Science.gov

Sample records for exploit wave energy

  1. Energy for lunar resource exploitation

    NASA Technical Reports Server (NTRS)

    Glaser, Peter E.

    1992-01-01

    Humanity stands at the threshold of exploiting the known lunar resources that have opened up with the access to space. America's role in the future exploitation of space, and specifically of lunar resources, may well determine the level of achievement in technology development and global economic competition. Space activities during the coming decades will significantly influence the events on Earth. The 'shifting of history's tectonic plates' is a process that will be hastened by the increasingly insistent demands for higher living standards of the exponentially growing global population. Key to the achievement of a peaceful world in the 21st century, will be the development of a mix of energy resources at a societally acceptable and affordable cost within a realistic planning horizon. This must be the theme for the globally applicable energy sources that are compatible with the Earth's ecology. It is in this context that lunar resources development should be a primary goal for science missions to the Moon, and for establishing an expanding human presence. The economic viability and commercial business potential of mining, extracting, manufacturing, and transporting lunar resource based materials to Earth, Earth orbits, and to undertake macroengineering projects on the Moon remains to be demonstrated. These extensive activities will be supportive of the realization of the potential of space energy sources for use on Earth. These may include generating electricity for use on Earth based on beaming power from Earth orbits and from the Moon to the Earth, and for the production of helium 3 as a fuel for advanced fusion reactors.

  2. Blast wave energy diagnostic.

    PubMed

    Tierney, Thomas E; Tierney, Heidi E; Idzorek, George C; Watt, Robert G; Peterson, Robert R; Peterson, Darrell L; Fryer, Christopher L; Lopez, Mike R; Jones, Michael C; Sinars, Daniel; Rochau, Gregory A; Bailey, James E

    2008-10-01

    The distance radiation waves that supersonically propagate in optically thick, diffusive media are energy sensitive. A blast wave can form in a material when the initially diffusive, supersonic radiation wave becomes transonic. Under specific conditions, the blast wave is visible with radiography as a density perturbation. [Peterson et al., Phys. Plasmas 13, 056901 (2006)] showed that the time-integrated drive energy can be measured using blast wave positions with uncertainties less than 10% at the Z Facility. In some cases, direct measurements of energy loss through diagnostic holes are not possible with bolometric and x-ray radiometric diagnostics. Thus, radiography of high compression blast waves can serve as a complementary technique that provides time-integrated energy loss through apertures. In this paper, we use blast waves to characterize the energy emerging through a 2.4 mm aperture and show experimental results in comparison to simulations. PMID:19044574

  3. Waves of energy

    SciTech Connect

    Smith, F.G.W.; Charlier, R.H.

    1981-05-01

    Possible means for harnessing the energy contained in ocean waves are considered. Problems associated with the low-grade nature of wave energy and the rate at which wave crests approach are pointed out, and simple devices already in use for the supply of energy to bell buoys, whistle buoys and lighted buoys are noted. Attention is then given to wave energy conversion systems based on the focusing of waves onto a narrow ramp leading to a reservoir from which water is released to power a turbine generator: a slightly submerged circular shell which directs waves into its center cavity where waves act to turn a turbine (the Dam-Atoll), a long vertical pipe with an internal valve allowing water to move in an upward direction (the Isaacs wave-energy pump), a turbine located at the bottom of an open-topped pipe (the Masuda buoy), a completely submerged closed air chamber from which runs a large pipe open to the sea, a wave piston which acts by the compression of air to drive a turbine, a massive structure with upper and lower reservoirs (the Russel rectifier), and devices which consist of floating or submerged objects which transfer wave energy to pumps (the Salter duck and Cockerell raft). It is concluded that although wave-powered generators are not likely to become competitive in the near future or provide more than a small portion of world demand, they may be found useful under special conditions.

  4. Waves of energy

    NASA Astrophysics Data System (ADS)

    Smith, F. G. W.; Charlier, R. H.

    1981-06-01

    Possible means for harnessing the energy contained in ocean waves are considered. Problems associated with the low-grade nature of wave energy and the rate at which wave crests approach are pointed out, and simple devices already in use for the supply of energy to bell buoys, whistle buoys and lighted buoys are noted. Attention is then given to wave energy conversion systems based on the focusing of waves onto a narrow ramp leading to a reservoir from which water is released to power a turbine generator; a slightly submerged circular shell which directs waves into its center cavity where waves act to turn a turbine (the Dam-Atoll); a long vertical pipe with an internal valve allowing water to move in an upward direction (the Isaacs wave-energy pump); a turbine located at the bottom of an open-topped pipe (the Masuda buoy); a completely submerged closed air chamber from which runs a large pipe open to the sea; a wave piston which acts by the compression of air to drive a turbine; a massive structure with upper and lower reservoirs (the Russel rectifier); and devices which consist of floating or submerged objects which transfer wave energy to pumps (the Salter duck and Cockerell raft.) It is concluded that although wave-powered generators are not likely to become competitive in the near future or provide more than a small portion of world demand, they may be found useful under special conditions.

  5. Geothermal energy exploitation in New Zealand

    SciTech Connect

    Elder, J.W.

    1980-01-01

    The essential factors, human and technical, which control the operation of geothermal systems, particularly those which allow prediction of behavior during and after exploitation, are sketched. The strategy and co-ordination involved in using New Zealand's geothermal resources for power production are considered. The broader aspects of the technical matters involved in the design of the parasitic plant reservoir system are described. (MHR)

  6. Cycloidal Wave Energy Converter

    SciTech Connect

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will

  7. Electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  8. Offshore wave energy experiment

    SciTech Connect

    Nielsen, K.; Scholten, N.C.; Soerensen, K.A. |

    1995-12-31

    This article describes the second phase of the off-shore wave energy experiment, taking place in the Danish part of the North Sea near Hanstholm. The wave power converter is a scale model consisting of a float 2.5 meter in diameter connected by rope to a seabed mounted piston pump installed on 25 meter deep water 2,5 km offshore. The structure, installation procedure results and experience gained during the test period will be presented and compared to calculations based on a computer model.

  9. Water wave energy transducer

    SciTech Connect

    Lamberti, J.

    1980-01-22

    A water wave energy transducer for converting the motion of a water wave into a controlled mechanical movement such as rotational motion suitable for actuating an electrical generator is disclosed. The transducer comprises a float member floatingly moored in a water body having waves and/or tidal movement, such as a seashore. A power gear is rotatably mounted in a swing block on the float with a power shaft extending from the power gear to laterally spaced drive bevel gears mounted for rotation with the power gear. These drive bevel gears are coupled to a transmission on the float comprising one-way drive clutches transmitting rotational energy to the drive shaft of a generator or the like to provide rotational energy on both up and down movement of the float. A rack is pivotally anchored in the water body, extends up through the float and is slideable with respect to the power gear of the swing block, so that movement of the float with respect to the rack will provide rotation of the power gear.

  10. Wave energy and intertidal productivity

    PubMed Central

    Leigh, Egbert G.; Paine, Robert T.; Quinn, James F.; Suchanek, Thomas H.

    1987-01-01

    In the northeastern Pacific, intertidal zones of the most wave-beaten shores receive more energy from breaking waves than from the sun. Despite severe mortality from winter storms, communities at some wave-beaten sites produce an extraordinary quantity of dry matter per unit area of shore per year. At wave-beaten sites of Tatoosh Island, WA, sea palms, Postelsia palmaeformis, can produce > 10 kg of dry matter, or 1.5 × 108 J, per m2 in a good year. Extraordinarily productive organisms such as Postelsia are restricted to wave-beaten sites. Intertidal organisms cannot transform wave energy into chemical energy, as photosynthetic plants transform solar energy, nor can intertidal organisms “harness” wave energy. Nonetheless, wave energy enhances the productivity of intertidal organisms. On exposed shores, waves increase the capacity of resident algae to acquire nutrients and use sunlight, augment the competitive ability of productive organisms, and protect intertidal residents by knocking away their enemies or preventing them from feeding. PMID:16593813

  11. Exploiting node mobility for energy optimization in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    El-Moukaddem, Fatme Mohammad

    Wireless Sensor Networks (WSNs) have become increasingly available for data-intensive applications such as micro-climate monitoring, precision agriculture, and audio/video surveillance. A key challenge faced by data-intensive WSNs is to transmit the sheer amount of data generated within an application's lifetime to the base station despite the fact that sensor nodes have limited power supplies such as batteries or small solar panels. The availability of numerous low-cost robotic units (e.g. Robomote and Khepera) has made it possible to construct sensor networks consisting of mobile sensor nodes. It has been shown that the controlled mobility offered by mobile sensors can be exploited to improve the energy efficiency of a network. In this thesis, we propose schemes that use mobile sensor nodes to reduce the energy consumption of data-intensive WSNs. Our approaches differ from previous work in two main aspects. First, our approaches do not require complex motion planning of mobile nodes, and hence can be implemented on a number of low-cost mobile sensor platforms. Second, we integrate the energy consumption due to both mobility and wireless communications into a holistic optimization framework. We consider three problems arising from the limited energy in the sensor nodes. In the first problem, the network consists of mostly static nodes and contains only a few mobile nodes. In the second and third problems, we assume essentially that all nodes in the WSN are mobile. We first study a new problem called max-data mobile relay configuration (MMRC ) that finds the positions of a set of mobile sensors, referred to as relays, that maximize the total amount of data gathered by the network during its lifetime. We show that the MMRC problem is surprisingly complex even for a trivial network topology due to the joint consideration of the energy consumption of both wireless communication and mechanical locomotion. We present optimal MMRC algorithms and practical distributed

  12. Energy harvesting from human motion: exploiting swing and shock excitations

    NASA Astrophysics Data System (ADS)

    Ylli, K.; Hoffmann, D.; Willmann, A.; Becker, P.; Folkmer, B.; Manoli, Y.

    2015-02-01

    Modern compact and low power sensors and systems are leading towards increasingly integrated wearable systems. One key bottleneck of this technology is the power supply. The use of energy harvesting techniques offers a way of supplying sensor systems without the need for batteries and maintenance. In this work we present the development and characterization of two inductive energy harvesters which exploit different characteristics of the human gait. A multi-coil topology harvester is presented which uses the swing motion of the foot. The second device is a shock-type harvester which is excited into resonance upon heel strike. Both devices were modeled and designed with the key constraint of device height in mind, in order to facilitate the integration into the shoe sole. The devices were characterized under different motion speeds and with two test subjects on a treadmill. An average power output of up to 0.84 mW is achieved with the swing harvester. With a total device volume including the housing of 21 cm3 a power density of 40 μW cm-3 results. The shock harvester generates an average power output of up to 4.13 mW. The power density amounts to 86 μW cm-3 for the total device volume of 48 cm3. Difficulties and potential improvements are discussed briefly.

  13. Tunnel effect wave energy detection

    NASA Technical Reports Server (NTRS)

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1995-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  14. Wide-area video exploitation (WAVE) joint data management (JDM) for layered sensing

    NASA Astrophysics Data System (ADS)

    Blasch, Erik P.; Seetharaman, Guna; Russell, Stephen

    2011-06-01

    Emerging technologies of high performance computing facilitate increased data collection for wide area sensing; however, joint data management concepts of operations (CONOPs) are important to fully realize system-level performance. Joint data management (JDM) includes the hardware (e.g. sensors/targets), software (e.g. processing/algorithms), entities (e.g. service-based collections), and operations (scenario-based environments) of data exchange that enable persistent surveillance in the context of a layered sensing or data-to-decision (D2D) information fusion enterprise. Key attributes of an information fusion enterprise system require pragmatic assessment of data and information management, distributed communications, knowledge representation as well as a sensor mix, algorithm choice, life-cycle data management, and human-systems interaction. In this paper, we explore the various issues surrounding Wide-Area Video Exploitation (WAVE) in a layered-sensing environment to include improvements in Joint Data Management such as (1) data collection, construction, and transformation, (2) feature generation, extraction and selection, and (3) information evaluation, presentation, and dissemination. Throughout the paper, we seek to describe the current technology, research directions, and metrics that instantiate a realizable JDM product. We develop the methods for joint data management for structured and unstructured WAVE data in the context of decision making. Discerning accurate track and identification target information from WAVE JDM provides a moving intelligence (MOVINT) capability.

  15. Hydrodynamic Performance of a Wave Energy Converter

    NASA Astrophysics Data System (ADS)

    Yang, Yingchen

    2010-11-01

    To harvest energy from ocean waves, a new wave energy converter (WEC) was proposed and tested in a wave tank. The WEC freely floats on the water surface and rides waves. It utilizes its wave-driven angular oscillation to convert the mechanical energy of waves into electricity. To gain the maximum possible angular oscillation of the WEC under specified wave conditions, both floatation of the WEC and wave interaction with the WEC play critical roles in a joint fashion. During the experiments, the submersion condition of the WEC and wave condition were varied. The results were analyzed in terms of the oscillation amplitude, stability, auto-orientation capability, and wave frequency dependency.

  16. Proposed electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L.

    1973-01-01

    Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.

  17. Direct Drive Wave Energy Buoy

    SciTech Connect

    Rhinefrank, Kenneth E.; Lenee-Bluhm, Pukha; Prudell, Joseph H.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe

    2013-07-29

    The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

  18. Assessing wave energy effects on biodiversity: the wave hub experience.

    PubMed

    Witt, M J; Sheehan, E V; Bearhop, S; Broderick, A C; Conley, D C; Cotterell, S P; Crow, E; Grecian, W J; Halsband, C; Hodgson, D J; Hosegood, P; Inger, R; Miller, P I; Sims, D W; Thompson, R C; Vanstaen, K; Votier, S C; Attrill, M J; Godley, B J

    2012-01-28

    Marine renewable energy installations harnessing energy from wind, wave and tidal resources are likely to become a large part of the future energy mix worldwide. The potential to gather energy from waves has recently seen increasing interest, with pilot developments in several nations. Although technology to harness wave energy lags behind that of wind and tidal generation, it has the potential to contribute significantly to energy production. As wave energy technology matures and becomes more widespread, it is likely to result in further transformation of our coastal seas. Such changes are accompanied by uncertainty regarding their impacts on biodiversity. To date, impacts have not been assessed, as wave energy converters have yet to be fully developed. Therefore, there is a pressing need to build a framework of understanding regarding the potential impacts of these technologies, underpinned by methodologies that are transferable and scalable across sites to facilitate formal meta-analysis. We first review the potential positive and negative effects of wave energy generation, and then, with specific reference to our work at the Wave Hub (a wave energy test site in southwest England, UK), we set out the methodological approaches needed to assess possible effects of wave energy on biodiversity. We highlight the need for national and international research clusters to accelerate the implementation of wave energy, within a coherent understanding of potential effects-both positive and negative.

  19. Assessing wave energy effects on biodiversity: the wave hub experience.

    PubMed

    Witt, M J; Sheehan, E V; Bearhop, S; Broderick, A C; Conley, D C; Cotterell, S P; Crow, E; Grecian, W J; Halsband, C; Hodgson, D J; Hosegood, P; Inger, R; Miller, P I; Sims, D W; Thompson, R C; Vanstaen, K; Votier, S C; Attrill, M J; Godley, B J

    2012-01-28

    Marine renewable energy installations harnessing energy from wind, wave and tidal resources are likely to become a large part of the future energy mix worldwide. The potential to gather energy from waves has recently seen increasing interest, with pilot developments in several nations. Although technology to harness wave energy lags behind that of wind and tidal generation, it has the potential to contribute significantly to energy production. As wave energy technology matures and becomes more widespread, it is likely to result in further transformation of our coastal seas. Such changes are accompanied by uncertainty regarding their impacts on biodiversity. To date, impacts have not been assessed, as wave energy converters have yet to be fully developed. Therefore, there is a pressing need to build a framework of understanding regarding the potential impacts of these technologies, underpinned by methodologies that are transferable and scalable across sites to facilitate formal meta-analysis. We first review the potential positive and negative effects of wave energy generation, and then, with specific reference to our work at the Wave Hub (a wave energy test site in southwest England, UK), we set out the methodological approaches needed to assess possible effects of wave energy on biodiversity. We highlight the need for national and international research clusters to accelerate the implementation of wave energy, within a coherent understanding of potential effects-both positive and negative. PMID:22184674

  20. Energy in a String Wave

    NASA Astrophysics Data System (ADS)

    Ng, Chiu-king

    2010-01-01

    When one end of a taut horizontal elastic string is shaken repeatedly up and down, a transverse wave (assume sine waveform) will be produced and travel along it. College students know this type of wave motion well. They know when the wave passes by, each element of the string will perform an oscillating up-down motion, which in mechanics is termed simple harmonic2. They also know elements of the string at the highest and the lowest positions—the crests and the troughs—are momentarily at rest, while those at the centerline (zero displacement) have the greatest speed, as shown in Fig. 1. Irrespective of this, they are less familiar with the energy associated with the wave. They may fail to answer a question such as, "In a traveling string wave, which elements have respectively the greatest kinetic energy (KE) and the greatest potential energy (PE)?" The answer to the former is not difficult; elements at zero position have the fastest speed and hence their KE, being proportional to the square of speed, is the greatest. To the PE, what immediately comes to their mind may be the simple harmonic motion (SHM), in which the PE is the greatest and the KE is zero at the two turning points. It may thus lead them to think elements at crests or troughs have the greatest PE. Unfortunately, this association is wrong. Thinking that the crests or troughs have the greatest PE is a misconception.3

  1. Key features of wave energy.

    PubMed

    Rainey, R C T

    2012-01-28

    For a weak point source or dipole, or a small body operating as either, we show that the power from a wave energy converter (WEC) is the product of the particle velocity in the waves, and the wave force (suitably defined). There is a thus a strong analogy with a wind or tidal turbine, where the power is the product of the fluid velocity through the turbine, and the force on it. As a first approximation, the cost of a structure is controlled by the force it has to carry, which governs its strength, and the distance it has to be carried, which governs its size. Thus, WECs are at a disadvantage compared with wind and tidal turbines because the fluid velocities are lower, and hence the forces are higher. On the other hand, the distances involved are lower. As with turbines, the implication is also that a WEC must make the most of its force-carrying ability-ideally, to carry its maximum force all the time, the '100% sweating WEC'. It must be able to limit the wave force on it in larger waves, ultimately becoming near-transparent to them in the survival condition-just like a turbine in extreme conditions, which can stop and feather its blades. A turbine of any force rating can achieve its maximum force in low wind speeds, if its diameter is sufficiently large. This is not possible with a simple monopole or dipole WEC, however, because of the 'nλ/2π' capture width limits. To achieve reasonable 'sweating' in typical wave climates, the force is limited to about 1 MN for a monopole device, or 2 MN for a dipole. The conclusion is that the future of wave energy is in devices that are not simple monopoles or dipoles, but multi-body devices or other shapes equivalent to arrays.

  2. Key features of wave energy.

    PubMed

    Rainey, R C T

    2012-01-28

    For a weak point source or dipole, or a small body operating as either, we show that the power from a wave energy converter (WEC) is the product of the particle velocity in the waves, and the wave force (suitably defined). There is a thus a strong analogy with a wind or tidal turbine, where the power is the product of the fluid velocity through the turbine, and the force on it. As a first approximation, the cost of a structure is controlled by the force it has to carry, which governs its strength, and the distance it has to be carried, which governs its size. Thus, WECs are at a disadvantage compared with wind and tidal turbines because the fluid velocities are lower, and hence the forces are higher. On the other hand, the distances involved are lower. As with turbines, the implication is also that a WEC must make the most of its force-carrying ability-ideally, to carry its maximum force all the time, the '100% sweating WEC'. It must be able to limit the wave force on it in larger waves, ultimately becoming near-transparent to them in the survival condition-just like a turbine in extreme conditions, which can stop and feather its blades. A turbine of any force rating can achieve its maximum force in low wind speeds, if its diameter is sufficiently large. This is not possible with a simple monopole or dipole WEC, however, because of the 'nλ/2π' capture width limits. To achieve reasonable 'sweating' in typical wave climates, the force is limited to about 1 MN for a monopole device, or 2 MN for a dipole. The conclusion is that the future of wave energy is in devices that are not simple monopoles or dipoles, but multi-body devices or other shapes equivalent to arrays. PMID:22184669

  3. AxiSEM: Exploiting structural complexity for efficient wave propagation across the scales

    NASA Astrophysics Data System (ADS)

    Nissen-Meyer, Tarje; van Driel, Martin; Leng, Kuangdai; Stähler, Simon; Krischer, Lion; Hosseini, Kasra

    2016-04-01

    Our open-source seismic modeling method AxiSEM (www.axisem.info) is presented a backbone for numerous further extensions, including accurate and efficient wave propagation in 3D Earth models, a database mode (www.instaseis.net), local domains, hybrid methods, and waveform sensitivity kernels for tomography. Our general mantra is to enable wave propagation across the observable frequency spectrum in a most efficient manner by adapting the methodology directly to the level of structural complexity, in the vein of Occam's razor. The basic AxiSEM approach relies upon axisymmetric (including spherically symmetric) models, thereby satisfying a large fraction of observable data. The benefit of this method stems from the resultant dimensional collapse to two numerical dimensions, whereby the third azimuthal dimension is tackled analytically. For high-frequency wave propagation, this leads to 3-4 orders of magnitude speedup in computational cost compared to 3D domain discretizations. AxiSEM is highly scalable anywhere between laptops and supercomputers, and includes novel, optimized implementations of viscoelasticity and anisotropy. We present benchmarks, data comparisons, a range of unique applications from inner-core anisotropy to noise modeling and lowermost mantle structures. 1D structures are exploited by instaseis, a methodology to extract full, broadband and accurate waveforms instantaneously from wavefield databases computed with AxiSEM. A webservice built on instaseis ("syngine") has been launched at IRIS (see abstract EGU2016-8190) to generate on-demand synthetics up to 1Hz for prominent Earth models. 3D structures are tackled by our recent extension AxiSEM3D: We expand the wavefield in the azimuthal dimension in Fourier series, leading to a drastic computational cost speedup compared to classic 3D methods (up to a factor of 100), especially in the high-frequency regime. We will show benchmarks for typical global tomographic models and sketch our approach to

  4. Ocean wave energy converting vessel

    SciTech Connect

    Boyce, P.F.

    1986-08-26

    An ocean wave energy conversion system is described comprised of a four beam quadrapod supported by bouyant members from which is suspended a pendulum. The pendulum contains a vertical generator shaft and a generator, the generator shaft being splined and fitted with two racheted pulleys, the pulleys being looped, one clockwise and one counterclockwise with separate cables. The cables are attached at their ends to the bow and stern of the quadrapod, whereby the generator shaft will pin when the quadrapod rocks over waves and the pendulum tends toward the center of earth.

  5. Wave energy propelling marine ship

    SciTech Connect

    Kitabayashi, S.

    1982-06-29

    A wave energy propelling marine ship comprises a cylindrical ship body having a hollow space therein for transporting fluid material therewithin, a ship body disposed in or on the sea; a propeller attached to the ship body for the purpose of propelling the marine ship for sailing; a rudder for controlling the moving direction of the marine ship; at least one rotary device which includes a plurality of compartments which are each partitioned into a plurality of water chambers by a plurality of radial plates, and a plurality of water charge and/or discharge ports, wherein wave energy is converted into mechanical energy; and device for adjusting buoyancy of the marine ship so that the rotary device is positioned advantageously on the sea surface.

  6. Thermal exploitation of wastes with lignite for energy production.

    PubMed

    Grammelis, Panagiotis; Kakaras, Emmanuel; Skodras, George

    2003-11-01

    The thermal exploitation of wastewood with Greek lignite was investigated by performing tests in a laboratory-scale fluidized bed reactor, a 1-MW(th) semi-industrial circulating fluidized bed combustor, and an industrial boiler. Blends of natural wood, demolition wood, railroad sleepers, medium-density fiberboard residues, and power poles with lignite were used, and the co-combustion efficiency and the effect of wastewood addition on the emitted pollutants were investigated. Carbon monoxide, sulfur dioxide, and oxides of nitrogen emissions were continuously monitored, and, during the industrial-scale tests, the toxic emissions (polychlorinated dibenzodioxins and dibenzofurans and heavy metals) were determined. Ash samples were analyzed for heavy metals in an inductively coupled plasma-atomic emission spectroscopy spectrophotometer. Problems were observed during the preparation of wastewood, because species embedded with different compounds, such as railway sleepers and demolition wood, were not easily treated. All wastewood blends were proven good fuels; co-combustion proceeded smoothly and homogeneous temperature and pressure profiles were obtained. Although some fluctuations were observed, low emissions of gaseous pollutants were obtained for all fuel blends. The metal element emissions (in the flue gases and the solid residues) were lower than the legislative limits. Therefore, wastewood co-combustion with lignite can be realized, provided that the fuel handling and preparation can be practically performed in large-scale installations.

  7. The Wave Carpet: An Omnidirectional and Broadband Wave Energy Converter

    NASA Astrophysics Data System (ADS)

    Alam, M.-Reza

    2015-11-01

    Inspired by the strong attenuation of ocean surface waves by muddy seafloors, we have designed, theoretically investigated the performance, and experimentally tested the ``Wave Carpet:'' a mud-resembling synthetic seabed-mounted mat composed of vertically-acting linear springs and generators that can be used as an efficient wave energy absorption device. The Wave Carpet is completely under the water surface hence imposes minimal danger to boats and the sea life (i.e. no mammal entanglement). It is survivable against the high momentum of storm surges and in fact can perform even better under very energetic (e.g. stormy) sea conditions when most existing wave energy devices are needed to shelter themselves by going into an idle mode. In this talk I will present an overview of analytical results for the linear problem, direct simulation of highly nonlinear wave fields, and results of the experimental wave tank investigation.

  8. Ocean, Wave, and Tidal Energy Systems: Current abstracts

    NASA Astrophysics Data System (ADS)

    Smith, L.; Lane, D. W.

    1988-01-01

    Ocean, Wave, and Tidal Energy Systems (OES) announces on a bimonthly basis the current worldwide information available on all aspects of ocean thermal energy conversion systems based on exploitation of the temperature difference between the surface water and ocean depth. All aspects of salinity gradient power systems based on extracting energy from mixing fresh water with seawater are included, along with information on wave and tidal power. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Data Base (EDB) during the past two months. Also included are U.S. information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

  9. Energy and Momentum Transport in String Waves

    ERIC Educational Resources Information Center

    Juenker, D. W.

    1976-01-01

    Formulas are derived for the energy, momentum, and angular momentum transmitted by waves of arbitrary shape in an inextensible string by pure transverse waves in a string using Tait's procedure. (Author/CP)

  10. Exploiting the Properties of Aquaporin to Calculate Free Energy

    NASA Astrophysics Data System (ADS)

    Espejel, Hugo; Chen, Liao

    2010-03-01

    Aquaporins' (AQPs) main purpose is to facilitate the transfer of water molecules through a molecular membrane. We can calculate the free energy of the AQP system when water permeates through it. This is performed using the Visual Molecular Dynamics (VMD) and the Nanoscale Molecular Dynamics (NAMD) programs. In our first set of experiments, AQP is submerged in a body of water, in which case a water molecule near AQP is pulled through the protein. The data is then used to calculate the free energy using two different equations: the Jarzynski equality and the fluctuation-dissipation theorem. The values from both equations are then compared to examine their accuracy. The second set of experiments has the same set up, but now AQP is embedded in a lipid bilayer. We found that both equations give values that are much smaller than kT. This verifies that AQP is a channel for water molecules because the pulling of water gives constant values of free energy. We also found that the water molecules' negative poles were all pointing towards the center of the AQP channel. This means that the process of proton transport in AQP is overwhelmingly difficult.

  11. Exploitation of binding energy for catalysis and design

    PubMed Central

    Thyme, Summer B.; Jarjour, Jordan; Takeuchi, Ryo; Havranek, James J.; Ashworth, Justin; Scharenberg, Andrew M.; Stoddard, Barry L.; Baker, David

    2009-01-01

    Enzymes utilize substrate binding energy both to promote ground state association and to selectively lower the energy of the reaction transition state.i The monomeric homing endonuclease I-AniI cleaves with high sequence specificity in the center of a 20 base-pair DNA target site, with the N-terminal domain of the enzyme making extensive binding interactions with the left (−) side of the target site and the similarly structured C-terminal domain interacting with the right (+) side.ii Despite the approximate two-fold symmetry of the enzyme-DNA complex, we find that there is almost complete segregation of interactions responsible for substrate binding to the (−) side of the interface and interactions responsible for transition state stabilization to the (+) side. While single base-pair substitutions throughout the entire DNA target site reduce catalytic efficiency, mutations in the (−) DNA half-site almost exclusively increase KD and KM*, and those in the (+) half-site primarily decrease kcat*. The reduction of activity produced by mutations on the (−) side, but not mutations on the (+) side, can be suppressed by tethering the substrate to the endonuclease displayed on the surface of yeast. This dramatic asymmetry in the utilization of enzyme-substrate binding energy for catalysis has direct relevance to the redesign of endonucleases to cleave genomic target sites for gene therapy and other applications. Computationally redesigned enzymes that achieve new specificities on the (−) side do so by modulating KM*, while redesigns with altered specificities on the (+) side modulate kcat*. Our results illustrate how classical enzymology and modern protein design can each inform the other. PMID:19865174

  12. Wave Energy Potential in the Latvian EEZ

    NASA Astrophysics Data System (ADS)

    Beriņš, J.; Beriņš, J.; Kalnačs, J.; Kalnačs, A.

    2016-06-01

    The present article deals with one of the alternative forms of energy - sea wave energy potential in the Latvian Exclusice Economic Zone (EEZ). Results have been achieved using a new method - VEVPP. Calculations have been performed using the data on wave parameters over the past five years (2010-2014). We have also considered wave energy potential in the Gulf of Riga. The conclusions have been drawn on the recommended methodology for the sea wave potential and power calculations for wave-power plant pre-design stage.

  13. Controller for a wave energy converter

    SciTech Connect

    Wilson, David G.; Bull, Diana L.; Robinett, III, Rush D.

    2015-09-22

    A wave energy converter (WEC) is described, the WEC including a power take off (PTO) that converts relative motion of bodies of the WEC into electrical energy. A controller controls operation of the PTO, causing the PTO to act as a motor to widen a wave frequency spectrum that is usable to generate electrical energy.

  14. Ocean energy-waves, currents, and tides

    SciTech Connect

    Miles, J.; Shelpuk, B.

    1981-05-01

    An overview is presented on the mechanical forms of ocean energy; i.e., waves, currents, and tides. Following an introductory section on wave mechanics, each of the three forms of ocean energy is considered under the headings of the resource, device types for energy extraction, and prognosis for practical implementation.

  15. Ocean floor mounting of wave energy converters

    DOEpatents

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  16. Exploitation of SAR data for measurement of ocean currents and wave velocities

    NASA Technical Reports Server (NTRS)

    Shuchman, R. A.; Lyzenga, D. R.; Klooster, A., Jr.

    1981-01-01

    Methods of extracting information on ocean currents and wave orbital velocities from SAR data by an analysis of the Doppler frequency content of the data are discussed. The theory and data analysis methods are discussed, and results are presented for both aircraft and satellite (SEASAT) data sets. A method of measuring the phase velocity of a gravity wave field is also described. This method uses the shift in position of the wave crests on two images generated from the same data set using two separate Doppler bands. Results of the current measurements are pesented for 11 aircraft data sets and 4 SEASAT data sets.

  17. Energy in a String Wave

    ERIC Educational Resources Information Center

    Ng, Chiu-king

    2010-01-01

    When one end of a taut horizontal elastic string is shaken repeatedly up and down, a transverse wave (assume sine waveform) will be produced and travel along it. College students know this type of wave motion well. They know when the wave passes by, each element of the string will perform an oscillating up-down motion, which in mechanics is termed…

  18. Using remote sensing data for exploitation of integrated renewable energy at coastal site in South Italy

    NASA Astrophysics Data System (ADS)

    Calaudi, Rosamaria; Lo Feudo, Teresa; Calidonna, Claudia Roberta; Sempreviva, Anna Maria

    2016-04-01

    Renewable energy sources are major components of the strategy to reduce harmful emissions and to replace depleting fossil energy resources. Data from Remote Sensing can provide detailed information for analysis for sources of renewable energy and to determine the potential energy and socially acceptability of suggested location. Coastal sites of Southern Italy have the advantage of favorable climatic conditions to use renewable energy, such us cloud free days and local breeze phenomena. Many ports are located where they have opportunities for exploitation of renewable energy, by using existing port area and by taking advantage of their coastal locations. Policies of European-Committee and Global-Navigation-PIANC for a better use of energy and an efficient supply from renewable sources are also focused on the construction of port facilities in zero emissions. Using data from Remote Sensing, can reduce the financial resources currently required for finding and assessing suitable areas, we defined an integrated methodology for potential wind and solar energy in harbor areas. In this study we compared the hourly solar power energy using MSG-SEVIRI (Meteosat Second Generation Spinning Enhanced Visible and Infrared) data products DSSF (Down-welling Surface Short-wave-Flux), and PV-Plant measurements with Nominal Power Peak of 19,85 kWp. The PV Plant is situated at a coastal site in Calabrian region, located near Vibo Valentia harbor area. We estimate potential energy by using input solar radiation of Satellite data, with same characteristics of the PV-plant. The RMSE and BIAS for hourly averaged solar electrical reproducibility are estimated including clear and sky conditions. Comparison between energy reproducibility by using DSSF product and PV-plant measurements, made over the period October 2013-June 2014, showed a good agreement in our costal site and generally overestimate (RMSE(35W/m2) and BIAS(4W/m2)) electrical reproducibility from a PV-plant. For wind resource

  19. Improving energy efficiency in optical cloud networks by exploiting anycast routing

    NASA Astrophysics Data System (ADS)

    Buysse, Jens; Cavdar, Cicek; De Leenheer, Marc; Dhoedt, Bart; Develder, Chris

    2011-12-01

    Exploiting anycast routing significantly reduces optical network and server energy usage. In this work we present a case study showing that intelligently selecting destinations and routes thereto, while switching off unused (network) elements, cuts power consumption by around 20% and saves network resources by 29%.

  20. Breaking of modulated wave trains: energy and spectra evolution

    NASA Astrophysics Data System (ADS)

    De Vita, Francesco; Verzicco, Roberto; Iafrati, Alessandro

    2016-04-01

    The breaking of free surface waves plays an important role on the gas, heat, momentum and energy exchanges taking place across the air-sea interface. The breaking is also responsible for the dissipation of a large fraction of the wave energy, and it represents the most important dissipation term in wave forecasting approaches. In spite of its relevance, there are many aspects of the phenomenon which are still obscure. For the practical applications the dissipated energy fraction and the changes operated to the pre-breaking spectrum are the most interesting aspects. The progress in the understanding of the breaking was hindered by some inherent technical difficulties featuring its experimental investigation. Even laboratory experiments do not help substantially as most of them exploit the superposition of linear waves and the dispersive focusing to induce breaking and only few studies uses the modulational instability. The two breaking processes display substantial differences. In the dispersive focusing case the breaking occur as a single event and all the energy is dissipated within few wave periods after the onset. In the modulational instability case, the breaking happens in several events, each one lasting short fraction of the wave period Tp, with a recurrence period of about 2 Tp. Furthermore, the results available in litterature display a large scatter in the energy dissipation of each breaking event. In order to achieve a better understanding of the phenomenon the breaking generated by modulational instability is here investigated numerically by the two-fluids approach using the open source Gerris code which solves the Navier-Stokes equations with a Volume of Fluid (VOF) technique to describe the interface dynamics. The solution is initialized as a fundamental wave component with two sideband disturbances and it is left to evolve in a computational domain with periodic boundary conditions. It is shown that several breaking events occur before the breaking

  1. Estimation and Monitoring of Wind/Wave energy potential in the Eastern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Zodiatis, George; Galanis, George; Galanis, George; Emmanouil, George; Emmanouil, George; Hayes, Dan; Nikolaidis, Andreas; Georgiou, Georgios; Kalogeri, Christina; Kallos, George

    2013-04-01

    Τhe adaptation and use of innovative methodologies for the exploitation of renewable energy marine resources is one of the main issues today for the environmental science community. Within this framework, the exploitation of wind and wave energy potential for coastal and island states seems to be one of the promising solutions and highly interesting from research and technological point of view. In this work, the activities of two projects focusing on the study of wind/wave energy over the area of Eastern Mediterranean Sea are presented. The "Integrated High Resolution System for Monitoring and Quantifying the Wave Energy Potential in the EEZ of Cyprus" (Ewave project) focuses on the estimation, monitoring and forecasting of the wave energy potential over the Levantine Basin with special emphasis to the Exclusive Economical Zone of Cyprus, while the "Development and application of new mathematical and physical models for Monitoring the wind and Sea wave Energy Potential" (MOSEP project) is a platform for developing new mathematical algorithms for the estimation of the wave energy over the Aegean Sea. In both projects, high resolution digital atlases of sea wave/wind climatological characteristics and the distribution of the wind and wave energy potential are developed for the coastal and offshore areas of the East Mediterranean sea . Moreover, new models for the prediction and quantification of wave energy in short and long forecast horizons are proposed. Statistical results concerning the probability density functions of the wind speed, the significant wave height, as well as the energy potential will be presented for selected sea areas in the Eastern Mediterranean Sea, while test case studies in certain regions favor to wind/wave renewable energy will be discussed.

  2. Impacts of wave energy conversion devices on local wave climate: observations and modelling from the Perth Wave Energy Project

    NASA Astrophysics Data System (ADS)

    Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy

    2016-04-01

    As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.

  3. WEC-Sim (Wave Energy Converter - SIMulator)

    2014-11-26

    WEC-Sim (Wave Energy Converter SIMulator) is a code developed by Sandia National Laboratories and the National Renewable Energy Laboratory to model wave energy converters (WECs) when they are subject to operational waves. The code is a time-domain modeling tool developed in MATLAB/Simulink using the multi-body dynamics solver SimMechanics. In WEC-Sim, WECs are modeled by connecting rigid bodies to one another with joint or constraint blocks from the WEC-Sim library. WEC-Sim is a publicly available, open-sourcemore » code to model WECs.« less

  4. WEC-Sim (Wave Energy Converter - SIMulator)

    SciTech Connect

    2014-11-26

    WEC-Sim (Wave Energy Converter SIMulator) is a code developed by Sandia National Laboratories and the National Renewable Energy Laboratory to model wave energy converters (WECs) when they are subject to operational waves. The code is a time-domain modeling tool developed in MATLAB/Simulink using the multi-body dynamics solver SimMechanics. In WEC-Sim, WECs are modeled by connecting rigid bodies to one another with joint or constraint blocks from the WEC-Sim library. WEC-Sim is a publicly available, open-source code to model WECs.

  5. Energy Extraction from a Slider-Crank Wave Energy under Irregular Wave Conditions: Preprint

    SciTech Connect

    Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun; Zhang, James Z.; Muljadi, Eduard; Yu, Yi-Hsiang

    2015-08-24

    A slider-crank wave energy converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this particular WEC has been done under regular sinusoidal wave conditions, and suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and a rule-based control methodology is introduced to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from that under regular sinusoidal wave conditions, but a reasonable amount of energy can still be extracted.

  6. Energy Extraction from a Slider-Crank Wave Energy Converter under Irregular Wave Conditions

    SciTech Connect

    Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun; Zhang, James Z.; Muljadi, Eduard; Yu, Yi-Hsiang

    2015-10-19

    A slider-crank wave energy converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this particular WEC has been done under regular sinusoidal wave conditions, and suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and a rule-based control methodology is introduced to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from that under regular sinusoidal wave conditions, but a reasonable amount of energy can still be extracted.

  7. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    SciTech Connect

    Milanesio, D. Maggiora, R.

    2015-12-10

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna, based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.

  8. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    NASA Astrophysics Data System (ADS)

    Milanesio, D.; Maggiora, R.

    2015-12-01

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna, based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.

  9. Image processing to optimize wave energy converters

    NASA Astrophysics Data System (ADS)

    Bailey, Kyle Marc-Anthony

    The world is turning to renewable energies as a means of ensuring the planet's future and well-being. There have been a few attempts in the past to utilize wave power as a means of generating electricity through the use of Wave Energy Converters (WEC), but only recently are they becoming a focal point in the renewable energy field. Over the past few years there has been a global drive to advance the efficiency of WEC. Placing a mechanical device either onshore or offshore that captures the energy within ocean surface waves to drive a mechanical device is how wave power is produced. This paper seeks to provide a novel and innovative way to estimate ocean wave frequency through the use of image processing. This will be achieved by applying a complex modulated lapped orthogonal transform filter bank to satellite images of ocean waves. The complex modulated lapped orthogonal transform filterbank provides an equal subband decomposition of the Nyquist bounded discrete time Fourier Transform spectrum. The maximum energy of the 2D complex modulated lapped transform subband is used to determine the horizontal and vertical frequency, which subsequently can be used to determine the wave frequency in the direction of the WEC by a simple trigonometric scaling. The robustness of the proposed method is provided by the applications to simulated and real satellite images where the frequency is known.

  10. Clustering of cycloidal wave energy converters

    DOEpatents

    Siegel, Stefan G.

    2016-03-29

    A wave energy conversion system uses a pair of wave energy converters (WECs) on respective active mountings on a floating platform, so that the separation of the WECs from each other or from a central WEC can be actively adjusted according to the wavelength of incident waves. The adjustable separation facilitates operation of the system to cancel reactive forces, which may be generated during wave energy conversion. Modules on which such pairs of WECs are mounted can be assembled with one or more central WECs to form large clusters in which reactive forces and torques can be made to cancel. WECs of different sizes can be employed to facilitate cancelation of reactive forces and torques.

  11. Analysis of the impacts of Wave Energy Converter arrays on the nearshore wave climate in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    O'Dea, A.; Haller, M. C.

    2013-12-01

    As concerns over the use of fossil fuels increase, more and more effort is being put into the search for renewable and reliable sources of energy. Developments in ocean technologies have made the extraction of wave energy a promising alternative. Commercial exploitation of wave energy would require the deployment of arrays of Wave Energy Converters (WECs) that include several to hundreds of individual devices. Interactions between WECs and ocean waves result in both near-field and far-field changes in the incident wave field, including a significant decrease in wave height and a redirection of waves in the lee of the array, referred to as the wave shadow. Nearshore wave height and direction are directly related to the wave radiation stresses that drive longshore currents, rip currents and nearshore sediment transport, which suggests that significant far-field changes in the wave field due to WEC arrays could have an impact on littoral processes. The goal of this study is to investigate the changes in nearshore wave conditions and radiation stress forcing as a result of an offshore array of point-absorber type WECs using a nested SWAN model, and to determine how array size, configuration, spacing and distance from shore influence these changes. The two sites of interest are the Northwest National Marine Renewable Energy Center (NNMREC) test sites off the coast of Newport Oregon, the North Energy Test Site (NETS) and the South Energy Test Site (SETS). NETS and SETS are permitted wave energy test sites located approximately 4 km and 10 km offshore, respectively. Twenty array configurations are simulated, including 5, 10, 25, 50 and 100 devices in two and three staggered rows in both closely spaced (three times the WEC diameter) and widely spaced (ten times the WEC diameter) arrays. Daily offshore wave spectra are obtained from a regional WAVEWATCH III hindcast for 2011, which are then propagated across the continental shelf using SWAN. Arrays are represented in SWAN

  12. Whistler Wave Energy Flow in the Plasmasphere

    NASA Astrophysics Data System (ADS)

    Kletzing, Craig; Santolik, Ondrej; Kurth, William; Hospodarsky, George; Christopher, Ivar; Bounds, Scott

    2016-07-01

    The measured wave properties of plasmaspheric hiss are important to constrain models of the generation of hiss as well as its propagation and amplification. For example, the generation mechanism for plasmaspheric hiss has been suggested to come from one of three possible mechanisms: 1) local generation and amplification, 2) whistlers from lightning, and 3) chorus emissions which have refracted into the plasmasphere. The latter two mechanisms are external sources which produce an incoherent hiss signature as the original waves mix in a stochastic manner, propagating in both directions along the background magnetic field. In contrast, local generation of plasmaspheric hiss within the plasmasphere should produce a signature of waves propagating away from the source region. For all three mechanisms scattering of energetic particles into the loss cone transfers some energy from the particles to the waves. By examining the statistical characteristics of the Poynting flux of plasmaspheric hiss, we can determine the properties of wave energy flow in the plasmasphere. We report on the statistics of observations from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) Waves instrument on the Van Allen Probes for periods when the spacecraft is inside the plasmasphere. We find that the Poynting flux associated with plasmaspheric hiss has distinct and unexpected radial structure which shows that there can be significant energy flow towards the magnetic equator. We show the properties of this electromagnetic energy flow as a function of position and frequency.

  13. Waves and Wine: Advanced approaches for characterizing and exploiting micro-terroir

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Grote, K. R.; Freese, P.; Peterson, J. E.; Rubin, Y.

    2012-12-01

    Development of viticultural strategies that are focused on promoting uniformly high quality wine grapes requires an understanding of the properties that influence wine grape development. Our objective is to explore the spatial and temporal variability of above and below ground factors that can influence grape variability at the block scale (or micro-terroir) using a combination of conventional point measurements and non-invasive geophysical approaches, and to use that information to guide the development of new vineyards or the management of existing vineyards. Climate clearly plays a dominant role in determining the success of certain viticultural regions or vintages. However, wine grapes of the same variety, which are grown in the same microclimate region and cultivated and made into wine using identical practices, can lead to remarkably different wines when the grapes are grown on different types of soils. The soil texture controls soil water availability, which greatly influences grapevine physiological status, vegetative and reproductive growth, and ultimately red wine grape quality. One aspect of our research has focused on developing surface geophysical methods, particularly ground penetrating radar (GPR), to characterize soil texture variability and to monitor vineyard water content. Through testing the approaches in three California wineries, we find that analysis of GPR groundwave and reflected waves enable mapping of shallow soil water content in high resolution, with acceptable accuracy, and in a non-invasive manner, and that use of multiple GPR methods and frequencies offer the potential to characterize the soil in 3-D space. We use the dense data to explore spatial and temporal correlations in soil water content, soil texture, and vegetation vigor and the associated implications for vineyard management. We also describe a new zonal-based vineyard development strategy that honors the natural variability of the site, or the micro-terrior. The approach

  14. Fundamental formulae for wave-energy conversion.

    PubMed

    Falnes, Johannes; Kurniawan, Adi

    2015-03-01

    The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units-i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)-may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the 'added-mass' matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called 'fundamental theorem for wave power'. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies.

  15. Fundamental formulae for wave-energy conversion

    PubMed Central

    Falnes, Johannes; Kurniawan, Adi

    2015-01-01

    The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units—i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)—may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the ‘added-mass’ matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called ‘fundamental theorem for wave power’. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies. PMID:26064612

  16. Gradient-index phononic crystal lens-based enhancement of elastic wave energy harvesting

    NASA Astrophysics Data System (ADS)

    Tol, S.; Degertekin, F. L.; Erturk, A.

    2016-08-01

    We explore the enhancement of structure-borne elastic wave energy harvesting, both numerically and experimentally, by exploiting a Gradient-Index Phononic Crystal Lens (GRIN-PCL) structure. The proposed GRIN-PCL is formed by an array of blind holes with different diameters on an aluminum plate, where the blind hole distribution is tailored to obtain a hyperbolic secant gradient profile of refractive index guided by finite-element simulations of the lowest asymmetric mode Lamb wave band diagrams. Under plane wave excitation from a line source, experimentally measured wave field validates the numerical simulation of wave focusing within the GRIN-PCL domain. A piezoelectric energy harvester disk located at the first focus of the GRIN-PCL yields an order of magnitude larger power output as compared to the baseline case of energy harvesting without the GRIN-PCL on the uniform plate counterpart.

  17. Electromagnetic wave energy conversion research

    NASA Technical Reports Server (NTRS)

    Bailey, R. L.; Callahan, P. S.

    1975-01-01

    Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.

  18. Parametric CFD study of micro-energy harvesting in a flow channel exploiting vortex shedding

    NASA Astrophysics Data System (ADS)

    Koubogiannis, Dimitrios G.

    2016-05-01

    Miniature energy harvesting devices are increasingly used in various fields. For example, Wireless Sensor Networks have recently made great progress in many applications. However, their main drawback, i.e. the limited duration of operation, poses the requirement for an effective way to recharge their batteries. In this context, the presentwork focuses on the study of micro-energy harvesting from flow by exploiting vortex shedding behind bluff bodies, in order to cause oscillations to a piezoelectric film and generate the required electrical power. To this end, a Computational Fluid Dynamics (CFD) tool is validated on a particular miniature device configuration proposed in the literature and implemented for the numerical simulations of flow around bluff micro-bodies in a very small channel. Aiming to enhance vortex shedding, parametric studies corresponding to different bluff body shapes and arrangements for a fixed Reynolds number are performed, the main parameters involved in the phenomenon are highlighted and the potential for vortex shedding exploitation is qualitatively assessed.

  19. Direct Drive Wave Energy Buoy

    SciTech Connect

    Rhinefrank, Ken

    2011-11-02

    Presentation from the 2011 Water Peer Review in which principal investigator discusses project progress and results for this project which will be used to inform the utility-scale design process, improve cost estimates, accurately forecast energy production and to observe system operation and survivability.

  20. Estimation and Monitoring of Wind-Wave energy potential over the Greek seas

    NASA Astrophysics Data System (ADS)

    Emmanouil, G.; Galanis, G.; Zodiatis, G.; Kalogeri, C.

    2013-12-01

    The exploitation of renewable energy resources is today on the top of the interest for the environmental and political community. In particular, wind and wave energy seems to be promising solutions with great potential from research and technological point of view. This kind of energy is mostly a matter of coastal and island countries, like Greece. In this work, the first results of a project whose main target is the development of an integrated, high resolution system for quantifying and monitoring the energy potential from wind and sea waves in the region of Eastern Mediterranean Sea, with special emphasis to the Greek area, are presented. More specifically, the models for the estimation of the energy potential, from wind and waves over sea areas, will be discussed. Moreover, atmospheric and sea wave numerical models used for the simulation of the environmental parameters that directly affect the wind-wave energy potential will be evaluated. Based on these tools, high resolution maps for the coastal and offshore areas of Greece will be produced, in which sea wave and wind climatological characteristics as well as the relevant distribution of the wave energy potential will be monitoring.

  1. Devices for extracting energy from waves

    SciTech Connect

    Comyns-Carr, C.A.; Platts, M.J.

    1981-09-15

    The invention relates to a device for extracting energy from waves and having a pump arranged to be operated by relative motion between members of the device in response to waves. The pump according to the invention has a pump body with a flexible portion extending between the members so as to define a pump chamber having a volume which varies as a result of the aforesaid relative motion. In one form of the invention the pump body is provided by a tubular bellows comprising elastomeric material. A plurality of such pumps may be disposed between the members, each pump being activated by said relative motion.

  2. Nonlinear Internal Waves - Evolution and Energy Dissipation

    NASA Astrophysics Data System (ADS)

    Orr, M.; Mignerey, P.

    2003-04-01

    Nonlinear internal waves have been observed propagating up the slope of the South China Sea during the recent ONR Asian Seas International Acoustics Experiment. Energy dissipation rates have been extracted. The location of the initiation of the depression to elevation conversion has been identified. Scaling parameters have been extracted and used to initialize a two-layer evolution equation model simulation. Mode1, 2 linear and nonlinear internal waves and instabilities have been observed near the shelf break of the United States of America New Jersey Shelf. Acoustic flow visualization records will be presented. Work supported by the Office of Naval Research (ONR) Ocean Acoustics Program and ONR's NRL base funding.

  3. DEVELOPING AND EXPLOITING A UNIQUE DATASET FROM SOUTH AFRICAN GOLD MINES FOR SOURCE CHARACTERIZATION AND WAVE PROPAGATION

    SciTech Connect

    Julia, J; Nyblade, A; Gok, R; Walter, W; Linzer, L; Durrheim, R

    2009-07-06

    In this project, we are developing and exploiting a unique seismic dataset to address the characteristics of small seismic events and the associated seismic signals observed at local (< 200 km) and regional (< 2000 km) distances. The dataset is being developed using mining-induced events from three deep gold mines in South Africa recorded on in-mine networks (< 1 km) composed of tens of high-frequency sensors, a network of four broadband stations installed as part of this project at the surface around the mines (1-10 km), and a network of existing broadband seismic stations at local/regional distances (50-1000 km) from the mines. Data acquisition has now been completed and includes: (1) {approx}2 years (2007 and 2008) of continuous recording by the surface broadband array, and (2) tens of thousands of mine tremors in the -3.4 < ML < 4.4 local magnitude range. Events with positive magnitudes are generally well recorded by the surface-mine stations, while magnitudes of 3.0 and larger are seen at regional distances (up to {approx} 600 km) in high-pass filtered recordings. We have now completed the quality control of the in-mine data gathered at the three gold mines included in this project. The quality control consisted of: (1) identification and analysis of outliers among the P- and S-wave travel-time picks reported by the in-mine network operator and (2) verification of sensor orientations. The outliers have been identified through a 'Wadati filter' that searches for the largest subset of P- and S-wave travel-time picks consistent with a medium of uniform wave-speed. They have observed that outliers are generally picked at a few select stations. They have also detected that trigger times were mistakenly reported as origin times by the in-mine network operator, and corrections have been obtained from the intercept times in the Wadati diagrams. Sensor orientations have been verified through rotations into the local ray-coordinate system and, when possible, corrected

  4. Wave energy transmission apparatus for high-temperature environments

    NASA Technical Reports Server (NTRS)

    Buckley, John D. (Inventor); Edwards, William C. (Inventor); Kelliher, Warren C. (Inventor); Carlberg, Ingrid A. (Inventor)

    2010-01-01

    A wave energy transmission apparatus has a conduit made from a refractory oxide. A transparent, refractory ceramic window is coupled to the conduit. Wave energy passing through the window enters the conduit.

  5. Thermal conditions for geothermal energy exploitation in the Transcarpathian depression and surrounding units

    NASA Astrophysics Data System (ADS)

    Majcin, Dušan; Kutas, Roman; Bilčík, Dušan; Bezák, Vladimír; Korchagin, Ignat

    2016-03-01

    The contribution presents the results acquired both by direct cognitive geothermic methods and by modelling approaches of the lithosphere thermal state in the region of the Transcarpathian depression and surrounding units. The activities were aimed at the determination of the temperature field distribution and heat flow density distribution in the upper parts of the Earth's crust within the studied area. Primary new terrestrial heat flow density map was constructed from values determined for boreholes, from their interpretations and from newest outcomes of geothermal modelling methods based on steady-state and transient approaches, and also from other recently gained geophysical and geological knowledge. Thereafter we constructed the maps of temperature field distribution for selected depth levels of up to 5000 m below the surface. For the construction we have used measured borehole temperature data, the interpolation and extrapolation methods, and the modelling results of the refraction effects and of the influences of source type anomalies. New maps and other geothermic data served for the determination of depths with rock temperatures suitable for energy utilization namely production of electric energy minimally by the binary cycles. Consequently the thermal conditions were used to identify the most perspective areas for geothermal energy exploitation in the region under study.

  6. Association of Ocean Energy Exploitation of Resources Promotion Sea of Japan

    NASA Astrophysics Data System (ADS)

    Aoyama, C.; Aoyama, S.

    2014-12-01

    Nine prefectures of 1 local government prefecture of the Sea of Japan side established "Association of Ocean Energy Exploitation of Resources Promotion Sea of Japan" (the following, Association of Sea of Japan) in September, 2012. They support methane hydrate exploitation of resources of the government and aim at the local activation and job creation. Niigata and Hyogo that were members of the association of Sea of Japan carried out a prefecture original methane hydrate investigation. They appeal to the government for development promotion of the government by showing the result. On the other hand, Wakayama located on the Pacific side wants to appeal to the government for the reexamination of the development sea area by showing that outer layer type methane hydrate exists to the sea area that is nearer the landside than the sea area that the government develops. The Independent Institute carried out collaborative investigation each with Niigata, Hyogo and Wakayama in 2013. I show the results of research. In the joint investigation with Niigata, plural plumes were observed in Mogami trough east slope (from depth of the water 200m 600m) . In the joint investigation with Hyogo, I carried out observation of a methane plume and the structure and the seafloor topography under the sea bottom in Oki east sea area. Furthermore, I performed a piston core ring and gathered five samples and confirmed plural traces of the methane hydrate. In the joint investigation with Wakayama, plural plumes were observed in Shionomisaki canyon (from depth of the water 1,700m 2,200m). There is hardly the report of the plume on the Pacific side so far. Therefore I want to continue observing it in future.

  7. Wave Energy Research, Testing and Demonstration Center

    SciTech Connect

    Batten, Belinda

    2014-09-30

    The purpose of this project was to build upon the research, development and testing experience of the Northwest National Marine Renewable Energy Center (NNMREC) to establish a non-grid connected open-ocean testing facility for wave energy converters (WECs) off the coast of Newport, Oregon. The test facility would serve as the first facility of its kind in the continental US with a fully energetic wave resource where WEC technologies could be proven for west coast US markets. The test facility would provide the opportunity for self-contained WEC testing or WEC testing connected via an umbilical cable to a mobile ocean test berth (MOTB). The MOTB would act as a “grid surrogate” measuring energy produced by the WEC and the environmental conditions under which the energy was produced. In order to realize this vision, the ocean site would need to be identified through outreach to community stakeholders, and then regulatory and permitting processes would be undertaken. Part of those processes would require environmental baseline studies and site analysis, including benthic, acoustic and wave resource characterization. The MOTB and its myriad systems would need to be designed and constructed.The first WEC test at the facility with the MOTB was completed within this project with the WET-NZ device in summer 2012. In summer 2013, the MOTB was deployed with load cells on its mooring lines to characterize forces on mooring systems in a variety of sea states. Throughout both testing seasons, studies were done to analyze environmental effects during testing operations. Test protocols and best management practices for open ocean operations were developed. As a result of this project, the non-grid connected fully energetic WEC test facility is operational, and the MOTB system developed provides a portable concept for WEC testing. The permitting process used provides a model for other wave energy projects, especially those in the Pacific Northwest that have similar

  8. Internal energy relaxation in shock wave structure

    SciTech Connect

    Josyula, Eswar Suchyta, Casimir J.; Boyd, Iain D.; Vedula, Prakash

    2013-12-15

    The Wang Chang-Uhlenbeck (WCU) equation is numerically integrated to characterize the internal structure of Mach 3 and Mach 5 shock waves in a gas with excitation in the internal energy states for the treatment of inelastic collisions. Elastic collisions are modeled with the hard sphere collision model and the transition rates for the inelastic collisions modified appropriately using probabilities based on relative velocities of the colliding particles. The collision integral is evaluated by the conservative discrete ordinate method [F. Tcheremissine, “Solution of the Boltzmann kinetic equation for high-speed flows,” Comput. Math. Math. Phys. 46, 315–329 (2006); F. Cheremisin, “Solution of the Wang Chang-Uhlenbeck equation,” Dokl. Phys. 47, 487–490 (2002)] developed for the Boltzmann equation. For the treatment of the diatomic molecules, the internal energy modes in the Boltzmann equation are described quantum mechanically given by the WCU equation. As a first step in the treatment of the inelastic collisions by the WCU equation, a two- and three-quantum system is considered to study the effect of the varying of (1) the inelastic cross section and (2) the energy gap between the quantum energy states. An alternative method, the direct simulation Monte Carlo method, is used for the Mach 3 shock wave to ensure the consistency of implementation in the two methods and there is an excellent agreement between the two methods. The results from the WCU implementation showed consistent trends for the Mach 3 and Mach5 standing shock waves simulations. Inelastic contributions change the downstream equilibrium state and allow the flow to transition to the equilibrium state further upstream.

