Superlinearly scalable noise robustness of redundant coupled dynamical systems.
Kohar, Vivek; Kia, Behnam; Lindner, John F; Ditto, William L
2016-03-01
We illustrate through theory and numerical simulations that redundant coupled dynamical systems can be extremely robust against local noise in comparison to uncoupled dynamical systems evolving in the same noisy environment. Previous studies have shown that the noise robustness of redundant coupled dynamical systems is linearly scalable and deviations due to noise can be minimized by increasing the number of coupled units. Here, we demonstrate that the noise robustness can actually be scaled superlinearly if some conditions are met and very high noise robustness can be realized with very few coupled units. We discuss these conditions and show that this superlinear scalability depends on the nonlinearity of the individual dynamical units. The phenomenon is demonstrated in discrete as well as continuous dynamical systems. This superlinear scalability not only provides us an opportunity to exploit the nonlinearity of physical systems without being bogged down by noise but may also help us in understanding the functional role of coupled redundancy found in many biological systems. Moreover, engineers can exploit superlinear noise suppression by starting a coupled system near (not necessarily at) the appropriate initial condition.
Automatic network coupling analysis for dynamical systems based on detailed kinetic models.
Lebiedz, Dirk; Kammerer, Julia; Brandt-Pollmann, Ulrich
2005-10-01
We introduce a numerical complexity reduction method for the automatic identification and analysis of dynamic network decompositions in (bio)chemical kinetics based on error-controlled computation of a minimal model dimension represented by the number of (locally) active dynamical modes. Our algorithm exploits a generalized sensitivity analysis along state trajectories and subsequent singular value decomposition of sensitivity matrices for the identification of these dominant dynamical modes. It allows for a dynamic coupling analysis of (bio)chemical species in kinetic models that can be exploited for the piecewise computation of a minimal model on small time intervals and offers valuable functional insight into highly nonlinear reaction mechanisms and network dynamics. We present results for the identification of network decompositions in a simple oscillatory chemical reaction, time scale separation based model reduction in a Michaelis-Menten enzyme system and network decomposition of a detailed model for the oscillatory peroxidase-oxidase enzyme system.
Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles.
Fonseca, P Z G; Aranas, E B; Millen, J; Monteiro, T S; Barker, P F
2016-10-21
Optomechanical systems explore and exploit the coupling between light and the mechanical motion of macroscopic matter. A nonlinear coupling offers rich new physics, in both quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. The cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, while simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. We observe the cooling dynamics via both linear and nonlinear coupling. As the background gas pressure was lowered, we observed a greater than 1000-fold reduction in temperature before temperatures fell below readout sensitivity in the present setup. This Letter opens the way to strongly coupled quantum dynamics between a cavity and a nanoparticle largely decoupled from its environment.
The Jungle Universe: coupled cosmological models in a Lotka-Volterra framework
NASA Astrophysics Data System (ADS)
Perez, Jérôme; Füzfa, André; Carletti, Timoteo; Mélot, Laurence; Guedezounme, Lazare
2014-06-01
In this paper, we exploit the fact that the dynamics of homogeneous and isotropic Friedmann-Lemaître universes is a special case of generalized Lotka-Volterra system where the competitive species are the barotropic fluids filling the Universe. Without coupling between those fluids, Lotka-Volterra formulation offers a pedagogical and simple way to interpret usual Friedmann-Lemaître cosmological dynamics. A natural and physical coupling between cosmological fluids is proposed which preserves the structure of the dynamical equations. Using the standard tools of Lotka-Volterra dynamics, we obtain the general Lyapunov function of the system when one of the fluids is coupled to dark energy. This provides in a rigorous form a generic asymptotic behavior for cosmic expansion in presence of coupled species, beyond the standard de Sitter, Einstein-de Sitter and Milne cosmologies. Finally, we conjecture that chaos can appear for at least four interacting fluids.
Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles
NASA Astrophysics Data System (ADS)
Fonseca, P. Z. G.; Aranas, E. B.; Millen, J.; Monteiro, T. S.; Barker, P. F.
2016-10-01
Optomechanical systems explore and exploit the coupling between light and the mechanical motion of macroscopic matter. A nonlinear coupling offers rich new physics, in both quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. The cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, while simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. We observe the cooling dynamics via both linear and nonlinear coupling. As the background gas pressure was lowered, we observed a greater than 1000-fold reduction in temperature before temperatures fell below readout sensitivity in the present setup. This Letter opens the way to strongly coupled quantum dynamics between a cavity and a nanoparticle largely decoupled from its environment.
NASA Astrophysics Data System (ADS)
Zhuo, Zhao; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng
2018-04-01
One of the most challenging problems in network science is to accurately detect communities at distinct hierarchical scales. Most existing methods are based on structural analysis and manipulation, which are NP-hard. We articulate an alternative, dynamical evolution-based approach to the problem. The basic principle is to computationally implement a nonlinear dynamical process on all nodes in the network with a general coupling scheme, creating a networked dynamical system. Under a proper system setting and with an adjustable control parameter, the community structure of the network would "come out" or emerge naturally from the dynamical evolution of the system. As the control parameter is systematically varied, the community hierarchies at different scales can be revealed. As a concrete example of this general principle, we exploit clustered synchronization as a dynamical mechanism through which the hierarchical community structure can be uncovered. In particular, for quite arbitrary choices of the nonlinear nodal dynamics and coupling scheme, decreasing the coupling parameter from the global synchronization regime, in which the dynamical states of all nodes are perfectly synchronized, can lead to a weaker type of synchronization organized as clusters. We demonstrate the existence of optimal choices of the coupling parameter for which the synchronization clusters encode accurate information about the hierarchical community structure of the network. We test and validate our method using a standard class of benchmark modular networks with two distinct hierarchies of communities and a number of empirical networks arising from the real world. Our method is computationally extremely efficient, eliminating completely the NP-hard difficulty associated with previous methods. The basic principle of exploiting dynamical evolution to uncover hidden community organizations at different scales represents a "game-change" type of approach to addressing the problem of community detection in complex networks.
Rieffel, John A.; Valero-Cuevas, Francisco J.; Lipson, Hod
2010-01-01
Traditional engineering approaches strive to avoid, or actively suppress, nonlinear dynamic coupling among components. Biological systems, in contrast, are often rife with these dynamics. Could there be, in some cases, a benefit to high degrees of dynamical coupling? Here we present a distributed robotic control scheme inspired by the biological phenomenon of tensegrity-based mechanotransduction. This emergence of morphology-as-information-conduit or ‘morphological communication’, enabled by time-sensitive spiking neural networks, presents a new paradigm for the decentralized control of large, coupled, modular systems. These results significantly bolster, both in magnitude and in form, the idea of morphological computation in robotic control. Furthermore, they lend further credence to ideas of embodied anatomical computation in biological systems, on scales ranging from cellular structures up to the tendinous networks of the human hand. PMID:19776146
Dynamics of entanglement and the Schmidt gap in a driven light-matter system
NASA Astrophysics Data System (ADS)
Gómez-Ruiz, F. J.; Mendoza-Arenas, J. J.; Acevedo, O. L.; Rodríguez, F. J.; Quiroga, L.; Johnson, N. F.
2018-01-01
The ability to modify light-matter coupling in time (e.g. using external pulses) opens up the exciting possibility of generating and probing new aspects of quantum correlations in many-body light-matter systems. Here we study the impact of such a pulsed coupling on the light-matter entanglement in the Dicke model as well as the respective subsystem quantum dynamics. Our dynamical many-body analysis exploits the natural partition between the radiation and matter degrees of freedom, allowing us to explore time-dependent intra-subsystem quantum correlations by means of squeezing parameters, and the inter-subsystem Schmidt gap for different pulse duration (i.e. ramping velocity) regimes—from the near adiabatic to the sudden quench limits. Our results reveal that both types of quantities indicate the emergence of the superradiant phase when crossing the quantum critical point. In addition, at the end of the pulse light and matter remain entangled even though they become uncoupled, which could be exploited to generate entangled states in non-interacting systems.
Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots.
Nichol, John M; Harvey, Shannon P; Shulman, Michael D; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I; Halperin, Bertrand I; Yacoby, Amir
2015-07-17
The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin-orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron-nuclear system, despite weak spin-orbit coupling in GaAs. Using Landau-Zener sweeps to measure static and dynamic properties of the electron spin-flip probability, we observe that the size of the spin-orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin-orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin-orbit coupling in central-spin systems.
Challenges and opportunities for improved understanding of regional climate dynamics
NASA Astrophysics Data System (ADS)
Collins, Matthew; Minobe, Shoshiro; Barreiro, Marcelo; Bordoni, Simona; Kaspi, Yohai; Kuwano-Yoshida, Akira; Keenlyside, Noel; Manzini, Elisa; O'Reilly, Christopher H.; Sutton, Rowan; Xie, Shang-Ping; Zolina, Olga
2018-01-01
Dynamical processes in the atmosphere and ocean are central to determining the large-scale drivers of regional climate change, yet their predictive understanding is poor. Here, we identify three frontline challenges in climate dynamics where significant progress can be made to inform adaptation: response of storms, blocks and jet streams to external forcing; basin-to-basin and tropical-extratropical teleconnections; and the development of non-linear predictive theory. We highlight opportunities and techniques for making immediate progress in these areas, which critically involve the development of high-resolution coupled model simulations, partial coupling or pacemaker experiments, as well as the development and use of dynamical metrics and exploitation of hierarchies of models.
Exploiting Non-Markovianity for Quantum Control.
Reich, Daniel M; Katz, Nadav; Koch, Christiane P
2015-07-22
Quantum technology, exploiting entanglement and the wave nature of matter, relies on the ability to accurately control quantum systems. Quantum control is often compromised by the interaction of the system with its environment since this causes loss of amplitude and phase. However, when the dynamics of the open quantum system is non-Markovian, amplitude and phase flow not only from the system into the environment but also back. Interaction with the environment is then not necessarily detrimental. We show that the back-flow of amplitude and phase can be exploited to carry out quantum control tasks that could not be realized if the system was isolated. The control is facilitated by a few strongly coupled, sufficiently isolated environmental modes. Our paradigmatic example considers a weakly anharmonic ladder with resonant amplitude control only, restricting realizable operations to SO(N). The coupling to the environment, when harnessed with optimization techniques, allows for full SU(N) controllability.
NASA Astrophysics Data System (ADS)
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-04-01
We simulate the dynamics of a single-electron source, modeled as a quantum dot with on-site Coulomb interaction and tunnel coupling to an adjacent lead in time-dependent density-functional theory. Based on this system, we develop a time-nonlocal exchange-correlation potential by exploiting analogies with quantum-transport theory. The time nonlocality manifests itself in a dynamical potential step. We explicitly link the time evolution of the dynamical step to physical relaxation timescales of the electron dynamics. Finally, we discuss prospects for simulations of larger mesoscopic systems.
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-04-13
We simulate the dynamics of a single-electron source, modeled as a quantum dot with on-site Coulomb interaction and tunnel coupling to an adjacent lead in time-dependent density-functional theory. Based on this system, we develop a time-nonlocal exchange-correlation potential by exploiting analogies with quantum-transport theory. The time nonlocality manifests itself in a dynamical potential step. We explicitly link the time evolution of the dynamical step to physical relaxation timescales of the electron dynamics. Finally, we discuss prospects for simulations of larger mesoscopic systems.
NASA Astrophysics Data System (ADS)
Bick, Christian; Martens, Erik A.
2015-03-01
Coupled phase oscillators model a variety of dynamical phenomena in nature and technological applications. Non-local coupling gives rise to chimera states which are characterized by a distinct part of phase-synchronized oscillators while the remaining ones move incoherently. Here, we apply the idea of control to chimera states: using gradient dynamics to exploit drift of a chimera, it will attain any desired target position. Through control, chimera states become functionally relevant; for example, the controlled position of localized synchrony may encode information and perform computations. Since functional aspects are crucial in (neuro-)biology and technology, the localized synchronization of a chimera state becomes accessible to develop novel applications. Based on gradient dynamics, our control strategy applies to any suitable observable and can be generalized to arbitrary dimensions. Thus, the applicability of chimera control goes beyond chimera states in non-locally coupled systems.
Vectorization for Molecular Dynamics on Intel Xeon Phi Corpocessors
NASA Astrophysics Data System (ADS)
Yi, Hongsuk
2014-03-01
Many modern processors are capable of exploiting data-level parallelism through the use of single instruction multiple data (SIMD) execution. The new Intel Xeon Phi coprocessor supports 512 bit vector registers for the high performance computing. In this paper, we have developed a hierarchical parallelization scheme for accelerated molecular dynamics simulations with the Terfoff potentials for covalent bond solid crystals on Intel Xeon Phi coprocessor systems. The scheme exploits multi-level parallelism computing. We combine thread-level parallelism using a tightly coupled thread-level and task-level parallelism with 512-bit vector register. The simulation results show that the parallel performance of SIMD implementations on Xeon Phi is apparently superior to their x86 CPU architecture.
Predictability, Force and (Anti-)Resonance in Complex Object Control.
Maurice, Pauline; Hogan, Neville; Sternad, Dagmar
2018-04-18
Manipulation of complex objects as in tool use is ubiquitous and has given humans an evolutionary advantage. This study examined the strategies humans choose when manipulating an object with underactuated internal dynamics, such as a cup of coffee. The object's dynamics renders the temporal evolution complex, possibly even chaotic, and difficult to predict. A cart-and-pendulum model, loosely mimicking coffee sloshing in a cup, was implemented in a virtual environment with a haptic interface. Participants rhythmically manipulated the virtual cup containing a rolling ball; they could choose the oscillation frequency, while the amplitude was prescribed. Three hypotheses were tested: 1) humans decrease interaction forces between hand and object; 2) humans increase the predictability of the object dynamics; 3) humans exploit the resonances of the coupled object-hand system. Analysis revealed that humans chose either a high-frequency strategy with anti-phase cup-and-ball movements or a low-frequency strategy with in-phase cup-and-ball movements. Counter Hypothesis 1, they did not decrease interaction force; instead, they increased the predictability of the interaction dynamics, quantified by mutual information, supporting Hypothesis 2. To address Hypothesis 3, frequency analysis of the coupled hand-object system revealed two resonance frequencies separated by an anti-resonance frequency. The low-frequency strategy exploited one resonance, while the high-frequency strategy afforded more choice, consistent with the frequency response of the coupled system; both strategies avoided the anti-resonance. Hence, humans did not prioritize interaction force, but rather strategies that rendered interactions predictable. These findings highlight that physical interactions with complex objects pose control challenges not present in unconstrained movements.
NASA Astrophysics Data System (ADS)
Clingman, Dan J.; Thiesen, Jack
2017-04-01
Historically, piezoelectric vibration energy harvesters have been limited to operation at a single, structurally resonant frequency. A piezoceramic energy harvester, such as a bimorph beam, operating at structural resonance exchanges energy between dynamic and strain regimes. This energy exchange increases the coupling between piezoceramic deformation and electrical charge generation. Two BVEH mechanisms are presented that exploit strain energy management to reduce inertial forces needed to deform the piezoceramic, thus increasing the coupling between structural and electrical energy conversion over a broadband vibration spectrum. Broadband vibration excitation produces a non-sinusoidal electrical wave form from the BVEH device. An adaptive energy conversion circuit was developed that exploits a buck converter to capture the complex waveform energy in a form easily used by standard electrical components.
Simulation of Stochastic Processes by Coupled ODE-PDE
NASA Technical Reports Server (NTRS)
Zak, Michail
2008-01-01
A document discusses the emergence of randomness in solutions of coupled, fully deterministic ODE-PDE (ordinary differential equations-partial differential equations) due to failure of the Lipschitz condition as a new phenomenon. It is possible to exploit the special properties of ordinary differential equations (represented by an arbitrarily chosen, dynamical system) coupled with the corresponding Liouville equations (used to describe the evolution of initial uncertainties in terms of joint probability distribution) in order to simulate stochastic processes with the proscribed probability distributions. The important advantage of the proposed approach is that the simulation does not require a random-number generator.
Games of corruption in preventing the overuse of common-pool resources.
Lee, Joung-Hun; Jusup, Marko; Iwasa, Yoh
2017-09-07
Maintaining human cooperation in the context of common-pool resource management is extremely important because otherwise we risk overuse and corruption. To analyse the interplay between economic and ecological factors leading to corruption, we couple the resource dynamics and the evolutionary dynamics of strategic decision making into a powerful analytical framework. The traits of this framework are: (i) an arbitrary number of harvesters share the responsibility to sustainably exploit a specific part of an ecosystem, (ii) harvesters face three strategic choices for exploiting the resource, (iii) a delegated enforcement system is available if called upon, (iv) enforcers are either honest or corrupt, and (v) the resource abundance reflects the choice of harvesting strategies. The resulting dynamical system is bistable; depending on the initial conditions, it evolves either to cooperative (sustainable exploitation) or defecting (overexploitation) equilibria. Using the domain of attraction to cooperative equilibria as an indicator of successful management, we find that the more resilient the resource (as implied by a high growth rate), the more likely the dominance of corruption which, in turn, suppresses the cooperative outcome. A qualitatively similar result arises when slow resource dynamics relative to the dynamics of decision making mask the benefit of cooperation. We discuss the implications of these results in the context of managing common-pool resources. Copyright © 2017 Elsevier Ltd. All rights reserved.
Saw-tooth instability in storage rings: simulations and dynamical model
NASA Astrophysics Data System (ADS)
Migliorati, M.; Palumbo, L.; Dattoli, G.; Mezi, L.
1999-11-01
The saw-tooth instability in storage rings is studied by means of a time-domain simulation code which takes into account the self-induced wake fields. The results are compared with those from a dynamical heuristic model exploiting two coupled non-linear differential equations, accounting for the time behavior of the instability growth rate and for the anomalous growth of the energy spread. This model is shown to reproduce the characteristic features of the instability in a fairly satisfactory way.
Large scale, synchronous variability of marine fish populations driven by commercial exploitation.
Frank, Kenneth T; Petrie, Brian; Leggett, William C; Boyce, Daniel G
2016-07-19
Synchronous variations in the abundance of geographically distinct marine fish populations are known to occur across spatial scales on the order of 1,000 km and greater. The prevailing assumption is that this large-scale coherent variability is a response to coupled atmosphere-ocean dynamics, commonly represented by climate indexes, such as the Atlantic Multidecadal Oscillation and North Atlantic Oscillation. On the other hand, it has been suggested that exploitation might contribute to this coherent variability. This possibility has been generally ignored or dismissed on the grounds that exploitation is unlikely to operate synchronously at such large spatial scales. Our analysis of adult fishing mortality and spawning stock biomass of 22 North Atlantic cod (Gadus morhua) stocks revealed that both the temporal and spatial scales in fishing mortality and spawning stock biomass were equivalent to those of the climate drivers. From these results, we conclude that greater consideration must be given to the potential of exploitation as a driving force behind broad, coherent variability of heavily exploited fish species.
Integration of Dynamic Models in Range Operations
NASA Technical Reports Server (NTRS)
Bardina, Jorge; Thirumalainambi, Rajkumar
2004-01-01
This work addresses the various model interactions in real-time to make an efficient internet based decision making tool for Shuttle launch. The decision making tool depends on the launch commit criteria coupled with physical models. Dynamic interaction between a wide variety of simulation applications and techniques, embedded algorithms, and data visualizations are needed to exploit the full potential of modeling and simulation. This paper also discusses in depth details of web based 3-D graphics and applications to range safety. The advantages of this dynamic model integration are secure accessibility and distribution of real time information to other NASA centers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhiying; Heller, Eric J.; Krems, Roman V.
We explore the collision dynamics of complex hydrocarbon molecules (benzene, coronene, adamantane, and anthracene) containing carbon rings in a cold buffer gas of {sup 3}He. For benzene, we present a comparative analysis of the fully classical and fully quantum calculations of elastic and inelastic scattering cross sections at collision energies between 1 and 10 cm{sup −1}. The quantum calculations are performed using the time-independent coupled channel approach and the coupled-states approximation. We show that the coupled-states approximation is accurate at collision energies between 1 and 20 cm{sup −1}. For the classical dynamics calculations, we develop an approach exploiting the rigiditymore » of the carbon rings and including low-energy vibrational modes without holonomic constraints. Our results illustrate the effect of the molecular shape and the vibrational degrees of freedom on the formation of long-lived resonance states that lead to low-temperature clustering.« less
True-slime-mould-inspired hydrostatically coupled oscillator system exhibiting versatile behaviours.
Umedachi, Takuya; Idei, Ryo; Ito, Kentaro; Ishiguro, Akio
2013-09-01
Behavioural diversity is an indispensable attribute of living systems, which makes them intrinsically adaptive and responsive to the demands of a dynamically changing environment. In contrast, conventional engineering approaches struggle to suppress behavioural diversity in artificial systems to reach optimal performance in given environments for desired tasks. The goals of this research include understanding the essential mechanism that endows living systems with behavioural diversity and implementing the mechanism in robots to exhibit adaptive behaviours. For this purpose, we have focused on an amoeba-like unicellular organism: the plasmodium of true slime mould. Despite the absence of a central nervous system, the plasmodium exhibits versatile spatiotemporal oscillatory patterns and switches spontaneously among these patterns. By exploiting this behavioural diversity, it is able to exhibit adaptive behaviour according to the situation encountered. Inspired by this organism, we built a real physical robot using hydrostatically coupled oscillators that produce versatile oscillatory patterns and spontaneous transitions among the patterns. The experimental results show that exploiting physical hydrostatic interplay—the physical dynamics of the robot—allows simple phase oscillators to promote versatile behaviours. The results can contribute to an understanding of how a living system generates versatile and adaptive behaviours with physical interplays among body parts.
Papadimitriou, Konstantinos I.; Stan, Guy-Bart V.; Drakakis, Emmanuel M.
