPP), invoked to explain the apparent abundance deficiency of the s-elements with A < 100, is not necessary. We also reproduce the evolution of the heavy to light s-elements abundance ratio ([hs/ls]) - recently observed in unevolved thin disc stars - as a result of the contribution of rotating massive stars at sub-solar metallicities. We find that those stars produce primary F and dominate its solar abundance and we confirm their role in the observed primary behaviour of N. In contrast, we show that their action is insufficient to explain the small observed values of ^{12}C/^{13}C in halo red giants, which is rather due to internal processes in those stars.

  10. The Evolution and Stability of Massive Stars

    NASA Astrophysics Data System (ADS)

    Shiode, Joshua Hajime

    Massive stars are the ultimate source for nearly all the elements necessary for life. The first stars forge these elements from the sparse set of ingredients supplied by the Big Bang, and distribute enriched ashes throughout their galactic homes via their winds and explosive deaths. Subsequent generations follow suit, assembling from the enriched ashes of their predecessors. Over the last several decades, the astrophysics community has developed a sophisticated theoretical picture of the evolution of these stars, but it remains an incomplete accounting of the rich set of observations. Using state of the art models of massive stars, I have investigated the internal processes taking place throughout the life-cycles of stars spanning those from the first generation ("Population III") to the present-day ("Population I"). I will argue that early-generation stars were not highly unstable to perturbations, contrary to a host of past investigations, if a correct accounting is made for the viscous effect of convection. For later generations, those with near solar metallicity, I find that this very same convection may excite gravity-mode oscillations that produce observable brightness variations at the stellar surface when the stars are near the main sequence. If confirmed with modern high-precision monitoring experiments, like Kepler and CoRoT, the properties of observed gravity modes in massive stars could provide a direct probe of the poorly constrained physics of gravity mode excitation by convection. Finally, jumping forward in stellar evolutionary time, I propose and explore an entirely new mechanism to explain the giant eruptions observed and inferred to occur during the final phases of massive stellar evolution. This mechanism taps into the vast nuclear fusion luminosity, and accompanying convective luminosity, in the stellar core to excite waves capable of carrying a super-Eddington luminosity out to the stellar envelope. This energy transfer from the core to the envelope has the potential to unbind a significant amount of mass in close proximity to a star's eventual explosion as a core collapse supernova.

  11. Hubble Observes One-of-a-Kind Star Nicknamed ‘Nasty’

    NASA Image and Video Library

    2015-03-21

    Astronomers using NASA’s Hubble Space Telescope have uncovered surprising new clues about a hefty, rapidly aging star whose behavior has never been seen before in our Milky Way galaxy. In fact, the star is so weird that astronomers have nicknamed it “Nasty 1,” a play on its catalog name of NaSt1. The star may represent a brief transitory stage in the evolution of extremely massive stars. First discovered several decades ago, Nasty 1 was identified as a Wolf-Rayet star, a rapidly evolving star that is much more massive than our sun. The star loses its hydrogen-filled outer layers quickly, exposing its super-hot and extremely bright helium-burning core. But Nasty 1 doesn’t look like a typical Wolf-Rayet star. The astronomers using Hubble had expected to see twin lobes of gas flowing from opposite sides of the star, perhaps similar to those emanating from the massive star Eta Carinae, which is a Wolf-Rayet candidate. Instead, Hubble revealed a pancake-shaped disk of gas encircling the star. The vast disk is nearly 2 trillion miles wide, and may have formed from an unseen companion star that snacked on the outer envelope of the newly formed Wolf-Rayet. Based on current estimates, the nebula surrounding the stars is just a few thousand years old, and as close as 3,000 light-years from Earth. Credits: NASA/Hubble

  12. Multi-wavelength investigations on feedback of massive star formation

    NASA Astrophysics Data System (ADS)

    Yuan, Jinghua

    2014-05-01

    In the course of massive star formation, outflows, ionizing radiation and intense stellar winds could heavily affect their adjacent environs and natal clouds. There are several outstanding open questions related to these processes: i) whether they can drive turbulence in molecular clouds; ii) whether they are able to trigger star formation; iii) whether they can destroy natal clouds to terminate star formation at low efficiencies. This thesis investigates feedback in different stages of massive star formation. Influence of such feedback to the ambient medium has been revealed. A new type of millimeter methanol maser is detected for the first time. An uncommon bipolar outflow prominent in the mid-infrared is discovered. And features of triggered star formation are found on the border of an infrared bubble and in the surroundings of a Herbig Be star. Extended green objects (EGOs) are massive outflow candidates showing prominent shocked features in the mid-infrared. We have carried out a high resolution study of the EGO G22.04+0.22 (hereafter, G22) based on archived SMA data. Continuum and molecular lines at 1.3 mm reveal that G22 is still at a hot molecular core stage. A very young multi-polar outflow system is detected, which is interacting with the adjacent dense gas. Anomalous emission features from CH3OH (8,-1,8 - 7,0,7) and CH3OH (4,2,2 - 3,1,2) are proven to be millimeter masers. It is the first time that maser emission of CH3OH (8,-1,8 - 7,0,7) at 218.440 GHz is detected in a massive star-forming region. Bipolar outflows have been revealed and investigated almost always in the microwave or radio domain. It's sort of rare that hourglass-shaped morphology be discovered in the mid-infrared. Based on GLIMPSE data, we have discovered a bipolar object resembling an hourglass at 8.0 um. It is found to be associated with IRAS 18114-1825. Analysis based on fitted SED, optical spectroscopy, and infrared color indices suggests IRAS 18114-1825 is an uncommon bipolar outflow driven by a massive protostar. Multi-wavelength observations based on classical tracers of outflows are highly necessary. Extensive investigations of IRAS 18114-1825 may contribute to our understanding of massive star formation in early stage.

  13. MUSEing about the SHAPE of eta Car's outer ejecta

    NASA Astrophysics Data System (ADS)

    Mehner, A.; Steffen, W.; Groh, J.; Vogt, F. P. A.; Baade, D.; Boffin, H. M. J.; de Wit, W. J.; Oudmaijer, R. D.; Rivinius, T.; Selman, F.

    2017-11-01

    The role of episodic mass loss in evolved massive stars is one of the outstanding questions in stellar evolution theory. Integral field spectroscopy of nebulae around massive stars provide information on their recent mass-loss history. η Car is one of the most massive evolved stars and is surrounded by a complex circumstellar environment. We have conducted a three-dimensional morpho-kinematic analysis of η Car's ejecta outside its famous Homunculus nebula. SHAPE modelling of VLT MUSE data establish unequivocally the spatial cohesion of the outer ejecta and the correlation of ejecta with the soft X-ray emission.

  14. REVIEWS OF TOPICAL PROBLEMS: Birth and life of massive black holes

    NASA Astrophysics Data System (ADS)

    Dokuchaev, V. I.

    1991-06-01

    The problems of massive black holes in galactic nuclei of different types are reviewed. The dynamical evolution of compact star systems ends naturally in a gigantic concentrated mass of gas, containing an admixture of surviving stars, that unavoidably collapses into a black hole. The subsequent joint evolution of the remnant star system with a massive black hole at the center leads either to the phenomenon of a bright central source in the nuclei of active galaxies and quasars or to the opposite case of a "dead" frozen black hole in the nucleus of a normal galaxy.

  15. The Contribution of Stellar Winds to Cosmic Ray Production

    NASA Astrophysics Data System (ADS)

    Seo, Jeongbhin; Kang, Hyesung; Ryu, Dongsu

    2018-04-01

    Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The wind mechanical energy of a massive star deposited to the interstellar medium can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity by all massive stars in the Galaxy is about Lw ≈ 1.1×1041 ergs, which is about 1/4 of the power of supernova explosions, LSN ≈ 4.8×1041 ergs. If we assume that ˜1-1% of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds are expected to make a significant contribution to GCR production, though lower than that of supernova remnants.

  16. Non-identical neutron star twins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glendenning, Norman K.; Kettner, Christiane

    1998-07-01

    The work of J. A. Wheeler in the mid 1960's showed that forsmooth equations of state no stable stellar configurations with centraldensities above that corresponding to the limiting mass of 'neutronstars' (in the generic sense) were stable against acoustical vibrationalmodes. A perturbation would cause any such star to collapse to a blackhole or explode. Accordingly, there has been no reason to expect that astable degenerate family of stars with higher density than the knownwhite dwarfs and neutron stars might exist. We have found a class ofexceptions corresponding to certain equations of state that describe afirst order phase transition. We discussmore » how such a higher density familyof stars could be formed in nature, and how the promising new explorationof oscillations in the X-ray brightness of accreting neutron stars mightprovide a means of identifying them. Our proof of the possible existenceof a third family of degenerate stars is one of principle and rests ongeneral principles like causality, microstability of matter and GeneralRelativity.« less

  17. The secular tidal disruption of stars by low-mass Super Massive Black Holes secondaries in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Fragione, Giacomo; Leigh, Nathan

    2018-06-01

    Stars passing too close to a super massive black hole (SMBH) can produce tidal disruption events (TDEs). Since the resulting stellar debris can produce an electromagnetic flare, TDEs are believed to probe the presence of single SMBHs in galactic nuclei, which otherwise remain dark. In this paper, we show how stars orbiting an IMBH secondary are perturbed by an SMBH primary. We find that the evolution of the stellar orbits are severely affected by the primary SMBH due to secular effects and stars orbiting with high inclinations with respect to the SMBH-IMBH orbital plane end their lives as TDEs due to Kozai-Lidov oscillations, hence illuminating the secondary SMBH/IMBH. Above a critical SMBH mass of ≈1.15 × 108 M⊙, no TDE can occur for typical stars in an old stellar population since the Schwarzschild radius exceeds the tidal disruption radius. Consequently, any TDEs due to such massive SMBHs will remain dark. It follows that no TDEs should be observed in galaxies more massive than ≈4.15 × 1010 M⊙, unless a lower-mass secondary SMBH or IMBH is also present. The secular mechanism for producing TDEs considered here therefore offers a useful probe of SMBH-SMBH/IMBH binarity in the most massive galaxies. We further show that the TDE rate can be ≈10-4 - 10-3 yr-1, and that most TDEs occur on ≈0.5 Myr. Finally, we show that stars may be ejected with velocities up to thousands of km s-1, which could contribute to the observed population of Galactic hypervelocity stars.

  18. WFPC2 Image of the Variable Star Eta Carinae

    NASA Image and Video Library

    2016-01-06

    The discovery of likely Eta Carinae twins in other galaxies will help scientists better understand this brief phase in the life of a massive star with images such as this from NASA Hubble Space Telescope. Astronomers cannot yet explain what caused the titanic eruption of star Eta Carinae in the 1840s. The discovery of likely Eta Carinae "twins" in other galaxies will help scientists better understand this brief phase in the life of a massive star. http://photojournal.jpl.nasa.gov/catalog/PIA20294

  19. Formation of Double Neutron Star Systems

    NASA Astrophysics Data System (ADS)

    Tauris, T. M.; Kramer, M.; Freire, P. C. C.; Wex, N.; Janka, H.-T.; Langer, N.; Podsiadlowski, Ph.; Bozzo, E.; Chaty, S.; Kruckow, M. U.; van den Heuvel, E. P. J.; Antoniadis, J.; Breton, R. P.; Champion, D. J.

    2017-09-01

    Double neutron star (DNS) systems represent extreme physical objects and the endpoint of an exotic journey of stellar evolution and binary interactions. Large numbers of DNS systems and their mergers are anticipated to be discovered using the Square Kilometre Array searching for radio pulsars, and the high-frequency gravitational wave detectors (LIGO/VIRGO), respectively. Here we discuss all key properties of DNS systems, as well as selection effects, and combine the latest observational data with new theoretical progress on various physical processes with the aim of advancing our knowledge on their formation. We examine key interactions of their progenitor systems and evaluate their accretion history during the high-mass X-ray binary stage, the common envelope phase, and the subsequent Case BB mass transfer, and argue that the first-formed NSs have accreted at most ˜ 0.02 {M}⊙ . We investigate DNS masses, spins, and velocities, and in particular correlations between spin period, orbital period, and eccentricity. Numerous Monte Carlo simulations of the second supernova (SN) events are performed to extrapolate pre-SN stellar properties and probe the explosions. All known close-orbit DNS systems are consistent with ultra-stripped exploding stars. Although their resulting NS kicks are often small, we demonstrate a large spread in kick magnitudes that may, in general, depend on the past interaction history of the exploding star and thus correlate with the NS mass. We analyze and discuss NS kick directions based on our SN simulations. Finally, we discuss the terminal evolution of close-orbit DNS systems until they merge and possibly produce a short γ-ray burst.

  20. On the Origin of Hyperfast Neutron Stars

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Gualandris, A.; Portegies Zwart, S.

    2008-05-01

    We propose an explanation for the origin of hyperfast neutron stars (e.g. PSR B1508+55, PSR B2224+65, RX J0822 4300) based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star (or its helium core) which attained its peculiar velocity (similar to that of the neutron star) in the course of a strong three- or four-body dynamical encounter in the core of a young massive star cluster. This hypothesis implies that the dense cores of star clusters (located either in the Galactic disk or near the Galactic centre) could also produce the so-called hypervelocity stars ordinary stars moving with a speed of ~ 1 000 km s-1.

  1. Formation of new stellar populations from gas accreted by massive young star clusters.

    PubMed

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Geller, Aaron M; Xin, Yu; Hu, Yi; Faucher-Giguère, Claude-André

    2016-01-28

    Stars in clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old 'globular' clusters--those with ages greater than ten billion years and masses several hundred thousand times that of the Sun--often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often suggested to be triggers of second-generation star formation. For this to occur, the initial cluster masses need to be greater than a few million solar masses. Here we report observations of three massive relatively young star clusters (1-2 billion years old) in the Magellanic Clouds that show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could have accreted sufficient gas to form new stars if they had orbited in their host galaxies' gaseous disks throughout the period between their initial formation and the more recent bursts of star formation. This process may eventually give rise to the ubiquitous multiple stellar populations in globular clusters.

  2. The Multiplicity of Wolf-Rayet Stars

    NASA Technical Reports Server (NTRS)

    Wallace, Debra J.

    2004-01-01

    The most massive stars drastically reconfigure their surroundings via their strong stellar winds and powerful ionizing radiation. With this mass fueling their large luminosities, these stars are frequently used as standard candles in distance determination, and as tracers of stellar evolution in different regions and epochs. In their dieing burst, some of the once massive stars will enter a Wolf-Rayet (WR) phase lasting approx.10% of the stellar lifetime. This phase is particularly useful for study because these stars have strong spectroscopic signatures that allow them to be easily identified at great distances. But how accurate are these identifications? Increasingly, the relatively nearby stars we once assumed to be single are revealing themselves to be binary or multiple. New techniques, such as high-resolution imaging and interferometry, are changing our knowledge of these objects. I will discuss recent results in the literature and how this affects the binary distribution of WR stars. I will also discuss the implications of binary vs. single star evolution on evolution through the WR phase. Finally, I will discuss the implications of these revised numbers on both massive stellar evolution itself, and the impact that this has on the role of WR stars as calibrators.