  9. Communicating Wave Energy: An Active Learning Experience for Students

    ERIC Educational Resources Information Center

    Huynh, Trongnghia; Hou, Gene; Wang, Jin

    2016-01-01

    We have conducted an education project to communicate the wave energy concept to high school students. A virtual reality system that combines both hardware and software is developed in this project to simulate the buoy-wave interaction. This first-of-its-kind wave energy unit is portable and physics-based, allowing students to conduct a number of…

  10. DEVELOPING AND EXPLOITING A UNIQUE SEISMIC DATA SET FROM SOUTH AFRICAN GOLD MINES FOR SOURCE CHARACTERIZATION AND WAVE PROPAGATION

    SciTech Connect

    Julia, J; Nyblade, A A; Gok, R; Walter, W R; Linzer, L; Durrheim, R

    2008-07-08

    In this project, we are developing and exploiting a unique seismic data set to address the characteristics of small seismic events and the associated seismic signals observed at local (< 200 km) and regional (< 2000 km) distances. The dataset is being developed using mining-induced events from 3 deep gold mines in South Africa recorded on inmine networks (< 1 km) comprised of tens of high-frequency sensors, a network of 4 broadband stations installed as part of this project at the surface around the mines (1-10 km), and a network of existing broadband seismic stations at local/regional distances (50-1000 km) from the mines. After 1 year of seismic monitoring of mine activity (2007), over 10,000 events in the range -3.4 < ML < 4.4 have been catalogued and recorded by the in-mine networks. Events with positive magnitudes are generally well recorded by the surface-mine stations, while magnitudes 3.0 and larger are seen at regional distances (up to {approx}600 km) in high-pass filtered recordings. We have analyzed in-mine recordings in detail at one of the South African mines (Savuka) to (i) improve on reported hypocentral locations, (ii) verify sensor orientations, and (iii) determine full moment tensor solutions. Hypocentral relocations on all catalogued events have been obtained from P- and S-wave travel-times reported by the mine network operator through an automated procedure that selects travel-times falling on Wadati lines with slopes in the 0.6-0.7 range; sensor orientations have been verified and, when possible, corrected by correlating P-, SV-, and SH-waveforms obtained from theoretical and empirical (polarization filter) rotation angles; full moment tensor solutions have been obtained by inverting P-, SV-, and SH- spectral amplitudes measured on the theoretically rotated waveforms with visually assigned polarities. The relocation procedure has revealed that origin times often necessitate a negative correction of a few tenths of second and that hypocentral

  11. The radiation of surface wave energy: Implications for volcanic tremor

    NASA Astrophysics Data System (ADS)

    Haney, M. M.; Denolle, M.; Lyons, J. J.; Nakahara, H.

    2015-12-01

    The seismic energy radiated by active volcanism is one common measurement of eruption size. For example, the magnitudes of individual earthquakes in volcano-tectonic (VT) swarms can be summed and expressed in terms of cumulative magnitude, energy, or moment release. However, discrepancies exist in current practice when treating the radiated energy of volcano seismicity dominated by surface waves. This has implications for volcanic tremor, since eruption tremor typically originates at shallow depth and is made up of surface waves. In the absence of a method to compute surface wave energy, estimates of eruption energy partitioning between acoustic and seismic waves typically assume seismic energy is composed of body waves. Furthermore, without the proper treatment of surface wave energy, it is unclear how much volcanic tremor contributes to the overall seismic energy budget during volcanic unrest. To address this issue, we derive, from first principles, the expression of surface wave radiated energy. In contrast with body waves, the surface wave energy equation is naturally expressed in the frequency domain instead of the time domain. We validate our result by reproducing an analytical solution for the radiated power of a vertical force source acting on a free surface. We further show that the surface wave energy equation leads to an explicit relationship between energy and the imaginary part of the surface wave Green's tensor at the source location, a fundamental property recognized within the field of seismic interferometry. With the new surface wave energy equation, we make clear connections to reduced displacement and propose an improved formula for the calculation of surface wave reduced displacement involving integration over the frequency band of tremor. As an alternative to reduced displacement, we show that reduced particle velocity squared is also a valid physical measure of tremor size, one based on seismic energy rate instead of seismic moment rate. These

  12. Estimating Energy Dissipation Due to Wave Breaking in the Surf Zone Using Infrared Imagery

    NASA Astrophysics Data System (ADS)

    Carini, Roxanne J.

    Wave breaking is the largest forcing mechanism in the surf zone. Therefore, quantifying energy dissipation due to wave breaking is important for improving models that seek to predict nearshore circulation, wave-current interactions, air-sea gas exchange, erosion and accretion of sediment, and storm surge. Wave energy dissipation is difficult to measure with in situ instruments, and even the most reliable estimates are limited to point measurements. Using remote sensing technologies, specifically infrared (IR) imagery, the high spatial and temporal variability of wave breaking may be sampled. Duncan (1981) proposed a model (D81) for dissipation on a wave-by-wave basis, based on wave slope and roller length, the crest-perpendicular length of the aerated region of a breaking wave. The wave roller is composed of active foam, which, in thermal IR images, appears brighter than the surrounding water and the residual foam, the foam left behind in the wake of a breaking wave. Using IR imagery taken during the Surf Zone Optics 2010 experiment at Duck, NC, and exploiting the distinct signature of active foam, a retrieval algorithm was developed to identify and extract breaking wave roller length. Roller length was then used to estimate dissipation rate via the D81 formulation. The D81 dissipation rate estimates compare reasonably to in situ dissipation estimates at a point. When the D81 estimates are compared to the bulk energy flux into the surf zone, it is found that wave breaking dissipates approximately 25-36% of the incoming wave energy. The D81 dissipation rate estimates also agree closely with those from a dissipation parameterization proposed by Janssen and Battjes (2007) (JB07) and commonly applied within larger nearshore circulation models. The JB07 formulation, however, requires additional physical parameters (wave height and water depth) that are often sparsely sampled and are difficult to attain from remote sensing alone. The power of the D81 formulation lies in

  13. New Approaches To Off-Shore Wind Energy Management Exploiting Satellite EO Data

    NASA Astrophysics Data System (ADS)

    Morelli, Marco; Masini, Andrea; Venafra, Sara; Potenza, Marco Alberto Carlo

    2013-12-01

    Wind as an energy resource has been increasingly in focus over the past decades, starting with the global oil crisis in the 1970s. The possibility of expanding wind power production to off-shore locations is attractive, especially in sites where wind levels tend to be higher and more constant. Off-shore high-potential sites for wind energy plants are currently being looked up by means of wind atlases, which are essentially based on NWP (Numerical Weather Prediction) archive data and that supply information with low spatial resolution and very low accuracy. Moreover, real-time monitoring of active off- shore wind plants is being carried out using in-situ installed anemometers, that are not very reliable (especially on long time periods) and that should be periodically substituted when malfunctions or damages occur. These activities could be greatly supported exploiting archived and near real-time satellite imagery, that could provide accurate, global coverage and high spatial resolution information about both averaged and near real-time off-shore windiness. In this work we present new methodologies aimed to support both planning and near-real-time monitoring of off-shore wind energy plants using satellite SAR(Synthetic Aperture Radar) imagery. Such methodologies are currently being developed in the scope of SATENERG, a research project funded by ASI (Italian Space Agency). SAR wind data are derived from radar backscattering using empirical geophysical model functions, thus achieving greater accuracy and greater resolution with respect to other wind measurement methods. In detail, we calculate wind speed from X-band and C- band satellite SAR data, such as Cosmo-SkyMed (XMOD2) and ERS and ENVISAT (CMOD4) respectively. Then, using also detailed models of each part of the wind plant, we are able to calculate the AC power yield expected behavior, which can be used to support either the design of potential plants (using historical series of satellite images) or the

  14. Exploiting the leaky-wave properties of transmission-line metamaterials for single-microphone direction finding.

    PubMed

    Esfahlani, Hussein; Karkar, Sami; Lissek, Hervé; Mosig, Juan R

    2016-06-01

    A transmission-line acoustic metamaterial is an engineered, periodic arrangement of relatively small unit-cells, the acoustic properties of which can be manipulated to achieve anomalous physical behaviours. These exotic properties open the door to practical applications, such as an acoustic leaky-wave antenna, through the implementation of radiating channels along the metamaterial. In the transmitting mode, such a leaky-wave antenna is capable of steering sound waves in frequency-dependent directions. Used in reverse, the antenna presents a well defined direction-frequency behaviour. In this paper, an acoustic leaky-wave structure is presented in the receiving mode. It is shown that it behaves as a sound source direction-finding device using only one sensor. After a general introduction of the acoustic leaky-wave antenna concept, its radiation pattern and radiation efficiency are expressed in closed form. Then, numerical simulations and experimental assessments of the proposed transmission-line based structure, implementing only one sensor at one termination, are presented. It is shown that such a structure is capable of finding the direction of an incoming sound wave, from backward to forward, based on received sound power spectra. This introduces the concept of sound source localization without resorting to beam-steering techniques based on multiple sensors.

  15. Exploiting the leaky-wave properties of transmission-line metamaterials for single-microphone direction finding.

    PubMed

    Esfahlani, Hussein; Karkar, Sami; Lissek, Hervé; Mosig, Juan R

    2016-06-01

    A transmission-line acoustic metamaterial is an engineered, periodic arrangement of relatively small unit-cells, the acoustic properties of which can be manipulated to achieve anomalous physical behaviours. These exotic properties open the door to practical applications, such as an acoustic leaky-wave antenna, through the implementation of radiating channels along the metamaterial. In the transmitting mode, such a leaky-wave antenna is capable of steering sound waves in frequency-dependent directions. Used in reverse, the antenna presents a well defined direction-frequency behaviour. In this paper, an acoustic leaky-wave structure is presented in the receiving mode. It is shown that it behaves as a sound source direction-finding device using only one sensor. After a general introduction of the acoustic leaky-wave antenna concept, its radiation pattern and radiation efficiency are expressed in closed form. Then, numerical simulations and experimental assessments of the proposed transmission-line based structure, implementing only one sensor at one termination, are presented. It is shown that such a structure is capable of finding the direction of an incoming sound wave, from backward to forward, based on received sound power spectra. This introduces the concept of sound source localization without resorting to beam-steering techniques based on multiple sensors. PMID:27369150

  16. Optimisation Of a Magnetostrictive Wave Energy Converter

    NASA Astrophysics Data System (ADS)

    Mundon, T. R.; Nair, B.

    2014-12-01

    Oscilla Power, Inc. (OPI) is developing a patented magnetostrictive wave energy converter aimed at reducing the cost of grid-scale electricity from ocean waves. Designed to operate cost-effectively across a wide range of wave conditions, this will be the first use of reverse magnetostriction for large-scale energy production. The device architecture is a straightforward two-body, point absorbing system that has been studied at length by various researchers. A large surface float is anchored to a submerged heave (reaction) plate by multiple taut tethers that are largely made up of discrete, robust power takeoff modules that house the magnetostrictive generators. The unique generators developed by OPI utilize the phenomenon of reverse magnetostriction, which through the application of load to a specific low cost alloy, can generate significant magnetic flux changes, and thus create power through electromagnetic induction. Unlike traditional generators, the mode of operation is low-displacement, high-force, high damping which in combination with the specific multi-tether configuration creates some unique effects and interesting optimization challenges. Using an empirical approach with a combination of numerical tools, such as ORCAFLEX, and physical models, we investigated the properties and sensitivities of this system arrangement, including various heave plate geometries, with the overall goal of identifying the mass and hydrodynamic parameters required for optimum performance. Furthermore, through a detailed physical model test program at the University of New Hampshire, we were able to study in more detail how the heave plate geometry affects the drag and added mass coefficients. In presenting this work we will discuss how alternate geometries could be used to optimize the hydrodynamic parameters of the heave plate, allowing maximum inertial forces in operational conditions, while simultaneously minimizing the forces generated in extreme waves. This presentation

  17. Wave energy resource assessment based on satellite observations around Indonesia

    NASA Astrophysics Data System (ADS)

    Ribal, Agustinus; Zieger, Stefan

    2016-06-01

    A preliminary assessment of wave energy resource around Indonesian's ocean has been carried out by means of analyzing satellite observations. The wave energy flux or wave power can be approximated using parameterized sea states. Wave power scales with significant wave height, characteristic wave period and water depth. In this approach, the significant wave heights were obtained from ENVISAT (Environmental Satellite) data which have been calibrated. However, as the characteristic wave period is rarely specified and therefore must be estimated from other variables when information about the wave spectra is unknown. Here, the characteristic wave period was calculated with an empirical model that utilizes altimeter estimates of wave height and backscatter coefficient originally proposed. For the Indonesian region, wave power energy is calculated over two periods of one year each and was compared with the results from global hindcast carried out with a recent release of wave model WAVEWATCH III. We found that, the most promising wave power energy regions around the Indonesian archipelago are located in the south of Java island and the south west of Sumatera island. In these locations, about 20 - 30 kW/m (90th percentile: 30-50 kW/m, 99th percentile: 40-60 kW/m) wave power energy on average has been found around south of Java island during 2010. Similar results have been found during 2011 at the same locations. Some small areas which are located around north of Irian Jaya (West Papua) are also very promising and need further investigation to determine its capacity as a wave energy resource.

  18. Experimental study of ultrasonic beam sectors for energy conversion into Lamb waves and Rayleigh waves.

    PubMed

    Declercq, Nico Felicien

    2014-02-01

    When a bounded beam is incident on an immersed plate Lamb waves or Rayleigh waves can be generated. Because the amplitude of a bounded beam is not constant along its wave front, a specific beam profile is formed that influences the local efficiency of energy conversion of incident sound into Lamb waves or Rayleigh waves. Understanding this phenomenon is important for ultrasonic immersion experiments of objects because the quality of such experiments highly depends on the amount of energy transmitted into the object. This paper shows by means of experiments based on monochromatic Schlieren photography that the area within the bounded beam responsible for Lamb wave generation differs from that responsible for Rayleigh wave generation. Furthermore it provides experimental verification of an earlier numerical study concerning Rayleigh wave generation.

  19. Scattered surface wave energy in the seismic coda

    USGS Publications Warehouse

    Zeng, Y.

    2006-01-01

    One of the many important contributions that Aki has made to seismology pertains to the origin of coda waves (Aki, 1969; Aki and Chouet, 1975). In this paper, I revisit Aki's original idea of the role of scattered surface waves in the seismic coda. Based on the radiative transfer theory, I developed a new set of scattered wave energy equations by including scattered surface waves and body wave to surface wave scattering conversions. The work is an extended study of Zeng et al. (1991), Zeng (1993) and Sato (1994a) on multiple isotropic-scattering, and may shed new insight into the seismic coda wave interpretation. The scattering equations are solved numerically by first discretizing the model at regular grids and then solving the linear integral equations iteratively. The results show that scattered wave energy can be well approximated by body-wave to body wave scattering at earlier arrival times and short distances. At long distances from the source, scattered surface waves dominate scattered body waves at surface stations. Since surface waves are 2-D propagating waves, their scattered energies should in theory follow a common decay curve. The observed common decay trends on seismic coda of local earthquake recordings particular at long lapse times suggest that perhaps later seismic codas are dominated by scattered surface waves. When efficient body wave to surface wave conversion mechanisms are present in the shallow crustal layers, such as soft sediment layers, the scattered surface waves dominate the seismic coda at even early arrival times for shallow sources and at later arrival times for deeper events.

  20. Climate change impact on wave energy in the Persian Gulf

    NASA Astrophysics Data System (ADS)

    Kamranzad, Bahareh; Etemad-Shahidi, Amir; Chegini, Vahid; Yeganeh-Bakhtiary, Abbas

    2015-06-01

    Excessive usage of fossil fuels and high emission of greenhouse gases have increased the earth's temperature, and consequently have changed the patterns of natural phenomena such as wind speed, wave height, etc. Renewable energy resources are ideal alternatives to reduce the negative effects of increasing greenhouse gases emission and climate change. However, these energy sources are also sensitive to changing climate. In this study, the effect of climate change on wave energy in the Persian Gulf is investigated. For this purpose, future wind data obtained from CGCM3.1 model were downscaled using a hybrid approach and modification factors were computed based on local wind data (ECMWF) and applied to control and future CGCM3.1 wind data. Downscaled wind data was used to generate the wave characteristics in the future based on A2, B1, and A1B scenarios, while ECMWF wind field was used to generate the wave characteristics in the control period. The results of these two 30-yearly wave modelings using SWAN model showed that the average wave power changes slightly in the future. Assessment of wave power spatial distribution showed that the reduction of the average wave power is more in the middle parts of the Persian Gulf. Investigation of wave power distribution in two coastal stations (Boushehr and Assalouyeh ports) indicated that the annual wave energy will decrease in both stations while the wave power distribution for different intervals of significant wave height and peak period will also change in Assalouyeh according to all scenarios.

  1. Mechanochemistry for Shock Wave Energy Dissipation

    NASA Astrophysics Data System (ADS)

    Shaw, William; Ren, Yi; Su, Zhi; Moore, Jeffrey; Suslick, Kenneth; Dlott, Dana

    2015-06-01

    Using our laser-driven flyer-plate apparatus we have developed a technique for detecting mechanically driven chemical reactions that attenuate shock waves. In these experiments 75 μm laser-driven flyer-plates travel at speeds of up to 2.8 km/s. Photonic Doppler velocimetry is used to monitor both the flight speed and the motions of an embedded mirror behind the sample on the supporting substrate. Since the Hugoniot of the substrate is known, mirror motions can be converted into the transmitted shock wave flux and fluence through a sample. Flux shows the shock profile whereas fluence represents the total energy transferred per unit area, and both are measured as a function of sample thickness. Targets materials are micrograms of carefully engineered organic and inorganic compounds selected for their potential to undergo negative volume, endothermic reactions. In situ fluorescence measurements and a suite of post mortem analytical methods are used to detect molecular chemical reactions that occur due to impact.

  2. Diffuse Waves and Energy Densities Near Boundaries

    NASA Astrophysics Data System (ADS)

    Sanchez-Sesma, F. J.; Rodriguez-Castellanos, A.; Campillo, M.; Perton, M.; Luzon, F.; Perez-Ruiz, J. A.

    2007-12-01

    Green function can be retrieved from averaging cross correlations of motions within a diffuse field. In fact, it has been shown that for an elastic inhomogeneous, anisotropic medium under equipartitioned, isotropic illumination, the average cross correlations are proportional to the imaginary part of Green function. For instance coda waves are due to multiple scattering and their intensities follow diffusive regimes. Coda waves and the noise sample the medium and effectively carry information along their paths. In this work we explore the consequences of assuming both source and receiver at the same point. From the observable side, the autocorrelation is proportional to the energy density at a given point. On the other hand, the imaginary part of the Green function at the source itself is finite because the singularity of Green function is restricted to the real part. The energy density at a point is proportional with the trace of the imaginary part of Green function tensor at the source itself. The Green function availability may allow establishing the theoretical energy density of a seismic diffuse field generated by a background equipartitioned excitation. We study an elastic layer with free surface and overlaying a half space and compute the imaginary part of the Green function for various depths. We show that the resulting spectrum is indeed closely related to the layer dynamic response and the corresponding resonant frequencies are revealed. One implication of present findings lies in the fact that spatial variations may be useful in detecting the presence of a target by its signature in the distribution of diffuse energy. These results may be useful in assessing the seismic response of a given site if strong ground motions are scarce. It suffices having a reasonable illumination from micro earthquakes and noise. We consider that the imaginary part of Green function at the source is a spectral signature of the site. The relative importance of the peaks of

  3. Fermi energy-dependence of electromagnetic wave absorption in graphene

    NASA Astrophysics Data System (ADS)

    Shoufie Ukhtary, M.; Hasdeo, Eddwi H.; Nugraha, Ahmad R. T.; Saito, Riichiro

    2015-05-01

    Undoped graphene is known to absorb 2.3% of visible light at a normal angle of incidence. In this paper, we theoretically demonstrate that the absorption of 10-100 GHz of an electromagnetic wave can be tuned from nearly 0 to 100% by varying the Fermi energy of graphene when the angle of incidence of the electromagnetic wave is kept within total internal reflection geometry. We calculate the absorption probability of the electromagnetic wave as a function of the Fermi energy of graphene and the angle of incidence of the wave. These results open up possibilities for the development of simple electromagnetic wave-switching devices operated by gate voltage.

  4. Free energy in plasmas under wave-induced diffusion

    SciTech Connect

    Fisch, N.J. . Plasma Physics Lab.); Rax, J.M. )

    1993-05-01

    When waves propagate through a bounded plasma, the wave may be amplified or damped at the expense of the plasma kinetic energy. In many cases of interest, the primary effect of the wave is to cause plasma diffusion in velocity and configuration space. In the absence of collisions, the rearrangement of the plasma conserves entropy, as large-grain structures are mixed and fine-grain structures emerge. The maximum extractable energy by waves so diffusing the plasma is a quantity of fundamental interest; it can be defined, but it is difficult to calculate. Through the consideration of specific examples, certain strategies for maximizing energy extraction are identified.

  5. Spectral wave flow attenuation within submerged canopies: Implications for wave energy dissipation

    NASA Astrophysics Data System (ADS)

    Lowe, Ryan J.; Falter, James L.; Koseff, Jeffrey R.; Monismith, Stephen G.; Atkinson, Marlin J.

    2007-05-01

    Communities of benthic organisms can form very rough surfaces (canopies) on the seafloor. Previous studies have shown that an oscillatory flow induced by monochromatic surface waves will drive more flow inside a canopy than a comparable unidirectional current. This paper builds on these previous studies by investigating how wave energy is attenuated within canopies under spectral wave conditions, or random wave fields defined by many frequencies. A theoretical model is first developed to predict how flow attenuation within a canopy varies among the different wave components and predicts that shorter-period components will generally be more effective at driving flow within a canopy than longer-period components. To investigate the model performance, a field experiment was conducted on a shallow reef flat in which flow was measured both inside and above a model canopy array. Results confirm that longer-period components in the spectrum are significantly more attenuated than shorter-period components, in good agreement with the model prediction. This paper concludes by showing that the rate at which wave energy is dissipated by a canopy is closely linked to the flow structure within the canopy. Under spectral wave conditions, wave energy within a model canopy array is dissipated at a greater rate among the shorter-period wave components. These observations are consistent with previous observations of how wave energy is dissipated by the bottom roughness of a coral reef.

  6. Wave energy dissipation by intertidal sand waves on a mixed-sediment Beach

    USGS Publications Warehouse

    Adams, P.; Ruggiero, P.

    2006-01-01

    Within the surf zone, the energy expended by wave breaking is strongly influenced by nearshore bathymetry, which is often linked to the character and abundance of local sediments. Based upon a continuous, two year record of Argus Beach Monitoring System (ABMS) data on the north shore of Kachemak Bay in southcentral Alaska, we model the enhancement of wave energy dissipation by the presence of intertidal sand waves. Comparison of model results from simulations in the presence and absence of sand waves illustrates that these ephemeral morphological features can offer significant protection to the backing beach and sea cliff through two mechanisms: (1) by moving the locus of wave breaking seaward and (2) by increasing energy expenditure associated with the turbulence of wave breaking. Copyright ASCE 2006.

  7. Enhancement of particle-wave energy exchange by resonance sweeping

    SciTech Connect

    Berk, H.L.; Breizman, B.N.

    1996-01-01

    When the resonance condition of the particle-wave interaction is varied adiabatically, the particles trapped in a wave are found to form phase space holes or clumps that enhance the particle-wave energy exchange. This mechanism can cause increased saturation levels of instabilities and even allow the free energy associated with instability to be tapped in a system in which background dissipation suppresses linear instability.

  8. Enhancement of particle-wave energy exchange by resonance sweeping

    SciTech Connect

    Berk, H.L.; Breizman, B.N.

    1995-10-01

    It is shown that as the resonance condition of the particle-wave interaction is varied adiabatically, that the particles trapped in the wave will form phase space holes or clumps that can enhance the particle-wave energy exchange. This mechanism can cause much larger saturation levels of instabilities, and even allow the free energy associated with instability, to be tapped in a system that is linearly stable due to background dissipation.

  9. Wave energy and wave-induced flow reduction by full-scale model Posidonia oceanica seagrass

    NASA Astrophysics Data System (ADS)

    Manca, E.; Cáceres, I.; Alsina, J. M.; Stratigaki, V.; Townend, I.; Amos, C. L.

    2012-12-01

    This paper presents results from experiments in a large flume on wave and flow attenuation by a full-scale artificial Posidonia oceanica seagrass meadow in shallow water. Wave height and in-canopy wave-induced flows were reduced by the meadow under all tested regular and irregular wave conditions, and were affected by seagrass density, submergence and distance from the leading edge. The energy of irregular waves was reduced at all components of the spectra, but reduction was greater at the peak spectral frequency. Energy dissipation factors were largest for waves with small orbital amplitudes and at low wave Reynolds numbers. An empirical model, commonly applied to predict friction factors by rough beds, proved applicable to the P. oceanica bed. However at the lowest Reynolds numbers, under irregular waves, the data deviated significantly from the model. In addition, the wave-induced flow dissipation in the lower canopy increased with increasing wave orbital amplitude and increasing density of the mimics. The analysis of the wave-induced flow spectra confirm this trend: the reduction of flow was greatest at the longer period component of the spectra. Finally, we discuss the implications of these findings for sediment dynamics and the role of P. oceanica beds in protecting the shore from erosion.

  10. Energy and energy flux in axisymmetric slow and fast waves

    NASA Astrophysics Data System (ADS)

    Moreels, M. G.; Van Doorsselaere, T.; Grant, S. D. T.; Jess, D. B.; Goossens, M.

    2015-06-01

    Aims: We aim to calculate the kinetic, magnetic, thermal, and total energy densities and the flux of energy in axisymmetric sausage modes. The resulting equations should contain as few parameters as possible to facilitate applicability for different observations. Methods: The background equilibrium is a one-dimensional cylindrical flux tube model with a piecewise constant radial density profile. This enables us to use linearised magnetohydrodynamic equations to calculate the energy densities and the flux of energy for axisymmetric sausage modes. Results: The equations used to calculate the energy densities and the flux of energy in axisymmetric sausage modes depend on the radius of the flux tube, the equilibrium sound and Alfvén speeds, the density of the plasma, the period and phase speed of the wave, and the radial or longitudinal components of the Lagrangian displacement at the flux tube boundary. Approximate relations for limiting cases of propagating slow and fast sausage modes are also obtained. We also obtained the dispersive first-order correction term to the phase speed for both the fundamental slow body mode under coronal conditions and the slow surface mode under photospheric conditions. Appendix A is available in electronic form at http://www.aanda.org

  11. Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy.

    PubMed

    Artemyev, A V; Agapitov, O V; Mourenas, D; Krasnoselskikh, V V; Mozer, F S

    2015-05-15

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity.

  12. Wave spectral energy variability in the northeast Pacific

    USGS Publications Warehouse

    Bromirski, P.D.; Cayan, D.R.; Flick, R.E.

    2005-01-01

    The dominant characteristics of wave energy variability in the eastern North Pacific are described from NOAA National Data Buoy Center (NDBC) buoy data collected from 1981 to 2003. Ten buoys at distributed locations were selected for comparison based on record duration and data continuity. Long-period (LP) [T > 12] s, intermediate-period [6 ??? T ??? 12] s, and short-period [T < 6] s wave spectral energy components are considered separately. Empirical orthogonal function (EOF) analyses of monthly wave energy anomalies reveal that all three wave energy components exhibit similar patterns of spatial variability. The dominant mode represents coherent heightened (or diminished) wave energy along the West Coast from Alaska to southern California, as indicated by composites of the 700 hPa height field. The second EOF mode reveals a distinct El Nin??o-Southern Oscillation (ENSO)-associated spatial distribution of wave energy, which occurs when the North Pacific storm track is extended unusually far south or has receded to the north. Monthly means and principal components (PCs) of wave energy levels indicate that the 1997-1998 El Nin??o winter had the highest basin-wide wave energy within this record, substantially higher than the 1982-1983 El Nin??o. An increasing trend in the dominant PC of LP wave energy suggests that storminess has increased in the northeast Pacific since 1980. This trend is emphasized at central eastern North Pacific locations. Patterns of storminess variability are consistent with increasing activity in the central North Pacific as well as the tendency for more extreme waves in the south during El Nin??o episodes and in the north during La Nin??a. Copyright 2005 by the American Geophysical Union.

  13. Global Budget of Gravity Wave Momentum and Energy Fluxes

    NASA Astrophysics Data System (ADS)

    Liu, H.

    2015-12-01

    Atmospheric gravity waves are known to play a key role in the middle and upper atmosphere. These waves carry momentum and energy fluxes as they propagate, and can deposit momentum and energy when waves dissipate due to either instability or background diffusion. The global budgets of gravity wave momentum fluxes have previously been estimated by using ground-based observations, and more recently deduced from satellite observations. There have been less reports on the global energy flux budget. In this study, we analyze the momentum and energy fluxes calculated from mesoscale-resolving Whole Atmosphere Community Climate Model (WACCM), including their global distribution, altitude dependence, and seasonal variation. The momentum fluxes and their spatial and seasonal variation are found to be in general agreement with satellite observations. With this verification of the momentum flux, the energy flux budget, in particular the altitude dependence of the total energy flux, is examined.

  14. Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions

    SciTech Connect

    Chang, G.; Ruehl, K.; Jones, C. A.; Roberts, J.; Chartrand, C.

    2015-12-24

    Modeled nearshore wave propagation was investigated downstream of simulated wave energy converters (WECs) to evaluate overall near- and far-field effects of WEC arrays. Model sensitivity to WEC characteristics and WEC array deployment scenarios was evaluated using a modified version of an industry standard wave model, Simulating WAves Nearshore (SWAN), which allows the incorporation of device-specific WEC characteristics to specify obstacle transmission. The sensitivity study illustrated that WEC device type and subsequently its size directly resulted in wave height variations in the lee of the WEC array. Wave heights decreased up to 30% between modeled scenarios with and without WECs for large arrays (100 devices) of relatively sizable devices (26 m in diameter) with peak power generation near to the modeled incident wave height. Other WEC types resulted in less than 15% differences in modeled wave height with and without WECs, with lesser influence for WECs less than 10 m in diameter. Wave directions and periods were largely insensitive to changes in parameters. Furthermore, additional model parameterization and analysis are required to fully explore the model sensitivity of peak wave period and mean wave direction to the varying of the parameters.

  15. Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions

    DOE PAGES

    Chang, G.; Ruehl, K.; Jones, C. A.; Roberts, J.; Chartrand, C.

    2015-12-24

    Modeled nearshore wave propagation was investigated downstream of simulated wave energy converters (WECs) to evaluate overall near- and far-field effects of WEC arrays. Model sensitivity to WEC characteristics and WEC array deployment scenarios was evaluated using a modified version of an industry standard wave model, Simulating WAves Nearshore (SWAN), which allows the incorporation of device-specific WEC characteristics to specify obstacle transmission. The sensitivity study illustrated that WEC device type and subsequently its size directly resulted in wave height variations in the lee of the WEC array. Wave heights decreased up to 30% between modeled scenarios with and without WECs formore » large arrays (100 devices) of relatively sizable devices (26 m in diameter) with peak power generation near to the modeled incident wave height. Other WEC types resulted in less than 15% differences in modeled wave height with and without WECs, with lesser influence for WECs less than 10 m in diameter. Wave directions and periods were largely insensitive to changes in parameters. Furthermore, additional model parameterization and analysis are required to fully explore the model sensitivity of peak wave period and mean wave direction to the varying of the parameters.« less

  16. ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES

    SciTech Connect

    Goossens, M.; Van Doorsselaere, T.; Soler, R.; Verth, G.

    2013-05-10

    Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

  17. Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios

    SciTech Connect

    Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two

  18. Catching the right wave: evaluating wave energy resources and potential compatibility with existing marine and coastal uses.

    PubMed

    Kim, Choong-Ki; Toft, Jodie E; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D; Ruckelshaus, Marry H; Arkema, Katie K; Guannel, Gregory; Wood, Spencer A; Bernhardt, Joanna R; Tallis, Heather; Plummer, Mark L; Halpern, Benjamin S; Pinsky, Malin L; Beck, Michael W; Chan, Francis; Chan, Kai M A; Levin, Phil S; Polasky, Stephen

    2012-01-01

    Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses.

  19. Catching the Right Wave: Evaluating Wave Energy Resources and Potential Compatibility with Existing Marine and Coastal Uses

    PubMed Central

    Kim, Choong-Ki; Toft, Jodie E.; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D.; Ruckelshaus, Marry H.; Arkema, Katie K.; Guannel, Gregory; Wood, Spencer A.; Bernhardt, Joanna R.; Tallis, Heather; Plummer, Mark L.; Halpern, Benjamin S.; Pinsky, Malin L.; Beck, Michael W.; Chan, Francis; Chan, Kai M. A.; Levin, Phil S.; Polasky, Stephen

    2012-01-01

    Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses. PMID:23144824

  20. Quantifying the Benefits of Combining Offshore Wind and Wave Energy

    NASA Astrophysics Data System (ADS)

    Stoutenburg, E.; Jacobson, M. Z.

    2009-12-01

    For many locations the offshore wind resource and the wave energy resource are collocated, which suggests a natural synergy if both technologies are combined into one offshore marine renewable energy plant. Initial meteorological assessments of the western coast of the United States suggest only a weak correlation in power levels of wind and wave energy at any given hour associated with the large ocean basin wave dynamics and storm systems of the North Pacific. This finding indicates that combining the two power sources could reduce the variability in electric power output from a combined wind and wave offshore plant. A combined plant is modeled with offshore wind turbines and Pelamis wave energy converters with wind and wave data from meteorological buoys operated by the US National Buoy Data Center off the coast of California, Oregon, and Washington. This study will present results of quantifying the benefits of combining wind and wave energy for the electrical power system to facilitate increased renewable energy penetration to support reductions in greenhouse gas emissions, and air and water pollution associated with conventional fossil fuel power plants.

  1. What can wave energy learn from offshore oil and gas?

    PubMed

    Jefferys, E R

    2012-01-28

    This title may appear rather presumptuous in the light of the progress made by the leading wave energy devices. However, there may still be some useful lessons to be learnt from current 'offshore' practice, and there are certainly some awful warnings from the past. Wave energy devices and the marine structures used in oil and gas exploration as well as production share a common environment and both are subject to wave, wind and current loads, which may be evaluated with well-validated, albeit imperfect, tools. Both types of structure can be designed, analysed and fabricated using similar tools and technologies. They fulfil very different missions and are subject to different economic and performance requirements; hence 'offshore' design tools must be used appropriately in wave energy project and system design, and 'offshore' cost data should be adapted for 'wave' applications. This article reviews the similarities and differences between the fields and highlights the differing economic environments; offshore structures are typically a small to moderate component of field development cost, while wave power devices will dominate overall system cost. The typical 'offshore' design process is summarized and issues such as reliability-based design and design of not normally manned structures are addressed. Lessons learned from poor design in the past are discussed to highlight areas where care is needed, and wave energy-specific design areas are reviewed. Opportunities for innovation and optimization in wave energy project and device design are discussed; wave energy projects must ultimately compete on a level playing field with other routes to low CO₂ energy and/or energy efficiency. This article is a personal viewpoint and not an expression of a ConocoPhillips position.

  2. Wave Turbulence in Superfluid {sup 4}He: Energy Cascades and Rogue Waves in the Laboratory

    SciTech Connect

    Efimov, V. B.; Ganshin, A. N.; McClintock, P. V. E.; Kolmakov, G. V.; Mezhov-Deglin, L. P.

    2008-11-13

    Recent work on second sound acoustic turbulence in superfluid {sup 4}He is reviewed. Observations of forward and inverse energy cascades are described. The onset of the inverse cascade occurs above a critical driving energy and it is accompanied by giant waves that constitute an acoustic analogue of the rogue waves that occasionally appear on the surface of the ocean. The theory of the phenomenon is outlined and shown to be in good agreement with the experiments.

  3. Wave-current interactions at the FloWave Ocean Energy Research Facility

    NASA Astrophysics Data System (ADS)

    Noble, Donald; Davey, Thomas; Steynor, Jeffrey; Bruce, Tom; Smith, Helen; Kaklis, Panagiotis

    2015-04-01

    Physical scale model testing is an important part of the marine renewable energy development process, allowing the study of forces and device behaviour in a controlled environment prior to deployment at sea. FloWave is a new state-of-the-art ocean energy research facility, designed to provide large scale physical modelling services to the tidal and wave sector. It has the unique ability to provide complex multi-directional waves that can be combined with currents from any direction in the 25m diameter circular tank. The facility is optimised for waves around 2s period and 0.4m height, and is capable of generating currents upwards of 1.6m/s. This offers the ability to model metocean conditions suitable for most renewable energy devices at a typical scale of between 1:10 and 1:40. The test section is 2m deep, which can be classed as intermediate-depth for most waves of interest, thus the full dispersion equation must be solved as the asymptotic simplifications do not apply. The interaction between waves and currents has been studied in the tank. This has involved producing in the tank sets of regular waves, focussed wave groups, and random sea spectra including multi-directional sea states. These waves have been both inline-with and opposing the current, as well as investigating waves at arbitrary angles to the current. Changes in wave height and wavelength have been measured, and compared with theoretical results. Using theoretical wave-current interaction models, methods have been explored to "correct" the wave height in the central test area of the tank when combined with a steady current. This allows the wave height with current to be set equal to that without a current. Thus permitting, for example, direct comparison of device motion response between tests with and without current. Alternatively, this would also permit a specific wave height and current combination to be produced in the tank, reproducing recorded conditions at a particular site of interest. The

  4. Internal wave energy radiated from a turbulent mixed layer

    SciTech Connect

    Munroe, James R.; Sutherland, Bruce R.

    2014-09-15

    We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%–3% of the turbulent kinetic energy density of the turbulent layer.

  5. Extended emission wavelength of random dye lasers by exploiting radiative and non-radiative energy transfer

    NASA Astrophysics Data System (ADS)

    Wan Ismail, Wan Zakiah; Goldys, Ewa M.; Dawes, Judith M.

    2016-02-01

    We demonstrate long-wavelength operation (>700 nm) of random dye lasers (using a methylene blue dye) with the addition of rhodamine 6G and titania, enabled by radiative and non-radiative energy transfer. The pump energy is efficiently absorbed and transferred to the acceptors, to support lasing in random dye lasers in the near infrared. The optimum random laser performance with the highest emission intensity and the lowest lasing threshold was achieved for a concentration of methylene blue as the acceptor equal to 6× the concentration of rhodamine 6G (donor). Excessive levels of methylene blue increased the lasing threshold and broadened the methylene blue emission linewidth due to dye quenching from re-absorption. This is due to competition between the donor emission and energy transfer and between absorption loss and fluorescence quenching. The radiative and non-radiative energy transfer is analyzed as a function of the acceptor concentration and pump energy density, with consideration of the spectral overlap. The dependence of the radiative and non-radiative transfer efficiency on the acceptor concentration is obtained, and the energy transfer parameters, including the radiative and non-radiative energy transfer rate constants ( K R and K NR), are investigated using Stern-Volmer analysis. The analysis indicates that radiative energy transfer is the dominant energy transfer mechanism in this system.

  6. Experimental study of breaking and energy dissipation in surface waves

    NASA Astrophysics Data System (ADS)

    Ruiz Chavarria, Gerardo; Le Gal, Patrice; Le Bars, Michael

    2014-11-01

    We present an experimental study of the evolution of monochromatic waves produced by a parabolic wave maker. Because of the parabolic shape of the wave front, the waves exhibit spatial focusing and their amplitude dramatically increases over distances of a few wavelengths. Unlike linear waves, the amplitude of the free surface deformation cannot exceed a certain threshold and when this happens the waves break. In order to give a criterion for the appearance of breaking, we calculate the steepness defined as ɛ = H/ λ (where H is the wave height and λ their wavelength) for waves of frequencies in the range 4-10 Hz. We found that wave breaking develops when ɛ attains approximately a value of 0.10. We also evaluate the lost of energy carried by the waves during their breaking by a detailed and accurate measurement of their amplitude using an optical Fourier transform profilometry. G. Ruiz Chavarria acknowledges DGAPA-UNAM by support under Project IN 116312 (Vorticidad y ondas no lineales en fluidos).

  7. Shock waves in water at low energy pulsed electric discharges

    NASA Astrophysics Data System (ADS)

    Pinchuk, M. E.; Kolikov, V. A.; Rutberg, Ph G.; Leks, A. G.; Dolinovskaya, R. V.; Snetov, V. N.; Stogov, A. Yu

    2012-12-01

    Experimental results of shock wave formation and propagation in water at low energy pulsed electric discharges are presented. To study the hydrodynamic structure of the shock waves, the direct shadow optical diagnostic device with time resolution of 5 ns and spatial resolution of 0.1 mm was designed and developed. Synchronization of the diagnostic and electrodischarge units by the fast optocouplers was carried out. The dependences of shock wave velocities after breakdown of interelectrode gap for various energy inputs (at range of <=1 J) into discharge were obtained. Based on the experimental results the recommendations for the adjustment parameters of the power supply and load were suggested.

  8. Software augmented buildings: Exploiting existing infrastructure to improve energy efficiency and comfort in commercial buildings

    NASA Astrophysics Data System (ADS)

    Balaji, Bharathan

    Commercial buildings consume 19% of energy in the US as of 2010, and traditionally, their energy use has been optimized through improved equipment efficiency and retrofits. Beyond improved hardware and infrastructure, there exists a tremendous potential in reducing energy use through better monitoring and operation. We present several applications that we developed and deployed to support our thesis that building energy use can be reduced through sensing, monitoring and optimization software that modulates use of building subsystems including HVAC. We focus on HVAC systems as these constitute 48-55% of building energy use. Specifically, in case of sensing, we describe an energy apportionment system that enables us to estimate real-time zonal HVAC power consumption by analyzing existing sensor information. With this energy breakdown, we can measure effectiveness of optimization solutions and identify inefficiencies. Central to energy efficiency improvement is determination of human occupancy in buildings. But this information is often unavailable or expensive to obtain using wide scale sensor deployment. We present our system that infers room level occupancy inexpensively by leveraging existing WiFi infrastructure. Occupancy information can be used not only to directly control HVAC but also to infer state of the building for predictive control. Building energy use is strongly influenced by human behaviors, and timely feedback mechanisms can encourage energy saving behavior. Occupants interact with HVAC using thermostats which has shown to be inadequate for thermal comfort. Building managers are responsible for incorporating energy efficiency measures, but our interviews reveal that they struggle to maintain efficiency due to lack of analytical tools and contextual information. We present our software services that provide energy feedback to occupants and building managers, improves comfort with personalized control and identifies energy wasting faults. For wide

  9. Equilibrium shoreline response of a high wave energy beach

    NASA Astrophysics Data System (ADS)

    Yates, M. L.; Guza, R. T.; O'Reilly, W. C.; Hansen, J. E.; Barnard, P. L.

    2011-04-01

    Four years of beach elevation surveys at Ocean Beach, San Francisco, California, are used to extend an existing equilibrium shoreline change model, previously calibrated with fine sand and moderate energy waves, to medium sand and higher-energy waves. The shoreline, characterized as the cross-shore location of the mean high water contour, varied seasonally by between 30 and 60 m, depending on the alongshore location. The equilibrium shoreline change model relates the rate of horizontal shoreline displacement to the hourly wave energy E and the wave energy disequilibrium, the difference between E and the equilibrium wave energy that would cause no change in the present shoreline location. Values for the model shoreline response coefficients are tuned to fit the observations in 500 m alongshore segments and averaged over segments where the model has good skill and the estimated effects of neglected alongshore sediment transport are relatively small. Using these representative response coefficients for 0.3 mm sand from Ocean Beach and driving the model with much lower-energy winter waves observed at San Onofre Beach (also 0.3 mm sand) in southern California, qualitatively reproduces the small seasonal shoreline fluctuations at San Onofre. This consistency suggests that the shoreline model response coefficients depend on grain size and may be constant, and thus transportable, between sites with similar grain size and different wave climates. The calibrated model response coefficients predict that for equal fluctuations in wave energy, changes in shoreline location on a medium-grained (0.3 mm) beach are much smaller than on a previously studied fine-grained (0.2 mm) beach.

  10. Equilibrium shoreline response of a high wave energy beach

    USGS Publications Warehouse

    Yates, M.L.; Guza, R.T.; O'Reilly, W. C.; Hansen, J.E.; Barnard, P.L.

    2011-01-01

    Four years of beach elevation surveys at Ocean Beach, San Francisco, California, are used to extend an existing equilibrium shoreline change model, previously calibrated with fine sand and moderate energy waves, to medium sand and higher-energy waves. The shoreline, characterized as the cross-shore location of the mean high water contour, varied seasonally by between 30 and 60 m, depending on the alongshore location. The equilibrium shoreline change model relates the rate of horizontal shoreline displacement to the hourly wave energy E and the wave energy disequilibrium, the difference between E and the equilibrium wave energy that would cause no change in the present shoreline location. Values for the model shoreline response coefficients are tuned to fit the observations in 500 m alongshore segments and averaged over segments where the model has good skill and the estimated effects of neglected alongshore sediment transport are relatively small. Using these representative response coefficients for 0.3 mm sand from Ocean Beach and driving the model with much lower-energy winter waves observed at San Onofre Beach (also 0.3 mm sand) in southern California, qualitatively reproduces the small seasonal shoreline fluctuations at San Onofre. This consistency suggests that the shoreline model response coefficients depend on grain size and may be constant, and thus transportable, between sites with similar grain size and different wave climates. The calibrated model response coefficients predict that for equal fluctuations in wave energy, changes in shoreline location on a medium-grained (0.3 mm) beach are much smaller than on a previously studied fine-grained (0.2 mm) beach. Copyright ?? 2011 by the American Geophysical Union.

  11. An array effect of wave energy farm buoys

    NASA Astrophysics Data System (ADS)

    Kweon, Hyuck-Min; Lee, Jung-Lyul

    2012-12-01

    An ocean buoy energy farm is considered for Green energy generation and delivery to small towns along the Korean coast. The present studypresents that the floating buoy-type energy farm appears to be sufficiently feasible fortrapping more energy compared to afixed cylinder duck array. It is also seen from the numerical resultsthat the resonated waves between spaced buoys are further trapped by floating buoy motion.Our numerical study is analyzed by a plane-wave approximation, in which evanescent mode effects are included in a modified mild-slope equation based on the scattering characteristics for a single buoy.

  12. Solar Thermal Energy Exploitation: An Opportunity to Enhance Conceptual Learning in Physics

    NASA Astrophysics Data System (ADS)

    Rodrigues, M. A.; Cravino, J. P.; Liberato, M. L. R.

    2010-05-01

    In a society mainly driven by Science and Technology it is becoming consensual the idea that scientific education should include three components: Education in Science, Education about Science and Education through Science. Some authors suggest that, in education, everyday objects should be used to illustrate scientific issues (e.g. Andrée, 2005). Thus the goal of this study is two-fold: first, to develop a teaching and learning strategy, in the framework of Education for Sustainable Development (ESD), concerning the renewable energy issue, while showing the importance of using everyday situations in the improvement of students' motivation in Physics learning. Energy is the core concept in this study. Energy conservation includes the concepts applied to sustainable balance between environment and the energy availability and use. Dias et al. (2004) stress that education is one of the best ways to transform the human behavior for the rational use of energy, which represents a long-term investment. In this work students become aware and recognize the importance and value of energy in everyday life, they identify energy transfer and transformation processes, confirm energy availability, relating these topics to present human needs and climate change issues. A didactic model of a solar thermal panel has thus been built, using cheap, common materials, by 15-16 year-old Physics students, from a Portuguese secondary school. Students had to plan the experiments, in small groups, to identify and estimate physical magnitudes and to explore how to maximize the solar thermal panel efficiency. The experimental activities took place in the school's playground, in a place where there were no obstacles to capturing solar radiation. Finally, students had to deal with experimental data acquisition and analysis, they had to prepare a report, as well as to answer a survey, to evaluate their learning success. Results show that students appreciated the proposed themes and activities

  13. Wave energy converter effects on wave propagation: A sensitivity study in Monterey Bay, CA

    NASA Astrophysics Data System (ADS)

    Chang, G.; Jones, C. A.; Roberts, J.; Magalen, J.; Ruehl, K.; Chartrand, C.

    2014-12-01

    The development of renewable offshore energy in the United States is growing rapidly and wave energy is one of the largest resources currently being evaluated. The deployment of wave energy converter (WEC) arrays required to harness this resource could feasibly number in the hundreds of individual devices. The WEC arrays have the potential to alter nearshore wave propagation and circulation patterns and ecosystem processes. As the industry progresses from pilot- to commercial-scale it is important to understand and quantify the effects of WECs on the natural nearshore processes that support a local, healthy ecosystem. To help accelerate the realization of commercial-scale wave power, predictive modeling tools have been developed and utilized to evaluate the likelihood of environmental impact. At present, direct measurements of the effects of different types of WEC arrays on nearshore wave propagation are not available; therefore wave model simulations provide the groundwork for investigations of the sensitivity of model results to prescribed WEC characteristics over a range of anticipated wave conditions. The present study incorporates a modified version of an industry standard wave modeling tool, SWAN (Simulating WAves Nearshore), to simulate wave propagation through a hypothetical WEC array deployment site on the California coast. The modified SWAN, referred to as SNL-SWAN, incorporates device-specific WEC power take-off characteristics to more accurately evaluate a WEC device's effects on wave propagation. The primary objectives were to investigate the effects of a range of WEC devices and device and array characteristics (e.g., device spacing, number of WECs in an array) on nearshore wave propagation using SNL-SWAN model simulations. Results showed that significant wave height was most sensitive to variations in WEC device type and size and the number of WEC devices in an array. Locations in the lee centerline of the arrays in each modeled scenario showed the

  14. Non-templated ambient nanoperforation of graphene: a novel scalable process and its exploitation for energy and environmental applications

    NASA Astrophysics Data System (ADS)

    Jhajharia, Suman Kumari; Selvaraj, Kaliaperumal

    2015-11-01

    Nano-perforation of 2D graphene sheets is a recent and strategically significant means to exploit such materials in modern applications such as energy production and storage. However, current options for the synthesis of holey graphene (hG) through nano-perforation of graphene involve industrially undesirable steps viz., usage of expensive/noble metal or silica nanoparticle templates and/or hazardous chemicals. This severely hampers its scope for large scale production and further exploitation. Herein, we report for the first time a scalable non-templated route to produce hG at ambient conditions. Nano-perforation is achieved with tunable pore size via the simple few layer co-assembly of silicate-surfactant admicelles along the surface of graphene oxide. A gentle alkali treatment and a reduction at optimized conditions readily yielded holey graphene with a remarkable capacitance (~250 F g-1) and interesting adsorption abilities for pollutants. Density functional theory based computational studies reveal interesting insights on the template free nano-perforation at a molecular level. This simple rapid process not only excludes the need for expensive templates and harmful chemicals to yield hG at attractively ambient, chemically placid and industrially safer conditions, but also creates no hurdles in terms of scaling up.Nano-perforation of 2D graphene sheets is a recent and strategically significant means to exploit such materials in modern applications such as energy production and storage. However, current options for the synthesis of holey graphene (hG) through nano-perforation of graphene involve industrially undesirable steps viz., usage of expensive/noble metal or silica nanoparticle templates and/or hazardous chemicals. This severely hampers its scope for large scale production and further exploitation. Herein, we report for the first time a scalable non-templated route to produce hG at ambient conditions. Nano-perforation is achieved with tunable pore size

  15. Energy wave propogation in pristine and bi-crystal graphene

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Xu, Shuai; Liu, Zishun; Ng, Teng Yong

    2016-09-01

    This study investigates the distribution and propagation of potential energy in graphene under tearing loads. Before crack extension, high potential energy accumulates at the crack tip. The distributions of the high potential energy are symmetrical and asymmetrical in pristine graphene and bi-crystal graphene with misorientation angle of 21.79∘, respectively. When a C-C bond breaks during the fracture of graphene, numerous energy waves successively arise from the crack tip, i.e., the two atoms linked by the broken bond. These atoms lose one bond constraint and turn into unstable states, and they displace with high accelerations. In pristine graphene, the energy waves present as hexagonal geometries, while the waveforms near the loading areas are compressed to flatter geometries. In bi-crystal graphene, the refractions of potential energy waves are observed when the energy waves propagate to the grain boundary (GB) and interact with it, and the waveforms are changed after the wave crosses the GB. For both pristine graphene and bi-crystal graphene, wrinkles are generated when the crack tip extends to the site sufficiently close to the vertical free boundary, and the wrinkles are always nearly parallel to the horizontal free boundary and move along with the motion of the crack tip.

  16. Novel approach to the exploitation of the tidal energy. Volume 1: Summary and discussion

    NASA Astrophysics Data System (ADS)

    Gorlov, A. M.

    1981-12-01

    The hydropneumatic concept in the approach to harnessing low tidal hydropower is discussed. The energy of water flow is converted into the energy of an air jet by a specialized air chamber which is placed on the ocean floor across a flowing watercourse. Water passes through the chamber where it works as a natural piston compressing air in the upper part of the closure. Compressed air is used as a new working plenum to drive air turbines. The kinetic energy of an air jet provided by the air chamber is sufficient for stable operation of industrial air turbines. It is possible to use light plastic barriers instead of conventional rigid dams (the water sail concept). It is confirmed that the concept can result in a less expensive and more effective tidal power plant project than the conventional hydroturbine approach.

  17. Exploiting neutron-rich radioactive ion beams to constrain the symmetry energy

    NASA Astrophysics Data System (ADS)

    Kohley, Z.; Christian, G.; Baumann, T.; DeYoung, P. A.; Finck, J. E.; Frank, N.; Jones, M.; Smith, J. K.; Snyder, J.; Spyrou, A.; Thoennessen, M.

    2013-10-01

    The Modular Neutron Array (MoNA) and 4 Tm Sweeper magnet were used to measure the free neutrons and heavy charged particles from the radioactive ion beam induced 32Mg+9Be reaction. The fragmentation reaction was simulated with the constrained molecular dynamics model (CoMD), which demonstrated that the of the heavy fragments and free neutron multiplicities were observables sensitive to the density dependence of the symmetry energy at subsaturation densities. Through comparison of these simulations with the experimental data, constraints on the density dependence of the symmetry energy were extracted. The advantage of radioactive ion beams as a probe of the symmetry energy is demonstrated through examination of CoMD calculations for stable and radioactive-beam-induced reactions.

  18. Note on Salter's energy absorber in random waves

    SciTech Connect

    Serman, D.D.; Mei, C.C.

    1980-01-01

    Salter's wave theory energy device has been the object of extensive theoretical and experimental studies during recent years. This paper describes the performance of the device in random waves by means of a numerical study. Different situations are considered. First, the cam is allowed to have one degree of freedom (the cam rolls about a rigid and fixed shaft) and is in a shallow sea where the waves are modeled by the JONSWAP spectrum. Power extraction, efficiency and dynamic response are presented in terms of wind characteristics for a cam radius of 3 m. In the open sea where typical waves are longer and higher, waves are represented by the P-M spectrum and the cam radius is taken to be 7 m. Finally, it is shown for a particular set of design parameters how the efficiency decays and the power extraction decreases with lack of rigidity in the support system.

  19. Energy absorption from ocean waves: a free ride for cetaceans.

    PubMed

    Bose, N; Lien, J

    1990-06-22

    Flukes of cetaceans are capable of absorbing energy from ocean waves for propulsion. The extent of this energy absorption is demonstrated by considering the flukes of an immature fin whale, Balaenoptera physalus. In a fully developed seaway corresponding to a wind speed of 20 knots (around Beaufort force 5) and at a low swimming speed, of 2.5 m s-1, this whale was able to absorb up to 25% of its required propulsive power in head seas and 33% of propulsive power in following seas. Consequences of wave-energy absorption for energetics of cetacean migrations are discussed.

  20. Energy flow, energy density of Timoshenko beam and wave mode incoherence

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Rao, Zhushi; Ta, Na

    2015-10-01

    Time-averaged energy flow and energy density are of significance in vibration analysis. The wave decomposition method is more fruitful and global in physical sense than the state variables depicted point by point. By wave approach, the Timoshenko beam vibration field is decomposed into two distinct modes: travelling and evanescent waves. Consequently, the power and energy functions defined on these waves' amplitude and phase need to be established. However, such formulas on Timoshenko beam are hardly found in literatures. Furthermore, the incoherence between these two modes is of theoretical and practical significance. This characteristic guarantees that the resultant power or energy of a superposed wave field is equal to the sum of the power or energy that each wave mode would generate individually. Unlike Euler-Bernoulli beam, such incoherence in the Timoshenko beam case has not been theoretically proved so far. Initially, the power and energy formulas based on wave approach and the corresponding incoherence proof are achieved by present work, both in theoretical and numerical ways. Fortunately, the theoretical and numerical results show that the travelling and evanescent wave modes are incoherent with each other both on power and energy functions. Notably, the energy function is unconventional and self-defined in order to obtain the incoherence. Some remarkable power transmission characteristics of the evanescent wave are also illustrated meanwhile.

  1. Shackleton Energy enabling Space Resources Exploitation on the Moon within a Decade

    NASA Astrophysics Data System (ADS)

    Keravala, J.; Stone, B.; Tietz, D.; Frischauf, N.

    2013-09-01

    Access to in-space natural resources is a key requirement for increasing exploration and expansion of humanity off Earth. In particular, making use of the Moon's resources in the form of lunar polar ice to fuel propellant depots at key locations in near Earth space enables dramatic reductions in the cost of access and operations in space, while simultaneously leveraging reusable in-space transporters essential to opening the newspace highway system. Success of this private venture will provide for a sustained balance of our terrestrial economy and the growth of our civilisation. Establishing the cis-Lunar highway required to access lunar sourced water from the cold traps of the polar craters provides the backbone infrastructure for an exponential growth of a space-based economy. With that core infrastructure in place, space-based solar power generation systems, debris mitigation capabilities and planetary protection systems plus scientific and exploratory missions, among others, can become commercial realities in our lifetime. Shackleton Energy was founded from the space, mining, energy and exploration sectors to meet this challenge as a fully private venture. Following successful robotic precursor missions, our industrial astronauts combined with a robotic mining capability will make first landings at the South Pole of the Moon and begin deliveries of propellant to our depots in within a decade. Customers, partners, technologies and most importantly, the investor classes aligned with the risk profiles involved, have been identified and all the components for a viable business are available. Infrastructure investment in space programs has traditionally been the province of governments, but sustainable expansion requires commercial leadership and this is now the responsibility of a dynamic new industry. The technologies and know-how are ready to be applied. Launch services to LEO are available and the industrial capability exists in the aerospace, mining and energy

  2. Are Wave and Tidal Energy Plants New Green Technologies?

    PubMed

    Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca

    2016-07-19

    Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research. PMID:27294983

  3. Are Wave and Tidal Energy Plants New Green Technologies?

    PubMed

    Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca

    2016-07-19

    Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research.

  4. Method of, and apparatus for, extracting energy from waves

    SciTech Connect

    Laithwaite, E.R.; Salter, S.H.

    1981-11-17

    In a method of, and apparatus for, extracting energy from waves on a liquid, the precession of a gyroscope in response to angular motion of a member in response to waves performs useful work by operating a hydraulic pump. Advantageously, pairs of gyroscopes having their rotors spinning in opposite directions are mounted in the member so as to balance the output torques of the gyroscopes.

  5. Energy Efficient IoT Data Collection in Smart Cities Exploiting D2D Communications.

    PubMed

    Orsino, Antonino; Araniti, Giuseppe; Militano, Leonardo; Alonso-Zarate, Jesus; Molinaro, Antonella; Iera, Antonio

    2016-06-08

    Fifth Generation (5G) wireless systems are expected to connect an avalanche of "smart" objects disseminated from the largest "Smart City" to the smallest "Smart Home". In this vision, Long Term Evolution-Advanced (LTE-A) is deemed to play a fundamental role in the Internet of Things (IoT) arena providing a large coherent infrastructure and a wide wireless connectivity to the devices. However, since LTE-A was originally designed to support high data rates and large data size, novel solutions are required to enable an efficient use of radio resources to convey small data packets typically exchanged by IoT applications in "smart" environments. On the other hand, the typically high energy consumption required by cellular communications is a serious obstacle to large scale IoT deployments under cellular connectivity as in the case of Smart City scenarios. Network-assisted Device-to-Device (D2D) communications are considered as a viable solution to reduce the energy consumption for the devices. The particular approach presented in this paper consists in appointing one of the IoT smart devices as a collector of all data from a cluster of objects using D2D links, thus acting as an aggregator toward the eNodeB. By smartly adapting the Modulation and Coding Scheme (MCS) on the communication links, we will show it is possible to maximize the radio resource utilization as a function of the total amount of data to be sent. A further benefit that we will highlight is the possibility to reduce the transmission power when a more robust MCS is adopted. A comprehensive performance evaluation in a wide set of scenarios will testify the achievable gains in terms of energy efficiency and resource utilization in the envisaged D2D-based IoT data collection.

  6. Exploiting a nonlinear restoring force to improve the performance of flow energy harvesters

    NASA Astrophysics Data System (ADS)

    Bibo, Amin; Alhadidi, Ali H.; Daqaq, Mohammed F.