2013-01-01
This paper presents a novel method for the systematic implementation of low-power microelectronic circuits aimed at computing nonlinear cellular and molecular dynamics. The method proposed is based on the Nonlinear Bernoulli Cell Formalism (NBCF), an advanced mathematical framework stemming from the Bernoulli Cell Formalism (BCF) originally exploited for the modular synthesis and analysis of linear, time-invariant, high dynamic range, logarithmic filters. Our approach identifies and exploits the striking similarities existing between the NBCF and coupled nonlinear ordinary differential equations (ODEs) typically appearing in models of naturally encountered biochemical systems. The resulting continuous-time, continuous-value, low-power CytoMimetic electronic circuits succeed in simulating fast and with good accuracy cellular and molecular dynamics. The application of the method is illustrated by synthesising for the first time microelectronic CytoMimetic topologies which simulate successfully: 1) a nonlinear intracellular calcium oscillations model for several Hill coefficient values and 2) a gene-protein regulatory system model. The dynamic behaviours generated by the proposed CytoMimetic circuits are compared and found to be in very good agreement with their biological counterparts. The circuits exploit the exponential law codifying the low-power subthreshold operation regime and have been simulated with realistic parameters from a commercially available CMOS process. They occupy an area of a fraction of a square-millimetre, while consuming between 1 and 12 microwatts of power. Simulations of fabrication-related variability results are also presented. PMID:23393550
Spin-orbit torques in magnetic bilayers
NASA Astrophysics Data System (ADS)
Haney, Paul
2015-03-01
Spintronics aims to utilize the coupling between charge transport and magnetic dynamics to develop improved and novel memory and logic devices. Future progress in spintronics may be enabled by exploiting the spin-orbit coupling present at the interface between thin film ferromagnets and heavy metals. In these systems, applying an in-plane electrical current can induce magnetic dynamics in single domain ferromagnets, or can induce rapid motion of domain wall magnetic textures. There are multiple effects responsible for these dynamics. They include spin-orbit torques and a chiral exchange interaction (the Dzyaloshinskii-Moriya interaction) in the ferromagnet. Both effects arise from the combination of ferromagnetism and spin-orbit coupling present at the interface. There is additionally a torque from the spin current flux impinging on the ferromagnet, arising from the spin hall effect in the heavy metal. Using a combination of approaches, from drift-diffusion to Boltzmann transport to first principles methods, we explore the relative contributions to the dynamics from these different effects. We additionally propose that the transverse spin current is locally enhanced over its bulk value in the vicinity of an interface which is oriented normal to the charge current direction.
A Framework for Load Balancing of Tensor Contraction Expressions via Dynamic Task Partitioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Pai-Wei; Stock, Kevin; Rajbhandari, Samyam
In this paper, we introduce the Dynamic Load-balanced Tensor Contractions (DLTC), a domain-specific library for efficient task parallel execution of tensor contraction expressions, a class of computation encountered in quantum chemistry and physics. Our framework decomposes each contraction into smaller unit of tasks, represented by an abstraction referred to as iterators. We exploit an extra level of parallelism by having tasks across independent contractions executed concurrently through a dynamic load balancing run- time. We demonstrate the improved performance, scalability, and flexibility for the computation of tensor contraction expressions on parallel computers using examples from coupled cluster methods.
A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm.
Nakajima, Kohei; Hauser, Helmut; Kang, Rongjie; Guglielmino, Emanuele; Caldwell, Darwin G; Pfeifer, Rolf
2013-01-01
The behaviors of the animals or embodied agents are characterized by the dynamic coupling between the brain, the body, and the environment. This implies that control, which is conventionally thought to be handled by the brain or a controller, can partially be outsourced to the physical body and the interaction with the environment. This idea has been demonstrated in a number of recently constructed robots, in particular from the field of "soft robotics". Soft robots are made of a soft material introducing high-dimensionality, non-linearity, and elasticity, which often makes the robots difficult to control. Biological systems such as the octopus are mastering their complex bodies in highly sophisticated manners by capitalizing on their body dynamics. We will demonstrate that the structure of the octopus arm cannot only be exploited for generating behavior but also, in a sense, as a computational resource. By using a soft robotic arm inspired by the octopus we show in a number of experiments how control is partially incorporated into the physical arm's dynamics and how the arm's dynamics can be exploited to approximate non-linear dynamical systems and embed non-linear limit cycles. Future application scenarios as well as the implications of the results for the octopus biology are also discussed.
A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm
Nakajima, Kohei; Hauser, Helmut; Kang, Rongjie; Guglielmino, Emanuele; Caldwell, Darwin G.; Pfeifer, Rolf
2013-01-01
The behaviors of the animals or embodied agents are characterized by the dynamic coupling between the brain, the body, and the environment. This implies that control, which is conventionally thought to be handled by the brain or a controller, can partially be outsourced to the physical body and the interaction with the environment. This idea has been demonstrated in a number of recently constructed robots, in particular from the field of “soft robotics”. Soft robots are made of a soft material introducing high-dimensionality, non-linearity, and elasticity, which often makes the robots difficult to control. Biological systems such as the octopus are mastering their complex bodies in highly sophisticated manners by capitalizing on their body dynamics. We will demonstrate that the structure of the octopus arm cannot only be exploited for generating behavior but also, in a sense, as a computational resource. By using a soft robotic arm inspired by the octopus we show in a number of experiments how control is partially incorporated into the physical arm's dynamics and how the arm's dynamics can be exploited to approximate non-linear dynamical systems and embed non-linear limit cycles. Future application scenarios as well as the implications of the results for the octopus biology are also discussed. PMID:23847526
Straus, Daniel B; Hurtado Parra, Sebastian; Iotov, Natasha; Gebhardt, Julian; Rappe, Andrew M; Subotnik, Joseph E; Kikkawa, James M; Kagan, Cherie R
2016-10-05
Quantum and dielectric confinement effects in 2D hybrid perovskites create excitons with a binding energy exceeding 150 meV. We exploit the large exciton binding energy to study exciton and carrier dynamics as well as electron-phonon coupling in hybrid perovskites using absorption and photoluminescence (PL) spectroscopies. At temperatures below 75 K, we resolve splitting of the excitonic absorption and PL into multiple regularly-spaced resonances every 40-46 meV, consistent with electron-phonon coupling to phonons located on the organic cation. We also resolve resonances with a 14 meV spacing, in accord with coupling to phonons with mixed organic and inorganic character, and these assignments are supported by density-functional theory calculations. Hot exciton PL and time-resolved PL measurements show that vibrational relaxation occurs on a picosecond timescale competitive with that for PL. At temperatures above 75 K, excitonic absorption and PL exhibit homogeneous broadening. While absorption remains homogeneous, PL becomes inhomogeneous below 75K, which we speculate is caused by the formation and subsequent dynamics of a polaronic exciton.
Monk, Christopher T; Barbier, Matthieu; Romanczuk, Pawel; Watson, James R; Alós, Josep; Nakayama, Shinnosuke; Rubenstein, Daniel I; Levin, Simon A; Arlinghaus, Robert
2018-06-01
Understanding how humans and other animals behave in response to changes in their environments is vital for predicting population dynamics and the trajectory of coupled social-ecological systems. Here, we present a novel framework for identifying emergent social behaviours in foragers (including humans engaged in fishing or hunting) in predator-prey contexts based on the exploration difficulty and exploitation potential of a renewable natural resource. A qualitative framework is introduced that predicts when foragers should behave territorially, search collectively, act independently or switch among these states. To validate it, we derived quantitative predictions from two models of different structure: a generic mathematical model, and a lattice-based evolutionary model emphasising exploitation and exclusion costs. These models independently identified that the exploration difficulty and exploitation potential of the natural resource controls the social behaviour of resource exploiters. Our theoretical predictions were finally compared to a diverse set of empirical cases focusing on fisheries and aquatic organisms across a range of taxa, substantiating the framework's predictions. Understanding social behaviour for given social-ecological characteristics has important implications, particularly for the design of governance structures and regulations to move exploited systems, such as fisheries, towards sustainability. Our framework provides concrete steps in this direction. © 2018 John Wiley & Sons Ltd/CNRS.
Dynamical thermal effects in InGaAsP microtubes at telecom wavelengths.
Tian, Zhaobing; Bianucci, Pablo; Roche, Philip J R; Dastjerdi, M Hadi Tavakoli; Mi, Zetian; Poole, Philip J; Kirk, Andrew G; Plant, David V
2012-07-01
We report on the observation of a dynamical thermal effect in InGaAsP microtubes at telecom wavelengths. The microtubes are fabricated by releasing a strained semiconductor bilayer and are picked up by abruptly tapered optical fibers for subsequent coupling with adiabatically tapered optical fibers. As a result of absorption by InAs quantum dots embedded in the tube structure, these microtubes show dynamical thermal effects at wavelengths around 1525 nm and 1578 nm, while they are passive at longer wavelengths near 1634 nm. The photon absorption induced thermal effect is visualized by generating a pair of microbottles. The dynamical thermal effect can be avoided or exploited for passive or active applications by utilizing appropriate resonance wavelengths.
NASA Technical Reports Server (NTRS)
Nese, Jon M.
1989-01-01
A dynamical systems approach is used to quantify the instantaneous and time-averaged predictability of a low-order moist general circulation model. Specifically, the effects on predictability of incorporating an active ocean circulation, implementing annual solar forcing, and asynchronously coupling the ocean and atmosphere are evaluated. The predictability and structure of the model attractors is compared using the Lyapunov exponents, the local divergence rates, and the correlation, fractal, and Lyapunov dimensions. The Lyapunov exponents measure the average rate of growth of small perturbations on an attractor, while the local divergence rates quantify phase-spatial variations of predictability. These local rates are exploited to efficiently identify and distinguish subtle differences in predictability among attractors. In addition, the predictability of monthly averaged and yearly averaged states is investigated by using attractor reconstruction techniques.
He, Ding-Xin; Ling, Guang; Guan, Zhi-Hong; Hu, Bin; Liao, Rui-Quan
2018-02-01
This paper focuses on the collective dynamics of multisynchronization among heterogeneous genetic oscillators under a partial impulsive control strategy. The coupled nonidentical genetic oscillators are modeled by differential equations with uncertainties. The definition of multisynchronization is proposed to describe some more general synchronization behaviors in the real. Considering that each genetic oscillator consists of a large number of biochemical molecules, we design a more manageable impulsive strategy for dynamic networks to achieve multisynchronization. Not all the molecules but only a small fraction of them in each genetic oscillator are controlled at each impulsive instant. Theoretical analysis of multisynchronization is carried out by the control theory approach, and a sufficient condition of partial impulsive controller for multisynchronization with given error bounds is established. At last, numerical simulations are exploited to demonstrate the effectiveness of our results.
Measuring the internal temperature of a levitated nanoparticle in high vacuum
NASA Astrophysics Data System (ADS)
Hebestreit, Erik; Reimann, René; Frimmer, Martin; Novotny, Lukas
2018-04-01
The interaction of an object with its surrounding bath can lead to a coupling between the object's internal degrees of freedom and its center-of-mass motion. This coupling is especially important for nanomechanical oscillators, which are among the most promising systems for preparing macroscopic objects in quantum mechanical states. Here we exploit this coupling to derive the internal temperature of a levitated nanoparticle from measurements of its center-of-mass dynamics. For a laser-trapped silica particle in high vacuum, we find an internal temperature of 1000 (60 )K . The measurement and control of the internal temperature of nanomechanical oscillators is of fundamental importance because black-body emission sets limits to the coherence of macroscopic quantum states.
Nichols, J.M.; Moniz, L.; Nichols, J.D.; Pecora, L.M.; Cooch, E.
2005-01-01
A number of important questions in ecology involve the possibility of interactions or ?coupling? among potential components of ecological systems. The basic question of whether two components are coupled (exhibit dynamical interdependence) is relevant to investigations of movement of animals over space, population regulation, food webs and trophic interactions, and is also useful in the design of monitoring programs. For example, in spatially extended systems, coupling among populations in different locations implies the existence of redundant information in the system and the possibility of exploiting this redundancy in the development of spatial sampling designs. One approach to the identification of coupling involves study of the purported mechanisms linking system components. Another approach is based on time series of two potential components of the same system and, in previous ecological work, has relied on linear cross-correlation analysis. Here we present two different attractor-based approaches, continuity and mutual prediction, for determining the degree to which two population time series (e.g., at different spatial locations) are coupled. Both approaches are demonstrated on a one-dimensional predator?prey model system exhibiting complex dynamics. Of particular interest is the spatial asymmetry introduced into the model as linearly declining resource for the prey over the domain of the spatial coordinate. Results from these approaches are then compared to the more standard cross-correlation analysis. In contrast to cross-correlation, both continuity and mutual prediction are clearly able to discern the asymmetry in the flow of information through this system.
Tian, Xiumei; Zeng, Dong; Zhang, Shanli; Huang, Jing; Zhang, Hua; He, Ji; Lu, Lijun; Xi, Weiwen; Ma, Jianhua; Bian, Zhaoying
2016-11-22
Dynamic cerebral perfusion x-ray computed tomography (PCT) imaging has been advocated to quantitatively and qualitatively assess hemodynamic parameters in the diagnosis of acute stroke or chronic cerebrovascular diseases. However, the associated radiation dose is a significant concern to patients due to its dynamic scan protocol. To address this issue, in this paper we propose an image restoration method by utilizing coupled dictionary learning (CDL) scheme to yield clinically acceptable PCT images with low-dose data acquisition. Specifically, in the present CDL scheme, the 2D background information from the average of the baseline time frames of low-dose unenhanced CT images and the 3D enhancement information from normal-dose sequential cerebral PCT images are exploited to train the dictionary atoms respectively. After getting the two trained dictionaries, we couple them to represent the desired PCT images as spatio-temporal prior in objective function construction. Finally, the low-dose dynamic cerebral PCT images are restored by using a general DL image processing. To get a robust solution, the objective function is solved by using a modified dictionary learning based image restoration algorithm. The experimental results on clinical data show that the present method can yield more accurate kinetic enhanced details and diagnostic hemodynamic parameter maps than the state-of-the-art methods.
Investigations Into Internal and External Aspects of Dynamic Agent-Environment Couplings
NASA Astrophysics Data System (ADS)
Dautenhahn, Kerstin
This paper originates from my work on `social agents'. An issue which I consider important to this kind of research is the dynamic coupling of an agent with its social and non-social environment. I hypothesize `internal dynamics' inside an agent as a basic step towards understanding. The paper therefore focuses on the internal and external dynamics which couple an agent to its environment. The issue of embodiment in animals and artifacts and its relation to `social dynamics' is discussed first. I argue that embodiment is linked to a concept of a body and is not necessarily given when running a control program on robot hardware. I stress the individual characteristics of an embodied cognitive system, as well as its social embeddedness. I outline the framework of a physical-psychological state space which changes dynamically in a self-modifying way as a holistic approach towards embodied human and artificial cognition. This framework is meant to discuss internal and external dynamics of an embodied, natural or artificial agent. In order to stress the importance of a dynamic memory I introduce the concept of an `autobiographical agent'. The second part of the paper gives an example of the implementation of a physical agent, a robot, which is dynamically coupled to its environment by balancing on a seesaw. For the control of the robot a behavior-oriented approach using the dynamical systems metaphor is used. The problem is studied through building a complete and co-adapted robot-environment system. A seesaw which varies its orientation with one or two degrees of freedom is used as the artificial `habitat'. The problem of stabilizing the body axis by active motion on a seesaw is solved by using two inclination sensors and a parallel, behavior-oriented control architecture. Some experiments are described which demonstrate the exploitation of the dynamics of the robot-environment system.
Marine Biogeochemistry Under The Influence of Fish And Fisheries: An Ecosystem Modeling Study
NASA Astrophysics Data System (ADS)
Disa, Deniz; Akoglu, Ekin; Salihoglu, Baris
2017-04-01
The ocean and the marine ecosystems are important controllers of the global carbon cycle. They play a pivotal role in capturing atmospheric carbon into the ocean body, transforming it into organic carbon through photosynthesis and transporting it to the depths of the ocean. Fish, which has a significant role in the marine food webs, is thought to have a considerable impact on carbon export. More specifically, fish has a control on plankton dynamics as a predator, it provides nutrient to the ecosystem by its metabolic activities and it has the ability of moving actively and transporting materials. Fishing is also expected to impact carbon cycle because it directly changes the fish biomasses. However, how fish impacts the biogeochemistry of marine ecosystems is not studied extensively. The aim of this study is to analyze the impact of fish and fisheries on marine biogeochemical processes by setting up an end-to-end model, which simulates lower and higher tropic levels of marine ecosystems simultaneously. For this purpose, a one dimensional biogeochemical model simulating lower tropic level dynamics (e.g. carbon export, nutrient cycles) and an food web model simulating fisheries exploitation and higher tropic level dynamics were online and two-way coupled. Representing the marine ecosystem from one end to the other, the coupled model served as a tool for the analysis of fishing impacts on marine biogeochemical dynamics. Results obtained after incorporation of higher trophic level model changed the plankton compositions and enhanced detritus pools and increased carbon export. Additionally, our model showed that active movement of fish contributed to transport of carbon from surface to the deeper parts of the ocean. Moreover, results after applying different fishing intensities indicated that changes in fisheries exploitation levels directly influence the marine nutrient cycles and hence, the carbon export. Depending on the target and the intensity of fisheries, considerable changes in the biogeochemical responses observed. In conclusion, unlike the models that do not represent the fish explicitly, we demonstrate how marine biogeochemical processes are impacted by the activity of fish assemblages and fisheries exploitation.
Pavanello, Fabio; Zeng, Xiaoge; Wade, Mark T; Popović, Miloš A
2016-11-28
We propose ring modulators based on interdigitated p-n junctions that exploit standing rather than traveling-wave resonant modes to improve modulation efficiency, insertion loss and speed. Matching the longitudinal nodes and antinodes of a standing-wave mode with high (contacts) and low (depletion regions) carrier density regions, respectively, simultaneously lowers loss and increases sensitivity significantly. This approach permits further to relax optical constraints on contacts placement and can lead to lower device capacitance. Such structures are well-matched to fabrication in advanced microelectronics CMOS processes. Device architectures that exploit this concept are presented along with their benefits and drawbacks. A temporal coupled mode theory model is used to investigate the static and dynamic response. We show that modulation efficiencies or loss Q factors up to 2 times higher than in previous traveling-wave geometries can be achieved leading to much larger extinction ratios. Finally, we discuss more complex doping geometries that can improve carrier dynamics for higher modulation speeds in this context.
A passively tunable acoustic metamaterial lens for selective ultrasonic excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, H.; Semperlotti, F., E-mail: Fabio.Semperlotti.1@nd.edu
2014-09-07
In this paper, we present an approach to ultrasonic beam-forming and beam-steering in structures based on the concept of embedded acoustic metamaterial lenses. The lens design exploits the principle of acoustic drop-channel that enables the dynamic coupling of multiple ultrasonic waveguides at selected frequencies. In contrast with currently available technology, the embedded lens allows exploiting the host structure as a key component of the transducer system therefore enabling directional excitation by means of a single ultrasonic transducer. The design and the performance of the lens are numerically investigated by using Plane Wave Expansion and Finite Difference Time Domain techniques appliedmore » to bulk structures. Then, the design is experimentally validated on a thin aluminum plate waveguide where the lens is implemented by through-holes. The dynamic response of the embedded lens is estimated by reconstructing, via Laser Vibrometry, the velocity field induced by a single source located at the center of the lens.« less
Partnership For Edge Physics Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parashar, Manish
In this effort, we will extend our prior work as part of CPES (i.e., DART and DataSpaces) to support in-situ tight coupling between application codes that exploits data locality and core-level parallelism to maximize on-chip data exchange and reuse. This will be accomplished by mapping coupled simulations so that the data exchanges are more localized within the nodes. Coupled simulation workflows can more effectively utilize the resources available on emerging HEC platforms if they can be mapped and executed to exploit data locality as well as the communication patterns between application components. Scheduling and running such workflows requires an extendedmore » framework that should provide a unified hybrid abstraction to enable coordination and data sharing across computation tasks that run on the heterogeneous multi-core-based systems, and develop a data-locality based dynamic tasks scheduling approach to increase on-chip or intra-node data exchanges and in-situ execution. This effort will extend our prior work as part of CPES (i.e., DART and DataSpaces), which provided a simple virtual shared-space abstraction hosted at the staging nodes, to support application coordination, data sharing and active data processing services. Moreover, it will transparently manage the low-level operations associated with the inter-application data exchange, such as data redistributions, and will enable running coupled simulation workflow on multi-cores computing platforms.« less
Intermediate couplings: NMR at the solids-liquids interface
NASA Astrophysics Data System (ADS)
Spence, Megan
2006-03-01
Anisotropic interactions like dipolar couplings and chemical shift anisotropy have long offered solid-state NMR spectroscopists valuable structural information. Recently, solution-state NMR structural studies have begun to exploit residual dipolar couplings of biological molecules in weakly anisotropic solutions. These residual couplings are about 0.1% of the coupling magnitudes observed in the solid state, allowing simple, high-resolution NMR spectra to be retained. In this work, we examine the membrane-associated opioid, leucine enkephalin (lenk), in which the ordering is ten times larger than that for residual dipolar coupling experiments, requiring a combination of solution-state and solid-state NMR techniques. We adapted conventional solid-state NMR techniques like adiabatic cross- polarization and REDOR for use with such a system, and measured small amide bond dipolar couplings in order to determine the orientation of the amide bonds (and therefore the peptide) with respect to the membrane surface. However, the couplings measured indicate large structural rearrangements on the surface and contradict the published structures obtained by NOESY constraints, a reminder that such methods are of limited use in the presence of large-scale dynamics.