  3. Weighing the Most Massive Stars

    NASA Astrophysics Data System (ADS)

    Moffat, Anthony; Schnurr, Olivier; Chené, André-Nicolas; St-Louis, Nicole

    2005-08-01

    HR diagrams of the brightest stars in nearby galaxies indicate that there exists an upper luminosity limit to star formation. One can assign real masses of stars at that limit, although with low confidence because of uncertainties in current stellar models. Understanding the physics of massive stars is important because these stars dominate the light and ecology of the Universe, not only at the present epoch, but also and especially during the first generation of stars (pop III), expected to be dominated by stars in the range 100-1000 solar masses. The only viable way to determine (or calibrate) masses is by "weighing" them in binary systems. The most massive stars are expected to be formed in the most massive, densest young stellar clusters, like the core R136 of 30 Dor in the Large Magellanic Cloud or its much closer clone NGC 3603 in the Galaxy. Telescopes in space or adaptive-optics systems on large groundbased telescopes are needed to cleanly resolve such stars in order to obtain the necessary high-precision radial velocities and light curves to define the orbits and obtain the masses. We discuss recent progress on this topic, with emphasis on our own attempt to determine the masses of the components of the brightest star (A1, a known main-sequence eclipsing system of type WN6ha + O3: and period 3.7724 d) in the core of NGC 3603, first using HST/STIS (instrument failure) then using VLT/SINFONI (in progress). With A1 being one magnitude intrinsically brighter than the current record holder WR20a (WN6ha + WN6ha, P = 3.686 d, 83 + 82 solar mass), we expect masses for A1 of ~ 100 solar mass if L .M3, or more likely, ~200 solar mass if L . M

  4. Revival of the fittest: exploding core-collapse supernovae from 12 to 25 M⊙

    NASA Astrophysics Data System (ADS)

    Vartanyan, David; Burrows, Adam; Radice, David; Skinner, M. Aaron; Dolence, Joshua

    2018-07-01

    We present results of 2D axisymmetric core-collapse supernova simulations, employing the FORNAX code, of nine progenitor models spanning 12 to 25 M⊙. Four of the models explode with inelastic scattering off electrons and neutrons as well as the many-body correction to neutrino-nucleon scattering opacities. We show that these four models feature sharp Si-O interfaces in their density profiles, and that the corresponding dip in density reduces the accretion rate around the stalled shock and prompts explosion. The non-exploding models lack such a steep feature, highlighting the Si-O interface as one key to explosion. Furthermore, we show that all of the non-exploding models can be nudged to explosion with modest changes to macrophysical inputs, including moderate rotation and perturbations to infall velocities, as well as to microphysical inputs, including reasonable changes to neutrino-nucleon interaction rates, suggesting that all the models are perhaps close to criticality. Exploding models have energies of a few × 1050 erg at the end of our simulation, and are rising, emphasizing the need to continue these simulations over larger grids and for longer times to reproduce the energies seen in nature. Morphology of the explosion contributes to the explosion energy, with more isotropic ejecta producing larger explosion energies. We do not find evidence for the Lepton-number Emission Self-sustained Asymmetry. Finally, we look at proto-neutron star (PNS) properties and explore the role of dimension in our simulations. We find that convection in the PNS produces larger PNS radii as well as greater `νμ' luminosities in 2D compared to 1D.

  5. Revival of the Fittest: Exploding Core-Collapse Supernovae from 12 to 25 M⊙

    NASA Astrophysics Data System (ADS)

    Vartanyan, David; Burrows, Adam; Radice, David; Skinner, M. Aaron; Dolence, Joshua

    2018-03-01

    We present results of 2D axisymmetric core-collapse supernova simulations, employing the FORNAX code, of nine progenitor models spanning 12 to 25 M⊙. Four of the models explode with inelastic scattering off electrons and neutrons as well as the many-body correction to neutrino-nucleon scattering opacities. We show that these four models feature sharp Si-O interfaces in their density profiles, and that the corresponding dip in density reduces the accretion rate around the stalled shock and prompts explosion. The non-exploding models lack such a steep feature, highlighting the Si-O interface as one key to explosion. Furthermore, we show that all of the non-exploding models can be nudged to explosion with modest changes to macrophysical inputs, including moderate rotation and perturbations to infall velocities, as well as to microphysical inputs, including reasonable changes to neutrino-nucleon interaction rates, suggesting that all the models are perhaps close to criticality. Exploding models have energies of few × 1050 ergs at the end of our simulation, and are rising, emphasizing the need to continue these simulations over larger grids and for longer times to reproduce the energies seen in Nature. Morphology of the explosion contributes to the explosion energy, with more isotropic ejecta producing larger explosion energies. We do not find evidence for the Lepton-number Emission Self-Sustained Asymmetry. Finally, we look at PNS properties and explore the role of dimension in our simulations. We find that convection in the proto-neutron star (PNS) produces larger PNS radii as well as greater "νμ" luminosities in 2D compared to 1D.

  6. A Star on the Run

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    Usually stars that are born together tend to move together but sometimes stars can go rogue and run away from their original birthplace. A pair of astronomers have now discovered the first runaway red supergiant (RSG) ever identified in another galaxy. With a radial velocity discrepancy of 300 km/s, its also the fastest runaway massive star known. Discrepant Speeds: When massive stars form in giant molecular clouds, they create what are known as OB associations: groups of hot, massive, short-lived stars that have similar velocities because theyre moving through space together. But sometimes stars that appear to be part of an OB association dont have the same velocity as the rest of the group. These stars are called runaways.What causes an OB star to run away is still debated, but we know that a fairly significant fraction of OB stars are runaways. In spite of this, surprisingly few runaways have been found that are evolved massive stars i.e., the post-main-sequence state of OB stars. This is presumably because these evolved stars have had more time to move away from their birthplace, and its more difficult to identify a runaway without the context of its original group. An Evolved Runaway: Difference between observed velocity and expected velocity, plotted as a function of expected velocity. The black points are foreground stars. The red points are expected RSGs, clustered around a velocity difference of zero. The green pentagon is the runaway RSG J004330.06+405258.4. [Evans Massey 2015]Despite this challenge, a recent survey of RSGs in the galaxy M31 has led to the detection of a massive star on the run! Kate Evans (Lowell Observatory and California Institute of Technology) and Philip Massey (Lowell Observatory and Northern Arizona University) discovered that RSG J004330.06+405258.4 is moving through the Andromeda Galaxy with a radial velocity thats off by about 300 km/s from the radial velocity expected for its location.Evans and Massey discovered this rogue star via a photometric survey of RSGs in M31, followed up by spectroscopy with the Multiple Mirror Telescope. They determined that the star is also separated from other massive stars in the disk of the galaxy by about 4.6 kpc which is roughly the distance it would be expected to travel, given its discrepant motion, in an assumed age of about 10 Myr.The authors suggest that this star may be a high-mass analog of hypervelocity stars stars within the Milky Way that are moving fast enough to escape the galaxy. The authors demonstrate that the total discrepant speed of RSG J004330.06+405258.4 is probably comparable to the escape velocity of M31s disk.But whether or not this star is moving fast enough to escape turns out to be moot: it will only live another million years, which means it wont have enough time to leave the galaxy before ending its life in a spectacular supernova. Citation: Kate Anne Evans and Philip Massey 2015 AJ 150 149. doi:10.1088/0004-6256/150/5/149

  7. Clumpy Disks as a Testbed for Feedback-regulated Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Mayer, Lucio; Tamburello, Valentina; Lupi, Alessandro; Keller, Ben; Wadsley, James; Madau, Piero

    2016-10-01

    We study the dependence of fragmentation in massive gas-rich galaxy disks at z > 1 on stellar feedback schemes and hydrodynamical solvers, employing the GASOLINE2 SPH code and the lagrangian mesh-less code GIZMO in finite mass mode. Non-cosmological galaxy disk runs with the standard delayed-cooling blastwave feedback are compared with runs adopting a new superbubble feedback, which produces winds by modeling the detailed physics of supernova-driven bubbles and leads to efficient self-regulation of star formation. We find that, with blastwave feedback, massive star-forming clumps form in comparable number and with very similar masses in GASOLINE2 and GIZMO. Typical clump masses are in the range 107-108 M ⊙, lower than in most previous works, while giant clumps with masses above 109 M ⊙ are exceedingly rare. By contrast, superbubble feedback does not produce massive star-forming bound clumps as galaxies never undergo a phase of violent disk instability. In this scheme, only sporadic, unbound star-forming overdensities lasting a few tens of Myr can arise, triggered by non-linear perturbations from massive satellite companions. We conclude that there is severe tension between explaining massive star-forming clumps observed at z > 1 primarily as the result of disk fragmentation driven by gravitational instability and the prevailing view of feedback-regulated galaxy formation. The link between disk stability and star formation efficiency should thus be regarded as a key testing ground for galaxy formation theory.

  8. MUCHFUSS - Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS

    NASA Astrophysics Data System (ADS)

    Geier, S.; Schaffenroth, V.; Hirsch, H.; Tillich, A.; Heber, U.; Maxted, P. F. L.; Østensen, R. H.; Barlow, B. N.; O'Toole, S. J.; Kupfer, T.; Marsh, T.; Gänsicke, B.; Napiwotzki, R.; Cordes, O.; Müller, S.; Classen, L.; Ziegerer, E.; Drechsel, H.

    2012-06-01

    The project Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS (MUCHFUSS) aims at finding hot subdwarf stars with massive compact companions (white dwarfs with masses M>1.0 M⊙, neutron stars or black holes). The existence of such systems is predicted by binary evolution calculations and some candidate systems have been found. We identified ≃1100 hot subdwarf stars from the Sloan Digital Sky Survey (SDSS). Stars with high velocities have been reobserved and individual SDSS spectra have been analysed. About 70 radial velocity variable subdwarfs have been selected as good candidates for follow-up time resolved spectroscopy to derive orbital parameters and photometric follow-up to search for features like eclipses in the light curves. Up to now we found nine close binary sdBs with short orbital periods ranging from ≃0.07 d to 1.5 d. Two of them are eclipsing binaries with companions that are most likely of substellar nature.

  9. Discovery of massive star formation quenching by non-thermal effects in the centre of NGC 1097

    NASA Astrophysics Data System (ADS)

    Tabatabaei, F. S.; Minguez, P.; Prieto, M. A.; Fernández-Ontiveros, J. A.

    2018-01-01

    Observations show that massive star formation quenches first at the centres of galaxies. To understand quenching mechanisms, we investigate the thermal and non-thermal energy balance in the central kpc of NGC 1097—a prototypical galaxy undergoing quenching—and present a systematic study of the nuclear star formation efficiency and its dependencies. This region is dominated by the non-thermal pressure from the magnetic field, cosmic rays and turbulence. A comparison of the mass-to-magnetic flux ratio of the molecular clouds shows that most of them are magnetically critical or supported against the gravitational collapse needed to form the cores of massive stars. Moreover, the star formation efficiency of the clouds drops with the magnetic field strength. Such an anti-correlation holds with neither the turbulent nor the thermal pressure. Hence, a progressive build up of the magnetic field results in high-mass stars forming inefficiently, and this may be the cause of the low-mass stellar population in the bulges of galaxies.

  10. The Massive Star Content of Circumnuclear Star Clusters in M83

    NASA Astrophysics Data System (ADS)

    Wofford, A.; Chandar, R.; Leitherer, C.

    2011-06-01

    The circumnuclear starburst of M83 (NGC 5236), the nearest such example (4.6 Mpc), constitutes an ideal site for studying the massive star IMF at high metallicity (12+log[O/H]=9.1±0.2, Bresolin & Kennicutt 2002). We analyzed archival HST/STIS FUV imaging and spectroscopy of 13 circumnuclear star clusters in M83. We compared the observed spectra with two types of single stellar population (SSP) models; semi-empirical models, which are based on an empirical library of Galactic O and B stars observed with IUE (Robert et al. 1993), and theoretical models, which are based on a new theoretical UV library of hot massive stars described in Leitherer et al. (2010) and computed with WM-Basic (Pauldrach et al. 2001). The models were generated with Starburst99 (Leitherer & Chen 2009). We derived the reddenings, the ages, and the masses of the clusters from model fits to the FUV spectroscopy, as well as from optical HST/WFC3 photometry.

  11. Constraining the physics of carbon crystallization through pulsations of a massive DAV BPM37093

    NASA Astrophysics Data System (ADS)

    Nitta, Atsuko; Kepler, S. O.; Chené, André-Nicolas; Koester, D.; Provencal, J. L.; Kleinmani, S. J.; Sullivan, D. J.; Chote, Paul; Sefako, Ramotholo; Kanaan, Antonio; Romero, Alejandra; Corti, Mariela; Kilic, Mukremin; Montgomery, M. H.; Winget, D. E.

    We are trying to reduce the largest uncertainties in using white dwarf stars as Galactic chronometers by understanding the details of carbon crystalliazation that currently result in a 1-2 Gyr uncertainty in the ages of the oldest white dwarf stars. We expect the coolest white dwarf stars to have crystallized interiors, but theory also predicts hotter white dwarf stars, if they are massive enough, will also have some core crystallization. BPM 37093 is the first discovered of only a handful of known massive white dwarf stars that are also pulsating DAV, or ZZ Ceti, variables. Our approach is to use the pulsations to constrain the core composition and amount of crystallization. Here we report our analysis of 4 hours of continuous time series spectroscopy of BPM 37093 with Gemini South combined with simultaneous time-series photometry from Mt. John (New Zealand), SAAO, PROMPT, and Complejo Astronomico El Leoncito (CASLEO, Argentina).

  12. Collisions in Compact Star Clusters.

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, S. F.

    The high stellar densities in young compact star clusters, such as the star cluster R136 in the 30 Doradus region, may lead to a large number of stellar collisions. Such collisions were recently found to be much more frequent than previous estimates. The number of collisions scales with the number of stars for clusters with the same initial relaxation time. These collisions take place in a few million years. The collision products may finally collapse into massive black holes. The fraction of the total mass in the star cluster which ends up in a single massive object scales with the total mass of the cluster and its relaxation time. This mass fraction is rather constant, within a factor two or so. Wild extrapolation from the relatively small masses of the studied systems to the cores of galactic nuclei may indicate that the massive black holes in these systems have formed in a similar way.

  13. OBSERVATIONAL SIGNATURES OF CONVECTIVELY DRIVEN WAVES IN MASSIVE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aerts, C.; Rogers, T. M.