    2015-01-01

    This paper investigates employing a nonlinear restoring force to improve the performance of flow energy harvesters (FEHs). To that end, a galloping FEH possessing a quartic potential energy function of the form V =1/2 μy2+1/4 γy4 is considered. This potential function is used to model either a softening (μ > 0, γ < 0), hardening (μ > 0, γ > 0), or bi-stable (μ < 0, γ > 0) restoring force. A physics-based model of the harvester is obtained assuming piezoelectric transduction and a quasi-steady flow field. The model is validated against experimental data and used to obtain a closed-form solution of the response by employing a multiple scaling perturbation analysis using the Jacobi elliptic functions. The attained solution is subsequently used to investigate the influence of the nonlinearity on the performance of the harvester and to illustrate how to optimize the restoring force in order to maximize the output power for given design conditions and airflow parameters. Specifically, it is shown that for similar design parameters and equal magnitudes of μ, and γ, a bi-stable energy harvester outperforms all other configurations as long as the inter-well motions are activated. On the other hand, if the motion of the bi-stable harvester is limited to a single well, then a harvester incorporating a softening nonlinear restoring force outperforms all other configurations. Furthermore, when comparing two FEHs incorporating the same type of restoring force at the optimal load and similar values of μ, then the FEH with the smaller γ is shown to provide higher output power levels.

  7. Energy Efficient IoT Data Collection in Smart Cities Exploiting D2D Communications.

    PubMed

    Orsino, Antonino; Araniti, Giuseppe; Militano, Leonardo; Alonso-Zarate, Jesus; Molinaro, Antonella; Iera, Antonio

    2016-01-01

    Fifth Generation (5G) wireless systems are expected to connect an avalanche of "smart" objects disseminated from the largest "Smart City" to the smallest "Smart Home". In this vision, Long Term Evolution-Advanced (LTE-A) is deemed to play a fundamental role in the Internet of Things (IoT) arena providing a large coherent infrastructure and a wide wireless connectivity to the devices. However, since LTE-A was originally designed to support high data rates and large data size, novel solutions are required to enable an efficient use of radio resources to convey small data packets typically exchanged by IoT applications in "smart" environments. On the other hand, the typically high energy consumption required by cellular communications is a serious obstacle to large scale IoT deployments under cellular connectivity as in the case of Smart City scenarios. Network-assisted Device-to-Device (D2D) communications are considered as a viable solution to reduce the energy consumption for the devices. The particular approach presented in this paper consists in appointing one of the IoT smart devices as a collector of all data from a cluster of objects using D2D links, thus acting as an aggregator toward the eNodeB. By smartly adapting the Modulation and Coding Scheme (MCS) on the communication links, we will show it is possible to maximize the radio resource utilization as a function of the total amount of data to be sent. A further benefit that we will highlight is the possibility to reduce the transmission power when a more robust MCS is adopted. A comprehensive performance evaluation in a wide set of scenarios will testify the achievable gains in terms of energy efficiency and resource utilization in the envisaged D2D-based IoT data collection. PMID:27338385

  8. Energy Efficient IoT Data Collection in Smart Cities Exploiting D2D Communications

    PubMed Central

    Orsino, Antonino; Araniti, Giuseppe; Militano, Leonardo; Alonso-Zarate, Jesus; Molinaro, Antonella; Iera, Antonio

    2016-01-01

    Fifth Generation (5G) wireless systems are expected to connect an avalanche of “smart” objects disseminated from the largest “Smart City” to the smallest “Smart Home”. In this vision, Long Term Evolution-Advanced (LTE-A) is deemed to play a fundamental role in the Internet of Things (IoT) arena providing a large coherent infrastructure and a wide wireless connectivity to the devices. However, since LTE-A was originally designed to support high data rates and large data size, novel solutions are required to enable an efficient use of radio resources to convey small data packets typically exchanged by IoT applications in “smart” environments. On the other hand, the typically high energy consumption required by cellular communications is a serious obstacle to large scale IoT deployments under cellular connectivity as in the case of Smart City scenarios. Network-assisted Device-to-Device (D2D) communications are considered as a viable solution to reduce the energy consumption for the devices. The particular approach presented in this paper consists in appointing one of the IoT smart devices as a collector of all data from a cluster of objects using D2D links, thus acting as an aggregator toward the eNodeB. By smartly adapting the Modulation and Coding Scheme (MCS) on the communication links, we will show it is possible to maximize the radio resource utilization as a function of the total amount of data to be sent. A further benefit that we will highlight is the possibility to reduce the transmission power when a more robust MCS is adopted. A comprehensive performance evaluation in a wide set of scenarios will testify the achievable gains in terms of energy efficiency and resource utilization in the envisaged D2D-based IoT data collection. PMID:27338385

  9. Airfoil-based piezoelectric energy harvesting by exploiting the pseudoelastic hysteresis of shape memory alloy springs

    NASA Astrophysics Data System (ADS)

    de Sousa, Vagner Candido; De Marqui Junior, Carlos

    2015-12-01

    The modeling and analysis of an electromechanically coupled typical aeroelastic section with shape memory alloy springs for wind energy harvesting is addressed in this paper. An airfoil with two-degrees-of-freedom, namely pitch and plunge, is considered and piezoelectric coupling is added to the plunge degree-of-freedom. A load resistance is assumed in the electrical domain of the problem in order to estimate the electrical power output. Shape memory alloy coil springs are modeled in the pitch degree-of-freedom of the typical section. A nickel-titanium alloy that exhibits pseudoelasticity at room temperature is assumed. The constitutive model for the shape memory alloy is based on classical phenomenological models. The unsteady aerodynamic loads are obtained by Jones’ approximation to Wagner’s indicial function. The resulting nonlinear electroaeroelastic model is cast into a state-space representation and solved with a Runge-Kutta method. The effects of preload values of the shape memory springs and resistive power generation on the aeroelastic behavior of the wind energy harvester are investigated at the flutter boundary and in a post-flutter regime. The nonlinear kinetics of the austenite-to-martensite phase transformation changes the typical linear flutter behavior to stable limit-cycle oscillations over a range of airflow speeds. Such nonlinear aeroelastic behavior introduced by the hysteretic behavior of the SMA springs provides an important source of persistent electrical power.

  10. Local full-wave energy in nonuniform plasmas

    SciTech Connect

    Smithe, D.N.

    1988-10-01

    The subject of local wave energy in plasmas is treated via quasilinear theory from the dual perspectives of the action-angle formalism and gyrokinetics analysis. This work presents an extension to all orders in the gyroradius of the self-consistent wave-propagation/quasilinear-absorption problem using gyrokinetics. Questions of when and under what conditions local energy should be of definite sign are best answered using the action-angle formalism. An important result is that the ''dielectric operators'' of the linearized wave equation and of the local energy are not the same, a fact which is obscured when the eikonal or WKB assumption is invoked. Even though the two dielectrics are very different in character (one operates linearly on electric field for the plasma current, the other operates quadratically for the energy), it is demonstrated that they are nevertheless related by a simple mathematical statement. This study was originally motivated by concern and lively discussion over the questions of local energy for rf-heating of plasmas, where in certain instances, full-wave effects such as refraction, strong absorption, and mode conversion are of primary importance. Fundamentally, the rf-absorption must equate with the energy moment of the quasilinear term to achieve a correct energy balance. This fact governs the derivation (as opposed to postulation) of the local absorption. The troublesome ''kinetic flux'' may then be chosen (it is not unique) to satisfy a wave-energy balance relation with the Poynting flux and local absorption. It is shown that at least one such choice reduces asymptotically to the Stix form away from nonuniformities, thereby demonstrating energy conservation to all orders in Larmor radius. 25 refs.

  11. Energy flow characteristics of vector X-Waves.

    PubMed

    Salem, Mohamed A; Bağcı, Hakan

    2011-04-25

    The vector form of X-Waves is obtained as a superposition of transverse electric and transverse magnetic polarized field components. It is shown that the signs of all components of the Poynting vector can be locally changed using carefully chosen complex amplitudes of the transverse electric and transverse magnetic polarization components. Negative energy flux density in the longitudinal direction can be observed in a bounded region around the centroid; in this region the local behavior of the wave field is similar to that of wave field with negative energy flow. This peculiar energy flux phenomenon is of essential importance for electromagnetic and optical traps and tweezers, where the location and momenta of micro-and nanoparticles are manipulated by changing the Poynting vector, and in detection of invisibility cloaks.

  12. The South Carolina Coastal Erosion Study: Wind Wave Energy Dissipation

    NASA Astrophysics Data System (ADS)

    Demir, H.; Work, P. A.; Voulgaris, G.

    2004-12-01

    As part of the South Carolina Coastal Erosion Study (SCCES) wave and current data were collected offshore of Myrtle Beach, SC for 2 months in 2001-02. This field measurement campaign was the second of a three-part experiment series. While the overall objective of the study is to describe the processes governing the circulation, wave propagation and sediment transport along the northern South Carolina coast, this presentation focuses on the wave energy dissipation over a heterogeneous seafloor over a distance of 6 km. The data were collected between November 9, 2001 and January 17, 2002. The instruments were placed along a transect crossing a large sand shoal in an area otherwise largely deprived of sand, at depths of 8 to 12 meters. The four instruments used, in order of decreasing distance from shore, were 600 and1200 KHz RDI ADCP's, a Nortek Aquadopp and a Sontek Argonaut-XR. Bathymetry and bottom characteristics such as depth and thickness of sand layer are available through USGS's coastal relief model and side scan surveys. Wind data are supplied by a large-scale numerical wind model. Its output is compared with wind data collected at Frying Pan Shoals buoy and at an anemometer placed at Spring Maid pier after the experiment. The SWAN wave model (Booij et al. 1999) was used to model the spectral wave transformation from the offshore buoy to the inner stations and to compare the observed wave energy dissipation to the available models. There was no extreme storm event during the deployment period. The maximum significant wave height observed was 1.6 meters at the offshore wave station, and the mean wave height was 0.8 meters. The mean period was between 5 and 7 seconds most of the time. Significant wave energy dissipation (up to 40% decrease in wave energy flux) across 6 km was observed. A shift of the spectral peak and a change in the spectral shape was observed in many events, which were not generally reproduced by the model. Sand and rock bottom

  13. Maximum gravitational-wave energy emissible in magnetar flares

    SciTech Connect

    Corsi, Alessandra; Owen, Benjamin J.

    2011-05-15

    Recent searches of gravitational-wave data raise the question of what maximum gravitational-wave energies could be emitted during gamma-ray flares of highly magnetized neutron stars (magnetars). The highest energies ({approx}10{sup 49} erg) predicted so far come from a model [K. Ioka, Mon. Not. R. Astron. Soc. 327, 639 (2001), http://adsabs.harvard.edu/abs/2001MNRAS.327..639I] in which the internal magnetic field of a magnetar experiences a global reconfiguration, changing the hydromagnetic equilibrium structure of the star and tapping the gravitational potential energy without changing the magnetic potential energy. The largest energies in this model assume very special conditions, including a large change in moment of inertia (which was observed in at most one flare), a very high internal magnetic field, and a very soft equation of state. Here we show that energies of 10{sup 48}-10{sup 49} erg are possible under more generic conditions by tapping the magnetic energy, and we note that similar energies may also be available through cracking of exotic solid cores. Current observational limits on gravitational waves from magnetar fundamental modes are just reaching these energies and will beat them in the era of advanced interferometers.

  14. Broadband energy harvesting by exploiting nonlinear oscillations around the second vibration mode of a rectangular piezoelectric bistable laminate

    NASA Astrophysics Data System (ADS)

    Li, Hao; Dai, Fuhong; Du, Shanyi

    2015-04-01

    Recently bistable composite laminates have been investigated for broadband energy harvesting, by taking advantage of their nonlinear oscillations around the first vibration mode. However, it has been reported that the excitation acceleration needed for the desired large amplitude limit cycle oscillation is too high, if the first vibration mode is elevated to relative higher frequencies (60 Hz e.g.). This study investigates the feasibility of exploiting the nonlinear oscillations around the second vibration mode of a rectangular piezoelectric bistable laminate (RPBL), for broadband vibration energy harvesting at relative higher frequencies, but with relative low excitation acceleration. The proposed RPBL has three oscillation patterns around the second vibration mode, including single-well oscillation, chaotic intermittency oscillation and limit cycle oscillation. The broadband characteristics and the considerable energy conversion efficiency of the RPBL are demonstrated in experiments. The static nonlinearity and the dynamic responses of the RPBL are investigated by finite element method. Finite element analysis (FEA) reveals that the enhanced dynamic responses of the RPBL are due to its softening bending stiffness and the local snap through phenomenon. The FEA results coincide reasonably well with experimental results.

  15. Solar energy converter using surface plasma waves

    NASA Technical Reports Server (NTRS)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  16. Wave Energy Converter (WEC) Array Effects on Wave Current and Sediment Circulation: Monterey Bay CA.

    SciTech Connect

    Roberts, Jesse D.; Jones, Craig; Magalen, Jason

    2014-09-01

    The goal s of this study were to develop tools to quantitatively characterize environments where wave energy converter ( WEC ) devices may be installed and to assess e ffects on hydrodynamics and lo cal sediment transport. A large hypothetical WEC array was investigated using wave, hydrodynamic, and sediment transport models and site - specific average and storm conditions as input. The results indicated that there were significant changes in sediment s izes adjacent to and in the lee of the WEC array due to reduced wave energy. The circulation in the lee of the array was also altered; more intense onshore currents were generated in the lee of the WECs . In general, the storm case and the average case show ed the same qualitative patterns suggesting that these trends would be maintained throughout the year. The framework developed here can be used to design more efficient arrays while minimizing impacts on nearshore environmen ts.

  17. Statistical analysis and modeling of seismicity related to the exploitation of geothermal energy

    NASA Astrophysics Data System (ADS)

    Dinske, Carsten; Langenbruch, Cornelius; Shapiro, Serge

    2016-04-01

    Geothermal energy is an integral and important part of renewables but it is frequently observed that its production induces seismicity. Here we analyse in detail seismicity from two hydrothermal reservoirs in Germany and one hydrothermal field in Italy. We focus on temporal changes of seismicity rates. This study was motivated by the results of numerical simulations. The modeling of stress changes caused by the injection and production of fluids revealed that the seismicity rate should decrease on a long-term perspective which does not match the observed seismicity rates. To understand this mismatch we analyse the waiting time distributions of the seismic events in both time domain (inter event times) and fluid volume domain (inter event volume). We find clear indications that the observed seismicity contains two components: (1) seismicity that is directly triggered by the production and re-injection of fluid, in other words, induced events, and (2) seismicity that is triggered by earthquake interactions also known as aftershock triggering. In order to calibrate and better constrain our numerical simulations using the induced seismicity we apply a catalog declustering the separate the two components and remove the aftershocks from the observed catalogs. We use the magnitude-dependent space-time windowing approach introduced by Gardener and Knopoff (1974) and tested several published algorithms to calculate the windows. We choose the final space-time window for a given catalog based on the waiting time distribution of the events after the declustering. Technically speaking, we suppose that the probability density of waiting times in the fluid volume domain corresponds to a homogeneous Poisson process (HPP, Langenbruch et al., 2011). After catalog declustering, we conclude that the different reservoirs show a comparable response to the production and re-injection of fluids and the additional triggering of seismicity by earthquake interactions. The declustered

  18. On the use of nonlinear solitary waves for energy harvesting

    NASA Astrophysics Data System (ADS)

    Li, Kaiyuan; Rizzo, Piervincenzo

    2015-04-01

    In the last decade there has been an increasing attention on the use of highly- and weakly- nonlinear solitary waves in engineering and physics. These waves can form and travel in nonlinear systems such as one-dimensional chains of spherical particles. One engineering application of solitary waves is the fabrication of acoustic lenses, which are employed in a variety of fields ranging from biomedical imaging and surgery to defense systems and damage detection. In this paper we propose to couple an acoustic lens to a wafer-type lead zirconate titanate transducer (PZT) to harvest energy from the vibration of an object tapping the lens. The lens is composed of a circle array made of chains of particles in contact with a polycarbonate material where the nonlinear waves coalesce into linear waves. The PZT located at the designed focal point converts the mechanical energy carried by the stress wave into electricity to power a load resistor. The performance of the designed harvester is compared to a conventional cantilever beam, and the experimental results show that the power generated with the nonlinear lens has the same order of magnitude of the beam.

  19. The environmental interactions of tidal and wave energy generation devices

    SciTech Connect

    Frid, Chris; Andonegi, Eider; Judd, Adrian; Rihan, Dominic; Rogers, Stuart I.; Kenchington, Ellen

    2012-01-15

    Global energy demand continues to grow and tidal and wave energy generation devices can provide a significant source of renewable energy. Technological developments in offshore engineering and the rising cost of traditional energy means that offshore energy resources will be economic in the next few years. While there is now a growing body of data on the ecological impacts of offshore wind farms, the scientific basis on which to make informed decisions about the environmental effects of other offshore energy developments is lacking. Tidal barrages have the potential to cause significant ecological impacts particularly on bird feeding areas when they are constructed at coastal estuaries or bays. Offshore tidal stream energy and wave energy collectors offer the scope for developments at varying scales. They also have the potential to alter habitats. A diversity of designs exist, including floating, mid-water column and seabed mounted devices, with a variety of moving-part configurations resulting in a unique complex of potential environmental effects for each device type, which are discussed to the extent possible. - Highlights: Black-Right-Pointing-Pointer We review the environmental impacts of tidal barrages and fences, tidal stream farms and wave energy capture devices. Black-Right-Pointing-Pointer Impacts on habitats, species and the water column, and effects of noise and electromagnetic fields are considered. Black-Right-Pointing-Pointer Tidal barrages can cause significant impacts on bird feeding areas when constructed at coastal estuaries or bays. Black-Right-Pointing-Pointer Wave energy collectors can alter water column and sea bed habitats locally and over large distances.

  20. Removal of Trigger Delays from Cross-borehole Seismic Data by Exploiting Tube Wave Coherency - A Pre-processing Tool for Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Mol, S.; Pratt, R. G.; Maurer, H.; Smithyman, B. R.

    2015-12-01

    A cross-borehole seismic dataset was acquired using two 50 m deep test boreholes drilled into Permian age sandstones near Mels, Switzerland. The boreholes were approximately 20 m apart, and useful data frequencies between 100 Hz and 4000 Hz. The survey comprised 181 source locations and 192 receiver locations, using multiple deployments of a 24-element receiver array to ensure adequate spatial sampling. Imaging velocities and attenuation using Full Waveform Inversion (FWI) proved difficult due to the presence of significant trigger delays in the survey. Trigger delays can be solved for using either a Traveltime Tomography (TT) approach (by including additional unknowns), or a FWI approach (by individual source estimation). However, these methods introduce significant ambiguities, particularly in the presence of an unknown level of anisotropy. Moreover, the trigger delays break coherency in the common source and common receiver domains, preventing simple removal of the tube wave energy in the data. We introduce a novel method for estimating the trigger delays through cross-correlation of tube waves. Repeat records from identical source-receiver array combinations are shifted and then stacked to create a "reference dataset". We make use of the high amplitude and highly coherent tube waves, which travel at a constant velocity: receiver hole tube wave arrivals are aligned and enhanced by applying a linear moveout and an f-k filter to the common source gathers. Each physical source location is recorded by four closely spaced and interleaved receiver elements; the high level of redundancy enables recovery of a stable set of delay estimates. A similar approach is used for the common receiver gathers to remove the remaining delays between source locations. Trigger delays were corrected with a mean absolute value of 153 μs, a mean bulk shift of -41 μs and a standard deviation of 75 μs. Their removal from the raw seismic data, allowed i) the tube waves to be removed by

  1. Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy.

    PubMed

    Artemyev, A V; Agapitov, O V; Mourenas, D; Krasnoselskikh, V V; Mozer, F S

    2015-01-01

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity. PMID:25975615

  2. Neural rotational speed control for wave energy converters

    NASA Astrophysics Data System (ADS)

    Amundarain, M.; Alberdi, M.; Garrido, A. J.; Garrido, I.

    2011-02-01

    Among the benefits arising from an increasing use of renewable energy are: enhanced security of energy supply, stimulation of economic growth, job creation and protection of the environment. In this context, this study analyses the performance of an oscillating water column device for wave energy conversion in function of the stalling behaviour in Wells turbines, one of the most widely used turbines in wave energy plants. For this purpose, a model of neural rotational speed control system is presented, simulated and implemented. This scheme is employed to appropriately adapt the speed of the doubly-fed induction generator coupled to the turbine according to the pressure drop entry, so as to avoid the undesired stalling behaviour. It is demonstrated that the proposed neural rotational speed control design adequately matches the desired relationship between the slip of the doubly-fed induction generator and the pressure drop input, improving the power generated by the turbine generator module.

  3. Aiding Design of Wave Energy Converters via Computational Simulations

    NASA Astrophysics Data System (ADS)

    Jebeli Aqdam, Hejar; Ahmadi, Babak; Raessi, Mehdi; Tootkaboni, Mazdak

    2015-11-01

    With the increasing interest in renewable energy sources, wave energy converters will continue to gain attention as a viable alternative to current electricity production methods. It is therefore crucial to develop computational tools for the design and analysis of wave energy converters. A successful design requires balance between the design performance and cost. Here an analytical solution is used for the approximate analysis of interactions between a flap-type wave energy converter (WEC) and waves. The method is verified using other flow solvers and experimental test cases. Then the model is used in conjunction with a powerful heuristic optimization engine, Charged System Search (CSS) to explore the WEC design space. CSS is inspired by charged particles behavior. It searches the design space by considering candidate answers as charged particles and moving them based on the Coulomb's laws of electrostatics and Newton's laws of motion to find the global optimum. Finally the impacts of changes in different design parameters on the power takeout of the superior WEC designs are investigated. National Science Foundation, CBET-1236462.

  4. Dynamic Theory: some shock wave and energy implications

    SciTech Connect

    Williams, P.E.

    1981-02-01

    The Dynamic Theory, a unifying five-dimensional theory of space, time, and matter, is examined. The theory predicts an observed discrepancy between shock wave viscosity measurements at low and high pressures in aluminum, a limiting mass-to-energy conversion rate consistent with the available data, and reduced pressures in electromagneticaly contained controlled-fusion plasmas.

  5. An atlas of the wave energy resource in Europe

    SciTech Connect

    Pontes, M.T.; Athanassoulis, G.A.; Barstow, S.; Cavaleri, L.; Holmes, B.; Mollison, D.; Oliveira-Pires, H.

    1995-12-31

    This paper presents an Atlas of the European offshore wave energy resource that is being developed within the scope of an European project. It will be mainly based on wave estimates produced by the numerical wind-wave model WAM that is in routine operation at the European Centre for Medium-Range Weather Forecasts, Reading, UK. This model was chosen after a preliminary verification of two models again buoy data for a one-year period. Wave measurements will be used for the Norwegian Sea and the North Sea. The Atlas will be produced as a user-friendly software package for MS-DOS microcomputers permitting fast retrieval of information as well as saving and printing of statistics and maps. The Atlas will include annual and seasonal statistics of significant wave height, mean and peak period, mean direction and wave power levels (global values as well as directional distributions). These data will be both presented as tables, graphs and as geographic maps.

  6. Structural Optimization of Triboelectric Nanogenerator for Harvesting Water Wave Energy.

    PubMed

    Jiang, Tao; Zhang, Li Min; Chen, Xiangyu; Han, Chang Bao; Tang, Wei; Zhang, Chi; Xu, Liang; Wang, Zhong Lin

    2015-12-22

    Ocean waves are one of the most abundant energy sources on earth, but harvesting such energy is rather challenging due to various limitations of current technologies. Recently, networks formed by triboelectric nanogenerator (TENG) have been proposed as a promising technology for harvesting water wave energy. In this work, a basic unit for the TENG network was studied and optimized, which has a box structure composed of walls made of TENG composed of a wavy-structured Cu-Kapton-Cu film and two FEP thin films, with a metal ball enclosed inside. By combination of the theoretical calculations and experimental studies, the output performances of the TENG unit were investigated for various structural parameters, such as the size, mass, or number of the metal balls. From the viewpoint of theory, the output characteristics of TENG during its collision with the ball were numerically calculated by the finite element method and interpolation method, and there exists an optimum ball size or mass to reach maximized output power and electric energy. Moreover, the theoretical results were well verified by the experimental tests. The present work could provide guidance for structural optimization of wavy-structured TENGs for effectively harvesting water wave energy toward the dream of large-scale blue energy. PMID:26567754

  7. Structural Optimization of Triboelectric Nanogenerator for Harvesting Water Wave Energy.

    PubMed

    Jiang, Tao; Zhang, Li Min; Chen, Xiangyu; Han, Chang Bao; Tang, Wei; Zhang, Chi; Xu, Liang; Wang, Zhong Lin

    2015-12-22

    Ocean waves are one of the most abundant energy sources on earth, but harvesting such energy is rather challenging due to various limitations of current technologies. Recently, networks formed by triboelectric nanogenerator (TENG) have been proposed as a promising technology for harvesting water wave energy. In this work, a basic unit for the TENG network was studied and optimized, which has a box structure composed of walls made of TENG composed of a wavy-structured Cu-Kapton-Cu film and two FEP thin films, with a metal ball enclosed inside. By combination of the theoretical calculations and experimental studies, the output performances of the TENG unit were investigated for various structural parameters, such as the size, mass, or number of the metal balls. From the viewpoint of theory, the output characteristics of TENG during its collision with the ball were numerically calculated by the finite element method and interpolation method, and there exists an optimum ball size or mass to reach maximized output power and electric energy. Moreover, the theoretical results were well verified by the experimental tests. The present work could provide guidance for structural optimization of wavy-structured TENGs for effectively harvesting water wave energy toward the dream of large-scale blue energy.

  8. Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy

    PubMed Central

    Artemyev, A.V.; Agapitov, O.V.; Mourenas, D.; Krasnoselskikh, V.V.; Mozer, F.S.

    2015-01-01

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave–particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity. PMID:25975615

  9. System for harvesting water wave energy

    DOEpatents

    Wang, Zhong Lin; Su, Yanjie; Zhu, Guang; Chen, Jun

    2016-07-19

    A generator for harvesting energy from water in motion includes a sheet of a hydrophobic material, having a first side and an opposite second side, that is triboelectrically more negative than water. A first electrode sheet is disposed on the second side of the sheet of a hydrophobic material. A second electrode sheet is disposed on the second side of the sheet of a hydrophobic material and is spaced apart from the first electrode sheet. Movement of the water across the first side induces an electrical potential imbalance between the first electrode sheet and the second electrode sheet.

  10. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    SciTech Connect

    Yu, Y. H.; Lawson, M.; Li, Y.; Previsic, M.; Epler, J.; Lou, J.

    2015-01-01

    The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

  11. Investigation of Wave Energy Converter Effects on Near-shore Wave Fields: Model Generation Validation and Evaluation - Kaneohe Bay HI.

    SciTech Connect

    Roberts, Jesse D.; Chang, Grace; Jones, Craig

    2014-09-01

    The numerical model, SWAN (Simulating WAves Nearshore) , was used to simulate wave conditions in Kaneohe Bay, HI in order to determine the effects of wave energy converter ( WEC ) devices on the propagation of waves into shore. A nested SWAN model was validated then used to evaluate a range of initial wave conditions: significant wave heights (H s ) , peak periods (T p ) , and mean wave directions ( MWD) . Differences between wave height s in the presence and absence of WEC device s were assessed at locations in shore of the WEC array. The maximum decrease in wave height due to the WEC s was predicted to be approximately 6% at 5 m and 10 m water depths. Th is occurred for model initiation parameters of H s = 3 m (for 5 m water depth) or 4 m (10 m water depth) , T p = 10 s, and MWD = 330deg . Subsequently, bottom orbital velocities were found to decrease by about 6%.

  12. Stochastic control of inertial sea wave energy converter.

    PubMed

    Raffero, Mattia; Martini, Michele; Passione, Biagio; Mattiazzo, Giuliana; Giorcelli, Ermanno; Bracco, Giovanni

    2015-01-01

    The ISWEC (inertial sea wave energy converter) is presented, its control problems are stated, and an optimal control strategy is introduced. As the aim of the device is energy conversion, the mean absorbed power by ISWEC is calculated for a plane 2D irregular sea state. The response of the WEC (wave energy converter) is driven by the sea-surface elevation, which is modeled by a stationary and homogeneous zero mean Gaussian stochastic process. System equations are linearized thus simplifying the numerical model of the device. The resulting response is obtained as the output of the coupled mechanic-hydrodynamic model of the device. A stochastic suboptimal controller, derived from optimal control theory, is defined and applied to ISWEC. Results of this approach have been compared with the ones obtained with a linear spring-damper controller, highlighting the capability to obtain a higher value of mean extracted power despite higher power peaks.

  13. Stochastic Control of Inertial Sea Wave Energy Converter

    PubMed Central

    Mattiazzo, Giuliana; Giorcelli, Ermanno

    2015-01-01

    The ISWEC (inertial sea wave energy converter) is presented, its control problems are stated, and an optimal control strategy is introduced. As the aim of the device is energy conversion, the mean absorbed power by ISWEC is calculated for a plane 2D irregular sea state. The response of the WEC (wave energy converter) is driven by the sea-surface elevation, which is modeled by a stationary and homogeneous zero mean Gaussian stochastic process. System equations are linearized thus simplifying the numerical model of the device. The resulting response is obtained as the output of the coupled mechanic-hydrodynamic model of the device. A stochastic suboptimal controller, derived from optimal control theory, is defined and applied to ISWEC. Results of this approach have been compared with the ones obtained with a linear spring-damper controller, highlighting the capability to obtain a higher value of mean extracted power despite higher power peaks. PMID:25874267

  14. Stochastic control of inertial sea wave energy converter.

    PubMed

    Raffero, Mattia; Martini, Michele; Passione, Biagio; Mattiazzo, Giuliana; Giorcelli, Ermanno; Bracco, Giovanni

    2015-01-01

    The ISWEC (inertial sea wave energy converter) is presented, its control problems are stated, and an optimal control strategy is introduced. As the aim of the device is energy conversion, the mean absorbed power by ISWEC is calculated for a plane 2D irregular sea state. The response of the WEC (wave energy converter) is driven by the sea-surface elevation, which is modeled by a stationary and homogeneous zero mean Gaussian stochastic process. System equations are linearized thus simplifying the numerical model of the device. The resulting response is obtained as the output of the coupled mechanic-hydrodynamic model of the device. A stochastic suboptimal controller, derived from optimal control theory, is defined and applied to ISWEC. Results of this approach have been compared with the ones obtained with a linear spring-damper controller, highlighting the capability to obtain a higher value of mean extracted power despite higher power peaks. PMID:25874267

  15. Self-similar relativistic blast waves with energy injection

    NASA Astrophysics Data System (ADS)

    van Eerten, Hendrik

    2014-08-01

    A sufficiently powerful astrophysical source with power-law luminosity in time will give rise to a self-similar relativistic blast wave with a reverse shock travelling into the ejecta and a forward shock moving into the surrounding medium. Once energy injection ceases and the last energy is delivered to the shock front, the blast wave will transit into another self-similar stage depending only on the total amount of energy injected. I describe the effect of limited duration energy injection into environments with density depending on radius as a power law, emphasizing optical/X-ray Gamma-ray Burst afterglows as applications. The blast wave during injection is treated analytically, the transition following last energy injection with one-dimensional simulations. Flux equations for synchrotron emission from the forward and reverse shock regions are provided. The reverse shock emission can easily dominate, especially with different magnetizations for both regions. Reverse shock emission is shown to support both the reported X-ray and optical correlations between afterglow plateau duration and end time flux, independently of the luminosity power-law slope. The model is demonstrated by application to bursts 120521A and 090515, and can accommodate their steep post-plateau light-curve slopes.

  16. Group and energy velocities of acoustic surface waves in piezoelectrics

    NASA Astrophysics Data System (ADS)

    Chen, Yu

    1996-07-01

    This paper offers a simple proof of the equivalence of the energy velocity and the group velocity for acoustic waves on the flat surface of a piezoelectric half space in the usual quasistatic approximation. The interface conditions of free stresses and the open circuited electric condition are considered. Both the energy velocity and the group velocity are expressed in terms of a Lagrangian density. The energy velocity is obtained by the definition and the group velocity is derived by implicit differentiation from a dispersion equation in an implicit form.

  17. The peculiarities of energy characteristics of acoustic waves in piezoelectric materials and structures.

    PubMed

    Zaitsev, Boris D; Teplykh, Andrei A; Kuznetsova, Iren E

    2007-03-01

    This paper is devoted to detailed theoretical investigation of energy density and power flow of homogeneous (bulk) and inhomogeneous (surface and plate) plane acoustic waves in piezoelectric materials and structures. The analysis of these waves in different materials of various crystallographic orientations allowed us to establish some energy regularities. These regularities are the same for instantaneous energy characteristics of homogeneous waves and for time-average energy characteristics on unit of aperture of inhomogeneous waves if the electrical energy and power flow in vacuum are taken into account. It has been shown that, for strong piezoactive waves, the electric energy density may exceed the mechanical energy density more than three times.

  18. Protocol to Exploit Waiting Resources for UASNs.

    PubMed

    Hung, Li-Ling; Luo, Yung-Jeng

    2016-01-01

    The transmission speed of acoustic waves in water is much slower than that of radio waves in terrestrial wireless sensor networks. Thus, the propagation delay in underwater acoustic sensor networks (UASN) is much greater. Longer propagation delay leads to complicated communication and collision problems. To solve collision problems, some studies have proposed waiting mechanisms; however, long waiting mechanisms result in low bandwidth utilization. To improve throughput, this study proposes a slotted medium access control protocol to enhance bandwidth utilization in UASNs. The proposed mechanism increases communication by exploiting temporal and spatial resources that are typically idle in order to protect communication against interference. By reducing wait time, network performance and energy consumption can be improved. A performance evaluation demonstrates that when the data packets are large or sensor deployment is dense, the energy consumption of proposed protocol is less than that of existing protocols as well as the throughput is higher than that of existing protocols.

  19. Protocol to Exploit Waiting Resources for UASNs.

    PubMed

    Hung, Li-Ling; Luo, Yung-Jeng

    2016-01-01

    The transmission speed of acoustic waves in water is much slower than that of radio waves in terrestrial wireless sensor networks. Thus, the propagation delay in underwater acoustic sensor networks (UASN) is much greater. Longer propagation delay leads to complicated communication and collision problems. To solve collision problems, some studies have proposed waiting mechanisms; however, long waiting mechanisms result in low bandwidth utilization. To improve throughput, this study proposes a slotted medium access control protocol to enhance bandwidth utilization in UASNs. The proposed mechanism increases communication by exploiting temporal and spatial resources that are typically idle in order to protect communication against interference. By reducing wait time, network performance and energy consumption can be improved. A performance evaluation demonstrates that when the data packets are large or sensor deployment is dense, the energy consumption of proposed protocol is less than that of existing protocols as well as the throughput is higher than that of existing protocols. PMID:27005624

  20. Radiation of inertial kinetic energy as near-inertial waves forced by tropical Pacific Easterly waves

    NASA Astrophysics Data System (ADS)

    Soares, S. M.; Richards, K. J.

    2013-05-01

    Easterly waves (EW) are low level tropical atmospheric disturbances able to resonantly force strong mixed layer inertial currents. Using data from two Tropical Atmosphere Ocean/Eastern Pacific Investigation of Climate Processes (TAO/EPIC) buoys located along 95°W and a multiparameterization one-dimensional turbulence model, we examine how the EW-forced surface inertial kinetic energy (IKE) loss is partitioned between turbulent dissipation and near-inertial wave (NIW) radiation. Several EW-forcing events are individually simulated with a version of the General Ocean Turbulence Model modified to include a linear damping coefficient to account for the NIW radiation energy sink. The kinetic energy budget of these simulations shows that NIW radiation accounted for typically 50-60% of the IKE loss and in some cases up to 80%. These empirically derived estimates of the contribution of the radiated NIWs to the loss of wind-induced surface IKE are substantially higher than recently published numerical estimates. Furthermore, the results indicate that the vertical NIW energy flux increases linearly with the wind input of IKE, an easily obtained quantity. The NIW vertical energy flux estimated for a single near-resonant event is comparable to extreme north Pacific wintertime-averaged fluxes, indicating the existence of important episodic sources of near-inertial energy available for mixing within and below the thermocline in the tropical region.

  1. Direct Drive Wave Energy Buoy – 33rd scale experiment

    SciTech Connect

    Rhinefrank, Kenneth E.; Lenee-Bluhm, Pukha; Prudell, Joseph H.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe

    2013-07-29

    Columbia Power Technologies (ColPwr) and Oregon State University (OSU) jointly conducted a series of tests in the Tsunami Wave Basin (TWB) at the O.H. Hinsdale Wave Research Laboratory (HWRL). These tests were run between November 2010 and February 2011. Models at 33rd scale representing Columbia Power’s Manta series Wave Energy Converter (WEC) were moored in configurations of one, three and five WEC arrays, with both regular waves and irregular seas generated. The primary research interest of ColPwr is the characterization of WEC response. The WEC response will be investigated with respect to power performance, range of motion and generator torque/speed statistics. The experimental results will be used to validate a numerical model. The primary research interests of OSU include an investigation into the effects of the WEC arrays on the near- and far-field wave propagation. This report focuses on the characterization of the response of a single WEC in isolation. To facilitate understanding of the commercial scale WEC, results will be presented as full scale equivalents.

  2. Power inversion design for ocean wave energy harvesting

    NASA Astrophysics Data System (ADS)

    Talebani, Anwar N.

    The needs for energy sources are increasing day by day because of several factors, such as oil depletion, and global climate change due to the higher level of CO2, so the exploration of various renewable energy sources is very promising area of study. The available ocean waves can be utilized as free source of energy as the water covers 70% of the earth surface. This thesis presents the ocean wave energy as a source of renewable energy. By addressing the problem of designing efficient power electronics system to deliver 5 KW from the induction generator to the grid with less possible losses and harmonics as possible and to control current fed to the grid to successfully harvest ocean wave energy. We design an AC-DC full bridge rectifier converter, and a DC-DC boost converter to harvest wave energy from AC to regulated DC. In order to increase the design efficiency, we need to increase the power factor from (0.5-0.6) to 1. This is accomplished by designing the boost converter with power factor correction in continues mode with RC circuit as an input to the boost converter power factor correction. This design results in a phase shift between the input current and voltage of the full bridge rectifier to generate a small reactive power. The reactive power is injected to the induction generator to maintain its functionality by generating a magnetic field in its stator. Next, we design a single-phase pulse width modulator full bridge voltage source DC-AC grid-tied mode inverter to harvest regulated DC wave energy to AC. The designed inverter is modulated by inner current loop, to control current injected to the grid with minimal filter component to maintain power quality at the grid. The simulation results show that our design successfully control the current level fed to the grid. It is noteworthy that the simulated efficiency is higher than the calculated one since we used an ideal switch in the simulated circuit.

  3. Apparatus for producing electrical energy from ocean waves

    SciTech Connect

    Ng, T.F.

    1981-05-05

    An energy conversion device is disclosed which utilizes the natural movements of ocean waves to produce electrical energy. The apparatus is contained in a tank which is adapted to float near the surface of the water and tilt from side to side about a pivot point located below the tank, thereby simulating a pendulum -like movement. A sinker weight is employed to produce the appropriate movement of the tank and maintain the floating tank in balance at the ocean surface. The pendulum motion of the tank is used to roll a plurality of gravity wheels or their respective horizontal platforms in the tank in such manner that shafts associated with the gravity wheels are caused to rotate. Electrical generators are operatively connected to the rotating shafts for producing electrical energy from the mechanical rotative energy of the shafts as the tank tilts from side to side with the wave motion. Each gravity wheel is equipped with a ratchet-like lock which prevents backward motion of the wheel such that it rolls in a single direction in a circular path on the platform. While one or more gravity wheels have their locks set so the wheels roll only in a clockwise direction, other gravity wheels are free to roll only in a counterclockwise direction. In this fashion, when the tank tilts to one side due to the rise of an ocean wave the gravity wheels roll from the higher side of their respective platforms to the lower sides along their prescribed circular paths. The centrifugal force generated by the weight of the gravity wheels and the unceasing action of the ocean waves provides the continuous generation of electrical energy.

  4. High-Energy Waves in Superpolynomial FPU-Type Chains

    NASA Astrophysics Data System (ADS)

    Herrmann, Michael

    2016-08-01

    We consider periodic traveling waves in FPU-type chains with superpolynomial interaction forces and derive explicit asymptotic formulas for the high-energy limit as well as bounds for the corresponding approximation error. In the proof we adapt twoscale techniques that have recently been developed by Herrmann and Matthies for chains with singular potential and provide an asymptotic ODE for the scaled distance profile.

  5. Multicriteria analysis to evaluate wave energy converters based on their environmental impact: an Italian case study

    NASA Astrophysics Data System (ADS)

    Azzellino, Arianna; Contestabile, Pasquale; Lanfredi, Caterina; Vicinanza, Diego

    2010-05-01

    The exploitation of renewable energy resources is fast becoming a key objective in many countries. Countries with coastlines have particularly valuable renewable energy resources in the form of tides, currents, waves and offshore wind. Due to the visual impact of siting large numbers of energy generating devices (eg. wind turbines) in terrestrial landscapes, considerable attention is now being directed towards coastal waters. Due to their environmental sensitivity, the selection of the most adequate location for these systems is a critical factor. Multi-criteria analysis allows to consider a wide variety of key characteristics (e.g. water depth, distance to shore, distance to the electric grid in land, geology, environmental impact) that may be converted into a numerical index of suitability for different WEC devices to different locations. So identifying the best alternative between an offshore or a onshore device may be specifically treated as a multicriteria problem. Special enphasisi should be given in the multicriteria analysis to the environmental impact issues. The wave energy prospective in the Italian seas is relatively low if compared to the other European countries faced to the ocean. Based on the wave climate, the Alghero site, (NW Sardinia, Italy) is one of the most interesting sites for the wave energy perspective (about 10 kW/m). Alghero site is characterized by a high level of marine biodiversity. In 2002 the area northern to Alghero harbour (Capo Caccia-Isola Piana) was established a Marine Protected Area (MPA). It could be discussed for this site how to choose between the onshore/offshore WEC alternative. An offshore device like Wave Dragon (http://www.wavedragon.net/) installed at -65m depth (width=300m and length=170 m) may approximately produce about 3.6 GWh/y with a total cost of about 9,000,000 €. On the other hand, an onshore device like SSG (http://waveenergy.no/), employed as crown wall for a vertical breakwater to enlarge the present

  6. Internal wave pressure, velocity, and energy flux from density perturbations

    NASA Astrophysics Data System (ADS)

    Allshouse, Michael R.; Lee, Frank M.; Morrison, Philip J.; Swinney, Harry L.

    2016-05-01

    Determination of energy transport is crucial for understanding the energy budget and fluid circulation in density varying fluids such as the ocean and the atmosphere. However, it is rarely possible to determine the energy flux field J =p u , which requires simultaneous measurements of the pressure and velocity perturbation fields p and u , respectively. We present a method for obtaining the instantaneous J (x ,z ,t ) from density perturbations alone: A Green's function-based calculation yields p ; u is obtained by integrating the continuity equation and the incompressibility condition. We validate our method with results from Navier-Stokes simulations: The Green's function method is applied to the density perturbation field from the simulations and the result for J is found to agree typically to within 1% with J computed directly using p and u from the Navier-Stokes simulation. We also apply the Green's function method to density perturbation data from laboratory schlieren measurements of internal waves in a stratified fluid and the result for J agrees to within 6 % with results from Navier-Stokes simulations. Our method for determining the instantaneous velocity, pressure, and energy flux fields applies to any system described by a linear approximation of the density perturbation field, e.g., to small-amplitude lee waves and propagating vertical modes. The method can be applied using our matlab graphical user interface EnergyFlux.

  7. Energy space entanglement spectrum of pairing models with s-wave and p-wave symmetry

    NASA Astrophysics Data System (ADS)

    Rodríguez-Laguna, Javier; Berganza, Miguel Ibáñez; Sierra, Germán

    2014-07-01

    We study the entanglement between blocks of energy levels in 1D models for s-wave and p-wave superconductivity. The ground state entanglement entropy and entanglement spectrum (ES) of a block of ℓ levels around the Fermi point is obtained and related to its physical properties. In the superconducting phase at large coupling, the maximal entropy grows with the number of levels L as 1/2ln(L). The number of levels presenting maximal entanglement is shown to estimate the number of Cooper pairs involved in pairing correlations. Moreover, the properties of the ES signal the presence of the Read-Green quantum phase transition in the p +ip model, and of the Moore-Read line, which is difficult to characterize. This work establishes a link between physical properties of superconducting phases and quantum entanglement.

  8. Artificial ocean upwelling utilizing the energy of surface waves

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander

    2016-04-01

    Artificial upwelling can bring cold water from below the thermocline to the sea surface. Vershinsky, Pshenichnyy, and Soloviev (1987) developed a prototype device, utilizing the energy of surface waves to create an upward flow of water in the tube. This is a wave-inertia pump consisting of a vertical tube, a valve, and a buoy to keep the device afloat. An outlet valve at the top of the unit synchronizes the operation of the device with surface waves and prevents back-splashing. A single device with a 100 m long and 1.2 m diameter tube is able to produce up to 1 m3s‑1 flow of deep water to the surface. With a 10 oC temperature difference over 100 m depth, the negative heat supply rate to the sea surface is 42 MW, which is equivalent to a 42 Wm‑2 heat flux, if distributed over 1 km2 area. Such flux is comparable to the average net air-sea flux. A system of artificial upwelling devices can cool down the sea surface, modify climate on a regional scale and possibly help mitigate hurricanes. The cold water brought from a deeper layer, however, has a larger density than the surface water and therefore has a tendency to sink back down. In this work, the efficiency of wave-inertia pumps and climatic consequences are estimated for different environmental conditions using a computational fluid dynamics model.

  9. Artificial ocean upwelling utilizing the energy of surface waves

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander

    2016-04-01

    Artificial upwelling can bring cold water from below the thermocline to the sea surface. Vershinsky, Pshenichnyy, and Soloviev (1987) developed a prototype device, utilizing the energy of surface waves to create an upward flow of water in the tube. This is a wave-inertia pump consisting of a vertical tube, a valve, and a buoy to keep the device afloat. An outlet valve at the top of the unit synchronizes the operation of the device with surface waves and prevents back-splashing. A single device with a 100 m long and 1.2 m diameter tube is able to produce up to 1 m3s-1 flow of deep water to the surface. With a 10 oC temperature difference over 100 m depth, the negative heat supply rate to the sea surface is 42 MW, which is equivalent to a 42 Wm-2 heat flux, if distributed over 1 km2 area. Such flux is comparable to the average net air-sea flux. A system of artificial upwelling devices can cool down the sea surface, modify climate on a regional scale and possibly help mitigate hurricanes. The cold water brought from a deeper layer, however, has a larger density than the surface water and therefore has a tendency to sink back down. In this work, the efficiency of wave-inertia pumps and climatic consequences are estimated for different environmental conditions using a computational fluid dynamics model.

  10. Pulse energy evolution for high-resolution Lamb wave inspection

    NASA Astrophysics Data System (ADS)

    Hua, Jiadong; Lin, Jing; Zeng, Liang; Gao, Fei

    2015-06-01

    Generally, tone burst excitation methods are used to reduce the effect of dispersion in Lamb wave inspection. In addition, algorithms for dispersion compensation are required to simplify responses, especially in long-range inspection. However, the resolution is always limited by the time duration of tone burst excitation. A pulse energy evolution method is established to overcome this limitation. In this method, a broadband signal with a long time (e.g. a chirp, white noise signal, or a pseudo-random sequence) is used as excitation to actuate Lamb waves. First of all, pulse compression is employed to estimate system impulse response with a high signal-to-noise ratio. Then, dispersion compensation is applied repeatedly with systemically varied compensation distances, obtaining a series of compensated signals. In these signals, amplitude (or energy) evolution associated with the change of compensation distance is utilized to estimate the actual propagation distance of the interested wave packet. Finally, the defect position is detected by an imaging algorithm. Several experiments are given to validate the proposed method.

  11. Performance optimization of a pneumatic wave energy conversion device

    NASA Astrophysics Data System (ADS)

    Surko, S. W.

    1982-08-01

    The purpose of this study was, for the first time, to optimize the performance of a pneumatic wave energy conversion device. The experiments of Jolly and Newmaster (1979) and Trop and Casey (1980) left a capture chamber and turbine for further investigation. To optimize the system performance the turbine had to be first analyzed so that its power performance curves could be determined. These curves were needed to help define the possible overall performance of the system, and for the impedance matching of the system necessary for performance optimization. With this knowledge, an appropriate generator was purchased and a generator-turbine linkage designed and built. The completed system was then analyzed in the 380 ft wave tank at the U.S. Naval Academy to establish its optimum performance. From the research it is clear that pneumatic wave energy conversion is a promising concept. With several hundred of these devices situated some 100 km off the coast of the Pacific Northwest each device would be producing from 50 to 200 kW which would be transferred back to shore.

  12. Energy scavenging system by acoustic wave and integrated wireless communication

    NASA Astrophysics Data System (ADS)

    Kim, Albert

    The purpose of the project was developing an energy-scavenging device for other bio implantable devices. Researchers and scientist have studied energy scavenging method because of the limitation of traditional power source, especially for bio-implantable devices. In this research, piezoelectric power generator that activates by acoustic wave, or music was developed. Follow by power generator, a wireless communication also integrated with the device for monitoring the power generation. The Lead Zirconate Titanate (PZT) bimorph cantilever with a proof mass at the free end tip was studied to convert acoustic wave to power. The music or acoustic wave played through a speaker to vibrate piezoelectric power generator. The LC circuit integrated with the piezoelectric material for purpose of wireless monitoring power generation. However, wireless monitoring can be used as wireless power transmission, which means the signal received via wireless communication also can be used for power for other devices. Size of 74 by 7 by 7cm device could generate and transmit 100mVp from 70 mm distance away with electrical resonant frequency at 420.2 kHz..

  13. Wave-driven Rotation in Supersonically Rotating Mirrors

    SciTech Connect

    A. Fetterman and N.J. Fisch

    2010-02-15

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  14. Wind, Wave, and Tidal Energy Without Power Conditioning

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2013-01-01

    Most present wind, wave, and tidal energy systems require expensive power conditioning systems that reduce overall efficiency. This new design eliminates power conditioning all, or nearly all, of the time. Wind, wave, and tidal energy systems can transmit their energy to pumps that send high-pressure fluid to a central power production area. The central power production area can consist of a series of hydraulic generators. The hydraulic generators can be variable displacement generators such that the RPM, and thus the voltage, remains constant, eliminating the need for further power conditioning. A series of wind blades is attached to a series of radial piston pumps, which pump fluid to a series of axial piston motors attached to generators. As the wind is reduced, the amount of energy is reduced, and the number of active hydraulic generators can be reduced to maintain a nearly constant RPM. If the axial piston motors have variable displacement, an exact RPM can be maintained for all, or nearly all, wind speeds. Analyses have been performed that show over 20% performance improvements with this technique over conventional wind turbines

  15. Holocene reef development where wave energy reduces accommodation

    USGS Publications Warehouse

    Grossman, Eric E.; Fletcher, Charles H.

    2004-01-01

    Analyses of 32 drill cores obtained from the windward reef of Kailua Bay, Oahu, Hawaii, indicate that high wave energy significantly reduced accommodation space for reef development in the Holocene and produced variable architecture because of the combined influence of sea-level history and wave exposure over a complex antecedent topography. A paleostream valley within the late Pleistocene insular limestone shelf provided accommodation space for more than 11 m of vertical accretion since sea level flooded the bay 8000 yr BP. Virtually no net accretion (pile-up of fore-reef-derived rubble (rudstone) and sparse bindstone, and (3) a final stage of catch-up bindstone accretion in depths > 6 m. Coral framestone accreted at rates of 2.5-6.0 mm/yr in water depths > 11 m during the early Holocene; it abruptly terminated at ~4500 yr BP because of wave scour as sea level stabilized. More than 4 m of rudstone derived from the upper fore reef accreted at depths of 6 to 13 m below sea level between 4000 and 1500 yr BP coincident with late Holocene relative sea-level fall. Variations in the thickness, composition, and age of these reef facies across spatial scales of 10-1000 m within Kailua Bay illustrate the importance of antecedent topography and wave-related stress in reducing accommodation space for reef development set by sea level. Although accommodation space of 6 to 17 m has existed through most of the Holocene, the Kailua reef has been unable to catch up to sea level because of persistent high wave stress.

  16. Reference Model 6 (RM6): Oscillating Wave Energy Converter.

    SciTech Connect

    Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard Alan

    2014-10-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour ($/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

  17. High Energy Solar Physics Data in Europe (HESPE): a European project for the exploitation of hard X-ray data in solar flare physics

    NASA Astrophysics Data System (ADS)

    Piana, M.; Csillaghy, A.; Kontar, E. P.; Fletcher, L.; Veronig, A. M.; Vilmer, N.; Hurford, G. J.; Dennis, B. R.; Schwartz, R. A.; Massone, A.; Krucker, S.; Benvenuto, F.; Etesi, L. I.; Guo, J.; Hochmuth, N.; Reid, H.

    2011-12-01

    It has been recognized since the early days of the space program that high-energy observations play a crucial role in understanding the basic mechanisms of solar eruptions. Unfortunately, the peculiar nature of this radiation makes it so difficult to extract useful information from it that non-conventional observational techniques together with complex data analysis procedures must be adopted. HESPE is a European project funded within the seventh Framework Program, with the aim of realizing computational methods for solar high-energy data analysis and technological tools for the intelligent exploitation of science-ready products. Such products and methods are put at disposal of the solar, heliospheric and space weather communities, who will exploit them in order to build flare prediction models and to integrate the information extracted from hard X-rays and gamma rays data, with the one extracted from other wavelengths data.

  18. Rossby wave energy dispersion from tropical cyclone in zonal basic flows

    NASA Astrophysics Data System (ADS)

    Shi, Wenli; Fei, Jianfang; Huang, Xiaogang; Liu, Yudi; Ma, Zhanhong; Yang, Lu

    2016-04-01

    This study investigates tropical cyclone energy dispersion under horizontally sheared flows using a nonlinear barotropic model. In addition to common patterns, unusual features of Rossby wave trains are also found in flows with constant vorticity and vorticity gradients. In terms of the direction of the energy dispersion, the wave train can rotate clockwise and elongate southwestward under anticyclonic circulation (ASH), which contributes to the reenhancement of the tropical cyclone (TC). The wave train even splits into two obvious wavelike trains in flows with a southward vorticity gradient (WSH). Energy dispersed from TCs varies over time, and variations in the intensity of the wave train components typically occur in two stages. Wave-activity flux diagnosis and ray tracing calculations are extended to the frame that moves along with the TC to reveal the concrete progress of wave propagation. The direction of the wave-activity flux is primarily determined by the combination of the basic flow and the TC velocity. Along the flux, the distribution of pseudomomentum effectively illustrates the development of wave trains, particularly the rotation and split of wave propagation. Ray tracing involves the quantitative tracing of wave features along rays, which effectively coincide with the wave train regimes. Flows of a constant shear (parabolic meridional variation) produce linear (nonlinear) wave number variations. For the split wave trains, the real and complex wave number waves move along divergent trajectories and are responsible for different energy dispersion ducts.

  19. On the Crest of a Wave: A Review of Wave Power Technology

    ERIC Educational Resources Information Center

    Harris, Fank

    2014-01-01

    The energy potentially available from waves around the coast of the UK far exceeds our domestic and industrial demands and yet, despite much research, numerous patent applications and several pilot schemes, the exploitation of waves for their energy largely remains in transition between development and commercialisation. This article examines the…

  20. Energy scaling of terahertz-wave parametric sources.

    PubMed

    Tang, Guanqi; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Wang, Weitao; Wu, Dong; Li, Ning; Fu, Qiang; Lu, Qingming; Zhang, Shaojun

    2015-02-23

    Terahertz-wave parametric oscillators (TPOs) have advantages of room temperature operation, wide tunable range, narrow line-width, good coherence. They have also disadvantage of small pulse energy. In this paper, several factors preventing TPOs from generating high-energy THz pulses and the corresponding solutions are analyzed. A scheme to generate high-energy THz pulses by using the combination of a TPO and a Stokes-pulse-injected terahertz-wave parametric generator (spi-TPG) is proposed and demonstrated. A TPO is used as a source to generate a seed pulse for the surface-emitted spi-TPG. The time delay between the pump and Stokes pulses is adjusted to guarantee they have good temporal overlap. The pump pulses have a large pulse energy and a large beam size. The Stokes beam is enlarged to make its size be larger than the pump beam size to have a large effective interaction volume. The experimental results show that the generated THz pulse energy from the spi-TPG is 1.8 times as large as that obtained from the TPO for the same pumping pulse energy density of 0.90 J/cm(2) and the same pumping beam size of 3.0 mm. When the pumping beam sizes are 5.0 and 7.0 mm, the enhancement times are 3.7 and 7.5, respectively. The spi-TPG here is similar to a difference frequency generator; it can also be used as a Stokes pulse amplifier.

  1. Energy scaling of terahertz-wave parametric sources.

    PubMed

    Tang, Guanqi; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Wang, Weitao; Wu, Dong; Li, Ning; Fu, Qiang; Lu, Qingming; Zhang, Shaojun

    2015-02-23

    Terahertz-wave parametric oscillators (TPOs) have advantages of room temperature operation, wide tunable range, narrow line-width, good coherence. They have also disadvantage of small pulse energy. In this paper, several factors preventing TPOs from generating high-energy THz pulses and the corresponding solutions are analyzed. A scheme to generate high-energy THz pulses by using the combination of a TPO and a Stokes-pulse-injected terahertz-wave parametric generator (spi-TPG) is proposed and demonstrated. A TPO is used as a source to generate a seed pulse for the surface-emitted spi-TPG. The time delay between the pump and Stokes pulses is adjusted to guarantee they have good temporal overlap. The pump pulses have a large pulse energy and a large beam size. The Stokes beam is enlarged to make its size be larger than the pump beam size to have a large effective interaction volume. The experimental results show that the generated THz pulse energy from the spi-TPG is 1.8 times as large as that obtained from the TPO for the same pumping pulse energy density of 0.90 J/cm(2) and the same pumping beam size of 3.0 mm. When the pumping beam sizes are 5.0 and 7.0 mm, the enhancement times are 3.7 and 7.5, respectively. The spi-TPG here is similar to a difference frequency generator; it can also be used as a Stokes pulse amplifier. PMID:25836452

  2. Relationship between wave energy and free energy from pickup ions in the Comet Halley environment

    NASA Technical Reports Server (NTRS)

    Huddleston, D. E.; Johnstone, A. D.

    1992-01-01

    The free energy available from the implanted heavy ion population at Comet Halley is calculated by assuming that the initial unstable velocity space ring distribution of the ions evolves toward a bispherical shell. Ultimately this free energy adds to the turbulence in the solar wind. Upstream and downstream free energies are obtained separately for the conditions observed along the Giotto spacecraft trajectory. The results indicate that the waves are mostly upstream propagating in the solar wind frame. The total free energy density always exceeds the measured wave energy density because, as expected in the nonlinear process of ion scattering, the available energy is not all immediately released. An estimate of the amount which has been released can be obtained from the measured oxygen ion distributions and again it exceeds that observed. The theoretical analysis is extended to calculate the k spectrum of the cometary-ion-generated turbulence.

  3. PARTICLE ENERGY SPECTRA AT TRAVELING INTERPLANETARY SHOCK WAVES

    SciTech Connect

    Reames, Donald V.

    2012-09-20

    We have searched for evidence of significant shock acceleration of He ions of {approx}1-10 MeV amu{sup -1} in situ at 258 interplanetary traveling shock waves observed by the Wind spacecraft. We find that the probability of observing significant acceleration, and the particle intensity observed, depends strongly upon the shock speed and less strongly upon the shock compression ratio. For most of the 39 fast shocks with significant acceleration, the observed spectral index agrees with either that calculated from the shock compression ratio or with the spectral index of the upstream background, when the latter spectrum is harder, as expected from diffusive shock theory. In many events the spectra are observed to roll downward at higher energies, as expected from Ellison-Ramaty and from Lee shock-acceleration theories. The dearth of acceleration at {approx}85% of the shocks is explained by (1) a low shock speed, (2) a low shock compression ratio, and (3) a low value of the shock-normal angle with the magnetic field, which may cause the energy spectra that roll downward at energies below our observational threshold. Quasi-parallel shock waves are rarely able to produce measurable acceleration at 1 AU. The dependence of intensity on shock speed, seen here at local shocks, mirrors the dependence found previously for the peak intensities in large solar energetic-particle events upon speeds of the associated coronal mass ejections which drive the shocks.