Bio-Inspired Metal-Coordination Dynamics: A Unique Tool for Engineering Soft Matter Mechanics
NASA Astrophysics Data System (ADS)
Holten-Andersen, Niels
Growing evidence supports a critical role of metal-coordination in soft biological material properties such as self-healing, underwater adhesion and autonomous wound plugging. Using bio-inspired metal-binding polymers, initial efforts to mimic these properties with metal-coordination crosslinked polymer materials have shown promise. In addition, with polymer network mechanics strongly coupled to coordinate crosslink dynamics material properties can be easily tuned from visco-elastic fluids to solids. Given their exploitation in desirable material applications in Nature, bio-inspired metal-coordinate complex crosslinking provides an opportunity to further advance synthetic polymer materials design. Early lessons from this pursuit are presented.
Ultrafast Coulomb-Induced Intervalley Coupling in Atomically Thin WS2.
Schmidt, Robert; Berghäuser, Gunnar; Schneider, Robert; Selig, Malte; Tonndorf, Philipp; Malić, Ermin; Knorr, Andreas; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf
2016-05-11
Monolayers of semiconducting transition metal dichalcogenides hold the promise for a new paradigm in electronics by exploiting the valley degree of freedom in addition to charge and spin. For MoS2, WS2, and WSe2, valley polarization can be conveniently initialized and read out by circularly polarized light. However, the underlying microscopic processes governing valley polarization in these atomically thin equivalents of graphene are still not fully understood. Here, we present a joint experiment-theory study on the ultrafast time-resolved intervalley dynamics in monolayer WS2. Based on a microscopic theory, we reveal the many-particle mechanisms behind the observed spectral features. We show that Coulomb-induced intervalley coupling explains the immediate and prominent pump-probe signal in the unpumped valley and the seemingly low valley polarization degrees typically observed in pump-probe measurements compared to photoluminescence studies. The gained insights are also applicable to other light-emitting monolayer transition metal dichalcogenides, such as MoS2 and WSe2, where the Coulomb-induced intervalley coupling also determines the initial carrier dynamics.
Reflectivity and transmissivity of a cavity coupled to a nanoparticle
NASA Astrophysics Data System (ADS)
Khan, M. A.; Farooq, K.; Hou, S. C.; Niaz, Shanawer; Yi, X. X.
2014-07-01
Any dielectric nanoparticle moving inside an optical cavity generates an optomechanical interaction. In this paper, we theoretically analyze the light scattering of an optomechanical cavity which strongly interacts with a dielectric nanoparticle. The cavity is driven by an external laser field. This interaction gives rise to different dynamics that can be used to cool, trap and levitate nanoparticle. We analytically calculate reflection and transmission rate of the cavity field, and study the time evolution of the intracavity field, momentum and position of the nanoparticle. We find the nanoparticle occupies a discrete position inside the cavity. This effect can be exploited to separate nanoparticle and couplings between classical particles and quantized fields.
Tunable Bistability in Hybrid Bose-Einstein Condensate Optomechanics
Yasir, Kashif Ammar; Liu, Wu-Ming
2015-01-01
Cavity-optomechanics, a rapidly developing area of research, has made a remarkable progress. A stunning manifestation of optomechanical phenomena is in exploiting the mechanical effects of light to couple the optical degree of freedom with mechanical degree of freedom. In this report, we investigate the controlled bistable dynamics of such hybrid optomechanical system composed of cigar-shaped Bose-Einstein condensate (BEC) trapped inside high-finesse optical cavity with one moving-end mirror and is driven by a single mode optical field. The numerical results provide evidence for controlled optical bistability in optomechanics using transverse optical field which directly interacts with atoms causing the coupling of transverse field with momentum side modes, exited by intra-cavity field. This technique of transverse field coupling is also used to control bistable dynamics of both moving-end mirror and BEC. The report provides an understanding of temporal dynamics of moving-end mirror and BEC with respect to transverse field. Moreover, dependence of effective potential of the system on transverse field has also been discussed. To observe this phenomena in laboratory, we have suggested a certain set of experimental parameters. These findings provide a platform to investigate the tunable behavior of novel phenomenon like electromagnetically induced transparency and entanglement in hybrid systems. PMID:26035206
Graph partitions and cluster synchronization in networks of oscillators
Schaub, Michael T.; O’Clery, Neave; Billeh, Yazan N.; Delvenne, Jean-Charles; Lambiotte, Renaud; Barahona, Mauricio
2017-01-01
Synchronization over networks depends strongly on the structure of the coupling between the oscillators. When the coupling presents certain regularities, the dynamics can be coarse-grained into clusters by means of External Equitable Partitions of the network graph and their associated quotient graphs. We exploit this graph-theoretical concept to study the phenomenon of cluster synchronization, in which different groups of nodes converge to distinct behaviors. We derive conditions and properties of networks in which such clustered behavior emerges, and show that the ensuing dynamics is the result of the localization of the eigenvectors of the associated graph Laplacians linked to the existence of invariant subspaces. The framework is applied to both linear and non-linear models, first for the standard case of networks with positive edges, before being generalized to the case of signed networks with both positive and negative interactions. We illustrate our results with examples of both signed and unsigned graphs for consensus dynamics and for partial synchronization of oscillator networks under the master stability function as well as Kuramoto oscillators. PMID:27781454
Quantum correlation dynamics in photosynthetic processes assisted by molecular vibrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giorgi, G.L., E-mail: g.giorgi@inrim.it; Roncaglia, M.; Raffa, F.A.
2015-10-15
During the long course of evolution, nature has learnt how to exploit quantum effects. In fact, recent experiments reveal the existence of quantum processes whose coherence extends over unexpectedly long time and space ranges. In particular, photosynthetic processes in light-harvesting complexes display a typical oscillatory dynamics ascribed to quantum coherence. Here, we consider the simple model where a dimer made of two chromophores is strongly coupled with a quasi-resonant vibrational mode. We observe the occurrence of wide oscillations of genuine quantum correlations, between electronic excitations and the environment, represented by vibrational bosonic modes. Such a quantum dynamics has been unveiledmore » through the calculation of the negativity of entanglement and the discord, indicators widely used in quantum information for quantifying the resources needed to realize quantum technologies. We also discuss the possibility of approximating additional weakly-coupled off-resonant vibrational modes, simulating the disturbances induced by the rest of the environment, by a single vibrational mode. Within this approximation, one can show that the off-resonant bath behaves like a classical source of noise.« less
Perfect absorption in 1D photonic crystal nanobeam embedded with graphene/Al2O3 multilayer stack
NASA Astrophysics Data System (ADS)
Liu, Hanqing; Zha, Song; Liu, Peiguo; Zhou, Xiaotian; Bian, Li-an
2018-05-01
We exploit the concept of critical coupling to graphene based chip-integrated applications and numerically demonstrate that a perfect absorption (PA) absorber in the near-infrared can be obtained by graphene/Al2O3 multilayer stack (GAMS) critical coupling with a resonant cavity in the 1D photonic crystal nanobeam (PCN). The key point is dynamically matching the coupling rate of incident light wave to the cavity with the absorbing rate of GAMS via electrically modulating the chemical potential of graphene. Simulation results show that the radius of GAMS as well as the thickness of Al2O3 layer are closely connected with the performance of perfect absorption. These results may provide potential applications in the high-density integrated optical devices, photolectric transducers, and laser pulse limiters.
Femtojoule-scale all-optical latching and modulation via cavity nonlinear optics.
Kwon, Yeong-Dae; Armen, Michael A; Mabuchi, Hideo
2013-11-15
We experimentally characterize Hopf bifurcation phenomena at femtojoule energy scales in a multiatom cavity quantum electrodynamical (cavity QED) system and demonstrate how such behaviors can be exploited in the design of all-optical memory and modulation devices. The data are analyzed by using a semiclassical model that explicitly treats heterogeneous coupling of atoms to the cavity mode. Our results highlight the interest of cavity QED systems for ultralow power photonic signal processing as well as for fundamental studies of mesoscopic nonlinear dynamics.
Kezsmarki, I.; Fishman, Randy Scott
2016-04-18
Due to the complicated magnetic and crystallographic structures of BiFeO 3, its magnetoelectric (ME) couplings and microscopic model Hamiltonian remain poorly understood. By employing a firstprinciples approach, we uncover all possibleMEcouplings associated with the spin-current (SC) and exchange-striction (ES) polarizations, and construct an appropriate Hamiltonian for the long-range spin-cycloid in BiFeO 3. First-principles calculations are used to understand the microscopic origins of theMEcouplings.Wefind that inversion symmetries broken by ferroelectric and antiferroelectric distortions induce the SC and the ES polarizations, which cooperatively produce the dynamicME effects in BiFeO 3. A model motivated by first principles reproduces the absorption difference of counter-propagatingmore » light beams called non-reciprocal directional dichroism. The current paper focuses on the spin-driven (SD) polarizations produced by a dynamic electric field, i.e. the dynamic MEcouplings. Due to the inertial properties of Fe, the dynamic SD polarizations differ significantly from the static SD polarizations. Our systematic approach can be generally applied to any multiferroic material, laying the foundation for revealing hiddenMEcouplings on the atomic scale and for exploiting opticalMEeffects in the next generation of technological devices such as optical diodes.« less
NASA Astrophysics Data System (ADS)
Hubert, G.; Federico, C. A.; Pazianotto, M. T.; Gonzales, O. L.
2016-02-01
In this paper are described the ACROPOL and OPD high-altitude stations devoted to characterize the atmospheric radiation fields. The ACROPOL platform, located at the summit of the Pic du Midi in the French Pyrenees at 2885 m above sea level, exploits since May 2011 some scientific equipment, including a BSS neutron spectrometer, detectors based on semiconductor and scintillators. In the framework of a IEAv and ONERA collaboration, a second neutron spectrometer was simultaneously exploited since February 2015 at the summit of the Pico dos Dias in Brazil at 1864 m above the sea level. The both high station platforms allow for investigating the long period dynamics to analyze the spectral variation of cosmic-ray- induced neutron and effects of local and seasonal changes, but also the short term dynamics during solar flare events. This paper presents long and short-term analyses, including measurement and modeling investigations considering the both high altitude stations data. The modeling approach, based on ATMORAD computational platform, was used to link the both station measurements.
Cosmological Higgs-Axion Interplay for a Naturally Small Electroweak Scale.
Espinosa, J R; Grojean, C; Panico, G; Pomarol, A; Pujolàs, O; Servant, G
2015-12-18
Recently, a new mechanism to generate a naturally small electroweak scale has been proposed. It exploits the coupling of the Higgs boson to an axionlike field and a long era in the early Universe where the axion unchains a dynamical screening of the Higgs mass. We present a new realization of this idea with the new feature that it leaves no sign of new physics at the electroweak scale, and up to a rather large scale, 10^{9} GeV, except for two very light and weakly coupled axionlike states. One of the scalars can be a viable dark matter candidate. Such a cosmological Higgs-axion interplay could be tested with a number of experimental strategies.
Demonstration of entanglement of electrostatically coupled singlet-triplet qubits.
Shulman, M D; Dial, O E; Harvey, S P; Bluhm, H; Umansky, V; Yacoby, A
2012-04-13
Quantum computers have the potential to solve certain problems faster than classical computers. To exploit their power, it is necessary to perform interqubit operations and generate entangled states. Spin qubits are a promising candidate for implementing a quantum processor because of their potential for scalability and miniaturization. However, their weak interactions with the environment, which lead to their long coherence times, make interqubit operations challenging. We performed a controlled two-qubit operation between singlet-triplet qubits using a dynamically decoupled sequence that maintains the two-qubit coupling while decoupling each qubit from its fluctuating environment. Using state tomography, we measured the full density matrix of the system and determined the concurrence and the fidelity of the generated state, providing proof of entanglement.
Spin Hall and Spin Swapping Torques in Diffusive Ferromagnets
NASA Astrophysics Data System (ADS)
Pauyac, Christian Ortiz; Chshiev, Mairbek; Manchon, Aurelien; Nikolaev, Sergey A.
2018-04-01
A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession, and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precession effects displays a complex spatial dependence that can be exploited to generate torques and nucleate or propagate domain walls in centrosymmetric geometries without the use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.
Preserving electron spin coherence in solids by optimal dynamical decoupling.
Du, Jiangfeng; Rong, Xing; Zhao, Nan; Wang, Ya; Yang, Jiahui; Liu, R B
2009-10-29
To exploit the quantum coherence of electron spins in solids in future technologies such as quantum computing, it is first vital to overcome the problem of spin decoherence due to their coupling to the noisy environment. Dynamical decoupling, which uses stroboscopic spin flips to give an average coupling to the environment that is effectively zero, is a particularly promising strategy for combating decoherence because it can be naturally integrated with other desired functionalities, such as quantum gates. Errors are inevitably introduced in each spin flip, so it is desirable to minimize the number of control pulses used to realize dynamical decoupling having a given level of precision. Such optimal dynamical decoupling sequences have recently been explored. The experimental realization of optimal dynamical decoupling in solid-state systems, however, remains elusive. Here we use pulsed electron paramagnetic resonance to demonstrate experimentally optimal dynamical decoupling for preserving electron spin coherence in irradiated malonic acid crystals at temperatures from 50 K to room temperature. Using a seven-pulse optimal dynamical decoupling sequence, we prolonged the spin coherence time to about 30 mus; it would otherwise be about 0.04 mus without control or 6.2 mus under one-pulse control. By comparing experiments with microscopic theories, we have identified the relevant electron spin decoherence mechanisms in the solid. Optimal dynamical decoupling may be applied to other solid-state systems, such as diamonds with nitrogen-vacancy centres, and so lay the foundation for quantum coherence control of spins in solids at room temperature.
Two-dimensional lattice gauge theories with superconducting quantum circuits
Marcos, D.; Widmer, P.; Rico, E.; Hafezi, M.; Rabl, P.; Wiese, U.-J.; Zoller, P.
2014-01-01
A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability. PMID:25512676
Direct observation of coherent energy transfer in nonlinear micromechanical oscillators.
Chen, Changyao; Zanette, Damián H; Czaplewski, David A; Shaw, Steven; López, Daniel
2017-05-26
Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. The fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.
NASA Astrophysics Data System (ADS)
Mondal, Sucheta; Barman, Saswati; Choudhury, Samiran; Otani, Yoshichika; Barman, Anjan
2018-07-01
Ultrafast spin dynamics in ferromagnetic nanodot arrays with dot diameter 100 nm and thickness 20 nm arranged in honeycomb and octagonal lattice symmetries are studied to explore the tunability of the collective magnetization dynamics. By varying the inter-dot separation between 30 nm and 300 nm drastic variation in the precessional dynamics from strongly collective to completely isolated regime has been observed by using all-optical time-resolved magneto-optical Kerr microscope. Micromagnetic simulation is exploited to gain insights about the resonant mode profiles and magnetic coupling between the nanodots. A significant spectral and spatial variation in the resonant mode with increasing dipolar interaction is demonstrated with increasing inter-dot separation. The spins driven by effective field inside single nanodots are prone to precess independently, generating two self-standing centre and edge modes in the array that are influenced by the relative orientation between the inter-dot coupling direction and bias magnetic field. The anisotropic behavior of dipolar field is rigorously investigated here. Splitting of the centre mode in case of octagonal lattice is experimentally observed here as a consequence of the anisotropic dipolar field between the nanodot pairs coupled horizontally and vertically, which is not found in the honeycomb lattice. In addition, proper understanding of the modification of dynamic mode profile by neighboring dipolar interaction built up here, is imperative for further control of the dynamic dipolar interaction and the corresponding collective excitation in magnonic crystals. The usage of nanodot lattices with complex basis structures can be advantageous for the designing of high density magnetic recording media, spin-wave filter and logic devices.
Skill Learning and Skill Transfer Mediated by Cooperative Haptic Interaction.
Avila Mireles, Edwin Johnatan; Zenzeri, Jacopo; Squeri, Valentina; Morasso, Pietro; De Santis, Dalia
2017-07-01
It is known that physical coupling between two subjects may be advantageous in joint tasks. However, little is known about how two people mutually exchange information to exploit the coupling. Therefore, we adopted a reversed, novel perspective to the standard one that focuses on the ability of physically coupled subjects to adapt to cooperative contexts that require negotiating a common plan: we investigated how training in pairs on a novel task affects the development of motor skills of each of the interacting partners. The task involved reaching movements in an unstable dynamic environment using a bilateral non-linear elastic tool that could be used bimanually or dyadically. The main result is that training with an expert leads to the greatest performance in the joint task. However, the performance in the individual test is strongly affected by the initial skill level of the partner. Moreover, practicing with a peer rather than an expert appears to be more advantageous for a naive; and motor skills can be transferred to a bimanual context, after training with an expert, only if the non-expert subject had prior experience of the dynamics of the novel task.
Anharmonicity and Octahedral Tilting in Hybrid Vacancy-Ordered Double Perovskites
Maughan, Annalise E.; Ganose, Alex M.; Candia, Andrew M.; ...
2017-11-30
The advantageous performance of hybrid organic-inorganic perovskite halide semiconduc- tors in optoelectronic applications motivates studies of their fundamental crystal-chemistry. In particular, recent studies have sought to understand how dipolar, dynamic, and organic cations, such as methylammonium (CH 3 NH 3 + ) and formamidinium (CH(NH 2 ) 2 + ) affect physical properties such as light absorption and charge transport. Here, to probe the influence of organic- inorganic coupling on charge transport, we have prepared the series of vacancy-ordered double perovskite derivatives, A 2SnI 6, where A = Cs +, CH 3NH 3 +, and CH(NH 2) 2 +. Despitemore » nearly identical cubic structures by powder X-ray diffraction, replacement of Cs + with CH 3NH 3 + or CH(NH 2) 2 + reduces conductivity through a reduction in both carrier concentration and carrier mobility. We attribute the trends in electronic behavior to anharmonic lattice dynamics from the formation of hydrogen bonds that yield coupled organic-inorganic dynamics. This anharmonicity manifests as asymmetry of the inter-octahedral I-I pair correlations in the X-ray pair distribution function of the hybrid compounds, which can be modeled by large atomistic ensembles with random rotations of rigid [SnI 6] octahedral units. The presence of soft, anharmonic lattice dynamics holds implications for electron-phonon interactions, as supported by calculation of electron-phonon coupling strength that indicates the formation of more tightly-bound polarons and reduced electron mobilities with increasing cation size. Finally, by exploiting the relatively decoupled nature of the octahedral units in these defect-ordered perovskite variants, we can interrogate the impact of organic-inorganic coupling and lattice anharmonicity on the charge transport behavior of hybrid perovskite halide semiconductors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maughan, Annalise E.; Ganose, Alex M.; Candia, Andrew M.
The advantageous performance of hybrid organic-inorganic perovskite halide semiconduc- tors in optoelectronic applications motivates studies of their fundamental crystal-chemistry. In particular, recent studies have sought to understand how dipolar, dynamic, and organic cations, such as methylammonium (CH 3 NH 3 + ) and formamidinium (CH(NH 2 ) 2 + ) affect physical properties such as light absorption and charge transport. Here, to probe the influence of organic- inorganic coupling on charge transport, we have prepared the series of vacancy-ordered double perovskite derivatives, A 2SnI 6, where A = Cs +, CH 3NH 3 +, and CH(NH 2) 2 +. Despitemore » nearly identical cubic structures by powder X-ray diffraction, replacement of Cs + with CH 3NH 3 + or CH(NH 2) 2 + reduces conductivity through a reduction in both carrier concentration and carrier mobility. We attribute the trends in electronic behavior to anharmonic lattice dynamics from the formation of hydrogen bonds that yield coupled organic-inorganic dynamics. This anharmonicity manifests as asymmetry of the inter-octahedral I-I pair correlations in the X-ray pair distribution function of the hybrid compounds, which can be modeled by large atomistic ensembles with random rotations of rigid [SnI 6] octahedral units. The presence of soft, anharmonic lattice dynamics holds implications for electron-phonon interactions, as supported by calculation of electron-phonon coupling strength that indicates the formation of more tightly-bound polarons and reduced electron mobilities with increasing cation size. Finally, by exploiting the relatively decoupled nature of the octahedral units in these defect-ordered perovskite variants, we can interrogate the impact of organic-inorganic coupling and lattice anharmonicity on the charge transport behavior of hybrid perovskite halide semiconductors.« less
Iqbal, Muhammad; Rehan, Muhammad; Hong, Keum-Shik
2018-01-01
This paper exploits the dynamical modeling, behavior analysis, and synchronization of a network of four different FitzHugh–Nagumo (FHN) neurons with unknown parameters linked in a ring configuration under direction-dependent coupling. The main purpose is to investigate a robust adaptive control law for the synchronization of uncertain and perturbed neurons, communicating in a medium of bidirectional coupling. The neurons are assumed to be different and interconnected in a ring structure. The strength of the gap junctions is taken to be different for each link in the network, owing to the inter-neuronal coupling medium properties. Robust adaptive control mechanism based on Lyapunov stability analysis is employed and theoretical criteria are derived to realize the synchronization of the network of four FHN neurons in a ring form with unknown parameters under direction-dependent coupling and disturbances. The proposed scheme for synchronization of dissimilar neurons, under external electrical stimuli, coupled in a ring communication topology, having all parameters unknown, and subject to directional coupling medium and perturbations, is addressed for the first time as per our knowledge. To demonstrate the efficacy of the proposed strategy, simulation results are provided. PMID:29535622
NASA Astrophysics Data System (ADS)
Biria, Saeid; Morim, Derek R.; An Tsao, Fu; Saravanamuttu, Kalaichelvi; Hosein, Ian D.