    We demonstrate observational evidence for the occurrence of convectively driven internal gravity waves (IGWs) in young massive O-type stars observed with high-precision CoRoT space photometry. This evidence results from a comparison between velocity spectra based on two-dimensional hydrodynamical simulations of IGWs in a differentially rotating massive star and the observed spectra. We also show that the velocity spectra caused by IGWs may lead to detectable line-profile variability and explain the occurrence of macroturbulence in the observed line profiles of OB stars. Our findings provide predictions that can readily be tested by including a sample of bright, slowly and rapidly rotatingmore » OB-type stars in the scientific program of the K2 mission accompanied by high-precision spectroscopy and their confrontation with multi-dimensional hydrodynamic simulations of IGWs for various masses and ages.« less

  14. Massive runaway stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kroupa, P.; Pflamm-Altenburg, J.

    2010-09-01

    The origin of massive field stars in the Large Magellanic Cloud (LMC) has long been an enigma. The recent measurements of large offsets (˜ 100 km s-1) between the heliocentric radial velocities of some very massive (O2-type) field stars and the systemic LMC velocity provides a possible explanation of this enigma and suggests that the field stars are runaway stars ejected from their birthplaces at the very beginning of their parent cluster's dynamical evolution. A straightforward way to prove this explanation is to measure the proper motions of the field stars and to show that they are moving away from one of the nearby star clusters or OB associations. This approach is, however, complicated by the long distance to the LMC, which makes accurate proper motion measurements difficult. We used an alternative approach for solving the problem (first applied for Galactic field stars), based on the search for bow shocks produced by runaway stars. The geometry of detected bow shocks would allow us to infer the direction of stellar motion, thereby determining their possible parent clusters. In this paper we present the results of a search for bow shocks around six massive field stars that have been proposed as candidate runaway stars. Using archival Spitzer Space Telescope data, we found a bow shock associated with one of our programme stars, the O2 V((f*)) star BI 237, which is the first-ever detection of bow shocks in the LMC. Orientation of the bow shock suggests that BI 237 was ejected from the OB association LH 82 (located at ≃ 120 pc in projection from the star). A by-product of our search is the detection of bow shocks generated by four OB stars in the field of the LMC and an arc-like structure attached to the candidate luminous blue variable R81 (HD 269128). The geometry of two of these bow shocks is consistent with the possibility that their associated stars were ejected from the 30 Doradus star-forming complex. We discuss implications of our findings for the problem of the origin of runaway stars and the early dynamical evolution of star clusters.

  15. The young stellar population of IC 1613. III. New O-type stars unveiled by GTC-OSIRIS

    NASA Astrophysics Data System (ADS)

    Garcia, M.; Herrero, A.

    2013-03-01

    Context. Very low-metallicity massive stars are key to understanding the reionization epoch. Radiation-driven winds, chief agents in the evolution of massive stars, are consequently an important ingredient in our models of the early-Universe. Recent findings hint that the winds of massive stars with poorer metallicity than the SMC may be stronger than predicted by theory. Besides calling the paradigm of radiation-driven winds into question, this result would affect the calculated ionizing radiation and mechanical feedback of massive stars, as well as the role these objects play at different stages of the Universe. Aims: The field needs a systematic study of the winds of a large sample of very metal-poor massive stars. The sampling of spectral types is particularly poor in the very early types. This paper's goal is to increase the list of known O-type stars in the dwarf irregular galaxy IC 1613, whose metallicity is lower than the SMC's roughly by a factor 2. Methods: Using the reddening-free Q pseudo-colour, evolutionary masses, and GALEX photometry, we built a list of very likely O-type stars. We obtained low-resolution (R ~ 1000) GTC-OSIRIS spectra for a fraction of them and performed spectral classification, the only way to unequivocally confirm candidate OB-stars. Results: We have discovered 8 new O-type stars in IC 1613, increasing the list of 7 known O-type stars in this galaxy by a factor of 2. The best quality spectra were analysed with the model atmosphere code FASTWIND to derive stellar parameters. We present the first spectral type - effective temperature scale for O-stars beyond the SMC. Conclusions: The target selection method is successful. From the pre-selected list of 13 OB star candidates, we have found 8 new O-stars and 4 early-B stars and provided a similar type for a formerly known early-O star. Further tests are needed, but the presented procedure can eventually make preliminary low-resolution spectroscopy to confirm candidates unnecessary. The derived effective temperature calibration for IC 1613 is about 1000 K hotter than the scale at the SMC. The analysis of an increased list of O-type stars will be crucial for studies of the winds and feedback of massive stars at all ages of the Universe. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma. Programme ID GTC59-11B.Figures 4, 6 and Appendix A are available in electronic form at http://www.aanda.orgSpectra as FITS files are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A74

  16. The formation and evolution of galaxies in an expanding universe

    NASA Astrophysics Data System (ADS)

    Ceverino-Rodriguez, Daniel

    This PhD thesis is part of an ongoing effort in improving the theory of galaxy formation in a LCDM Universe. We include more realistic models of radiative cooling, star formation, and stellar feedback. A special attention has been given to the role of supernova explosions and stellar winds in the galaxy assembly. These processes happen at very small scales (parsecs), but they affect the inter-stellar medium (ISM) at Kpc-scales and regulate the formation of a whole galaxy. Previous attempts of mimicking these effects in simulations of galaxy formation use very simplified assumptions. We develop a much more realistic prescription for modeling the feedback, which minimizes any ad hoc sub-grid physics. We start with developing high resolution models of the ISM and formulate the conditions required for its realistic functionality: formation of a multi-phase medium with hot chimneys, super-bubbles, cold molecular phase, and very slow consumption of gas. We find that this can be achieved only by doing what the real Universe does: formation of dense (> 10 H atoms cm -3 ), cold ( T [approximate] 100 K) molecular phase, where star formation happens, and which young stars disrupt. Another important ingredient is the effect of runaway stars: massive binary stars ejected from molecular clouds when one of the companions becomes a supernova. These stars can move to 10-100 parsecs away from molecular clouds before exploding themselves as supernovae. This greatly facilitates the feedback. Once those effects are implemented into cosmological simulations, galaxy formation proceeds more realistically. For example, we do not have the overcooling problem. The angular momentum problem (resulting in a too massive bulge) is also reduced substantially: the rotation curves are nearly flat. The galaxy formation also becomes more violent. Just as often observed in absorption lines studies, there are substantial outflows from forming and active galaxies. At high redshifts we routinely find gas with few hundred km s -1 and occasionally 1000 - 2000 kms - 1 . The gas has high metallicity, which may exceed the solar metallicity. The temperature of the gas in the outflows and in chimneys can be very high: T = 10 7 - 10^8 K. The density profile of dark matter is still consistent with a cuspy profile. The simulations reproduce this picture only if the resolution is very high: better than 50 pc, which is 10 times better than the typical resolution in previous cosmological simulations. Our simulations of galaxy formation reach a resolution of 35 pc. At the time in which most of the mass is assembled into a galaxy, a big fraction of the gas in the galactic disk has already been converted into stars. Therefore, we can assume that the remaining gas does not affect the evolution of the stellar distribution. In this approximation, all gasdynamical processes are neglected and we treat a galaxy as a pure collisionless system. Then we use N-body-only models to study the long-term evolution of an already formed stellar disk. During this evolution, the disk develops a bar at the center through disk instabilities. We find dynamical resonances between the bar and disk or halo material. These resonances can capture stars near certain resonant orbits. As a result, resonances prevent the evolution of the stars trapped around these orbits.

  17. The Galactic Distribution of Massive Star Formation from the Red MSX Source Survey

    NASA Astrophysics Data System (ADS)

    Figura, Charles C.; Urquhart, J. S.

    2013-01-01

    Massive stars inject enormous amounts of energy into their environments in the form of UV radiation and molecular outflows, creating HII regions and enriching local chemistry. These effects provide feedback mechanisms that aid in regulating star formation in the region, and may trigger the formation of subsequent generations of stars. Understanding the mechanics of massive star formation presents an important key to understanding this process and its role in shaping the dynamics of galactic structure. The Red MSX Source (RMS) survey is a multi-wavelength investigation of ~1200 massive young stellar objects (MYSO) and ultra-compact HII (UCHII) regions identified from a sample of colour-selected sources from the Midcourse Space Experiment (MSX) point source catalog and Two Micron All Sky Survey. We present a study of over 900 MYSO and UCHII regions investigated by the RMS survey. We review the methods used to determine distances, and investigate the radial galactocentric distribution of these sources in context with the observed structure of the galaxy. The distribution of MYSO and UCHII regions is found to be spatially correlated with the spiral arms and galactic bar. We examine the radial distribution of MYSOs and UCHII regions and find variations in the star formation rate between the inner and outer Galaxy and discuss the implications for star formation throughout the galactic disc.

  18. Bow Shocks in Space

    NASA Image and Video Library

    2016-01-05

    Bow shocks thought to mark the paths of massive, speeding stars are highlighted in these images from NASA's Spitzer Space Telescope and Wide-field Infrared Survey Explorer, or WISE. Cosmic bow shocks occur when massive stars zip through space, pushing material ahead of them in the same way that water piles up in front of a race boat. The stars also produce high-speed winds that smack into this compressed material. The end result is pile-up of heated material that glows in infrared light. In these images, infrared light has been assigned the colored red. Green shows wispy dust in the region and blue shows stars. The two images at left are from Spitzer, and the one on the right is from WISE. The speeding stars thought to be creating the bow shocks can be seen at the center of each arc-shaped feature. The image at right actually consists of two bow shocks and two speeding stars. All the speeding stars are massive, ranging from about 8 to 30 times the mass of our sun. http://photojournal.jpl.nasa.gov/catalog/PIA20062

  19. A SPECTROSCOPIC SURVEY OF MASSIVE STARS IN M31 AND M33

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massey, Philip; Neugent, Kathryn F.; Smart, Brianna M., E-mail: phil.massey@lowell.edu, E-mail: kneugent@lowell.edu, E-mail: bsmart@astro.wisc.edu

    We describe our spectroscopic follow-up to the Local Group Galaxy Survey (LGGS) photometry of M31 and M33. We have obtained new spectroscopy of 1895 stars, allowing us to classify 1496 of them for the first time. Our study has identified many foreground stars, and established membership for hundreds of early- and mid-type supergiants. We have also found nine new candidate luminous blue variables and a previously unrecognized Wolf–Rayet star. We republish the LGGS M31 and M33 catalogs with improved coordinates, and including spectroscopy from the literature and our new results. The spectroscopy in this paper is responsible for the vastmore » majority of the stellar classifications in these two nearby spiral neighbors. The most luminous (and hence massive) of the stars in our sample are early-type B supergiants, as expected; the more massive O stars are more rare and fainter visually, and thus mostly remain unobserved so far. The majority of the unevolved stars in our sample are in the 20–40 M {sub ⊙} range.« less

  20. Formation of intermediate-mass black holes through runaway collisions in the first star clusters

    NASA Astrophysics Data System (ADS)

    Sakurai, Yuya; Yoshida, Naoki; Fujii, Michiko S.; Hirano, Shingo

    2017-12-01

    We study the formation of massive black holes in the first star clusters. We first locate star-forming gas clouds in protogalactic haloes of ≳107 M⊙ in cosmological hydrodynamics simulations and use them to generate the initial conditions for star clusters with masses of ∼105 M⊙. We then perform a series of direct-tree hybrid N-body simulations to follow runaway stellar collisions in the dense star clusters. In all the cluster models except one, runaway collisions occur within a few million years, and the mass of the central, most massive star reaches ∼400-1900 M⊙. Such very massive stars collapse to leave intermediate-mass black holes (IMBHs). The diversity of the final masses may be attributed to the differences in a few basic properties of the host haloes such as mass, central gas velocity dispersion and mean gas density of the central core. Finally, we derive the IMBH mass to cluster mass ratios, and compare them with the observed black hole to bulge mass ratios in the present-day Universe.

  1. Searching for chemical signatures of brown dwarf formation

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Villaver, E.

    2017-06-01

    Context. Recent studies have shown that close-in brown dwarfs in the mass range 35-55 MJup are almost depleted as companions to stars, suggesting that objects with masses above and below this gap might have different formation mechanisms. Aims: We aim to test whether stars harbouring massive brown dwarfs and stars with low-mass brown dwarfs show any chemical peculiarity that could be related to different formation processes. Methods: Our methodology is based on the analysis of high-resolution échelle spectra (R 57 000) from 2-3 m class telescopes. We determine the fundamental stellar parameters, as well as individual abundances of C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, and Zn for a large sample of stars known to have a substellar companion in the brown dwarf regime. The sample is divided into stars hosting massive and low-mass brown dwarfs. Following previous works, a threshold of 42.5 MJup was considered. The metallicity and abundance trends of the two subsamples are compared and set in the context of current models of planetary and brown dwarf formation. Results: Our results confirm that stars with brown dwarf companions do not follow the well-established gas-giant planet metallicity correlation seen in main-sequence planet hosts. Stars harbouring massive brown dwarfs show similar metallicity and abundance distribution as stars without known planets or with low-mass planets. We find a tendency of stars harbouring less-massive brown dwarfs of having slightly higher metallicity, [XFe/Fe] values, and abundances of Sc II, Mn I, and Ni I than the stars having the massive brown dwarfs. The data suggest, as previously reported, that massive and low-mass brown dwarfs might present differences in period and eccentricity. Conclusions: We find evidence of a non-metallicity dependent mechanism for the formation of massive brown dwarfs. Our results agree with a scenario in which massive brown dwarfs are formed as stars. At high metallicities, the core-accretion mechanism might become efficient in the formation of low-mass brown dwarfs, while at lower metallicities low-mass brown dwarfs could form by gravitational instability in turbulent protostellar discs. Based on observations made with the Mercator Telescope; on observations made with the Nordic Optical Telescope; on data products from the SOPHIE archive; on data products from the ELODIE archive; and on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programmes ID 072. C-0488(E), 076.C-0155(A), 076.C-0429(A), 078.C-0133(A), 079.C-0329(A), 082.C-0333(A), 083.C-0174(A), 083.C-0413(A), 085. C-0019(A), 085.C-0393(A), 087.A-9029(A), 087.C-0831(A), 090.C-0421(A), 093.C-0409(A), 094.D-0596(A), 095.A-9029(C), 178.D-0361(B), 183.C-0972(A), 184.C-0639(A), and 188.C-0779(A).

  2. The Massive Star-Forming Regions Omnibus X-Ray Catalog

    NASA Astrophysics Data System (ADS)

    Townsley, Leisa K.; Broos, Patrick S.; Garmire, Gordon P.; Bouwman, Jeroen; Povich, Matthew S.; Feigelson, Eric D.; Getman, Konstantin V.; Kuhn, Michael A.