  4. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    SciTech Connect

    Mekhiche, Mike; Dufera, Hiz; Montagna, Deb

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  5. Unscented Kalman filtering for wave energy converters system identification

    NASA Astrophysics Data System (ADS)

    Bakar, Mohd Aftar Abu; Green, David A.; Metcalfe, Andrew V.; Ariff, Noratiqah Mohd

    2014-06-01

    A model for a oscillating flap wave energy converter (WEC) is as a single degree of freedom system with a non-linear term to allow for the drag of the device through the water, known as the Morison term. The focus of this system identification is on estimating the dynamic state of the system and estimating the non-linear parameter from observations of the wave elevation and the vertical displacement of the device. It is assumed that the mass, stiffness and damping of the system, without the Morison term, are known from the physical characteristics of the device. The Kalman Filter (KF) can be used to estimate the states of a linear system, however, it is not directly applicable to a non-linear system. Various adaptations have been proposed for non-linear systems. One of the first was the extended Kalman Filter (EKF) which relied on a linearization about the current state values. However, an alternative approach, known as the unscented Kalman Filter (UKF) has been found to give a better performance and is easier to implement. We apply the UKF to estimate the dynamic states of the system together with the non-linear parameter. The fitted model can be used to predict the performance of the device in different wave environments.

  6. Spatial decay of energy density of tidal internal waves

    NASA Astrophysics Data System (ADS)

    Lozovatsky, Iossif D.; Morozov, Eugene G.; Fernando, H. J. S.

    2003-06-01

    The spatial decay of energy density of tidal internal waves (TIW) was studied using field data taken in the Indian Ocean near the Mascarene Ridge and in the Canary Basin of the eastern Atlantic near the Heyres-Irving-Cruiser chain of seamounts. Several moorings were deployed at distances between 90 and 1745 km east of these topographic features, with instruments located in the depth range 500-2500 m. The energy densities of TIW averaged over the spring-neap cycle were calculated using semidiurnal tidal components of current and temperature time series as well as local vertical gradients of temperature and density. It was found that the horizontal component of TIW, EH, is less depth-dependent compared to the vertical component, Eζ, although both components showed a general decrease of magnitude with the distance from topography. The decrease of total energy density ETW = EH + Eζ with distance from the topography is more rapid than that assumed in the work of [1995], and followed an inverse power law. At a distance of about x ≈ 10λ from the topography (where λ is the wavelength of the first mode), ETW in the main thermocline becomes equal to the energy density of the forcing barotropic tide, whereas for x/λ < 2, ETW exceeds the energy of the entire range of internal waves of the Garrett-Munk spectrum. A nonhydrostatic, nonlinear, two-dimensional numerical model shows a reasonable agreement with the observations for x/λ < 2-3, but in the far field it predicts a faster spatial decay of ETW than observed, possibly because of topographic generation of TIW along the measurement swath. The turbulent diffusivity estimates based on the [1981] model exceeded 10-4 m2/s within the main pycnocline at x = 100 km and suggest mixing enhancements due to TIW up to distances of 1000 km from the topography.

  7. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    SciTech Connect

    Yu, Y. H.; Jenne, D. S.; Thresher, R.; Copping, A.; Geerlofs, S.; Hanna, L. A.

    2015-01-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

  8. Investigation of Wave Energy Converter Effects on Wave Fields: A Modeling Sensitivity Study in Monterey Bay CA.

    SciTech Connect

    Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones

    2014-08-01

    A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .

  9. Wave Energy Converter Effects on Wave Fields: Evaluation of SNL-SWAN and Sensitivity Studies in Monterey Bay CA.

    SciTech Connect

    Roberts, Jesse D.; Chang, Grace; Magalen, Jason; Jones, Craig

    2014-09-01

    A modified version of an indust ry standard wave modeling tool was evaluated, optimized, and utilized to investigate model sensitivity to input parameters a nd wave energy converter ( WEC ) array deployment scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that wave direction and WEC device type we r e most sensitive to the variation in the model parameters examined in this study . Generally, the changes in wave height we re the primary alteration caused by the presence of a WEC array. Specifically, W EC device type and subsequently their size directly re sult ed in wave height variations; however, it is important to utilize ongoing laboratory studies and future field tests to determine the most appropriate power matrix values for a particular WEC device and configuration in order to improve modeling results .

  10. Investigation of suitable sites for Wave Energy Converters around Sicily (Italy)

    NASA Astrophysics Data System (ADS)

    Iuppa, C.; Cavallaro, L.; Vicinanza, D.; Foti, E.

    2015-02-01

    An analysis of wave energy along the coasts of Sicily (Italy) is presented with the aim of selecting possible sites for the implementation of Wave Energy Converters (WECs). The analysis focuses on the selection of hot-spot-areas of energy concentration. A third-generation model was adopted to reconstruct the wave data along the coast over a period of 14 years. The reconstruction was performed using the wave and wind data from the European Centre for Medium-Range Weather Forecasts. The analysis of wave energy allowed us to characterise the most energetic zones, which are located on the western side of Sicily and on the Strait of Sicily. Moreover, the estimate of the annual wave power on the entire computational domain identified eight interesting sites. The main features of the sites include relatively high wave energy and proximity to the coast, which may be possible sites for the implementation of WEC farms.

  11. Investigation of suitable sites for wave energy converters around Sicily (Italy)

    NASA Astrophysics Data System (ADS)

    Iuppa, C.; Cavallaro, L.; Vicinanza, D.; Foti, E.

    2015-07-01

    An analysis of wave energy along the coasts of Sicily (Italy) is presented with the aim of selecting possible sites for the implementation of wave energy converters (WECs). The analysis focuses on the selection of hotspot areas of energy concentration. A third-generation model was adopted to reconstruct the wave data along the coast over a period of 14 years. The reconstruction was performed using the wave and wind data from the European Centre for Medium-Range Weather Forecasts. The analysis of wave energy allowed us to characterise the most energetic zones, which are located on the western side of Sicily and on the Strait of Sicily. Moreover, the estimate of the annual wave power on the entire computational domain identified eight interesting sites. The main features of the sites include relatively high wave energy and proximity to the coast, which makes them possible sites for the implementation of WEC farms.

  12. Irregular Wave Energy Extraction Analysis for a Slider Crank WEC Power Take-Off System

    SciTech Connect

    Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun; Zhang, James Z.; Muljadi, Eduard

    2015-09-02

    Slider crank Wave Energy Converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this WEC has been done under regular sinusoidal wave conditions, and a suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and the control methodology is modified to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from that under regular sinusoidal wave conditions, but still a reasonable amount of energy can be extracted.

  13. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    SciTech Connect

    Rhinefrank, Kenneth E; Haller, Merrick C; Ozkan-Haller, H Tuba

    2013-01-26

    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys' that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate high

  14. Momentum and energy transport by waves in the solar atmosphere and solar wind

    NASA Technical Reports Server (NTRS)

    Jacques, S. A.

    1977-01-01

    The fluid equations for the solar wind are presented in a form which includes the momentum and energy flux of waves in a general and consistent way. The concept of conservation of wave action is introduced and is used to derive expressions for the wave energy density as a function of heliocentric distance. The explicit form of the terms due to waves in both the momentum and energy equations are given for radially propagating acoustic, Alfven, and fast mode waves. The effect of waves as a source of momentum is explored by examining the critical points of the momentum equation for isothermal spherically symmetric flow. We find that the principal effect of waves on the solutions is to bring the critical point closer to the sun's surface and to increase the Mach number at the critical point. When a simple model of dissipation is included for acoustic waves, in some cases there are multiple critical points.

  15. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy.

    PubMed

    Chen, Jun; Yang, Jin; Li, Zhaoling; Fan, Xing; Zi, Yunlong; Jing, Qingshen; Guo, Hengyu; Wen, Zhen; Pradel, Ken C; Niu, Simiao; Wang, Zhong Lin

    2015-03-24

    With 70% of the earth's surface covered with water, wave energy is abundant and has the potential to be one of the most environmentally benign forms of electric energy. However, owing to lack of effective technology, water wave energy harvesting is almost unexplored as an energy source. Here, we report a network design made of triboelectric nanogenerators (TENGs) for large-scale harvesting of kinetic water energy. Relying on surface charging effect between the conventional polymers and very thin layer of metal as electrodes for each TENG, the TENG networks (TENG-NW) that naturally float on the water surface convert the slow, random, and high-force oscillatory wave energy into electricity. On the basis of the measured output of a single TENG, the TENG-NW is expected to give an average power output of 1.15 MW from 1 km(2) surface area. Given the compelling features, such as being lightweight, extremely cost-effective, environmentally friendly, easily implemented, and capable of floating on the water surface, the TENG-NW renders an innovative and effective approach toward large-scale blue energy harvesting from the ocean. PMID:25719956

  16. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy.

    PubMed

    Chen, Jun; Yang, Jin; Li, Zhaoling; Fan, Xing; Zi, Yunlong; Jing, Qingshen; Guo, Hengyu; Wen, Zhen; Pradel, Ken C; Niu, Simiao; Wang, Zhong Lin

    2015-03-24

    With 70% of the earth's surface covered with water, wave energy is abundant and has the potential to be one of the most environmentally benign forms of electric energy. However, owing to lack of effective technology, water wave energy harvesting is almost unexplored as an energy source. Here, we report a network design made of triboelectric nanogenerators (TENGs) for large-scale harvesting of kinetic water energy. Relying on surface charging effect between the conventional polymers and very thin layer of metal as electrodes for each TENG, the TENG networks (TENG-NW) that naturally float on the water surface convert the slow, random, and high-force oscillatory wave energy into electricity. On the basis of the measured output of a single TENG, the TENG-NW is expected to give an average power output of 1.15 MW from 1 km(2) surface area. Given the compelling features, such as being lightweight, extremely cost-effective, environmentally friendly, easily implemented, and capable of floating on the water surface, the TENG-NW renders an innovative and effective approach toward large-scale blue energy harvesting from the ocean.

  17. The dissipation of wind wave energy across a fringing reef at Ipan, Guam

    NASA Astrophysics Data System (ADS)

    Péquignet, A.-C.; Becker, J. M.; Merrifield, M. A.; Boc, S. J.

    2011-06-01

    Field observations over a fringing reef at Ipan, Guam, during trade wind and tropical storm conditions are used to assess the transformation of sea and swell energy from the fore reef to the shoreline. Parameterizations of wave breaking and bottom friction developed for sandy beaches are found to represent the observed decay in wave energy with an increased friction coefficient. These parameterizations are incorporated into the one-dimensional energy flux balance, which is integrated across the reef to assess the effects of varying tidal range, incident wave height and reef bathymetry on the sea and swell band wave height and wave setup near the shoreline. Wave energy on the reef is strongly depth-limited and controlled by the reef submergence level. Shoreline wave energy increases with incident wave height largely due to the increase in water level from breaking wave setup. Increased tidal levels result in increased shoreline energy, since wave setup is only weakly reduced. The wave height at the shore is shown to be inversely proportional to the width of the reef flat due to dissipation.

  18. Single-wave-number representation of nonlinear energy spectrum in elastic-wave turbulence of the Föppl-von Kármán equation: energy decomposition analysis and energy budget.

    PubMed

    Yokoyama, Naoto; Takaoka, Masanori

    2014-12-01

    A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.

  19. On the nature of cross-isobath energy fluxes in topographically modified barotropic semidiurnal Kelvin waves

    NASA Astrophysics Data System (ADS)

    Zhang, Tianyi; Yankovsky, Alexander E.

    2016-05-01

    Continental shelf topography modifies a Kelvin wave into a hybrid Kelvin-edge wave with a nonzero across-isobath velocity and a phase speed that decreases with increasing wave number while the group velocity reaches a minimum at intermediate wave numbers. We model the modified semidiurnal Kelvin wave adjustment to alongshore changes in the shelf width. The model domain consists of two alongshore-uniform continental shelves of different widths adjoined through a 150 km long transition zone. The continental shelf and slope are adjacent to an ocean of a constant depth, allowing radiation of Poincaré waves. We consider three shelf widths of 150, 250, and 300 km, where properties of a zero mode at semidiurnal frequency change from Kelvin wave like to edge wave like. For each shelf width, a zero wave mode has its distinctive alongshore energy flux structure on the shelf. As the incident wave encounters a variable shelf width, the alongshore energy flux converges (diverges) on the shelf resulting in an offshore (onshore) energy flux over the continental slope. Furthermore, for a strongly convergent alongshore energy flux, the incident wave mode scatters into radiating Poincaré waves. On sufficiently wide shelves, a strong across-isobath energy flux comparable with the incident wave energy flux can be triggered even by relatively modest changes of shelf width. An energy flux divergence parameter De is defined, which scales with magnitude and direction of the energy flux across the continental slope. More than 50% of the incident energy flux scatters into modes radiating offshore when De is -1 or less.

  20. The Indian Athlete: Exploiting or Exploited?

    ERIC Educational Resources Information Center

    Salter, Michael A.

    It is the purpose of this paper to examine the nineteenth century Canadian Indian lacrosse player to determine whether or not he was exploited by his European counterparts, and if so, the manner in which this exploitation occurred. Caucasian lacrosse enthusiasts sought to promote "their" game by arranging for Indian demonstrations to be staged…

  1. Reconstruction of a energy wave spectrum using a non-intrusive technique

    NASA Astrophysics Data System (ADS)

    Vargas, Diana; Lugo, Adolfo; Mendoza, Edgar; Silva, Rodolfo

    2014-11-01

    For studies taken in a wave flume, it is frequent to use wave gauges to measure directly the free surface fluctuations. Sometimes these gauges can interfere the measures because this probes act as obstacles to water. Therefore we designed a non intrusive technique using a bubble curtain. In this work we pretend to reconstruct the energy wave spectrum of regular and irregular waves, generated in a wave flume, assuming linear and non linear wave theory by analyzing the time series of the bubbles velocity field given with the aid of PIV.

  2. Comparison of performances of turbines for wave energy conversion

    NASA Astrophysics Data System (ADS)

    Kinoue, Yoichi; Setoguchi, Toshiaki; Kuroda, Tomohiko; Kaneko, Kenji; Takao, Manabu; Thakker, Ajit

    2003-11-01

    The Wells turbine for a wave power generator is a self-rectifying air turbine that is available for an energy conversion in an oscillating water-air column without any rectifying valve. The objective of this paper is to compare the performances of the Wells turbines in which the profile of blade are NACA0020, NACA0015, CA9 and HSIM15-262123-1576 in the small-scale model testing. The running characteristics in the steady flow, the start and running characteristics in the sinusoidal flow and the hysteretic characteristics in the sinusoidal flow were investigated for four kinds of turbine. As a conclusion, the turbine in which the profile of blade is NACA0020 has the best performances among 4 turbines for the running and starting characteristics in the small-scale model testing.

  3. An oscillating wave energy converter with nonlinear snap-through Power-Take-Off systems in regular waves

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-tao; Yang, Jian-min; Xiao, Long-fei

    2016-07-01

    Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.

  4. Adiabatic corrections to density functional theory energies and wave functions.

    PubMed

    Mohallem, José R; Coura, Thiago de O; Diniz, Leonardo G; de Castro, Gustavo; Assafrão, Denise; Heine, Thomas

    2008-09-25

    The adiabatic finite-nuclear-mass-correction (FNMC) to the electronic energies and wave functions of atoms and molecules is formulated for density-functional theory and implemented in the deMon code. The approach is tested for a series of local and gradient corrected density functionals, using MP2 results and diagonal-Born-Oppenheimer corrections from the literature for comparison. In the evaluation of absolute energy corrections of nonorganic molecules the LDA PZ81 functional works surprisingly better than the others. For organic molecules the GGA BLYP functional has the best performance. FNMC with GGA functionals, mainly BLYP, show a good performance in the evaluation of relative corrections, except for nonorganic molecules containing H atoms. The PW86 functional stands out with the best evaluation of the barrier of linearity of H2O and the isotopic dipole moment of HDO. In general, DFT functionals display an accuracy superior than the common belief and because the corrections are based on a change of the electronic kinetic energy they are here ranked in a new appropriate way. The approach is applied to obtain the adiabatic correction for full atomization of alcanes C(n)H(2n+2), n = 4-10. The barrier of 1 mHartree is approached for adiabatic corrections, justifying its insertion into DFT. PMID:18537228

  5. Boring and Sealing Rock with Directed Energy Millimeter-Waves

    NASA Astrophysics Data System (ADS)

    Woskov, P.; Einstein, H. H.; Oglesby, K.

    2015-12-01

    Millimeter-wave directed energy is being investigated to penetrate into deep crystalline basement rock formations to lower well costs and to melt rocks, metals, and other additives to seal wells for applications that include nuclear waste storage and geothermal energy. Laboratory tests have established that intense millimeter-wave (MMW) beams > 1 kW/cm2 can melt and/ or vaporize hard crystalline rocks. In principle this will make it possible to create open boreholes and a method to seal them with a glass/ceramic liner and plug formed from the original rock or with other materials. A 10 kW, 28 GHz commercial (CPI) gyrotron system with a launched beam diameter of about 32 mm was used to heat basalt, granite, limestone, and sandstone specimens to temperatures over 2500 °C to create melts and holes. A calibrated 137 GHz radiometer view, collinear with the heating beam, monitored real time peak rock temperature. A water load surrounding the rock test specimen primarily monitored unabsorbed power at 28 GHz. Power balance analysis of the laboratory observations shows that the temperature rise is limited by radiative heat loss, which would be expected to be trapped in a borehole. The analysis also indicates that the emissivity (absorption efficiency) in the radiated infrared range is lower than the emissivity at 28 GHz, giving the MMW frequency range an important advantage for rock melting. Strength tests on one granite type indicated that heating the rock initially weakens it, but with exposure to higher temperatures the resolidified black glassy product regains strength. Basalt was the easiest to melt and penetrate, if a melt leak path was provided, because of its low viscosity. Full beam holes up to about 50 mm diameter (diffraction increased beam size) were achieved through 30 mm thick basalt and granite specimens. Laboratory experiments to form a seal in an existing hole have also been carried out by melting rock and a simulated steel casing.

  6. Optical theorem for electromagnetic field scattering by dielectric structures and energy emission from the evanescent wave.

    PubMed

    Gulyaev, Yu V; Barabanenkov, Yu N; Barabanenkov, M Yu; Nikitov, S A

    2005-08-01

    We present an optical theorem for evanescent (near field) electromagnetic wave scattering by a dielectric structure. The derivation is based on the formalism of angular spectrum wave amplitudes and block scattering matrix. The optical theorem shows that an energy flux is emitted in the direction of the evanescent wave decay upon scattering. The energy emission effect from an evanescent wave is illustrated in two examples of evanescent wave scattering, first, by the electrical dipole and, second, one-dimensional grating with line-like rulings. Within the latter example, we show that an emitted energy flux upon evanescent wave scattering can travel through a dielectric structure even if the structure has a forbidden gap in the transmission spectrum of incident propagating waves.

  7. Experimental investigation of change of energy of infragavity waves in dependence on spectral characteristics of an irregular wind waves in coastal zone

    NASA Astrophysics Data System (ADS)

    Saprykina, Yana; Divinskii, Boris

    2013-04-01

    An infragravity waves are long waves with periods of 20 - 300 s. Most essential influence of infragarvity waves on dynamic processes is in a coastal zone, where its energy can exceed the energy of wind waves. From practical point of view, the infragravity waves are important, firstly, due to their influence on sand transport processes in a coastal zone. For example, interacting with group structure of wind waves the infragravity waves can define position of underwater bars on sandy coast. Secondly, they are responsible on formation of long waves in harbors. Main source of infragravity waves is wave group structure defined by sub-nonlinear interactions of wind waves (Longuet-Higgins, Stewart, 1962). These infragravity waves are bound with groups of wind waves and propagate with wave group velocity. Another type of infragravity waves are formed in a surf zone as a result of migration a wave breaking point (Symonds, et al., 1982). What from described above mechanisms of formation of infragravity waves prevails, till now it is unknown. It is also unknown how energy of infragravity waves depends on energy of input wind waves and how it changes during nonlinear wave transformation in coastal zone. In our work on the basis of the analysis of data of field experiment and numerical simulation a contribution of infragravity waves in total wave energy in depending on integral characteristics of an irregular wave field in the conditions of a real bathymetry was investigated. For analysis the data of field experiment "Shkorpilovtsy-2007" (Black sea) and data of numerical modeling of Boussinesq type equation with extended dispersion characteristics (Madsen et al., 1997) were used. It was revealed that infragravity waves in a coastal zone are defined mainly by local group structure of waves, which permanently changes due to nonlinearity, shoaling and breaking processes. Free infragravity waves appearing after wave breaking exist together with bound infragravity waves. There are

  8. Beyond the Horizon Distance: LIGO-Virgo can Boost Gravitational-Wave Detection Rates by Exploiting the Mass Distribution of Neutron Stars.

    PubMed

    Bartos, I; Márka, S

    2015-12-01

    The masses of neutron stars in neutron star binaries are observed to fall in a narrow mass range around ∼1.33M_{⊙}. We explore the advantage of focusing on this region of the parameter space in gravitational-wave searches. We find that an all-sky (externally triggered) search with an optimally reduced template bank is expected to detect 14% (61%) more binary mergers than without the reduction. A reduced template bank can also represent significant improvement in technical cost. We also develop a more detailed search method using binary mass distribution, and find a sensitivity increase similar to that due to the reduced template bank. PMID:26684105

  9. Energy transfer between wind waves and low-frequency oscillations on a fringing reef, Ipan, Guam

    NASA Astrophysics Data System (ADS)

    Péquignet, Anne-Christine N.; Becker, Janet M.; Merrifield, Mark A.

    2014-10-01

    Field observations from a Guam fringing reef are used to examine the cross-reef energy exchange between high-frequency sea and swell (SS) and low-frequency infragravity (IG) and far infragravity (fIG) waves. Energetic SS waves (significant wave heights 2-4 m) break at the outer reef, leading to weak (<1 m) conditions on the shallow reef flat. As SS waves shoal on the reef face before breaking, IG and fIG energy fluxes both increase through nonlinear energy transfer from the SS waves. In contrast, through the surf zone, the IG energy flux decreases whereas fIG flux increases. The decrease in IG energy flux through the surf zone is attributed to breaking SS waves working against the incident bound IG wave energy, which dominates breakpoint forced IG waves, yielding a net flux decrease. In contrast, fIG energy flux increases through the surf zone, consistent with breakpoint forcing and the absence of an energetic bound fIG component on the reef face. IG and fIG energy fluxes decay on the shallow reef flat due primarily to frictional dissipation, with tidal modulations attributed to nonlinear conversion and friction. Forcing at fIG frequencies may lead to a normal mode response on the reef with comparable incoming and outgoing fIG energy fluxes at the outer reef flat, depending on water level over the reef flat and the degree of frictional dissipation.

  10. Numerical Modeling of Fluid Structure Interactions of a Floating Wave Energy Extraction Device

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kang, S.

    2014-12-01

    In recent years there has been increased attention towards developing the strategies for harnessing hydrokinetic and wave energy from the ocean. There exists several hydrokinetic energy devices designed to extract energy from the ocean current but few wave energy devices are available. The moored floating cylinder-like structure that has been recently developed in South Korea is one of such devices. We carry out numerical simulation of the three-dimensional interactions of a floating cylinder and incoming waves using the level-set curvilinear immersed boundary method of Kang and Sotiropoulos (2012) to improve the understanding the wave energy extraction mechanisms of that device. The results demonstrate the potential of our numerical model as a powerful engineering tool for predicting complex wave-structure interaction phenomena associated with energy extraction devices.

  11. Novel Millimeter Wave Sensor Concepts for Energy, Environment, and National Security

    SciTech Connect

    Sundaram, S. K.; Woskov, Paul P.

    2009-09-21

    Millimeter waves (30 – 300 GHz) are ideally suited for sensing and diagnosing materials, devices, and processes that are broadly important to energy, environment, and national security missions. The wavelengths are long enough to penetrate dust, smoke, and industrial environment yet short enough to enable focusing and manipulating of the signals for useful applications. We have developed a novel thermal return reflection (TRR) technique that uses emission as a probe to interrogate and diagnose materials and systems and determine emissivity and temperature simultaneously. Scientific basis of TRR, 2-D and potentially 3-D measurements, and selected results on application of TRR will be presented. We will also present new sensor concepts based on emit-probe and pump-probe modes to further broaden its applications. In its 3-D manifestation of this technique, one can track three different parameters or view/measure at three different directions (x, y, and z). On application to materials and processes, it shows promise for measuring temperature (T) - position (x) - time (t) simultaneously in real time leading to T-x-t diagrams that can be exploited for spatial resolution of emissivity or stability over a function of time. Selected examples of applications in fusion plasma diagnostics, nuclear waste disposal, and non-proliferation will be presented.

  12. Comparison of magnetosonic wave and water group ion energy densities at Comet Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Staines, K.; Balogh, A.; Cowley, S. W. H.; Forster, P. M. De F.; Hynds, R. J.; Yates, T. S.; Sanderson, T. R.; Wenzel, K.-P.; Tsurutani, B. T.

    1991-01-01

    Measurements of the Comet Giacobini-Zinner (GZ) are presented to determine to what extent wave-particle scattering redistributed the initial pick-up energy of the ion population. Also examined is the difference between the ion thermal energy and the energy in the magnetic fields of the waves. In spite of uncertainty of about a factor of 2 noted in the pick-up and mass-loaded regions, it is shown that less than approximately 50 percent of the pick-up energy is converted into wave magnetic energy in the inbound pick-up region.

  13. Effects of low-energy shock waves on oral bacteria.

    PubMed

    Novak, K F; Govindaswami, M; Ebersole, J L; Schaden, W; House, N; Novak, M J

    2008-10-01

    We have recently demonstrated that extracorporeal shock-wave therapy (ESWT) is effective in promoting the healing of dermal wounds and in regenerating alveolar bone lost through periodontal disease. The objective of the present study was to determine any antibacterial effect of ESWT on oral bacteria. Monoculture suspensions of 6 bacterial species were treated with 100 to 500 pulses of ESWT at energy flux densities (EFD) of 0.12 mJ/mm(2), 0.22 mJ/mm(2), and 0.3 mJ/mm(2). Following treatment, aliquots were plated for viability determination and compared with untreated controls. ESWT showed a significant microbicidal effect for Streptococcus mutans and an unencapsulated strain of Porphyromonas gingivalis following as few as 100 pulses at 0.3 mJ/mm(2) (p 0.05). These findings suggest that low-energy ESWT may be bactericidal for selected oral bacteria.

  14. Internal swells in the tropics: Near-inertial wave energy fluxes and dissipation during CINDY

    NASA Astrophysics Data System (ADS)

    Soares, S. M.; Natarov, A.; Richards, K. J.

    2016-05-01

    A developing MJO event in the tropical Indian Ocean triggered wind disturbances that generated inertial oscillations in the surface mixed layer. Subsequent radiation of near-inertial waves below the mixed layer produced strong turbulence in the pycnocline. Linear plane wave dynamics and spectral analysis are used to explain these observations, with the ultimate goal of estimating the wave energy flux in relation to both the energy input by the wind and the dissipation by turbulence. The results indicate that the wave packets carry approximately 30-40% of the wind input of inertial kinetic energy, and propagate in an environment conducive to the occurrence of a critical level set up by a combination of vertical gradients in background relative vorticity and Doppler shifting of wave frequency. Turbulent kinetic energy dissipation measurements demonstrate that the waves lose energy as they propagate in the transition layer as well as in the pycnocline, where approaching this critical level may have dissipated approximately 20% of the wave packet energy in a single event. Our analysis, therefore, supports the notion that appreciable amounts of wind-induced inertial kinetic energy escape the surface boundary layer into the interior. However, a large fraction of wave energy is dissipated within the pycnocline, limiting its penetration into the abyssal ocean.

  15. Absolute instability from linear conversion of counter-propagating positive and negative energy waves

    SciTech Connect

    Kaufman, A.N.; Brizard, A.J.; Morehead, J.J.; Tracy, E.R.

    1997-12-31

    The resonant interaction of a negative-energy wave with a positive-energy wave gives rise to a linear instability. Whereas a single crossing of rays in a nonuniform medium leads to a convectively saturated instability, we show that a double crossing can yield an absolute instability.

  16. The synoptic setting and possible energy sources for mesoscale wave disturbances

    NASA Technical Reports Server (NTRS)

    Uccellini, Louis W.; Koch, Steven E.

    1987-01-01

    Published data on 13 cases of mesoscale wave disturbances and their environment were examined to isolate common features for these cases and to determine possible energy sources for the waves. These events are characterized by either a singular wave of depression or wave packets with periods of 1-4 h, horizontal wavelengths of 50-500 km, and surface-pressure perturbation amplitudes of 0.2-7.0 mb. These wave events are shown to be associated with a distinct synoptic pattern (including the existence of a strong inversion in the lower troposphere and the propagation of a jet streak toward a ridge axis in the upper troposphere) while displaying little correlation with the presence of convective storm cells. The observed development of the waves is consistent with the hypothesis that the energy source needed to initiate and sustain the wave disturbances may be related to a geostrophic adjustment process associated with upper-tropospheric jet streaks.

  17. Estimating wave energy dissipation in the surf zone using thermal infrared imagery

    NASA Astrophysics Data System (ADS)

    Carini, Roxanne J.; Chickadel, C. Chris; Jessup, Andrew T.; Thomson, Jim

    2015-06-01

    Thermal infrared (IR) imagery is used to quantify the high spatial and temporal variability of dissipation due to wave breaking in the surf zone. The foam produced in an actively breaking crest, or wave roller, has a distinct signature in IR imagery. A retrieval algorithm is developed to detect breaking waves and extract wave roller length using measurements taken during the Surf Zone Optics 2010 experiment at Duck, NC. The remotely derived roller length and an in situ estimate of wave slope are used to estimate dissipation due to wave breaking by means of the wave-resolving model by Duncan (1981). The wave energy dissipation rate estimates show a pattern of increased breaking during low tide over a sand bar, consistent with in situ turbulent kinetic energy dissipation rate estimates from fixed and drifting instruments over the bar. When integrated over the surf zone width, these dissipation rate estimates account for 40-69% of the incoming wave energy flux. The Duncan (1981) estimates agree with those from a dissipation parameterization by Janssen and Battjes (2007), a wave energy dissipation model commonly applied within nearshore circulation models.

  18. Magnetic helicity conservation and inverse energy cascade in electron magnetohydrodynamic wave packets.

    PubMed

    Cho, Jungyeon

    2011-05-13

    Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.

  19. Shock waves raised by explosions in space as sources of ultra-high-energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Kichigin, Gennadiy

    2015-03-01

    The paper discusses the possibility of particle acceleration up to ultrahigh energies in the relativistic waves generated by various explosive processes in the interstellar medium. We propose to use the surfatron mechanism of acceleration (surfing) of charged particles trapped in the front of relativistic waves as a generator of high-energy cosmic rays (CRs). Conditions under which surfing in these waves can be made are studied thoroughly. Ultra-high-energy CRs (up to 10^20 eV) are shown to be obtained due to the surfing in the relativistic plane and spherical waves. Surfing is supposed to take place in nonlinear Langmuir waves excited by powerful electromagnetic radiation or relativistic beams of charged particles, as well as in strong shock waves generated by relativistic jets or spherical formations that expand fast (fireballs).

  20. Relativistic waves raised by explosions in space as sources of ultra-high-energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Kichigin, G. N.

    2013-01-01

    The paper discusses the possibility of particle acceleration up to high energies in relativistic waves generated by various explosive processes in the interstellar medium. We propose to use the surfatron mechanism of acceleration (surfing) of charged particles trapped in the front of relativistic waves as a generator of high-energy cosmic rays (CRs). Conditions under which surfing in the waves under consideration can be made are studied thoroughly. Ultra-high-energy CRs (up to 1020 eV) are shown to be obtained due to the surfing in relativistic plane and spherical waves. Surfing is supposed to take place in nonlinear Langmuir waves excited by powerful electromagnetic radiation or relativistic beams of charged particles, as well as in strong shock waves generated by relativistic jets or spherical formations that expand fast (fireballs).

  1. Effect of Stress on Energy Flux Deviation of Ultrasonic Waves in Ultrasonic Waves in GR/EP Composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Kriz, R. D.; Fitting, Dale W.

    1990-01-01

    Ultrasonic waves suffer energy flux deviation in graphite/epoxy because of the large anisotropy. The angle of deviation is a function of the elastic coefficients. For nonlinear solids, these coefficients and thus the angle of deviation is a function of stress. Acoustoelastic theory was used to model the effect of stress on flux deviation for unidirectional T300/5208 using previously measured elastic coefficients. Computations were made for uniaxial stress along the x3 axis fiber axis) and the x1 axis for waves propagating in the x1x3 plane. These results predict a shift as large as three degrees for the quasi-transverse wave. The shift in energy flux offers new nondestructive technique of evaluating stress in composites.

  2. Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 2; Waves and Dissipation

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Sibeck, D. G.; Breneman, A. W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.

    2014-01-01

    We present the first quantified measure of the energy dissipation rates, due to wave-particle interactions, in the transition region of the Earth's collision-less bow shock using data from the Time History of Events and Macro-Scale Interactions during Sub-Storms spacecraft. Our results show that wave-particle interactions can regulate the global structure and dominate the energy dissipation of collision-less shocks. In every bow shock crossing examined, we observed both low-frequency (less than 10 hertz) and high-frequency (approximately or greater than10 hertz) electromagnetic waves throughout the entire transition region and into the magnetosheath. The low-frequency waves were consistent with magnetosonic-whistler waves. The high-frequency waves were combinations of ion-acoustic waves, electron cyclotron drift instability driven waves, electrostatic solitary waves, and whistler mode waves. The high-frequency waves had the following: (1) peak amplitudes exceeding delta B approximately equal to 10 nanoteslas and delta E approximately equal to 300 millivolts per meter, though more typical values were delta B approximately equal to 0.1-1.0 nanoteslas and delta E approximately equal to 10-50 millivolts per meter (2) Poynting fluxes in excess of 2000 microWm(sup -2) (micro-waves per square meter) (typical values were approximately 1-10 microWm(sup -2) (micro-waves per square meter); (3) resistivities greater than 9000 omega meters; and (4) associated energy dissipation rates greater than 10 microWm(sup -3) (micro-waves per cubic meter). The dissipation rates due to wave-particle interactions exceeded rates necessary to explain the increase in entropy across the shock ramps for approximately 90 percent of the wave burst durations. For approximately 22 percent of these times, the wave-particle interactions needed to only be less than or equal to 0.1 percent efficient to balance the nonlinear wave steepening that produced the shock waves. These results show that wave

  3. Cross-isobath energy fluxes in semidiurnal barotropic Kelvin waves propagating on wide continental shelves

    NASA Astrophysics Data System (ADS)

    Yankovsky, Alexander; Zhang, Tianyi

    2016-04-01

    Continental shelf modifies a Kelvin wave into a hybrid Kelvin-edge wave with a non-zero cross-isobath velocity and a phase speed that decreases with increasing wavenumber while the group velocity reaches a minimum at intermediate wavenumbers. We model the modified semidiurnal Kelvin wave adjustment to alongshore variations of the shelf width. The model domain consists of two alongshore-uniform continental shelves of different widths adjoined through a 150 km-long transition zone. Continental shelf and slope topography is adjacent to an ocean of a constant depth, allowing radiation of Poincaré waves. We consider three shelf widths of 150, 250, and 300 km, where properties of a zero mode at semidiurnal frequency change from Kelvin wave-like to edge wave-like. For each shelf width, a zero wave mode has its distinctive alongshore energy flux structure on the shelf. As the incident wave encounters a shelf width variation, the alongshore energy flux converges (diverges) on the shelf resulting in an offshore (onshore) energy flux over the continental slope. Furthermore, if the group velocity approaches zero in the area of the variable shelf width, the incident wave mode scatters into radiating Poincaré waves. On sufficiently wide shelves, a strong cross-isobath energy flux comparable with the incident wave energy flux can be triggered even by relatively modest shelf width variations. The results yield a simple diagnostic for the energy flux direction across the continental margin in a modified semidiurnal Kelvin wave based on the theoretical mode structure and its dispersion properties.

  4. The mass, energy, space and time systemic theory-MEST-energy balance system of wave-particle duality

    NASA Astrophysics Data System (ADS)

    Cao, Dayong

    2011-03-01

    The paper suppose that the probability of displacement is the space and the probability of cycle is the time. And accroding to the quantum mechanics, the paper get the equation of the space : S = P (r) =f2 , (1) Among it, S: the space, f: the amplitude of wave, r: the displacement, P(r): probability function of displacement. Accroding to the Benford's law, the paper get the equation of the time equation: T = P (2 πt) = ln (1 +1/2 πt ) = ν , (2) Among it, T: the real time, t: date of clock, ν : the frequence of wave, P(t): probability function of date of the clock. E = hν , (3) m =h/λc , (4) Among it, E: the energy of particle, m: the mass of particle, c: the velocity of particle, ν : the frequence of particle, λ : the wavelengh, h: the Planck constant. E ' ψ = iℏ∂/ψ ∂ t , (5) m ' ψ = - iℏ∂/ψ ∂ t (∂ x)2 , (6) Among it, E ' ψ : the energy of wave, m ' ψ : the mass of wave, c ' : the velocity of wave, ψ : the Wave Functions. The paper give new idea that unlike mass repel each other, like mass attract; And like energy repel each other, unlike energy attract. So there is a mass-energy duality too. The energy radiate the repulsive (energy) wave and the mass absorb the absorptive (mass) wave. And there is a balance system between the energy wave and mass wave. E + E ' ψ =mc2 + m ' ψc '2 , (c '2 = -(∂/x)2 (∂ t)2 ) , (7)

  5. A geospatial assessment of the relationship between reef flat community calcium carbonate production and wave energy

    NASA Astrophysics Data System (ADS)

    Hamylton, S. M.; Pescud, A.; Leon, J. X.; Callaghan, D. P.

    2013-12-01

    The ability of benthic communities inhabiting coral reefs to produce calcium carbonate underpins the development of reef platforms and associated sedimentary landforms, as well as the fixation of inorganic carbon and buffering of diurnal pH fluctuations in ocean surface waters. Quantification of the relationship between reef flat community calcium carbonate production and wave energy provides an empirical basis for understanding and managing this functionally important process. This study employs geospatial techniques across the reef platform at Lizard Island, Great Barrier Reef, to (1) map the distribution and estimate the total magnitude of reef community carbonate production and (2) empirically ascertain the influence of wave energy on community carbonate production. A World-View-2 satellite image and a field data set of 364 ground referencing points are employed, along with data on physical reef characteristics (e.g. bathymetry, rugosity) to map and validate the spatial distribution of the four major community carbonate producers (live coral, carbonate sand, green calcareous macroalgae and encrusting calcified algae) across the reef platform. Carbonate production is estimated for the complete reef platform from the composition of these community components. A synoptic model of wave energy is developed using the Simulating WAves Nearshore (SWAN) two-dimensional model for the entire reef platform. The relationship between locally derived measures of carbonate production and wave energy is evaluated at both the global scale and local scale along spatial gradients of wave energy traversing the reef platform. A wave energy threshold is identified, below which carbonate production levels appear to increase with wave energy and above which mechanical forcing reduces community production. This implies an optimal set of hydrodynamic conditions characterized by wave energy levels of approximately 300 J m-2, providing an empirical basis for management of potential changes

  6. In-tank tests of a dielectric elastomer generator for wave energy harvesting

    NASA Astrophysics Data System (ADS)

    Vertechy, R.; Fontana, M.; Rosati Papini, G. P.; Forehand, D.

    2014-03-01

    Wave energy harvesting is one of the most promising applications for Dielectric Elastomer Generators. A simple and interesting concept of a Wave Energy Converter based on Dielectric Elastomers is the Polymeric Oscillating Water Column (Poly-OWC). In this paper, preliminary experimental results on the assessment of a small-scale Poly-OWC prototype are presented. The scale of the considered prototype is 1:50. Tests are conducted in a wave-flume by considering sea state conditions with different wave amplitudes and frequencies. The obtained experimental results confirm the viability of the Poly-OWC device.

  7. H-He elastic scattering at low energies: Contribution of nonzero partial waves

    SciTech Connect

    Sinha, Prabal K.; Ghosh, A.S.

    2005-01-01

    The present study reports the nonzero partial wave elastic cross sections together with s-wave results for the scattering of an antihydrogen atom off a gaseous helium target at thermal energies (up to 10{sup -2} a.u.). We have used a nonadiabatic atomic orbital method having different basis sets to investigate the system. The consideration of all the significant partial waves (up to J=24) reduces the oscillatory nature present in the individual partial wave cross section. The added elastic cross section is almost constant up to 10{sup -7} a.u. and then decreases steadily and very slowly with increasing energy.

  8. Dissipation of wave energy and turbulence in a shallow coral reef lagoon

    NASA Astrophysics Data System (ADS)

    Huang, Zhi-Cheng; Lenain, Luc; Melville, W. Kendall; Middleton, Jason H.; Reineman, Benjamin; Statom, Nicholas; McCabe, Ryan M.

    2012-03-01

    Simultaneous in situ measurements of waves, currents and turbulence are presented to describe dissipation rates of wave energy and turbulent kinetic energy in the windward coral reef-lagoon system at Lady Elliot Island (LEI), Australia. The dissipation of wave energy in the lagoon is tidally modulated and strongly correlates with frictional dissipation due to the presence of the extremely rough bottom boundary. The observed turbulent kinetic energy (TKE) dissipation rate, ɛ, in this wave-dominated lagoon is much larger than recently reported values for unidirectional flows over natural fringing coral reefs. The correlation between the wave dissipation and ɛ is examined. The average rate of dissipation induced by the rough turbulent flow was estimated directly from the observed ɛ coupled with both a depth-integrated approach and with a bottom boundary layer scaling. Rates of TKE dissipation estimated using the two approaches approximate well, within a factor of 1.5 to 2.4, to the surface-wave energy dissipation rate. The wave dissipation and friction factor in the lagoon can be described by a spectral wave-frictional model with a bottom roughness length scale that is approximately constant across the lagoon. We also present estimates of dissipation induced by the canopy drag force of the coral heads. The dissipation in this case is enhanced and becomes more significant for the total energy dissipation when the water depth in the lagoon is comparable to the height of the coral heads.

  9. Small amplitude transverse waves on taut strings: exploring the significant effects of longitudinal motion on wave energy location and propagation

    NASA Astrophysics Data System (ADS)

    Rowland, David R.

    2013-03-01

    Introductory discussions of energy transport due to transverse waves on taut strings universally assume that the effects of longitudinal motion can be neglected, but this assumption is not even approximately valid unless the string is idealized to have a zero relaxed length, a requirement approximately met by the slinky spring. While making this additional idealization is probably the best approach to take when discussing waves on strings at the introductory level, for intermediate to advanced undergraduate classes in continuum mechanics and general wave phenomena where somewhat more realistic models of strings can be investigated, this paper makes the following contributions. First, various approaches to deriving the general energy continuity equation are critiqued and it is argued that the standard continuum mechanics approach to deriving such equations is the best because it leads to a conceptually clear, relatively simple derivation which provides a unique answer of greatest generality. In addition, a straightforward algorithm for calculating the transverse and longitudinal waves generated when a string is driven at one end is presented and used to investigate a cos2 transverse pulse. This example illustrates much important physics regarding energy transport in strings and allows the ‘attack waves’ observed when strings in musical instruments are struck or plucked to be approximately modelled and analysed algebraically. Regarding the ongoing debate as to whether the potential energy density in a string can be uniquely defined, it is shown by coupling an external energy source to a string that a suggested alternative formula for potential energy density requires an unphysical potential energy to be ascribed to the source for overall energy to be conserved and so cannot be considered to be physically valid.

  10. Dissipation of modified entropic gravitational energy through gravitational waves

    NASA Astrophysics Data System (ADS)

    de Matos, Clovis Jacinto

    2012-01-01

    The phenomenological nature of a new gravitational type interaction between two different bodies derived from Verlinde's entropic approach to gravitation in combination with Sorkin's definition of Universe's quantum information content, is investigated. Assuming that the energy stored in this entropic gravitational field is dissipated under the form of gravitational waves and that the Heisenberg principle holds for this system, one calculates a possible value for an absolute minimum time scale in nature tau=15/16 Λ^{1/2}hbar G/c4˜9.27×10^{-105} seconds, which is much smaller than the Planck time t P =( ħG/ c 5)1/2˜5.38×10-44 seconds. This appears together with an absolute possible maximum value for Newtonian gravitational forces generated by matter Fg=32/30c7/Λ hbar G2˜ 3.84× 10^{165} Newtons, which is much higher than the gravitational field between two Planck masses separated by the Planck length F gP = c 4/ G˜1.21×1044 Newtons.

  11. Wave energy level and geographic setting correlate with Florida beach water quality.

    PubMed

    Feng, Zhixuan; Reniers, Ad; Haus, Brian K; Solo-Gabriele, Helena M; Kelly, Elizabeth A

    2016-03-15

    Many recreational beaches suffer from elevated levels of microorganisms, resulting in beach advisories and closures due to lack of compliance with Environmental Protection Agency guidelines. We conducted the first statewide beach water quality assessment by analyzing decadal records of fecal indicator bacteria (enterococci and fecal coliform) levels at 262 Florida beaches. The objectives were to depict synoptic patterns of beach water quality exceedance along the entire Florida shoreline and to evaluate their relationships with wave condition and geographic location. Percent exceedances based on enterococci and fecal coliform were negatively correlated with both long-term mean wave energy and beach slope. Also, Gulf of Mexico beaches exceeded the thresholds significantly more than Atlantic Ocean ones, perhaps partially due to the lower wave energy. A possible linkage between wave energy level and water quality is beach sand, a pervasive nonpoint source that tends to harbor more bacteria in the low-wave-energy environment.

  12. Wave energy level and geographic setting correlate with Florida beach water quality.

    PubMed

    Feng, Zhixuan; Reniers, Ad; Haus, Brian K; Solo-Gabriele, Helena M; Kelly, Elizabeth A

    2016-03-15

    Many recreational beaches suffer from elevated levels of microorganisms, resulting in beach advisories and closures due to lack of compliance with Environmental Protection Agency guidelines. We conducted the first statewide beach water quality assessment by analyzing decadal records of fecal indicator bacteria (enterococci and fecal coliform) levels at 262 Florida beaches. The objectives were to depict synoptic patterns of beach water quality exceedance along the entire Florida shoreline and to evaluate their relationships with wave condition and geographic location. Percent exceedances based on enterococci and fecal coliform were negatively correlated with both long-term mean wave energy and beach slope. Also, Gulf of Mexico beaches exceeded the thresholds significantly more than Atlantic Ocean ones, perhaps partially due to the lower wave energy. A possible linkage between wave energy level and water quality is beach sand, a pervasive nonpoint source that tends to harbor more bacteria in the low-wave-energy environment. PMID:26892203

  13. Gravitational waves, energy and Feynman’s “sticky bead”

    NASA Astrophysics Data System (ADS)

    Cooperstock, F. I.

    2015-07-01

    It is noted that in the broader sense, gravitational waves viewed as spacetime curvature which necessarily accompanies electromagnetic waves at the speed of light, are the routine perception of our everyday experience. We focus on the energy issue and Feynman’s “sticky bead” argument which has been regarded as central in supporting the conclusion that gravitational waves carry energy through the vacuum in general relativity. We discuss the essential neglected aspects of his approach which leads to the conclusion that gravitational waves would not cause Feynman’s bead to heat the stick on which it would supposedly rub. This opens the way to an examination of the entire issue of energy in general relativity. We briefly discuss our naturally-defined totally invariant spacetime energy expression for general relativity incorporating the contribution from gravity. When the cosmological term is included in the field equations, our energy expression includes the vacuum energy as required.

  14. Impact of Parameterized Lee Wave Drag on the Energy Budget of an Eddying Global Ocean Model

    NASA Astrophysics Data System (ADS)

    Trossman, D. S.; Arbic, B. K.; Garner, S.; Goff, J. A.; Jayne, S. R.; Metzger, E.; Wallcraft, A.

    2012-12-01

    We examine the impact of a lee wave drag parameterization on an eddying global ocean model. The wave drag parameterization represents the the momentum transfer associated with the generation of lee waves arising from geostrophic flow impinging upon rough topography. It is included in the online model, thus ensuring that abyssal currents and stratification in the simulation are affected by the presence of the wave drag. The model utilized here is the nominally 1/12th degree Hybrid Coordinate Ocean Model (HYCOM) forced by winds and air-sea buoyancy fluxes. An energy budget including the parameterized wave drag, quadratic bottom boundary layer drag, vertical eddy viscosity, and horizontal eddy viscosity is diagnosed during the model runs and compared with the wind power input and buoyancy fluxes. Wave drag and vertical viscosity are the largest of the mechanical energy dissipation rate terms, each more than half of a terawatt when globally integrated. The sum of all four dissipative terms approximately balances the rate of energy put by the winds and buoyancy fluxes into the ocean. An ad hoc global enhancement of the bottom drag at each grid point by a constant factor cannot serve as a perfect substitute for wave drag, particularly where there is little wave drag. Eddy length scales at the surface, sea surface height variance, surface kinetic energy, and positions of intensified jets in the model are compared with those inferred from altimetric observations. Vertical profiles of kinetic energy from the model are compared with mooring observations to investigate whether the model is improved when wave drag is inserted.; The drag and viscosity terms in our energy budget [log_10(W m^-2)]: (a) quadratic bottom boundary layer drag, (b) parameterized internal lee wave drag, (c) vertical viscosity, and (d) "horizontal" viscosity. Shown is an average of inline estimates over one year of the spin-up phase with wave drag.

  15. Wave energy saturation on a natural beach of variable slope.

    USGS Publications Warehouse

    Sallenger, A.H.; Holman, R.A.

    1985-01-01

    Time series of flow were measured across the inner surf zone during a storm. These data were used to quantify the dependence of wave height (transformed from measured flow) and velocity on local slope and depth. Local depth increased with local slope and was independent of deepwater wave steepness.-from Authors

  16. Investigation on the possibility of extracting wave energy from the Texas coast

    NASA Astrophysics Data System (ADS)

    Haces-Fernandez, Francisco

    Due to the great and growing demand of energy consumption in the Texas Coast area, the generation of electricity from ocean waves is considered very important. The combination of the wave energy with offshore wind power is explored as a way to increase power output, obtain synergies, maximize the utilization of assigned marine zones and reduce variability. Previously literature has assessed the wave energy generation, combined with wind in different geographic locations such as California, Ireland and the Azores Island. In this research project, the electric power generation from ocean waves on the Texas Coast was investigated, assessing its potential from the meteorological data provided by five buoys from National Data Buoy Center of the National Oceanic and Atmospheric Administration, considering the Pelamis 750 kW Wave Energy Converter (WEC) and the Vesta V90 3 MW Wind Turbine. The power output from wave energy was calculated for the year 2006 using Matlab, and the results in several locations were considered acceptable in terms of total power output, but with a high temporal variability. To reduce its variability, wave energy was combined with wind energy, obtaining a significant reduction on the coefficient of variation on the power output. A Matlab based interface was created to calculate power output and its variability considering data from longer periods of time.

  17. Energy propagation by transverse waves in multiple flux tube systems using filling factors

    SciTech Connect

    Van Doorsselaere, T.; Gijsen, S. E.; Andries, J.; Verth, G. E-mail: stief.gijsen@wis.kuleuven.be E-mail: g.verth@sheffield.ac.uk

    2014-11-01

    In the last few years, it has been found that transverse waves are present at all times in coronal loops or spicules. Their energy has been estimated with an expression derived for bulk Alfvén waves in homogeneous media, with correspondingly uniform wave energy density and flux. The kink mode, however, is localized in space with the energy density and flux dependent on the position in the cross-sectional plane. The more relevant quantities for the kink mode are the integrals of the energy density and flux over the cross-sectional plane. The present paper provides an approximation to the energy propagated by kink modes in an ensemble of flux tubes by means of combining the analysis of single flux tube kink oscillations with a filling factor for the tube cross-sectional area. This finally allows one to compare the expressions for energy flux of Alfvén waves with an ensemble of kink waves. We find that the correction factor for the energy in kink waves, compared to the bulk Alfvén waves, is between f and 2f, where f is the density filling factor of the ensemble of flux tubes.

  18. The role of coral reef rugosity in dissipating wave energy and coastal protection

    NASA Astrophysics Data System (ADS)

    Harris, Daniel; Rovere, Alessio; Parravicini, Valeriano; Casella, Elisa

    2016-04-01

    Coral reefs are the most effective natural barrier in dissipating wave energy through breaking and bed friction. The attenuation of wave energy by coral reef flats is essential in the protection and stability of coral reef aligned coasts and reef islands. However, the effectiveness of wave energy dissipation by coral reefs may be diminished under future climate change scenarios with a potential reduction of coral reef rugosity due to increased stress environmental stress on corals. The physical roughness or rugosity of coral reefs is directly related to ecological diversity, reef health, and hydrodynamic roughness. However, the relationship between physical roughness and hydrodynamic roughness is not well understood despite the crucial role of bed friction in dissipating wave energy in coral reef aligned coasts. We examine the relationship between wave energy dissipation across a fringing reef in relation to the cross-reef ecological zonation and the benthic hydrodynamic roughness. Waves were measured by pressure transducers in a cross-reef transect on the reefs flats and post processed on a wave by wave basis to determine wave statistics such as significant wave height and wave period. Results from direct wave measurement were then used to calibrate a 1D wave dissipation model that incorporates dissipation functions due to bed friction and wave breaking. This model was used to assess the bed roughness required to produce the observed wave height dissipation during propagation from deep water and across the coral reef flats. Changes in wave dissipation was also examined under future scenarios of sea level rise and reduced bed roughness. Three dimensional models of the benthic reef structure were produced through structure-from-motion photogrammetry surveys. Reef rugosity was then determined from these surveys and related to the roughness results from the calibrated model. The results indicate that applying varying roughness coefficients as the benthic ecological

  19. Wave energy gradients across a Maldivian atoll: Implications for island geomorphology

    NASA Astrophysics Data System (ADS)

    Kench, Paul S.; Brander, Robert W.; Parnell, Kevin E.; McLean, Roger F.

    2006-11-01

    Exposure to wave energy has been used to account for a range of ecological, geological and geomorphic processes in coral reef systems, but few attempts have been made to quantify spatial variations in energy at the atoll scale. This study presents results of measurements of wave energy on reef platforms across South Maalhosmadulu Atoll, Maldives and their implications for island geomorphology. The atoll has a perforated rim (37% effective aperture) and experiences predictable shifts in monsoon winds from the west (8 months) and northeast (4 months). Results show that wave energy affecting the atoll is considerably greater during the westerly monsoon. Atoll structure promotes significant changes in wave energy and wave characteristics across the atoll. Short period (3-8 s) monsoon-driven wave energy, which is significant on windward reefs, is dissipated on the peripheral reef network and the density of lagoonal patch reefs limits development of locally generated wind-wave energy across the lagoon. However, longer period swell (8-20 s) propagates through the lagoon to leeward reefs. A windward to leeward decay in wave energy is evident in the westerly monsoon, but not in the northeast monsoon, when long period swell (from the southwest) remains significant on western reefs. Net energy calculations that account for seasonal changes in wave energy across the atoll identify a steep west-east gradient that has geomorphic significance for island building. Western reefs are dominated by westerly flowing energy that is 4.5-7 times the total energy input elsewhere in the atoll. Wave energy on central reefs is balanced, whereas net energy on eastern reef platforms is dominated by eastward propagating waves. This steep energy gradient provides a physical explanation for the presence and distribution of islands on reef platforms across the atoll and provides quantitative support for the theory of Gardiner [Gardiner, J.S., 1903. The Fauna and Geography of the Maldives and

  20. The impact energy of a moored tanker under the action of regular waves

    SciTech Connect

    Yu-Cheng Li

    1982-09-01

    The influence that factors such as mooring line conditions, fender arrangements, dolphin arrangements, degree of ship loading, waves of long period, wave direction, and wind on the impact energy of a moored tanker were studied. Based on systematic test data, a semi-empirical formula was developed to calculate the impact energy of the moored ship on the berthing facilities under the action of regular waves. It was shown by experiment that this method is suitable for calculating the impact energy of moored ships of capacities as great as 200 X 10/sup 3/ t.

  1. Mechanisms of Surface Wave Energy Dissipation over a Fluid Mud Sediment Suspension

    NASA Astrophysics Data System (ADS)

    Traykovski, P.; Trowbridge, J. H.; Kineke, G. C.

    2014-12-01

    Field observations from the spring of 2008 on the Louisiana shelf were used to elucidate the mechanisms of wave energy dissipation over a muddy seafloor. After a period of high discharge from the Atchafalaya River acoustic measurements showed the presence of 20 cm thick mobile fluid mud layers during and after wave events. While total wave energy dissipation (D) was greatest during the high energy periods, these periods had relatively low normalized attenuation rates (Κ = Dissipation/Energy Flux). During declining wave energy conditions, as the fluid mud layer settled, the attenuation process became more efficient with high Κ and low D. The transition from high D and low Κ to high Κ and low D was caused by a transition from turbulent to laminar flow in the fluid mud layer as measured by a Pulse-coherent Doppler profiler. Measurements of the oscillatory boundary layer velocity profile in the fluid mud layer during laminar flow reveal a very thick wave boundary layer with curvature filling the entire fluid mud layer, suggesting a kinematic viscosity two to three orders of magnitude greater than clear water. This high viscosity is also consistent with a high wave attenuation rates measured by across shelf energy flux differences. The transition to turbulence was forced by instabilities on the lutocline, with wavelengths consistent with the dispersion relation for this two layer system. The measurements also provide new insight into the dynamics of wave supported turbidity flows during the transition from a laminar to turbulent fluid mud layer.

  2. Protocol to Exploit Waiting Resources for UASNs †

    PubMed Central

    Hung, Li-Ling; Luo, Yung-Jeng

    2016-01-01

    The transmission speed of acoustic waves in water is much slower than that of radio waves in terrestrial wireless sensor networks. Thus, the propagation delay in underwater acoustic sensor networks (UASN) is much greater. Longer propagation delay leads to complicated communication and collision problems. To solve collision problems, some studies have proposed waiting mechanisms; however, long waiting mechanisms result in low bandwidth utilization. To improve throughput, this study proposes a slotted medium access control protocol to enhance bandwidth utilization in UASNs. The proposed mechanism increases communication by exploiting temporal and spatial resources that are typically idle in order to protect communication against interference. By reducing wait time, network performance and energy consumption can be improved. A performance evaluation demonstrates that when the data packets are large or sensor deployment is dense, the energy consumption of proposed protocol is less than that of existing protocols as well as the throughput is higher than that of existing protocols. PMID:27005624

  3. Evaluation of Environmental Effects of Wave Energy Convertor Arrays

    NASA Astrophysics Data System (ADS)

    Jones, C. A.

    2015-12-01

    Stakeholders and regulators in the U.S. are generally uncertain as to the potential environmental impacts posed by deployments of marine and hydrokinetic (MHK) devices, and in particular wave energy conversion (WEC) devices, in coastal waters. The first pilot-scale WEC deployments in the U.S. have had to absorb unsustainable costs and delays associated with permitting to get devices in the water. As such, there is an urgent industry need to streamline the technical activities and processes used to assess potential environmental impacts. To enable regulators and stakeholders to become more comfortable and confident with developing effective MHK environmental assessments, a better understanding of the potential environmental effects induced by arrays of WEC devices is needed. A key challenge in developing this understanding is that the assessment of the WEC effects must come prior to deployment. A typical approach in similar environmental assessments is to use numerical models to simulate the WEC devices and array layouts so that the appropriate environmental stressors and receptors can be identified and assessed. Sandia National Laboratories (SNL) and the U.S. Department of Energy are fulfilling the industry-wide need to develop "WEC-friendly" open-source numerical modeling tools capable of assessing potential changes to the physical environment caused by the operation of WEC arrays. Studies using these tools will advance the nation's general knowledge of the interrelationships among the number, size, efficiency, and configuration of MHK arrays and the subsequent effects these relationships may have on the deployment environment. By better understanding these relationships, industry, stakeholders, and regulators will be able to work together to optimize WEC deployments such that environmental impacts are minimized while power output is maximized. The present work outlines the initial effort in coupling the SNL WEC-friendly tools with the environmental assessment

  4. Energy and pseudoenergy flux in the internal wave field generated by tidal flow over topography

    NASA Astrophysics Data System (ADS)

    Lamb, Kevin G.