2017-10-01
Nonlinear optics and polymer systems are distinct fields that have been studied for decades. These two fields intersect with the observation of nonlinear wave propagation in photoreactive polymer systems. This has led to studies on the nonlinear dynamics of transmitted light in polymer media, particularly for optical self-trapping and optical modulation instability. The irreversibility of polymerization leads to permanent capture of nonlinear optical patterns in the polymer structure, which is a new synthetic route to complex structured soft materials. Over time more intricate polymer systems are employed, whereby nonlinear optical dynamics can couple to nonlinear chemical dynamics, opening opportunities for self-organization. This paper discusses the work to date on nonlinear optical pattern formation processes in polymers. A brief overview of nonlinear optical phenomenon is provided to set the stage for understanding their effects. We review the accomplishments of the field on studying nonlinear waveform propagation in photopolymerizable systems, then discuss our most recent progress in coupling nonlinear optical pattern formation to polymer blends and phase separation. To this end, perspectives on future directions and areas of sustained inquiry are provided. This review highlights the significant opportunity in exploiting nonlinear optical pattern formation in soft matter for the discovery of new light-directed and light-stimulated materials phenomenon, and in turn, soft matter provides a platform by which new nonlinear optical phenomenon may be discovered.
Model of Collective Fish Behavior with Hydrodynamic Interactions
NASA Astrophysics Data System (ADS)
Filella, Audrey; Nadal, François; Sire, Clément; Kanso, Eva; Eloy, Christophe
2018-05-01
Fish schooling is often modeled with self-propelled particles subject to phenomenological behavioral rules. Although fish are known to sense and exploit flow features, these models usually neglect hydrodynamics. Here, we propose a novel model that couples behavioral rules with far-field hydrodynamic interactions. We show that (1) a new "collective turning" phase emerges, (2) on average, individuals swim faster thanks to the fluid, and (3) the flow enhances behavioral noise. The results of this model suggest that hydrodynamic effects should be considered to fully understand the collective dynamics of fish.
Prall, Bradley S; Parkinson, Dilworth Y; Ishikawa, Naoto; Fleming, Graham R
2005-12-08
We exploit a coherently excited nuclear wave packet to study nuclear motion modulation of electronic structure in a metal bridged phthalocyanine dimer, lutetium bisphthalocyanine, which displays two visible absorption bands. We find that the nuclear coordinate influences the energies of the underlying exciton and charge resonance states as well as their interaction; the interplay of the various couplings creates unusual anti-correlated spectral motion in the two bands. Excited state relaxation dynamics are the same regardless of which transition is pumped, with decay time constants of 1.5 and 11 ps. The dynamics are analyzed using a three-state kinetic model after relaxation from one or two additional states faster than the experimental time resolution of 50-100 fs.
Photovoltaic concepts inspired by coherence effects in photosynthetic systems
NASA Astrophysics Data System (ADS)
Brédas, Jean-Luc; Sargent, Edward H.; Scholes, Gregory D.
2017-01-01
The past decade has seen rapid advances in our understanding of how coherent and vibronic phenomena in biological photosynthetic systems aid in the efficient transport of energy from light-harvesting antennas to photosynthetic reaction centres. Such coherence effects suggest strategies to increase transport lengths even in the presence of structural disorder. Here we explore how these principles could be exploited in making improved solar cells. We investigate in depth the case of organic materials, systems in which energy and charge transport stand to be improved by overcoming challenges that arise from the effects of static and dynamic disorder -- structural and energetic -- and from inherently strong electron-vibration couplings. We discuss how solar-cell device architectures can evolve to use coherence-exploiting materials, and we speculate as to the prospects for a coherent energy conversion system. We conclude with a survey of the impacts of coherence and bioinspiration on diverse solar-energy harvesting solutions, including artificial photosynthetic systems.
Coupling bimolecular PARylation biosensors with genetic screens to identify PARylation targets.
Krastev, Dragomir B; Pettitt, Stephen J; Campbell, James; Song, Feifei; Tanos, Barbara E; Stoynov, Stoyno S; Ashworth, Alan; Lord, Christopher J
2018-05-22
Poly (ADP-ribose)ylation is a dynamic protein modification that regulates multiple cellular processes. Here, we describe a system for identifying and characterizing PARylation events that exploits the ability of a PBZ (PAR-binding zinc finger) protein domain to bind PAR with high-affinity. By linking PBZ domains to bimolecular fluorescent complementation biosensors, we developed fluorescent PAR biosensors that allow the detection of temporal and spatial PARylation events in live cells. Exploiting transposon-mediated recombination, we integrate the PAR biosensor en masse into thousands of protein coding genes in living cells. Using these PAR-biosensor "tagged" cells in a genetic screen we carry out a large-scale identification of PARylation targets. This identifies CTIF (CBP80/CBP20-dependent translation initiation factor) as a novel PARylation target of the tankyrase enzymes in the centrosomal region of cells, which plays a role in the distribution of the centrosomal satellites.
NASA Astrophysics Data System (ADS)
Abbiati, Giuseppe; La Salandra, Vincenzo; Bursi, Oreste S.; Caracoglia, Luca
2018-02-01
Successful online hybrid (numerical/physical) dynamic substructuring simulations have shown their potential in enabling realistic dynamic analysis of almost any type of non-linear structural system (e.g., an as-built/isolated viaduct, a petrochemical piping system subjected to non-stationary seismic loading, etc.). Moreover, owing to faster and more accurate testing equipment, a number of different offline experimental substructuring methods, operating both in time (e.g. the impulse-based substructuring) and frequency domains (i.e. the Lagrange multiplier frequency-based substructuring), have been employed in mechanical engineering to examine dynamic substructure coupling. Numerous studies have dealt with the above-mentioned methods and with consequent uncertainty propagation issues, either associated with experimental errors or modelling assumptions. Nonetheless, a limited number of publications have systematically cross-examined the performance of the various Experimental Dynamic Substructuring (EDS) methods and the possibility of their exploitation in a complementary way to expedite a hybrid experiment/numerical simulation. From this perspective, this paper performs a comparative uncertainty propagation analysis of three EDS algorithms for coupling physical and numerical subdomains with a dual assembly approach based on localized Lagrange multipliers. The main results and comparisons are based on a series of Monte Carlo simulations carried out on a five-DoF linear/non-linear chain-like systems that include typical aleatoric uncertainties emerging from measurement errors and excitation loads. In addition, we propose a new Composite-EDS (C-EDS) method to fuse both online and offline algorithms into a unique simulator. Capitalizing from the results of a more complex case study composed of a coupled isolated tank-piping system, we provide a feasible way to employ the C-EDS method when nonlinearities and multi-point constraints are present in the emulated system.
Nuclear Power Plant Cyber Security Discrete Dynamic Event Tree Analysis (LDRD 17-0958) FY17 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, Timothy A.; Denman, Matthew R.; Williams, R. A.
Instrumentation and control of nuclear power is transforming from analog to modern digital assets. These control systems perform key safety and security functions. This transformation is occurring in new plant designs as well as in the existing fleet of plants as the operation of those plants is extended to 60 years. This transformation introduces new and unknown issues involving both digital asset induced safety issues and security issues. Traditional nuclear power risk assessment tools and cyber security assessment methods have not been modified or developed to address the unique nature of cyber failure modes and of cyber security threat vulnerabilities.more » iii This Lab-Directed Research and Development project has developed a dynamic cyber-risk in- formed tool to facilitate the analysis of unique cyber failure modes and the time sequencing of cyber faults, both malicious and non-malicious, and impose those cyber exploits and cyber faults onto a nuclear power plant accident sequence simulator code to assess how cyber exploits and cyber faults could interact with a plants digital instrumentation and control (DI&C) system and defeat or circumvent a plants cyber security controls. This was achieved by coupling an existing Sandia National Laboratories nuclear accident dynamic simulator code with a cyber emulytics code to demonstrate real-time simulation of cyber exploits and their impact on automatic DI&C responses. Studying such potential time-sequenced cyber-attacks and their risks (i.e., the associated impact and the associated degree of difficulty to achieve the attack vector) on accident management establishes a technical risk informed framework for developing effective cyber security controls for nuclear power.« less
Power harvesting by electromagnetic coupling from wind-induced limit cycle oscillations
NASA Astrophysics Data System (ADS)
Boccalero, G.; Olivieri, S.; Mazzino, A.; Boragno, C.
2017-09-01
Recent developments of low-power microprocessors open to new applications such as wireless sensor networks (WSN) with the consequent problem of autonomous powering. For this purpose, a possible strategy is represented by energy harvesting from wind or other flows exploiting fluid-structure interactions. In this work, we present an updated picture of a flutter-based device characterized by fully passive dynamics and a simple constructive layout, where limit cycle oscillations are undergone by an elastically bounded wing. In this case, the conversion from mechanical to electrical energy is performed by means of an electromagnetic coupling between a pair of coils and magnets. A centimetric-size prototype is shown to harvest energy from low wind velocities (between 2 and 4 m s-1), reaching a power peak of 14 mW, representing a valuable amount for applications related to WSN. A mathematical description of the nonlinear dynamics is then provided by a quasi-steady phenomenological model, revealing satisfactory agreement with the experimental framework within a certain parametric range and representing a useful tool for future optimizations.
NASA Astrophysics Data System (ADS)
Hurtado Parra, Sebastian; Straus, Daniel; Iotov, Natasha; Fichera, Bryan; Gebhardt, Julian; Rappe, Andrew; Subotnik, Joseph; Kikkawa, James; Kagan, Cherie
Quantum and dielectric confinement effects in Ruddlesden-Popper 2D hybrid perovskites create excitons with a binding energy exceeding 150 meV. We exploit the large exciton binding energy to study exciton and carrier dynamics as well as electron-phonon coupling (EPC) in hybrid perovskites using absorption and photoluminescence (PL) spectroscopies. At temperatures <75 K, we resolve splitting of the excitonic absorption and PL into multiple regularly spaced resonances every 40-46 meV, consistent with EPC to phonons located on the organic cation. We also resolve resonances with a 14 meV spacing, in accord with coupling to phonons with mixed organic and inorganic character. These assignments are supported by density-functional theory calculations. Hot exciton PL and time-resolved PL measurements show that vibrational relaxation occurs on a picosecond time scale competitive with that for PL. At temperatures >75 K, excitonic absorption and PL exhibit homogeneous broadening. While absorption remains homogeneous, PL becomes inhomogeneous at temperatures <75K, which we speculate is caused by the formation and subsequent dynamics of a polaronic exciton. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences Grant DE-SC0002158 and the National Science Foundation Graduate Research Fellowship Grant DGE-1321851.
Electron-Nuclear Quantum Information Processing
2008-11-13
quantum information processing that exploits the anisotropic hyperfine coupling. This scheme enables universal control over a 1-electron, N-nuclear spin...exploits the anisotropic hyperfine coupling. This scheme enables universal control over a 1-electron, N-nuclear spin system, addressing only a...sample of irradiated malonic acid. (a) Papers published in peer-reviewed journals (N/A for none) Universal control of nuclear spins via anisotropic
NASA Technical Reports Server (NTRS)
Meyer, G.; Cicolani, L.
1981-01-01
A practical method for the design of automatic flight control systems for aircraft with complex characteristics and operational requirements, such as the powered lift STOL and V/STOL configurations, is presented. The method is effective for a large class of dynamic systems requiring multi-axis control which have highly coupled nonlinearities, redundant controls, and complex multidimensional operational envelopes. It exploits the concept of inverse dynamic systems, and an algorithm for the construction of inverse is given. A hierarchic structure for the total control logic with inverses is presented. The method is illustrated with an application to the Augmentor Wing Jet STOL Research Aircraft equipped with a digital flight control system. Results of flight evaluation of the control concept on this aircraft are presented.
NASA Astrophysics Data System (ADS)
Jusup, Marko; Iwami, Shingo; Podobnik, Boris; Stanley, H. Eugene
2015-12-01
Since the very inception of mathematical modeling in epidemiology, scientists exploited the simplicity ingrained in the assumption of a well-mixed population. For example, perhaps the earliest susceptible-infectious-recovered (SIR) model developed by L. Reed and W.H. Frost in the 1920s [1], included the well-mixed assumption such that any two individuals in the population could meet each other. The problem was that, unlike many other simplifying assumptions used in epidemiological modeling whose validity holds in one situation or the other, well-mixed populations are almost non-existent in reality because the nature of human socio-economic interactions is, for the most part, highly heterogeneous (e.g. [2-6]).
Treating Sample Covariances for Use in Strongly Coupled Atmosphere-Ocean Data Assimilation
NASA Astrophysics Data System (ADS)
Smith, Polly J.; Lawless, Amos S.; Nichols, Nancy K.
2018-01-01
Strongly coupled data assimilation requires cross-domain forecast error covariances; information from ensembles can be used, but limited sampling means that ensemble derived error covariances are routinely rank deficient and/or ill-conditioned and marred by noise. Thus, they require modification before they can be incorporated into a standard assimilation framework. Here we compare methods for improving the rank and conditioning of multivariate sample error covariance matrices for coupled atmosphere-ocean data assimilation. The first method, reconditioning, alters the matrix eigenvalues directly; this preserves the correlation structures but does not remove sampling noise. We show that it is better to recondition the correlation matrix rather than the covariance matrix as this prevents small but dynamically important modes from being lost. The second method, model state-space localization via the Schur product, effectively removes sample noise but can dampen small cross-correlation signals. A combination that exploits the merits of each is found to offer an effective alternative.
Direct observation of coherent energy transfer in nonlinear micromechanical oscillators
Chen, Changyao; Zanette, Damian H.; Czaplewski, David A.; ...
2017-05-26
Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. Themore » fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.« less
Direct observation of coherent energy transfer in nonlinear micromechanical oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Changyao; Zanette, Damian H.; Czaplewski, David A.
Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. Themore » fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.« less
Exploiting short-term memory in soft body dynamics as a computational resource
Nakajima, K.; Li, T.; Hauser, H.; Pfeifer, R.
2014-01-01
Soft materials are not only highly deformable, but they also possess rich and diverse body dynamics. Soft body dynamics exhibit a variety of properties, including nonlinearity, elasticity and potentially infinitely many degrees of freedom. Here, we demonstrate that such soft body dynamics can be employed to conduct certain types of computation. Using body dynamics generated from a soft silicone arm, we show that they can be exploited to emulate functions that require memory and to embed robust closed-loop control into the arm. Our results suggest that soft body dynamics have a short-term memory and can serve as a computational resource. This finding paves the way towards exploiting passive body dynamics for control of a large class of underactuated systems. PMID:25185579
Towards an integrated forecasting system for fisheries on habitat-bound stocks
NASA Astrophysics Data System (ADS)
Christensen, A.; Butenschön, M.; Gürkan, Z.; Allen, I. J.
2013-03-01
First results of a coupled modelling and forecasting system for fisheries on habitat-bound stocks are being presented. The system consists currently of three mathematically, fundamentally different model subsystems coupled offline: POLCOMS providing the physical environment implemented in the domain of the north-west European shelf, the SPAM model which describes sandeel stocks in the North Sea, and the third component, the SLAM model, which connects POLCOMS and SPAM by computing the physical-biological interaction. Our major experience by the coupling model subsystems is that well-defined and generic model interfaces are very important for a successful and extendable coupled model framework. The integrated approach, simulating ecosystem dynamics from physics to fish, allows for analysis of the pathways in the ecosystem to investigate the propagation of changes in the ocean climate and to quantify the impacts on the higher trophic level, in this case the sandeel population, demonstrated here on the basis of hindcast data. The coupled forecasting system is tested for some typical scientific questions appearing in spatial fish stock management and marine spatial planning, including determination of local and basin-scale maximum sustainable yield, stock connectivity and source/sink structure. Our presented simulations indicate that sandeel stocks are currently exploited close to the maximum sustainable yield, even though periodic overfishing seems to have occurred, but large uncertainty is associated with determining stock maximum sustainable yield due to stock inherent dynamics and climatic variability. Our statistical ensemble simulations indicates that the predictive horizon set by climate interannual variability is 2-6 yr, after which only an asymptotic probability distribution of stock properties, like biomass, are predictable.
Building entity models through observation and learning
NASA Astrophysics Data System (ADS)
Garcia, Richard; Kania, Robert; Fields, MaryAnne; Barnes, Laura
2011-05-01
To support the missions and tasks of mixed robotic/human teams, future robotic systems will need to adapt to the dynamic behavior of both teammates and opponents. One of the basic elements of this adaptation is the ability to exploit both long and short-term temporal data. This adaptation allows robotic systems to predict/anticipate, as well as influence, future behavior for both opponents and teammates and will afford the system the ability to adjust its own behavior in order to optimize its ability to achieve the mission goals. This work is a preliminary step in the effort to develop online entity behavior models through a combination of learning techniques and observations. As knowledge is extracted from the system through sensor and temporal feedback, agents within the multi-agent system attempt to develop and exploit a basic movement model of an opponent. For the purpose of this work, extraction and exploitation is performed through the use of a discretized two-dimensional game. The game consists of a predetermined number of sentries attempting to keep an unknown intruder agent from penetrating their territory. The sentries utilize temporal data coupled with past opponent observations to hypothesize the probable locations of the opponent and thus optimize their guarding locations.
Risk assessment by dynamic representation of vulnerability, exploitation, and impact
NASA Astrophysics Data System (ADS)
Cam, Hasan
2015-05-01
Assessing and quantifying cyber risk accurately in real-time is essential to providing security and mission assurance in any system and network. This paper presents a modeling and dynamic analysis approach to assessing cyber risk of a network in real-time by representing dynamically its vulnerabilities, exploitations, and impact using integrated Bayesian network and Markov models. Given the set of vulnerabilities detected by a vulnerability scanner in a network, this paper addresses how its risk can be assessed by estimating in real-time the exploit likelihood and impact of vulnerability exploitation on the network, based on real-time observations and measurements over the network. The dynamic representation of the network in terms of its vulnerabilities, sensor measurements, and observations is constructed dynamically using the integrated Bayesian network and Markov models. The transition rates of outgoing and incoming links of states in hidden Markov models are used in determining exploit likelihood and impact of attacks, whereas emission rates help quantify the attack states of vulnerabilities. Simulation results show the quantification and evolving risk scores over time for individual and aggregated vulnerabilities of a network.
Multiscale analysis of information dynamics for linear multivariate processes.
Faes, Luca; Montalto, Alessandro; Stramaglia, Sebastiano; Nollo, Giandomenico; Marinazzo, Daniele
2016-08-01
In the study of complex physical and physiological systems represented by multivariate time series, an issue of great interest is the description of the system dynamics over a range of different temporal scales. While information-theoretic approaches to the multiscale analysis of complex dynamics are being increasingly used, the theoretical properties of the applied measures are poorly understood. This study introduces for the first time a framework for the analytical computation of information dynamics for linear multivariate stochastic processes explored at different time scales. After showing that the multiscale processing of a vector autoregressive (VAR) process introduces a moving average (MA) component, we describe how to represent the resulting VARMA process using statespace (SS) models and how to exploit the SS model parameters to compute analytical measures of information storage and information transfer for the original and rescaled processes. The framework is then used to quantify multiscale information dynamics for simulated unidirectionally and bidirectionally coupled VAR processes, showing that rescaling may lead to insightful patterns of information storage and transfer but also to potentially misleading behaviors.
Multi-criteria Resource Mapping and its Relevance in the Assessment of Habitat Changes
NASA Astrophysics Data System (ADS)
Van Lancker, V. R.; Kint, L.; van Heteren, S.
2016-02-01
Mineral and geological resources can be considered to be non-renewable on time scales relevant for decision makers. Once exhausted by humans, they are not replenished rapidly enough by nature, meaning that truly sustainable resource exploitation is not possible. Comprehensive knowledge on the distribution, composition and dynamics of geological resources and on the environmental impact of aggregate extraction is therefore critical. For the Belgian and southern Netherlands part of the North Sea, being representative of a typical sandbank system, a 4D resource decision-support system is being developed that links 3D geological models with environmental impact models. Aim is to quantify natural and man-made changes and to define from these sustainable exploitation thresholds. These are needed to ensure that recovery from perturbations is rapid and secure, and that the range of natural variation is maintained, a prerequisite stated in Europe's Marine Strategy Framework Directive, the environmental pillar of Europe's Maritime Policy. The geological subsurface is parameterised using a voxel modelling approach. Primarily, the voxels, or volume blocks of information, are constrained by the geology, based on coring and seismic data, but they are open to any resource-relevant information. The primary geological data entering the voxels are subdued to uncertainty modelling, a necessary step to produce data products with confidence limits. The presentation will focus on the novelty this approach brings for seabed and habitat mapping. In our model this is the upper voxel, providing the advantage of having a dynamical coupling to the geology and a suite of environmental parameters. In the context of assessing habitat changes, this coupling enables to account for spatial and temporal variability, seabed heterogeneity, as well as data uncertainty. The project is funded by Belgian Science Policy and is further valorised through EMODnet-Geology (DG MARE).
NASA Astrophysics Data System (ADS)
Siettos, C. I.; Gear, C. W.; Kevrekidis, I. G.
2012-08-01
We show how the equation-free approach can be exploited to enable agent-based simulators to perform system-level computations such as bifurcation, stability analysis and controller design. We illustrate these tasks through an event-driven agent-based model describing the dynamic behaviour of many interacting investors in the presence of mimesis. Using short bursts of appropriately initialized runs of the detailed, agent-based simulator, we construct the coarse-grained bifurcation diagram of the (expected) density of agents and investigate the stability of its multiple solution branches. When the mimetic coupling between agents becomes strong enough, the stable stationary state loses its stability at a coarse turning point bifurcation. We also demonstrate how the framework can be used to design a wash-out dynamic controller that stabilizes open-loop unstable stationary states even under model uncertainty.
Exploiting short-term memory in soft body dynamics as a computational resource.