    2014-07-01

    We present the Massive Star-forming Regions (MSFRs) Omnibus X-ray Catalog (MOXC), a compendium of X-ray point sources from Chandra/ACIS observations of a selection of MSFRs across the Galaxy, plus 30 Doradus in the Large Magellanic Cloud. MOXC consists of 20,623 X-ray point sources from 12 MSFRs with distances ranging from 1.7 kpc to 50 kpc. Additionally, we show the morphology of the unresolved X-ray emission that remains after the cataloged X-ray point sources are excised from the ACIS data, in the context of Spitzer and WISE observations that trace the bubbles, ionization fronts, and photon-dominated regions that characterize MSFRs. In previous work, we have found that this unresolved X-ray emission is dominated by hot plasma from massive star wind shocks. This diffuse X-ray emission is found in every MOXC MSFR, clearly demonstrating that massive star feedback (and the several-million-degree plasmas that it generates) is an integral component of MSFR physics.

  3. Properties of compact HII regions and their host clumps in the inner vs outer Galaxy - early results from SASSy

    NASA Astrophysics Data System (ADS)

    Djordjevic, Julie; Thompson, Mark; Urquhart, James S.

    2017-01-01

    We present a catalog of compact and ultracompact HII regions for all Galactocentric radii. Previous catalogs focus on the inner Galaxy (Rgal ≤ 8 kpc) but the recent SASSy 870 µm survey allows us to identify regions out to ~20 kpc. Early samples are also filled with false classifications leading to uncertainty when deriving star formation efficiencies in Galactic models. These objects have similar mid-IR colours to HII regions. Urquhart et al. (2013) found that they could use mid-IR, submm, and radio data to identify the genuine compact HII regions, avoiding confusion. They used this method on a small portion of the Galaxy (10 < l < 60), identifying 213 HII regions embedded in 170 clumps. We use ATLASGAL and SASSy, crossmatched with RMS, to sample the remaining galactic longitudes out to Rgal = 20 kpc. We derive the properties of the identified compact HII regions and their host clumps while addressing the implications for recent massive star formation in the outer Galaxy. Observations towards nearby galaxies are biased towards massive stars, affecting simulations and overestimating models for galactic evolution and star formation rates. The Milky Way provides the ideal template for studying factors affecting massive star formation rates and efficiencies at high resolution, thus fine-tuning those models. We find that there is no significant change in the rate of massive star formation in the outer vs inner Galaxy. Despite some peaks in known complexes and possible correlation with spiral arms, the outer Galaxy appears to produce massive stars as efficiently as the inner regions. However, many of the potential star forming SASSy clumps have no available radio counterpart to confirm the presence of an HII region or other star formation tracer. Follow-up observations will be required to verify this conclusion and are currently in progress.

  4. Radiation-hydrodynamical simulations of massive star formation using Monte Carlo radiative transfer - II. The formation of a 25 solar-mass star

    NASA Astrophysics Data System (ADS)

    Harries, Tim J.; Douglas, Tom A.; Ali, Ahmad

    2017-11-01

    We present a numerical simulation of the formation of a massive star using Monte Carlo-based radiation hydrodynamics (RHD). The star forms via stochastic disc accretion and produces fast, radiation-driven bipolar cavities. We find that the evolution of the infall rate (considered to be the mass flux across a 1500 au spherical boundary) and the accretion rate on to the protostar, are broadly consistent with observational constraints. After 35 kyr the star has a mass of 25 M⊙ and is surrounded by a disc of mass 7 M⊙ and 1500 au radius, and we find that the velocity field of the disc is close to Keplerian. Once again these results are consistent with those from recent high-resolution studies of discs around forming massive stars. Synthetic imaging of the RHD model shows good agreement with observations in the near- and far-IR, but may be in conflict with observations that suggest that massive young stellar objects are typically circularly symmetric in the sky at 24.5 μm. Molecular line simulations of a CH3CN transition compare well with observations in terms of surface brightness and line width, and indicate that it should be possible to reliably extract the protostellar mass from such observations.

  5. The Eta Carinae Homunculus in Full 3D with X-Shooter and Shape

    NASA Technical Reports Server (NTRS)

    Steffen, Wolfgang; Teodoro, Mairan; Madura, Thomas I.; Groh, Jose H.; Gull, Theodore R.; Mehner, Andrea; Corcoran, Michael F.; Damineli, Augusto; Hamaguchi, Kenji

    2014-01-01

    Massive stars like Eta Carinae are extremely rare in comparison to stars such as the Sun, and currently we know of only a handful of stars with masses of more than 100 solar mass in the Milky Way. Such massive stars were much more frequent in the early history of the Universe and had a huge impact on its evolution. Even among this elite club, Eta Car is outstanding, in particular because of its giant eruption around 1840 that produced the beautiful bipolar nebula now known as the Homunculus. In this study, we used detailed spatio-kinematic information obtained from X-shooter spectra to reconstruct the 3D structure of the Homunculus. The small-scale features suggest that the central massive binary played a significant role in shaping the Homunculus.

  6. Coronagraphic imaging of circumstellar material around evolved massive stars

    NASA Astrophysics Data System (ADS)

    Lomax, Jamie R.; Levesque, Emily; Wisniewski, John

    2018-01-01

    While many astronomical subfields (e.g. the solar, exoplanet, and disk communities) have been using coronagraphy to combat contrast ratio problems for years, the use of coronagraphic imaging techniques to probe the circumstellar environments of massive stars has been surprisingly underutilized. While current extreme adaptive optics coronagraphic imaging systems (e.g. GPI on Gemini South, SPHERE at the VLT, and SCExAO at Subaru) were built for the sole purpose of detecting exoplanets, their ability to provide large contrast ratios and small inner working angles means they can detect gas, dust, and companions that are closer to the central star than ever before. In this poster we present pilot studies of evolved massive stars using several coronagraphic imaging systems and summarize potential science gains this technique might provide.

  7. Fates of the most massive primordial stars

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung; Heger, Alexander; Almgren, Ann; Woosley, Stan

    2012-09-01

    We present our results of numerical simulations of the most massive primordial stars. For the extremely massive non-rotating Pop III stars over 300Msolar, they would simply die as black holes. But the Pop III stars with initial masses 140 - 260Msolar may have died as gigantic explosions called pair-instability supernovae (PSNe). We use a new radiation-hydrodynamics code CASTRO to study evolution of PSNe. Our models follow the entire explosive burning and the explosion until the shock breaks out from the stellar surface. In our simulations, we find that fluid instabilities occurred during the explosion. These instabilities are driven by both nuclear burning and hydrodynamical instability. In the red supergiant models, fluid instabilities can lead to significant mixing of supernova ejecta and alter the observational signature.

  8. Revealing the Beast Within

    NASA Astrophysics Data System (ADS)

    2003-07-01

    Deeply Embedded Massive Stellar Clusters Discovered in Milky Way Powerhouse Summary Peering into a giant molecular cloud in the Milky Way galaxy - known as W49 - astronomers from the European Southern Observatory (ESO) have discovered a whole new population of very massive newborn stars . This research is being presented today at the International Astronomical Union's 25th General Assembly held in Sydney, Australia, by ESO-scientist João Alves. With the help of infrared images obtained during a period of excellent observing conditions with the ESO 3.5-m New Technology Telescope (NTT) at the La Silla Observatory (Chile), the astronomers looked deep into this molecular cloud and discovered four massive stellar clusters, with hot and energetic stars as massive as 120 solar masses. The exceedingly strong radiation from the stars in the largest of these clusters is "powering" a 20 light-year diameter region of mostly ionized hydrogen gas (a "giant HII region"). W49 is one of the most energetic regions of star formation in the Milky Way. With the present discovery, the true sources of the enormous energy have now been revealed for the first time, finally bringing to an end some decades of astronomical speculations and hypotheses. PR Photo 21a/03 : Colour Composite of W49A (NTT+SOFI). PR Photo 21b/03 : Radio and Near-Infrared Composite of W49A Giant molecular clouds Stars form predominantly inside Giant Molecular Clouds which populate our Galaxy, the Milky Way. One of the most prominent of these is W49 , which has a mass of a million solar masses. It is located some 37,000 light-years away and is the most luminous star-forming region known in our home galaxy: its luminosity is several million times the luminosity of our Sun. A smaller region within this cloud is denoted W49A - this is one of the strongest radio-emitting areas known in the Galaxy . Massive stars are excessive in all ways. Compared to their smaller and ligther brethren, they form at an Olympic speed and have a frantic and relatively short life. Formation sites of massive stars are quite rare and, accordingly, most are many thousands of light-years away. For that reason alone, it is in general much more difficult to observe details of massive-star formation. Moreover, as massive stars are generally formed in the main plane of the Galaxy, in the disc where a lot of dust is present, the first stages of such stars are normally hidden behind very thick curtains. In the case of W49A , less than one millionth of the visible light emitted by a star in this region will find its way through the heavy intervening layers of galactic dust and reach the telescopes on Earth. And finally, because massive stars just formed are still very deeply embedded in their natal clouds, they are anyway not detectable at optical wavelengths. Observations of this early phase of the lives of heavy stars must therefore be done at longer wavelengths (where the dust is more transparent), but even so, such natal dusty clouds still absorb a large proportion of the light emitted by the young stars. Infrared observations of W49 ESO PR Photo 21a/03 ESO PR Photo 21a/03 [Preview - JPEG: 464 x 400 pix - 88k [Normal - JPEG: 928 x 800 pix - 972k] ESO PR Photo 21b/03 ESO PR Photo 21b/03 [Preview - JPEG: 400 x 461 pix - 104k [Normal - JPEG: 800 x 922 pix - 1.1M] Captions : PR Photo 21a/03 presents a composite near-infrared colour image from NTT/SofI. It covers a sky area of 5 x 5 arcmin 2 and the red, green and blue colours correspond to the Ks- (wavelength 2.2 µm), H- (1.65 µm) and J-band (1.2 µm), respectively. North is up and East is to the left. The labels identify known radio sources. The main cluster is seen north-east of the region labelled "O3". The colour of a star in this image is mostly a measure of the amount of dust absorption towards this star. Hence, all blue stars in this image are located in front of the star-forming region. PR Photo 21b/03 shows a three-colour composite of the central region of the star-forming region W49A , based on a radio emission map (wavelength 3.6 cm; here rendered as red) as well as two SofI images in the Ks- (green) and J-bands (blue). The red-only features in this image represent regions of ionized hydrogen so deeply embedded in the molecular cloud that they cannot be detected in the near-infrared, while blue sources are foreground stars. The radio continuum data were taken with the Very Large Array by Chris De Pree. Because of this observational obstacle, nobody had ever looked deep enough into the central most dense regions of the W49A molecular cloud - and nobody really knew what was in there. That is, until João Alves and his colleague, Nicole Homeier decided to obtain "deep" and penetrating observations of this mysterious area with the SofI near-infrared camera on the 3.5-m New Technology Telescope (NTT) at the ESO La Silla Observatory (Chile). A series of infrared images was secured during a spell of good weather and very good atmospheric conditions (seeing about 0.5 arcsec). They clearly show the presence of a cluster of stars at the centre of a region of ionized hydrogen gas (an "HII-region") measuring 20 light-years across. In addition, three other smaller clusters of stars were detected in the image. Altogether, the ESO astronomers were able to identify more than one hundred heavy-weight stars inside W49A , with masses greater than 15 to 20 times the mass of our Sun. Among these, about thirty are located within the 20 light-year central region and about ten in each of the three other clusters. The discovery of these hot and massive stars solves a long-standing problem concerning W49A : the exceptional brightness (in astronomical terminology: "luminosity") of the entire region requires the energetic output from about one hundred massive stars, and nobody had ever seen them. But here they are on the deep and sharp SofI images! Formation scenarios The presence of such a large number of very massive stars spread over the entire region suggests that star formation in the various regions of W49A must have happened rather simultaneously from different seeds and not, as some theories propose, by a "domino-type" chain effect where stellar winds of fast particles and the emitted radiation of newly formed massive stars trigger another burst of star formation in the immediate neighbourhood. The present research results also imply that star formation in W49A began earlier and extends over a larger area than previously thought. João Alves is sure that this news will be received with interest by his colleagues: " W49A has long been known to radio astronomers as one of the most powerful star-forming region in the Galaxy with 30 or so massive baby-stars of the O-type, very deeply embedded in their parental cloud. What we have found is in fact quite amazing: this stellar maternity ward is much bigger than we first thought and it has not stopped forming stars yet. We now have evidence for no less than more than one hundred such stars in this region, way beyond the few dozen known until now ". Nicole Homeier adds: " Above all, we uncovered four massive clusters in there, with stars as massive as 120 times the mass of our Sun - real 'beasts' that bombard their surroundings with incredibly intense stellar winds and strong ultraviolet light. This is not a nice place to live - and imagine, this is all inside our so-called 'quiet Galaxy'!" More information The research described in this press release is presented in a research article in the professional research journal Astrophysical Journal ("Uncovering the Beast: Discovery of Embedded Massive Stellar Clusters in W49A" by João Alves and Nicole Homeier , Volume 589, pp. L45-L49). It is also one of the topics addressed by João Alves during his talk given at the General Assembly of the International Astronomical Union in Sydney on Tuesday, July 22, 2003.