    2007-05-01

    The mechanical energy and pseudoenergy budgets in the internal wave field generated by tidal flow over topography is considered using a nonlinear, two-dimensional numerical model. The Boussinesq and rigid lid approximations are made, viscosity and diffusion are ignored and the flow is treated as incompressible. Both ridge and bank edge topographies are considered. The nonlinear energy equation and an equation for pseudoenergy (kinetic energy plus available potential energy) are satisfied to within less than 1%. For a uniform stratification (constant buoyancy frequency N) the available potential energy density is identical to the linear potential energy density {1}/{2}(g2/N2)ρ˜d2 where ρ is the density perturbation. For weak tidal flow over a ridge in the deep ocean, using a uniform stratification, the generated waves are small, approximately 2% of the water depth, and the traditional expression for the energy flux, accurately gives the pseudoenergy flux. For a case with strong tidal flow across a bank edge, using a non-uniform stratification, large internal solitary waves are generated. In this case, the linear form of the potential energy is very different from the available potential energy and the traditional energy flux term accounts for only half of the pseudoenergy flux. Fluxes of kinetic and available potential energy are comparable to the traditional energy flux term and hence must be included when estimating energy fluxes in the internal wave field.

  5. Coupling of ICRF waves and axial transport of high-energy ions owing to spontaneously excited waves in the GAMMA 10 tandem mirror

    NASA Astrophysics Data System (ADS)

    Ikezoe, R.; Ichimura, M.; Hirata, M.; Iwai, T.; Yokoyama, T.; Ugajin, Y.; Sato, T.; Iimura, T.; Saito, Y.; Yoshikawa, M.; Kohagura, J.; Shima, Y.; Imai, T.

    2013-07-01

    Plasmas with high ion temperature of several kiloelectronvolts and a strong temperature anisotropy of greater than 10 were produced by ion cyclotron range of frequency (ICRF) heating in the GAMMA 10 tandem mirror. In such high-performance plasmas with strong anisotropy, high-frequency fluctuations, so-called Alfvén-ion-cyclotron (AIC) waves, are excited spontaneously. These AIC waves have several discrete peaks in the frequency spectrum. Coupling of the ICRF heating waves and the excited AIC waves was clearly observed in the density fluctuations measured with a newly developed reflectometer. Parametric decay from the heating ICRF waves to the AIC waves and low-frequency waves was also indicated. Alfvén waves with difference frequencies between the discrete peaks of the AIC waves were detected in a signal that measured the number of axially transported high-energy ions (over 6 keV) at the machine end, indicating pitch-angle scattering caused by the low-frequency waves. Energy transport along the magnetic field line is an important consideration when ICRF power is injected in the perpendicular direction to a magnetic field line. The importance of the spontaneously excited AIC waves for axial confinement of a tandem mirror through wave-wave couplings was demonstrated.

  6. On the interpretation of energy and energy fluxes of nonlinear internal waves: An example from Massachusetts Bay

    USGS Publications Warehouse

    Scotti, A.; Beardsley, R.; Butman, B.

    2006-01-01

    A self-consistent formalism to estimate baroclinic energy densities and fluxes resulting from the propagation of internal waves of arbitrary amplitude is derived using the concept of available potential energy. The method can be applied to numerical, laboratory or field data. The total energy flux is shown to be the sum of the linear energy flux ??? u??? p??? dz (primes denote baroclinic quantities), plus contributions from the non-hydrostatic pressure anomaly and the self-advection of kinetic and available potential energy. Using highly resolved observations in Massachusetts Bay, it is shown that due to the presence of nonlinear internal waves periodically propagating in the area, ??? u??? p??? dz accounts for only half of the total flux. The same data show that equipartition of available potential and kinetic energy can be violated, especially when the nonlinear waves begin to interact with the bottom. ?? 2006 Cambridge University Press.

  7. Energy spectrum analysis of blast waves based on an improved Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Li, L.; Wang, F.; Shang, F.; Jia, Y.; Zhao, C.; Kong, D.

    2016-07-01

    Using the improved Hilbert-Huang transform (HHT), this paper investigates the problems of analysis and interpretation of the energy spectrum of a blast wave. It has been previously established that the energy spectrum is an effective feature by which to characterize a blast wave. In fact, the higher the energy spectra in a frequency band of a blast wave, the greater the damage to a target in the same frequency band. However, most current research focuses on analyzing wave signals in the time domain or frequency domain rather than considering the energy spectrum. We propose here an improved HHT method combined with a wavelet packet to extract the energy spectrum feature of a blast wave. When applying the HHT, the signal is first roughly decomposed into a series of intrinsic mode functions (IMFs) by empirical mode decomposition. The wavelet packet method is then performed on each IMF to eliminate noise on the energy spectrum. Second, a coefficient is introduced to remove unrelated IMFs. The energy of each instantaneous frequency can be derived through the Hilbert transform. The energy spectrum can then be obtained by adding up all the components after the wavelet packet filters and screens them through a coefficient to obtain the effective IMFs. The effectiveness of the proposed method is demonstrated by 12 groups of experimental data, and an energy attenuation model is established based on the experimental data. The improved HHT is a precise method for blast wave signal analysis. For other shock wave signals from blasting experiments, an energy frequency time distribution and energy spectrum can also be obtained through this method, allowing for more practical applications.

  8. High-energy terahertz wave parametric oscillator with a surface-emitted ring-cavity configuration.

    PubMed

    Yang, Zhen; Wang, Yuye; Xu, Degang; Xu, Wentao; Duan, Pan; Yan, Chao; Tang, Longhuang; Yao, Jianquan

    2016-05-15

    A surface-emitted ring-cavity terahertz (THz) wave parametric oscillator has been demonstrated for high-energy THz output and fast frequency tuning in a wide frequency range. Through the special optical design with a galvano-optical scanner and four-mirror ring-cavity structure, the maximum THz wave output energy of 12.9 μJ/pulse is achieved at 1.359 THz under the pump energy of 172.8 mJ. The fast THz frequency tuning in the range of 0.7-2.8 THz can be accessed with the step response of 600 μs. Moreover, the maximum THz wave output energy from this configuration is 3.29 times as large as that obtained from the conventional surface-emitted THz wave parametric oscillator with the same experimental conditions.

  9. Fundamental Studies On Development Of MHD (Magnetohydrodynamic) Generator Implement On Wave Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Majid, M. F. M. A.; Apandi, Muhamad Al-Hakim Md; Sabri, M.; Shahril, K.

    2016-02-01

    As increasing of agricultural and industrial activities each year has led to an increasing in demand for energy. Possibility in the future, the country was not able to offer a lot of energy and power demand. This means that we need to focus on renewable energy to supply the demand for energy. Energy harvesting is among a method that can contribute on the renewable energy. MHD power generator is a new way to harvest the energy especially Ocean wave energy. An experimental investigation was conducted to explore performance of MHD generator. The effect of intensity of NaCl Solution (Sea Water), flow rate of NaCl solution, magnetic strength and magnet position to the current produce was analyzed. The result shows that each factor is give a significant effect to the current produce, because of that each factor need to consider on develop of MHD generator to harvest the wave energy as an alternative way to support the demand for energy.

  10. Spinless relativistic particle in energy-dependent potential and normalization of the wave function

    NASA Astrophysics Data System (ADS)

    Benchikha, Amar; Chetouani, Lyazid

    2014-06-01

    The problem of normalization related to a Klein-Gordon particle subjected to vector plus scalar energy-dependent potentials is clarified in the context of the path integral approach. In addition the correction relating to the normalizing constant of wave functions is exactly determined. As examples, the energy dependent linear and Coulomb potentials are considered. The wave functions obtained via spectral decomposition, were found exactly normalized.

  11. Dynamics of a mechanical frequency up-converted device for wave energy harvesting

    NASA Astrophysics Data System (ADS)

    Lin, Zheng; Zhang, Yongliang

    2016-04-01

    This paper proposes a novel mechanical impact-driven frequency up-converted device for wave energy harvesting, which could bridge a gap between waves of frequency 0.03-1 Hz and electrical generators of operation frequency hundreds hertz. The device mainly consists of a cylindrical buoy, beams and teeth. A mathematical model for the dynamics of such a device is presented, which incorporates the fluid-structure interaction between the wave and the buoy, and the structural interactions between the beams and the teeth. The momentum balance method and the coefficient of restitution are employed, which give rise to piecewise nonlinear equations governing the motions of the buoy and the beams. Experimental tests carried out in a wave flume validate the model and prove the effectiveness of frequency up-converted method in wave energy harvesting. The characteristics of frequency up-converted transformation from buoy motion to beams oscillation for wave energy harvesting are probed, and the effects of beam Young's modulus, beam number, wave period and wave height on strain power of the beams are explored.

  12. An electron energy loss spectrometer designed for studies of electronic energy losses and spin waves in the large momentum regime

    SciTech Connect

    Ibach, H.; Rajeswari, J.; Schneider, C. M.

    2011-12-15

    Based on 143 deg. electrostatic deflectors we have realized a new spectrometer for electron energy loss spectroscopy which is particularly suitable for studies on surface spin waves and other low energy electronic energy losses. Contrary to previous designs high resolution is maintained even for diffuse inelastic scattering due to a specific management of the angular aberrations in combination with an angle aperture. The performance of the instrument is demonstrated with high resolution energy loss spectra of surface spin waves on a cobalt film deposited on the Cu(100) surface.

  13. An electron energy loss spectrometer designed for studies of electronic energy losses and spin waves in the large momentum regime.

    PubMed

    Ibach, H; Rajeswari, J; Schneider, C M

    2011-12-01

    Based on 143° electrostatic deflectors we have realized a new spectrometer for electron energy loss spectroscopy which is particularly suitable for studies on surface spin waves and other low energy electronic energy losses. Contrary to previous designs high resolution is maintained even for diffuse inelastic scattering due to a specific management of the angular aberrations in combination with an angle aperture. The performance of the instrument is demonstrated with high resolution energy loss spectra of surface spin waves on a cobalt film deposited on the Cu(100) surface. PMID:22225228

  14. Electron energy transport in ion waves and its relevance to laser-produced plasmas

    SciTech Connect

    Bell, A.R.

    1983-01-01

    Electron energy transport in plasmas is examined in the context of ion waves which are intermediate between collisionless isothermal ion acoustic waves and collisional adiabatic sound waves. The conductivity is found to be much less than the Spitzer-Haerm result for wavelengths less than 1000 electron mean free paths. This is expected to be relevant to laser-produced ablating plasmas in which the temperature can vary considerably over a distance of 10 to 100 mean free paths. The reduction in conductivity is independent of the wave amplitude thus differing from the reduction due to saturation found recently by numerical solution of the Fokker--Planck equation. At short wavelengths the heat flow approaches an upper limit which depends on the phase velocity of the wave. Diffusive ion wave damping is strong over a large range of wavelengths.

  15. An Optimal Control Method for Maximizing the Efficiency of Direct Drive Ocean Wave Energy Extraction System

    PubMed Central

    Chen, Zhongxian; Yu, Haitao; Wen, Cheng

    2014-01-01

    The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability. PMID:25152913

  16. An optimal control method for maximizing the efficiency of direct drive ocean wave energy extraction system.

    PubMed

    Chen, Zhongxian; Yu, Haitao; Wen, Cheng

    2014-01-01

    The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability.

  17. Tail effects in the third post-Newtonian gravitational wave energy flux of compact binaries in quasi-elliptical orbits

    SciTech Connect

    Arun, K. G.; Iyer, Bala R.; Qusailah, Moh'd S. S.

    2008-03-15

    The far-zone flux of energy contains hereditary (tail) contributions that depend on the entire past history of the source. Using the multipolar post-Minkowskian wave generation formalism, we propose and implement a semianalytical method in the frequency domain to compute these contributions from the inspiral phase of a binary system of compact objects moving in quasi-elliptical orbits up to third post-Newtonian (3PN) order. The method explicitly uses the quasi-Keplerian representation of elliptical orbits at 1PN order and exploits the doubly periodic nature of the motion to average the 3PN fluxes over the binary's orbit. Together with the instantaneous (nontail) contributions evaluated in a companion paper, it provides crucial inputs for the construction of ready-to-use templates for compact binaries moving on quasi-elliptic orbits, an interesting class of sources for the ground-based gravitational-wave detectors such as LIGO and Virgo, as well as space-based detectors like LISA.

  18. Energy Flux and Density of Nonuniform Electromagnetic Waves with Total Reflection

    NASA Astrophysics Data System (ADS)

    Petrov, N. S.

    2014-07-01

    Analytic expressions are obtained for the energy flux and density of refracted nonuniform waves produced during total reflection at the boundary between two isotropic media for the general case of elliptically polarized incident light. The average values are determined as functions of the parameters of the adjoining media and the angle of incidence. The cases of linearly and circularly polarized incident waves are examined in detail. An explicit general expression relating the energy fl ux and density of these waves for arbitrarily polarized incident light is obtained.

  19. Analytical expressions for partial wave two-body Coulomb transition matrices at ground-state energy

    NASA Astrophysics Data System (ADS)

    Kharchenko, V. F.

    2016-11-01

    Leaning upon the Fock method of the stereographic projection of the three-dimensional momentum space onto the four-dimensional unit sphere the possibility of the analytical solving of the Lippmann-Schwinger integral equation for the partial wave two-body Coulomb transition matrix at the ground bound state energy has been studied. In this case new expressions for the partial p-, d- and f-wave two-body Coulomb transition matrices have been obtained in the simple analytical form. The developed approach can also be extended to determine analytically the partial wave Coulomb transition matrices at the energies of excited bound states.

  20. Non-linear control of the ''clam'' wave energy device. Final report

    SciTech Connect

    Not Available

    1983-09-01

    A promising wave energy device being currently investigated is the ''clam'' device. The clam extracts energy by pumping air through a specially designed (Wells) turbine. Although operation of the Wells turbine does not require a rectified air flow, some additional control will be necessary to optimize the phase of the clam motion for good efficiencies. An examination of the equation of motion in the time domain suggests the possibility of non-linear phase control by mechanical, power take-off, or pneumatic latching. Latching can be shown to increase the efficiency of the device in the longer wavelengths of the wave spectrum, i.e. those of high incident wave power.

  1. Mapping and Assessment of the United States Ocean Wave Energy Resource

    SciTech Connect

    Jacobson, Paul T; Hagerman, George; Scott, George

    2011-12-01

    This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

  2. New Ion-Wave Path in the Energy Cascade

    SciTech Connect

    Valentini, Francesco; Califano, Francesco; Pegoraro, Francesco; Perrone, Denise; Veltri, Pierluigi

    2011-04-22

    We present the results of kinetic numerical simulations that demonstrate the existence of a novel branch of electrostatic nonlinear waves driven by particle trapping processes. These waves have an acoustic-type dispersion with phase speed comparable to the ion thermal speed and would thus be heavily Landau damped in the linear regime. At variance with the ion-acoustic waves, this novel electrostatic branch can exist at a small but finite amplitude even for low values of the electron to ion temperature ratio. Our results provide a new interpretation of observations in space plasmas, where a significant level of electrostatic activity is observed in the high frequency region of the solar-wind turbulent spectra.

  3. Ulysses observations of magnetic waves due to newborn interstellar pickup ions. II. Application of turbulence concepts to limiting wave energy and observability

    SciTech Connect

    Cannon, Bradford E.; Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J.; Murphy, Neil; Nuno, Raquel G. E-mail: Charles.Smith@unh.edu E-mail: Bernie.Vasquez@unh.edu E-mail: Neil.Murphy@jpl.nasa.gov

    2014-06-01

    The low-frequency magnetic waves that arise from the isotropization of newborn interstellar pickup ions (PUIs) are reasonably well described by linear and quasi-linear kinetic theory in so far as those theories predict the wave frequency and polarization in the spacecraft frame. Those theories fail to describe the scarce observability of the waves. Quasilinear theory predicts that the wave power should accumulate over long periods of time as the relatively weak kinetic instability slowly adds power to the observed spectrum. At the same time it has been argued that the same wave energy must serve as a secondary source of thermal ion heating in the outer heliosphere once the initial turbulence is depleted. To the extent that turbulent transport of the wave energy acts against the spectrally confined accumulation of wave energy, turbulence should be a limiting factor in observability. We argue that turbulence does limit the observability of the waves and we use turbulence theory to predict the observed wave energy. We compare this prediction against a database of 502 wave observations attributed to newborn interstellar PUIs observed by the Ulysses spacecraft.

  4. Potential to kinetic energy conversion in wave number domain for the Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    Huang, H.-J.; Vincent, D. G.

    1984-01-01

    Preliminary results of a wave number study conducted for the South Pacific Convergence Zone (SPCZ) using FGGE data for the period January 10-27, 1979 are reported. In particular, three variables (geomagnetic height, z, vertical p-velocity, omega, and temperature, T) and one energy conversion quantity, omega-alpha (where alpha is the specific volume), are shown. It is demonstrated that wave number 4 plays an important role in the conversion from available potential energy to kinetic energy in the Southern Hemisphere tropics, particularly in the vicinity of the SPCZ. It is therefore suggested that the development and movement of wave number 4 waves be carefully monitored in making forecasts for the South Pacific region.

  5. Energy of hydrodynamic and magnetohydrodynamic waves with point and continuous spectra

    SciTech Connect

    Hirota, M.; Fukumoto, Y.

    2008-08-15

    Energy of waves (or eigenmodes) in an ideal fluid and plasma is formulated in the noncanonical Hamiltonian context. By imposing the kinematical constraint on perturbations, the linearized Hamiltonian equation provides a formal definition of wave energy not only for eigenmodes corresponding to point spectra but also for singular ones corresponding to a continuous spectrum. The latter becomes dominant when mean fields have inhomogeneity originating from shear or gradient of the fields. The energy of each wave is represented by the eigenfrequency multiplied by the wave action, which is nothing but the action variable and, moreover, is associated with a derivative of a suitably defined dispersion relation. The sign of the action variable is crucial to the occurrence of Hopf bifurcation in Hamiltonian systems of finite degrees of freedom [M. G. Krein, Dokl. Akad. Nauk SSSR, Ser. A 73, 445 (1950)]. Krein's idea is extended to the case of coalescence between point and continuous spectra.

  6. Energy partition between the hemispheres when an equatorial Kelvin or Yanai wave reaches an inclined eastern boundary.

    NASA Astrophysics Data System (ADS)

    Moore, D. W.; Durland, T.; Hristova, H. G.

    2014-12-01

    When an intermediate frequency equatorial wave propagating to the east encounters an eastern boundary, the incident energy propagates poleward in both hemispheres. If the boundary is perpendicular to the equator, half the energy goes North, and half goes South. For incident waves with dimensionless frequency between {1 - sqrt(1/2)} and {1 + sqrt(1/2)}, there are no reflected waves with real wave number carrying energy back to the west along the equator. For this frequency range we investigate the partition of poleward propagating energy between the two hemispheres for incident Kelvin and Yanai waves as a function of frequency and boundary orientation.

  7. Experimental validation of theoretical methods to estimate the energy radiated by elastic waves during an impact

    NASA Astrophysics Data System (ADS)

    Farin, Maxime; Mangeney, Anne; Rosny, Julien de; Toussaint, Renaud; Sainte-Marie, Jacques; Shapiro, Nikolaï M.

    2016-02-01

    Estimating the energy lost in elastic waves during an impact is an important problem in seismology and in industry. We propose three complementary methods to estimate the elastic energy radiated by bead impacts on thin plates and thick blocks from the generated vibration. The first two methods are based on the direct wave front and are shown to be equivalent. The third method makes use of the diffuse regime. These methods are tested for laboratory experiments of impacts and are shown to give the same results, with error bars of 40 percent and 300 percent for impacts on a smooth plate and on a rough block, respectively. We show that these methods are relevant to establish the energy budget of an impact. On plates of glass and PMMA, the radiated elastic energy increases from 2 percent to almost 100 percent of the total energy lost as the bead diameter approaches the plate thickness. The rest of the lost energy is dissipated by viscoelasticity. For beads larger than the plate thickness, plastic deformation occurs and reduces the amount of energy radiated in the form of elastic waves. On a concrete block, the energy dissipation during the impact is principally inelastic because only 0.2-2 percent of the energy lost by the bead is transported by elastic waves. The radiated elastic energy estimated with the presented methods is quantitatively validated by Hertz's model of elastic impact.

  8. Finite element modeling of acoustic wave propagation and energy deposition in bone during extracorporeal shock wave treatment

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Matula, Thomas J.; Ma, Yong; Liu, Zheng; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2013-06-01

    It is well known that extracorporeal shock wave treatment is capable of providing a non-surgical and relatively pain free alternative treatment modality for patients suffering from musculoskeletal disorders but do not respond well to conservative treatments. The major objective of current work is to investigate how the shock wave (SW) field would change if a bony structure exists in the path of the acoustic wave. Here, a model of finite element method (FEM) was developed based on linear elasticity and acoustic propagation equations to examine SW propagation and deflection near a mimic musculoskeletal bone. High-speed photography experiments were performed to record cavitation bubbles generated in SW field with the presence of mimic bone. By comparing experimental and simulated results, the effectiveness of FEM model could be verified and strain energy distributions in the bone were also predicted according to numerical simulations. The results show that (1) the SW field will be deflected with the presence of bony structure and varying deflection angles can be observed as the bone shifted up in the z-direction relative to SW geometric focus (F2 focus); (2) SW deflection angels predicted by the FEM model agree well with experimental results obtained from high-speed photographs; and (3) temporal evolutions of strain energy distribution in the bone can also be evaluated based on FEM model, with varied vertical distance between F2 focus and intended target point on the bone surface. The present studies indicate that, by combining MRI/CT scans and FEM modeling work, it is possible to better understand SW propagation characteristics and energy deposition in musculoskeletal structure during extracorporeal shock wave treatment, which is important for standardizing the treatment dosage, optimizing treatment protocols, and even providing patient-specific treatment guidance in clinic.

  9. Energy Flux in the Cochlea: Evidence Against Power Amplification of the Traveling Wave.

    PubMed

    van der Heijden, Marcel; Versteegh, Corstiaen P C

    2015-10-01

    Traveling waves in the inner ear exhibit an amplitude peak that shifts with frequency. The peaking is commonly believed to rely on motile processes that amplify the wave by inserting energy. We recorded the vibrations at adjacent positions on the basilar membrane in sensitive gerbil cochleae and tested the putative power amplification in two ways. First, we determined the energy flux of the traveling wave at its peak and compared it to the acoustic power entering the ear, thereby obtaining the net cochlear power gain. For soft sounds, the energy flux at the peak was 1 ± 0.6 dB less than the middle ear input power. For more intense sounds, increasingly smaller fractions of the acoustic power actually reached the peak region. Thus, we found no net power amplification of soft sounds and a strong net attenuation of intense sounds. Second, we analyzed local wave propagation on the basilar membrane. We found that the waves slowed down abruptly when approaching their peak, causing an energy densification that quantitatively matched the amplitude peaking, similar to the growth of sea waves approaching the beach. Thus, we found no local power amplification of soft sounds and strong local attenuation of intense sounds. The most parsimonious interpretation of these findings is that cochlear sensitivity is not realized by amplifying acoustic energy, but by spatially focusing it, and that dynamic compression is realized by adjusting the amount of dissipation to sound intensity.

  10. Surf zone, infragravity wave energy flux, and runup in extreme conditions

    NASA Astrophysics Data System (ADS)

    Fiedler, J. W.; Brodie, K. L.; McNinch, J.; Guza, R. T.

    2014-12-01

    Waves, currents, and sand levels were observed on a 1.4 km-long cross-shore transect extending from the back beach to ~11 m water depth at Agate Beach, Oregon in Fall 2013. Wave runup and water table fluctuations on this low slope (1:80) beach were measured with a cliff-mounted scanning Lidar and buried pressure sensors. Significant wave heights at an offshore buoy in 128m depth ranged from small (0.5m) to extreme (7.5m), with peak periods between 4-22 seconds. Infragravity frequency (nominally 0.01 Hz) horizontal runup excursions exceeded 100m, and infragravity cross-shore velocity exceeded 3 m/s. Cross-shore patterns of infragravity wave energy flux, observed with seven co-located pressure and current meters, indicate 'proto-saturation' of the inner surfzone in extreme conditions. That is, the intensification of incident wave forcing (e.g. higher energy, longer swell) leads to a wider surfzone and an increase in the shoreward infragravity wave energy seaward of the surfzone, but produces more modest increases in flux in the inner surfzone, and in the runup. Nonlinear energy balances, based on the observations, show transfer of energy from sea-swell to infragravity waves, and vice-versa. The infragravity energy balance closes in cases with low energy incident sea-swell. With more energetic incident waves, there is an unexplained inner surfzone energy sink at the lowest IG frequencies (0.004-0.02 Hz). Ongoing work aims to quantify the effect on infragravity energy balances by infragravity wave breaking and bottom friction. Additionally, the estimates may be degraded by contamination with rotational velocities of surfzone eddies. Whatever the dynamical explanation, infragravity wave runup on a low slope beach in high-energy conditions is limited significantly by dissipation. The slow rate of runup increase suggests nascent, or 'proto' saturation. This work was supported by the U.S. Army Corps of Engineers.

  11. Novel two-stage piezoelectric-based ocean wave energy harvesters for moored or unmoored buoys

    NASA Astrophysics Data System (ADS)

    Murray, R.; Rastegar, J.

    2009-03-01

    Harvesting mechanical energy from ocean wave oscillations for conversion to electrical energy has long been pursued as an alternative or self-contained power source. The attraction to harvesting energy from ocean waves stems from the sheer power of the wave motion, which can easily exceed 50 kW per meter of wave front. The principal barrier to harvesting this power is the very low and varying frequency of ocean waves, which generally vary from 0.1Hz to 0.5Hz. In this paper the application of a novel class of two-stage electrical energy generators to buoyant structures is presented. The generators use the buoy's interaction with the ocean waves as a low-speed input to a primary system, which, in turn, successively excites an array of vibratory elements (secondary system) into resonance - like a musician strumming a guitar. The key advantage of the present system is that by having two decoupled systems, the low frequency and highly varying buoy motion is converted into constant and much higher frequency mechanical vibrations. Electrical energy may then be harvested from the vibrating elements of the secondary system with high efficiency using piezoelectric elements. The operating principles of the novel two-stage technique are presented, including analytical formulations describing the transfer of energy between the two systems. Also, prototypical design examples are offered, as well as an in-depth computer simulation of a prototypical heaving-based wave energy harvester which generates electrical energy from the up-and-down motion of a buoy riding on the ocean's surface.

  12. ULF Wave Electromagnetic Energy Flux into the Ionosphere: Joule Heating Implications

    NASA Astrophysics Data System (ADS)

    Hartinger, M.; Moldwin, M.; Zou, S.; Bonnell, J. W.; Angelopoulos, V.

    2014-12-01

    Ultra Low Frequency (ULF) waves - such as standing Alfven waves - are one mechanism for coupling the inner magnetosphere to the Earth's ionosphere. For example, they transfer energy from the solar wind or ring current into the Earth's ionosphere via Joule heating. In this study, we use NASA Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite data to investigate the spatial, frequency, and geomagnetic activity dependence of the ULF wave Poynting vector (electromagnetic energy flux) mapped to the ionosphere. We use these measurements to estimate Joule heating rates. We compare these rates to empirical models of Joule heating associated with large scale, static (on ULF wave timescales) current systems, finding that ULF waves usually contribute little to the global, integrated Joule heating rate. However, there are extreme cases when ULF waves make significant contributions to global Joule heating. Finally, we find ULF waves routinely make significant contributions to local Joule heating rates near the noon and midnight local time sectors, where static current systems nominally contribute less to Joule heating; the most important contributions come from lower frequency (<7 mHz) waves.

  13. Redistribution of energy available for ocean mixing by long-range propagation of internal waves.

    PubMed

    Alford, Matthew H

    2003-05-01

    Ocean mixing, which affects pollutant dispersal, marine productivity and global climate, largely results from the breaking of internal gravity waves--disturbances propagating along the ocean's internal stratification. A global map of internal-wave dissipation would be useful in improving climate models, but would require knowledge of the sources of internal gravity waves and their propagation. Towards this goal, I present here computations of horizontal internal-wave propagation from 60 historical moorings and relate them to the source terms of internal waves as computed previously. Analysis of the two most energetic frequency ranges--near-inertial frequencies and semidiurnal tidal frequencies--reveals that the fluxes in both frequency bands are of the order of 1 kW x m(-1) (that is, 15-50% of the energy input) and are directed away from their respective source regions. However, the energy flux due to near-inertial waves is stronger in winter, whereas the tidal fluxes are uniform throughout the year. Both varieties of internal waves can thus significantly affect the space-time distribution of energy available for global mixing.

  14. Airborne lidar measurements of wave energy dissipation in a coral reef lagoon system

    NASA Astrophysics Data System (ADS)

    Huang, Zhi-Cheng; Reineman, Benjamin D.; Lenain, Luc; Melville, W. Kendall; Middleton, Jason H.

    2012-03-01

    Quantification of the turbulent kinetic energy dissipation rate in the water column, ɛ, is very important for assessing nutrient uptake rates of corals and therefore the health of coral reef lagoon systems. However, the availability of such data is limited. Recently, at Lady Elliot Island (LEI), Australia, we showed that there was a strong correlation between in situ measurements of surface-wave energy dissipation and ɛ. Previously, Reineman et al. (2009), we showed that a small airborne scanning lidar system could measure the surface wavefield remotely. Here we present measurements demonstrating the use of the same airborne lidar to remotely measure surface wave energy fluxes and dissipation and thereby estimate ɛ in the LEI reef-lagoon system. The wave energy flux and wave dissipation rate across the fore reef and into the lagoon are determined from the airborne measurements of the wavefield. Using these techniques, observed spatial profiles of energy flux and wave energy dissipation rates over the LEI reef-lagoon system are presented. The results show that the high lidar backscatter intensity and point density coming from the high reflectivity of the foam from depth-limited breaking waves coincides with the high wave-energy dissipation rates. Good correlations between the airborne measurements and in situ observations demonstrate that it is feasible to apply airborne lidar systems for large-scale, long-term studies in monitoring important physical processes in coral reef environments. When added to other airborne techniques, the opportunities for efficient monitoring of large reef systems may be expanded significantly.

  15. A long-term nearshore wave hindcast for Ireland: Atlantic and Irish Sea coasts (1979-2012). Present wave climate and energy resource assessment

    NASA Astrophysics Data System (ADS)

    Gallagher, Sarah; Tiron, Roxana; Dias, Frédéric

    2014-08-01

    The Northeast Atlantic possesses some of the highest wave energy levels in the world. The recent years have witnessed a renewed interest in harnessing this vast energy potential. Due to the complicated geomorphology of the Irish coast, there can be a significant variation in both the wave and wind climate. Long-term hindcasts with high spatial resolution, properly calibrated against available measurements, provide vital information for future deployments of ocean renewable energy installations. These can aid in the selection of adequate locations for potential deployment and for the planning and design of those marine operations. A 34-year (from 1979 to 2012), high-resolution wave hindcast was performed for Ireland including both the Atlantic and Irish Sea coasts, with a particular focus on the wave energy resource. The wave climate was estimated using the third-generation spectral wave model WAVEWATCH III®; version 4.11, the unstructured grid formulation. The wave model was forced with directional wave spectral data and 10-m winds from the European Centre for Medium Range Weather Forecasts (ECMWF) ERA-Interim reanalysis, which is available from 1979 to the present. The model was validated against available observed satellite altimeter and buoy data, particularly in the nearshore, and was found to be excellent. A strong spatial and seasonal variability was found for both significant wave heights, and the wave energy flux, particularly on the north and west coasts. A strong correlation between the North Atlantic Oscillation (NAO) teleconnection pattern and wave heights, wave periods, and peak direction in winter and also, to a lesser extent, in spring was identified.

  16. Wave energy in white dwarf atmospheres. I - Magnetohydrodynamic energy spectra for homogeneous DB and layered DA stars

    NASA Technical Reports Server (NTRS)

    Musielak, Zdzislaw E.

    1987-01-01

    The radiative damping of acoustic and MHD waves that propagate through white dwarf photospheric layers is studied, and other damping processes that may be important for the propagation of the MHD waves are calculated. The amount of energy remaining after the damping processes have occurred in different types of waves is estimated. The results show that lower acoustic fluxes should be expected in layered DA and homogeneous DB white dwarfs than had previously been estimated. Acoustic emission manifests itself in an enhancement of the quadrupole term, but this term may become comparable to or even lower than the dipole term for cool white dwarfs. Energy carried by the acoustic waves is significantly dissipated in deep photospheric layers, mainly because of radiative damping. Acoustically heated corona cannot exist around DA and DB white dwarfs in a range T(eff) = 10,000-30,000 K and for log g = 7 and 8. However, relatively hot and massive white dwarfs could be exceptions.

  17. International Symposium on Wave and Tidal Energy, 2nd, St. John's College, Cambridge, England, September 23-25, 1981, Proceedings

    SciTech Connect

    Stephens, H.S.; Stapleton, C.A.

    1981-01-01

    Topics discussed include wave power device interactions, the mathematical modeling of tidal power, and wave power with air turbines. Particular attention is given to the hydrodynamic characteristics of the Bristol Cylinder, the Strangford Lough tidal energy project, and the Foilpropeller for wave power propulsion. Consideration is also given to a submerged oscillating water column device, models of wave energy transformation near a coast, and the environmental implications of tidal power.

  18. Charging System Optimization of Triboelectric Nanogenerator for Water Wave Energy Harvesting and Storage.

    PubMed

    Yao, Yanyan; Jiang, Tao; Zhang, Limin; Chen, Xiangyu; Gao, Zhenliang; Wang, Zhong Lin

    2016-08-24

    Ocean waves are one of the most promising renewable energy sources for large-scope applications due to the abundant water resources on the earth. Triboelectric nanogenerator (TENG) technology could provide a new strategy for water wave energy harvesting. In this work, we investigated the charging characteristics of utilizing a wavy-structured TENG to charge a capacitor under direct water wave impact and under enclosed ball collision, by combination of theoretical calculations and experimental studies. The analytical equations of the charging characteristics were theoretically derived for the two cases, and they were calculated for various load capacitances, cycle numbers, and structural parameters such as compression deformation depth and ball size or mass. Under the direct water wave impact, the stored energy and maximum energy storage efficiency were found to be controlled by deformation depth, while the stored energy and maximum efficiency can be optimized by the ball size under the enclosed ball collision. Finally, the theoretical results were well verified by the experimental tests. The present work could provide strategies for improving the charging performance of TENGs toward effective water wave energy harvesting and storage. PMID:27491727

  19. Charging System Optimization of Triboelectric Nanogenerator for Water Wave Energy Harvesting and Storage.

    PubMed

    Yao, Yanyan; Jiang, Tao; Zhang, Limin; Chen, Xiangyu; Gao, Zhenliang; Wang, Zhong Lin

    2016-08-24

    Ocean waves are one of the most promising renewable energy sources for large-scope applications due to the abundant water resources on the earth. Triboelectric nanogenerator (TENG) technology could provide a new strategy for water wave energy harvesting. In this work, we investigated the charging characteristics of utilizing a wavy-structured TENG to charge a capacitor under direct water wave impact and under enclosed ball collision, by combination of theoretical calculations and experimental studies. The analytical equations of the charging characteristics were theoretically derived for the two cases, and they were calculated for various load capacitances, cycle numbers, and structural parameters such as compression deformation depth and ball size or mass. Under the direct water wave impact, the stored energy and maximum energy storage efficiency were found to be controlled by deformation depth, while the stored energy and maximum efficiency can be optimized by the ball size under the enclosed ball collision. Finally, the theoretical results were well verified by the experimental tests. The present work could provide strategies for improving the charging performance of TENGs toward effective water wave energy harvesting and storage.

  20. Discretized energy minimization in a wave guide with point sources

    NASA Technical Reports Server (NTRS)

    Propst, G.

    1994-01-01

    An anti-noise problem on a finite time interval is solved by minimization of a quadratic functional on the Hilbert space of square integrable controls. To this end, the one-dimensional wave equation with point sources and pointwise reflecting boundary conditions is decomposed into a system for the two propagating components of waves. Wellposedness of this system is proved for a class of data that includes piecewise linear initial conditions and piecewise constant forcing functions. It is shown that for such data the optimal piecewise constant control is the solution of a sparse linear system. Methods for its computational treatment are presented as well as examples of their applicability. The convergence of discrete approximations to the general optimization problem is demonstrated by finite element methods.

  1. Gravity wave vertical energy flux at 95 km

    NASA Technical Reports Server (NTRS)

    Jacob, P. G.; Jacka, F.

    1985-01-01

    A three-field photometer (3FP) located at Mt. Torrens near Adelaide, is capable of monitoring different airglow emissions from three spaced fields in the sky. A wheel containing up to six different narrow bandpass interference filters can be rotated, allowing each of the filters to be sequentially placed into each of the three fields. The airglow emission of interest is the 557.7 nm line which has an intensity maximum at 95 km. Each circular field of view is located at the apexes of an equilateral triangle centered on zenith with diameters of 5 km and field separations of 13 km when projected to the 95-km level. The sampling period was 30 seconds and typical data lengths were between 7 and 8 hours. The analysis and results from the interaction of gravity waves on the 557.7 nm emission layer are derived using an atmospheric model similar to that proposed by Hines (1960) where the atmosphere is assumed isothermal and perturbations caused by gravity waves are small and adiabatic, therefore, resulting in linearized equations of motion. In the absence of waves, the atmosphere is also considered stationary. Thirteen nights of quality data from January 1983 to October 1984, covering all seasons, are used in this analysis.

  2. Underwater Sound Levels at a Wave Energy Device Testing Facility in Falmouth Bay, UK.

    PubMed

    Garrett, Joanne K; Witt, Matthew J; Johanning, Lars

    2016-01-01

    Passive acoustic monitoring devices were deployed at FaBTest in Falmouth Bay, UK, a marine renewable energy device testing facility during trials of a wave energy device. The area supports considerable commercial shipping and recreational boating along with diverse marine fauna. Noise monitoring occurred during (1) a baseline period, (2) installation activity, (3) the device in situ with inactive power status, and (4) the device in situ with active power status. This paper discusses the preliminary findings of the sound recording at FabTest during these different activity periods of a wave energy device trial.

  3. Underwater Sound Levels at a Wave Energy Device Testing Facility in Falmouth Bay, UK.

    PubMed

    Garrett, Joanne K; Witt, Matthew J; Johanning, Lars

    2016-01-01

    Passive acoustic monitoring devices were deployed at FaBTest in Falmouth Bay, UK, a marine renewable energy device testing facility during trials of a wave energy device. The area supports considerable commercial shipping and recreational boating along with diverse marine fauna. Noise monitoring occurred during (1) a baseline period, (2) installation activity, (3) the device in situ with inactive power status, and (4) the device in situ with active power status. This paper discusses the preliminary findings of the sound recording at FabTest during these different activity periods of a wave energy device trial. PMID:26610976

  4. Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers: Preprint

    SciTech Connect

    Li, Y.; Yu, Y. H.

    2012-05-01

    During the past few decades, wave energy has received significant attention among all ocean energy formats. Industry has proposed hundreds of prototypes such as an oscillating water column, a point absorber, an overtopping system, and a bottom-hinged system. In particular, many researchers have focused on modeling the floating-point absorber as the technology to extract wave energy. Several modeling methods have been used such as the analytical method, the boundary-integral equation method, the Navier-Stokes equations method, and the empirical method. However, no standardized method has been decided. To assist the development of wave energy conversion technologies, this report reviews the methods for modeling the floating-point absorber.

  5. Modeling of MeV alpha particle energy transfer to lower hybrid waves

    SciTech Connect

    Schivell, J.; Monticello, D.A.; Fisch, N.; Rax, J.M.

    1993-10-01

    The interaction between a lower hybrid wave and a fusion alpha particle displaces the alpha particle simultaneously in space and energy. This results in coupled diffusion. Diffusion of alphas down the density gradient could lead to their transferring energy to the wave. This could, in turn, put energy into current drive. An initial analytic study was done by Fisch and Rax. Here the authors calculate numerical solutions for the alpha energy transfer and study a range of conditions that are favorable for wave amplification from alpha energy. They find that it is possible for fusion alpha particles to transfer a large fraction of their energy to the lower hybrid wave. The numerical calculation shows that the net energy transfer is not sensitive to the value of the diffusion coefficient over a wide range of practical values. An extension of this idea, the use of a lossy boundary to enhance the energy transfer, is investigated. This technique is shown to offer a large potential benefit.

  6. Mechanisms of surface wave energy dissipation over a high-concentration sediment suspension

    NASA Astrophysics Data System (ADS)

    Traykovski, Peter; Trowbridge, John; Kineke, Gail

    2015-03-01

    Field observations from the spring of 2008 on the Louisiana shelf were used to elucidate the mechanisms of wave energy dissipation over a muddy seafloor. After a period of high discharge from the Atchafalaya River, acoustic measurements showed the presence of 20 cm thick mobile fluid-mud layers during and after wave events. While total wave energy dissipation (D) was greatest during the high energy periods, these periods had relatively low normalized attenuation rates (κ = Dissipation/Energy Flux). During declining wave-energy conditions, as the fluid-mud layer settled, the attenuation process became more efficient with high κ and low D. The transition from high D and low κ to high κ and low D was caused by a transition from turbulent to laminar flow in the fluid-mud layer as measured by a Pulse-coherent Doppler profiler. Measurements of the oscillatory boundary layer velocity profile in the fluid-mud layer during laminar flow reveal a very thick wave boundary layer with curvature filling the entire fluid-mud layer, suggesting a kinematic viscosity 2-3 orders of magnitude greater than that of clear water. This high viscosity is also consistent with a high wave-attenuation rates measured by across-shelf energy flux differences. The transition to turbulence was forced by instabilities on the lutocline, with wavelengths consistent with the dispersion relation for this two-layer system. The measurements also provide new insight into the dynamics of wave-supported turbidity flows during the transition from a laminar to turbulent fluid-mud layer.

  7. ULF wave electromagnetic energy flux into the ionosphere: Joule heating implications

    NASA Astrophysics Data System (ADS)

    Hartinger, M. D.; Moldwin, M. B.; Zou, S.; Bonnell, J. W.; Angelopoulos, V.

    2015-01-01

    Ultralow-frequency (ULF) waves—in particular, Alfvén waves-transfer energy into the Earth's ionosphere via Joule heating, but it is unclear how much they contribute to global and local heating rates relative to other energy sources. In this study we use Time History of Events and Macroscale Interactions during Substorms satellite data to investigate the spatial, frequency, and geomagnetic activity dependence of the ULF wave Poynting vector (electromagnetic energy flux) mapped to the ionosphere. We use these measurements to estimate Joule heating rates, covering latitudes at or below the nominal auroral oval and below the open/closed field line boundary. We find ULF wave Joule heating rates (integrated over 3-30 mHz frequency band) typically range from 0.001 to 1 mW/m2. We compare these rates to empirical models of Joule heating associated with large-scale, static (on ULF wave timescales) current systems, finding that ULF waves nominally contribute little to the global, integrated Joule heating rate. However, there are extreme cases with ULF wave Joule heating rates of ≥10 mW/m2—in these cases, which are more likely to occur when Kp ≥ 3, ULF waves make significant contributions to the global Joule heating rate. We also find ULF waves routinely make significant contributions to local Joule heating rates near the noon and midnight local time sectors, where static current systems nominally contribute less to Joule heating; the most important contributions come from lower frequency (<7 mHz) waves.

  8. Numerical evaluation of the wave energy resource along the Atlantic European coast

    NASA Astrophysics Data System (ADS)

    Guedes Soares, C.; Bento, A. Rute; Gonçalves, Marta; Silva, Dina; Martinho, Paulo

    2014-10-01

    In the present paper a hindcast system is applied to the analysis of the Atlantic European coast as a whole with specific nestings for sites of interest in each country. The areas included in this study were: Ireland west coast, UK South Western coast, France west coast, northern Spain and Canary Islands and Portugal's continental coast. Two contemporary spectral models were used: WaveWatch III for wave generation, covering almost the entire North Atlantic basin, which outputs are then used as boundary conditions for SWAN which simulates wave transformation in coastal areas. Wind fields were taken from the ERA Interim data base. Results are validated against buoy data. These validations allowed a reformulation, when needed, of the model's configurations in order to better tune its outcomes to the real data. Using the energy transport vectors given by SWAN, the wave power is afterwards calculated and an energy resource assessment is done for a period of several years.

  9. On the use of evanescent plane waves for low-frequency energy transmission across material interfaces.

    PubMed

    Woods, Daniel C; Bolton, J Stuart; Rhoads, Jeffrey F

    2015-10-01

    The transmission of airborne sound into high-impedance media is of interest in several applications. For example, sonic booms in the atmosphere may impact marine life when incident on the ocean surface, or affect the integrity of existing structures when incident on the ground. Transmission across high impedance-difference interfaces is generally limited by reflection and refraction at the surface, and by the critical angle criterion. However, spatially decaying incident waves, i.e., inhomogeneous or evanescent plane waves, may transmit energy above the critical angle, unlike homogeneous plane waves. The introduction of a decaying component to the incident trace wavenumber creates a nonzero propagating component of the transmitted normal wavenumber, so energy can be transmitted across the interface. A model of evanescent plane waves and their transmission across fluid-fluid and fluid-solid interfaces is developed here. Results are presented for both air-water and air-solid interfaces. The effects of the incident wave parameters (including the frequency, decay rate, and incidence angle) and the interfacial properties are investigated. Conditions for which there is no reflection at the air-solid interface, due to impedance matching between the incident and transmitted waves, are also considered and are found to yield substantial transmission increases over homogeneous incident waves. PMID:26520290

  10. On the use of evanescent plane waves for low-frequency energy transmission across material interfaces.

    PubMed

    Woods, Daniel C; Bolton, J Stuart; Rhoads, Jeffrey F

    2015-10-01

    The transmission of airborne sound into high-impedance media is of interest in several applications. For example, sonic booms in the atmosphere may impact marine life when incident on the ocean surface, or affect the integrity of existing structures when incident on the ground. Transmission across high impedance-difference interfaces is generally limited by reflection and refraction at the surface, and by the critical angle criterion. However, spatially decaying incident waves, i.e., inhomogeneous or evanescent plane waves, may transmit energy above the critical angle, unlike homogeneous plane waves. The introduction of a decaying component to the incident trace wavenumber creates a nonzero propagating component of the transmitted normal wavenumber, so energy can be transmitted across the interface. A model of evanescent plane waves and their transmission across fluid-fluid and fluid-solid interfaces is developed here. Results are presented for both air-water and air-solid interfaces. The effects of the incident wave parameters (including the frequency, decay rate, and incidence angle) and the interfacial properties are investigated. Conditions for which there is no reflection at the air-solid interface, due to impedance matching between the incident and transmitted waves, are also considered and are found to yield substantial transmission increases over homogeneous incident waves.

  11. Control of the energy exchange upon double two-wave mixing in photorefractive crystals

    NASA Astrophysics Data System (ADS)

    Rustamov, F. A.; Muradov, S. R.; Sharbatov, V. Kh.

    2007-03-01

    The problem of double two-wave mixing in photorefractive crystals is analytically solved in the framework of the two-level model of optical transitions. Relationships are derived for calculating the intensities of all four interacting waves and the amplitude of the holographic grating. It is demonstrated that the magnitude and direction of energy exchange between the interacting beams can be controlled by a purely optical method, namely, by varying the intensity ratio and the initial phase shift between the interference patterns.

  12. Complete energy conversion by autoresonant three-wave mixing in nonuniform media.

    PubMed

    Yaakobi, O; Caspani, L; Clerici, M; Vidal, F; Morandotti, R

    2013-01-28

    Resonant three-wave interactions appear in many fields of physics e.g. nonlinear optics, plasma physics, acoustics and hydrodynamics. A general theory of autoresonant three-wave mixing in a nonuniform media is derived analytically and demonstrated numerically. It is shown that due to the medium nonuniformity, a stable phase-locked evolution is automatically established. For a weak nonuniformity, the efficiency of the energy conversion between the interacting waves can reach almost 100%. One of the potential applications of our theory is the design of highly-efficient optical parametric amplifiers. PMID:23389147

  13. On the instability and energy flux of lower hybrid waves in the Venus plasma mantle

    NASA Technical Reports Server (NTRS)

    Strangeway, R. J.; Crawford, G. K.

    1993-01-01

    Waves generated near the lower hybrid resonance frequency by the modified two stream instability have been invoked as a possible source of energy flux into the topside ionosphere of Venus. These waves are observed above the ionopause in a region known as the plasma mantle. The plasma within the mantle appears to be a mixture of magnetosheath and ionospheric plasmas. Since the magnetosheath electrons and ions have temperatures of several tens of eV, any instability analysis of the modified two stream instability requires the inclusion of finite electron and ion temperatures. Finite temperature effects are likely to reduce the growth rate of the instability. Furthermore, the lower hybrid waves are only quasi-electrostatic, and the energy flux of the waves is mainly carried by parallel Poynting flux. The magnetic field in the mantle is draped over the ionopause. Lower hybrid waves therefore cannot transport any significant wave energy to lower altitudes, and so do not act as a source of additional heat to the topside ionosphere.

  14. Energy from Ocean Waves, River Currents, and Wind

    NASA Astrophysics Data System (ADS)

    Guha, Shyamal

    2006-03-01

    The Earth we live in is surrounded by fluids, which are in perpetual motion. The air in the atmosphere and water found in lakes, ocean, and rivers form our natural environment. Much of the fluid medium is in constant motion. The kinetic energy of this moving fluid is astronomical in magnitude. Over the years, I have considered methods of converting a fraction of the vast reserve of this kinetic energy into electro-mechanical energy. I have conceived a few schemes of such conversions. The fluids whose kinetic energy can be converted into electro-mechanical energy are the following: ocean waters, river currents and atmospheric air. In a book to be published in the spring of 2006, I have described different techniques of energy conversion. In the upcoming APS meeting, I plan to discuss some of these techniques.

  15. Energy from Ocean Waves, River Currents, and Wind

    NASA Astrophysics Data System (ADS)

    Guha, Shyamal

    2006-05-01

    The earth we live in is surrounded by fluids, which are in perpetual motion. There is air in the atmosphere, water in lakes, oceans and rivers. The air and water around us form our natural environment. Much of the fluid medium is in constant motion. The kinetic energy of this moving fluid is astronomical in magnitude. Over the years, I considered methods of converting a fraction of the vast reserve of this kinetic energy into electro-mechanical energy. I conceived a few schemes of such conversion. The fluids whose kinetic energy can be converted into electro-mechanical energy are: ocean waters, river current and atmospheric air. In a book to be published in 2006, I have described different techniques of energy conversion. In the APS meeting, I plan to discuss some of these techniques.

  16. Terminal energy distribution of blast waves from bursting spheres

    NASA Technical Reports Server (NTRS)

    Adamczyk, A. A.; Strehlow, R. A.

    1977-01-01

    The calculation results for the total energy delivered to the surroundings by the burst of an idealized massless sphere containing an ideal gas are presented. The logic development of various formulas for sphere energy is also presented. For all types of sphere bursts the fraction of the total initial energy available in the sphere that is delivered to the surroundings is shown to lie between that delivered for the constant pressure addition of energy to a source region and that delivered by isentropic expansion of the sphere. The relative value of E sub/Q increases at fixed sphere pressure/surrounding pressure as sphere temperature increases because the velocity of sound increases.

  17. Alaskan wave and river hydrokinetic energy resource assessment, river energy converter testing and surface debris mitigation performance

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Kasper, J.; Schmid, J.; Duvoy, P.; Ravens, T. M.; Hansen, N.; Montlaur, A.

    2014-12-01

    The Alaska Hydrokinetic Energy Research Center (AHERC) is conducting a wave energy assessment study at Yakutat, Alaska, and conducting ongoing river technology studies at the Tanana River Tests Site (TRTS) at Nenana, Alaska. In Aug. 2013 an acoustic Doppler current profiler (ADCP) was deployed in 40 m of water off Cannon Beach in Yakutat, AK as part of the Yakutat area wave energy resource assessment. Over the course of the 1.5 year deployment, the ADCP will record area wave and current data in order to verify the area wave energy resource. Preliminary data analysis shows a vigorous wave field with maximum wave heights up to 16 m in Nov. 2013. In addition to the in-situ directional wave data recorded by the ADCP, a SWAN wave climatology spanning the past 20 years is being developed along with a simulation of the wave field for the near shore (5 mwave statistics provided by the ADCP. Technology studies at the TRTS include performance tests of a research debris diversion platform (RDDP) at protecting a 5 kW New Energy hydrokinetic turbine from river debris flows and to determine the effect of RDDP generated river current turbulence on turbine efficiency. Previous tests have shown that the RDDP effectively sheds debris, however, large debris objects can cause RDDP rotation about its mooring point requiring that a stable attachment between the RDDP and protected floating structure be in place to ensure that debris is diverted away from the protected structure. Performance tests of an Oceana hydrokinetic power turbine will be conducted in late August or early September, 2014 at the TRTS in realistic Alaskan river conditions of current turbulence, high sediment flow and debris. Measurements of river sediment concentration, current velocity and river stage will be made, and current turbulence will be derived. CFD simulations of the RDDP interaction with the river flow will be completed to compare current velocity and turbulence results, depending on

  18. 75 FR 21289 - Oregon Wave Energy Partners I, LLC; Notice of Preliminary Permit Application Accepted for Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... Energy Regulatory Commission Oregon Wave Energy Partners I, LLC; Notice of Preliminary Permit Application..., 2010. On March 2, 2010, Oregon Wave Energy Partners I, LLC filed an application for a subsequent preliminary permit, pursuant to section 4(f) of the Federal Power Act, proposing to study the feasibility...

  19. Characterization of low frequency plasma waves and their energy deposition in the Martian magnetosphere with MAVEN

    NASA Astrophysics Data System (ADS)

    Ruhunusiri, S.; Halekas, J. S.; Connerney, J. E. P.; Espley, J. R.; McFadden, J. P.; Larson, D. E.; Mitchell, D. L.; Mazelle, C. X.; Jakosky, B. M.; Brain, D. A.; Harada, Y.; Livi, R.

    2015-12-01

    Mars has one of the unique environments in the solar system for the exploration of plasma waves. Mars does not have an intrinsic magnetosphere, but it has an induced magnetosphere due to the interaction of the solar wind with its ionosphere. Mars also possesses an extended exosphere, which spans beyond its bow shock. The interaction of the solar wind with the magnetosphere and the exosphere leads to excitation of low frequency waves that have frequencies near or below the proton gyro-frequency. MAVEN has been orbiting Mars since the late September of 2014, traversing through various regions of the Martian magnetosphere and the upstream region. MAVEN has a number of particle and field instruments for performing plasma diagnostics. Thus, for the first time at Mars, we have a complete set of plasma instruments for characterizing these low frequency plasma waves. The goal of this work is to distinguish the observed waves as one of the four low frequency wave modes (Alfven, fast, slow, and mirror) and to characterize their occurrence ratios and energy deposition in the various regions of the Martian magnetosphere and in the upstream region. To identify these waves, we use ratios and phase differences among the ion moment fluctuations and magnetic field fluctuations. To measure the ion moment fluctuations, in particular, we use two of the MAVEN ion instruments, solar wind ion analyzer (SWIA) and suprathermal and thermal ion composition instrument (STATIC). We use the MAVEN magnetometer for obtaining the magnetic field fluctuations. SWIA and STATIC have sampling cadence of 4s, much higher than that of their predecessors flown to Mars, and this is often adequate to detect the low frequency waves at Mars. We find that the Alfven waves are the most dominant waves in the upstream region and in the Martian magnetosphere. Fast waves, on the other hand, have the second highest occurrence ratio and they are found frequently near the bow shock and near the magnetic pileup boundary

  20. 78 FR 40132 - Wave Energy Converter Prize Administration Webinar

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... of a webinar and request for information. SUMMARY: The Wind and Water Power Technologies Office...: Alison LaBonte, Marine and Hydrokinetic Energy Technology Development Manager, Wind and Water Power... Energy Technology Development Manager, Wind and Water Power Technologies Office EE-2B, U.S. Department...

  1. The Exploitation of Drug Users.

    PubMed

    Stallings, Shirley; Montagne, Michael

    2015-01-01

    Drug users have been exploited in research studies and clinical practice. We explore ways in which exploitation has occurred and strategies to help patients, research subjects and communities to prevent or avoid exploitation.

  2. Low energy, low latitude wave-dominated shallow marine depositional systems: examples from northern Borneo

    NASA Astrophysics Data System (ADS)

    Lambiase, Joseph J.; Suraya Tulot

    2013-12-01

    The depositional environments of the wave-dominant successions in the middle to late Miocene Belait and Sandakan Formations in northwestern and northern Borneo, respectively, were determined based on grain size distributions, sedimentary structures and facies successions, as well as trace and microfossil assemblages. Generally, progradational shoreface successions in the Belait Formation were deposited in very low wave energy environments where longshore currents were too weak to generate trough cross-bedding. Shoreface sands are laterally continuous for several km and follow the basin contours, suggesting attached beaches similar to the modern Brunei coastline. In contrast, trough cross-bedding is common in the coarser Sandakan Formation and back-barrier mangrove swamp deposits cap the progradational succession as on the modern northern Dent Peninsula coastline, indicating barrier development and higher wave energy conditions than in the Belait Formation. The Borneo examples indicate that barrier systems that include significant tidal facies form under higher wave energy conditions than attached beaches with virtually no tidal facies. Also, Borneo's low latitude climate promotes back-barrier mangrove which reduces tidal exchange and reduces tidal influence relative to comparable temperate climate systems. The results of the study indicate that depositional systems on low energy, wave-dominated coasts are highly variable, as are the sand bodies and facies associations they generate.

  3. Preliminary Analysis of an Oscillating Surge Wave Energy Converter with Controlled Geometry: Preprint

    SciTech Connect

    Tom, Nathan; Lawson, Michael; Yu, Yi-Hsiang; Wright, Alan

    2015-09-09

    The aim of this paper is to present a novel wave energy converter device concept that is being developed at the National Renewable Energy Laboratory. The proposed concept combines an oscillating surge wave energy converter with active control surfaces. These active control surfaces allow for the device geometry to be altered, which leads to changes in the hydrodynamic properties. The device geometry will be controlled on a sea state time scale and combined with wave-to-wave power-take-off control to maximize power capture, increase capacity factor, and reduce design loads. The paper begins with a traditional linear frequency domain analysis of the device performance. Performance sensitivity to foil pitch angle, the number of activated foils, and foil cross section geometry is presented to illustrate the current design decisions; however, it is understood from previous studies that modeling of current oscillating wave energy converter designs requires the consideration of nonlinear hydrodynamics and viscous drag forces. In response, a nonlinear model is presented that highlights the shortcomings of the linear frequency domain analysis and increases the precision in predicted performance.

  4. Rayleigh-wave dispersive energy imaging using a high-resolution linear radon transform

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Xu, Y.; Liu, J.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we propose to image Rayleigh-wave dispersive energy by high-resolution linear Radon transform (LRT). The shot gather is first transformed along the time direction to the frequency domain and then the Rayleigh-wave dispersive energy can be imaged by high-resolution LRT using a weighted preconditioned conjugate gradient algorithm. Synthetic data with a set of linear events are presented to show the process of generating dispersive energy. Results of synthetic and real-world examples demonstrate that, compared with the slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50%. ?? Birkhaueser 2008.