Nakajima, K; Li, T; Hauser, H; Pfeifer, R
2014-11-06
Soft materials are not only highly deformable, but they also possess rich and diverse body dynamics. Soft body dynamics exhibit a variety of properties, including nonlinearity, elasticity and potentially infinitely many degrees of freedom. Here, we demonstrate that such soft body dynamics can be employed to conduct certain types of computation. Using body dynamics generated from a soft silicone arm, we show that they can be exploited to emulate functions that require memory and to embed robust closed-loop control into the arm. Our results suggest that soft body dynamics have a short-term memory and can serve as a computational resource. This finding paves the way towards exploiting passive body dynamics for control of a large class of underactuated systems. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Croce, Pierpaolo; Zappasodi, Filippo; Merla, Arcangelo; Chiarelli, Antonio Maria
2017-08-01
Objective. Electrical and hemodynamic brain activity are linked through the neurovascular coupling process and they can be simultaneously measured through integration of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Thanks to the lack of electro-optical interference, the two procedures can be easily combined and, whereas EEG provides electrophysiological information, fNIRS can provide measurements of two hemodynamic variables, such as oxygenated and deoxygenated hemoglobin. A Bayesian sequential Monte Carlo approach (particle filter, PF) was applied to simulated recordings of electrical and neurovascular mediated hemodynamic activity, and the advantages of a unified framework were shown. Approach. Multiple neural activities and hemodynamic responses were simulated in the primary motor cortex of a subject brain. EEG and fNIRS recordings were obtained by means of forward models of volume conduction and light propagation through the head. A state space model of combined EEG and fNIRS data was built and its dynamic evolution was estimated through a Bayesian sequential Monte Carlo approach (PF). Main results. We showed the feasibility of the procedure and the improvements in both electrical and hemodynamic brain activity reconstruction when using the PF on combined EEG and fNIRS measurements. Significance. The investigated procedure allows one to combine the information provided by the two methodologies, and, by taking advantage of a physical model of the coupling between electrical and hemodynamic response, to obtain a better estimate of brain activity evolution. Despite the high computational demand, application of such an approach to in vivo recordings could fully exploit the advantages of this combined brain imaging technology.
Resilience to leaking--dynamic systems modeling of information security.
Hamacher, Kay
2012-01-01
Leaking of confidential material is a major threat to information security within organizations and to society as a whole. This insight has gained traction in the political realm since the activities of Wikileaks, which hopes to attack 'unjust' systems or 'conspiracies'. Eventually, such threats to information security rely on a biologistic argument on the benefits and drawbacks that uncontrolled leaking might pose for 'just' and 'unjust' entities. Such biological metaphors are almost exclusively based on the economic advantage of participants. Here, I introduce a mathematical model of the complex dynamics implied by leaking. The complex interactions of adversaries are modeled by coupled logistic equations including network effects of econo-communication networks. The modeling shows, that there might arise situations where the leaking envisioned and encouraged by Wikileaks and the like can strengthen the defending entity (the 'conspiracy'). In particular, the only severe impact leaking can have on an organization seems to originate in the exploitation of leaks by another entity the organization competes with. Therefore, the model suggests that leaks can be used as a `tactical mean' in direct adversary relations, but do not necessarily increase public benefit and societal immunization to 'conspiracies'. Furthermore, within the model the exploitation of the (open) competition between entities seems to be a more promising approach to control malicious organizations : divide-et-impera policies triumph here.
Non-perturbing voltage measurement in a coaxial cable with slab-coupled optical sensors.
Stan, Nikola; Seng, Frederick; Shumway, LeGrand; King, Rex; Schultz, Stephen
2017-08-20
Voltage in a coaxial cable is measured by an electric-field optical fiber sensor exploiting the proportionality of voltage and electric field in a fixed structure. The sensor is inserted in a hole drilled through the dielectric of the RG-218 coaxial cable and sealed with epoxy to displace all air and prevent the adverse effects of charge buildup during high-voltage measurements. It is shown that the presence of the sensor in the coaxial cable does not significantly increase electrical reflections in the cable. A slab-coupled optical fiber sensor (SCOS) is used for its compact size and dielectric make. The dynamic range of 50 dB is shown experimentally with detection of signals as low as 1 V and up to 157 kV. A low corner of 0.3 Hz is demonstrated and the SCOS is shown to be able to measure 90 ns rise time.
NASA Astrophysics Data System (ADS)
Bucci, Lorenzo; Lavagna, Michèle; Guzzetti, Davide; Howell, Kathleen C.
2018-06-01
Interest on Large Space Structures (LSS), orbiting in strategic and possibly long-term stable locations, is nowadays increasing in the space community. LSS can serve as strategic outpost to support a variety of manned and unmanned mission, or may carry scientific payloads for astronomical observations. The paper focuses on analysing LSS in the Earth-Moon system, exploring dynamical structures that are available within a multi-body gravitational environment. Coupling between attitude and orbital dynamics is investigated, with particular interest on the gravity gradient torque exerted by the two massive attractors. First, natural periodic orbit-attitude solutions are obtained; a LSS that exploits such solutions would benefit of a naturally periodic body rotation synchronous with the orbital motion, easing the effort of the attitude control system to satisfy pointing requirements. Then, the solar radiation pressure is introduced into the fully coupled dynamical model and its effects investigated, discovering novel periodic attitude solutions. Benefits of periodic behaviours that incorporate solar radiation pressure are discussed, and analysed via the variation of some parameters (e.g reflection/absorption coefficients, position of the centre of pressure). As a final step to refine the current perturbed orbit-attitude model, a structure flexibility is also superimposed to a reference orbit-attitude rigid body motion via a simple, yet effective model. The coupling of structural vibrations and attitude motion is preliminarily explored, and allows identification of possible challenges, that may be faced to position a LSS in a periodic orbit within the Earth-Moon system.
Protonation States in molecular dynamics simulations of peptide folding and binding.
Ben-Shimon, Avraham; Shalev, Deborah E; Niv, Masha Y
2013-01-01
Peptides are important signaling modules, acting both as individual hormones and as parts of larger molecules, mediating their protein-protein interactions. Many peptidic and peptidomimetic drugs have reached the marketplace and opportunities for peptide-based drug discovery are on the rise. pH-dependent behavior of peptides is well documented in the context of misfolding diseases and peptide translocation. Changes in the protonation states of peptide residues often have a crucial effect on a peptide's structure, dynamics and function, which may be exploited for biotechnological applications. The current review surveys the increasing levels of sophistication in the treatment of protonation states in computational studies involving peptides. Specifically we describe I) the common practice of assigning a single protonation state and using it throughout the dynamic simulation, II) approaches that consider multiple protonation states and compare computed observables to experimental ones, III) constant pH molecular dynamics methods that couple changes in protonation states with conformational dynamics "on the fly". Applications of conformational dynamics treatment of peptides in the context of binding, folding and interactions with the membrane are presented, illustrating the growing body of work in this field and highlighting the importance of careful handling of protonation states of peptidic residues.
NASA Astrophysics Data System (ADS)
Jacquemin, Ingrid; Henrot, Alexandra-Jane; Fontaine, Corentin M.; Dendoncker, Nicolas; Beckers, Veronique; Debusscher, Bos; Tychon, Bernard; Hambuckers, Alain; François, Louis
2016-04-01
Dynamic vegetation models (DVM) were initially designed to describe the dynamics of natural ecosystems as a function of climate and soil, to study the role of the vegetation in the carbon cycle. These models are now directly coupled with climate models in order to evaluate feedbacks between vegetation and climate. But DVM characteristics allow numerous other applications, leading to amelioration of some of their modules (e.g., evaluating sensitivity of the hydrological module to land surface changes) and developments (e.g., coupling with other models like agent-based models), to be used in ecosystem management and land use planning studies. It is in this dynamic context about DVMs that we have adapted the CARAIB (CARbon Assimilation In the Biosphere) model. One of the main improvements is the implementation of a crop module, allowing the assessment of climate change impacts on crop yields. We try to validate this module at different scales: - from the plot level, with the use of eddy-covariance data from agricultural sites in the FLUXNET network, such as Lonzée (Belgium) or other Western European sites (Grignon, Dijkgraaf,…), - to the country level, for which we compare the crop yield calculated by CARAIB to the crop yield statistics for Belgium and for different agricultural regions of the country. Another challenge for the CARAIB DVM was to deal with the landscape dynamics, which is not directly possible due to the lack of consideration of anthropogenic factors in the system. In the framework of the VOTES and the MASC projects, CARAIB is coupled with an agent-based model (ABM), representing the societal component of the system. This coupled module allows the use of climate and socio-economic scenarios, particularly interesting for studies which aim at ensuring a sustainable approach. This module has particularly been exploited in the VOTES project, where the objective was to provide a social, biophysical and economic assessment of the ecosystem services in four municipalities under urban pressure in the center of Belgium. The biophysical valuation was carried out with the coupled module, allowing a quantitative evaluation of key ecosystem services as a function of three climatic and socio-economic scenarios.
NASA Astrophysics Data System (ADS)
Stern, Mark J.; René de Cotret, Laurent P.; Otto, Martin R.; Chatelain, Robert P.; Boisvert, Jean-Philippe; Sutton, Mark; Siwick, Bradley J.
2018-04-01
Despite their fundamental role in determining material properties, detailed momentum-dependent information on the strength of electron-phonon and phonon-phonon coupling (EPC and PPC, respectively) across the entire Brillouin zone has remained elusive. Here we demonstrate that ultrafast electron diffuse scattering (UEDS) directly provides such information. By exploiting symmetry-based selection rules and time resolution, scattering from different phonon branches can be distinguished even without energy resolution. Using graphite as a model system, we show that UEDS patterns map the relative EPC and PPC strength through their profound sensitivity to photoinduced changes in phonon populations. We measure strong EPC to the K -point TO phonon of A1' symmetry (K -A1' ) and along the entire TO branch between Γ -K , not only to the Γ -E2 g phonon. We also determine that the subsequent phonon relaxation of these strongly coupled optical phonons involve three stages: decay via several identifiable channels to TA and LA phonons (1 -2 ps), intraband thermalization of the non-equilibrium TA/LA phonon populations (30 -40 ps) and interband relaxation of the TA/LA modes (115 ps). Combining UEDS with ultrafast angle-resolved photoelectron spectroscopy will yield a complete picture of the dynamics within and between electron and phonon subsystems, helping to unravel complex phases in which the intertwined nature of these systems has a strong influence on emergent properties.
Clustering stock market companies via chaotic map synchronization
NASA Astrophysics Data System (ADS)
Basalto, N.; Bellotti, R.; De Carlo, F.; Facchi, P.; Pascazio, S.
2005-01-01
A pairwise clustering approach is applied to the analysis of the Dow Jones index companies, in order to identify similar temporal behavior of the traded stock prices. To this end, the chaotic map clustering algorithm is used, where a map is associated to each company and the correlation coefficients of the financial time series to the coupling strengths between maps. The simulation of a chaotic map dynamics gives rise to a natural partition of the data, as companies belonging to the same industrial branch are often grouped together. The identification of clusters of companies of a given stock market index can be exploited in the portfolio optimization strategies.
Thermodynamic fingerprints of non-Markovianity in a system of coupled superconducting qubits
NASA Astrophysics Data System (ADS)
Hamedani Raja, Sina; Borrelli, Massimo; Schmidt, Rebecca; Pekola, Jukka P.; Maniscalco, Sabrina
2018-03-01
The exploitation and characterization of memory effects arising from the interaction between system and environment is a key prerequisite for quantum reservoir engineering beyond the standard Markovian limit. In this paper we investigate a prototype of non-Markovian dynamics experimentally implementable with superconducting qubits. We rigorously quantify non-Markovianity, highlighting the effects of the environmental temperature on the Markovian to non-Markovian crossover. We investigate how memory effects influence, and specifically suppress, the ability to perform work on the driven qubit. We show that the average work performed on the qubit can be used as a diagnostic tool to detect the presence or absence of memory effects.
Study of QCL Laser Sources for the Realization of Advanced Sensors.
de Risi, Giuseppe; Columbo, Lorenzo Luigi; Brambilla, Massimo
2015-08-05
We study the nonlinear dynamics of a quantum cascade laser (QCL) with a strong reinjection provided by the feedback from two external targets in a double cavity configuration. The nonlinear coupling of interferometric signals from the two targets allows us to propose a displacement sensor with nanometric resolution. The system exploits the ultra-stability of QCLs in self-mixing configuration to access the intrinsic nonlinearity of the laser, described by the Lang-Kobayashi model, and it relies on a stroboscopic-like effect in the voltage signal registered at the QCL terminals that relates the "slow" target motion to the "fast" target one.
Study of QCL Laser Sources for the Realization of Advanced Sensors
de Risi, Giuseppe; Columbo, Lorenzo Luigi; Brambilla, Massimo
2015-01-01
We study the nonlinear dynamics of a quantum cascade laser (QCL) with a strong reinjection provided by the feedback from two external targets in a double cavity configuration. The nonlinear coupling of interferometric signals from the two targets allows us to propose a displacement sensor with nanometric resolution. The system exploits the ultra-stability of QCLs in self-mixing configuration to access the intrinsic nonlinearity of the laser, described by the Lang–Kobayashi model, and it relies on a stroboscopic-like effect in the voltage signal registered at the QCL terminals that relates the “slow” target motion to the “fast” target one. PMID:26251907
Sheng, Li; Wang, Zidong; Zou, Lei; Alsaadi, Fuad E
2017-10-01
In this paper, the event-based finite-horizon H ∞ state estimation problem is investigated for a class of discrete time-varying stochastic dynamical networks with state- and disturbance-dependent noises [also called (x,v) -dependent noises]. An event-triggered scheme is proposed to decrease the frequency of the data transmission between the sensors and the estimator, where the signal is transmitted only when certain conditions are satisfied. The purpose of the problem addressed is to design a time-varying state estimator in order to estimate the network states through available output measurements. By employing the completing-the-square technique and the stochastic analysis approach, sufficient conditions are established to ensure that the error dynamics of the state estimation satisfies a prescribed H ∞ performance constraint over a finite horizon. The desired estimator parameters can be designed via solving coupled backward recursive Riccati difference equations. Finally, a numerical example is exploited to demonstrate the effectiveness of the developed state estimation scheme.
Cosmological effects of scalar-photon couplings: dark energy and varying-α Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avgoustidis, A.; Martins, C.J.A.P.; Monteiro, A.M.R.V.L.
2014-06-01
We study cosmological models involving scalar fields coupled to radiation and discuss their effect on the redshift evolution of the cosmic microwave background temperature, focusing on links with varying fundamental constants and dynamical dark energy. We quantify how allowing for the coupling of scalar fields to photons, and its important effect on luminosity distances, weakens current and future constraints on cosmological parameters. In particular, for evolving dark energy models, joint constraints on the dark energy equation of state combining BAO radial distance and SN luminosity distance determinations, will be strongly dominated by BAO. Thus, to fully exploit future SN datamore » one must also independently constrain photon number non-conservation arising from the possible coupling of SN photons to the dark energy scalar field. We discuss how observational determinations of the background temperature at different redshifts can, in combination with distance measures data, set tight constraints on interactions between scalar fields and photons, thus breaking this degeneracy. We also discuss prospects for future improvements, particularly in the context of Euclid and the E-ELT and show that Euclid can, even on its own, provide useful dark energy constraints while allowing for photon number non-conservation.« less
NASA Astrophysics Data System (ADS)
Garza, Alejandro J.; Bulik, Ireneusz W.; Alencar, Ana G. Sousa; Sun, Jianwei; Perdew, John P.; Scuseria, Gustavo E.
2016-04-01
Contrary to standard coupled cluster doubles (CCD) and Brueckner doubles (BD), singlet-paired analogues of CCD and BD (denoted here as CCD0 and BD0) do not break down when static correlation is present, but neglect substantial amounts of dynamic correlation. In fact, CCD0 and BD0 do not account for any contributions from multielectron excitations involving only same-spin electrons at all. We exploit this feature to add - without introducing double counting, self-interaction, or increase in cost - the missing correlation to these methods via meta-GGA (generalised gradient approximation) density functionals (Tao-Perdew-Staroverov-Scuseria and strongly constrained and appropriately normed). Furthermore, we improve upon these CCD0+DFT blends by invoking range separation: the short- and long-range correlations absent in CCD0/BD0 are evaluated with density functional theory and the direct random phase approximation, respectively. This corrects the description of long-range van der Waals forces. Comprehensive benchmarking shows that the combinations presented here are very accurate for weakly correlated systems, while also providing a reasonable description of strongly correlated problems without resorting to symmetry breaking.
Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng
2018-03-01
We present a novel class of nonlinear dynamical systems-a hybrid of relativistic quantum and classical systems and demonstrate that multistability is ubiquitous. A representative setting is coupled systems of a topological insulator and an insulating ferromagnet, where the former possesses an insulating bulk with topologically protected, dissipationless, and conducting surface electronic states governed by the relativistic quantum Dirac Hamiltonian and the latter is described by the nonlinear classical evolution of its magnetization vector. The interactions between the two are essentially the spin transfer torque from the topological insulator to the ferromagnet and the local proximity induced exchange coupling in the opposite direction. The hybrid system exhibits a rich variety of nonlinear dynamical phenomena besides multistability such as bifurcations, chaos, and phase synchronization. The degree of multistability can be controlled by an external voltage. In the case of two coexisting states, the system is effectively binary, opening a door to exploitation for developing spintronic memory devices. Because of the dissipationless and spin-momentum locking nature of the surface currents of the topological insulator, little power is needed for generating a significant current, making the system appealing for potential applications in next generation of low power memory devices.
Emergence, evolution, and control of multistability in a hybrid topological quantum/classical system
NASA Astrophysics Data System (ADS)
Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng
2018-03-01
We present a novel class of nonlinear dynamical systems—a hybrid of relativistic quantum and classical systems and demonstrate that multistability is ubiquitous. A representative setting is coupled systems of a topological insulator and an insulating ferromagnet, where the former possesses an insulating bulk with topologically protected, dissipationless, and conducting surface electronic states governed by the relativistic quantum Dirac Hamiltonian and the latter is described by the nonlinear classical evolution of its magnetization vector. The interactions between the two are essentially the spin transfer torque from the topological insulator to the ferromagnet and the local proximity induced exchange coupling in the opposite direction. The hybrid system exhibits a rich variety of nonlinear dynamical phenomena besides multistability such as bifurcations, chaos, and phase synchronization. The degree of multistability can be controlled by an external voltage. In the case of two coexisting states, the system is effectively binary, opening a door to exploitation for developing spintronic memory devices. Because of the dissipationless and spin-momentum locking nature of the surface currents of the topological insulator, little power is needed for generating a significant current, making the system appealing for potential applications in next generation of low power memory devices.
Structure and Dynamics of the M3 Muscarinic Acetylcholine Receptor
Kruse, Andrew C.; Hu, Jianxin; Pan, Albert C.; Arlow, Daniel H.; Rosenbaum, Daniel M.; Rosemond, Erica; Green, Hillary F.; Liu, Tong; Chae, Pil Seok; Dror, Ron O.; Shaw, David E.; Weis, William I.; Wess, Jurgen; Kobilka, Brian
2012-01-01
Acetylcholine (ACh), the first neurotransmitter to be identified1, exerts many of its physiological actions via activation of a family of G protein-coupled receptors (GPCRs) known as muscarinic ACh receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G protein coupling preference and the physiological responses they mediate.2–4 Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences.5–6 We describe here the structure of the Gq/11-coupled M3 mAChR bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the Gi/o-coupled M2 receptor, offers new possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows the first structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and raise additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer new insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors. PMID:22358844
Structure and dynamics of the M3 muscarinic acetylcholine receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruse, Andrew C.; Hu, Jianxin; Pan, Albert C.
2012-03-01
Acetylcholine, the first neurotransmitter to be identified, exerts many of its physiological actions via activation of a family of G-protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G-protein coupling preference and the physiological responses they mediate. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences. We describe here the structure of the G{sub q/11}-coupled M3 mAChR ('M3 receptor', from rat) bound to the bronchodilator drug tiotropium and identify themore » binding mode for this clinically important drug. This structure, together with that of the G{sub i/o}-coupled M2 receptor, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.« less
On the slow dynamics of near-field acoustically levitated objects under High excitation frequencies
NASA Astrophysics Data System (ADS)
Ilssar, Dotan; Bucher, Izhak
2015-10-01
This paper introduces a simplified analytical model describing the governing dynamics of near-field acoustically levitated objects. The simplification converts the equation of motion coupled with the partial differential equation of a compressible fluid, into a compact, second order ordinary differential equation, where the local stiffness and damping are transparent. The simplified model allows one to more easily analyse and design near-field acoustic levitation based systems, and it also helps to devise closed-loop controller algorithms for such systems. Near-field acoustic levitation employs fast ultrasonic vibrations of a driving surface and exploits the viscosity and the compressibility of a gaseous medium to achieve average, load carrying pressure. It is demonstrated that the slow dynamics dominates the transient behaviour, while the time-scale associated with the fast, ultrasonic excitation has a small presence in the oscillations of the levitated object. Indeed, the present paper formulates the slow dynamics under an ultrasonic excitation without the need to explicitly consider the latter. The simplified model is compared with a numerical scheme based on Reynolds equation and with experiments, both showing reasonably good results.
Production of τ τ jj final states at the LHC and the TauSpinner algorithm: the spin-2 case
NASA Astrophysics Data System (ADS)
Bahmani, M.; Kalinowski, J.; Kotlarski, W.; Richter-Wąs, E.; Wąs, Z.
2018-01-01
The TauSpinner algorithm is a tool that allows one to modify the physics model of the Monte Carlo generated samples due to the changed assumptions of event production dynamics, but without the need of re-generating events. With the help of weights τ -lepton production or decay processes can be modified accordingly to a new physics model. In a recent paper a new version TauSpinner ver.2.0.0 has been presented which includes a provision for introducing non-standard states and couplings and study their effects in the vector-boson-fusion processes by exploiting the spin correlations of τ -lepton pair decay products in processes where final states include also two hard jets. In the present paper we document how this can be achieved taking as an example the non-standard spin-2 state that couples to Standard Model particles and tree-level matrix elements with complete helicity information included for the parton-parton scattering amplitudes into a τ -lepton pair and two outgoing partons. This implementation is prepared as the external (user-provided) routine for the TauSpinner algorithm. It exploits amplitudes generated by MadGraph5 and adapted to the TauSpinner algorithm format. Consistency tests of the implemented matrix elements, re-weighting algorithm and numerical results for observables sensitive to τ polarisation are presented.