  9. Young and Exotic Stellar Zoo

    NASA Astrophysics Data System (ADS)

    2005-03-01

    Summary Super star clusters are groups of hundreds of thousands of very young stars packed into an unbelievably small volume. They represent the most extreme environments in which stars and planets can form. Until now, super star clusters were only known to exist very far away, mostly in pairs or groups of interacting galaxies. Now, however, a team of European astronomers [1] have used ESO's telescopes to uncover such a monster object within our own Galaxy, the Milky Way, almost, but not quite, in our own backyard! The newly found massive structure is hidden behind a large cloud of dust and gas and this is why it took so long to unveil its true nature. It is known as "Westerlund 1" and is a thousand times closer than any other super star cluster known so far. It is close enough that astronomers may now probe its structure in some detail. Westerlund 1 contains hundreds of very massive stars, some shining with a brilliance of almost one million suns and some two-thousand times larger than the Sun (as large as the orbit of Saturn)! Indeed, if the Sun were located at the heart of this remarkable cluster, our sky would be full of hundreds of stars as bright as the full Moon. Westerlund 1 is a most unique natural laboratory for the study of extreme stellar physics, helping astronomers to find out how the most massive stars in our Galaxy live and die. From their observations, the astronomers conclude that this extreme cluster most probably contains no less than 100,000 times the mass of the Sun, and all of its stars are located within a region less than 6 light-years across. Westerlund 1 thus appears to be the most massive compact young cluster yet identified in the Milky Way Galaxy. PR Photo 09a/05: The Super Star Cluster Westerlund 1 (2.2m MPG/ESO + WFI) PR Photo 09b/05: Properties of Young Massive Clusters Super Star Clusters Stars are generally born in small groups, mostly in so-called "open clusters" that typically contain a few hundred stars. From a wide range of observations, astronomers infer that the Sun itself was born in one such cluster, some 4,500 million years ago. In some active ("starburst") galaxies, scientists have observed violent episodes of star formation (see, for example, ESO Press Photo 31/04), leading to the development of super star clusters, each containing several million stars. Such events were obviously common during the Milky Way's childhood, more than 12,000 million years ago: the many galactic globular clusters - which are nearly as old as our Galaxy (e.g. ESO PR 20/04) - are indeed thought to be the remnants of early super star clusters. All super star clusters so far observed in starburst galaxies are very distant. It is not possible to distinguish their individual stars, even with the most advanced technology. This dramatically complicates their study and astronomers have therefore long been eager to find such clusters in our neighbourhood in order to probe their structure in much more detail. Now, a team of European astronomers [1] has finally succeeded in doing so, using several of ESO's telescopes at the La Silla observatory (Chile). Westerlund 1 ESO PR Photo 09a/05 ESO PR Photo 09a/05 The Super Star Cluster Westerlund 1 (2.2m MPG/ESO + WFI) [Preview - JPEG: 400 x 472 pix - 58k] [Normal - JPEG: 800 x 943 pix - 986k] [Full Res - JPEG: 1261 x 1486 pix - 2.4M] Caption: ESO PR Photo 09a/05 is a composite image of the super star cluster "Westerlund 1" from 2.2-m MPG/ESO Wide-Field Imager (WFI) observations. The image covers a 5 x 5 arcmin sky region and is based on observations made in the V-band (550 nm, 2 min exposure time, associated to the blue channel), R-band (650nm, 1 min, green channel) and I-band (784nm, 18 sec, red channel). Only the central CCD of WFI was used, as the entire cluster fits comfortably inside it. The foreground stars appear blue, while the hot massive members of the cluster look orange, and the cool massive ones come out red. The open cluster Westerlund 1 is located in the Southern constellation Ara (the Altar). It was discovered in 1961 from Australia by Swedish astronomer Bengt Westerlund, who later moved from there to become ESO Director in Chile (1970 - 74). This cluster is behind a huge interstellar cloud of gas and dust, which blocks most of its visible light. The dimming factor is more than 100,000 - and this is why it has taken so long to uncover the true nature of this particular cluster. In 2001, the team of astronomers identified more than a dozen extremely hot and peculiar massive stars in the cluster, so-called "Wolf-Rayet" stars. They have since studied Westerlund 1 extensively with various ESO telescopes. They used images from the Wide Field Imager (WFI) attached to the 2.2-m ESO/MPG as well as from the SUperb Seeing Imager 2 (SuSI2) camera on the ESO 3.5-m New Technology Telescope (NTT). From these observations, they were able to identify about 200 cluster member stars. To establish the true nature of these stars, the astronomers then performed spectroscopic observations of about one quarter of them. For this, they used the Boller & Chivens spectrograph on the ESO 1.52-m telescope and the ESO Multi-Mode Instrument (EMMI) on the NTT. An Exotic Zoo These observations have revealed a large population of very bright and massive, quite extreme stars. Some would fill the solar system space within the orbit of Saturn (about 2,000 times larger than the Sun!), others are as bright as a million Suns. Westerlund 1 is obviously a fantastic stellar zoo, with a most exotic population and a true astronomical bonanza. All stars identified are evolved and very massive, spanning the full range of stellar oddities from Wolf-Rayet stars, OB supergiants, Yellow Hypergiants (nearly as bright as a million Suns) and Luminous Blue Variables (similar to the exceptional Eta Carinae object - see ESO PR 31/03). All stars so far analysed in Westerlund 1 weigh at least 30-40 times more than the Sun. Because such stars have a rather short life - astronomically speaking - Westerlund 1 must be very young. The astronomers determine an age somewhere between 3.5 and 5 million years. So, Westerlund 1 is clearly a "newborn" cluster in our Galaxy! The Most Massive Cluster ESO PR Photo 09b/05 ESO PR Photo 09b/05 Properties of Young Massive Clusters [Preview - JPEG: 400 x 511 pix - 20k] [Normal - JPEG: 800 x 1021 pix - 122k] Caption: ESO PR Photo 09b/05 shows the properties of young massive clusters in our Galaxy and in the Large Magellanic Clouds, as well as of Super Star Clusters in star-forming galaxies. The diagram shows the mass and radius of these clusters and also the position of Westerlund 1 (indicated Wd 1). Westerlund 1 is incredibly rich in monster stars - just as one example, it contains as many Yellow Hypergiants as were hitherto known in the entire Milky Way! "If the Sun were located at the heart of Westerlund 1, the sky would be full of stars, many of them brighter than the full Moon", comments Ignacio Negueruela of the Universidad de Alicante in Spain and member of the team. The large quantity of very massive stars implies that Westerlund 1 must contain a huge number of stars. "In our Galaxy, explains Simon Clark of the University College London (UK) and one of the authors of this study, "there are more than 100 solar-like stars for every star weighing 10 times as much as the Sun. The fact that we see hundreds of massive stars in Westerlund 1 means that it probably contains close to half a million stars, but most of these are not bright enough to peer through the obscuring cloud of gas and dust". This is ten times more than any other known young clusterin the Milky Way. Westerlund 1 is presumably much more massive than the dense clusters of heavy stars present in the central region of our Galaxy, like the Arches and Quintuplet clusters. Further deep infrared observations will be required to confirm this. This super star cluster now provides astronomers with a unique perspective towards one of the most extreme environments in the Universe. Westerlund 1 will certainly provide new opportunities in the long-standing quest for more and finer details about how stars, and especially massive ones, do form. ... and the Most Dense The large number of stars in Westerlund 1 was not the only surprise awaiting Clark and his colleagues. From their observations, the team members also found that all these stars are packed into an amazingly small volume of space, indeed less than 6 light-years across. In fact, this is more or less comparable to the 4 light-year distance to the star nearest to the Sun, Proxima Centauri! It is incredible: the concentration in Westerlund 1 is so high that the mean separation between stars is quite similar to the extent of the Solar System. "With so many stars in such a small volume, some of them may collide", envisages Simon Clark. "This could lead to the formation of an intermediate-mass black hole more massive than 100 solar masses. It may well be that such a monster has already formed at the core of Westerlund 1." The huge population of massive stars in Westerlund 1 suggests that it will have a very significant impact on its surroundings. The cluster contains so many massive stars that in a time span of less than 40 million years, it will be the site of more than 1,500 supernovae. A gigantic firework that may drive a fountain of galactic material! Because Westerlund 1 is at a distance of only about 10,000 light-years, high-resolution cameras such as NAOS/CONICA on ESO's Very Large Telescope can resolve its individual stars. Such observations are now starting to reveal smaller stars in Westerlund 1, including some that are less massive than the Sun. Astronomers will thus soon be able to study this exotic galactic zoo in great depth. More information The research presented in this ESO Press Release will soon appear in the leading research journal Astronomy and Astrophysics ("On the massive stellar population of the Super Star Cluster Westerlund 1" by J.S. Clark and colleagues). The PDF file is available at the A&A web site. A second paper ("Further Wolf-Rayet stars in the starburst cluster Westerlund 1", by Ignacio Negueruela and Simon Clark) will also soon be published in Astronomy and Astrophysics. It is available as astro-ph/0503303. A Spanish press release issued by Universidad de Alicante is available on the web site of Ignacio Negueruela.

  10. Astronomers Gain Important Insight on How Massive Stars Form

    NASA Astrophysics Data System (ADS)

    2006-09-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered key evidence that may help them figure out how very massive stars can form. Young Star Graphic Artist's Conception of Young Star Showing Motions Detected in G24 A1: (1) Infall toward torus, (2) Rotation and (3) outflow. CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for larger graphic file (JPEG, 129K) "We think we know how stars like the Sun are formed, but there are major problems in determining how a star 10 times more massive than the Sun can accumulate that much mass. The new observations with the VLA have provided important clues to resolving that mystery," said Maria Teresa Beltran, of the University of Barcelona in Spain. Beltran and other astronomers from Italy and Hawaii studied a young, massive star called G24 A1 about 25,000 light-years from Earth. This object is about 20 times more massive than the Sun. The scientists reported their findings in the September 28 issue of the journal Nature. Stars form when giant interstellar clouds of gas and dust collapse gravitationally, compacting the material into what becomes the star. While astronomers believe they understand this process reasonably well for smaller stars, the theoretical framework ran into a hitch with larger stars. "When a star gets up to about eight times the mass of the Sun, it pours out enough light and other radiation to stop the further infall of material," Beltran explained. "We know there are many stars bigger than that, so the question is, how do they get that much mass?" One idea is that infalling matter forms a disk whirling around the star. With most of the radiation escaping without hitting the disk, material can continue to fall into the star from the disk. According to this model, some material will be flung outward along the rotation axis of the disk into powerful outflows. "If this model is correct, there should be material falling inward, rushing outward and rotating around the star all at the same time," Beltran said. "In fact, that's exactly what we saw in G24 A1. It's the first time all three types of motion have been seen in a single young massive star," she added. The scientists traced motions in gas around the young star by studying radio waves emitted by ammonia molecules at a frequency near 23 GHz. The Doppler shift in the frequency of the radio waves gave them the information on the motions of the gas. This technique allowed them to detect gas falling inward toward a large "doughnut," or torus, surrounding the disk presumed to be orbiting the young star. "Our detection of gas falling inward toward the star is an important milestone," Beltran said. The infall of the gas is consistent with the idea of material accreting onto the star in a non-spherical manner, such as in a disk. This supports that idea, which is one of several proposed ways for massive stars to accumulate their great bulk. Others include collisions of smaller stars. "Our findings suggest that the disk model is a plausible way to make stars up to 20 times the mass of the Sun. We'll continue to study G24 A1 and other objects to improve our understanding," Beltran said. Beltran worked with Riccardo Cesaroni and Leonardo Testi of the Astrophysical Observatory of Arcetri of INAF in Firenze, Italy, Claudio Codella and Luca Olmi of the Institute of Radioastronomy of INAF in Firenze, Italy, and Ray Furuya of the Japanese Subaru Telescope in Hawaii. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  11. The Massive Stellar Population in the Diffuse Ionized Gas of M33

    NASA Technical Reports Server (NTRS)

    Hoopes, Charles G.; Walterbos, Rene A. M.

    1995-01-01

    We compare Far-UV, H alpha, and optical broadband images of the nearby spiral galaxy M33, to investigate the massive stars associated with the diffuse ionized gas. The H-alpha/FUV ratio is higher in HII regions than in the DIG, possibly indicating that an older population ionizes the DIG. The broad-band colors support this conclusion. The HII region population is consistent with a young burst, while the DIG colors resemble an older population with constant star formation. Our results indicate that there may be enough massive field stars to ionize the DIG, without the need for photon leakage from HII regions.

  12. Low-metallicity (sub-SMC) massive stars

    NASA Astrophysics Data System (ADS)

    Garcia, Miriam; Herrero, Artemio; Najarro, Francisco; Camacho, Inés; Lennon, Daniel J.; Urbaneja, Miguel A.; Castro, Norberto

    2017-11-01

    The double distance and metallicity frontier marked by the SMC has been finally broken with the aid of powerful multi-object spectrographs installed at 8-10m class telescopes. VLT, GTC and Keck have enabled studies of massive stars in dwarf irregular galaxies of the Local Group with poorer metal-content than the SMC. The community is working to test the predictions of evolutionary models in the low-metallicity regime, set the new standard for the metal-poor high-redshift Universe, and test the extrapolation of the physics of massive stars to environments of decreasing metallicity. In this paper, we review current knowledge on this topic.

  13. The VLT-FLAMES Tarantula Survey

    NASA Astrophysics Data System (ADS)

    Vink, Jorick S.; Evans, C. J.; Bestenlehner, J.; McEvoy, C.; Ramírez-Agudelo, O.; Sana, H.; Schneider, F.; VFTS Collaboration

    2017-11-01

    We present a number of notable results from the VLT-FLAMES Tarantula Survey (VFTS), an ESO Large Program during which we obtained multi-epoch medium-resolution optical spectroscopy of a very large sample of over 800 massive stars in the 30 Doradus region of the Large Magellanic Cloud (LMC). This unprecedented data-set has enabled us to address some key questions regarding atmospheres and winds, as well as the evolution of (very) massive stars. Here we focus on O-type runaways, the width of the main sequence, and the mass-loss rates for (very) massive stars. We also provide indications for the presence of a top-heavy initial mass function (IMF) in 30 Dor.

  14. Probing Massive Star Cluster Formation with ALMA

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey

    2015-08-01

    Observationally constraining the physical conditions that give rise to massive star clusters has been a long-standing challenge. Now with the ALMA Observatory coming on-line, we can finally begin to probe the birth environments of massive clusters in a variety of galaxies with sufficient angular resolution. In this talk I will give an overview of ALMA observations of galaxies in which candidate proto-super star cluster molecular clouds have been identified. These new data probe the physical conditions that give rise to super star clusters, providing information on their densities, pressures, and temperatures. In particular, the observations indicate that these clouds may be subject to external pressures of P/k > 108 K cm-3, which is consistent with the prevalence of optically observed adolescent super star clusters in interacting galaxy systems and other high pressure environments. ALMA observations also enable an assessement of the molecular cloud chemical abundances in the regions surrounding super star clusters. Molecular clouds associated with existing super star clusters are strongly correlated with HCO+ emission, but appear to have relatively low ratio of CO/HCO+ emission compared to other clouds, indicating that the super star clusters are impacting the molecular abundances in their vicinity.

  15. The Tarantula Nebula

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's new Spitzer Space Telescope, formerly known as the Space Infrared Telescope Facility, has captured in stunning detail the spidery filaments and newborn stars of the Tarantula Nebula, a rich star-forming region also known as 30 Doradus. This cloud of glowing dust and gas is located in the Large Magellanic Cloud, the nearest galaxy to our own Milky Way, and is visible primarily from the Southern Hemisphere. This image of an interstellar cauldron provides a snapshot of the complex physical processes and chemistry that govern the birth - and death - of stars.

    At the heart of the nebula is a compact cluster of stars, known as R136, which contains very massive and young stars. The brightest of these blue supergiant stars are up to 100 times more massive than the Sun, and are at least 100,000 times more luminous. These stars will live fast and die young, at least by astronomical standards, exhausting their nuclear fuel in a few million years.