  5. Relative velocity of seagrass blades: Implications for wave attenuation in low-energy environments

    NASA Astrophysics Data System (ADS)

    Bradley, Kevin; Houser, Chris

    2009-03-01

    While the ability of subaquatic vegetation to attenuate wave energy is well recognized in general, there is a paucity of data from the field to describe the rate and mechanisms of wave decay, particularly with respect to the relative motion of the vegetation. The purpose of this study was to quantify the attenuation of incident wave height through a seagrass meadow and characterize the blade movement under oscillatory flow under the low-energy conditions characteristic of fetch-limited and sheltered environments. The horizontal motion of the seagrass blades and the velocity just above the seagrass canopy were measured using a digital video camera and an acoustic Doppler velicometer (ADV) respectively in order to refine the estimates of the drag coefficient based on the relative velocity. Significant wave heights (Hs) were observed to increase by ˜0.02 m (˜20%) through the first 5 m of the seagrass bed but subsequently decrease exponentially over the remainder of the bed. The exponential decay coefficient varied in response to the Reynolds number calculated using blade width (as the length scale) and the oscillatory velocity measured immediately above the canopy. The ability of the seagrass to attenuate wave energy decreases as incident wave heights increase and conditions become more turbulent. Estimates of the time-averaged canopy height and the calculated hydraulic roughness suggest that, as the oscillatory velocity increases, the seagrass becomes fully extended and leans in the direction of flow for a longer part of the wave cycle. The relationship between the drag coefficient and the Reynolds number further suggests that the vegetation is swaying (going with the flow) at low-energy conditions but becomes increasingly rigid as oscillatory velocities increase over the limited range of the conditions observed (200 < Re < 800). In addition to the changing behavior of the seagrass motion, the attenuation was not uniform with wave frequency, and waves at a

  6. Weak Gravitational Wave and Casimir Energy of a Scalar Field

    NASA Astrophysics Data System (ADS)

    Tavakoli, F.; Pirmoradian, R.; Parsabod, I.

    2016-09-01

    In this paper, we calculate the effect of a weak gravitational field on the Casimir force between two ideal plates subjected to a massless minimally coupled field. It is the aim of this work to study the Casimir energy under a weak perturbation of gravity. Moreover, the fluctuations of the stress-energy tensor for a scalar field in de Sitter space-time are computed as well.

  7. Energy transfer between energetic ring current H(+) and O(+) by electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Thorne, Richard M.; Horne, Richard B.

    1994-01-01

    Electromagnetic ion cyclotron (EMIC) waves in the frequency range below the helium gyrofrequency can be excited in the equatorial region of the outer magnetosphere by cyclotron resonant instability with anisotropic ring current H(+) ions. As the unducted waves propagate to higher latitudes, the wave normal should become highly inclined to the ambient magnetic field. Under such conditions, wave energy can be absorbed by cyclotron resonant interactions with ambient O(+), leading to ion heating perpendicular to the ambient magnetic field. Resonant wave absorption peaks in the vicinity of the bi-ion frequency and the second harmonic of the O(+) gyrofrequrency. This absorption should mainly occur at latitudes between 10 deg and 30 deg along auroral field lines (L is greater than or equal to 7) in the postnoon sector. The concomitant ion heating perpendicular to the ambient magnetic field can contribute to the isotropization and geomagnetic trapping of collapsed O(+) ion conics (or beams) that originate from a low-altitude ionospheric source region. During geomagnetic storms when the O(+) content of the magnetosphere is significantly enhanced, the absorption of EMIC waves should become more efficient, and it may contribute to the observed acceleration of O(+) ions of ionospheric origin up to ring current energies.

  8. Damage evaluation based on a wave energy flow map using multiple PZT sensors.

    PubMed

    Liu, Yaolu; Hu, Ning; Xu, Hong; Yuan, Weifeng; Yan, Cheng; Li, Yuan; Goda, Riu; Alamusi, Emptyyn Y; Qiu, Jinhao; Ning, Huiming; Wu, Liangke

    2014-01-23

    A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti's reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map.

  9. The influence of wave energy and sediment transport on seagrass distribution

    USGS Publications Warehouse

    Stevens, Andrew W.; Lacy, Jessica R.

    2012-01-01

    A coupled hydrodynamic and sediment transport model (Delft3D) was used to simulate the water levels, waves, and currents associated with a seagrass (Zostera marina) landscape along a 4-km stretch of coast in Puget Sound, WA, USA. A hydroacoustic survey of seagrass percent cover and nearshore bathymetry was conducted, and sediment grain size was sampled at 53 locations. Wave energy is a primary factor controlling seagrass distribution at the site, accounting for 73% of the variability in seagrass minimum depth and 86% of the variability in percent cover along the shallow, sandy portions of the coast. A combination of numerical simulations and a conceptual model of the effect of sea-level rise on the cross-shore distribution of seagrass indicates that the area of seagrass habitat may initially increase and that wave dynamics are an important factor to consider in predicting the effect of sea-level rise on seagrass distributions in wave-exposed areas.

  10. Damage Evaluation Based on a Wave Energy Flow Map Using Multiple PZT Sensors

    PubMed Central

    Liu, Yaolu; Hu, Ning; Xu, Hong; Yuan, Weifeng; Yan, Cheng; Li, Yuan; Goda, Riu; Alamusi; Qiu, Jinhao; Ning, Huiming; Wu, Liangke

    2014-01-01

    A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti's reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map. PMID:24463430

  11. Nonlinear Elastic Effects on the Energy Flux Deviation of Ultrasonic Waves in GR/EP Composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Kriz, R. D.; Fitting, Dale W.

    1992-01-01

    In isotropic materials, the direction of the energy flux (energy per unit time per unit area) of an ultrasonic plane wave is always along the same direction as the normal to the wave front. In anisotropic materials, however, this is true only along symmetry directions. Along other directions, the energy flux of the wave deviates from the intended direction of propagation. This phenomenon is known as energy flux deviation and is illustrated. The direction of the energy flux is dependent on the elastic coefficients of the material. This effect has been demonstrated in many anisotropic crystalline materials. In transparent quartz crystals, Schlieren photographs have been obtained which allow visualization of the ultrasonic waves and the energy flux deviation. The energy flux deviation in graphite/epoxy (gr/ep) composite materials can be quite large because of their high anisotropy. The flux deviation angle has been calculated for unidirectional gr/ep composites as a function of both fiber orientation and fiber volume content. Experimental measurements have also been made in unidirectional composites. It has been further demonstrated that changes in composite materials which alter the elastic properties such as moisture absorption by the matrix or fiber degradation, can be detected nondestructively by measurements of the energy flux shift. In this research, the effects of nonlinear elasticity on energy flux deviation in unidirectional gr/ep composites were studied. Because of elastic nonlinearity, the angle of the energy flux deviation was shown to be a function of applied stress. This shift in flux deviation was modeled using acoustoelastic theory and the previously measured second and third order elastic stiffness coefficients for T300/5208 gr/ep. Two conditions of applied uniaxial stress were considered. In the first case, the direction of applied uniaxial stress was along the fiber axis (x3) while in the second case it was perpendicular to the fiber axis along the

  12. Proposal for determining the energy content of gravitational waves by using approximate symmetries of differential equations

    SciTech Connect

    Hussain, Ibrar; Qadir, Asghar; Mahomed, F. M.

    2009-06-15

    Since gravitational wave spacetimes are time-varying vacuum solutions of Einstein's field equations, there is no unambiguous means to define their energy content. However, Weber and Wheeler had demonstrated that they do impart energy to test particles. There have been various proposals to define the energy content, but they have not met with great success. Here we propose a definition using 'slightly broken' Noether symmetries. We check whether this definition is physically acceptable. The procedure adopted is to appeal to 'approximate symmetries' as defined in Lie analysis and use them in the limit of the exact symmetry holding. A problem is noted with the use of the proposal for plane-fronted gravitational waves. To attain a better understanding of the implications of this proposal we also use an artificially constructed time-varying nonvacuum metric and evaluate its Weyl and stress-energy tensors so as to obtain the gravitational and matter components separately and compare them with the energy content obtained by our proposal. The procedure is also used for cylindrical gravitational wave solutions. The usefulness of the definition is demonstrated by the fact that it leads to a result on whether gravitational waves suffer self-damping.

  13. Design and Analysis for a Floating Oscillating Surge Wave Energy Converter: Preprint

    SciTech Connect

    Yu, Y. H.; Li, Y.; Hallett, K.; Hotimsky, C.

    2014-03-01

    This paper presents a recent study on the design and analysis of an oscillating surge wave energy converter. A successful wave energy conversion design requires the balance between the design performance and cost. The cost of energy is often used as the metric to judge the design of the wave energy conversion system. It is often determined based on the device power performance, the cost for manufacturing, deployment, operation and maintenance, as well as the effort to ensure the environmental compliance. The objective of this study is to demonstrate the importance of a cost driven design strategy and how it can affect a WEC design. Three oscillating surge wave energy converter (OSWEC) designs were used as the example. The power generation performance of the design was modeled using a time-domain numerical simulation tool, and the mass properties of the design were determined based on a simple structure analysis. The results of those power performance simulations, the structure analysis and a simple economic assessment were then used to determine the cost-efficiency of selected OSWEC designs. Finally, a discussion on the environmental barrier, integrated design strategy and the key areas that need further investigation is also presented.

  14. The energy flux of MHD wave modes excited by realistic photospheric drivers

    NASA Astrophysics Data System (ADS)

    Fedun, Viktor; Von Fay-Siebenburgen, Erdélyi Robert; Mumford, Stuart

    The mechanism(s) responsible for solar coronal heating are still an unresolved and challenging task. In the framework of 3D numerical modelling of MHD wave excitation and propagation in the strongly stratified solar atmosphere we analyse the mode coupling and estimate the wave energy partition which can be supplied to the upper layers of the solar atmosphere by locally decomposed slow, fast and Alfven modes. These waves are excited by a number of realistic photospheric drivers which are mimicking the random granular buffeting, the coherent global solar oscillations and swirly motion observed in e.g. magnetic bright points. Based on a self-similar approach, a realistic magnetic flux tubes configuration is constructed and implemented in the VALIIIC model of the solar atmosphere. A novel method for decomposing the velocity perturbations into parallel, perpendicular and azimuthal components in 3D geometry is developed using field lines to trace a volume of constant energy flux. This method is used to identify the excited wave modes propagating upwards from the photosphere and to compute the percentage energy contribution of each mode. We have found, that for all cases where torsional motion is present, the main contribution to the flux (60%) is by Alfven wave. In the case of the vertical driver it is found to mainly excite the fast- and slow-sausage modes and a horizontal driver primarily excites the slow kink mode.

  15. Acoustic noise and pneumatic wave vortices energy harvesting on highways

    NASA Astrophysics Data System (ADS)

    Pogacian, S.; Bot, A.; Zotoiu, D.

    2012-02-01

    This paper is aimed to present the structure and the principle of a energy harvesting system that uses the air movement emanated from passing traffic to produce and accumulate electrical energy. Each of the system's elements consists of a inertial mass panel which oscillate when driving cars pass. The panel is attached to a linear electromagnetic mini generator (or/and some piezo electric micro generators) and at the time of passing, it produces energy which is store it in a supercapacitor or in a rechargeable battery. The concept can be applied to busy roads, and to high-frequented rail networks and it can work with street and road lighting, information panels and monitoring devices.

  16. Proceedings of the Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues Workshop

    SciTech Connect

    2006-03-01

    Renewable energy technologies offer the promise of non-polluting alternatives to fossil and nuclear-fueled power plants to meet growing demand for electrical energy. Two emerging categories of renewable energy technologies, hydrokinetic and wave energy conversion devices, offer ways to tap the energy of moving water without impoundment (dams) or diversion required by many conventional hydroelectric facilities. These technologies include devices designed for deployment in natural streams, tidal estuaries, ocean currents, and constructed waterways, as well as devices designed to capture the energy of ocean waves. On October 26-28, 2005, 54 representatives from government, non-governmental organizations, and private business met to (1) identify the varieties of hydrokinetic energy and wave technology devices, their stages of development, and the projected cost to bring each to market; (2) identify where these technologies can best operate; (3) identify the potential environmental issues associated with these technologies and possible mitigation measures; (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. These workshop proceedings include detailed summaries of the 24 presentations made and the discussions that followed.

  17. Measurement of Underwater Operational Noise Emitted by Wave and Tidal Stream Energy Devices.

    PubMed

    Lepper, Paul A; Robinson, Stephen P

    2016-01-01

    The increasing international growth in the development of marine and freshwater wave and tidal energy harvesting systems has been followed by a growing requirement to understand any associated underwater impact. Radiated noise generated during operation is dependent on the device's physical properties, the sound-propagation environment, and the device's operational state. Physical properties may include size, distribution in the water column, and mechanics/hydrodynamics. The sound-propagation environment may be influenced by water depth, bathymetry, sediment type, and water column acoustic properties, and operational state may be influenced by tidal cycle and wave height among others This paper discusses some of the challenges for measurement of noise characteristics from these devices as well as a case study of the measurement of radiated noise from a full-scale wave energy converter.

  18. Measurement of Underwater Operational Noise Emitted by Wave and Tidal Stream Energy Devices.

    PubMed

    Lepper, Paul A; Robinson, Stephen P

    2016-01-01

    The increasing international growth in the development of marine and freshwater wave and tidal energy harvesting systems has been followed by a growing requirement to understand any associated underwater impact. Radiated noise generated during operation is dependent on the device's physical properties, the sound-propagation environment, and the device's operational state. Physical properties may include size, distribution in the water column, and mechanics/hydrodynamics. The sound-propagation environment may be influenced by water depth, bathymetry, sediment type, and water column acoustic properties, and operational state may be influenced by tidal cycle and wave height among others This paper discusses some of the challenges for measurement of noise characteristics from these devices as well as a case study of the measurement of radiated noise from a full-scale wave energy converter. PMID:26611011

  19. An energy absorbing far-field boundary condition for the elastic wave equation

    SciTech Connect

    Petersson, N A; Sjogreen, B

    2008-07-15

    The authors present an energy absorbing non-reflecting boundary condition of Clayton-Engquist type for the elastic wave equation together with a discretization which is stable for any ratio of compressional to shear wave speed. They prove stability for a second order accurate finite-difference discretization of the elastic wave equation in three space dimensions together with a discretization of the proposed non-reflecting boundary condition. The stability proof is based on a discrete energy estimate and is valid for heterogeneous materials. The proof includes all six boundaries of the computational domain where special discretizations are needed at the edges and corners. The stability proof holds also when a free surface boundary condition is imposed on some sides of the computational domain.

  20. Effect of stress on energy flux deviation of ultrasonic waves in GR/EP composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Kriz, R. D.; Fitting, Dale W.

    1990-01-01

    Ultrasonic waves suffer energy flux deviation in graphite/epoxy because of the large anisotropy. The angle of deviation is a function of the elastic coefficients. For nonlinear solids, these coefficients and thus the angle of deviation is a function of stress. Acoustoelastic theory was used to model the effect of stress on flux deviation for unidirectional T300/5208 using previously measured elastic coefficients. Computations were made for uniaxial stress along the x3 axis (fiber axis) and the x1 for waves propagating in the x1x3 plane. These results predict a shift as large as three degrees for the quasi-transverse wave. The shift in energy flux offers a new nondestructive technique of evaluating stress in composites.

  1. Acoustic waves from mechanical impulses due to fluorescence resonant energy (Förster) transfer: Blowing a whistle with light

    NASA Astrophysics Data System (ADS)

    Zurita-Sánchez, J. R.; Henkel, C.

    2012-02-01

    We present a momentum transfer mechanism mediated by electromagnetic fields that originates in a system of two nearby molecules: one excited (donor D*) and the other in ground state (acceptor A). An intermolecular force related to fluorescence resonant energy or Förster transfer (FRET) arises in the unstable D*A molecular system, which differs from the equilibrium van der Waals interaction. Due to the its finite lifetime, a mechanical impulse is imparted to the relative motion in the system. We analyze the FRET impulse when the molecules are embedded in free space and find that its magnitude can be much greater than the single recoil photon momentum, getting comparable with the thermal momentum (Maxwell-Boltzmann distribution) at room temperature. In addition, we propose that this FRET impulse can be exploited in the generation of acoustic waves inside a film containing layers of donor and acceptor molecules, when a picosecond laser pulse excites the donors. This acoustic transient is distinguishable from that produced by thermal stress due to laser absorption, and may therefore play a role in photoacoustic spectroscopy. The effect can be seen as exciting a vibrating system like a string or organ pipe with light; it may be used as an opto-mechanical transducer.

  2. MAGNETOACOUSTIC WAVE ENERGY FROM NUMERICAL SIMULATIONS OF AN OBSERVED SUNSPOT UMBRA

    SciTech Connect

    Felipe, T.; Khomenko, E.; Collados, M.

    2011-07-01

    We aim at reproducing the height dependence of sunspot wave signatures obtained from spectropolarimetric observations through three-dimensional MHD numerical simulations. A magnetostatic sunspot model based on the properties of the observed sunspot is constructed and perturbed at the photosphere, introducing the fluctuations measured with the Si I {lambda}10827 line. The results of the simulations are compared with the oscillations observed simultaneously at different heights from the He I {lambda}10830 line, the Ca II H core, and the Fe I blends in the wings of the Ca II H line. The simulations show a remarkable agreement with the observations. They reproduce the velocity maps and power spectra at the formation heights of the observed lines, as well as the phase and amplification spectra between several pairs of lines. We find that the stronger shocks at the chromosphere are accompanied with a delay between the observed signal and the simulated one at the corresponding height, indicating that shocks shift the formation height of the chromospheric lines to higher layers. Since the simulated wave propagation matches very well the properties of the observed one, we are able to use the numerical calculations to quantify the energy contribution of the magnetoacoustic waves to the chromospheric heating in sunspots. Our findings indicate that the energy supplied by these waves is too low to balance the chromospheric radiative losses. The energy contained at the formation height of the lowermost Si I {lambda}10827 line in the form of slow magnetoacoustic waves is already insufficient to heat the higher layers, and the acoustic energy which reaches the chromosphere is around 3-9 times lower than the required amount of energy. The contribution of the magnetic energy is even lower.

  3. Effects of chemical fuel composition on energy generation from thermopower waves

    NASA Astrophysics Data System (ADS)

    Yeo, Taehan; Hwang, Hayoung; Jeong, Dong-Cheol; Lee, Kang Yeol; Hong, Jongsup; Song, Changsik; Choi, Wonjoon

    2014-11-01

    Thermopower waves, which occur during combustion within hybrid structures formed from nanomaterials and chemical fuels, result in a self-propagating thermal reaction and concomitantly generate electrical energy from the acceleration of charge carriers along the nanostructures. The hybrid structures for thermopower waves are composed of two primary components: the core thermoelectric material and the combustible fuel. So far, most studies have focused on investigating various nanomaterials for improving energy generation. Herein, we report that the composition of the chemical fuel used has a significant effect on the power generated by thermopower waves. Hybrid nanostructures consisting of mixtures of picric acid and picramide with sodium azide were synthesized and used to generate thermopower waves. A maximum voltage of ˜2 V and an average peak specific power as high as 15 kW kg-1 were obtained using the picric acid/sodium azide/multiwalled carbon nanotubes (MWCNTs) array composite. The average reaction velocity and the output voltage in the case of the picric acid/sodium azide were 25 cm s-1 and 157 mV, while they were 2 cm s-1 and 3 mV, in the case of the picramide/sodium azide. These marked differences are attributable to the chemical and structural differences of the mixtures. Mixing picric acid and sodium azide in deionized water resulted in the formation of 2,4,6-trinitro sodium phenoxide and hydrogen azide (H-N3), owing to the exchange of H+ and Na+ ions, as well as the formation of fiber-like structures, because of benzene π stacking. The negative enthalpy of formation of the new compounds and the fiber-like structures accelerate the reaction and increase the output voltage. Elucidating the effects of the composition of the chemical fuel used in the hybrid nanostructures will allow for the control of the combustion process and help optimize the energy generated from thermopower waves, furthering the development of thermopower waves as an energy source.

  4. Wave Engine Topping Cycle Assessment

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1996-01-01

    The performance benefits derived by topping a gas turbine engine with a wave engine are assessed. The wave engine is a wave rotor that produces shaft power by exploiting gas dynamic energy exchange and flow turning. The wave engine is added to the baseline turboshaft engine while keeping high-pressure-turbine inlet conditions, compressor pressure ratio, engine mass flow rate, and cooling flow fractions fixed. Related work has focused on topping with pressure-exchangers (i.e., wave rotors that provide pressure gain with zero net shaft power output); however, more energy can be added to a wave-engine-topped cycle leading to greater engine specific-power-enhancement The energy addition occurs at a lower pressure in the wave-engine-topped cycle; thus the specific-fuel-consumption-enhancement effected by ideal wave engine topping is slightly lower than that effected by ideal pressure-exchanger topping. At a component level, however, flow turning affords the wave engine a degree-of-freedom relative to the pressure-exchanger that enables a more efficient match with the baseline engine. In some cases, therefore, the SFC-enhancement by wave engine topping is greater than that by pressure-exchanger topping. An ideal wave-rotor-characteristic is used to identify key wave engine design parameters and to contrast the wave engine and pressure-exchanger topping approaches. An aerodynamic design procedure is described in which wave engine design-point performance levels are computed using a one-dimensional wave rotor model. Wave engines using various wave cycles are considered including two-port cycles with on-rotor combustion (valved-combustors) and reverse-flow and through-flow four-port cycles with heat addition in conventional burners. A through-flow wave cycle design with symmetric blading is used to assess engine performance benefits. The wave-engine-topped turboshaft engine produces 16% more power than does a pressure-exchanger-topped engine under the specified topping

  5. Feasibility of Traveling Wave Direct Energy Conversion of Fission Reaction Fragments

    NASA Technical Reports Server (NTRS)

    Tarditi, A. G.; George, J. A.; Miley, G. H.; Scott, J. H.

    2013-01-01

    Fission fragment direct energy conversion has been considered in the past for the purpose of increasing nuclear power plant efficiency and for advanced space propulsion. Since the fragments carry electric charge (typically in the order of 20 e) and have 100 MeV-range kinetic energy, techniques utilizing very high-voltage DC electrodes have been considered. This study is focused on a different approach: the kinetic energy of the charged fission fragments is converted into alternating current by means of a traveling wave coupling scheme (Traveling Wave Direct Energy Converter, TWDEC), thereby not requiring the utilization of high voltage technology. A preliminary feasibility analysis of the concept is introduced based on a conceptual level study and on a particle simulation model of the beam dynamics.

  6. The Potential Energy Density in Transverse String Waves Depends Critically on Longitudinal Motion

    ERIC Educational Resources Information Center

    Rowland, David R.

    2011-01-01

    The question of the correct formula for the potential energy density in transverse waves on a taut string continues to attract attention (e.g. Burko 2010 "Eur. J. Phys." 31 L71), and at least three different formulae can be found in the literature, with the classic text by Morse and Feshbach ("Methods of Theoretical Physics" pp 126-127) stating…

  7. High-energy tail distributions and resonant wave particle interaction

    NASA Technical Reports Server (NTRS)

    Leubner, M. P.

    1983-01-01

    High-energy tail distributions (k distributions) are used as an alternative to a bi-Lorentzian distribution to study the influence of energetic protons on the right- and left-hand cyclotron modes in a hot two-temperature plasma. Although the parameters are chosen to be in a range appropriate to solar wind or magnetospheric configurations, the results apply not only to specific space plasmas. The presence of energetic particles significantly alters the behavior of the electromagnetic ion cyclotron modes, leading to a wide range of unstable frequencies and increased growth rates. From the strongly enhanced growth rates it can be concluded that high-energy tail distributions should not show major temperature anisotropies, which is consistent with observations.

  8. Energy from garbage loses promise as wave of future

    SciTech Connect

    Not Available

    1988-07-01

    A front-page article in The Wall Street Journal (June 16, 1988) reports on the rising troubles of waste-to-energy projects. The garbage crisis has promoted the construction of 73 waste-to-energy plants around the country, with hundreds more planned at a combined cost of more than $18 billion, writes Bill Richards. Critics profess to feel an eerie sense of deja vu in the trend toward burning. In the 1990s, they say, this could become for municipalities what the nuclear plant building binge was to electric utilities in the 1970s. It plunged many into an economic and environmental swamp in which a few are still mired, their huge cost over-runs unrecoverable from customers, their shareholder dividends shrunken or ended.

  9. Progress Towards the Development of a Traveling Wave Direct Energy Converter for Aneutronic Fusion Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Tarditi, A. G.; Chap, A.; Wolinsky, J.; Scott, J. H.

    2015-01-01

    A coordinated experimental and theory/simulation effort has been carried out to investigate the physics of the Traveling Wave Direct Energy Converter (TWDEC), a scheme that has been proposed in the past for the direct conversion into electricity of the kinetic energy of an ion beam generated from fusion reactions. This effort has been focused in particular on the TWDEC process in the high density beam regime, thus accounting for the ion beam expansion due to its space charge.

  10. [Child sexual exploitation].

    PubMed

    Cabello, María F; Castaldi, Paula D; Cataldo, Andrea M

    2009-01-01

    Child Sexual Exploitation is a complex phenomenon in our country and the world; it dates back to an ancient past but it has a very recent conceptualization and specific approach. This article proposes a tour through this process as well as some inputs for its categorization, the attention to the affected subjects by the very design of public policies taken from a concrete institutional experience. PMID:19812796

  11. [Research on Energy Distribution During Osteoarthritis Treatment Using Shock Wave Lithotripsy].

    PubMed

    Zhang, Shinian; Wang, Xiaofeng; Zhang, Dong

    2015-04-01

    Extracorporeal shock wave treatment is capable of providing a non-surgical and effective treatment modality for patients suffering from osteoarthritis. The major objective of current works is to investigate how the shock wave (SW) field would change if a bony structure exists in the path of the acoustic wave. Firstly, a model of finite element method (FEM) was developed based on Comsol software in the present study. Then, high-speed photography experiments were performed to record cavitation bubbles with the presence of mimic bone. On the basis of comparing experimental with simulated results, the effectiveness of FEM model could be verified. Finally, the energy distribution during extracorporeal shock wave treatment was predicted. The results showed that the shock wave field was deflected with the presence of bony structure and varying deflection angles could be observed as the bone shifted up in the z-direction relative to shock wave geometric focus. Combining MRI/CT scans to FEM modeling is helpful for better standardizing the treatment dosage and optimizing treatment protocols in the clinic. PMID:26211244

  12. [Research on Energy Distribution During Osteoarthritis Treatment Using Shock Wave Lithotripsy].

    PubMed

    Zhang, Shinian; Wang, Xiaofeng; Zhang, Dong

    2015-04-01

    Extracorporeal shock wave treatment is capable of providing a non-surgical and effective treatment modality for patients suffering from osteoarthritis. The major objective of current works is to investigate how the shock wave (SW) field would change if a bony structure exists in the path of the acoustic wave. Firstly, a model of finite element method (FEM) was developed based on Comsol software in the present study. Then, high-speed photography experiments were performed to record cavitation bubbles with the presence of mimic bone. On the basis of comparing experimental with simulated results, the effectiveness of FEM model could be verified. Finally, the energy distribution during extracorporeal shock wave treatment was predicted. The results showed that the shock wave field was deflected with the presence of bony structure and varying deflection angles could be observed as the bone shifted up in the z-direction relative to shock wave geometric focus. Combining MRI/CT scans to FEM modeling is helpful for better standardizing the treatment dosage and optimizing treatment protocols in the clinic.

  13. Effects of Coral Colony Properties on the Dissipation of Wave Energy

    NASA Astrophysics Data System (ADS)

    Staples, Anne; Azadani, Leila

    2014-11-01

    About 40% of the world's population lives in coastal areas, therefore coastal protection is of particular importance given the increasing frequency of superstorms like Katrina and Sandy, and associated storm surges and flooding. Coral reefs are recognized to provide coastal regions with excellent protection against high-energy wave impacts. The hydrodynamic roughness of coral reefs caused by the presence of several multiscale coral colonies plays a crucial role in the dissipation of wave energy. Here, we design a series of experiments to study the effects of the properties of corals on wave attenuation. As a first step, prototypes of two species (elkhorn and staghorn) of natural branching corals are produced using 3D printing technologies. Wave tank experiments are then performed on the 3D printed samples and the natural corals. The effects of parameters such as coral geometry and coral stiffness on wave dissipation are investigated. In order to study the effect of the geometry of the corals, experiments are performed for both species of corals. The effect of coral stiffness is investigated by using different additive manufacturing materials, which gives different flexibilities to the coral models. Preliminary results from these experiments will be presented.

  14. Radial energy transport by magnetospheric ULF waves: Effects of magnetic curvature and plasma pressure

    NASA Technical Reports Server (NTRS)

    Kouznetsov, Igor; Lotko, William

    1995-01-01

    The 'radial' transport of energy by internal ULF waves, stimulated by dayside magnetospheric boundary oscillations, is analyzed in the framework of one-fluid magnetohydrodynamics. (the term radial is used here to denote the direction orthogonal to geomagnetic flux surfaces.) The model for the inhomogeneous magnetospheric plasma and background magnetic field is axisymmetric and includes radial and parallel variations in the magnetic field, magnetic curvature, plasma density, and low but finite plasma pressure. The radial mode structure of the coupled fast and intermediate MHD waves is determined by numerical solution of the inhomogeneous wave equation; the parallel mode structure is characterized by a Wentzel-Kramer-Brillouin (WKB) approximation. Ionospheric dissipation is modeled by allowing the parallel wave number to be complex. For boudnary oscillations with frequencies in the range from 10 to 48 mHz, and using a dipole model for the background magnetic field, the combined effects of magnetic curvature and finite plasma pressure are shown to (1) enhance the amplitude of field line resonances by as much as a factor of 2 relative to values obtained in a cold plasma or box-model approximation for the dayside magnetosphere; (2) increase the energy flux delivered to a given resonance by a factor of 2-4; and (3) broaden the spectral width of the resonance by a factor of 2-3. The effects are attributed to the existence of an 'Alfven buoyancy oscillation,' which approaches the usual shear mode Alfven wave at resonance, but unlike the shear Alfven mode, it is dispersive at short perpendicular wavelengths. The form of dispersion is analogous to that of an internal atmospheric gravity wave, with the magnetic tension of the curved background field providing the restoring force and allowing radial propagation of the mode. For nominal dayside parameters, the propagation band of the Alfven buoyancy wave occurs between the location of its (field line) resonance and that of the

  15. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Wave Energy Devices

    SciTech Connect

    Copping, Andrea E.; Geerlofs, Simon H.; Hanna, Luke A.

    2014-06-30

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects. Costs have been developed at the pilot scale and for commercial arrays for a surge wave energy converter

  16. Collisionless inter-species energy transfer and turbulent heating in drift wave turbulence

    SciTech Connect

    Zhao, L.; Diamond, P. H.

    2012-08-15

    We reconsider the classic problems of calculating 'turbulent heating' and collisionless inter-species transfer of energy in drift wave turbulence. These issues are of interest for low collisionality, electron heated plasmas, such as ITER, where collisionless energy transfer from electrons to ions is likely to be significant. From the wave Poynting theorem at steady state, a volume integral over an annulus r{sub 1}=-S{sub r}|{sub r{sub 1}{sup r{sub 2}}}{ne}0. Here S{sub r} is the wave energy density flux in the radial direction. Thus, a wave energy flux differential across an annular region indeed gives rise to a net heating, in contrast to previous predictions. This heating is related to the Reynolds work by the zonal flow, since S{sub r} is directly linked to the zonal flow drive. In addition to net heating, there is inter-species heat transfer. For collisionless electron drift waves, the total turbulent energy source for collisionless heat transfer is due to quasilinear electron cooling. Subsequent quasilinear ion heating occurs through linear ion Landau damping. In addition, perpendicular heating via ion polarization currents contributes to ion heating. Since at steady state, Reynolds work of the turbulence on the zonal flow must balance zonal flow frictional damping ({approx}{nu}{sub ii}{sup 2}{approx}|(e{phi}(tilde sign)/T)|{sup 4}), it is no surprise that zonal flow friction appears as an important channel for ion heating. This process of energy transfer via zonal flow has not previously been accounted for in analyses of energy transfer. As an application, we compare the rate of turbulent energy transfer in a low collisionality plasma with the rate of the energy transfer by collisions. The result shows that the collisionless turbulent energy transfer is a significant energy coupling process for ITER plasma.

  17. The variability, structure and energy conversion of the northern hemisphere traveling waves simulated in a Mars general circulation model

    NASA Astrophysics Data System (ADS)

    Wang, Huiqun; Toigo, Anthony D.

    2016-06-01

    Investigations of the variability, structure and energetics of the m = 1-3 traveling waves in the northern hemisphere of Mars are conducted with the MarsWRF general circulation model. Using a simple, annually repeatable dust scenario, the model reproduces many general characteristics of the observed traveling waves. The simulated m = 1 and m = 3 traveling waves show large differences in terms of their structures and energetics. For each representative wave mode, the geopotential signature maximizes at a higher altitude than the temperature signature, and the wave energetics suggests a mixed baroclinic-barotropic nature. There is a large contrast in wave energetics between the near-surface and higher altitudes, as well as between the lower latitudes and higher latitudes at high altitudes. Both barotropic and baroclinic conversions can act as either sources or sinks of eddy kinetic energy. Band-pass filtered transient eddies exhibit strong zonal variations in eddy kinetic energy and various energy transfer terms. Transient eddies are mainly interacting with the time mean flow. However, there appear to be non-negligible wave-wave interactions associated with wave mode transitions. These interactions include those between traveling waves and thermal tides and those among traveling waves.

  18. Blast Shock Wave Mitigation Using the Hydraulic Energy Redirection and Release Technology

    PubMed Central

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel. PMID:22745740

  19. Blast shock wave mitigation using the hydraulic energy redirection and release technology.

    PubMed

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel. PMID:22745740

  20. Blast shock wave mitigation using the hydraulic energy redirection and release technology.

    PubMed

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel.

  1. Barotropic and baroclinic energy conversions associated with planetary wave forcing of the northern stratospheric polar vortex

    NASA Astrophysics Data System (ADS)

    Liberato, M. L. R.; Castanheira, J. M.; Dacamara, C. C.

    2009-04-01

    An analysis of the energy conversion of barotropic and baroclinic planetary waves for extended winter in the extratropical Northern Hemisphere is presented. The analysis is based on a three-dimensional normal mode expansion of the global circulation of the atmosphere (Castanheira et al. 2002; Liberato et al. 2007). This method allows separating the atmospheric circulation into planetary (Rossby) and inertio-gravity waves as well as characterising each type of wave by the respective zonal, meridional and vertical structures. The 3-D normal mode scheme further allows evaluating the contribution of each type of wave for the global total (i.e., kinetic + available potential) atmospheric energy. A brief overview of the normal mode energetics of the global atmospheric circulation is given, focusing on the energy conversions between barotropic and baroclinic components of different vertical and horizontal scales. The methodology is applied to the global NCEP/NCAR (National Centers for Environmental Prediction / National Center for Atmospheric Research) reanalysis data set, using extended winter (November to March) daily means of the horizontal wind components (u, v) and of the geopotential height, at the 17 standard pressure levels, with the spatial horizontal resolution available (2.5° regular grid) and spanning the period 1957-2008. Obtained results are then used to relate the variability of the stratospheric polar vortex to the variability of the energy of the forcing planetary waves. Barotropic and baroclinic energy conversions associated with planetary wave forcing of the northern winter polar vortex are finally analysed, during rapid stratospheric vortex decelerations and accelerations. Castanheira, J. M., H.-F. Graf, C. DaCamara, and A. Rocha, 2002: Using a physical reference frame to study global circulation variability. J. Atmos. Sci., 59, 1490-1501. Liberato, M. L. R., J. M. Castanheira, L. da la Torre, C. C. DaCamara and L. Gimeno, 2007: Wave Energy Associated

  2. Statistical simulation of internal energy exchange in shock waves using explicit transition probabilities

    NASA Astrophysics Data System (ADS)

    Torres, Erik; Magin, Thierry

    2012-11-01

    A statistical model originally developed for electronic-translational energy transfer in atoms having multiple electronic states (Anderson et al, RGD15, 1986) is applied to the study of internal energy exchange in a polyatomic gas. The model is well-suited for gas kinetic simulations, because it provides an explicit expression for the transition probabilities between internal energy levels. All molecules possessing a given internal energy level are treated as a separate chemical species and all collisions involving exchange of internal energy thus become pseudo-chemical reactions. Post-collision energy levels of the two partners are determined by conserving the total energy of the collision pair and taking into account detailed balance. In the present work, DSMC simulations of relaxation in a stationary gas are performed and compared to those obtained by Anderson et al. Additionally, we apply the model to the simulation of rotational relaxation behind a normal shock wave.

  3. On energy balance and the structure of radiated waves in kinetics of crystalline defects

    NASA Astrophysics Data System (ADS)

    Sharma, Basant Lal

    2016-11-01

    Traveling waves, with well-known closed form expressions, in the context of the defects kinetics in crystals are excavated further with respect to their inherent structure of oscillatory components. These are associated with, so called, Frenkel-Kontorova model with a piecewise quadratic substrate potential, corresponding to the symmetric as well as asymmetric energy wells of the substrate, displacive phase transitions in bistable chains, and brittle fracture in triangular lattice strips under mode III conditions. The paper demonstrates that the power expended theorem holds so that the sum of rate of working and the rate of total energy flux into a control strip moving steadily with the defect equals the rate of energy sinking into the defect, in the sense of N.F. Mott. In the conservative case of the Frenkel-Kontorova model with asymmetric energy wells, this leads to an alternative expression for the mobility in terms of the energy flux through radiated lattice waves. An application of the same to the case of martensitic phase boundary and a crack, propagating uniformly in bistable chains and triangular lattice strips, respectively, is also provided and the energy release is expressed in terms of the radiated energy flux directly. The equivalence between the well-known expressions and their alternative is established via an elementary identity, which is stated and proved in the paper as the zero lemma. An intimate connection between the three distinct types of defects is, thus, revealed in the framework of energy balance, via a structural similarity between the corresponding variants of the 'zero' lemma containing the information about radiated energy flux. An extension to the dissipative models, in the presence of linear viscous damping, is detailed and analog of the zero lemma is proved. The analysis is relevant to the dynamics of dislocations, brittle cracks, and martensitic phase boundaries, besides possible applications to analogous physical contexts which are

  4. Investigation of Wave Energy Converter Effects on the Nearshore Environment: A Month-Long Study in Monterey Bay CA.

    SciTech Connect

    Roberts, Jesse D.; Chang, Grace; Magalen, Jason; Jones, Craig

    2014-09-01

    A modified version of an indust ry standard wave modeling tool, SNL - SWAN, was used to perform model simulations for hourly initial wave conditio ns measured during the month of October 2009. The model was run with an array of 50 wave energy converters (WECs) and compared with model runs without WECs. Maximum changes in H s were found in the lee of the WEC array along the angles of incident wave dire ction and minimal changes were found along the western side of the model domain due to wave shadowing by land. The largest wave height reductions occurred during observed typhoon conditions and resulted in 14% decreases in H s along the Santa Cruz shoreline . Shoreline reductions in H s were 5% during s outh swell wave conditions and negligible during average monthly wave conditions.

  5. High-energy effective action from scattering of QCD shock waves

    SciTech Connect

    Ian Balitsky

    2005-07-01

    At high energies, the relevant degrees of freedom are Wilson lines - infinite gauge links ordered along straight lines collinear to the velocities of colliding particles. The effective action for these Wilson lines is determined by the scattering of QCD shock waves. I develop the symmetric expansion of the effective action in powers of strength of one of the shock waves and calculate the leading term of the series. The corresponding first-order effective action, symmetric with respect to projectile and target, includes both up and down fan diagrams and pomeron loops.

  6. High-energy effective action from scattering of QCD shock waves

    SciTech Connect

    Ian Balitsky

    2005-05-15

    At high energies, the relevant degrees of freedom are Wilson lines - infinite gauge links ordered along straight lines collinear to the velocities of colliding particles. The effective action for these Wilson lines is determined by the scattering of QCD shock waves. I develop the symmetric expansion of the effective action in powers of strength of one of the shock waves and calculate the leading term of the series. The corresponding first-order effective action, symmetric with respect to projectile and target, includes both up and down fan diagrams and pomeron loops.

  7. High-energy effective action from scattering of QCD shock waves

    SciTech Connect

    Ian Balitsky

    2005-10-25

    At high energies, the relevant degrees of freedom are Wilson lines--infinite gauge links ordered along straight lines collinear to the velocities of colliding particles. The effective action for these Wilson lines is determined by the scattering of QCD shock waves. I develop the symmetric expansion of the effective action in powers of strength of one of the shock waves and calculate the leading term of the series. The corresponding first-order effective action, symmetric with respect to the projectile and target, includes both up and down fan diagrams and pomeron loops.

  8. High-energy effective action from scattering of QCD shock waves

    SciTech Connect

    Ian Balitsky

    2007-01-01

    At high energies, the relevant degrees of freedom are Wilson lines--infinite gauge links ordered along straight lines collinear to the velocities of colliding particles. The effective action for these Wilson lines is determined by the scattering of QCD shock waves. I develop the symmetric expansion of the effective action in powers of strength of one of the shock waves and calculate the leading term of the series. The corresponding first-order effective action, symmetric with respect to projectile and target, includes both up and down fan diagrams and pomeron loops.

  9. High-energy effective action from scattering of QCD shock waves

    SciTech Connect

    Ian Balitsky

    2005-06-16

    At high energies, the relevant degrees of freedom are Wilson lines - infinite gauge links ordered along straight lines collinear to the velocities of colliding particles. The effective action for these Wilson lines is determined by the scattering of QCD shock waves. I develop the symmetric expansion of the effective action in powers of strength of one of the shock waves and calculate the leading term of the series. The corresponding first-order effective action, symmetric with respect to projectile and target, includes both up and down fan diagrams and pomeron loops.

  10. Observations of the directional distribution of the wind energy input function over swell waves

    NASA Astrophysics Data System (ADS)

    Shabani, Behnam; Babanin, Alex V.; Baldock, Tom E.

    2016-02-01

    Field measurements of wind stress over shallow water swell traveling in different directions relative to the wind are presented. The directional distribution of the measured stresses is used to confirm the previously proposed but unverified directional distribution of the wind energy input function. The observed wind energy input function is found to follow a much narrower distribution (β∝cos⁡3.6θ) than the Plant (1982) cosine distribution. The observation of negative stress angles at large wind-wave angles, however, indicates that the onset of negative wind shearing occurs at about θ≈ 50°, and supports the use of the Snyder et al. (1981) directional distribution. Taking into account the reverse momentum transfer from swell to the wind, Snyder's proposed parameterization is found to perform exceptionally well in explaining the observed narrow directional distribution of the wind energy input function, and predicting the wind drag coefficients. The empirical coefficient (ɛ) in Snyder's parameterization is hypothesised to be a function of the wave shape parameter, with ɛ value increasing as the wave shape changes between sinusoidal, sawtooth, and sharp-crested shoaling waves.

  11. The wave energy flux of high frequency diffracting beams in complex geometrical optics

    NASA Astrophysics Data System (ADS)

    Maj, Omar; Mariani, Alberto; Poli, Emanuele; Farina, Daniela

    2013-04-01

    We consider the construction of asymptotic solutions of Maxwell's equations for a diffracting wave beam in the high frequency limit and address the description of the wave energy flux transported by the beam. With this aim, the complex eikonal method is applied. That is a generalization of the standard geometrical optics method in which the phase function is assumed to be complex valued, with the non-negative imaginary part accounting for the finite width of the beam cross section. In this framework, we propose an argument which simplifies significantly the analysis of the transport equation for the wave field amplitude and allows us to derive the wave energy flux. The theoretical analysis is illustrated numerically for the case of electron cyclotron beams in tokamak plasmas by using the GRAY code [D. Farina, Fusion Sci. Technol. 52, 154 (2007)], which is based upon the complex eikonal theory. The results are compared to those of the paraxial beam tracing code TORBEAM [E. Poli et al., Comput. Phys. Commun. 136, 90 (2001)], which provides an independent calculation of the energy flow.

  12. Self Adaptive Air Turbine for Wave Energy Conversion Using Shutter Valve and OWC Heoght Control System

    SciTech Connect

    Di Bella, Francis A

    2014-09-29

    An oscillating water column (OWC) is one of the most technically viable options for converting wave energy into useful electric power. The OWC system uses the wave energy to “push or pull” air through a high-speed turbine, as illustrated in Figure 1. The turbine is typically a bi-directional turbine, such as a Wells turbine or an advanced Dennis-Auld turbine, as developed by Oceanlinx Ltd. (Oceanlinx), a major developer of OWC systems and a major collaborator with Concepts NREC (CN) in Phase II of this STTR effort. Prior to awarding the STTR to CN, work was underway by CN and Oceanlinx to produce a mechanical linkage mechanism that can be cost-effectively manufactured, and can articulate turbine blades to improve wave energy capture. The articulation is controlled by monitoring the chamber pressure. Funding has been made available from the U.S. Department of Energy (DOE) to CN (DOE DE-FG-08GO18171) to co-share the development of a blade articulation mechanism for the purpose of increasing energy recovery. However, articulating the blades is only one of the many effective design improvements that can be made to the composite subsystems that constitute the turbine generator system.

  13. Effective gravitational wave stress-energy tensor in alternative theories of gravity

    SciTech Connect

    Stein, Leo C.; Yunes, Nicolas

    2011-03-15

    The inspiral of binary systems in vacuum is controlled by the stress-energy of gravitational radiation and any other propagating degrees of freedom. For gravitational waves, the dominant contribution is characterized by an effective stress-energy tensor at future null infinity. We employ perturbation theory and the short-wavelength approximation to compute this stress-energy tensor in a wide class of alternative theories. We find that this tensor is generally a modification of that first computed by Isaacson, where the corrections can dominate over the general relativistic term. In a wide class of theories, however, these corrections identically vanish at asymptotically flat, future, null infinity, reducing the stress-energy tensor to Isaacson's. We exemplify this phenomenon by first considering dynamical Chern-Simons modified gravity, which corrects the action via a scalar field and the contraction of the Riemann tensor and its dual. We then consider a wide class of theories with dynamical scalar fields coupled to higher-order curvature invariants and show that the gravitational wave stress-energy tensor still reduces to Isaacson's. The calculations presented in this paper are crucial to perform systematic tests of such modified gravity theories through the orbital decay of binary pulsars or through gravitational wave observations.

  14. Feedbacks Between Wave Energy And Declining Coral Reef Structure: Implications For Coastal Morphodynamics

    NASA Astrophysics Data System (ADS)

    Grady, A. E.; Jenkins, C. J.; Moore, L. J.; Potts, D. C.; Burgess, P. M.; Storlazzi, C. D.; Elias, E.; Reidenbach, M. A.

    2013-12-01

    The incident wave energy dissipated by the structural complexity and bottom roughness of coral reef ecosystems, and the carbonate sediment produced by framework-building corals, provide natural shoreline protection and nourishment, respectively. Globally, coral reef ecosystems are in decline as a result of ocean warming and acidification, which is exacerbated by chronic regional stressors such as pollution and disease. As a consequence of declining reef health, many reef ecosystems are experiencing reduced coral cover and shifts to dominance by macroalgae, resulting in a loss of rugosity and thus hydrodynamic roughness. As coral reef architecture is compromised and carbonate skeletons are eroded, wave energy dissipation and sediment transport patterns--along with the carbonate sediment budget of the coastal environment--may be altered. Using a Delft3D numerical model of the south-central Molokai, Hawaii, fringing reef, we simulate the effects of changing reef states on wave energy and sediment transport. To determine the temporally-varying effects of biotic and abiotic stressors such as storms and bleaching on the reef structure and carbonate production, we couple Delft3D with CarboLOT, a model that simulates growth and competition of carbonate-producing organisms. CarboLOT is driven by the Lotka-Volterra population ecology equations and niche suitability principles, and accesses the CarboKB database for region-specific, carbonate-producing species information on growth rates, reproduction patterns, habitat suitability, as well as organism geometries. Simulations assess how changing reef states--which alter carbonate sediment production and reef morphology and thus hydrodynamic roughness--impact wave attenuation and sediment transport gradients along reef-fronted beaches. Initial results suggest that along fringing reefs having characteristics similar to the Molokai fringing reef, projected sea level rise will likely outpace coral reef accretion, and the increased

  15. Assessment of U.S. Energy Wave Resources: Cooperative Research and Development Final Report, CRADA Number CRD-09-328

    SciTech Connect

    Scott, G.

    2012-06-01

    In terms of extractable wave energy resource for our preliminary assessment, the EPRI/National Renewable Energy Laboratory (NREL) assumed that 15% of the available resource could be extracted based on societal constraints of a 30% coverage of the coastline with a 50% efficient wave energy absorbing device. EPRI recognizes that much work needs to be done to better define the extractable resource and we have outlined a comprehensive approach to doing this in our proposed scope of work, along with specific steps for refining our estimate of the available wave energy resources.

  16. Proposed continuous wave energy recovery operation of an XFEL

    SciTech Connect

    J. Sekutowicz; S. A. Bogacz; D. Douglas; P. Kneisel; G. P. Williams; M. Ferrario; L. Serafini; I. Ben-Zvi; J. Rose; J. Smedley; T. Srinivasan-Rao; W.-D. Moeller; B. Petersen; D. Proch; S. Simrock; P. Colestock; J. B. Rosenzweig

    2004-05-01

    Commissioning of two large coherent light facilities at SLAC and DESY should begin in 2008 and in 2011 respectively. In this paper we look further into the future, hoping to answer, in a very preliminary way, two questions. First: ''What will the next generation of XFEL facilities look like?'' Believing that superconducting technology offers advantages such as high quality beams with highly populated bunches, the possibility of energy recovery and higher overall efficiency than warm technology, we focus this preliminary study on the superconducting option. From this belief the second question arises: ''What modifications in superconducting technology and in the machine design are needed, as compared to the present DESY XFEL, and what kind of R&D program should be proposed to arrive in the next few years at a technically feasible solution with even higher brilliance and increased overall conversion of AC power to photon beam power?'' In this paper we will very often refer to and profit from the DESY XFEL design, acknowledging its many technically innovative solutions.

  17. Continuous wave energy recovery operation of an XFEL

    SciTech Connect

    Jacek Sekutowicz; S. A. Bogacz; D. Douglas; Peter Kneisel; G. P. Williams; M. Ferrario; L. Serafini; I. Ben-Zvi; J. Rose; T. Srinivasan-Rao; W.-D. Mueller; B. Petersen; D. Proch; S.Simrock; P. Colestock; J. B. Rosenzweig

    2003-12-01

    Commissioning of two large coherent light facilities at SLAC and DESY should begin in 2008 and in 2011 respectively. In this paper we look further into the future, hoping to answer, in a very preliminary way, two questions. First: ''What will the next generation of XFEL facilities look like?'' Believing that superconducting technology offers advantages such as high quality beams with highly populated bunches, the possibility of energy recovery and higher overall efficiency than warm technology, we focus this preliminary study on the superconducting option. From this belief the second question arises: ''What modifications in superconducting technology and in the machine design are needed, as compared to the present DESY XFEL, and what kind of R&D program should be proposed to arrive in the next few years at a technically feasible solution with even higher brilliance and increased overall conversion of AC power to photon beam power?'' In this paper we will very often refer to and profit from the DESY XFEL design, acknowledging its many technically innovative solutions.

  18. A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys

    PubMed Central

    Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H. Felix

    2015-01-01

    The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system’s functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements. PMID:26404270

  19. A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys.

    PubMed

    Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H Felix

    2015-09-25

    The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system's functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements.

  20. A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys.

    PubMed

    Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H Felix

    2015-01-01

    The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system's functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements. PMID:26404270

  1. The detection of upwardly propagating waves channeling energy from the chromosphere to the low corona

    SciTech Connect

    Freij, N.; Nelson, C. J.; Mumford, S.; Erdélyi, R.; Scullion, E. M.; Wedemeyer, S.

    2014-08-10

    There have been ubiquitous observations of wave-like motions in the solar atmosphere for decades. Recent improvements to space- and ground-based observatories have allowed the focus to shift to smaller magnetic structures on the solar surface. In this paper, high-resolution ground-based data taken using the Swedish 1 m Solar Telescope is combined with co-spatial and co-temporal data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) satellite to analyze running penumbral waves (RPWs). RPWs have always been thought to be radial wave propagation that occurs within sunspots. Recent research has suggested that they are in fact upwardly propagating field-aligned waves (UPWs). Here, RPWs within a solar pore are observed for the first time and are interpreted as UPWs due to the lack of a penumbra that is required to support RPWs. These UPWs are also observed co-spatially and co-temporally within several SDO/AIA elemental lines that sample the transition region and low corona. The observed UPWs are traveling at a horizontal velocity of around 17 ± 0.5 km s{sup –1} and a minimum vertical velocity of 42 ± 21 km s{sup –1}. The estimated energy of the waves is around 150 W m{sup –2}, which is on the lower bound required to heat the quiet-Sun corona. This is a new, yet unconsidered source of wave energy within the solar chromosphere and low corona.

  2. Multilevel fusion exploitation

    NASA Astrophysics Data System (ADS)

    Lindberg, Perry C.; Dasarathy, Belur V.; McCullough, Claire L.

    1996-06-01

    This paper describes a project that was sponsored by the U.S. Army Space and Strategic Defense Command (USASSDC) to develop, test, and demonstrate sensor fusion algorithms for target recognition. The purpose of the project was to exploit the use of sensor fusion at all levels (signal, feature, and decision levels) and all combinations to improve target recognition capability against tactical ballistic missile (TBM) targets. These algorithms were trained with simulated radar signatures to accurately recognize selected TBM targets. The simulated signatures represent measurements made by two radars (S-band and X- band) with the targets at a variety of aspect and roll angles. Two tests were conducted: one with simulated signatures collected at angles different from those in the training database and one using actual test data. The test results demonstrate a high degree of recognition accuracy. This paper describes the training and testing techniques used; shows the fusion strategy employed; and illustrates the advantages of exploiting multi-level fusion.

  3. Studies on the high-energy follow-up of gravitational wave transient events

    NASA Astrophysics Data System (ADS)

    Razzano, Massimiliano; Patricelli, Barbara; Cella, Giancarlo; Fidecaro, Francesco; Pian, Elena; Stamerra, Antonio; Branchesi, Marica

    2016-05-01

    Second-generation gravitational wave interferometers, such as Advanced LIGO and Advanced Virgo, will soon reach sensitivities sufficient to first detect gravitational waves and open a new era in the multi-messenger investigations of the cosmos. The most violent and energetic astrophysical phenomena, including the mergers of compact objects or the core collapse of massive stars, are promising sources of gravitational waves, and are thought to be connected with transient phenomena such as Gamma Ray Bursts and supernovae. Combined observations of gravitational and electromagnetic signals from these events will thus provide a unique opportunity to unveil their progenitors and study the physics of compact objects. In particular, gamma-ray ground-based and space observatories such as Fermi or the Air Cherenkov Telescopes will be crucial to observe the high-energy electromagnetic counterparts of transient gravitational wave signals and provide a robust identification based on a precise sky localization. We will report on our studies of possible joint observation strategies carried on by gravitational interferometers and gamma-ray telescopes, with particular attention to the high-energy follow-up of Gamma Ray Bursts.

  4. Dynamics of nonlinear snap--through chains with application to energy harvesting and wave propagation

    NASA Astrophysics Data System (ADS)

    Panigrahi, Smruti Ranjan

    converted a 0.1 Hz input oscillation into 2.5 Hz output oscillation, a 25 times frequency up-conversion. The second part of this dissertation focuses on the dispersive nature of the waves in one dimensional nonlinear chains with weak nonlinearity. For metamaterial design, it is important to study the wave dispersion properties in the material for channeling energy in a desired direction or to build frequency-selective materials. In nonlinear structures there are various design parameters that can be tuned to produce desirable properties. The motivation of the wave propagation analysis is to understand the quadratic and cubic nonlinearity effects on the wave propagation behavior in an uniform periodic chain. Here the dispersion properties are studied through a multiple-scales perturbation approach for weakly nonlinear periodic media. Wave speed, cut-off frequencies, and wave-wave interaction characteristics are presented. The results show significant effect of quadratic nonlinearities in the dispersion characteristics of the waves in the chain.

  5. Performance of arrays of direct-driven wave energy converters under optimal power take-off damping

    NASA Astrophysics Data System (ADS)

    Wang, Liguo; Engström, Jens; Leijon, Mats; Isberg, Jan

    2016-08-01

    It is well known that the total power converted by a wave energy farm is influenced by the hydrodynamic interactions between wave energy converters, especially when they are close to each other. Therefore, to improve the performance of a wave energy farm, the hydrodynamic interaction between converters must be considered, which can be influenced by the power take-off damping of individual converters. In this paper, the performance of arrays of wave energy converters under optimal hydrodynamic interaction and power take-off damping is investigated. This is achieved by coordinating the power take-off damping of individual converters, resulting in optimal hydrodynamic interaction as well as higher production of time-averaged power converted by the farm. Physical constraints on motion amplitudes are considered in the solution, which is required for the practical implementation of wave energy converters. Results indicate that the natural frequency of a wave energy converter under optimal damping will not vary with sea states, but the production performance of a wave energy farm can be improved significantly while satisfying the motion constraints.

  6. On an energy-latitude dispersion pattern of ion precipitation potentially associated with magnetospheric EMIC waves

    NASA Astrophysics Data System (ADS)

    Liang, Jun; Donovan, E.; Ni, B.; Yue, C.; Jiang, F.; Angelopoulos, V.

    2014-10-01

    Ion precipitation mechanisms are usually energy dependent and contingent upon magnetospheric/ionospheric locations. Therefore, the pattern of energy-latitude dependence of ion precipitation boundaries seen by low Earth orbit satellites can be implicative of the mechanism(s) underlying the precipitation. The pitch angle scattering of ions led by the field line curvature, a well-recognized mechanism of ion precipitation in the central plasma sheet (CPS), leads to one common pattern of energy-latitude dispersion, in that the ion precipitation flux diminishes at higher (lower) latitudes for protons with lower (higher) energies. In this study, we introduce one other systematically existing pattern of energy-latitude dispersion of ion precipitation, in that the lower energy ion precipitation extends to lower latitude than the higher-energy ion precipitation. Via investigating such a "reversed" energy-latitude dispersion pattern, we explore possible mechanisms of ion precipitation other than the field line curvature scattering. We demonstrate via theories and simulations that the H-band electromagnetic ion cyclotron (EMIC) wave is capable of preferentially scattering keV protons in the CPS and potentially leads to the reversed energy-latitude dispersion of proton precipitation. We then present detailed event analyses and provide support to a linkage between the EMIC waves in the equatorial CPS and ion precipitation events with reversed energy-latitude dispersion. We also discuss the role of ion acceleration in the topside ionosphere which, together with the CPS ion population, may result in a variety of energy-latitude distributions of the overall ion precipitation.

  7. A dynamometer set up for simulation of a wave energy operated Wells turbine

    SciTech Connect

    Narayanan, S.S.Y.; Bose, S.

    1995-12-31

    The present trend in the world is to go for ecologically friendly methods of power generation. In this paper a dynamometer set up simulating a wave energy driven Wells turbine with proper scaling is proposed. This is a new dynamic drive test set up for evaluation of alternative generator configurations. Open loop and closed loop (P, PI and PLL controllers with speed and current feedbacks) studies are carried out on the set up. The references used as input in the closed loop simulations, vary dynamically as the data recorded at the site. The behavior of a typical wave energy operated Wells turbine is studied and simulations are also carried out with axial velocity given as input. Both steady state and d-q theory approaches are used for the modeling of the load induction generator feeding power to the grid.

  8. Experimental Investigation of the Power Generation Performance of Floating-Point Absorber Wave Energy Systems: Preprint

    SciTech Connect

    Li, Y.; Yu, Y.; Epler, J.; Previsic, M.

    2012-04-01

    The extraction of energy from ocean waves has gained interest in recent years. The floating-point absorber (FPA) is one of the most promising devices among a wide variety of wave energy conversion technologies. Early theoretical studies mainly focused on understanding the hydrodynamics of the system and on predicting the maximum power that could be extracted by a heaving body. These studies evolve from the investigation of floating-body interactions in offshore engineering and naval architecture disciplines. To our best knowledge, no systematic study has been reported about the investigation of the power generation performance of an FPA with a close-to-commercial design. A series of experimental tests was conducted to investigate the power extraction performance of an FPA system.

  9. Unusual characteristics of electromagnetic waves excited by cometary newborn ions with large perpendicular energies

    NASA Technical Reports Server (NTRS)

    Brinca, A. L.; Tsurutani, B. T.

    1987-01-01

    The characteristics of electromagnetic waves excited by cometary newborn ions with large perpendicular energies are examined using a model of solar wind permeated by dilute drifting ring distributions of electrons and oxygen ions with finite thermal spreads. The model has parameters compatible with the ICE observations at the Giacobini-Zinner comet. It is shown that cometary newborn ions with large perpendicular energies can excite a wave mode with rest frame frequencies in the order of the heavy ion cyclotron frequency, Omega(i), and unusual propagation characteristics at small obliquity angles. For parallel propagation, the mode is left-hand circularly polarized, might be unstable in a frequency range containing Omega(i), and moves in the direction of the newborn ion drift along the static magnetic field.