Interface Magnetoelectric Coupling in Co/Pb(Zr,Ti)O3.
Vlašín, Ondřej; Jarrier, Romain; Arras, Rémi; Calmels, Lionel; Warot-Fonrose, Bénédicte; Marcelot, Cécile; Jamet, Matthieu; Ohresser, Philippe; Scheurer, Fabrice; Hertel, Riccardo; Herranz, Gervasi; Cherifi-Hertel, Salia
2016-03-23
Magnetoelectric coupling at multiferroic interfaces is a promising route toward the nonvolatile electric-field control of magnetization. Here, we use optical measurements to study the static and dynamic variations of the interface magnetization induced by an electric field in Co/PbZr0.2Ti0.8O3 (Co/PZT) bilayers at room temperature. The measurements allow us to identify different coupling mechanisms. We further investigate the local electronic and magnetic structure of the interface by means of transmission electron microscopy, soft X-ray magnetic circular dichroism, and density functional theory to corroborate the coupling mechanism. The measurements demonstrate a mixed linear and quadratic optical response to the electric field, which results from a magneto-electro-optical effect. We propose a decomposition method of the optical signal to discriminate between different components involved in the electric field-induced polarization rotation of the reflected light. This allows us to extract a signal that we can ascribe to interface magnetoelectric coupling. The associated surface magnetization exhibits a clear hysteretic variation of odd symmetry with respect to the electric field and nonzero remanence. The interface coupling is remarkably stable over a wide frequency range (1-50 kHz), and the application of a bias magnetic field is not necessary for the coupling to occur. These results show the potential of exploiting interface coupling with the prospect of optimizing the performance of magnetoelectric memory devices in terms of stability, as well as fast and dissipationless operation.
DUSTER: demonstration of an integrated LWIR-VNIR-SAR imaging system
NASA Astrophysics Data System (ADS)
Wilson, Michael L.; Linne von Berg, Dale; Kruer, Melvin; Holt, Niel; Anderson, Scott A.; Long, David G.; Margulis, Yuly
2008-04-01
The Naval Research Laboratory (NRL) and Space Dynamics Laboratory (SDL) are executing a joint effort, DUSTER (Deployable Unmanned System for Targeting, Exploitation, and Reconnaissance), to develop and test a new tactical sensor system specifically designed for Tier II UAVs. The system is composed of two coupled near-real-time sensors: EyePod (VNIR/LWIR ball gimbal) and NuSAR (L-band synthetic aperture radar). EyePod consists of a jitter-stabilized LWIR sensor coupled with a dual focal-length optical system and a bore-sighted high-resolution VNIR sensor. The dual focal-length design coupled with precision pointing an step-stare capabilities enable EyePod to conduct wide-area survey and high resolution inspection missions from a single flight pass. NuSAR is being developed with partners Brigham Young University (BYU) and Artemis, Inc and consists of a wideband L-band SAR capable of large area survey and embedded real-time image formation. Both sensors employ standard Ethernet interfaces and provide geo-registered NITFS output imagery. In the fall of 2007, field tests were conducted with both sensors, results of which will be presented.
Expanding the Bandwidth of Slow and Fast Pulse Propagation in Coupled Micro-resonators
NASA Technical Reports Server (NTRS)
Smith, David D.; Chang, Hongrok
2007-01-01
Coupled resonators exhibit coherence effects which can be exploited for the delay or advancement of pulses with minimal distortion. The bandwidth and normalized pulse delay are simultaneously enhanced by proper choice of the inter-resonator couplings.
NASA Astrophysics Data System (ADS)
Rodrigues, Manuel J.; Fernandes, David E.; Silveirinha, Mário G.; Falcão, Gabriel
2018-01-01
This work introduces a parallel computing framework to characterize the propagation of electron waves in graphene-based nanostructures. The electron wave dynamics is modeled using both "microscopic" and effective medium formalisms and the numerical solution of the two-dimensional massless Dirac equation is determined using a Finite-Difference Time-Domain scheme. The propagation of electron waves in graphene superlattices with localized scattering centers is studied, and the role of the symmetry of the microscopic potential in the electron velocity is discussed. The computational methodologies target the parallel capabilities of heterogeneous multi-core CPU and multi-GPU environments and are built with the OpenCL parallel programming framework which provides a portable, vendor agnostic and high throughput-performance solution. The proposed heterogeneous multi-GPU implementation achieves speedup ratios up to 75x when compared to multi-thread and multi-core CPU execution, reducing simulation times from several hours to a couple of minutes.
NASA Astrophysics Data System (ADS)
Kabiri, Meisam; Atrianfar, Hajar; Menhaj, Mohammad B.
2018-01-01
This paper addresses the adaptive formation control of a group of vertical take-off and landing (VTOL) unmanned aerial vehicles (UAV) with switching-directed interaction topologies. In addition, to tackle the adverse effect of disturbances, a couple of smooth bounded estimators are involved in the procedure design. Exploiting an extraction algorithm, we take advantage of the fully actuated rotational dynamics, to control the translational dynamics of each vehicle. We propose a distributed control scheme such that all vehicles track a desired reference velocity signal while keeping a desired prespecified formation. In this framework, the underlying topology of the agents may switch among several directed graphs, each having a spanning tree. The stability of the overall closed-loop system is proved through Lyapunov function. Finally, simulation results are given to better highlight the effectiveness of the proposed control scheme.
1997-09-30
Environmental Science ,Chesapeake Biological Laboratory,PO Box 38,Solomons,MD,20688 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...DYNAMICS OF EXPLOITED MARINE POPULATIONS: PHYSICAL-BIOLOGICAL INTERACTIONS Michael J. Fogarty University of Maryland Center for Environmental Science Chesapeake
Absolute calibration of a charge-coupled device camera with twin beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meda, A.; Ruo-Berchera, I., E-mail: i.ruoberchera@inrim.it; Degiovanni, I. P.
2014-09-08
We report on the absolute calibration of a Charge-Coupled Device (CCD) camera by exploiting quantum correlation. This method exploits a certain number of spatial pairwise quantum correlated modes produced by spontaneous parametric-down-conversion. We develop a measurement model accounting for all the uncertainty contributions, and we reach the relative uncertainty of 0.3% in low photon flux regime. This represents a significant step forward for the characterization of (scientific) CCDs used in mesoscopic light regime.
Optimizing plasmonic nanoantennas via coordinated multiple coupling
NASA Astrophysics Data System (ADS)
Lin, Linhan; Zheng, Yuebing
2015-10-01
Plasmonic nanoantennas, which can efficiently convert light from free space into sub-wavelength scale with the local field enhancement, are fundamental building blocks for nanophotonic systems. Predominant design methods, which exploit a single type of near- or far-field coupling in pairs or arrays of plasmonic nanostructures, have limited the tunability of spectral response and the local field enhancement. To overcome this limit, we are developing a general strategy towards exploiting the coordinated effects of multiple coupling. Using Au bowtie nanoantenna arrays with metal-insulator-metal configuration as examples, we numerically demonstrate that coordinated design and implementation of various optical coupling effects leads to both the increased tunability in the spectral response and the significantly enhanced electromagnetic field. Furthermore, we design and analyze a refractive index sensor with an ultra-high figure-of-merit (254), a high signal-to-noise ratio and a wide working range of refractive indices, and a narrow-band near-infrared plasmonic absorber with 100% absorption efficiency, high quality factor of up to 114 and a wide range of tunable wavelength from 800 nm to 1,500 nm. The plasmonic nanoantennas that exploit coordinated multiple coupling will benefit a broad range of applications, including label-free bio-chemical detection, reflective filter, optical trapping, hot-electron generation, and heat-assisted magnetic recording.
Gioannini, Mariangela; Dommermuth, Marius; Drzewietzki, Lukas; Krestnikov, Igor; Livshits, Daniil; Krakowski, Michel; Breuer, Stefan
2014-01-01
We exploit the coupled emission-states of a single-chip semiconductor InAs/GaAs quantum-dot laser emitting simultaneously on ground-state (λGS = 1245 nm) and excited-state (λES = 1175 nm) to demonstrate coupled-two-state self-mixing velocimetry for a moving diffuse reflector. A 13 Hz-narrow Doppler beat frequency signal at 317 Hz is obtained for a reflector velocity of 3 mm/s, which exemplifies a 66-fold improvement in width as compared to single-wavelength self-mixing velocimetry. Simulation results reveal the physical origin of this signal, the coupling of excited-state and ground-state photons via the carriers, which is unique for quantum-dot lasers and reproduce the experimental results with excellent agreement. PMID:25321809
Cluster synchronization in networks of identical oscillators with α-function pulse coupling.
Chen, Bolun; Engelbrecht, Jan R; Mirollo, Renato
2017-02-01
We study a network of N identical leaky integrate-and-fire model neurons coupled by α-function pulses, weighted by a coupling parameter K. Studies of the dynamics of this system have mostly focused on the stability of the fully synchronized and the fully asynchronous splay states, which naturally depends on the sign of K, i.e., excitation vs inhibition. We find that there is also a rich set of attractors consisting of clusters of fully synchronized oscillators, such as fixed (N-1,1) states, which have synchronized clusters of sizes N-1 and 1, as well as splay states of clusters with equal sizes greater than 1. Additionally, we find limit cycles that clarify the stability of previously observed quasiperiodic behavior. Our framework exploits the neutrality of the dynamics for K=0 which allows us to implement a dimensional reduction strategy that simplifies the dynamics to a continuous flow on a codimension 3 subspace with the sign of K determining the flow direction. This reduction framework naturally incorporates a hierarchy of partially synchronized subspaces in which the new attracting states lie. Using high-precision numerical simulations, we describe completely the sequence of bifurcations and the stability of all fixed points and limit cycles for N=2-4. The set of possible attracting states can be used to distinguish different classes of neuron models. For instance from our previous work [Chaos 24, 013114 (2014)CHAOEH1054-150010.1063/1.4858458] we know that of the types of partially synchronized states discussed here, only the (N-1,1) states can be stable in systems of identical coupled sinusoidal (i.e., Kuramoto type) oscillators, such as θ-neuron models. Upon introducing a small variation in individual neuron parameters, the attracting fixed points we discuss here generalize to equivalent fixed points in which neurons need not fire coincidently.
Cluster synchronization in networks of identical oscillators with α -function pulse coupling
NASA Astrophysics Data System (ADS)
Chen, Bolun; Engelbrecht, Jan R.; Mirollo, Renato
2017-02-01
We study a network of N identical leaky integrate-and-fire model neurons coupled by α -function pulses, weighted by a coupling parameter K . Studies of the dynamics of this system have mostly focused on the stability of the fully synchronized and the fully asynchronous splay states, which naturally depends on the sign of K , i.e., excitation vs inhibition. We find that there is also a rich set of attractors consisting of clusters of fully synchronized oscillators, such as fixed (N -1 ,1 ) states, which have synchronized clusters of sizes N -1 and 1, as well as splay states of clusters with equal sizes greater than 1. Additionally, we find limit cycles that clarify the stability of previously observed quasiperiodic behavior. Our framework exploits the neutrality of the dynamics for K =0 which allows us to implement a dimensional reduction strategy that simplifies the dynamics to a continuous flow on a codimension 3 subspace with the sign of K determining the flow direction. This reduction framework naturally incorporates a hierarchy of partially synchronized subspaces in which the new attracting states lie. Using high-precision numerical simulations, we describe completely the sequence of bifurcations and the stability of all fixed points and limit cycles for N =2 -4 . The set of possible attracting states can be used to distinguish different classes of neuron models. For instance from our previous work [Chaos 24, 013114 (2014), 10.1063/1.4858458] we know that of the types of partially synchronized states discussed here, only the (N -1 ,1 ) states can be stable in systems of identical coupled sinusoidal (i.e., Kuramoto type) oscillators, such as θ -neuron models. Upon introducing a small variation in individual neuron parameters, the attracting fixed points we discuss here generalize to equivalent fixed points in which neurons need not fire coincidently.
NASA Astrophysics Data System (ADS)
wErnEr, B.
2012-12-01
Environmental challenges are dynamically generated within the dominant global culture principally by the mismatch between short-time-scale market and political forces driving resource extraction/use and longer-time-scale accommodations of the Earth system to these changes. Increasing resource demand is leading to the development of two-way, nonlinear interactions between human societies and environmental systems that are becoming global in extent, either through globalized markets and other institutions or through coupling to global environmental systems such as climate. These trends are further intensified by dissipation-reducing technological advances in transactions, communication and transport, which suppress emergence of longer-time-scale economic and political levels of description and facilitate long-distance connections, and by predictive environmental modeling, which strengthens human connections to a short-time-scale virtual Earth, and weakens connections to the longer time scales of the actual Earth. Environmental management seeks to steer fast scale economic and political interests of a coupled human-environmental system towards longer-time-scale consideration of benefits and costs by operating within the confines of the dominant culture using a linear, engineering-type connection to the system. Perhaps as evidenced by widespread inability to meaningfully address such global environmental challenges as climate change and soil degradation, nonlinear connections reduce the ability of managers to operate outside coupled human-environmental systems, decreasing their effectiveness in steering towards sustainable interactions and resulting in managers slaved to short-to-intermediate-term interests. In sum, the dynamics of the global coupled human-environmental system within the dominant culture precludes management for stable, sustainable pathways and promotes instability. Environmental direct action, resistance taken from outside the dominant culture, as in protests, blockades and sabotage by indigenous peoples, workers, anarchists and other activist groups, increases dissipation within the coupled system over fast to intermediate scales and pushes for changes in the dominant culture that favor transition to a stable, sustainable attractor. These dynamical relationships are illustrated and explored using a numerical model that simulates the short-, intermediate- and long-time-scale dynamics of the coupled human-environmental system. At fast scales, economic and political interests exploit environmental resources through a maze of environmental management and resistance, guided by virtual Earth predictions. At intermediate scales, managers become slaved to economic and political interests, which adapt to and repress resistance, and resistance is guided by patterns of environmental destruction. At slow scales, resistance interacts with the cultural context, which co-evolves with the environment. The transition from unstable dynamics to sustainability is sensitively dependent on the level of participation in and repression of resistance. Because of their differing impact inside and outside the dominant culture, virtual Earth predictions can either promote or oppose sustainability. Supported by the National Science Foundation, Geomorphology and Land Use Dynamics Program.
Correlated electron-nuclear dynamics with conditional wave functions.
Albareda, Guillermo; Appel, Heiko; Franco, Ignacio; Abedi, Ali; Rubio, Angel
2014-08-22
The molecular Schrödinger equation is rewritten in terms of nonunitary equations of motion for the nuclei (or electrons) that depend parametrically on the configuration of an ensemble of generally defined electronic (or nuclear) trajectories. This scheme is exact and does not rely on the tracing out of degrees of freedom. Hence, the use of trajectory-based statistical techniques can be exploited to circumvent the calculation of the computationally demanding Born-Oppenheimer potential-energy surfaces and nonadiabatic coupling elements. The concept of the potential-energy surface is restored by establishing a formal connection with the exact factorization of the full wave function. This connection is used to gain insight from a simplified form of the exact propagation scheme.
Scattering from Artificial Piezoelectriclike Meta-Atoms and Molecules
NASA Astrophysics Data System (ADS)
Goltcman, Leonid; Hadad, Yakir
2018-01-01
Inspired by natural piezoelectricity, we introduce hybrid-wave electromechanical meta-atoms and metamolecules that consist of coupled electrical and mechanical oscillators with similar resonance frequencies. We explore the linearized electromechanical scattering process and demonstrate that by exploiting the hybrid-wave interaction one may enable functionalities that are forbidden otherwise. For example, we study a dimer metamolecule that is highly directional for electromagnetic waves, although it is electrically deep subwavelength. This unique behavior is a consequence of the fact that, while the metamolecule is electrically small, it is acoustically large. This idea opens vistas for a plethora of exciting dynamics and phenomena in electromagnetics and acoustics, with implications for miniaturized sensors, superresolution imaging, compact nonreciprocal antennas, and more.
Resilience to Leaking — Dynamic Systems Modeling of Information Security
Hamacher, Kay
2012-01-01
Leaking of confidential material is a major threat to information security within organizations and to society as a whole. This insight has gained traction in the political realm since the activities of Wikileaks, which hopes to attack ‘unjust’ systems or ‘conspiracies’. Eventually, such threats to information security rely on a biologistic argument on the benefits and drawbacks that uncontrolled leaking might pose for ‘just’ and ‘unjust’ entities. Such biological metaphors are almost exclusively based on the economic advantage of participants. Here, I introduce a mathematical model of the complex dynamics implied by leaking. The complex interactions of adversaries are modeled by coupled logistic equations including network effects of econo-communication networks. The modeling shows, that there might arise situations where the leaking envisioned and encouraged by Wikileaks and the like can strengthen the defending entity (the ‘conspiracy’). In particular, the only severe impact leaking can have on an organization seems to originate in the exploitation of leaks by another entity the organization competes with. Therefore, the model suggests that leaks can be used as a `tactical mean’ in direct adversary relations, but do not necessarily increase public benefit and societal immunization to ‘conspiracies’. Furthermore, within the model the exploitation of the (open) competition between entities seems to be a more promising approach to control malicious organizations : divide-et-impera policies triumph here. PMID:23227151
Theory of electrically controlled resonant tunneling spin devices
NASA Technical Reports Server (NTRS)
Ting, David Z. -Y.; Cartoixa, Xavier
2004-01-01
We report device concepts that exploit spin-orbit coupling for creating spin polarized current sources using nonmagnetic semiconductor resonant tunneling heterostructures, without external magnetic fields. The resonant interband tunneling psin filter exploits large valence band spin-orbit interaction to provide strong spin selectivity.
Kinetic theory for strongly coupled Coulomb systems
NASA Astrophysics Data System (ADS)
Dufty, James; Wrighton, Jeffrey
2018-01-01
The calculation of dynamical properties for matter under extreme conditions is a challenging task. The popular Kubo-Greenwood model exploits elements from equilibrium density-functional theory (DFT) that allow a detailed treatment of electron correlations, but its origin is largely phenomenological; traditional kinetic theories have a more secure foundation but are limited to weak ion-electron interactions. The objective here is to show how a combination of the two evolves naturally from the short-time limit for the generator of the effective single-electron dynamics governing time correlation functions without such limitations. This provides a theoretical context for the current DFT-related approach, the Kubo-Greenwood model, while showing the nature of its corrections. The method is to calculate the short-time dynamics in the single-electron subspace for a given configuration of the ions. This differs from the usual kinetic theory approach in which an average over the ions is performed as well. In this way the effective ion-electron interaction includes strong Coulomb coupling and is shown to be determined from DFT. The correlation functions have the form of the random-phase approximation for an inhomogeneous system but with renormalized ion-electron and electron-electron potentials. The dynamic structure function, density response function, and electrical conductivity are calculated as examples. The static local field corrections in the dielectric function are identified in this way. The current analysis is limited to semiclassical electrons (quantum statistical potentials), so important quantum conditions are excluded. However, a quantization of the kinetic theory is identified for broader application while awaiting its detailed derivation.
Role of the antiferromagnetic pinning layer on spin wave properties in IrMn/NiFe based spin-valves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gubbiotti, G., E-mail: gubbiotti@fisica.unipg.it; Tacchi, S.; Del Bianco, L.
2015-05-07
Brillouin light scattering (BLS) was exploited to study the spin wave properties of spin-valve (SV) type samples basically consisting of two 5 nm-thick NiFe layers (separated by a Cu spacer of 5 nm), differently biased through the interface exchange coupling with an antiferromagnetic IrMn layer. Three samples were investigated: a reference SV sample, without IrMn (reference); one sample with an IrMn underlayer (10 nm thick) coupled to the bottom NiFe film; one sample with IrMn underlayer and overlayer of different thickness (10 nm and 6 nm), coupled to the bottom and top NiFe film, respectively. The exchange coupling with the IrMn, causing the insurgence ofmore » the exchange bias effect, allowed the relative orientation of the NiFe magnetization vectors to be controlled by an external magnetic field, as assessed through hysteresis loop measurements by magneto-optic magnetometry. Thus, BLS spectra were acquired by sweeping the magnetic field so as to encompass both the parallel and antiparallel alignment of the NiFe layers. The BLS results, well reproduced by the presented theoretical model, clearly revealed the combined effects on the spin dynamic properties of the dipolar interaction between the two NiFe films and of the interface IrMn/NiFe exchange coupling.« less
Plasmon-induced carrier polarization in semiconductor nanocrystals.
Yin, Penghui; Tan, Yi; Fang, Hanbing; Hegde, Manu; Radovanovic, Pavle V
2018-06-01
Spintronics 1 and valleytronics 2 are emerging quantum electronic technologies that rely on using electron spin and multiple extrema of the band structure (valleys), respectively, as additional degrees of freedom. There are also collective properties of electrons in semiconductor nanostructures that potentially could be exploited in multifunctional quantum devices. Specifically, plasmonic semiconductor nanocrystals 3-10 offer an opportunity for interface-free coupling between a plasmon and an exciton. However, plasmon-exciton coupling in single-phase semiconductor nanocrystals remains challenging because confined plasmon oscillations are generally not resonant with excitonic transitions. Here, we demonstrate a robust electron polarization in degenerately doped In 2 O 3 nanocrystals, enabled by non-resonant coupling of cyclotron magnetoplasmonic modes 11 with the exciton at the Fermi level. Using magnetic circular dichroism spectroscopy, we show that intrinsic plasmon-exciton coupling allows for the indirect excitation of the magnetoplasmonic modes, and subsequent Zeeman splitting of the excitonic states. Splitting of the band states and selective carrier polarization can be manipulated further by spin-orbit coupling. Our results effectively open up the field of plasmontronics, which involves the phenomena that arise from intrinsic plasmon-exciton and plasmon-spin interactions. Furthermore, the dynamic control of carrier polarization is readily achieved at room temperature, which allows us to harness the magnetoplasmonic mode as a new degree of freedom in practical photonic, optoelectronic and quantum-information processing devices.