    The Spitzer Space Telescope image was obtained with an infrared array camera that is sensitive to invisible infrared light at wavelengths that are about ten times longer than visible light. In this four-color composite, emission at 3.6 microns is depicted in blue, 4.5 microns in green, 5.8 microns in orange, and 8.0 microns in red. The image covers a region that is three-quarters the size of the full moon.

    The Spitzer observations penetrate the dust clouds throughout the Tarantula to reveal previously hidden sites of star formation. Within the luminescent nebula, many holes are also apparent. These voids are produced by highly energetic winds originating from the massive stars in the central star cluster. The structures at the edges of these voids are particularly interesting. Dense pillars of gas and dust, sculpted by the stellar radiation, denote the birthplace of future generations of stars.

    The Spitzer image provides information about the composition of the material at the edges of the voids. The surface layers closest to the massive stars are subject to the most intense stellar radiation. Here, the atoms are stripped of their electrons, and the green color of these regions is indicative of the radiation from this highly excited, or 'ionized,' material. The ubiquitous red filaments seen throughout the image reveal the presence of molecular material thought to be rich in hydrocarbons.

    The Tarantula Nebula is the nearest example of a 'starburst' phenomenon, in which intense episodes of star formation occur on massive scales. Most starbursts, however, are associated with dusty and distant galaxies. Spitzer infrared observations of the Tarantula provide astronomers with an unprecedented view of the lifecycle of massive stars and their vital role in regulating the birth of future stellar and planetary systems.

  16. The Tarantula Nebula

    NASA Image and Video Library

    2004-01-13

    NASA Spitzer Space Telescope, formerly known as the Space Infrared Telescope Facility, has captured in stunning detail the spidery filaments and newborn stars of theTarantula Nebula, a rich star-forming region also known as 30 Doradus. This cloud of glowing dust and gas is located in the Large Magellanic Cloud, the nearest galaxy to our own Milky Way, and is visible primarily from the Southern Hemisphere. This image of an interstellar cauldron provides a snapshot of the complex physical processes and chemistry that govern the birth - and death - of stars. At the heart of the nebula is a compact cluster of stars, known as R136, which contains very massive and young stars. The brightest of these blue supergiant stars are up to 100 times more massive than the Sun, and are at least 100,000 times more luminous. These stars will live fast and die young, at least by astronomical standards, exhausting their nuclear fuel in a few million years. The Spitzer Space Telescope image was obtained with an infrared array camera that is sensitive to invisible infrared light at wavelengths that are about ten times longer than visible light. In this four-color composite, emission at 3.6 microns is depicted in blue, 4.5 microns in green, 5.8 microns in orange, and 8.0 microns in red. The image covers a region that is three-quarters the size of the full moon. The Spitzer observations penetrate the dust clouds throughout the Tarantula to reveal previously hidden sites of star formation. Within the luminescent nebula, many holes are also apparent. These voids are produced by highly energetic winds originating from the massive stars in the central star cluster. The structures at the edges of these voids are particularly interesting. Dense pillars of gas and dust, sculpted by the stellar radiation, denote the birthplace of future generations of stars. The Spitzer image provides information about the composition of the material at the edges of the voids. The surface layers closest to the massive stars are subject to the most intense stellar radiation. Here, the atoms are stripped of their electrons, and the green color of these regions is indicative of the radiation from this highly excited, or 'ionized,' material. The ubiquitous red filaments seen throughout the image reveal the presence of molecular material thought to be rich in hydrocarbons. The Tarantula Nebula is the nearest example of a 'starburst' phenomenon, in which intense episodes of star formation occur on massive scales. Most starbursts, however, are associated with dusty and distant galaxies. Spitzer infrared observations of the Tarantula provide astronomers with an unprecedented view of the lifecycle of massive stars and their vital role in regulating the birth of future stellar and planetary systems. http://photojournal.jpl.nasa.gov/catalog/PIA05062

  17. On the spatial distributions of dense cores in Orion B

    NASA Astrophysics Data System (ADS)

    Parker, Richard J.

    2018-05-01

    We quantify the spatial distributions of dense cores in three spatially distinct areas of the Orion B star-forming region. For L1622, NGC 2068/NGC 2071, and NGC 2023/NGC 2024, we measure the amount of spatial substructure using the Q-parameter and find all three regions to be spatially substructured (Q < 0.8). We quantify the amount of mass segregation using ΛMSR and find that the most massive cores are mildly mass segregated in NGC 2068/NGC 2071 (ΛMSR ˜ 2), and very mass segregated in NGC 2023/NGC 2024 (Λ _MSR = 28^{+13}_{-10} for the four most massive cores). Whereas the most massive cores in L1622 are not in areas of relatively high surface density, or deeper gravitational potentials, the massive cores in NGC 2068/NGC 2071 and NGC 2023/NGC 2024 are significantly so. Given the low density (10 cores pc-2) and spatial substructure of cores in Orion B, the mass segregation cannot be dynamical. Our results are also inconsistent with simulations in which the most massive stars form via competitive accretion, and instead hint that magnetic fields may be important in influencing the primordial spatial distributions of gas and stars in star-forming regions.

  18. IUE investigations of SN 1987A

    NASA Technical Reports Server (NTRS)

    Kirshner, Robert P.

    1989-01-01

    IUE observations of the SN 1987A began shortly after the discovery and have been frequent through 1988 and 1989, using the fine error sensor for photometry, low dispersion spectra for the supernova spectrum, and high dispersion observations for the interstellar medium when the supernova was bright and for circumstellar gas surrounding the supernova as the initial event faded. The UV data were very useful in determining which star exploded, assessing the ionizing pulse produced as the shock hit the surface of the star, and in constraining the stellar evolution that preceded the explosion through observations of a circumstellar shell.

  19. THE VERY MASSIVE STAR CONTENT OF THE NUCLEAR STAR CLUSTERS IN NGC 5253

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, L. J.; Crowther, P. A.; Calzetti, D.

    2016-05-20

    The blue compact dwarf galaxy NGC 5253 hosts a very young starburst containing twin nuclear star clusters, separated by a projected distance of 5 pc. One cluster (#5) coincides with the peak of the H α emission and the other (#11) with a massive ultracompact H ii region. A recent analysis of these clusters shows that they have a photometric age of 1 ± 1 Myr, in apparent contradiction with the age of 3–5 Myr inferred from the presence of Wolf-Rayet features in the cluster #5 spectrum. We examine Hubble Space Telescope ultraviolet and Very Large Telescope optical spectroscopy ofmore » #5 and show that the stellar features arise from very massive stars (VMSs), with masses greater than 100 M {sub ⊙}, at an age of 1–2 Myr. We further show that the very high ionizing flux from the nuclear clusters can only be explained if VMSs are present. We investigate the origin of the observed nitrogen enrichment in the circumcluster ionized gas and find that the excess N can be produced by massive rotating stars within the first 1 Myr. We find similarities between the NGC 5253 cluster spectrum and those of metal-poor, high-redshift galaxies. We discuss the presence of VMSs in young, star-forming galaxies at high redshift; these should be detected in rest-frame UV spectra to be obtained with the James Webb Space Telescope . We emphasize that population synthesis models with upper mass cutoffs greater than 100 M {sub ⊙} are crucial for future studies of young massive star clusters at all redshifts.« less

  20. Observational studies of regions of massive star formation

    NASA Astrophysics Data System (ADS)

    Cooper, Heather Danielle Blythe

    2013-03-01

    Massive stars have a profound influence on their surroundings. However, relatively little is known about their formation. The study of massive star formation is hindered by a lack of observational evidence, primarily due to difficulties observing massive stars at early stages in their development. The Red MSX Source survey (RMS survey) is a valuable tool with which to address these issues. Near-infrared H- and K-band spectra were taken for 247 candidate massive young stellar objects (MYSOs), selected from the RMS survey. 195 (∼80%) of the targets are YSOs, of which 131 are massive YSOs (LBOL>5E3L⊙, M>8 M⊙). This is the largest spectroscopic study of massive YSOs to date. This study covers minimally obscured objects right through to very red, dusty sources. Almost all YSOs show some evidence for emission lines, though there is a wide variety of observed properties, with HI, H2 Fe II, and CO among the most commonly observed lines. Evidence for disks and outflows was frequently seen. Comparisons of Brγ and H2 emission with low mass YSOs suggest that the emission mechanism for these lines is the same for low-, intermediate-, and high-mass YSOs, i.e. high-mass YSOs appear to resemble scaled-up versions of low-mass YSOs. It was found that the YSOs form an evolutionary sequence, based on their spectra, consistent with the existing theoretical models. Type I YSOs have strong H2 emission, no ionized lines, and are redder than the other two subtypes. As such, these are considered to be the youngest sources. The Type III sources are bluest, and therefore considered to be the oldest subtype. They have strong H I lines and fluorescent Fe II 1.6878 μm emission. They may also have weak H2 emission. Type III sources may even be beginning to form a mini-H II region. XSHOOTER data from 10 Herbig Be stars were analysed. The evidence suggests that winds and disks are common among Herbig stars, as they are among their main sequence classical Be star counterparts. Line broadening was seen in many of the sources, though it was not possible to identify whether this was due to Stark broadening or electron scattering. The observations and analysis presented in this thesis are an important step forward for the field of massive star formation. They also have the potential to be a starting block for future work.

  1. An investigation of the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Brooks, Kate J.

    2000-10-01

    It is well known that the radiation fields and stellar winds of massive stars can drastically affect the physical conditions, structure and chemistry of the giant molecular cloud (GMC) from which they formed. It is also thought that massive stars are at least partly responsible for triggering further star formation within a GMC. The details of this interaction, however, are not well understood and additional detailed study of massive star-forming regions is needed. This study has focused on a multi-wavelength investigation of the Carina Nebula. This is a spectacular massive star-forming region that contains two of the most massive star clusters in our galaxy, Trumpler 14 and Trumpler 16, and one of the most massive stars known -- η Car. The goal of this study has been to obtain information on the molecular gas, ionized gas and photodissociation regions (PDRs) from a collection of instruments which have the highest angular resolution and sensitivity available to date. The Mopra Telescope and the Swedish-ESO Submillimeter Telescope (SEST) were used to obtain a series of molecular line observations of the GMC between 150 and 230 GHz. Observations of H110α recombination-line emission at 4.874 GHz and the related continuum emission were obtained with the Australia Telescope Compact Array and used to study the ionized gas associated with the two HII regions, Car I and Car II. H2 1--0 S(1) (2.12 microns) and Brγ (2.16 microns) observations using the University of New South Wales Infrared Fabry-Perot (UNSWIRF) and 3.29 micron narrow-band observations obtained with the SPIREX/Abu thermal infrared camera were used to study the PDRs on the surface of molecular clumps in the Keyhole region, a dark optical feature in the vicinity of η Car. The results of these observations provide detailed information on the excitation conditions, kinematics and morphology of regions within the HII region/molecular cloud complex of the Carina Nebula. In addition, the results confirm that the Carina Nebula is one of the most extreme and complex cases of massive stars interacting with their environment and show that there is still a wealth of information to be gained from future studies of this region. %% If you have your thesis on the web, please provide the web address here Copies currently available at: http://www.atnf.csiro.au/people/kbrooks/html/publications.html

  2. HUBBLE VIEWS A STARRY RING WORLD BORN IN A HEAD-ON COLLISION

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [Right] - A rare and spectacular head-on collision between two galaxies appears in this NASA Hubble Space Telescope true-color image of the Cartwheel Galaxy, located 500 million light-years away in the constellation Sculptor. The new details of star birth resolved by Hubble provide an opportunity to study how extremely massive stars are born in large fragmented gas clouds. The striking ring-like feature is a direct result of a smaller intruder galaxy -- possibly one of two objects to the right of the ring -- that careened through the core of the host galaxy. Like a rock tossed into a lake, the collision sent a ripple of energy into space, plowing gas and dust in front of it. Expanding at 200,000 miles per hour, this cosmic tsunami leaves in its wake a firestorm of new star creation. Hubble resolves bright blue knots that are gigantic clusters of newborn stars and immense loops and bubbles blown into space by exploding stars (supernovae) going off like a string of firecrackers. The Cartwheel Galaxy presumably was a normal spiral galaxy like our Milky Way before the collision. This spiral structure is beginning to re-emerge, as seen in the faint arms or spokes between the outer ring and bulls-eye shaped nucleus. The ring contains at least several billion new stars that would not normally have been created in such a short time span and is so large (150,000 light-years across) our entire Milky Way Galaxy would fit inside. Hubble's new view does not solve the mystery as to which of the two small galaxies might have been the intruder. The blue galaxy is disrupted and has new star formation which strongly suggests it is the interloper. However, the smoother-looking companion has no gas, which is consistent with the idea that gas was stripped out of it during passage through the Cartwheel Galaxy. [Top Left] - Hubble's detailed view shows the knot-like structure of the ring, produced by large clusters of new star formation. Hubble also resolves the effects of thousands of supernovae on the ring structure. One flurry of explosions blew a hole in the ring and formed a giant bubble of hot gas. Secondary star formation on the edge of this bubble appears as an arc extending beyond the ring. [Bottom Left] - Hubble resolves remarkable new detail in the galaxy's core. The reddish color of this region indicates that it contains a tremendous amount of dust and embedded star formation. Bright pinpoints of light are gigantic young star clusters. The picture was taken with the Wide Field Planetary Camera-2 on October 16, 1994. It is a combination of two images, taken in blue and near-infrared light. Credit: Kirk Borne (ST ScI), and NASA

  3. Ultra-stripped supernovae: progenitors and fate

    NASA Astrophysics Data System (ADS)

    Tauris, Thomas M.; Langer, Norbert; Podsiadlowski, Philipp

    2015-08-01

    The explosion of ultra-stripped stars in close binaries can lead to ejecta masses <0.1 M⊙ and may explain some of the recent discoveries of weak and fast optical transients. In Tauris et al., it was demonstrated that helium star companions to neutron stars (NSs) may experience mass transfer and evolve into naked ˜1.5 M⊙ metal cores, barely above the Chandrasekhar mass limit. Here, we elaborate on this work and present a systematic investigation of the progenitor evolution leading to ultra-stripped supernovae (SNe). In particular, we examine the binary parameter space leading to electron-capture (EC SNe) and iron core-collapse SNe (Fe CCSNe), respectively, and determine the amount of helium ejected with applications to their observational classification as Type Ib or Type Ic. We mainly evolve systems where the SN progenitors are helium star donors of initial mass MHe = 2.5-3.5 M⊙ in tight binaries with orbital periods of Porb = 0.06-2.0 d, and hosting an accreting NS, but we also discuss the evolution of wider systems and of both more massive and lighter - as well as single - helium stars. In some cases, we are able to follow the evolution until the onset of silicon burning, just a few days prior to the SN explosion. We find that ultra-stripped SNe are possible for both EC SNe and Fe CCSNe. EC SNe only occur for MHe = 2.60-2.95 M⊙ depending on Porb. The general outcome, however, is an Fe CCSN above this mass interval and an ONeMg or CO white dwarf for smaller masses. For the exploding stars, the amount of helium ejected is correlated with Porb - the tightest systems even having donors being stripped down to envelopes of less than 0.01 M⊙. We estimate the rise time of ultra-stripped SNe to be in the range 12 h-8 d, and light-curve decay times between 1 and 50 d. A number of fitting formulae for our models are provided with applications to population synthesis. Ultra-stripped SNe may produce NSs in the mass range 1.10-1.80 M⊙ and are highly relevant for LIGO/VIRGO since most (possibly all) merging double NS systems have evolved through this phase. Finally, we discuss the low-velocity kicks which might be imparted on these resulting NSs at birth.