  10. Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments

    SciTech Connect

    Čada, Glenn F.

    2007-04-01

    A new generation of hydropower technologies, the kinetic hydro and wave energy conversion devices, offers the possibility of generating electricity from the movements of water, without the need for dams and diversions. The Energy Policy Act of 2005 encouraged the development of these sources of renewable energy in the United States, and there is growing interest in deploying them globally. The technologies that would extract electricity from free-flowing streams, estuaries, and oceans have not been widely tested. Consequently, the U.S. Department of Energy convened a workshop to (1) identify the varieties of hydrokinetic energy and wave energy conversion devices and their stages of development, (2) identify where these technologies can best operate, (3) identify the potential environmental issues associated with these technologies and possible mitigation measures, and (4) develop a list of research needs and/or practical solutions to address unresolved environmental issues. The article reviews the results of that workshop, focusing on potential effects on freshwater, estuarine, and marine ecosystems, and we describe recent national and international developments.

  11. Ultra-high-energy cosmic ray acceleration by relativistic blast waves

    NASA Astrophysics Data System (ADS)

    Gallant, Yves A.; Achterberg, Abraham

    1999-05-01

    We consider the acceleration of charged particles at the ultrarelativistic shocks, with Lorentz factors Gamma_s>>1 relative to the upstream medium, arising in relativistic fireball models of gamma-ray bursts (GRBs). We show that for Fermi-type shock acceleration, particles initially isotropic in the upstream medium can gain a factor of order Gamma_s^2 in energy in the first shock-crossing cycle, but that the energy gain factor for subsequent shock-crossing cycles is only of order 2, because for realistic deflection processes particles do not have time to become isotropic upstream before recrossing the shock. We evaluate the maximum energy attainable and the efficiency of this process, and show that for a GRB fireball expanding into a typical interstellar medium, these exclude the production of ultra-high-energy cosmic rays (UHECRs), with energies in the range 10^18.5-10^20.5 eV, by the blast wave. However, we propose that in the context of neutron-star binaries as the progenitors of GRBs, relativistic ions from the pulsar-wind bubbles produced by these systems could be accelerated by the blast wave. We show that if the known binary pulsars are typical, the maximum energy, efficiency, and spectrum in this case can account for the observed population of UHECRs.

  12. Biotechnological exploitation of microalgae.

    PubMed

    Gangl, Doris; Zedler, Julie A Z; Rajakumar, Priscilla D; Martinez, Erick M Ramos; Riseley, Anthony; Włodarczyk, Artur; Purton, Saul; Sakuragi, Yumiko; Howe, Christopher J; Jensen, Poul Erik; Robinson, Colin

    2015-12-01

    Microalgae are a diverse group of single-cell photosynthetic organisms that include cyanobacteria and a wide range of eukaryotic algae. A number of microalgae contain high-value compounds such as oils, colorants, and polysaccharides, which are used by the food additive, oil, and cosmetic industries, among others. They offer the potential for rapid growth under photoautotrophic conditions, and they can grow in a wide range of habitats. More recently, the development of genetic tools means that a number of species can be transformed and hence used as cell factories for the production of high-value chemicals or recombinant proteins. In this article, we review exploitation use of microalgae with a special emphasis on genetic engineering approaches to develop cell factories, and the use of synthetic ecology approaches to maximize productivity. We discuss the success stories in these areas, the hurdles that need to be overcome, and the potential for expanding the industry in general.

  13. The Geohazards Exploitation Platform

    NASA Astrophysics Data System (ADS)

    Laur, Henri; Casu, Francesco; Bally, Philippe; Caumont, Hervé; Pinto, Salvatore

    2016-04-01

    The Geohazards Exploitation Platform, or Geohazards TEP (GEP), is an ESA originated R&D activity of the EO ground segment to demonstrate the benefit of new technologies for large scale processing of EO data. This encompasses on-demand processing for specific user needs, systematic processing to address common information needs of the geohazards community, and integration of newly developed processors for scientists and other expert users. The platform supports the geohazards community's objectives as defined in the context of the International Forum on Satellite EO and Geohazards organised by ESA and GEO in Santorini in 2012. The GEP is a follow on to the Supersites Exploitation Platform (SSEP) an ESA initiative to support the Geohazards Supersites & Natural Laboratories initiative (GSNL). Today the GEP allows to exploit 70+ Terabyte of ERS and ENVISAT archive and the Copernicus Sentinel-1 data available on line. The platform has already engaged 22 European early adopters in a validation activity initiated in March 2015. Since September, this validation has reached 29 single user projects. Each project is concerned with either integrating an application, running on demand processing or systematically generating a product collection using an application available in the platform. The users primarily include 15 geoscience centres and universities based in Europe: British Geological Survey (UK), University of Leeds (UK), University College London (UK), ETH University of Zurich (CH), INGV (IT), CNR-IREA and CNR-IRPI (IT), University of L'Aquila (IT), NOA (GR), Univ. Blaise Pascal & CNRS (FR), Ecole Normale Supérieure (FR), ISTERRE / University of Grenoble-Alpes (FR). In addition, there are users from Africa and North America with the University of Rabat (MA) and the University of Miami (US). Furthermore two space agencies and four private companies are involved: the German Space Research Centre DLR (DE), the European Space Agency (ESA), Altamira Information (ES

  14. Exploiting Endocytosis for Nanomedicines

    PubMed Central

    Akinc, Akin; Battaglia, Giuseppe

    2013-01-01

    In this article, we briefly review the endocytic pathways used by cells, pointing out their defining characteristics and highlighting physical limitations that may direct the internalization of nanoparticles to a subset of these pathways. A more detailed description of these pathways is presented in the literature. We then focus on the endocytosis of nanomedicines and present how various nanomaterial parameters impact these endocytic processes. This topic is an area of active research, motivated by the recognition that an improved understanding of how nanomaterials interact at the molecular, cellular, and whole-organism level will lead to the design of better nanomedicines in the future. Next, we briefly review some of the important nanomedicines already on the market or in clinical development that serve to exemplify how endocytosis can be exploited for medical benefit. Finally, we present some key unanswered questions and remaining challenges to be addressed by the field. PMID:24186069

  15. Observations of wave-driven surf-zone dynamics on a high-energy beach, Ocean Beach, San Francisco

    NASA Astrophysics Data System (ADS)

    Jones, I. S.; Janssen, T. T.; Hansen, J. E.; Barnard, P.

    2010-12-01

    Alongshore variations in wave energy, currents and water depth affect wave-driven surf-zone hydrodynamics and are important for near-shore transport processes and beach evolution. These processes are not that well understood, in part because most earlier field studies were conducted in areas characterized by alongshore-uniform conditions and moderate incident wave energy. In this study, we present observations of the surf zone circulation at Ocean Beach, San Francisco, an area characterized by energetic wave conditions (near-shore wave heights can exceed 10 m), strong tidal currents (> 1 m/s alongshore), refractive wave focusing, and alongshore inhomogeneity of the incident wave field. The experiment was specifically designed to capture the effects of spatially inhomogeneous wave fields and to quantify the contribution of the pressure gradient to the alongshore momentum balance. The data set includes detailed pressure, current, and wave measurements from a two-week long experiment at Ocean Beach, including a wide range of wave (significant wave heights of 1-5 m) and wind conditions. In the analysis, the various terms of the mean-flow momentum balance have been extracted from observations. The momentum balance will be evaluated to determine the comparative role of wave-induced set-up and radiation stress gradients in driving circulation. We will present the field experiment set-up, time series of the bulk wave statistics over the duration of the experiment and a surf-zone momentum analysis to identify the role of wave inhomogeneity on the near-shore circulation. This experiment and research is funded by the U. S. Geological Survey.

  16. Determining the Importance of Energy Transfer between Magnetospheric Regions via MHD Waves using Constellations of Spacecraft

    NASA Technical Reports Server (NTRS)

    Cattell, Cynthia A.

    2004-01-01

    This grant was focused on research in two specific areas: (1) development of new techniques and software for assimilation, analysis and visualization of data from multiple satellites making in-situ measurements; and (2) determination of the role of MHD waves in energy transport during storms and substorms. Results were obtained in both areas and presented at national meetings and in publications. The talks and papers that were supported in part or fully by this grant are listed in this paper.

  17. Low and High Energy Electron Velocity Distributions During Wave-Particle Interaction Events

    NASA Astrophysics Data System (ADS)

    Roeder, J. L.; Fennell, J. F.; Claudepierre, S. G.; Blake, J. B.; Spence, H. E.; Friedel, R. H.

    2015-12-01

    Several wave-particle interaction events have been detected by the Magnetic Electron Ion Spectrometer (MagEIS) instrument on the Van Allen Probes. Most of these occur during the recovery of electron injections by substorm activity. One example reported by Fennell et al [2014] occurred on January 13, 2013. The high resolution mode on MagEIS, with up to 1000 samples per spacecraft spin, provided very detailed pitch angle data for a few energy channels. This data showed quasiperiodic bursts of 30-40 keV electrons at oblique pitch angles that correlate with simultaneously detected emissions of whistler-mode, upper-band chorus. The electron bursts were superimposed on a pre-existing trapped electron distributions at that energy that were of the form sinn α, where α is the pitch angle and the exponent n is approximately 0.8. The data from the Helium, Oxygen, Proton and Electron (HOPE) instrument was investigated to determine if the electron distributions at lower energy were anisotropic. An electron population with high perpendicular anisotropy could provide free energy for the generation of the observed waves. In this case, only small amounts of anisotropy were observed by HOPE. This could indicate that the wave-particle interaction could be some distance away from the Van Allen Probes. But this conclusion appears inconsistent with the electron and the waves arriving simultaneously at the spacecraft for several bursts, despite traveling at different speeds. The result will be discussed and compared with theories and models of such interactions.

  18. Electrostatic and kinetic energies in the wake wave of a short laser pulse

    SciTech Connect

    Teychenne, D.; Bonnaud, G. ); Bobin, J. )

    1994-06-01

    The electrostatic and kinetic energies available in the longitudinal electron plasma wave created in the wake of an ultraintense laser pulse are obtained analytically. The analysis is one dimensional and assumes a square-shaped pulse that propagates in a highly underdense plasma with the velocity of light in vacuum. The length scale for laser depletion is given as a function of the laser irradiance and the electron density.

  19. Spin-wave energy dispersion of a frustrated spin-½ Heisenberg antiferromagnet on a stacked square lattice.

    PubMed

    Majumdar, Kingshuk

    2011-03-23

    The effects of interlayer coupling and spatial anisotropy on the spin-wave excitation spectra of a three-dimensional spatially anisotropic, frustrated spin-½ Heisenberg antiferromagnet (HAFM) are investigated for the two ordered phases using second-order spin-wave expansion. We show that the second-order corrections to the spin-wave energies are significant and find that the energy spectra of the three-dimensional HAFM have similar qualitative features to the energy spectra of the two-dimensional HAFM on a square lattice. We also discuss the features that can provide experimental measures for the strength of the interlayer coupling, spatial anisotropy parameter, and magnetic frustration.

  20. Image exploitation for MISAR

    NASA Astrophysics Data System (ADS)

    Heinze, N.; Edrich, M.; Saur, G.; Krüger, W.

    2007-04-01

    The miniature SAR-system MiSAR has been developed by EADS Germany for lightweight UAVs like the LUNASystem. MiSAR adds to these tactical UAV-systems the all-weather reconnaissance capability, which is missing until now. Unlike other SAR sensors, that produce large strip maps at update rates of several seconds, MiSAR generates sequences of SAR images with approximately 1 Hz frame rate. photo interpreters (PI) of tactical drones, now mainly experienced with visual interpretation, are not used to SARimages, especially not with SAR-image sequence characteristics. So they should be supported to improve their ability to carry out their task with a new, demanding sensor system. We have therefore analyzed and discussed with military PIs in which task MiSAR can be used and how the PIs can be supported by special algorithms. We developed image processing- and exploitation-algorithms for such SAR-image sequences. A main component is the generation of image sequence mosaics to get more oversight. This mosaicing has the advantage that also non straight /linear flight-paths and varying squint angles can be processed. Another component is a screening-component for manmade objects to mark regions of interest in the image sequences. We use a classification based approach, which can be easily adapted to new sensors and scenes. These algorithms are integrated into an image exploitation system to improve the image interpreters ability to get a better oversight, better orientation and helping them to detect relevant objects, especially considering long endurance reconnaissance missions.

  1. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data.

    SciTech Connect

    Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-10-01

    This report presents met - ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites . Its purpose is to enable the compari son of wave resource characteristics among sites as well as the select io n of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives . It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and op eration s and maintenance. For each site, this report catalogues wave statistics recommended in the (draft) International Electrotechnical Commission Technical Specification (IEC 62600 - 101 TS) on Wave Energy Characterization, as well as the frequency of oc currence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services .

  2. Influence of ambient air pressure on the energy conversion of laser-breakdown induced blast waves

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2013-09-01

    Influence of ambient pressure on energy conversion efficiency from a Nd : glass laser pulse (λ = 1.053 µm) to a laser-induced blast wave was investigated at reduced pressure. Temporal incident and transmission power histories were measured using sets of energy meters and photodetectors. A half-shadowgraph half-self-emission method was applied to visualize laser absorption waves. Results show that the blast energy conversion efficiency ηbw decreased monotonically with the decrease in ambient pressure. The decrease was small, from 40% to 38%, for the pressure change from 101 kPa to 50 kPa, but the decrease was considerable, to 24%, when the pressure was reduced to 30 kPa. Compared with a TEA-CO2-laser-induced blast wave (λ = 10.6 µm), higher fraction absorption in the laser supported detonation regime ηLSD of 90% was observed, which is influenced slightly by the reduction of ambient pressure. The conversion fraction ηbw/ηLSD≈90% was achieved at pressure >50 kPa, which is significantly higher than that in a CO2 laser case.

  3. The Role of Energy Dispersion in the Genesis and Life Cycle of African Easterly Waves

    NASA Astrophysics Data System (ADS)

    Diaz, Michael

    This dissertation uses energy dispersion and wave packet concepts to provide a better conceptual model of the genesis and life cycle of African Easterly Waves and to better understand the instability of the African Easterly Jet (AEJ). The existence of an upstream (eastward) group velocity for AEWs is shown based on single-point lag regressions using gridded reanalysis data from 1990 to 2010. The eastward energy dispersion is consistent with the direction of ageostrophic geopotential flux vectors. A local eddy kinetic energy (EKE) budget reveals that, early in the life cycle of AEWs, growth rate due to geopotential flux convergence exceeds baroclinic and barotropic growth rates. Later in the life cycle, EKE decay due to geopotential flux divergence cancels or exceeds baroclinic and barotropic growth. A potential vorticity (PV) budget is used to diagnose tendencies related to group propagation. Although both upstream and downstream group speeds are possible because of the reversal in the mean meridional PV gradient, upstream propagation associated with the positive poleward PV gradient dominates wave packet evolution. Analogous to the concept of downstream development of midlatitude baroclinic waves, new AEWs develop preferentially upstream of the older ones, thus providing a mechanism for seeding new waves. The usefulness of upstream development as a genesis mechanism for AEWs is demonstrated by performing a case study of the AEW which ultimately produced hurricane Alberto (2000). The case study uses the ERA-interim reanalysis combined with surface observations and TRMM data. Using a local EKE budget, we attribute its genesis to energy dispersion from a preceding AEW. After genesis, baroclinic and barotropic conversion dominated the energetics of this AEW. Some strengths and weaknesses of upstream development as a paradigm for AEW genesis are discussed with respect to other potential mechanisms. The stability of the AEJ is examined applying the concept of absolute

  4. Effects of chemical fuel composition on energy generation from thermopower waves.

    PubMed

    Yeo, Taehan; Hwang, Hayoung; Jeong, Dong-Cheol; Lee, Kang Yeol; Hong, Jongsup; Song, Changsik; Choi, Wonjoon

    2014-11-01

    Thermopower waves, which occur during combustion within hybrid structures formed from nanomaterials and chemical fuels, result in a self-propagating thermal reaction and concomitantly generate electrical energy from the acceleration of charge carriers along the nanostructures. The hybrid structures for thermopower waves are composed of two primary components: the core thermoelectric material and the combustible fuel. So far, most studies have focused on investigating various nanomaterials for improving energy generation. Herein, we report that the composition of the chemical fuel used has a significant effect on the power generated by thermopower waves. Hybrid nanostructures consisting of mixtures of picric acid and picramide with sodium azide were synthesized and used to generate thermopower waves. A maximum voltage of ∼2 V and an average peak specific power as high as 15 kW kg(-1) were obtained using the picric acid/sodium azide/multiwalled carbon nanotubes (MWCNTs) array composite. The average reaction velocity and the output voltage in the case of the picric acid/sodium azide were 25 cm s(-1) and 157 mV, while they were 2 cm s(-1) and 3 mV, in the case of the picramide/sodium azide. These marked differences are attributable to the chemical and structural differences of the mixtures. Mixing picric acid and sodium azide in deionized water resulted in the formation of 2,4,6-trinitro sodium phenoxide and hydrogen azide (H-N3), owing to the exchange of H(+) and Na(+) ions, as well as the formation of fiber-like structures, because of benzene π stacking. The negative enthalpy of formation of the new compounds and the fiber-like structures accelerate the reaction and increase the output voltage. Elucidating the effects of the composition of the chemical fuel used in the hybrid nanostructures will allow for the control of the combustion process and help optimize the energy generated from thermopower waves, furthering the development of thermopower waves as an energy

  5. Beamed-Energy Propulsion (BEP): Considerations for Beaming High Energy-Density Electromagnetic Waves Through the Atmosphere

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2015-01-01

    A study to determine the feasibility of employing beamed electromagnetic energy for vehicle propulsion within and outside the Earth's atmosphere was co-funded by NASA and the Defense Advanced Research Projects Agency that began in June 2010 and culminated in a Summary Presentation in April 2011. A detailed report entitled "Beamed-Energy Propulsion (BEP) Study" appeared in February 2012 as NASA/TM-2012-217014. Of the very many nuances of this subject that were addressed in this report, the effects of transferring the required high energy-density electromagnetic fields through the atmosphere were discussed. However, due to the limitations of the length of the report, only a summary of the results of the detailed analyses were able to be included. It is the intent of the present work to make available the complete analytical modeling work that was done for the BEP project with regard to electromagnetic wave propagation issues. In particular, the present technical memorandum contains two documents that were prepared in 2011. The first one, entitled "Effects of Beaming Energy Through the Atmosphere" contains an overview of the analysis of the nonlinear problem inherent with the transfer of large amounts of energy through the atmosphere that gives rise to thermally-induced changes in the refractive index; application is then made to specific beamed propulsion scenarios. A brief portion of this report appeared as Appendix G of the 2012 Technical Memorandum. The second report, entitled "An Analytical Assessment of the Thermal Blooming Effects on the Propagation of Optical and Millimeter- Wave Focused Beam Waves For Power Beaming Applications" was written in October 2010 (not previously published), provides a more detailed treatment of the propagation problem and its effect on the overall characteristics of the beam such as its deflection as well as its radius. Comparisons are then made for power beaming using the disparate electromagnetic wavelengths of 1.06 microns and 2

  6. A maximum power point tracking algorithm for buoy-rope-drum wave energy converters

    NASA Astrophysics Data System (ADS)

    Wang, J. Q.; Zhang, X. C.; Zhou, Y.; Cui, Z. C.; Zhu, L. S.

    2016-08-01

    The maximum power point tracking control is the key link to improve the energy conversion efficiency of wave energy converters (WEC). This paper presents a novel variable step size Perturb and Observe maximum power point tracking algorithm with a power classification standard for control of a buoy-rope-drum WEC. The algorithm and simulation model of the buoy-rope-drum WEC are presented in details, as well as simulation experiment results. The results show that the algorithm tracks the maximum power point of the WEC fast and accurately.

  7. High-energy spin-density-wave correlated fluctuations in paramagnetic Cr + 5 at. % V

    SciTech Connect

    Werner, S.A.; Fawcett, E.; Elmiger, M.W.; Shirane, G.

    1992-11-01

    Measurements of the magnetic fluctuations, termed spin-density-wave (SDW) paramagnons, in the nearly antiferromagnetic alloy Cr + 5 at.%V are extended up in energy to about 80 MeV. These fluctuating spin-spin correlations occur at incommensurate positions, corresponding to the SDW wavevector Q. Their characteristic energy is at least an order of magnitude larger than that of the magnetic fluctuations seen in the paramagnetic phase of pure Cr, but their intensity is more than two orders of magnitude smaller. We find that the dynamic susceptibility decreases by about 50% between temperature T = 10K and 300K.

  8. High-energy spin-density-wave correlated fluctuations in paramagnetic Cr + 5 at. % V

    SciTech Connect

    Werner, S.A. . Dept. of Physics); Fawcett, E. . Dept. of Physics); Elmiger, M.W.; Shirane, G. )

    1992-01-01

    Measurements of the magnetic fluctuations, termed spin-density-wave (SDW) paramagnons, in the nearly antiferromagnetic alloy Cr + 5 at.%V are extended up in energy to about 80 MeV. These fluctuating spin-spin correlations occur at incommensurate positions, corresponding to the SDW wavevector Q. Their characteristic energy is at least an order of magnitude larger than that of the magnetic fluctuations seen in the paramagnetic phase of pure Cr, but their intensity is more than two orders of magnitude smaller. We find that the dynamic susceptibility decreases by about 50% between temperature T = 10K and 300K.

  9. Modulation of single quantum dot energy levels by a surface-acoustic-wave

    NASA Astrophysics Data System (ADS)

    Gell, J. R.; Ward, M. B.; Young, R. J.; Stevenson, R. M.; Atkinson, P.; Anderson, D.; Jones, G. A. C.; Ritchie, D. A.; Shields, A. J.

    2008-08-01

    This letter presents an experimental investigation into the effect of a surface-acoustic-wave (SAW) on the emission of a single InAs quantum dot. The SAW causes the energy of the transitions within the dot to oscillate at the frequency of the SAW, producing a characteristic broadening of the emission lines in their time-averaged spectra. This periodic tuning of the transition energy is used as a method to regulate the output of a device containing a single quantum dot and we study the system as a high-frequency periodic source of single photons.

  10. How much energy do ULF waves (2-80 mHz) transfer perpendicular to the background magnetic field?

    NASA Astrophysics Data System (ADS)

    Hartinger, M.; Moldwin, M.

    2013-05-01

    The solar wind perturbs the magnetopause, driving fast mode waves which couple to standing Alfven waves via field line resonance (FLR); substorms generate fast mode waves which drive FLR in the inner magnetosphere; ion foreshock processes drive fast mode waves in the dayside magnetosphere which then drive FLR. These example mechanisms for Ultra Low Frequency (ULF) wave energy transfer share one similarity: energy transfer perpendicular to the background magnetic field via the fast mode. The fast mode energy transfer rate is a useful diagnostic tool for determining which mechanisms are most important for different frequencies/regions/external driving conditions. However, there are unique challenges associated with observing the fast mode (when compared to, for example, standing Alfven waves): confinement to locations near the magnetic equatorial plane, weak coupling to the ionosphere in most locations (raising difficulties for direct ground observations), nominally low amplitudes, and brief durations. In this study, we address the first two challenges by using THEMIS spacecraft observations, which are routinely available near the equatorial plane. We address the second two challenges by studying the time-averaged Poynting vector rather than wave amplitude (whereas transient fast mode waves have low amplitudes, they have substantial net energy transfer rates). We consider the 2-80 mHz frequency range, all local time sectors, and radial distances from 4 to 13 Re.

  11. Low-energy density of states in d-wave superconductors with extended scatterers

    NASA Astrophysics Data System (ADS)

    Adagideli, I.; Sheehy, D. E.; Goldbart, P. M.

    2002-03-01

    We investigate a novel contribution to the low-energy quasiparticle density of states (DOS) of a disordered d-wave superconductor. Related work (C. Pépin and P. A. Lee, Phys. Rev. B 63), 054502 (2001). found that the DOS is singular at zero energy, but it was later argued (A.G. Yashenkin et al., Phys. Rev. Lett. 86), 5982 (2001); A. Altland, cond-mat/0108079 (unpublished). that the results of Ref. [1] are valid only in special cases requiring fine-tuning of the parameters, and that the DOS vanishes at E=0 except in these cases. A common feature of these approaches is the assumption that the disorder potential is due to pointlike scatterers. However, previous work (I. Adagideli et al., Phys. Rev. Lett. 83) 5571 (1999). showed that the presence of extended impurities in d-wave superconductors gives rise to additional low-energy quasiparticle states. Motivated by this fact, we focus on the (previously neglected) contribution to the low-energy DOS arising from a disorder potential that consists of a random collection of extended impurities. We find that the DOS is singular at zero energy, diverging as ρ_ext(E) ~ 1/\\vert E(ln \\vert E\\vert)^3 \\vert. Our calculation neglects the role of nodal quasiparticles; indeed, we expect that they will merely furnish a subdominant additive contribution to ρ_ ext. This work was supported by D.O.E.

  12. A 3D MPI-Parallel GPU-accelerated framework for simulating ocean wave energy converters

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Raessi, Mehdi

    2015-11-01

    We present an MPI-parallel GPU-accelerated computational framework for studying the interaction between ocean waves and wave energy converters (WECs). The computational framework captures the viscous effects, nonlinear fluid-structure interaction (FSI), and breaking of waves around the structure, which cannot be captured in many potential flow solvers commonly used for WEC simulations. The full Navier-Stokes equations are solved using the two-step projection method, which is accelerated by porting the pressure Poisson equation to GPUs. The FSI is captured using the numerically stable fictitious domain method. A novel three-phase interface reconstruction algorithm is used to resolve three phases in a VOF-PLIC context. A consistent mass and momentum transport approach enables simulations at high density ratios. The accuracy of the overall framework is demonstrated via an array of test cases. Numerical simulations of the interaction between ocean waves and WECs are presented. Funding from the National Science Foundation CBET-1236462 grant is gratefully acknowledged.

  13. Application of high-resolution linear Radon transform for Rayleigh-wave dispersive energy imaging and mode separating

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Miller, R.D.; Liu, J.; Xu, Y.; Liu, Q.

    2008-01-01

    Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we image Rayleigh-wave dispersive energy and separate multimodes from a multichannel record by high-resolution linear Radon transform (LRT). We first introduce Rayleigh-wave dispersive energy imaging by high-resolution LRT. We then show the process of Rayleigh-wave mode separation. Results of synthetic and real-world examples demonstrate that (1) compared with slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50% (2) high-resolution LRT can successfully separate multimode dispersive energy of Rayleigh waves with high resolution; and (3) multimode separation and reconstruction expand frequency ranges of higher mode dispersive energy, which not only increases the investigation depth but also provides a means to accurately determine cut-off frequencies.

  14. The role of energy density and acoustic cavitation in shock wave lithotripsy.

    PubMed

    Loske, Achim M

    2010-02-01

    Today a high percentage of urinary stones are successfully treated by extracorporeal shockwave lithotripsy (SWL); however, misconceptions regarding fragmentation mechanisms, as well as treatment parameters like dose, applied energy and focal area are still common. A main stone comminution mechanism during SWL is acoustic cavitation. The objective of this study was to analyze the influence of cavitation and energy density on stone fragmentation. A research lithotripter was used to expose a large set of artificial kidney stones to shock waves varying different parameters. Hundreds of pressure records were used to calculate the energy density of the lithotripter at different settings. Results indicate that energy density is a crucial parameter and that better SWL treatment outcomes could be obtained placing the calculus at a prefocal position.

  15. Sulphur hexaflouride: low energy (e,2e) experiments and molecular three-body distorted wave theory

    NASA Astrophysics Data System (ADS)

    Nixon, Kate L.; Murray, Andrew J.; Chaluvadi, H.; Ning, C. G.; Colgan, James; Madison, Don H.

    2016-10-01

    Experimental and theoretical triple differential ionisation cross-sections (TDCSs) are presented for the highest occupied molecular orbital of sulphur hexafluoride. These measurements were performed in the low energy regime, with outgoing electron energies ranging from 5 to 40 eV in a coplanar geometry, and with energies of 10 and 20 eV in a perpendicular geometry. Complementary theoretical predictions of the TDCS were calculated using the molecular three-body distorted wave formalism. Calculations were performed using a proper average over molecular orientations as well as the orientation-averaged molecular orbital approximation. This more sophisticated model was found to be in closer agreement with the experimental data, however neither model accurately predicts the TDCS over all geometries and energies.

  16. Preliminary Verification and Validation of WEC-Sim, an Open-Source Wave Energy Converter Design Tool: Preprint

    SciTech Connect

    Ruehl, K.; Michelen, C.; Kanner, S.; Lawson, M.; Yu, Y. H.

    2014-03-01

    To promote and support the wave energy industry, a wave energy converter (WEC) design tool, WEC-Sim, is being developed by Sandia National Laboratories and the National Renewable Energy Laboratory. In this paper, the WEC-Sim code is used to model a point absorber WEC designed by the U.S. Department of Energy's reference model project. Preliminary verification was performed by comparing results of the WEC-Sim simulation through a code-to-code comparison, utilizing the commercial codes ANSYS-AQWA, WaveDyn, and OrcaFlex. A preliminary validation of the code was also performed by comparing WEC-Sim simulation results to experimental wave tank tests.

  17. A mechanism of wave drag reduction in the thermal energy deposition experiments

    NASA Astrophysics Data System (ADS)

    Markhotok, A.

    2015-06-01

    Many experimental studies report reduced wave drag when thermal energy is deposited in the supersonic flow upstream of a body. Though a large amount of research on this topic has been accumulated, the exact mechanism of the drag reduction is still unknown. This paper is to fill the gap in the understanding connecting multiple stages of the observed phenomena with a single mechanism. The proposed model provides an insight on the origin of the chain of subsequent transformations in the flow leading to the reduction in wave drag, such as typical deformations of the front, changes in the gas pressure and density in front of the body, the odd shapes of the deflection signals, and the shock wave extinction in the plasma area. The results of numerical simulation based on the model are presented for three types of plasma parameter distribution. The spherical and cylindrical geometry has been used to match the data with the experimental observations. The results demonstrate full ability of the model to exactly explain all the features observed in the drag reduction experiments. Analytical expressions used in the model allow separating out a number of adjustment parameters that can be used to optimize thermal energy input and thus achieve fundamentally lower drag values than that of conventional approaches.

  18. Transition from geostrophic turbulence to inertia-gravity waves in the atmospheric energy spectrum.

    PubMed

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-12-01

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth's rotation and the atmosphere's stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia-gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia-gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia-gravity waves dominate at scales smaller than 500 km.

  19. Transition from geostrophic turbulence to inertia-gravity waves in the atmospheric energy spectrum.

    PubMed

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-12-01

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth's rotation and the atmosphere's stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia-gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia-gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia-gravity waves dominate at scales smaller than 500 km. PMID:25404349

  20. A mechanism of wave drag reduction in the thermal energy deposition experiments

    SciTech Connect

    Markhotok, A.

    2015-06-15

    Many experimental studies report reduced wave drag when thermal energy is deposited in the supersonic flow upstream of a body. Though a large amount of research on this topic has been accumulated, the exact mechanism of the drag reduction is still unknown. This paper is to fill the gap in the understanding connecting multiple stages of the observed phenomena with a single mechanism. The proposed model provides an insight on the origin of the chain of subsequent transformations in the flow leading to the reduction in wave drag, such as typical deformations of the front, changes in the gas pressure and density in front of the body, the odd shapes of the deflection signals, and the shock wave extinction in the plasma area. The results of numerical simulation based on the model are presented for three types of plasma parameter distribution. The spherical and cylindrical geometry has been used to match the data with the experimental observations. The results demonstrate full ability of the model to exactly explain all the features observed in the drag reduction experiments. Analytical expressions used in the model allow separating out a number of adjustment parameters that can be used to optimize thermal energy input and thus achieve fundamentally lower drag values than that of conventional approaches.

  1. Transition from geostrophic turbulence to inertia–gravity waves in the atmospheric energy spectrum

    PubMed Central

    Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver

    2014-01-01

    Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth’s rotation and the atmosphere’s stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia–gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia–gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia–gravity waves dominate at scales smaller than 500 km. PMID:25404349

  2. Time-frequency energy density precipitation method for time-of-flight extraction of narrowband Lamb wave detection signals.

    PubMed

    Zhang, Y; Huang, S L; Wang, S; Zhao, W

    2016-05-01

    The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency for all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert-Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of <1% and thus can act as a universal time-of-flight extraction method for narrowband Lamb wave detection signals. PMID:27250446

  3. Time-frequency energy density precipitation method for time-of-flight extraction of narrowband Lamb wave detection signals

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Huang, S. L.; Wang, S.; Zhao, W.

    2016-05-01

    The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency for all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert-Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of <1% and thus can act as a universal time-of-flight extraction method for narrowband Lamb wave detection signals.

  4. Time-frequency energy density precipitation method for time-of-flight extraction of narrowband Lamb wave detection signals.

    PubMed

    Zhang, Y; Huang, S L; Wang, S; Zhao, W

    2016-05-01

    The time-of-flight of the Lamb wave provides an important basis for defect evaluation in metal plates and is the input signal for Lamb wave tomographic imaging. However, the time-of-flight can be difficult to acquire because of the Lamb wave dispersion characteristics. This work proposes a time-frequency energy density precipitation method to accurately extract the time-of-flight of narrowband Lamb wave detection signals in metal plates. In the proposed method, a discrete short-time Fourier transform is performed on the narrowband Lamb wave detection signals to obtain the corresponding discrete time-frequency energy density distribution. The energy density values at the center frequency for all discrete time points are then calculated by linear interpolation. Next, the time-domain energy density curve focused on that center frequency is precipitated by least squares fitting of the calculated energy density values. Finally, the peak times of the energy density curve obtained relative to the initial pulse signal are extracted as the time-of-flight for the narrowband Lamb wave detection signals. An experimental platform is established for time-of-flight extraction of narrowband Lamb wave detection signals, and sensitivity analysis of the proposed time-frequency energy density precipitation method is performed in terms of propagation distance, dispersion characteristics, center frequency, and plate thickness. For comparison, the widely used Hilbert-Huang transform method is also implemented for time-of-flight extraction. The results show that the time-frequency energy density precipitation method can accurately extract the time-of-flight with relative error of <1% and thus can act as a universal time-of-flight extraction method for narrowband Lamb wave detection signals.

  5. ATOMIC AND MOLECULAR PHYSICS: Calculation of Energy and Other Properties of Muonic Helium Atom Using Boundary Conditions of Wave Function

    NASA Astrophysics Data System (ADS)

    Rezaei, B.

    2010-09-01

    The properties of muonic helium atom (4He+2μ-e-) in ground state are considered. In this work, the energy and average distance between particles have been obtained using a wave function, which satisfies boundary conditions. It is shown that the obtained energy are very close to the values calculated by others. But the small differences of the expectation values of r2n are due to the incorporated boundary conditions in proposed wave function and are expected.

  6. Ocean Wave Energy Estimation Using Active Satellite Imagery as a Solution of Energy Scarce in Indonesia Case Study: Poteran Island's Water, Madura

    NASA Astrophysics Data System (ADS)

    Nadzir, Z. A.; Karondia, L. A.; Jaelani, L. M.; Sulaiman, A.; Pamungkas, A.; Koenhardono, E. S.; Sulisetyono, A.

    2015-10-01

    Ocean wave energy is one of the ORE (Ocean Renewable Energies) sources, which potential, in which this energy has several advantages over fossil energy and being one of the most researched energy in developed countries nowadays. One of the efforts for mapping ORE potential is by computing energy potential generated from ocean wave, symbolized by Watt per area unit using various methods of observation. SAR (Synthetic Aperture Radar) is one of the hyped and most developed Remote Sensing method used to monitor and map the ocean wave energy potential effectively and fast. SAR imagery processing can be accomplished not only in remote sensing data applications, but using Matrices processing application as well such as MATLAB that utilizing Fast Fourier Transform and Band-Pass Filtering methods undergoing Pre-Processing stage. In this research, the processing and energy estimation from ALOSPALSAR satellite imagery acquired on the 5/12/2009 was accomplished using 2 methods (i.e Magnitude and Wavelength). This resulted in 9 potential locations of ocean wave energy between 0-228 W/m2, and 7 potential locations with ranged value between 182-1317 W/m2. After getting through buffering process with value of 2 km (to facilitate the construction of power plant installation), 9 sites of location were estimated to be the most potential location of ocean wave energy generation in the ocean with average depth of 8.058 m and annual wind speed of 6.553 knot.

  7. Baroclinic internal wave energy distribution in the Baltic Sea derived from 45 years of circulation simulations

    NASA Astrophysics Data System (ADS)

    Rybin, Artem; Soomere, Tarmo; Kurkina, Oxana; Kurkin, Andrey; Rouvinskaya, Ekaterina; Markus Meier, H. E.

    2016-04-01

    Internal waves and internal tides are an essential component of the functioning of stratified shelf seas. They carry substantial amounts of energy through the water masses, drive key hydrophysical processes such as mixing and overturning and support the functioning of marine ecosystem in many ways. Their particular impact becomes evident near and at the bottom where they often create substantial loads to engineering structures and exert a wide range of impacts on the bottom sediments and evolution of the seabed. We analyse several properties of spatio-temporal distributions of energy of relatively long-period large-scale internal wave motions in the Baltic Sea. The analysis is based on numerically simulated pycnocline variations that are extracted from the hydrographic data calculated by the Rossby Centre Ocean circulation model (RCO) for the entire Baltic Sea for 1961-2005. This model has a horizontal resolution of 2 nautical miles and uses 41 vertical layers with a thickness between 3 m close to the surface and 12 m in 250 m depth. The model is forced with atmospheric data derived from the ERA-40 re-analysis using a regional atmosphere model with a horizontal resolution of 25 km. It also accounts for river inflow and water exchange through the Danish Straits. See (Meier, H.E.M., Höglund, A., 2013. Studying the Baltic Sea circulation with Eulerian tracers, in Soomere, T., Quak, E., eds., Preventive Methods for Coastal Protection, Springer, Cham, Heidelberg, 101-130) for a detailed description of the model and its forcing. The resolution of the model output used in this study (once in 6 hours) is sufficient for estimates of spectral amplitudes of the displacements of isopycnal surfaces with a typical period of 2-12 days. We provide the analysis of kinetic and potential energy of motions with these periods. The resulting maps of the maxima of energy and spatial distributions of near-bottom velocities have been evaluated for the entire simulation interval of 45

  8. Conjunction of standing wave and resonance in asymmetric nanowires: a mechanism for thermal rectification and remote energy accumulation.

    PubMed

    Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2015-12-02

    As an important way to control and manage heat transport, thermal rectification has become an elementary issue in the field of phononics and plays a key role in the designing of thermal devices. Here we investigate systematically the standing wave and the accompanying resonance process in asymmetric nanowires to understand the standing wave itself and its great effect on thermal rectification. Results show that the standing wave is sensitive to both the structural and thermal properties of the material, and its great effect on enhancing the thermal rectification is realized not only by the energy-localization nature of the standing wave, but also by the resonance-caused large amplitude and high energy of the standing wave.

  9. Conjunction of standing wave and resonance in asymmetric nanowires: a mechanism for thermal rectification and remote energy accumulation

    PubMed Central

    Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2015-01-01

    As an important way to control and manage heat transport, thermal rectification has become an elementary issue in the field of phononics and plays a key role in the designing of thermal devices. Here we investigate systematically the standing wave and the accompanying resonance process in asymmetric nanowires to understand the standing wave itself and its great effect on thermal rectification. Results show that the standing wave is sensitive to both the structural and thermal properties of the material, and its great effect on enhancing the thermal rectification is realized not only by the energy-localization nature of the standing wave, but also by the resonance-caused large amplitude and high energy of the standing wave. PMID:26628291

  10. Energy Optimization of Many-Body Wave Functions: Application to Silicon Interstitial Defects

    NASA Astrophysics Data System (ADS)

    Parker, W. D.; Driver, K. P.; Hennig, R. G.; Wilkins, J. W.; Umrigar, C. J.

    2006-03-01

    Energy minimization [1], as opposed to the standard variance minimization [2], of the Jastrow factor results not only in lower variational Monte Carlo (VMC) energies but also in lower diffusion Monte Carlo (DMC) energies for systems that employ a nonlocal pseudopotential. We apply this approach to solids: single-interstitials in silicon. Allowing the Jastrow for the defect atom(s) to differ from that for bulk atoms lowers the VMC energy but not the DMC energy, indicating the pseudopotential locality error is small. DMC energies from 8 and 64 atom cells (plus interstitial) computed with energy-optimized trial wave functions estimate a 0.2 eV finite-size error in the formation energy. Cubic spline and Lagrange polynomial representations of orbitals have comparable efficiency in memory usage, run time and accuracy. [1] C. J. Umrigar and C. Filippi, Phys. Rev. Lett. 94, 150201 (2005). [2] C. J. Umrigar, K. G. Wilson and J. W. Wilkins, Phys. Rev. Lett. 60, 1719 (1988).

  11. Shoreline changes and high-energy wave impacts at the leeward coast of Bonaire (Netherlands Antilles)

    NASA Astrophysics Data System (ADS)

    Engel, Max; Brückner, Helmut; Messenzehl, Karoline; Frenzel, Peter; May, Simon Matthias; Scheffers, Anja; Scheffers, Sander; Wennrich, Volker; Kelletat, Dieter

    2012-10-01

    Supralittoral coarse-clast deposits along the shores of Bonaire (Netherlands Antilles) as well as increased hurricane frequency during the past decade testify to the major hazard of high-energy wave impacts in the southern Caribbean. Since deducing certain events from the subaerial coarse-clast record involves major uncertainties and historical reports are restricted to the past 500 years, we use a new set of vibracore and push core data (i) to contribute to a more reliable Holocene history of regional extreme-wave events and (ii) to evaluate their impact on shoreline evolution. Multi-proxy palaeoenvironmental analyses (XRF, XRD, grain size distribution, carbonate, LOI, microfossils) were carried out using nearshore sedimentary archives from the sheltered western (leeward) side of Bonaire and its small neighbour Klein Bonaire. In combination with 14C-AMS age estimates the stratigraphy reflects a long-term coastal evolution controlled by relative sea level rise, longshore sediment transport, and short-term morphodynamic impulses by extreme wave action, all three of which may have significantly influenced the development of polyhaline lagoons and the demise of mangrove populations. Extreme wave events may be categorized into major episodic incidents (c. 3.6 ka [?] BP; 3.2-3.0 ka BP; 2.0-1.8 ka BP; post-1.3 ka [?] BP), which may correspond to tsunamis and periodic events recurring on the order of decades to centuries, which we interpret as severe tropical cyclones. Extreme wave events seem to control to a certain extent the formation of coastal ridges on Bonaire and, thus, to cause abrupt shifts in the long-term morphodynamic and ecological boundary conditions of the circumlittoral inland bays.

  12. Wave energy balance in wave models (SWAN) for semi-enclosed domains-Application to the Catalan coast

    NASA Astrophysics Data System (ADS)

    Pallares, Elena; Sánchez-Arcilla, Agustín; Espino, Manuel

    2014-09-01

    This study has been motivated by the limited accuracy of wave models under short-duration, fetch-limited conditions. This applies particularly to the wave period, in semi-enclosed domains with highly variable wind patterns as along the Catalan coast. The wave model SWAN version 40.91A is used here in three nested grids covering all the North-western Mediterranean Sea with a grid resolution from 9 to 1 km, forced with high resolution wind patterns from BSC (Barcelona Supercomputing Center) for two study periods, the winter 2010 and the spring 2011. The results are validated in eight locations with different types of instrumentations. In order to improve the results, a modification of the whitecapping term parameters is performed. Also the appropriate frequency integral range used to calculate the integral wave parameters is tested to be sure to compare the simulation results and the measurements for the same frequency interval. The results obtained show a clear improvement of the mean wave period and the peak period for the study area, decreasing considerably the negative bias observed previously, while almost no change is observed in wave height due to the proposed modifications. These results can be generalized to the Spanish Mediterranean coast and may be applicable to study areas with similar characteristics as the ones presented here: semi-enclosed domains with fetch-limited conditions and young sea waves.

  13. On the concept of sloped motion for free-floating wave energy converters

    PubMed Central

    Payne, Grégory S.; Pascal, Rémy; Vaillant, Guillaume

    2015-01-01

    A free-floating wave energy converter (WEC) concept whose power take-off (PTO) system reacts against water inertia is investigated herein. The main focus is the impact of inclining the PTO direction on the system performance. The study is based on a numerical model whose formulation is first derived in detail. Hydrodynamics coefficients are obtained using the linear boundary element method package WAMIT. Verification of the model is provided prior to its use for a PTO parametric study and a multi-objective optimization based on a multi-linear regression method. It is found that inclining the direction of the PTO at around 50° to the vertical is highly beneficial for the WEC performance in that it provides a high capture width ratio over a broad region of the wave period range. PMID:26543397

  14. Numerical computation of two-dimensional unsteady detonation waves in high energy solids

    SciTech Connect

    Clarke, J.F.; Karni, S.; Quirk, J.J.; Roe, P.L.; Simmonds, L.G.; Toro, E.F. )

    1993-06-01

    We are concerned with theoretical modelling of unsteady, two- dimensional detonation waves in high energy solids. A mathematical model and a numerical method to solve the associated hyperbolic system of equations are presented. The model consists of the Euler equations augmented by extra conservation laws and source terms to account for chemical reaction and tracking of materials. Both the thermodynamics and the chemistry are treated in a simple way. Using a detonation analogue due to Fickett, we test several numerical methods and assess their performance in modelling the essential features of detonation waves. The numerical method selected for the full model is an extension of the conservative, shock capturing technique of Roe, together with an adaptive mesh refinement procedure that allows the resolution of fine features such as reaction zones. Results for some typical tests problems are presented. 31 refs., 23 figs., 2 tabs.

  15. Observation of strong reflection of electron waves exiting a ballistic channel at low energy

    NASA Astrophysics Data System (ADS)

    Vaz, Canute I.; Liu, Changze; Campbell, Jason P.; Ryan, Jason T.; Southwick, Richard G., III; Gundlach, David; Oates, Anthony S.; Huang, Ru; Cheung, Kin. P.

    2016-06-01

    Wave scattering by a potential step is a ubiquitous concept. Thus, it is surprising that theoretical treatments of ballistic transport in nanoscale devices, from quantum point contacts to ballistic transistors, assume no reflection even when the potential step is encountered upon exiting the device. Experiments so far seem to support this even if it is not clear why. Here we report clear evidence of coherent reflection when electron wave exits the channel of a nanoscale transistor and when the electron energy is low. The observed behavior is well described by a simple rectangular potential barrier model which the Schrodinger's equation can be solved exactly. We can explain why reflection is not observed in most situations but cannot be ignored in some important situations. Our experiment also represents a direct measurement of electron injection velocity - a critical quantity in nanoscale transistors that is widely considered not measurable.

  16. Advanced multiconfiguration methods for complex atoms: I. Energies and wave functions

    NASA Astrophysics Data System (ADS)

    Froese Fischer, Charlotte; Godefroid, Michel; Brage, Tomas; Jönsson, Per; Gaigalas, Gediminas

    2016-09-01

    Multiconfiguration wave function expansions combined with configuration interaction methods are a method of choice for complex atoms where atomic state functions are expanded in a basis of configuration state functions. Combined with a variational method such as the multiconfiguration Hartree-Fock (MCHF) or multiconfiguration Dirac-Hartree-Fock (MCDHF), the associated set of radial functions can be optimized for the levels of interest. The present review updates the variational MCHF theory to include MCDHF, describes the multireference single and double process for generating expansions and the systematic procedure of a computational scheme for monitoring convergence. It focuses on the calculations of energies and wave functions from which other atomic properties can be predicted such as transition rates, hyperfine structures and isotope shifts, for example.

  17. Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface.

    PubMed

    Ryżak, Magdalena; Bieganowski, Andrzej; Korbiel, Tomasz

    2016-01-01

    The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing-most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon's characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem) with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa). We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop). The highest sound pressure level (and the greatest variability) was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability) was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops.

  18. Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface

    PubMed Central

    Ryżak, Magdalena; Bieganowski, Andrzej; Korbiel, Tomasz

    2016-01-01

    The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing–most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon’s characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem) with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa). We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop). The highest sound pressure level (and the greatest variability) was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability) was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops. PMID:27388276

  19. Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface.

    PubMed

    Ryżak, Magdalena; Bieganowski, Andrzej; Korbiel, Tomasz

    2016-01-01

    The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing-most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon's characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem) with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa). We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop). The highest sound pressure level (and the greatest variability) was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability) was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops. PMID:27388276

  20. Determination of fractional energy loss of waves in nearshore waters using an improved high-order Boussinesq-type model

    NASA Astrophysics Data System (ADS)

    He, Hailun; Song, Jinbao; Lynett, Patrick J.; Li, Shuang

    2009-09-01

    Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations. The model is first tested by the additional experimental data, and the model’s capability of simulating the wave transformation over both gentle slope and steep slope is demonstrated. Then, the model’s breaking index is replaced and tested. The new breaking index, which is optimized from the several breaking indices, is not sensitive to the spatial grid length and includes the bottom slopes. Numerical tests show that the modified model with the new breaking index is more stable and efficient for the shallow-water wave breaking. Finally, the modified model is used to study the fractional energy losses for the regular waves propagating and breaking over a submerged bar. Our results have revealed that how the nonlinearity and the dispersion of the incident waves as well as the dimensionless bar height (normalized by water depth) dominate the fractional energy losses. It is also found that the bar slope (limited to gentle slopes that less than 1:10) and the dimensionless bar length (normalized by incident wave length) have negligible effects on the fractional energy losses.

  1. Underwater Noise from a Wave Energy Converter Is Unlikely to Affect Marine Mammals.

    PubMed

    Tougaard, Jakob

    2015-01-01

    Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth). Median sound pressure levels (Leq) in third-octave bands during operation of the converter were 106-109 dB re. 1 μPa in the range 125-250 Hz, 1-2 dB above ambient noise levels (statistically significant). Outside the range 125-250 Hz the noise from the converter was undetectable above the ambient noise. During start and stop of the converter a more powerful tone at 150 Hz (sound pressure level (Leq) 121-125 dB re 1 μPa) was easily detectable. This tone likely originated from the hydraulic pump which was used to lower the absorbers into the water and lift them out of the water at shutdown. Noise levels from the operating wave converter were so low that they would barely be audible to marine mammals and the likelihood of negative impact from the noise appears minimal. A likely explanation for the low noise emissions is the construction of the converter where all moving parts, except for the absorbers themselves, are placed above water on a jack-up rig. The results may thus not be directly transferable to other wave converter designs but do demonstrate that it is possible to harness wave energy without noise pollution to the marine environment. PMID:26148299

  2. Underwater Noise from a Wave Energy Converter Is Unlikely to Affect Marine Mammals

    PubMed Central

    Tougaard, Jakob

    2015-01-01

    Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth). Median sound pressure levels (Leq) in third-octave bands during operation of the converter were 106–109 dB re. 1 μPa in the range 125–250 Hz, 1–2 dB above ambient noise levels (statistically significant). Outside the range 125–250 Hz the noise from the converter was undetectable above the ambient noise. During start and stop of the converter a more powerful tone at 150 Hz (sound pressure level (Leq) 121–125 dB re 1 μPa) was easily detectable. This tone likely originated from the hydraulic pump which was used to lower the absorbers into the water and lift them out of the water at shutdown. Noise levels from the operating wave converter were so low that they would barely be audible to marine mammals and the likelihood of negative impact from the noise appears minimal. A likely explanation for the low noise emissions is the construction of the converter where all moving parts, except for the absorbers themselves, are placed above water on a jack-up rig. The results may thus not be directly transferable to other wave converter designs but do demonstrate that it is possible to harness wave energy without noise pollution to the marine environment. PMID:26148299

  3. Underwater Noise from a Wave Energy Converter Is Unlikely to Affect Marine Mammals.

    PubMed

    Tougaard, Jakob

    2015-01-01

    Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth). Median sound pressure levels (Leq) in third-octave bands during operation of the converter were 106-109 dB re. 1 μPa in the range 125-250 Hz, 1-2 dB above ambient noise levels (statistically significant). Outside the range 125-250 Hz the noise from the converter was undetectable above the ambient noise. During start and stop of the converter a more powerful tone at 150 Hz (sound pressure level (Leq) 121-125 dB re 1 μPa) was easily detectable. This tone likely originated from the hydraulic pump which was used to lower the absorbers into the water and lift them out of the water at shutdown. Noise levels from the operating wave converter were so low that they would barely be audible to marine mammals and the likelihood of negative impact from the noise appears minimal. A likely explanation for the low noise emissions is the construction of the converter where all moving parts, except for the absorbers themselves, are placed above water on a jack-up rig. The results may thus not be directly transferable to other wave converter designs but do demonstrate that it is possible to harness wave energy without noise pollution to the marine environment.

  4. Possible dark energy imprints in the gravitational wave spectrum of mixed neutron-dark-energy stars

    SciTech Connect

    Yazadjiev, Stoytcho S.; Doneva, Daniela D. E-mail: daniela.doneva@uni-tuebingen.de

    2012-03-01

    In the present paper we study the oscillation spectrum of neutron stars containing both ordinary matter and dark energy in different proportions. Within the model we consider, the equilibrium configurations are numerically constructed and the results show that the properties of the mixed neuron-dark-energy star can differ significantly when the amount of dark energy in the stars is varied. The oscillations of the mixed neuron-dark-energy stars are studied in the Cowling approximation. As a result we find that the frequencies of the fundamental mode and the higher overtones are strongly affected by the dark energy content. This can be used in the future to detect the presence of dark energy in the neutron stars and to constrain the dark-energy models.

  5. AMU NEXRAD Exploitation Task

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.; Wheeler, Mark M.

    1997-01-01

    This report documents the results of the Applied Meteorology Unit's NEXRAD Exploitation Task. The objectives of this task are to determine what radar signatures are present prior to and at the time of convection initiation, and to determine radar signatures which will help distinguish whether the ensuing convection will become severe. Radar data from the WSR-88D radar located at NWS Melbourne (WSR-88D/KMLB) were collected between June and September 1995, and 16 convective case studies were analyzed for which the radar was operating during the entire period of interest. All WSR-88D/KMLB products were scrutinized for their utility in detecting convection initiation and severe storm signatures. Through process of elimination, it was found that the 0.5 deg reflectivity product with the lowest reflectivity values displayed is the best product to monitor for convection initiation signatures. Seven meteorological features associated with the initiation of deep convection were identified: the Merritt Island and Indian River convergence zones, interlake convergence, horizontal convective rolls, the sea breeze, storm outflow boundaries, and fires. Their reflectivity values ranged from -5 to 20 dBZ. Of the three severe weather phenomena (winds greater than or equal to 50 kts, tornado, 3/4 inch hail), high wind events due to microbursts were most common in the data set. It was found that the values and trends of composite reflectivity, vertically integrated liquid, and core aspect ratio were key indicators of the potential of a cell to produce a microburst. The data were not analyzed for the other two severe weather phenomena because they rarely occurred during the data collection period. This report also includes suggestions for new WSR-88D products, summaries of ongoing research aimed at creating new products, and explicit recommended procedures for detecting convection initiation and severe storm signatures in the radar data using the currently available technology.

  6. Basis set effects on frontier molecular orbital energies and energy gaps: a comparative study between plane waves and localized basis functions in molecular systems.

    PubMed

    Matus, Myrna H; Garza, Jorge; Galván, Marcelo

    2004-06-01

    In order to study the Kohn-Sham frontier molecular orbital energies in the complete basis limit, a comparative study between localized functions and plane waves, obtained with the local density approximation exchange-correlation functional is made. The analyzed systems are ethylene and butadiene, since they are theoretical and experimentally well characterized. The localized basis sets used are those developed by Dunning. For the plane-waves method, the pseudopotential approximation is employed. The results obtained by the localized basis sets suggest that it is possible to get an estimation of the orbital energies in the limit of the complete basis set, when the basis set size is large. It is shown that the frontier molecular orbital energies and the energy gaps obtained with plane waves are similar to those obtained with a large localized basis set, when the size of the supercell and the plane-wave expansion have been appropriately calibrated.

  7. Preface to Special Topic: Marine Renewable Energy

    SciTech Connect

    Pinto, F. T.; Iglesias, G.; Santos, P. R.; Deng, Zhiqun

    2015-12-30

    Marine renewable energy (MRE) is generates from waves, currents, tides, and thermal resources in the ocean. MRE has been identified as a potential commercial-scale source of renewable energy. This special topic presents a compilation of works selected from the 3rd IAHR Europe Congress, held in Porto, Portugal, in 2014. It covers different subjects relevant to MRE, including resource assessment, marine energy sector policies, energy source comparisons based on levelized cost, proof-of-concept and new-technology development for wave and tidal energy exploitation, and assessment of possible inference between wave energy converters (WEC).

  8. Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves.

    PubMed

    Wen, Xiaonan; Yang, Weiqing; Jing, Qingshen; Wang, Zhong Lin

    2014-07-22

    We invented a triboelectric nanogenerator (TENG) that is based on a wavy-structured Cu-Kapton-Cu film sandwiched between two flat nanostructured PTFE films for harvesting energy due to mechanical vibration/impacting/compressing using the triboelectrification effect. This structure design allows the TENG to be self-restorable after impact without the use of extra springs and converts direct impact into lateral sliding, which is proved to be a much more efficient friction mode for energy harvesting. The working mechanism has been elaborated using the capacitor model and finite-element simulation. Vibrational energy from 5 to 500 Hz has been harvested, and the generator's resonance frequency was determined to be ∼100 Hz at a broad full width at half-maximum of over 100 Hz, producing an open-circuit voltage of up to 72 V, a short-circuit current of up to 32 μA, and a peak power density of 0.4 W/m(2). Most importantly, the wavy structure of the TENG can be easily packaged for harvesting the impact energy from water waves, clearly establishing the principle for ocean wave energy harvesting. Considering the advantages of TENGs, such as cost-effectiveness, light weight, and easy scalability, this approach might open the possibility for obtaining green and sustainable energy from the ocean using nanostructured materials. Lastly, different ways of agitating water were studied to trigger the packaged TENG. By analyzing the output signals and their corresponding fast Fourier transform spectra, three ways of agitation were evidently distinguished from each other, demonstrating the potential of the TENG for hydrological analysis.

  9. On square-wave-driven stochastic resonance for energy harvesting in a bistable system

    NASA Astrophysics Data System (ADS)

    Su, Dongxu; Zheng, Rencheng; Nakano, Kimihiko; Cartmell, Matthew P.

    2014-11-01

    Stochastic resonance is a physical phenomenon through which the throughput of energy within an oscillator excited by a stochastic source can be boosted by adding a small modulating excitation. This study investigates the feasibility of implementing square-wave-driven stochastic resonance to enhance energy harvesting. The motivating hypothesis was that such stochastic resonance can be efficiently realized in a bistable mechanism. However, the condition for the occurrence of stochastic resonance is conventionally defined by the Kramers rate. This definition is inadequate because of the necessity and difficulty in estimating white noise density. A bistable mechanism has been designed using an explicit analytical model which implies a new approach for achieving stochastic resonance in the paper. Experimental tests confirm that the addition of a small-scale force to the bistable system excited by a random signal apparently leads to a corresponding amplification of the response that we now term square-wave-driven stochastic resonance. The study therefore indicates that this approach may be a promising way to improve the performance of an energy harvester under certain forms of random excitation.

  10. Wave run-up on a high-energy dissipative beach

    USGS Publications Warehouse

    Ruggiero, P.; Holman, R.A.; Beach, R.A.

    2004-01-01

    Because of highly dissipative conditions and strong alongshore gradients in foreshore beach morphology, wave run-up data collected along the central Oregon coast during February 1996 stand in contrast to run-up data currently available in the literature. During a single data run lasting approximately 90 min, the significant vertical run-up elevation varied by a factor of 2 along the 1.6 km study site, ranging from 26 to 61% of the offshore significant wave height, and was found to be linearly dependent on the local foreshore beach slope that varied by a factor of 5. Run-up motions on this high-energy dissipative beach were dominated by infragravity (low frequency) energy with peak periods of approximately 230 s. Incident band energy levels were 2.5 to 3 orders of magnitude lower than the low-frequency spectral peaks and typically 96% of the run-up variance was in the infragravity band. A broad region of the run-up spectra exhibited an f-4 roll off, typical of saturation, extending to frequencies lower than observed in previous studies. The run-up spectra were dependent on beach slope with spectra for steeper foreshore slopes shifted toward higher frequencies than spectra for shallower foreshore slopes. At infragravity frequencies, run-up motions were coherent over alongshore length scales in excess of 1 km, significantly greater than decorrelation length scales on moderate to reflective beaches. Copyright 2004 by the American Geophysical Union.