Plasmon-induced carrier polarization in semiconductor nanocrystals
NASA Astrophysics Data System (ADS)
Yin, Penghui; Tan, Yi; Fang, Hanbing; Hegde, Manu; Radovanovic, Pavle V.
2018-06-01
Spintronics1 and valleytronics2 are emerging quantum electronic technologies that rely on using electron spin and multiple extrema of the band structure (valleys), respectively, as additional degrees of freedom. There are also collective properties of electrons in semiconductor nanostructures that potentially could be exploited in multifunctional quantum devices. Specifically, plasmonic semiconductor nanocrystals3-10 offer an opportunity for interface-free coupling between a plasmon and an exciton. However, plasmon-exciton coupling in single-phase semiconductor nanocrystals remains challenging because confined plasmon oscillations are generally not resonant with excitonic transitions. Here, we demonstrate a robust electron polarization in degenerately doped In2O3 nanocrystals, enabled by non-resonant coupling of cyclotron magnetoplasmonic modes11 with the exciton at the Fermi level. Using magnetic circular dichroism spectroscopy, we show that intrinsic plasmon-exciton coupling allows for the indirect excitation of the magnetoplasmonic modes, and subsequent Zeeman splitting of the excitonic states. Splitting of the band states and selective carrier polarization can be manipulated further by spin-orbit coupling. Our results effectively open up the field of plasmontronics, which involves the phenomena that arise from intrinsic plasmon-exciton and plasmon-spin interactions. Furthermore, the dynamic control of carrier polarization is readily achieved at room temperature, which allows us to harness the magnetoplasmonic mode as a new degree of freedom in practical photonic, optoelectronic and quantum-information processing devices.
Testing helicity-dependent γγ → γγ scattering in the region of MeV
NASA Astrophysics Data System (ADS)
Homma, K.; Matsuura, K.; Nakajima, K.
2016-01-01
Light-by-light scatterings contain rich information on photon coupling to virtual and real particle states. In the context of quantum electrodynamics (QED), photons can couple to a virtual e^+e^- pair. Photons may also couple to known resonance states in the context of quantum chromodyanmics and electroweak dynamics in higher energy domains and possibly couple to unknown resonance states beyond the standard model. The perturbative QED calculations manifestly predict a maximized cross section at the MeV scale; however, no example of exact real-photon-real-photon scattering has yet been observed. Hence, we propose direct measurement with the maximized cross section at the center-of-mass system energy of 1-2 MeV to establish a firm footing at the MeV scale. Given current state of the art high power lasers, helicity-dependent elastic scattering may be observed at a reasonable rate, if a photon-photon collider exploiting γ -rays generated by the inverse nonlinear Compton process with electrons delivered from laser-plasma accelerators (LPA) are properly designed. We show that such verification is feasible in a table-top scale collider, which may be an unprecedented breakthrough in particle accelerators for basic physics research in contrast to energy frontier colliders.
Acharya, Sayantan; Nandi, Manoj K; Mandal, Arkajit; Sarkar, Sucharita; Bhattacharyya, Sarika Maitra
2015-08-27
We study the diffusion of small solute particles through solvent by keeping the solute-solvent interaction repulsive and varying the solvent properties. The study involves computer simulations, development of a new model to describe diffusion of small solutes in a solvent, and also mode coupling theory (MCT) calculations. In a viscous solvent, a small solute diffuses via coupling to the solvent hydrodynamic modes and also through the transient cages formed by the solvent. The model developed can estimate the independent contributions from these two different channels of diffusion. Although the solute diffusion in all the systems shows an amplification, the degree of it increases with solvent viscosity. The model correctly predicts that when the solvent viscosity is high, the solute primarily diffuses by exploiting the solvent cages. In such a scenario the MCT diffusion performed for a static solvent provides a correct estimation of the cage diffusion.
Dynamic and static structure studies of colloidal suspensions with XPCS, SAXS and XNFS
NASA Astrophysics Data System (ADS)
Lu, Xinhui
In the first project, I studied the onset of structural arrest and glass formation in a suspension of silica nanoparticles in a water-lutidine binary mixture near its consolute point using X-ray Photon Correlation Spectroscopy (XPCS) and Small Angle X-ray Scattering (SAXS). I obtained the temperature evolution of the static and dynamic structure, revealing that glass transitions occur both on cooling and on heating, and an unusual logarithmic relaxation within the intermediate liquid between the two glasses, as predicted by mode-coupling theory. In another project, I implemented and exploited the recently-introduced, coherence-based technique of X-ray Near-Field Speckle (XNFS) to characterize the structure and dynamics of micrometer-sized particles. In XNFS, the measured speckles originate from the interference between the incident and scattered beams, and enable truly ultra-small angle x-ray scattering measurements with a simple setup. We built a micrometer-resolution XNFS detector with a high numerical aperture microscope objective and demonstrated its capability of studying static structures and dynamics in longer length scale than traditional far field x-ray techniques by measuring dilute silica and polystyrene samples. We also discussed the limitation of this technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mruetusatorn, Prachya; Boreyko, Jonathan B; Sarles, Stephen A
Droplet interface bilayers (DIBs) are a powerful platform for studying the dynamics of synthetic cellular membranes; however, very little has been done to exploit the unique dynamical features of DIBs. Here, we generate microscale droplet interface bilayers ( DIBs) by bringing together femtoliter-volume water droplets in a microfluidic oil channel, and characterize morphological changes of the DIBs as the droplets shrink due to evaporation. By varying the initial conditions of the system, we identify three distinct classes of dynamic morphology. (1) Buckling and Fission: When forming DIBs using the lipid-out method (lipids in oil phase), lipids in the shrinking monolayersmore » continually pair together and slide into the bilayer to conserve their mass. As the bilayer continues to grow, it becomes confined, buckles, and eventually fissions one or more vesicles. (2) Uniform Shrinking: When using the lipid-in method (lipids in water phase) to form DIBs, lipids uniformly transfer from the monolayers and bilayer into vesicles contained inside the water droplets. (3) Stretching and Unzipping: Finally, when the droplets are pinned to the wall(s) of the microfluidic channel, the droplets become stretched during evaporation, culminating in the unzipping of the bilayer and droplet separation. These findings offer a better understanding of the dynamics of coupled lipid interfaces.« less
NASA Astrophysics Data System (ADS)
Juanes, R.; Jha, B.
2014-12-01
The coupling between subsurface flow and geomechanical deformation is critical in the assessment of the environmental impacts of groundwater use, underground liquid waste disposal, geologic storage of carbon dioxide, and exploitation of shale gas reserves. In particular, seismicity induced by fluid injection and withdrawal has emerged as a central element of the scientific discussion around subsurface technologies that tap into water and energy resources. Here we present a new computational approach to model coupled multiphase flow and geomechanics of faulted reservoirs. We represent faults as surfaces embedded in a three-dimensional medium by using zero-thickness interface elements to accurately model fault slip under dynamically evolving fluid pressure and fault strength. We incorporate the effect of fluid pressures from multiphase flow in the mechanical stability of faults and employ a rigorous formulation of nonlinear multiphase geomechanics that is capable of handling strong capillary effects. We develop a numerical simulation tool by coupling a multiphase flow simulator with a mechanics simulator, using the unconditionally stable fixed-stress scheme for the sequential solution of two-way coupling between flow and geomechanics. We validate our modeling approach using several synthetic, but realistic, test cases that illustrate the onset and evolution of earthquakes from fluid injection and withdrawal. We also present the application of the coupled flow-geomechanics simulation technology to the post mortem analysis of the Mw=5.1, May 2011 Lorca earthquake in south-east Spain, and assess the potential that the earthquake was induced by groundwater extraction.
Anderson, D.R.
1975-01-01
Optimal exploitation strategies were studied for an animal population in a Markovian (stochastic, serially correlated) environment. This is a general case and encompasses a number of important special cases as simplifications. Extensive empirical data on the Mallard (Anas platyrhynchos) were used as an example of general theory. The number of small ponds on the central breeding grounds was used as an index to the state of the environment. A general mathematical model was formulated to provide a synthesis of the existing literature, estimates of parameters developed from an analysis of data, and hypotheses regarding the specific effect of exploitation on total survival. The literature and analysis of data were inconclusive concerning the effect of exploitation on survival. Therefore, two hypotheses were explored: (1) exploitation mortality represents a largely additive form of mortality, and (2) exploitation mortality is compensatory with other forms of mortality, at least to some threshold level. Models incorporating these two hypotheses were formulated as stochastic dynamic programming models and optimal exploitation strategies were derived numerically on a digital computer. Optimal exploitation strategies were found to exist under the rather general conditions. Direct feedback control was an integral component in the optimal decision-making process. Optimal exploitation was found to be substantially different depending upon the hypothesis regarding the effect of exploitation on the population. If we assume that exploitation is largely an additive force of mortality in Mallards, then optimal exploitation decisions are a convex function of the size of the breeding population and a linear or slight concave function of the environmental conditions. Under the hypothesis of compensatory mortality forces, optimal exploitation decisions are approximately linearly related to the size of the Mallard breeding population. Dynamic programming is suggested as a very general formulation for realistic solutions to the general optimal exploitation problem. The concepts of state vectors and stage transformations are completely general. Populations can be modeled stochastically and the objective function can include extra-biological factors. The optimal level of exploitation in year t must be based on the observed size of the population and the state of the environment in year t unless the dynamics of the population, the state of the environment, and the result of the exploitation decisions are completely deterministic. Exploitation based on an average harvest, or harvest rate, or designed to maintain a constant breeding population size is inefficient.
Cooperation dynamics of generalized reciprocity in state-based social dilemmas
NASA Astrophysics Data System (ADS)
Stojkoski, Viktor; Utkovski, Zoran; Basnarkov, Lasko; Kocarev, Ljupco
2018-05-01
We introduce a framework for studying social dilemmas in networked societies where individuals follow a simple state-based behavioral mechanism based on generalized reciprocity, which is rooted in the principle "help anyone if helped by someone." Within this general framework, which applies to a wide range of social dilemmas including, among others, public goods, donation, and snowdrift games, we study the cooperation dynamics on a variety of complex network examples. By interpreting the studied model through the lenses of nonlinear dynamical systems, we show that cooperation through generalized reciprocity always emerges as the unique attractor in which the overall level of cooperation is maximized, while simultaneously exploitation of the participating individuals is prevented. The analysis elucidates the role of the network structure, here captured by a local centrality measure which uniquely quantifies the propensity of the network structure to cooperation by dictating the degree of cooperation displayed both at the microscopic and macroscopic level. We demonstrate the applicability of the analysis on a practical example by considering an interaction structure that couples a donation process with a public goods game.
NASA Astrophysics Data System (ADS)
Colagrossi, Andrea; Lavagna, Michèle
2018-03-01
A space station in the vicinity of the Moon can be exploited as a gateway for future human and robotic exploration of the solar system. The natural location for a space system of this kind is about one of the Earth-Moon libration points. The study addresses the dynamics during rendezvous and docking operations with a very large space infrastructure in an EML2 Halo orbit. The model takes into account the coupling effects between the orbital and the attitude motion in a circular restricted three-body problem environment. The flexibility of the system is included, and the interaction between the modes of the structure and those related with the orbital motion is investigated. A lumped parameter technique is used to represents the flexible dynamics. The parameters of the space station are maintained as generic as possible, in a way to delineate a global scenario of the mission. However, the developed model can be tuned and updated according to the information that will be available in the future, when the whole system will be defined with a higher level of precision.
NASA Astrophysics Data System (ADS)
Voter, Arthur
Many important materials processes take place on time scales that far exceed the roughly one microsecond accessible to molecular dynamics simulation. Typically, this long-time evolution is characterized by a succession of thermally activated infrequent events involving defects in the material. In the accelerated molecular dynamics (AMD) methodology, known characteristics of infrequent-event systems are exploited to make reactive events take place more frequently, in a dynamically correct way. For certain processes, this approach has been remarkably successful, offering a view of complex dynamical evolution on time scales of microseconds, milliseconds, and sometimes beyond. We have recently made advances in all three of the basic AMD methods (hyperdynamics, parallel replica dynamics, and temperature accelerated dynamics (TAD)), exploiting both algorithmic advances and novel parallelization approaches. I will describe these advances, present some examples of our latest results, and discuss what should be possible when exascale computing arrives in roughly five years. Funded by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, and by the Los Alamos Laboratory Directed Research and Development program.
Quantum logic between remote quantum registers
NASA Astrophysics Data System (ADS)
Yao, N. Y.; Gong, Z.-X.; Laumann, C. R.; Bennett, S. D.; Duan, L.-M.; Lukin, M. D.; Jiang, L.; Gorshkov, A. V.
2013-02-01
We consider two approaches to dark-spin-mediated quantum computing in hybrid solid-state spin architectures. First, we review the notion of eigenmode-mediated unpolarized spin-chain state transfer and extend the analysis to various experimentally relevant imperfections: quenched disorder, dynamical decoherence, and uncompensated long-range coupling. In finite-length chains, the interplay between disorder-induced localization and decoherence yields a natural optimal channel fidelity, which we calculate. Long-range dipolar couplings induce a finite intrinsic lifetime for the mediating eigenmode; extensive numerical simulations of dipolar chains of lengths up to L=12 show remarkably high fidelity despite these decay processes. We further briefly consider the extension of the protocol to bosonic systems of coupled oscillators. Second, we introduce a quantum mirror based architecture for universal quantum computing that exploits all of the dark spins in the system as potential qubits. While this dramatically increases the number of qubits available, the composite operations required to manipulate dark-spin qubits significantly raise the error threshold for robust operation. Finally, we demonstrate that eigenmode-mediated state transfer can enable robust long-range logic between spatially separated nitrogen-vacancy registers in diamond; disorder-averaged numerics confirm that high-fidelity gates are achievable even in the presence of moderate disorder.
Differential flatness properties and multivariable adaptive control of ovarian system dynamics
NASA Astrophysics Data System (ADS)
Rigatos, Gerasimos
2016-12-01
The ovarian system exhibits nonlinear dynamics which is modeled by a set of coupled nonlinear differential equations. The paper proposes adaptive fuzzy control based on differential flatness theory for the complex dynamics of the ovarian system. It is proven that the dynamic model of the ovarian system, having as state variables the LH and the FSH hormones and their derivatives, is a differentially flat one. This means that all its state variables and its control inputs can be described as differential functions of the flat output. By exploiting differential flatness properties the system's dynamic model is written in the multivariable linear canonical (Brunovsky) form, for which the design of a state feedback controller becomes possible. After this transformation, the new control inputs of the system contain unknown nonlinear parts, which are identified with the use of neurofuzzy approximators. The learning procedure for these estimators is determined by the requirement the first derivative of the closed-loop's Lyapunov function to be a negative one. Moreover, Lyapunov stability analysis shows that H-infinity tracking performance is succeeded for the feedback control loop and this assures improved robustness to the aforementioned model uncertainty as well as to external perturbations. The efficiency of the proposed adaptive fuzzy control scheme is confirmed through simulation experiments.
NASA Astrophysics Data System (ADS)
Akoglu, Ekin; Salihoglu, Baris; Fach Salihoglu, Bettina; Libralato, Simone; Cannaby, Heather; Oguz, Temel; Solidoro, Cosimo
2014-05-01
A dynamic Ecopath with Ecosim higher-trophic-level (HTL) model representation of the Black Sea ecosystem was coupled to the physical (BIMS-CIR) and biogeochemical (BIMS-ECO) models of the Black Sea in order to investigate historical anthropogenic and climatological interactions and feedbacks in the ecosystem. Further, the coupled models were used to assess the likely consequences of these interactions on the ecosystem's structure and functioning under predicted future climate (IPCC A1B) and fishing variability. Therefore, two model scenarios were used; i) a hindcast scenario (1980-1999) to evaluate and understand the impacts of the short-term climate and physical variability and the introduction of invasive species on the Black Sea ecosystem, and ii) a forecast scenario (2080-2099) to investigate the potential implications of climate change and anthropogenic exploitation on living resources of the Black Sea ecosystem by the end of the 21st century. According to the outcomes of the hindcast simulation, fisheries were found to be the main driver in determining the structure and functioning of the Black Sea ecosystem under changing environmental conditions. The coupled physical-biogeochemical forecast simulations predicted a slight but statistically significant basin-wide increase in the Black Sea's primary productivity by the end of the century due to increased stratification induced by basin-wide temperature increase and reduced Cold Intermediate Layer (CIL) formation which increased the residence time of riverine nutrients within the euphotic zone. Despite this increased primary productivity, the HTL model forecast simulation predicted a significant decrease in the commercial fish stocks primarily due to fisheries exploitation if current catch rates are maintained into the future. Results further suggested that some economically important small pelagic fish species are likely to disappear from the ecosystem making the recovery of the already-collapsed piscivorous fish stocks increasingly unlikely. In addition, a further reduction in the proportion of piscivorous fish in the fish community was found to be consequent. From a management perspective, the results of the study suggested that along with managing fishing exploitation levels of the target stocks, monitoring and management of other species in the ecosystem that are tightly coupled with the fish species in terms of food web interactions were found to be the most effective way of applying an ecosystem-based management strategy in the Black Sea. Such an approach will ensure the sustainable utilisation of the fish stocks of the Black Sea by maintaining the ecological integrity of the Black Sea marine food web.
Flood risk changes over centuries in Rome: an empirical study
NASA Astrophysics Data System (ADS)
Di Baldassarre, Giuliano; Saccà, Smeralda; Tito Aronica, Giuseppe; Grimaldi, Salvatore; Crisci, Massimiliano
2015-04-01
Over centuries, the development of the historical city of Rome -close to one of the largest Italian rivers, the Tiber- has been intertwined with the magnitude and frequency of flooding events. The ancient Rome mostly developed on the (seven) hills, while the Tiber's floodplain was mainly exploited for agricultural purposes. A few small communities did settle in the riparian areas of the Tiber, but they had a relatively peaceful relationships with the frequent occurrence of flooding events. Nowadays, numerous people live in modern districts in the Tiber's floodplain, unaware of their exposure to potentially catastrophic flooding. The main goal of this research is to explore the dynamics of changing flood risk over the centuries between these two extreme pictures of the ancient and contemporary Rome. To this end, we carried out a socio-hydrological study by exploiting long time series of physical (flooding, river morphology) and social (urbanization, population dynamics) processes together with information about human interactions with the environment (flood defense structures). This empirical analysis showed how human and physical systems have been co-evolving over time, while being abruptly altered by the occurrence of extreme events. For instance, a large flooding event occurred in 1870 and contributed to the constructions of levees, which in turn facilitated the development of new urban areas in the Tiber's floodplain, while changed the societal memory of floods as well as the communities' perception of risk. This research work was also used to test the hypotheses of recent-developed models conceptualizing the interplay between floods and societies and simulating the long-term behavior of coupled human-water systems. The outcomes of this test provided interesting insights about the dynamics of flood risk, which are expected to support a better anticipation of future changes.
Multibody dynamics driving GNC and system design in tethered nets for active debris removal
NASA Astrophysics Data System (ADS)
Benvenuto, Riccardo; Lavagna, Michèle; Salvi, Samuele
2016-07-01
Debris removal in Earth orbits is an urgent issue to be faced for space exploitation durability. Among different techniques, tethered-nets present appealing benefits and some open points to fix. Former and latter are discussed in the paper, supported by the exploitation of a multibody dynamics tool. With respect to other proposed capture mechanisms, tethered-net solutions are characterised by a safer capturing distance, a passive angular momentum damping effect and the highest flexibility to unknown shape, material and attitude of the target to interface with. They also allow not considering the centre of gravity alignment with thrust axis as a constraint, as it is for any rigid link solution. Furthermore, the introduction of a closing thread around the net perimeter ensures safer and more reliable grasping and holding. In the paper, a six degrees of freedom multibody dynamics simulator is presented: it was developed at Politecnico di Milano - Department of Aerospace Science and Technologies - and it is able to describe the orbital and attitude dynamics of tethered-nets systems and end-bodies during different phases, with great flexibility in dealing with different topologies and configurations. Critical phases as impact and wrapping are analysed by simulation to address the tethered-stack controllability. It is shown how the role of contact modelling is fundamental to describe the coupled dynamics: it is demonstrated, as a major novel contribution, how friction between the net and a tumbling target allows reducing its angular motion, stabilizing the system and allowing safer towing operations. Moreover, the so-called tethered space tug is analysed: after capture, the two objects, one passive and one active, are connected by the tethered-net flexible link, the motion of the system being excited by the active spacecraft thrusters. The critical modes prevention during this phase, by means of a closed-loop control synthesis is shown. Finally, the connection between flexible dynamics and capture system design is highlighted, giving engineering answers to most challenging open points to lead to a ready to flight solution.
Dynamic and Tunable Threshold Voltage in Organic Electrochemical Transistors.
Doris, Sean E; Pierre, Adrien; Street, Robert A
2018-04-01
In recent years, organic electrochemical transistors (OECTs) have found applications in chemical and biological sensing and interfacing, neuromorphic computing, digital logic, and printed electronics. However, the incorporation of OECTs in practical electronic circuits is limited by the relative lack of control over their threshold voltage, which is important for controlling the power consumption and noise margin in complementary and unipolar circuits. Here, the threshold voltage of OECTs is precisely tuned over a range of more than 1 V by chemically controlling the electrochemical potential at the gate electrode. This threshold voltage tunability is exploited to prepare inverters and amplifiers with improved noise margin and gain, respectively. By coupling the gate electrode with an electrochemical oscillator, single-transistor oscillators based on OECTs with dynamic time-varying threshold voltages are prepared. This work highlights the importance of electrochemistry at the gate electrode in determining the electrical properties of OECTs, and opens a path toward the system-level design of low-power OECT-based electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the decentralized control of large-scale systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chong, C.