  4. Ongoing Massive Star Formation in NGC 604

    NASA Astrophysics Data System (ADS)

    Martínez-Galarza, J. R.; Hunter, D.; Groves, B.; Brandl, B.

    2012-12-01

    NGC 604 is the second most massive H II region in the Local Group, thus an important laboratory for massive star formation. Using a combination of observational and analytical tools that include Spitzer spectroscopy, Herschel photometry, Chandra imaging, and Bayesian spectral energy distribution fitting, we investigate the physical conditions in NGC 604 and quantify the amount of massive star formation currently taking place. We derive an average age of 4 ± 1 Myr and a total stellar mass of 1.6+1.6 - 1.0 × 105 M ⊙ for the entire region, in agreement with previous optical studies. Across the region, we find an effect of the X-ray field on both the abundance of aromatic molecules and the [Si II] emission. Within NGC 604, we identify several individual bright infrared sources with diameters of about 15 pc and luminosity-weighted masses between 103 M ⊙ and 104 M ⊙. Their spectral properties indicate that some of these sources are embedded clusters in process of formation, which together account for ~8% of the total stellar mass in the NGC 604 system. The variations of the radiation field strength across NGC 604 are consistent with a sequential star formation scenario, with at least two bursts in the last few million years. Our results indicate that massive star formation in NGC 604 is still ongoing, likely triggered by the earlier bursts.

  5. Peering into the heart of galactic star formation: A detailed characterization of infrared-dark clouds

    NASA Astrophysics Data System (ADS)

    Ragan, Sarah E.

    2009-09-01

    Everything we know about other galaxies is based on light from massive stars, yet, in our own Galaxy, it's the formation of massive stars that is the least understood. Star formation studies to date have focused on nearby, low-mass regions, but the bulk of star formation takes place in massive clusters, which takes place primarily in the inner-Galaxy, where the bulk of the molecular gas resides. To learn about the conditions under which massive clusters form, we seek out their precursors, called infrared-dark clouds (IRDCs). We present the results of a high-resolution multi-wavelength observational study of IRDCs, which vastly improves our knowledge of the initial conditions of cluster formation. Beginning with IRDC candidates identified with Midcourse Science Experiment (MSX) survey data, we map 41 IRDCs in the N 2 H + 1 [arrow right] 0, CS 2 [arrow right] 1 and C 18 O 1 [arrow right] 0 molecular transitions using the Five College Radio Astronomy Observatory. We examine the stellar content and absorption structure with Spitzer Space Telescope observations of eleven IRDCs, and we use Very Large Array NH 3 observations to probe the kinematics and chemistry of six IRDCs. Our comprehensive high-resolution study of IRDCs confirms that these objects are cold and dense precursors to massive stars and clusters. For the first time. we quantify IRDC sub-structure on sub-parsec scales and show the kinematic structure of IRDCs is diverse and depends on associated local star- formation activity. Overall, IRDCs exhibit non-thermal dynamics, suggesting that turbulence and systematic motions dominate. IRDC temperatures are between 8 and 16 K and are mostly flat with hints of a rise near the edges due to external heating. This study shows that IRDCs are a unique star-forming environment, one that dominates the star formation in the Milky Way. Using high-resolution observations, we have quantified the structure, star formation, kinematics, and chemistry of infrared-dark clouds. Our study of sub- structure in particular shows that IRDCs are undergoing fragmentation and are the precursors to star clusters, and thus we have placed IRDCs in context with Galactic star formation. The characterization presented here offers new constraints on theories of molecular cloud fragmentation and clustered star formation.

  6. Toward the first stars: hints from the CEMP-no stars

    NASA Astrophysics Data System (ADS)

    Choplin, A.

    2017-12-01

    CEMP-no stars are iron-deficient, carbon-rich stars, with no or little s- and r-elements. Because of their very low iron content, they are often considered to be closely linked to the first stars. Their origin is still a matter of debate. Understanding their formation could provide very valuable information on the first stars, early nucleosynthesis, early galactic chemical evolution and first supernovae. The most explored formation scenario for CEMP-no stars suggests that CEMP-no stars formed from the ejecta (wind and/or supernova) of a massive source star, that lived before the CEMP-no star. Here we discuss models of fast rotating massive source stars with and without triggering a late mixing event just before the end of the life of the source star. We find that without this late mixing event, the bulk of observed CEMP-no stars cannot be reproduced by our models. On the opposite, the bulk is reproductible if adding the late mixing event in the source star models.

  7. A Survey of Extended H_{2} Emission Towards a Sample of Massive YSOs

    NASA Astrophysics Data System (ADS)

    Navarete, F.; Damineli, A.; Barbosa, C. L.; Blum, R. D.

    2014-10-01

    Very few massive stars in early formation stages were clearly identified in the Milky Way and moreover, the processes of formation of such objects lacks of observational evidences. Two theories predict the formation of massive star: i) by merging of low mass stars or ii) by an accretion disk. One of the most prominent evidences for the accretion scenario is the presence of bipolar outflows associated to the central sources. Those structures were found on both intermediate and low-mass YSOs, but there are no evidences for associations with MYSOs. Based on that, a survey was designed to investigate the earliest stages of massive star formation through the molecular hydrogen transition at 2.12μm. A sample of ˜ 300 MYSOs candidates was selected from the Red MSX Source program and the sources were observed with the IR cameras Spartan (SOAR, Chile) and WIRCam (CFHT, Hawaii). Extended H_{2} emission was found toward 55% of the sample and 30% of the positive detections (50 sources) have bipolar morphology, suggesting collimated outflows. These results support the accretion scenario, since the merging of low mass stars would not produce jet-like structures.

  8. The formation of massive molecular filaments and massive stars triggered by a magnetohydrodynamic shock wave

    NASA Astrophysics Data System (ADS)

    Inoue, Tsuyoshi; Hennebelle, Patrick; Fukui, Yasuo; Matsumoto, Tomoaki; Iwasaki, Kazunari; Inutsuka, Shu-ichiro

    2018-05-01

    Recent observations suggest an that intensive molecular cloud collision can trigger massive star/cluster formation. The most important physical process caused by the collision is a shock compression. In this paper, the influence of a shock wave on the evolution of a molecular cloud is studied numerically by using isothermal magnetohydrodynamics simulations with the effect of self-gravity. Adaptive mesh refinement and sink particle techniques are used to follow the long-time evolution of the shocked cloud. We find that the shock compression of a turbulent inhomogeneous molecular cloud creates massive filaments, which lie perpendicularly to the background magnetic field, as we have pointed out in a previous paper. The massive filament shows global collapse along the filament, which feeds a sink particle located at the collapse center. We observe a high accretion rate \\dot{M}_acc> 10^{-4} M_{⊙}yr-1 that is high enough to allow the formation of even O-type stars. The most massive sink particle achieves M > 50 M_{⊙} in a few times 105 yr after the onset of the filament collapse.

  9. The History and Rate of Star Formation within the G305 Complex

    NASA Astrophysics Data System (ADS)

    Faimali, Alessandro Daniele

    2013-07-01

    Within this thesis, we present an extended multiwavelength analysis of the rich massive Galactic star-forming complex G305. We have focused our attention on studying the both the embedded massive star-forming population within G305, while also identifying the intermediate-, to lowmass content of the region also. Though massive stars play an important role in the shaping and evolution of their host galaxies, the physics of their formation still remains unclear. We have therefore set out to studying the nature of star formation within this complex, and also identify the impact that such a population has on the evolution of G305. We firstly present a Herschel far-infrared study towards G305, utilising PACS 70, 160 micron and SPIRE 250, 350, and 500 micron observations from the Hi-GAL survey of the Galactic plane. The focus of this study is to identify the embedded massive star-forming population within G305, by combining far-infrared data with radio continuum, H2O maser, methanol maser, MIPS, and Red MSX Source survey data available from previous studies. From this sample we identify some 16 candidate associations are identified as embedded massive star-forming regions, and derive a two-selection colour criterion from this sample of log(F70/F500) >= 1 and log(F160/F350) >= 1.6 to identify an additional 31 embedded massive star candidates with no associated star-formation tracers. Using this result, we are able to derive a star formation rate (SFR) of 0.01 - 0.02 Msun/yr. Comparing this resolved star formation rate, to extragalactic star formation rate tracers (based on the Kennicutt-Schmidt relation), we find the star formation activity is underestimated by a factor of >=2 in comparison to the SFR derived from the YSO population. By next combining data available from 2MASS and VVV, Spitzer GLIMPSE and MIPSGAL, MSX, and Herschel Hi-GAL, we are able to identify the low-, to intermediate-mass YSOs present within the complex. Employing a series of stringent colour selection criteria and fitting reddened stellar atmosphere models, we are able remove a significant amount of contaminating sources from our sample, leaving us with a highly reliable sample of some 599 candidate YSOs. From this sample, we derive a present-day SFR of 0.005±0.001 Msun/yr, and find the YSO mass function (YMF) of G305 to be significantly steeper than the standard Salpeter-Kroupa IMF. We find evidence of mass segregation towards G305, with a significant variation of the YMF both with the active star-forming region, and the outer region. The spatial distribution, and age gradient, of our 601 candidate YSOs also seem to rule out the scenario of propagating star formation within G305, with a more likely scenario of punctuated star formation over the lifetime of the complex.

  10. Chandra X-Ray Observatory (CXO) on Orbit Animation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is an on-orbit animation of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the remnants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers worldwide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  11. Evolution of black holes in the galaxy

    NASA Astrophysics Data System (ADS)

    Brown, G. E.; Lee, C.-H.; Wijers, R. A. M. J.; Bethe, H. A.

    2000-08-01

    In this article we consider the formation and evolution of black holes, especially those in binary stars where radiation from the matter falling on them can be seen. We consider a number of effects introduced by some of us, which are not traditionally included in binary evolution of massive stars. These are (i) hypercritical accretion, which allows neutron stars to accrete enough matter to collapse to a black hole during their spiral-in into another star. (ii) The strong mass loss of helium stars, which causes their evolution to differ from that of the helium core of a massive star. (iii) The direct formation of low-mass black holes (M~2Msolar) from single stars, a consequence of a significant strange-matter content of the nuclear-matter equation of state at high density. We discuss these processes here, and then review how they affect various populations of binaries with black holes and neutron stars. We have found that hypercritical accretion changes the standard scenario for the evolution of binary neutron stars: it now usually gives a black-hole, neutron-star (BH-NS) binary, because the first-born neutron star collapses to a low-mass black hole in the course of the evolution. A less probable double helium star scenario has to be introduced in order to form neutron-star binaries. The result is that low-mass black-hole, neutron star (LBH-NS) binaries dominate the rate of detectable gravity-wave events, say, by LIGO, by a factor /~20 over the binary neutron stars. The formation of high-mass black holes is suppressed somewhat due to the influence of mass loss on the cores of massive stars, raising the minimum mass for a star to form a massive BH to perhaps 80Msolar. Still, inclusion of high-mass black-hole, neutron-star (HBH-NS) binaries increases the predicted LIGO detection rate by another /~30% lowering of the mass loss rates of Wolf-Rayet stars may lower the HBH mass limit, and thereby further increase the merger rate. We predict that /~33 mergers per year will be observed with LIGO once the advanced detectors planned to begin in 2004 are in place. Black holes are also considered as progenitors for gamma ray bursters (GRB). Due to their rapid spin, potentially high magnetic fields, and relatively clean environment, mergers of black-hole, neutron-star binaries may be especially suitable. Combined with their 10 times greater formation rate than binary neutron stars this makes them attractive candidates for GRB progenitors, although the strong concentration of GRBs towards host galaxies may favor massive star progenitors or helium-star, black-hole mergers. We also consider binaries with a low-mass companion, and study the evolution of the very large number of black-hole transients, consisting of a black hole of mass ~7Msolar accompanied by a K or M main-sequence star (except for two cases with a somewhat more massive subgiant donor). We show that common envelope evolution must take place in the supergiant stage of the massive progenitor of the black hole, giving an explanation of why the donor masses are so small. We predict that there are about 22 times more binaries than observed, in which the main-sequence star, somewhat more massive than a K- or M-star, sits quietly inside its Roche Lobe, and will only become an X-ray source when the companion evolves off the main sequence. We briefly discuss the evolution of low-mass X-ray binaries into millisecond pulsars. We point out that in the usual scenario for forming millisecond pulsars with He white-dwarf companions, the long period of stable mass transfer will usually lead to the collapse of the neutron star into a black hole. We then discuss Van den Heuvel's ``Hercules X-1 scenario'' for forming low-mass X-ray binaries, commenting on the differences in accretion onto the compact object by radiative or semiconvective donors, rather than the deeply convective donors used in the earlier part of our review. In Appendix /A we describe the evolution of Cyg X-3, finding the compact object to be a black hole of ~3Msolar, together with an ~10Msolar He star. In Appendix /B we do the accounting for gravitational mergers and in Appendix /C we show low-mass black-hole, neutron-star binaries to be good progenitors for gamma ray bursters.

  12. Very Massive Stars and the Eddington Limit

    NASA Astrophysics Data System (ADS)

    Crowther, P. A.; Hirschi, R.; Walborn, N. R.; Yusof, N.

    2012-12-01

    We use contemporary evolutionary models for very massive stars (VMS) to assess whether the Eddington limit constrains the upper stellar mass limit. We also consider the interplay between mass and age for the wind properties and spectral morphology of VMS, with reference to the recently modified classification scheme for O2-3.5 If*/WN stars. Finally, the death of VMS in the local universe is considered in the context of pair instability supernovae.