  11. Oscillating-water-column wave-energy-converter based on dielectric elastomer generator

    NASA Astrophysics Data System (ADS)

    Vertechy, R.; Fontana, M.; Rosati Papini, G. P.; Bergamasco, M.

    2013-04-01

    Dielectric Elastomers (DE) have been largely studied as actuators and sensors. Fewer researches have addressed their application in the field of energy harvesting. Their light weightiness, low cost, high corrosion resistance, and their intrinsic high-voltage and cyclical-way of operation make DE suited for harvesting mechanical energy from sea waves. To date, the development of cost-effective Wave Energy Converters (WECs) is hindered by inherent limitations of available material technologies. State of the art WECs are indeed based on traditional mechanical components, hydraulic transmissions and electromagnetic generators, which are all made by stiff, bulky, heavy and costly metallic materials. As a consequence, existing WECs result in being expensive, difficult to assemble, sensitive to corrosion and hard to maintain in the marine environment. DE generators could be an enabling technology for overcoming the intrinsic limitations of current WEC technologies. In this context, this paper focuses on Polymer-based Oscillating-Water-Column (Poly-OWC) type WECs, and analyzes the viability of using DE generators as power-take-off systems. Regarding paper structure, the first sections introduce the working principle of OWC devices and discuss possible layouts for their DE-based power-take-off system. Then, a simplified hydraulic-electro-hyperelastic model of a two-dimensional Poly-OWC is described. Finally, preliminary simulation results are shown which provide insights on the potential capabilities of Poly-OWC.

  12. On square-wave-driven stochastic resonance for energy harvesting in a bistable system

    SciTech Connect

    Su, Dongxu; Zheng, Rencheng; Nakano, Kimihiko; Cartmell, Matthew P

    2014-11-15

    Stochastic resonance is a physical phenomenon through which the throughput of energy within an oscillator excited by a stochastic source can be boosted by adding a small modulating excitation. This study investigates the feasibility of implementing square-wave-driven stochastic resonance to enhance energy harvesting. The motivating hypothesis was that such stochastic resonance can be efficiently realized in a bistable mechanism. However, the condition for the occurrence of stochastic resonance is conventionally defined by the Kramers rate. This definition is inadequate because of the necessity and difficulty in estimating white noise density. A bistable mechanism has been designed using an explicit analytical model which implies a new approach for achieving stochastic resonance in the paper. Experimental tests confirm that the addition of a small-scale force to the bistable system excited by a random signal apparently leads to a corresponding amplification of the response that we now term square-wave-driven stochastic resonance. The study therefore indicates that this approach may be a promising way to improve the performance of an energy harvester under certain forms of random excitation.

  13. Kinematic and dynamic evolution of deep water breaking waves

    NASA Astrophysics Data System (ADS)

    Griffin, Owen M.; Peltzer, Rodney D.; Wang, Henry T.; Schultz, William W.

    1996-07-01

    Experiments were performed to exploit the dispersive properties of unsteady surface waves and to induce breaking by using a modified chirp pulse technique to focus the wave energy at a specific location in the Naval Research Laboratory deep water wave channel. The experiments have resulted in a highly resolved archive of breaking events ranging from wave steepening and incipient breaking to spilling and to plunging. The potential energy density, the crest front steepness, the horizontal asymmetry, and other geometric properties of an incipient breaker vary only within a moderate band about their mean values over the extent of these experiments. Thus the properties of an incipient unsteady breaker are well defined. The application of the phase-time or Hilbert transform method to the data set provides new insights into the local properties of the unsteady wave breaking. Recently, spectral and piecewise-linear algorithms for two-dimensional potential flow were developed and used by Schultz et al. [1994] to compare the onset of breaking for several methods of energy input to the unsteady wave system. The computations show that steep plunging waves occur when energy input rates are large. The various energy input methods exhibit similar breaking trends in the limit as the energy input rate becomes small in that incipient spilling breakers form when the potential energy is approximately 52 to 54% of the energy for the most energetic Stokes wave, with the formation of a singularity immediately before the crest.

  14. Seismic Wave Attenuation Estimated from Tectonic Tremor and Radiated Energy in Tremor for Various Subduction Zones

    NASA Astrophysics Data System (ADS)

    Yabe, S.; Baltay, A.; Ide, S.; Beroza, G. C.

    2013-12-01

    Ground motion prediction is an essential component of earthquake hazard assessment. Seismic wave attenuation with distance is an important, yet difficult to constrain, factor for such estimation. Using the empirical method of ground motion prediction equations (GMPEs), seismic wave attenuation with distance, which includes both the effect of anelastic attenuation and scattering, can be estimated from the distance decay of peak ground velocity (PGV) or peak ground acceleration (PGA) of ordinary earthquakes; however, in some regions where plate-boundary earthquakes are infrequent, such as Cascadia and Nankai, there are fewer data with which to constrain the empirical parameters. In both of those subduction zones, tectonic tremor occurs often. In this study, we use tectonic tremor to estimate the seismic wave attenuation with distance, and in turn use the attenuation results to estimate the radiated seismic energy of tremor. Our primary interest is in the variations among subduction zones. Ground motion attenuation and the distribution of released seismic energy from tremors are two important subduction zone characteristics. Therefore, it is very interesting to see whether there are variations of these parameters in different subduction zones, or regionally within the same subduction zone. It is also useful to estimate how much energy is released by tectonic tremor from accumulated energy to help understand subduction dynamics and the difference between ordinary earthquakes and tremor. We use the tectonic tremor catalog of Ide (2012) in Nankai, Cascadia, Mexico and southern Chile. We measured PGV and PGA of individual tremor bursts at each station. We assume a simple GMPE relationship and estimate seismic attenuation and relative site amplification factors from the data. In the Nankai subduction zone, there are almost no earthquakes on the plate interface, but intra-slab earthquakes occur frequently. Both the seismic wave attenuation with distance and the site

  15. Passive mode locking of an energy transfer continuous-wave dye laser

    SciTech Connect

    French, P.M.W.; Taylor, J.R.

    1986-08-01

    The first passive mode locking of a continuous-wave energy transfer dye laser is reported. Using an argon ion laser-pumped mixture of rhodamine 6G and sulphur rhodamine 101 as the active medium, pulses of less than 500 fs duration have been generated over the spectral range 652-694 nm using two different saturable absorbers in a simple linear cavity without dispersion optimization. Pulses as short as 120 fs have been measured using standard second-harmonic generation autocorrelation techniques.

  16. Energy Estimates of Lightning-Generated Whistler-Mode Waves in the Venus Ionosphere

    NASA Astrophysics Data System (ADS)

    Hart, Richard; Russell, Christopher T.; Zhang, Tielong

    2016-10-01

    The dual fluxgate magnetometer on the Venus Express Mission sampled at 128 Hz allowing for signals up to 64 Hz to be detected. These signals are found at all local times and at altitudes up to 600 km while near periapsis. The spacecraft had a periapsis within 15 degrees of the north pole for nearly the entire mission, concentrating observations at high latitudes. At solar minimum, when the ionosphere can become strongly magnetized, the waves were more readily guided along the field up to the spacecraft. During this time, whistlers were observed 3% of the time while VEX was at 250 km altitude. Detection rates reached 5% at this altitude while near the dawn terminator due to a low altitude magnetic belt that provides a radial component enabling better access of the signals to the spacecraft.Since the majority of these observations were made at relatively low altitudes, reasonable assumptions can be made about the ionospheric conditions along the wave's path from the base of the ionosphere to the spacecraft. The electron density can be inferred by utilizing the VERA model and scaling it to match the solar cycle conditions during the Venus Express campaign. With the electron density and the three components of the magnetic field measurement, we then calculate the Poynting flux to determine the energy density of the wave. This enables us to determine the strength of the source lightning and compares this strength to that on Earth.

  17. Mechanical energy fluctuations in granular chains: the possibility of rogue fluctuations or waves.

    PubMed

    Han, Ding; Westley, Matthew; Sen, Surajit

    2014-09-01

    The existence of rogue or freak waves in the ocean has been known for some time. They have been reported in the context of optical lattices and the financial market. We ask whether such waves are generic to late time behavior in nonlinear systems. In that vein, we examine the dynamics of an alignment of spherical elastic beads held within fixed, rigid walls at zero precompression when they are subjected to sufficiently rich initial conditions. Here we define such waves generically as unusually large energy fluctuations that sustain for short periods of time. Our simulations suggest that such unusually large fluctuations ("hot spots") and occasional series of such fluctuations through space and time ("rogue fluctuations") are likely to exist in the late time dynamics of the granular chain system at zero dissipation. We show that while hot spots are common in late time evolution, rogue fluctuations are seen in purely nonlinear systems (i.e., no precompression) at late enough times. We next show that the number of such fluctuations grows exponentially with increasing nonlinearity whereas rogue fluctuations decrease superexponentially with increasing precompression. Dissipation-free granular alignment systems may be possible to realize as integrated circuits and hence our observations may potentially be testable in the laboratory.

  18. Starting energy and current for a large diameter backward wave oscillator

    SciTech Connect

    Minami, K.; Ogura, K.; Aiba, Y.; Amin, M.R.; Watanabe, T.; Carmel, Y.; Destler, W.W.; Granatstein, V.L.

    1994-12-31

    Among various high-power microwave sources, multiwave Cerenkov Generators (MWCGs) have attained top data of output. Radiation powers 3 GW at wave length 9.7 mm and efficiency 20% were reported. Here a large mean diameter D of the slow wave structure (SWS) is the key point. Although the physical processes involved in the MWCGs are complicated, the authors here design a large diameter backward wave oscillator (LD-BWO) operating at 24 GHz high-power microwaves without decreasing D. The inner radius of the metal surface of the SWS is assumed to vary sinusoidally. The oscillation frequency is raised by choosing carefully small values of z{sub 0} and h. Numerical study is made within the scope of linear pinch point analysis for a SWS available in 24 GHz LD-BWO. The authors find that there exists a starting energy in addition to starting current in electron beam for initiating microwave oscillation, if the finite length L of SWS is taken into account.

  19. Constraining dark matter late-time energy injection: decays and p-wave annihilations

    SciTech Connect

    Diamanti, Roberta; Mena, Olga; Palomares-Ruiz, Sergio; Vincent, Aaron C.; Lopez-Honorez, Laura E-mail: llopezho@vub.ac.be E-mail: sergio.palomares.ruiz@ific.uv.es

    2014-02-01

    We use the latest cosmic microwave background (CMB) observations to provide updated constraints on the dark matter lifetime as well as on p-wave suppressed annihilation cross sections in the 1 MeV to 1 TeV mass range. In contrast to scenarios with an s-wave dominated annihilation cross section, which mainly affect the CMB close to the last scattering surface, signatures associated with these scenarios essentially appear at low redshifts (z∼<50) when structure began to form, and thus manifest at lower multipoles in the CMB power spectrum. We use data from Planck, WMAP9, SPT and ACT, as well as Lyman–α measurements of the matter temperature at z ∼ 4 to set a 95% confidence level lower bound on the dark matter lifetime of ∼ 4 × 10{sup 25} s for m{sub χ} = 100 MeV. This bound becomes lower by an order of magnitude at m{sub χ} = 1 TeV due to inefficient energy deposition into the intergalactic medium. We also show that structure formation can enhance the effect of p-wave suppressed annihilation cross sections by many orders of magnitude with respect to the background cosmological rate, although even with this enhancement, CMB constraints are not yet strong enough to reach the thermal relic value of the cross section.

  20. Stable standing waves for a NLS on star graphs as local minimizers of the constrained energy

    NASA Astrophysics Data System (ADS)

    Adami, Riccardo; Cacciapuoti, Claudio; Finco, Domenico; Noja, Diego

    2016-05-01

    On a star graph made of N ≥ 3 halflines (edges) we consider a Schrödinger equation with a subcritical power-type nonlinearity and an attractive delta interaction located at the vertex. From previous works it is known that there exists a family of standing waves, symmetric with respect to the exchange of edges, that can be parametrized by the mass (or L2-norm) of its elements. Furthermore, if the mass is small enough, then the corresponding symmetric standing wave is a ground state and, consequently, it is orbitally stable. On the other hand, if the mass is above a threshold value, then the system has no ground state. Here we prove that orbital stability holds for every value of the mass, even if the corresponding symmetric standing wave is not a ground state, since it is anyway a local minimizer of the energy among functions with the same mass. The proof is based on a new technique that allows to restrict the analysis to functions made of pieces of soliton, reducing the problem to a finite-dimensional one. In such a way, we do not need to use direct methods of Calculus of Variations, nor linearization procedures.

  1. Mechanical energy fluctuations in granular chains: The possibility of rogue fluctuations or waves

    NASA Astrophysics Data System (ADS)

    Han, Ding; Westley, Matthew; Sen, Surajit

    2014-09-01

    The existence of rogue or freak waves in the ocean has been known for some time. They have been reported in the context of optical lattices and the financial market. We ask whether such waves are generic to late time behavior in nonlinear systems. In that vein, we examine the dynamics of an alignment of spherical elastic beads held within fixed, rigid walls at zero precompression when they are subjected to sufficiently rich initial conditions. Here we define such waves generically as unusually large energy fluctuations that sustain for short periods of time. Our simulations suggest that such unusually large fluctuations ("hot spots") and occasional series of such fluctuations through space and time ("rogue fluctuations") are likely to exist in the late time dynamics of the granular chain system at zero dissipation. We show that while hot spots are common in late time evolution, rogue fluctuations are seen in purely nonlinear systems (i.e., no precompression) at late enough times. We next show that the number of such fluctuations grows exponentially with increasing nonlinearity whereas rogue fluctuations decrease superexponentially with increasing precompression. Dissipation-free granular alignment systems may be possible to realize as integrated circuits and hence our observations may potentially be testable in the laboratory.

  2. The Contribution of Environmental Siting and Permitting Requirements to the Cost of Energy for Oscillating Water Column Wave Energy Devices

    SciTech Connect

    Copping, Andrea E.; Geerlofs, Simon H.; Hanna, Luke A.

    2013-09-30

    Responsible deployment of marine and hydrokinetic (MHK) devices in estuaries, coastal areas, and major rivers requires that biological resources and ecosystems be protected through siting and permitting (consenting) processes. Scoping appropriate deployment locations, collecting pre-installation (baseline) and post-installation data all add to the cost of developing MHK projects, and hence to the cost of energy. Under the direction of the U.S. Department of Energy, Pacific Northwest National Laboratory scientists have developed logic models that describe studies and processes for environmental siting and permitting. Each study and environmental permitting process has been assigned a cost derived from existing and proposed tidal, wave, and riverine MHK projects, as well as expert opinion of marine environmental research professionals. Cost estimates have been developed at the pilot and commercial scale. The reference model described in this document is an oscillating water column device deployed in Northern California at approximately 50 meters water depth.

  3. A New Look at the Physics and Energy Fluxes of Rossby Waves

    NASA Astrophysics Data System (ADS)

    Cai, Ming; Huang, Buhua

    2016-04-01

    The presence of the latitudinal variation of the Coriolis parameter serves as a mechanical barrier that causes a mass convergence for the poleward geostrophic flow and divergence for the equatorward flow, just as a sloped bottom terrain does to a crossover flow. Part of the mass convergence causes pressure to rise along the uphill pathway while the remaining part is detoured to cross isobars out of the pathway. This mechanically excited cross-isobar flow, being unbalanced geostrophically, is subject to a "half-cycle" Coriolis force that only turns it to the direction parallel to isobars without continuing to turn it further back to its opposite direction because the geostrophic balance is reestablished once the flow becomes parallel to isobars. Such oscillation, involving a barrier-induced mass convergence, a mechanical deflection, and a half-cycle Coriolis deflection, is referred to as a mechanical-Coriolis oscillation with a "barrier-induced half cycle Coriolis force" as its restoring force. Through a complete cycle of the mechanical-Coriolis oscillation, a new geostrophically balanced flow pattern emerges to the left of the existing flow when facing the uphill (downhill) direction of the barrier in the North(Southern) Hemisphere. The β-barrier is always sloped towards the pole in both hemispheres, responsible for the westward propagation of Rossby waves. The identification of the physical oscillation mechanism for Rossby waves enables us to recover the well-known "missing" term in energy flux of Rossby waves and reconcile the apparent inconsistency between pressure work and group velocity of Rossby waves.

  4. Evaluation of turbulent magnetic energy spectra in the three-dimensional wave vector domain in the solar wind

    SciTech Connect

    Gary, S Peter; Narita, Y; Glassmeier, K H; Goldstein, M L; Safraoui, F; Treumann, R A

    2009-01-01

    Using four-point measurements of the CLUSTER spacecraft, the energy distribution of magnetic field fluctuations in the solar wind is determined directly in the three-dimensional wave vector domain in the range 3 x 10{sup -4} rad/km < k < 3 x 10{sup -3} rad/km. The analysis method takes account of a regular tetrahedron configuration of CLUSTER and the Doppler effect. The energy distribution in the flow rest frame is anisotropic, characterized by two distinct extended structures perpendicular to the mean magnetic field and furthermore perpendicular to the flow direction. The three-dimensional distribution is averaged around the direction of the mean magnetic field direction, and then is further reduced to one-dimensional distributions in the wave number domain parallel and perpendicular to the mean magnetic field. The one-dimensional energy spectra are characterized by the power law with the index -5/3 and furthermore very close energy density between parallel and perpendicular directions to the mean magnetic field at the same wave numbers. Though the distributions and the spectra are not covered in a wide range of wave vectors, our measurements suggest that the solar wind fluctuation is anisotropic in the three-dimensional wave vector space. It is, however, rather isotropic when reduced into the parallel and perpendicular wave vector geometries due to the second anisotropy imposed by the flow direction.

  5. High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Pǎvǎlaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Antares Collaboration

    2016-06-01

    We present the high-energy-neutrino follow-up observations of the first gravitational wave transient GW150914 observed by the Advanced LIGO detectors on September 14, 2015. We search for coincident neutrino candidates within the data recorded by the IceCube and Antares neutrino detectors. A possible joint detection could be used in targeted electromagnetic follow-up observations, given the significantly better angular resolution of neutrino events compared to gravitational waves. We find no neutrino candidates in both temporal and spatial coincidence with the gravitational wave event. Within ±500 s of the gravitational wave event, the number of neutrino candidates detected by IceCube and Antares were three and zero, respectively. This is consistent with the expected atmospheric background, and none of the neutrino candidates were directionally coincident with GW150914. We use this nondetection to constrain neutrino emission from the gravitational-wave event.

  6. Recent Additions in the Modeling Capabilities of an Open-Source Wave Energy Converter Design Tool: Preprint

    SciTech Connect

    Tom, N.; Lawson, M.; Yu, Y. H.

    2015-04-20

    WEC-Sim is a midfidelity numerical tool for modeling wave energy conversion devices. The code uses the MATLAB SimMechanics package to solve multibody dynamics and models wave interactions using hydrodynamic coefficients derived from frequency-domain boundary-element methods. This paper presents the new modeling features introduced in the latest release of WEC-Sim. The first feature discussed conversion of the fluid memory kernel to a state-space form. This enhancement offers a substantial computational benefit after the hydrodynamic body-to-body coefficients are introduced and the number of interactions increases exponentially with each additional body. Additional features include the ability to calculate the wave-excitation forces based on the instantaneous incident wave angle, allowing the device to weathervane, as well as import a user-defined wave elevation time series. A review of the hydrodynamic theory for each feature is provided and the successful implementation is verified using test cases.

  7. Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves

    NASA Astrophysics Data System (ADS)

    Shang, Shuai; Yang, Shizhong; Liu, Jing; Shan, Meng; Cao, Hailin

    2016-07-01

    In this paper, a metamaterial electromagnetic energy harvester constructed via the capacitive loading of metal circular split rings is presented. Each energy-harvesting cell is loaded with a resistance that imitates the input impedance of a rectifier circuit. Specifically, the metamaterial energy harvester has high selective harvesting for left- and right-handed circularly polarized waves. Here, the energy absorption is mostly induced by the resistive load; thus, effective energy harvesting can be achieved. Moreover, the proposed energy harvester exhibits a high-efficiency harvesting for right-handed circularly polarized waves over a wide range of incident angles. Further, a transmission line model is adopted to interpret the energy harvesting mechanism, which shows that a good impedance matching and low dielectric loss can further enhance the harvesting efficiency. To demonstrate the design, a 15 × 15 unit-cell prototype is fabricated and measured, and the measured results reasonably agree with the simulated ones.

  8. Effect of Radial Density Configuration on Wave Field and Energy Flow in Axially Uniform Helicon Plasma

    NASA Astrophysics Data System (ADS)

    Chang, Lei; Li, Qingchong; Zhang, Huijie; Li, Yinghong; Wu, Yun; Zhang, Bailing; Zhuang, Zhong

    2016-08-01

    The effect of the radial density configuration in terms of width, edge gradient and volume gradient on the wave field and energy flow in an axially uniform helicon plasma is studied in detail. A three-parameter function is employed to describe the density, covering uniform, parabolic, linear and Gaussian profiles. It finds that the fraction of power deposition near the plasma edge increases with density width and edge gradient, and decays in exponential and “bump-on-tail” profiles, respectively, away from the surface. The existence of a positive second-order derivative in the volume density configuration promotes the power deposition near the plasma core, which to our best knowledge has not been pointed out before. The transverse structures of wave field and current density remain almost the same during the variation of density width and gradient, confirming the robustness of the m=1 mode observed previously. However, the structure of the electric wave field changes significantly from a uniform density configuration, for which the coupling between the Trivelpiece-Gould (TG) mode and the helicon mode is very strong, to non-uniform ones. The energy flow in the cross section of helicon plasma is presented for the first time, and behaves sensitive to the density width and edge gradient but insensitive to the volume gradient. Interestingly, the radial distribution of power deposition resembles the radial profile of the axial component of current density, suggesting the control of the power deposition profile in the experiment by particularly designing the antenna geometry to excite a required axial current distribution. supported by National Natural Science Foundation of China (No. 11405271)

  9. Hydrogen atom wave function and eigen energy in the Rindler space

    NASA Astrophysics Data System (ADS)

    Dai, De-Chang

    2016-10-01

    We study the hydrogen atom eigenstate energy and wave function in the Rindler space. The probability distribution is tilted because the electric field of the nucleus is no longer spherically symmetric. The hydrogen atom therefore cannot be treated exactly in the same way as what it is in an inertial frame. We also find that if the external force accelerates only the nucleus and then the nucleus accelerates its surrounding electrons through electromagnetic force, the electrons can tunnel through the local energy gap and split the hydrogen atom into an ion. This is similar to what one expects from the Stark effect. However, the critical acceleration is about 3 ×1022 m /s2. It is well beyond the gravitational acceleration on a regular star surface.

  10. Self-energy of a nodal fermion in a d -wave superconductor

    NASA Astrophysics Data System (ADS)

    Chubukov, A. V.; Tsvelik, A. M.

    2006-06-01

    We reconsider the self-energy of a nodal (Dirac) fermion in a two-dimensional d -wave superconductor. A conventional belief is that ImΣ(ω,T)˜max(ω3,T3) . We show that Σ(ω,k,T) for k along the nodal direction is actually a complex function of ω,T , and the deviation from the mass shell. In particular, the second-order self-energy diverges at a finite T when either ω or k-kF vanish. We show that the full summation of infinite diagrammatic series recovers a finite result for Σ , but the full angle-resolved photoemission spectroscopy spectral function is nonmonotonic and has a kink whose location compared to the mass shell differs qualitatively for spin-and charge-mediated interactions.

  11. Heating of ions to superthermal energies in the topside ionosphere by electrostatic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Ungstrup, E.; Klumpar, D. M.; Heikkila, W. J.

    1979-01-01

    The soft particle spectrometer on the Isis 2 spacecraft occasionally observes fluxes of ions moving upward out of the ionosphere in the vicinity of the auroral oval. These ion fluxes are characterized by a sharp pitch angle distribution usually peaked at an angle somewhat greater than 90 deg, indicative of particles heated to a large transverse temperature in a narrow range below the spacecraft. The observations are interpreted in terms of electrostatic ion cyclotron waves, which heat the ions to superthermal energies transverse to the earth's magnetic field. When the transverse energy increases, the repulsive force of the earth's magnetic field, proportional to the particle magnetic moment, repels the particles away from the earth.

  12. Wave energy focusing to subsurface poroelastic formations to promote oil mobilization

    NASA Astrophysics Data System (ADS)

    Karve, Pranav M.; Kallivokas, Loukas F.

    2015-07-01

    We discuss an inverse source formulation aimed at focusing wave energy produced by ground surface sources to target subsurface poroelastic formations. The intent of the focusing is to facilitate or enhance the mobility of oil entrapped within the target formation. The underlying forward wave propagation problem is cast in two spatial dimensions for a heterogeneous poroelastic target embedded within a heterogeneous elastic semi-infinite host. The semi-infiniteness of the elastic host is simulated by augmenting the (finite) computational domain with a buffer of perfectly matched layers. The inverse source algorithm is based on a systematic framework of partial-differential-equation-constrained optimization. It is demonstrated, via numerical experiments, that the algorithm is capable of converging to the spatial and temporal characteristics of surface loads that maximize energy delivery to the target formation. Consequently, the methodology is well-suited for designing field implementations that could meet a desired oil mobility threshold. Even though the methodology, and the results presented herein are in two dimensions, extensions to three dimensions are straightforward.

  13. Nonlinear effects in collision cascades and high energy shock waves during ta-C:H growth

    SciTech Connect

    Piazza, F.; Resto, O.; Morell, G.

    2007-07-01

    The surface topography of hydrogenated tetrahedral amorphous carbon (ta-C:H) is critical for various applications such as microelectromechanical devices, magnetic and optical storage devices, and medical implants. The surface topography of ta-C:H films deposited by distributed electron cyclotron resonance plasma from C{sub 2}H{sub 2} gas precursor was investigated. The effects of pressure, together with ion flux and energy, are studied by atomic force microscopy in relation to the structural evolution of the films. The results are compared with the predictions of the Edward-Wilkinson model [Proc. R. Soc. London, Ser. A 44, 1039 (1966)] recently proposed to account for ta-C:H growth and with previous interpretations based on hypersonic shock waves. The random hillocks observed on the smooth surfaces of ta-C:H films deposited at high pressure are thought to result from the interference of high energy shock waves triggered by C{sub 4}H{sub x}{sup +} ions that produce overlapping collision cascades and induce nonlinear effects.

  14. Sensor Measurement Strategies for Monitoring Offshore Wind and Wave Energy Devices

    NASA Astrophysics Data System (ADS)

    O'Donnell, Deirdre; Srbinovsky, Bruno; Murphy, Jimmy; Popovici, Emanuel; Pakrashi, Vikram

    2015-07-01

    While the potential of offshore wind and wave energy devices is well established and accepted, operations and maintenance issues are still not very well researched or understood. In this regard, scaled model testing has gained popularity over time for such devices at various technological readiness levels. The dynamic response of these devices are typically measured by different instruments during such scaled tests but agreed sensor choice, measurement and placement guidelines are still not in place. This paper compared the dynamic responses of some of these sensors from a scaled ocean wave testing to highlight the importance of sensor measurement strategies. The possibility of using multiple, cheaper sensors of seemingly inferior performance as opposed to the deployment of a small number of expensive and accurate sensors are also explored. An energy aware adaptive sampling theory is applied to highlight the possibility of more efficient computing when large volumes of data are available from the tested structures. Efficient sensor measurement strategies are expected to have a positive impact on the development of an device at different technological readiness levels while it is expected to be helpful in reducing operation and maintenance costs if such an approach is considered for the devices when they are in operation.

  15. Elastic scattering measurement for the system 17O + 58Ni at Coulomb barrier energies with silicon strip detectors exploiting ASIC electronics

    NASA Astrophysics Data System (ADS)

    Signorini, C.; Mazzocco, M.; Molini, P.; Pierroutsakou, D.; Boiano, C.; Manea, C.; Strano, E.; Torresi, D.; Di Meo, P.; Nicoletto, M.; Boiano, A.; Glodariu, T.; Grebosz, J.; Guglielmetti, A.; La Commara, M.; Parascandolo, C.; Parascandolo, L.; Sandoli, M.; Soramel, F.; Stroe, L.; Toniolo, N.; Veronese, F.

    2013-03-01

    The quasi elastic scattering of a 17O projectile from a 58Ni target has been studied at beam energies ranging from 42.5 to 55.0 MeV in 2.5 MeV steps. The total reaction cross sections were derived from the measured angular distributions by using an optical model fit within the coupled-channel code FRESCO. These cross sections are very similar to those measured for 17F (loosely bound by 0.6 MeV), mirror nucleus of 17O (tightly bound by 4.14 MeV). This outcome points out that, in this energy range, the small binding energy of the 17F valence proton has negligible influence onto the reactivity of such a loosely bound projectile, contrary to simple expectations, and to what observed for other loosely bound nuclei. The reaction dynamics seems to be influenced mainly by the Coulomb interaction which is similar for both mirror projectiles.

  16. Nonlinear elastic effects on the energy flux deviation of ultrasonic waves in gr/ep composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Kriz, R. D.; Fitting, Dale W.

    1992-01-01

    The effects of nonlinear elasticity on energy flux deviation in undirectional gr/ep composites are examined. The shift in the flux deviation is modeled using acoustoelasticity theory and the second- and third-order elastic stiffness coefficients for T300/5208 gr/ep. Two conditions of applied uniaxial stress are considered. In the first case, the direction of applied uniaxial stress was along the fiber axis (x3), while in the second case it was perpendicular to the fiber axis along the laminate stacking direction (x1). For both conditions, the change in the energy flux deviation angle from the condition of zero applied stress is computed over the range of propagation directions of 0 to 60 deg from the fiber axis at two-degree intervals. A positive flux deviation angle implies the energy deviates away from the fiber direction toward the x1 axis, while a negative deviation means that the energy deviates toward the fibers. Over this range of fiber orientation angles, the energy of the quasi-longitudinal and pure mode transverse waves deviates toward the fibers, while that of the quasi-transverse mode deviates away from the fibers.

  17. Acceleration of low-energy protons and alpha particles at interplanetary shock waves

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Hovestadt, D.; Ipavich, F. M.; Gloeckler, G.

    1983-01-01

    The low-energy protons and alpha particles in the energy range 30 keV/charge to 150 keV/charge associated with three different interplanetary shock waves in the immediate preshock and postshock region are studied using data obtained by the ISEE 3. The spatial distributions in the preshock and postshock medium are presented, and the dependence of the phase space density at different energies on the distance from the shock and on the form of the distribution function of both species immediately at the shock is examined. It is found that in the preshock region the particles are flowing in the solar wind frame of reference away from the shock and in the postshock medium the distribution is more or less isotropic in this frame of reference. The distribution function in the postshock region can be represented by a power law in energy which has the same spectral exponent for both protons and alpha particles. It is concluded that the first-order Fermi acceleration process can consistently explain the data, although the spectra of diffuse bow shock associated particles are different from the spectra of the interplanetary shock-associated particles in the immediate vicinity of the shock. In addition, the mean free path of the low energy ions in the preshock medium is found to be considerably smaller than the mean free path determined by the turbulence of the background interplanetary medium.

  18. Real-time exploitation system

    NASA Astrophysics Data System (ADS)

    Riedel, Richard D.

    1998-11-01

    The proliferation and technology advances of digital sensors for reconnaissance imaging require a commensurate increase in the productivity of ground-based exploitation system to process the increased volume of remotely-sensed data. Systems to support this level of production, themselves, must have significantly reduced development and life-cycle costs from previously installed systems. For cost, growth, and integration advantages, reconnaissance exploitation systems should be designed to maximize Commercial-Off-The-Shelf (COTS) hardware and software. As an example, the Real-Time Exploitation System is a state-of-the-art system for photo interpretation and exploitation of real-time digital reconnaissance imagery. Using COTS hardware, the system is able to receive imagery at rates greater than 80 Mpixels/sec; perform detailed interpretation, exploitation and report generation, and; disseminate reports to intelligence users over secure networks. New technologies have been applied in workflow management, database management, and user interfaces to provide the image analyst with superior analysis tools and access to other intelligence data sources. Photogrammetric functions are also provided for monoscopic and stereoscopic imagery. These functions provide greater geographic accuracy than is achievable in most reconnaissance exploitation systems. The Real-Time Exploitation System significantly reduces timelines for the analysis and report generation process, and significantly increases the quality and accuracy of reports.

  19. Trapping of high-energy electrons into regime of surfatron acceleration by electromagnetic waves in space plasma

    SciTech Connect

    Erokhin, A. N.; Erokhin, N. S.; Milant'ev, V. P.

    2012-05-15

    The phenomenon of trapping of weakly relativistic charged particles (with kinetic energies on the order of mc{sup 2}) into a regime of surfatron acceleration by an electromagnetic wave that propagates in plasma across a weak external magnetic field has been studied using nonlinear numerical calculations based on a solution of the relativistic equations of motion. Analysis showed that, for the wave amplitude above a certain threshold value and the initial wave phase outside the interval favorable for the surfing regime, the trajectory of a charged particle initially corresponds to its cyclotron rotation in the external magnetic field. For the initial particle energies studied, the period of this rotation is relatively short. After a certain number (from several dozen to several thousand and above) of periods of rotation, the wave phase takes a value that is favorable for trapping of the charged particle on its trajectory by the electromagnetic wave, provided the Cherenkov resonance conditions are satisfied. As a result, the wave traps the charged particle and imparts it an ultrarelativistic acceleration. In momentum space, the region of trapping into the regime of surfing on an electromagnetic wave turns out to be rather large.

  20. Energy transport and secondary circulations due to vertically-propagating Yanai waves observed in the equatorial Indian Ocean.

    NASA Astrophysics Data System (ADS)

    Smyth, W.; Durland, T.; Moum, J. N.

    2014-12-01

    Shipboard current measurements in the equatorial Indian Ocean in October and November of 2011 revealed oscillations in the meridional velocity with amplitude ~0.10m/s. These were clearest in a layer extending from ~300 to 600 m depth and had periods near 3 weeks. Phase propagation was upward. Measurements from a time series at the equator, four meridional transects and one zonal transect are used to identify the oscillation as a Yanai wave packet and to establish its dominant frequency and vertical wavelength. The Doppler shift is accounted for, so that measured wave properties are translated into the reference frame of the mean zonal flow. We take advantage of the fact that, in the depth range where the wave signal was clearest, the time-averaged current and buoyancy frequency were nearly uniform with depth, allowing application of the classical theoretical representation of vertically propagating waves. Using the theory, we estimate wave properties that are not directly measured, such as the group velocity and the zonal wavelength and phase speed. The theory predicts a vertical energy flux that is comparable to that carried by midlatitude near-inertial waves. Also predicted is an equatorward heat flux that is balanced, in the limit of a linear plane wave, by a wave-driven Eulerian mean flow. The volume transport carried by this mean flow is in turn balanced by the Stokes drift.

  1. On the accuracy of density functional theory and wave function methods for calculating vertical ionization energies

    SciTech Connect

    McKechnie, Scott; Booth, George H.; Cohen, Aron J.; Cole, Jacqueline M.

    2015-05-21

    The best practice in computational methods for determining vertical ionization energies (VIEs) is assessed, via reference to experimentally determined VIEs that are corroborated by highly accurate coupled-cluster calculations. These reference values are used to benchmark the performance of density functional theory (DFT) and wave function methods: Hartree-Fock theory, second-order Møller-Plesset perturbation theory, and Electron Propagator Theory (EPT). The core test set consists of 147 small molecules. An extended set of six larger molecules, from benzene to hexacene, is also considered to investigate the dependence of the results on molecule size. The closest agreement with experiment is found for ionization energies obtained from total energy difference calculations. In particular, DFT calculations using exchange-correlation functionals with either a large amount of exact exchange or long-range correction perform best. The results from these functionals are also the least sensitive to an increase in molecule size. In general, ionization energies calculated directly from the orbital energies of the neutral species are less accurate and more sensitive to an increase in molecule size. For the single-calculation approach, the EPT calculations are in closest agreement for both sets of molecules. For the orbital energies from DFT functionals, only those with long-range correction give quantitative agreement with dramatic failing for all other functionals considered. The results offer a practical hierarchy of approximations for the calculation of vertical ionization energies. In addition, the experimental and computational reference values can be used as a standardized set of benchmarks, against which other approximate methods can be compared.

  2. On the accuracy of density functional theory and wave function methods for calculating vertical ionization energies.

    PubMed

    McKechnie, Scott; Booth, George H; Cohen, Aron J; Cole, Jacqueline M

    2015-05-21

    The best practice in computational methods for determining vertical ionization energies (VIEs) is assessed, via reference to experimentally determined VIEs that are corroborated by highly accurate coupled-cluster calculations. These reference values are used to benchmark the performance of density functional theory (DFT) and wave function methods: Hartree-Fock theory, second-order Møller-Plesset perturbation theory, and Electron Propagator Theory (EPT). The core test set consists of 147 small molecules. An extended set of six larger molecules, from benzene to hexacene, is also considered to investigate the dependence of the results on molecule size. The closest agreement with experiment is found for ionization energies obtained from total energy difference calculations. In particular, DFT calculations using exchange-correlation functionals with either a large amount of exact exchange or long-range correction perform best. The results from these functionals are also the least sensitive to an increase in molecule size. In general, ionization energies calculated directly from the orbital energies of the neutral species are less accurate and more sensitive to an increase in molecule size. For the single-calculation approach, the EPT calculations are in closest agreement for both sets of molecules. For the orbital energies from DFT functionals, only those with long-range correction give quantitative agreement with dramatic failing for all other functionals considered. The results offer a practical hierarchy of approximations for the calculation of vertical ionization energies. In addition, the experimental and computational reference values can be used as a standardized set of benchmarks, against which other approximate methods can be compared.

  3. Solitary waves in the granular chain

    NASA Astrophysics Data System (ADS)

    Sen, Surajit; Hong, Jongbae; Bang, Jonghun; Avalos, Edgar; Doney, Robert

    2008-06-01

    Solitary waves are lumps of energy. We consider the study of dynamical solitary waves, meaning cases where the energy lumps are moving, as opposed to topological solitary waves where the lumps may be static. Solitary waves have been studied in some form or the other for nearly 450 years. Subsequently, there have been many authoritative works on solitary waves. Nevertheless, some of the most recent studies reveal that these peculiar objects are far more complex than what we might have given them credit for. In this review, we introduce the physics of solitary waves in alignments of elastic beads, such as glass beads or stainless steel beads. We show that any impulse propagates as a new kind of highly interactive solitary wave through such an alignment and that the existence of these waves seems to present a need to re-examine the very definition of the concept of equilibrium. We further discuss the possibility of exploiting nonlinear properties of granular alignments to develop exciting technological applications.

  4. Asteroid Exploration and Exploitation

    NASA Technical Reports Server (NTRS)

    Lewis, John S.

    2006-01-01

    John S. Lewis is Professor of Planetary Sciences and Co-Director of the Space Engineering Research Center at the University of Arizona. He was previously a Professor of Planetary Sciences at MIT and Visiting Professor at the California Institute of Technology. Most recently, he was a Visiting Professor at Tsinghua University in Beijing for the 2005-2006 academic year. His research interests are related to the application of chemistry to astronomical problems, including the origin of the Solar System, the evolution of planetary atmospheres, the origin of organic matter in planetary environments, the chemical structure and history of icy satellites, the hazards of comet and asteroid bombardment of Earth, and the extraction, processing, and use of the energy and material resources of nearby space. He has served as member or Chairman of a wide variety of NASA and NAS advisory committees and review panels. He has written 17 books, including undergraduate and graduate level texts and popular science books, and has authored over 150 scientific publications.

  5. A First Search for Coincident Gravitational Waves and High Energy Neutrinos Using LIGO, Virgo and ANTARES Data from 2007

    NASA Technical Reports Server (NTRS)

    Adrian-Martinez, S.; Samarai, Al; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C; Bou-Cabo, M.; Bouhou, B.; Bowhuis, M. C.; Bertin, V.; Brunner, J.; Busto, J.; Blackburn, L.; Camp, J. B.; Kanner, J. B.

    2013-01-01

    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.

  6. A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Samarai, I. Al; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Capone, A.; Cârloganu, C.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; De Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fehn, K.; Fermani, P.; Ferri, M.; Ferry, S.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Geyer, K.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Hallewell, G.; Hamal, M.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Martini, S.; Meli, A.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Petrovic, J.; Piattelli, P.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vecchi, M.; Vernin, P.; Visser, E.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.; Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Ast, S.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Bao, Y.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bhadbade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bond, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Dent, T.; Dergachev, V.; DeRosa, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Farr, B. F.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M. A.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gelencser, G.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Keitel, D.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Lam, P. K.; Landry, M.; Langley, A.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Lhuillier, V.; Li, J.; Li, T. G. F.; Lindquist, P. E.; Litvine, V.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Logue, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow–Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Neri, I.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenberg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pihlaja, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Poux, C.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, M.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2013-06-01

    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.

  7. Spatial differentiation of coral species related to wave energy along the Changqi coast, Hainan island, southern China

    NASA Astrophysics Data System (ADS)

    Dao-ru, Wang; Yuan-chao, Li; Jian-xin, Lan

    2013-04-01

    The regularities of the composition and the spatial distribution of hermatypic coral community is an essential aspect of coral reef ecosystem studies. The relationship between the structure and spatial distribution of hermatypic coral communities and hydrodynamics and wave energy, along the Changqi coast, are investigated. Differences in abundance of hermatypic coral species, at different depths, were found; these were related mainly to the varying influence of waves. Under average weather conditions, the wave energy was dissipated regularly at a depth of 2 m. Here, the coral cover was the lowest of all of the depths. However, corals growing in that area is adapted to the conditions; therefore, wave damage was low. The areas at 5-6 m water depth were influenced by waves primarily during episodes of extreme weather, with high wave energy resulting in severe damage of the corals. The coral cover in this depth was the highest observed, but the corals were generally smaller and had a short growth period. These findings indicate that the strong waves damaged particularly the weak corals, such as Acropora sp. and Montipora sp., during these short term events. Nevertheless, upon the return of normal conditions, coral communities can grow back and reproduce asexually in the damaged areas. As a result of this regrowth, Acropora sp. and Montipora sp. were highly abundant in areas at a depth of 5 m. It appears that knowledge on the physical setting, i.e. the relationship between wave properties and the spatial distribution patterns of corals, is essential for understanding coral reef succession rules; likewise, protection and recovery mechanisms of the coral reef ecosystem.

  8. Gas-grain energy transfer in solar nebula shock waves: Implications for the origin of chondrules

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Horanyi, M.

    1993-01-01

    Meteoritic chondrules provide evidence for the occurrence of rapid transient heating events in the protoplanetary nebula. Astronomical evidence suggests that gas dynamic shock waves are likely to be excited in protostellar accretion disks by processes such as protosolar mass ejections, nonaxisymmetric structures in an evolving disk, and impact on the nebula surface of infalling 'clumps' of circumstellar gas. Previous detailed calculations of gas-grain energy and momentum transfer have supported the possibility that such shock waves could have melted pre-existing chondrule-sized grains. The main requirement for grains to reach melting temperatures in shock waves with plausibly low Mach numbers is that grains existed in dust-rich zones (optical depth greater than 1) where radiative cooling of a given grain can be nearly balanced by radiation from surrounding grains. Localized dust-rich zones also provide a means of explaining the apparent small spatial scale of heating events. For example, the scale size of at least some optically thick dust-rich zones must have been relatively small (less than 10 kilometers) to be consistent with petrologic evidence for accretion of hot material onto cold chondrules. The implied number density of mm-sized grains for these zones would be greater than 30 m(exp -3). In this paper, we make several improvements of our earlier calculations to include radiation self-consistently in the shock jump conditions, and we include heating of grains due to radiation from the shocked gas. In addition, we estimate the importance of momentum feedback of dust concentrations onto the shocked gas which would tend to reduce the efficiency of gas dynamic heating of grains in the center of the dust cloud.

  9. Mapping the energy density of shaped waves in scattering media onto a complete set of diffusion modes.

    PubMed

    Ojambati, Oluwafemi S; Mosk, Allard P; Vellekoop, Ivo M; Lagendijk, Ad; Vos, Willem L

    2016-08-01

    We study the energy density of shaped waves inside a quasi-1D disordered waveguide. We find that the spatial energy density of optimally shaped waves, when expanded in the complete set of eigenfunctions of the diffusion equation, is well described by considering only a few of the lowest eigenfunctions. Taking into account only the fundamental eigenfunction, the total internal energy inside the sample is underestimated by only 2%. The spatial distribution of the shaped energy density is very similar to the fundamental eigenfunction, up to a cosine distance of about 0.01. We obtain the energy density of transmission eigenchannels inside the sample by numerical simulation of the scattering matrix. Computing the transmission-averaged energy density over all transmission channels yields the ensemble averaged energy density of shaped waves. From the averaged energy density, we reconstruct its spatial distribution using the eigenfunctions of the diffusion equation. The results of our study have exciting applications in controlled biomedical imaging, efficient light harvesting in solar cells, enhanced energy conversion in solid-state lighting, and low threshold random lasers. PMID:27505816

  10. Mapping the energy density of shaped waves in scattering media onto a complete set of diffusion modes.

    PubMed

    Ojambati, Oluwafemi S; Mosk, Allard P; Vellekoop, Ivo M; Lagendijk, Ad; Vos, Willem L

    2016-08-01

    We study the energy density of shaped waves inside a quasi-1D disordered waveguide. We find that the spatial energy density of optimally shaped waves, when expanded in the complete set of eigenfunctions of the diffusion equation, is well described by considering only a few of the lowest eigenfunctions. Taking into account only the fundamental eigenfunction, the total internal energy inside the sample is underestimated by only 2%. The spatial distribution of the shaped energy density is very similar to the fundamental eigenfunction, up to a cosine distance of about 0.01. We obtain the energy density of transmission eigenchannels inside the sample by numerical simulation of the scattering matrix. Computing the transmission-averaged energy density over all transmission channels yields the ensemble averaged energy density of shaped waves. From the averaged energy density, we reconstruct its spatial distribution using the eigenfunctions of the diffusion equation. The results of our study have exciting applications in controlled biomedical imaging, efficient light harvesting in solar cells, enhanced energy conversion in solid-state lighting, and low threshold random lasers.

  11. Predictive value of low tube voltage and dual-energy CT for successful shock wave lithotripsy: an in vitro study.

    PubMed

    Largo, Remo; Stolzmann, Paul; Fankhauser, Christian D; Poyet, Cédric; Wolfsgruber, Pirmin; Sulser, Tullio; Alkadhi, Hatem; Winklhofer, Sebastian

    2016-06-01

    This study investigates the capabilities of low tube voltage computed tomography (CT) and dual-energy CT (DECT) for predicting successful shock wave lithotripsy (SWL) of urinary stones in vitro. A total of 33 urinary calculi (six different chemical compositions; mean size 6 ± 3 mm) were scanned using a dual-source CT machine with single- (120 kVp) and dual-energy settings (80/150, 100/150 Sn kVp) resulting in six different datasets. The attenuation (Hounsfield Units) of calculi was measured on single-energy CT images and the dual-energy indices (DEIs) were calculated from DECT acquisitions. Calculi underwent SWL and the number of shock waves for successful disintegration was recorded. The prediction of required shock waves regarding stone attenuation/DEI was calculated using regression analysis (adjusted for stone size and composition) and the correlation between CT attenuation/DEI and the number of shock waves was assessed for all datasets. The median number of shock waves for successful stone disintegration was 72 (interquartile range 30-361). CT attenuation/DEI of stones was a significant, independent predictor (P < 0.01) for the number of required shock waves with the best prediction at 80 kVp (β estimate 0.576) (P < 0.05). Correlation coefficients between attenuation/DEI and the number of required shock waves ranged between ρ = 0.31 and 0.68 showing the best correlation at 80 kVp (P < 0.001). The attenuation of urinary stones at low tube voltage CT is the best predictor for successful stone disintegration, being independent of stone composition and size. DECT shows no added value for predicting the success of SWL.

  12. The sea surface currents as a potential factor in the estimation and monitoring of wave energy potential

    NASA Astrophysics Data System (ADS)

    Zodiatis, George; Galanis, George; Nikolaidis, Andreas; Stylianoy, Stavros; Liakatas, Aristotelis

    2015-04-01

    The use of wave energy as an alternative renewable is receiving attention the last years under the shadow of the economic crisis in Europe and in the light of the promising corresponding potential especially for countries with extended coastline. Monitoring and studying the corresponding resources is further supported by a number of critical advantages of wave energy compared to other renewable forms, like the reduced variability and the easier adaptation to the general grid, especially when is jointly approached with wind power. Within the framework, a number of countries worldwide have launched research and development projects and a significant number of corresponding studies have been presented the last decades. However, in most of them the impact of wave-sea surface currents interaction on the wave energy potential has not been taken into account neglecting in this way a factor of potential importance. The present work aims at filling this gap for a sea area with increased scientific and economic interest, the Eastern Mediterranean Sea. Based on a combination of high resolution numerical modeling approach with advanced statistical tools, a detailed analysis is proposed for the quantification of the impact of sea surface currents, which produced from downscaling the MyOcean-FO regional data, to wave energy potential. The results although spatially sensitive, as expected, prove beyond any doubt that the wave- sea surface currents interaction should be taken into account for similar resource analysis and site selection approaches since the percentage of impact to the available wave power may reach or even exceed 20% at selected areas.

  13. Accelerated dynamics of blast wave driven Rayleigh-Taylor instabilities in high energy density plasmas

    NASA Astrophysics Data System (ADS)

    Swisher, N.; Kuranz, C.; Drake, R. P.; Abarzhi, S. I.

    2014-10-01

    We report the systematic analysis of experimental data describing the late time evolution of the high Mach number and high Reynolds number Rayleigh-Taylor instability which is driven by a blast wave. The parameter regime is relevant to high energy density plasmas and astrophysics. The experiments have been conducted at the Omega laser facility. By processing the experimental x-ray images, we quantified the delicate features of RT dynamics, including the measurements of the curvature of the transmitted shock and the interface envelopes, the positions of RT bubbles and spikes, and the quantification of statistics of RT mixing. The measurements were performed at four time steps and for three different initial perturbations of the target (single mode and two two-mode). We found that within the noise level the curvatures of the shock and interface envelope evolve steadily and are an imprint of laser imperfections. At late times, the bubble merge does not occur, and the flow keeps significant degree of order. Yet, the blast-wave-driven RT spikes do accelerate with the power-law exponent smaller than that in case of sustained acceleration. We compared the experimental results with the momentum model of RT mixing and stochastic model achieving good agreement. The work is supported by the US National Science Foundation.

  14. Effects of lithotripter-generated high energy shock waves of mammalian cells in vitro.

    PubMed

    Kaver, I; Koontz, W W; Wilson, J D; Guice, J M; Smith, M J

    1992-01-01

    The effects of high energy shock waves on an established human prostatic carcinoma cell line (PC-3) were investigated. HESW were administered to PC-3 cell suspensions using an electrohydraulic lithotripter (Dornier HM3). Experimental variables included the number of shocks to which the cells were exposed, spark generator potential, and the position of the cell sample in the acoustic field. Two types of cellular damage were observed: immediate cell destruction (lysis) as measured by electronic particle counting and the loss of reproductive capacity (viability) among the remaining cells as determined by colony formation assay. Over the range of the experimental variables studied, cell lysis was dependent to a greater extent on the number of shocks administered than the generator potential. Viability was affected less but was also dependent on both the generator potential and shock number. Cell lysis was strongly dependent on the position of the sample in the acoustic field with the extent of damage increasing as the sample was moved along the central axis of the shock wave from the f2 focus towards the electrodes. Possible mechanisms of damage and the relationship of the in vitro effects to the damage observed in normal tissues of patients undergoing extracorporeal lithotripsy for kidney stone disease are discussed.

  15. Supporting Structure of the LSD Wave in an Energy Absorption Perspective

    SciTech Connect

    Fukui, Akihiro; Hatai, Keigo; Cho, Shinatora; Arakawa, Yoshihiro; Komurasaki, Kimiya

    2008-04-28

    In Repetitively Pulsed (RP) Laser Propulsion, laser energy irradiated to a vehicle is converted to blast wave enthalpy during the Laser Supported Detonation (LSD) regime. Based on the measured post-LSD electron number density profiles by two-wavelength Mach Zehnder interferometer in a line-focusing optics, electron temperature and absorption coefficient were estimated assuming Local Thermal Equilibrium. A 10J/pulse CO{sub 2} laser was used. As a result, laser absorption was found completed in the layer between the shock wave and the electron density peak. Although the LSD-termination timing was not clear from the shock-front/ionization-front separation in the shadowgraph images, there observed drastic changes in the absorption layer thickness from 0.2 mm to 0.5 mm and in the peak heating rate from 12-17x10{sup 13} kW/m{sup 3} to 5x10{sup 13} kW/m{sup 3} at the termination.

  16. A system for measuring bottom profile, waves and currents in the high-energy nearshore environment

    USGS Publications Warehouse

    Sallenger, A.H.; Howard, P.C.; Fletcher, C. H.; Howd, P.A.

    1983-01-01

    A new data-acquisition system capable of measuring waves, currents and the nearshore profile in breaking waves as high as 5 m has been developed and successfully field-tested. Components of the mechanical system are a sled carrying a vertical mast, a double-drum winch placed landward of the beach, and a line that runs from one drum of the winch around three blocks, which are the corners of a right triangle, to the other drum of the winch. The sled is attached to the shore-normal side of the triangular line arrangement and is pulled offshore by one drum of the winch and onshore by the other. The profile is measured as the sled is towed along the shore-normal transect using an infrared rangefinder mounted landward of the winch and optical prisms mounted on top of the sled's mast. A pressure sensor and two-axis electromagnetic current meter are mounted on the frame of the sled. These data are encoded on the sled and telemetered to a receiving/recording station onshore. Preliminary results suggest that near-bottom offshore-flowing currents during periods of high-energy swell are important in forcing changes to the configuration of the nearshore profile. ?? 1983.

  17. Coupling alongshore variations in wave energy to beach morphologic change using the SWAN wave model at Ocean Beach, San Francisco, CA

    USGS Publications Warehouse

    Eshleman, Jodi L.; Barnard, Patrick L.; Erikson, Li H.; Hanes, Daniel M.

    2007-01-01

    Coastal managers have faced increasing pressure to manage their resources wisely over the last century as a result of heightened development and changing environmental forcing. It is crucial to understand seasonal changes in beach volume and shape in order to identify areas vulnerable to accelerated erosion. Shepard (1950) was among the first to quantify seasonal beach cycles. Sonu and Van Beek (1971) and Wright et al. (1985) described commonly occurring beach states. Most studies utilize widest spaced 2-D cross shore profiles or shorelines extracted from aerial photographs (e.g. Winant et al. 1975; Aubrey, 1979, Aubrey and Ross, 1985; Larson and Kraus, 1994; Jimenez et al., 1977; Lacey and Peck, 1998; Guillen et al., 1999; Norcorss et al., 2002) to analyzed systematic changes in beach evolution. But with the exception of established field stations, such as Duck, NC (Birkemeier and Mason, 1984), ans Hazaki Oceanographical Research Station (HORS) in Japan (Katoh, 1997), there are very few beach change data sets with high temporal and spatial resolutions (e.g. Dail et al., 2000; Ruggiero et al., 2005; Yates et al., in press). Comprehensive sets of nearshore morphological data and local in situ measurements outside of these field stations are very rare and virtually non-existent high-energy coasts. Studied that have attempted to relate wave statistics to beach morphology change require some knowledge of the nearshore wave climate, and have had limited success using offshore measurement (Sonu and Van Beek, 1971; Dail et al., 2000). The primary objective of this study is to qualitatively compare spatially variable nearshore wave predictions to beach change measurements in order to understand the processes responsible for a persistent erosion 'hotspot' at Ocean Beach, San Francisco, CA. Local wave measurements are used to calibrate and validate a wave model that provides nearshore wave prediction along the beach. The model is run for thousands of binned offshore wave

  18. Coupling alongshore variations in wave energy to beach morphologic change using the SWAN wave model at Ocean Beach, San Francisco, CA

    USGS Publications Warehouse

    Eshleman, Jodi L.; Barnard, Patrick L.; Erikson, Li H.; Hanes, Daniel M.

    2007-01-01

    Coastal managers have faced increasing pressure to manage their resources wisely over the last century as a result of heightened development and changing environmental forcing. It is crucial to understand seasonal changes in beach volume and shape in order to identify areas vulnerable to accelerated erosion. Shepard (1950) was among the first to quantify seasonal beach cycles. Sonu and Van Beek (1971) and Wright et al. (1985) described commonly occurring beach states. Most studies utilize widest spaced 2-D cross shore profiles or shorelines extracted from aerial photographs (e.g. Winant et al. 1975; Aubrey, 1979, Aubrey and Ross, 1985; Larson and Kraus, 1994; Jimenez et al., 1977; Lacey and Peck, 1998; Guillen et al., 1999; Norcorss et al., 2002) to analyzed systematic changes in beach evolution. But with the exception of established field stations, such as Duck, NC (Birkemeier and Mason, 1984), ans Hazaki Oceanographical Research Station (HORS) in Japan (Katoh, 1997), there are very few beach change data sets with high temporal and spatial resolutions (e.g. Dail et al., 2000; Ruggiero et al., 2005; Yates et al., in press). Comprehensive sets of nearshore morphological data and local in situ measurements outside of these field stations are very rare and virtually non-existent high-energy coasts. Studied that have attempted to relate wave statistics to beach morphology change require some knowledge of the nearshore wave climate, and have had limited success using offshore measurement (Sonu and Van Beek, 1971; Dail et al., 2000). The primary objective of this study is to qualitatively compare spatially variable nearshore wave predictions to beach change measurements in order to understand the processes responsible for a persistent erosion 'hotspot' at Ocean Beach, San Francisco, CA. Local wave measurements are used to calibrate and validate a wave model that provides nearshore wave prediction along the beach. The model is run for thousands of binned offshore wave

  19. Analyzing the Impact of Increasing Mechanical Index and Energy Deposition on Shear Wave Speed Reconstruction in Human Liver.

    PubMed

    Deng, Yufeng; Palmeri, Mark L; Rouze, Ned C; Rosenzweig, Stephen J; Abdelmalek, Manal F; Nightingale, Kathryn R

    2015-07-01

    Shear wave elasticity imaging (SWEI) has found success in liver fibrosis staging. This work evaluates hepatic SWEI measurement success as a function of push pulse energy using two mechanical index (MI) values (1.6 and 2.2) over a range of pulse durations. Shear wave speed (SWS) was measured in the livers of 26 study subjects with known or potential chronic liver diseases. Each measurement consisted of eight SWEI sequences, each with different push energy configurations. The rate of successful SWS estimation was linearly proportional to the push energy. SWEI measurements with higher push energy were successful in patients for whom standard push energy levels failed. The findings also suggest that liver capsule depth could be used prospectively to identify patients who would benefit from elevated output. We conclude that there is clinical benefit to using elevated acoustic output for hepatic SWS measurement in patients with deeper livers.

  20. Non-contact magnetically coupled rectilinear-rotary oscillations to exploit low-frequency broadband energy harvesting with frequency up-conversion

    NASA Astrophysics Data System (ADS)

    Deng, Wei; Wang, Ya

    2016-09-01

    Ambient vibrations have a rectilinear and broadband nature and are particularly rich in the low-frequency regions. This letter reports an electromagnetic energy harvester to transform low-frequency broadband rectilinear vibrations into electricity with frequency up-conversion. The harvester consists of a rectilinear oscillator and a rotary oscillator coupled through magnetic force induced by four arc permanent magnets centrosymmetrically distributed on each oscillator. The rotary oscillator also includes two repulsive magnets and six stationary coils with steel screws inside to obtain and maintain four equilibrium positions with shallowed potential wells. The magnetic interaction between the rectilinear oscillator and the rotary oscillator is formulated using a magnetic dipole model. The restoring torque induced by the steel screws on the rotor is experimentally measured. Magnetically coupled governing equations are derive