  13. R144: a very massive binary likely ejected from R136 through a binary-binary encounter

    NASA Astrophysics Data System (ADS)

    Oh, Seungkyung; Kroupa, Pavel; Banerjee, Sambaran

    2014-02-01

    R144 is a recently confirmed very massive, spectroscopic binary which appears isolated from the core of the massive young star cluster R136. The dynamical ejection hypothesis as an origin for its location is claimed improbable by Sana et al. due to its binary nature and high mass. We demonstrate here by means of direct N-body calculations that a very massive binary system can be readily dynamically ejected from an R136-like cluster, through a close encounter with a very massive system. One out of four N-body cluster models produces a dynamically ejected very massive binary system with a mass comparable to R144. The system has a system mass of ≈355 M⊙ and is located at 36.8 pc from the centre of its parent cluster, moving away from the cluster with a velocity of 57 km s-1 at 2 Myr as a result of a binary-binary interaction. This implies that R144 could have been ejected from R136 through a strong encounter with another massive binary or single star. In addition, we discuss all massive binaries and single stars which are ejected dynamically from their parent cluster in the N-body models.

  14. Fastest Pulsar Speeding Out of Galaxy, Astronomers Discover

    NASA Astrophysics Data System (ADS)

    2005-08-01

    A speeding, superdense neutron star somehow got a powerful "kick" that is propelling it completely out of our Milky Way Galaxy into the cold vastness of intergalactic space. Its discovery is puzzling astronomers who used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to directly measure the fastest speed yet found in a neutron star. Pulsar's Path Across Sky Over about 2.5 million years, Pulsar B1508+55 has moved across about a third of the night sky as seen from Earth. CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version 67 KB) The neutron star is the remnant of a massive star born in the constellation Cygnus that exploded about two and a half million years ago in a titanic explosion known as a supernova. Ultra-precise VLBA measurements of its distance and motion show that it is on course to inevitably leave our Galaxy. "We know that supernova explosions can give a kick to the resulting neutron star, but the tremendous speed of this object pushes the limits of our current understanding," said Shami Chatterjee, of the National Radio Astronomy Observatory (NRAO) and the Harvard-Smithsonian Center for Astrophysics. "This discovery is very difficult for the latest models of supernova core collapse to explain," he added. Chatterjee and his colleagues used the VLBA to study the pulsar B1508+55, about 7700 light-years from Earth. With the ultrasharp radio "vision" of the continent-wide VLBA, they were able to precisely measure both the distance and the speed of the pulsar, a spinning neutron star emitting powerful beams of radio waves. Plotting its motion backward pointed to a birthplace among groups of giant stars in the constellation Cygnus -- stars so massive that they inevitably explode as supernovae. "This is the first direct measurement of a neutron star's speed that exceeds 1,000 kilometers per second," said Walter Brisken, an NRAO astronomer. "Most earlier estimates of neutron-star speeds depended on educated guesses about their distances. With this one, we have a precise, direct measurement of the distance, so we can measure the speed directly," Brisken said. The VLBA measurements show the pulsar moving at nearly 1100 kilometers (more than 670 miles) per second -- about 150 times faster than an orbiting Space Shuttle. At this speed, it could travel from London to New York in five seconds. In order to measure the pulsar's distance, the astronomers had to detect a "wobble" in its position caused by the Earth's motion around the Sun. That "wobble" was roughly the length of a baseball bat as seen from the Moon. Then, with the distance determined, the scientists could calculate the pulsar's speed by measuring its motion across the sky. "The motion we measured with the VLBA was about equal to watching a home run ball in Boston's Fenway Park from a seat on the Moon," Chatterjee explained. "However, the pulsar took nearly 22 months to show that much apparent motion. The VLBA is the best possible telescope for tracking such tiny apparent motions." The star's presumed birthplace among giant stars in the constellation Cygnus lies within the plane of the Milky Way, a spiral galaxy. The new VLBA observations indicate that the neutron star now is headed away from the Milky Way's plane with enough speed to take it completely out of the Galaxy. Since the supernova explosion nearly 2 and a half million years ago, the pulsar has moved across about a third of the night sky as seen from Earth. "We've thought for some time that supernova explosions can give a kick to the resulting neutron star, but the latest computer models of this process have not produced speeds anywhere near what we see in this object," Chatterjee said. "This means that the models need to be checked, and possibly corrected, to account for our observations," he said. "There also are some other processes that may be able to add to the speed produced by the supernova kick, but we'll have to investigate more thoroughly to draw any firm conclusions," said Wouter Vlemmings of the Jodrell Bank Observatory in the UK and Cornell University in the U.S. The observations of B1508+55 were part of a larger project to use the VLBA to measure the distances and motions of numerous pulsars. "This is the first result of this long-term project, and it's pretty exciting to have something so spectacular come this early," Brisken said. The VLBA observations were made at radio frequencies between 1.4 and 1.7 GigaHertz. Chatterjee, Vlemmings and Brisken worked with Joseph Lazio of the Naval Research Laboratory, James Cordes of Cornell University, Miller Goss of NRAO, Stephen Thorsett of the University of California, Santa Cruz, Edward Fomalont of NRAO, Andrew Lyne and Michael Kramer, both of Jodrell Bank Observatory. The scientists presented their findings in the September 1 issue of the Astrophysical Journal Letters. The VLBA is a system of ten radio-telescope antennas, each with a dish 25 meters (82 feet) in diameter and weighing 240 tons. From Mauna Kea on the Big Island of Hawaii to St. Croix in the U.S. Virgin Islands, the VLBA spans more than 5,000 miles, providing astronomers with the sharpest vision of any telescope on Earth or in space. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  15. CLUMPY DISKS AS A TESTBED FOR FEEDBACK-REGULATED GALAXY FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, Lucio; Tamburello, Valentina; Lupi, Alessandro

    2016-10-10

    We study the dependence of fragmentation in massive gas-rich galaxy disks at z >1 on stellar feedback schemes and hydrodynamical solvers, employing the GASOLINE2 SPH code and the lagrangian mesh-less code GIZMO in finite mass mode. Non-cosmological galaxy disk runs with the standard delayed-cooling blastwave feedback are compared with runs adopting a new superbubble feedback, which produces winds by modeling the detailed physics of supernova-driven bubbles and leads to efficient self-regulation of star formation. We find that, with blastwave feedback, massive star-forming clumps form in comparable number and with very similar masses in GASOLINE2 and GIZMO. Typical clump masses aremore » in the range 10{sup 7}–10{sup 8} M {sub ⊙}, lower than in most previous works, while giant clumps with masses above 10{sup 9} M {sub ⊙} are exceedingly rare. By contrast, superbubble feedback does not produce massive star-forming bound clumps as galaxies never undergo a phase of violent disk instability. In this scheme, only sporadic, unbound star-forming overdensities lasting a few tens of Myr can arise, triggered by non-linear perturbations from massive satellite companions. We conclude that there is severe tension between explaining massive star-forming clumps observed at z >1 primarily as the result of disk fragmentation driven by gravitational instability and the prevailing view of feedback-regulated galaxy formation. The link between disk stability and star formation efficiency should thus be regarded as a key testing ground for galaxy formation theory.« less

  16. Two massive stars possibly ejected from NGC 3603 via a three-body encounter

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Chené, A.-N.; Schnurr, O.

    2013-03-01

    We report the discovery of a bow-shock-producing star in the vicinity of the young massive star cluster NGC 3603 using archival data of the Spitzer Space Telescope. Follow-up optical spectroscopy of this star with Gemini-South led to its classification as O6 V. The orientation of the bow shock and the distance to the star (based on its spectral type) suggest that the star was expelled from the cluster, while the young age of the cluster (˜2 Myr) implies that the ejection was caused by a dynamical few-body encounter in the cluster's core. The relative position on the sky of the O6 V star and a recently discovered O2 If*/WN6 star (located on the opposite side of NGC 3603) allows us to propose that both objects were ejected from the cluster via the same dynamical event - a three-body encounter between a single (O6 V) star and a massive binary (now the O2 If*/WN6 star). If our proposal is correct, then one can `weigh' the O2 If*/WN6 star using the conservation of the linear momentum. Given a mass of the O6 V star of ≈30 M⊙, we found that at the moment of ejection the mass of the O2 If*/WN6 star was ≈175 M⊙. Moreover, the observed X-ray luminosity of the O2 If*/WN6 star (typical of a single star) suggests that the components of this originally binary system have merged (e.g., because of encounter hardening).

  17. Extreme isolation of WN3/O3 stars and implications for their evolutionary origin as the elusive stripped binaries

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Götberg, Ylva; de Mink, Selma E.

    2018-03-01

    Recent surveys of the Magellanic Clouds have revealed a subtype of Wolf-Rayet (WR) star with peculiar properties. WN3/O3 spectra exhibit both WR-like emission and O3 V-like absorption - but at lower luminosity than O3 V or WN stars. We examine the projected spatial distribution of WN3/O3 stars in the Large Magellanic Cloud as compared to O-type stars. Surprisingly, WN3/O3 stars are among the most isolated of all classes of massive stars; they have a distribution similar to red supergiants dominated by initial masses of 10-15 M⊙, and are far more dispersed than classical WR stars or luminous blue variables. Their lack of association with clusters of O-type stars suggests strongly that WN3/O3 stars are not the descendants of single massive stars (30 M⊙ or above). Instead, they are likely products of interacting binaries at lower initial mass (10-18 M⊙). Comparison with binary models suggests a probable origin with primaries in this mass range that were stripped of their H envelopes through non-conservative mass transfer by a low-mass secondary. We show that model spectra and positions on the Hertzsprung-Russell diagram for binary-stripped stars are consistent with WN3/O3 stars. Monitoring radial velocities with high-resolution spectra can test for low-mass companions or runaway velocities. With lower initial mass and environments that avoid very massive stars, the WN3/O3 stars fit expectations for progenitors of Type Ib and possibly Type Ibn supernovae.

  18. Chandra Maps Vital Elements From Supernova

    NASA Astrophysics Data System (ADS)

    1999-12-01

    A team of astronomers led by Dr. John Hughes of Rutgers University in Piscataway, NJ has used observations from NASA's orbital Chandra X-ray Observatory to make an important new discovery that sheds light on how silicon, iron, and other elements were produced in supernova explosions. An X-ray image of Cassiopeia A (Cas A), the remnant of an exploded star, reveals gaseous clumps of silicon, sulfur, and iron expelled from deep in the interior of the star. The findings appear online in the Astrophysical Journal Letters at http://www.journals.uchicago.edu/ and are slated for print publication on Jan. 10, 2000. Authors of the paper, "Nucleosynthesis and Mixing in Cassiopeia A", are Hughes, Rutgers graduate student Cara Rakowski, Dr. David Burrows of the Pennsylvania State University, University Park, PA and Dr. Patrick Slane of the Harvard-Smithsonian Center for Astrophysics, Cambridge, MA. According to Hughes, one of the most profound accomplishments of twentieth century astronomy is the realization that nearly all of the elements other than hydrogen and helium were created in the interiors of stars. "During their lives, stars are factories that take the simplest element, hydrogen, and convert it into heavier ones," he said. "After consuming all the hydrogen in their cores, stars begin to evolve rapidly, until they finally run out of fuel and begin to collapse. In stars ten times or so more massive than our Sun, the central parts of the collapsing star may form a neutron star or a black hole, while the rest of the star is blown apart in a tremendous supernova explosion." Supernovae are rare, occurring only once every 50 years or so in a galaxy like our own. "When I first looked at the Chandra image of Cas A, I was amazed by the clarity and definition," said Hughes. "The image was much sharper than any previous one and I could immediately see lots of new details." Equal in significance to the image clarity is the potential the Chandra data held for measuring the composition of the various knots and filaments of stellar material visible in Cas A. Not only could the astronomers determine the composition of many knots in the remnant from the Chandra data, they were also able to infer where in the exploding star the knots had originated. For example, the most compact and brightest knots were composed mostly of silicon and sulfur, with little or no iron. This pointed to an origin deep in the star's interior where the temperatures had reached three billion degrees during the collapse and resulting supernova. Elsewhere, they found fainter features that contained significant amounts of iron as well as some silicon and sulfur. This material was produced even deeper in the star, where the temperatures during the explosion had reached higher values of four to five billion degrees. When Hughes and his collaborators compared where the compact silicon-rich knots and fainter iron-rich features were located in Cas A, they discovered that the iron-rich features from deepest in the star were near the outer edge of the remnant. This meant that they had been flung the furthest by the explosion that created Cas A. Even now this material appears to be streaming away from the site of the explosion with greater speed than the rest of the remnant. By studying the Cas A Chandra data further, astronomers hope to identify which of the several processes proposed by theoretical studies is likely to be the correct mechanism for explaining supernova explosions, both in terms of the dynamics and elements they produce. "In addition to understanding how iron and the other elements are produced in stars, we also want to learn how it gets out of stars and into the interstellar medium. This is why the study of supernovas and supernova remnants is so important," said Hughes. "Once released from stars, newly-created elements can then participate in the formation of new stars and planets in a great cycle that has gone on numerous times already. It is remarkable to realize that our planet Earth and indeed even humanity itself is part of this vast cosmic cycle." The Chandra observation was taken with the Advanced CCD Imaging Spectrometer (ACIS) on August 19, 1999. ACIS was built by Pennsylvania State University, and the Massachusetts Institute of Technology, Cambridge, MA. Press: Fact Sheet (08/99) To follow Chandra's progress, visit the Chandra site at: http://chandra.harvard.edu AND http://chandra.nasa.gov NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.

  19. TESIS - The TNG EROs Spectroscopic Identification Survey

    NASA Astrophysics Data System (ADS)

    Saracco, P.; Longhetti, M.; Severgnini, P.; della Ceca, R.; Mannucci, F.; Ghinassi, F.; Drory, N.; Feulner, G.; Bender, R.; Maraston, C.; Hopp, U.

    2003-06-01

    The epoch at which massive galaxies (M [star] > 10^11M[ scriptstyle sun ]) have assembled provides crucial constraints on the current galaxy formation and evolution models. The LCDM hierarchical merging model predicts that massive galaxies are assembled through mergers of pre-existing disk galaxies at z <= 1.5 (Kauffmann & Charlot 1998; Cole et al. 2000). In the alternative view massive ellipticals formed at z> 3 in a single episode of star formation and follow a pure luminosity evolution (PLE).

  20. Probing the X-ray Emission from the Massive Star Cluster Westerlund 2

    NASA Astrophysics Data System (ADS)

    Lopez, Laura

    2017-09-01

    We propose a 300 ks Chandra ACIS-I observation of the massive star cluster Westerlund 2 (Wd2). This region is teeming with high-energy emission from a variety of sources: colliding wind binaries, OB and Wolf-Rayet stars, two young pulsars, and an unidentified source of very high-energy (VHE) gamma-rays. Our Chandra program is designed to achieve several goals: 1) to take a complete census of Wd2 X-ray point sources and monitor variability; 2) to probe the conditions of the colliding winds in the binary WR 20a; 3) to search for an X-ray counterpart of the VHE gamma-rays; 4) to identify diffuse X-ray emission; 5) to compare results to other massive star clusters observed by Chandra. Only Chandra has the spatial resolution and sensitivity necessary for our proposed analyses.

Top