1973-01-01
The decentralized control of stochastic large scale systems was considered. Particular emphasis was given to control strategies which utilize decentralized information and can be computed in a decentralized manner. The deterministic constrained optimization problem is generalized to the stochastic case when each decision variable depends on different information and the constraint is only required to be satisfied on the average. For problems with a particular structure, a hierarchical decomposition is obtained. For the stochastic control of dynamic systems with different information sets, a new kind of optimality is proposed which exploits the coupled nature of the dynamic system. The subsystems are assumed to be uncoupled and then certain constraints are required to be satisfied, either in a off-line or on-line fashion. For off-line coordination, a hierarchical approach of solving the problem is obtained. The lower level problems are all uncoupled. For on-line coordination, distinction is made between open loop feedback optimal coordination and closed loop optimal coordination.
Dynamic federation of grid and cloud storage
NASA Astrophysics Data System (ADS)
Furano, Fabrizio; Keeble, Oliver; Field, Laurence
2016-09-01
The Dynamic Federations project ("Dynafed") enables the deployment of scalable, distributed storage systems composed of independent storage endpoints. While the Uniform Generic Redirector at the heart of the project is protocol-agnostic, we have focused our effort on HTTP-based protocols, including S3 and WebDAV. The system has been deployed on testbeds covering the majority of the ATLAS and LHCb data, and supports geography-aware replica selection. The work done exploits the federation potential of HTTP to build systems that offer uniform, scalable, catalogue-less access to the storage and metadata ensemble and the possibility of seamless integration of other compatible resources such as those from cloud providers. Dynafed can exploit the potential of the S3 delegation scheme, effectively federating on the fly any number of S3 buckets from different providers and applying a uniform authorization to them. This feature has been used to deploy in production the BOINC Data Bridge, which uses the Uniform Generic Redirector with S3 buckets to harmonize the BOINC authorization scheme with the Grid/X509. The Data Bridge has been deployed in production with good results. We believe that the features of a loosely coupled federation of open-protocolbased storage elements open many possibilities of smoothly evolving the current computing models and of supporting new scientific computing projects that rely on massive distribution of data and that would appreciate systems that can more easily be interfaced with commercial providers and can work natively with Web browsers and clients.
Exploitation: One View of Industry and Business.
ERIC Educational Resources Information Center
Swanson, Richard A.; And Others
1986-01-01
This article examines the meaning of exploitation with specific reference to industry and business. The authors contend that the concept of exploitation--"the unjust or improper use of another person for one's own profit or advantage"--should be studied to improve understanding of the dynamics of the workplace. (Author/CT)
Hansen, Michael J.; Nate, Nancy A.
2014-01-01
We evaluated the dynamics of walleye Sander vitreus population size structure, as indexed by the proportional size distribution (PSD) of quality-length fish, in Escanaba Lake during 1967–2003 and in 204 other lakes in northern Wisconsin during 1990–2011. We estimated PSD from angler-caught walleyes in Escanaba Lake and from spring electrofishing in 204 other lakes, and then related PSD to annual estimates of recruitment to age-3, length at age 3, and annual angling exploitation rate. In Escanaba Lake during 1967–2003, annual estimates of PSD were highly dynamic, growth (positively) explained 35% of PSD variation, recruitment explained only 3% of PSD variation, and exploitation explained only 7% of PSD variation. In 204 other northern Wisconsin lakes during 1990–2011, PSD varied widely among lakes, recruitment (negatively) explained 29% of PSD variation, growth (positively) explained 21% of PSD variation, and exploitation explained only 4% of PSD variation. We conclude that population size structure was most strongly driven by recruitment and growth, rather than exploitation, in northern Wisconsin walleye populations. Studies of other species over wide spatial and temporal ranges of recruitment, growth, and mortality are needed to determine which dynamic rate most strongly influences population size structure of other species. Our findings indicate a need to be cautious about assuming exploitation is a strong driver of walleye population size structure.
NASA Astrophysics Data System (ADS)
Zhao, Jianlin; Zhang, Jiwei; Dai, Siqing; Di, Jianglei; Xi, Teli
2018-02-01
Surface plasmon microscopy (SPM) is widely applied for label-free detection of changes of refractive index and concentration, as well as mapping thin films in near field. Traditionally, the SPM systems are based on the detection of light intensity or phase changes. Here, we present two kinds of surface plasmon holographic microscopy (SPHM) systems for amplitude- and phase-contrast imaging simultaneously. Through recording off-axis holograms and numerical reconstruction, the complex amplitude distributions of surface plasmon resonance (SPR) images can be obtained. According to the Fresnel's formula, in a prism/ gold/ dielectric structure, the reflection phase shift is uniquely decided by refractive index of the dielectric. By measuring the phase shift difference of the reflected light exploiting prism-coupling SPHM system based on common-path interference configuration, monitoring tiny refractive index variation and imaging biological tissue are performed. Furthermore, to characterize the thin film thickness in near field, we employ a four-layer SPR model in which the third film layer is within the evanescent field. The complex reflection coefficient, including the reflectivity and reflection phase shift, is uniquely decided by the film thickness. By measuring the complex amplitude distributions of the SPR images exploiting objective-coupling SPHM system based on common-path interference configuration, the thickness distributions of thin films are mapped with sub-nanometer resolution theoretically. Owing to its high temporal stability, the recommended SPHMs show great potentials for monitoring tiny refractive index variations, imaging biological tissues and mapping thin films in near field with dynamic, nondestructive and full-field measurement capabilities in chemistry, biomedicine field, etc.
Magnetic Resonance Relaxometry at Low and Ultra low Fields.
Volegov, P; Flynn, M; Kraus, R; Magnelind, P; Matlashov, A; Nath, P; Owens, T; Sandin, H; Savukov, I; Schultz, L; Urbaitis, A; Zotev, V; Espy, M
2010-01-01
Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are ubiquitous tools in science and medicine. NMR provides powerful probes of local and macromolecular chemical structure and dynamics. Recently it has become possible and practical to perform MR at very low fields (from 1 μT to 1 mT), the so-called ultra-low field (ULF) regime. Pulsed pre-polarizing fields greatly enhance the signal strength and allow flexibility in signal acquisition sequences. Improvements in SQUID sensor technology allow ultra-sensitive detection in a pulsed field environment.In this regime the proton Larmor frequencies (1 Hz - 100 kHz) of ULF MR overlap (on a time scale of 10 μs to 100 ms) with "slow" molecular dynamic processes such as diffusion, intra-molecular motion, chemical reactions, and biological processes such as protein folding, catalysis and ligand binding. The frequency dependence of relaxation at ultra-low fields may provide a probe for biomolecular dynamics on the millisecond timescale (protein folding and aggregation, conformational motions of enzymes, binding and structural fluctuations of coupled domains in allosteric mechanisms) relevant to host-pathogen interactions, biofuels, and biomediation. Also this resonance-enhanced coupling at ULF can greatly enhance contrast in medical applications of ULF-MRI resulting in better diagnostic techniques.We have developed a number of instruments and techniques to study relaxation vs. frequency at the ULF regime. Details of the techniques and results are presented.Ultra-low field methods are already being applied at LANL in brain imaging, and detection of liquid explosives at airports. However, the potential power of ultra-low field MR remains to be fully exploited.
Coupling strategies for coherent operation of quantum cascade ring laser arrays
NASA Astrophysics Data System (ADS)
Schwarzer, Clemens; Yao, Y.; Mujagić, E.; Ahn, S.; Schrenk, W.; Chen, J.; Gmachl, C.; Strasser, G.
2011-12-01
We report the design, fabrication and operation of coherently coupled ring cavity surface emitting quantum cascade lasers, emitting at wavelength around 8 μm. Special emphasis is placed on the evaluation of optimal coupling approaches and corresponding parameters. Evanescent field coupling as well as direct coupling where both devices are physically connected is presented. Furthermore, exploiting the Vernier-effect was used to obtain enhanced mode selectivity and robust coherent coupling of two ring-type quantum cascade lasers. Investigations were performed at pulsed room-temperature operation.
Tang, Xiaoping; Chapman, Charlotte; Whiting, Matthew; Denton, Ross
2014-07-14
The development of the first redox-free protocol for the Mitsunobu reaction is described. This has been achieved by exploiting triphenylphosphine oxide--the unwanted by-product in the conventional Mitsunobu reaction--as the precursor to the active P(V) coupling reagent. Multinuclear NMR studies are consistent with hydroxyl activation via an alkoxyphosphonium salt.
Homology Modeling, Validation and Dynamics of the G Protein-coupled Estrogen Receptor 1 (GPER-1).
Bruno, Agostino; Aiello, Francesca; Costantino, Gabriele; Radi, Marco
2016-09-01
Estrogens exert their action mainly by binding three receptors, namely estrogen receptors α and β (ERα and ERβ) and GPER-1 (G-protein coupled estrogen receptor 1). While the patho-physiological role of both ERα and ERβ has been deeply investigated, the role of GPER-1 in estrogens' signaling has not been clearly defined yet. Unfortunately, only few GPER-1 selective ligands were discovered so far, and the real efficiency of such compounds is still matter of debate. To better understand the physiological relevance of GPER-1, new selective chemical probes are higly needed. In this scenario, we report herein the generation and validation of a three-dimensional (3-D) GPER-1 homology model by means of docking studies and molecular dynamics simulations. The model thus generated was employed to (i) decipher the structural basis underlying the ability of estrogens and some Selective Estrogen Receptor Modulators (SERMs) to bind GPER-1 and classical ERα and ERβ, and (ii) generate a reliable G1/GPER-1 complex useful in rationalizing the pharmacological profile of G1 reported in the literature. The G1/GPER-1 complex herein reported could be further exploited in drug design approaches aimed at improving the pharmacological profile of G1 or at identifying new chemical entities (NCEs) as potential modulators of GPER-1. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dutta, Sajal Kanti; Chakraborty, Saikat
2016-01-01
Hemicelluloses are the earth’s second most abundant structural polymers, found in lignocellulosic biomass. Efficient enzymatic depolymerization of xylans by cleaving their β-(1 → 4)-glycosidic bonds to produce soluble sugars is instrumental to the cost-effective production of liquid biofuels. Here we show that the multi-scale two-phase process of enzymatic hydrolysis of amorphous hemicelluloses is dominated by its smallest scale–the pores. In the crucial first five hours, two to fourfold swelling of the xylan particles allow the enzymes to enter the pores and undergo rapid non-equilibrium adsorption on the pore surface before they hydrolyze the solid polymers, albeit non-competitively inhibited by the products xylose and xylobiose. Rapid pore-scale reactive dissolution increases the solid carbohydrate’s porosity to 80–90%. This tightly coupled experimental and theoretical study quantifies the complex temporal dynamics of the transport and reaction processes coupled across scales and phases to show that this unique pore-scale phenomenon can be exploited to accelerate the depolymerization of hemicelluloses to monomeric sugars in the first 5–6 h. We find that an ‘optimal substrate loading’ of 5 mg/ml (above which substrate inhibition sets in) accelerates non-equilibrium enzyme adsorption and solid hemicellulose depolymerization at the pore-scale, which contributes three-quarters of the soluble sugars produced for bio-alcohol fermentation. PMID:27905534
NASA Astrophysics Data System (ADS)
Dutta, Sajal Kanti; Chakraborty, Saikat
2016-12-01
Hemicelluloses are the earth’s second most abundant structural polymers, found in lignocellulosic biomass. Efficient enzymatic depolymerization of xylans by cleaving their β-(1 → 4)-glycosidic bonds to produce soluble sugars is instrumental to the cost-effective production of liquid biofuels. Here we show that the multi-scale two-phase process of enzymatic hydrolysis of amorphous hemicelluloses is dominated by its smallest scale-the pores. In the crucial first five hours, two to fourfold swelling of the xylan particles allow the enzymes to enter the pores and undergo rapid non-equilibrium adsorption on the pore surface before they hydrolyze the solid polymers, albeit non-competitively inhibited by the products xylose and xylobiose. Rapid pore-scale reactive dissolution increases the solid carbohydrate’s porosity to 80-90%. This tightly coupled experimental and theoretical study quantifies the complex temporal dynamics of the transport and reaction processes coupled across scales and phases to show that this unique pore-scale phenomenon can be exploited to accelerate the depolymerization of hemicelluloses to monomeric sugars in the first 5-6 h. We find that an ‘optimal substrate loading’ of 5 mg/ml (above which substrate inhibition sets in) accelerates non-equilibrium enzyme adsorption and solid hemicellulose depolymerization at the pore-scale, which contributes three-quarters of the soluble sugars produced for bio-alcohol fermentation.
Pitti, Alexandre; Lungarella, Max; Kuniyoshi, Yasuo
2009-01-01
Pattern generators found in the spinal cord are no more seen as simple rhythmic oscillators for motion control. Indeed, they achieve flexible and dynamical coordination in interaction with the body and the environment dynamics giving to rise motor synergies. Discovering the mechanisms underlying the control of motor synergies constitutes an important research question not only for neuroscience but also for robotics: the motors coordination of high dimensional robotic systems is still a drawback and new control methods based on biological solutions may reduce their overall complexity. We propose to model the flexible combination of motor synergies in embodied systems via partial phase synchronization of distributed chaotic systems; for specific coupling strength, chaotic systems are able to phase synchronize their dynamics to the resonant frequencies of one external force. We take advantage of this property to explore and exploit the intrinsic dynamics of one specified embodied system. In two experiments with bipedal walkers, we show how motor synergies emerge when the controllers phase synchronize to the body's dynamics, entraining it to its intrinsic behavioral patterns. This stage is characterized by directed information flow from the sensors to the motors exhibiting the optimal situation when the body dynamics drive the controllers (mutual entrainment). Based on our results, we discuss the relevance of our findings for modeling the modular control of distributed pattern generators exhibited in the spinal cord, and for exploring the motor synergies in robots. PMID:20011216
Maskow, Thomas; Kemp, Richard; Buchholz, Friederike; Schubert, Torsten; Kiesel, Baerbel; Harms, Hauke
2010-01-01
Summary The exploitation of microorganisms in natural or technological systems calls for monitoring tools that reflect their metabolic activity in real time and, if necessary, are flexible enough for field application. The Gibbs energy dissipation of assimilated substrates or photons often in the form of heat is a general feature of life processes and thus, in principle, available to monitor and control microbial dynamics. Furthermore, the combination of measured heat fluxes with material fluxes allows the application of Hess' law to either prove expected growth stoichiometries and kinetics or identify and estimate unexpected side reactions. The combination of calorimetry with respirometry is theoretically suited for the quantification of the degree of coupling between catabolic and anabolic reactions. New calorimeter developments overcome the weaknesses of conventional devices, which hitherto limited the full exploitation of this powerful analytical tool. Calorimetric systems can be integrated easily into natural and technological systems of interest. They are potentially suited for high‐throughput measurements and are robust enough for field deployment. This review explains what information calorimetric analyses provide; it introduces newly emerging calorimetric techniques and it exemplifies the application of calorimetry in different fields of microbial research. PMID:21255327
Stochastic Gain in Population Dynamics
NASA Astrophysics Data System (ADS)
Traulsen, Arne; Röhl, Torsten; Schuster, Heinz Georg
2004-07-01
We introduce an extension of the usual replicator dynamics to adaptive learning rates. We show that a population with a dynamic learning rate can gain an increased average payoff in transient phases and can also exploit external noise, leading the system away from the Nash equilibrium, in a resonancelike fashion. The payoff versus noise curve resembles the signal to noise ratio curve in stochastic resonance. Seen in this broad context, we introduce another mechanism that exploits fluctuations in order to improve properties of the system. Such a mechanism could be of particular interest in economic systems.
Dynamic Programming for Structured Continuous Markov Decision Problems
NASA Technical Reports Server (NTRS)
Dearden, Richard; Meuleau, Nicholas; Washington, Richard; Feng, Zhengzhu
2004-01-01
We describe an approach for exploiting structure in Markov Decision Processes with continuous state variables. At each step of the dynamic programming, the state space is dynamically partitioned into regions where the value function is the same throughout the region. We first describe the algorithm for piecewise constant representations. We then extend it to piecewise linear representations, using techniques from POMDPs to represent and reason about linear surfaces efficiently. We show that for complex, structured problems, our approach exploits the natural structure so that optimal solutions can be computed efficiently.
Dimitriadis, S I; Laskaris, N A; Tzelepi, A; Economou, G
2012-05-01
There is growing interest in studying the association of functional connectivity patterns with particular cognitive tasks. The ability of graphs to encapsulate relational data has been exploited in many related studies, where functional networks (sketched by different neural synchrony estimators) are characterized by a rich repertoire of graph-related metrics. We introduce commute times (CTs) as an alternative way to capture the true interplay between the nodes of a functional connectivity graph (FCG). CT is a measure of the time taken for a random walk to setout and return between a pair of nodes on a graph. Its computation is considered here as a robust and accurate integration, over the FCG, of the individual pairwise measurements of functional coupling. To demonstrate the benefits from our approach, we attempted the characterization of time evolving connectivity patterns derived from EEG signals recorded while the subject was engaged in an eye-movement task. With respect to standard ways, which are currently employed to characterize connectivity, an improved detection of event-related dynamical changes is noticeable. CTs appear to be a promising technique for deriving temporal fingerprints of the brain's dynamic functional organization.
NASA Astrophysics Data System (ADS)
Shwa, David; Katz, Nadav
2014-08-01
When quantum systems are shifted faster than their transition and coupling time scales, their susceptibility is dramatically modified. We measure the optical susceptibility of a strongly modulated electromagnetically induced transparency system. Time vs detuning plots for different pump modulation frequencies reveal a transition between an adiabatic regime where a series of smooth pulses are created and a nonadiabatic regime where a strong transient oscillating response is added. Applying a magnetic field lifts the hyperfine level degeneracy, revealing an interference effect between the different magnetic level transients. We explore the dynamics of the magnetic and nonmagnetic cases and discuss their coherent nature. We finally combine the global phase of the transmitted pulses with the transient interference to achieve broadband magnetic sensing without losing the sensitivity of a single electromagnetically induced transparency line.
Rubber and gel origami: visco- and poro-elastic behavior of folded structures
NASA Astrophysics Data System (ADS)
Evans, Arthur; Bende, Nakul; Na, Junhee; Hayward, Ryan; Santangelo, Christian
2014-11-01
The Japanese art of origami is rapidly becoming a platform for material design, as researchers develop systematic methods to exploit the purely geometric rules that allow paper to folded without stretching. Since any thin sheet couples mechanics strongly to geometry, origami provides a natural template for generating length-scale independent structures from a variety of different materials. In this talk I discuss some of the implications of using polymeric sheets and shells over many length scales to create folded materials with tunable shapes and properties. These implications include visco-elastic snap-through transitions and poro-elastically driven micro origami. In each case, mechanical response, dynamics, and reversible folding is tuned through a combination of geometry and constitutive properties, demonstrating the efficacy of using origami principles for designing functional materials.
NASA Astrophysics Data System (ADS)
Ben-Romdhane, Hajer; Krichen, Saoussen; Alba, Enrique
2017-05-01
Optimisation in changing environments is a challenging research topic since many real-world problems are inherently dynamic. Inspired by the natural evolution process, evolutionary algorithms (EAs) are among the most successful and promising approaches that have addressed dynamic optimisation problems. However, managing the exploration/exploitation trade-off in EAs is still a prevalent issue, and this is due to the difficulties associated with the control and measurement of such a behaviour. The proposal of this paper is to achieve a balance between exploration and exploitation in an explicit manner. The idea is to use two equally sized populations: the first one performs exploration while the second one is responsible for exploitation. These tasks are alternated from one generation to the next one in a regular pattern, so as to obtain a balanced search engine. Besides, we reinforce the ability of our algorithm to quickly adapt after cnhanges by means of a memory of past solutions. Such a combination aims to restrain the premature convergence, to broaden the search area, and to speed up the optimisation. We show through computational experiments, and based on a series of dynamic problems and many performance measures, that our approach improves the performance of EAs and outperforms competing algorithms.
Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, T. J. A.; Myhre, R. H.; Cryan, J. P.
Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrummore » at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. Furthermore, high-level-coupled cluster calculations confirm the method’s impressive electronic structure sensitivity for excited-state investigations.« less
Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption
Wolf, T. J. A.; Myhre, R. H.; Cryan, J. P.; ...
2017-06-22
Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrummore » at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. Furthermore, high-level-coupled cluster calculations confirm the method’s impressive electronic structure sensitivity for excited-state investigations.« less
Adjoint-Based Mesh Adaptation for the Sonic Boom Signature Loudness
NASA Technical Reports Server (NTRS)
Rallabhandi, Sriram K.; Park, Michael A.
2017-01-01
The mesh adaptation functionality of FUN3D is utilized to obtain a mesh optimized to calculate sonic boom ground signature loudness. During this process, the coupling between the discrete-adjoints of the computational fluid dynamics tool FUN3D and the atmospheric propagation tool sBOOM is exploited to form the error estimate. This new mesh adaptation methodology will allow generation of suitable meshes adapted to reduce the estimated errors in the ground loudness, which is an optimization metric employed in supersonic aircraft design. This new output-based adaptation could allow new insights into meshing for sonic boom analysis and design, and complements existing output-based adaptation techniques such as adaptation to reduce estimated errors in off-body pressure functional. This effort could also have implications for other coupled multidisciplinary adjoint capabilities (e.g., aeroelasticity) as well as inclusion of propagation specific parameters such as prevailing winds or non-standard atmospheric conditions. Results are discussed in the context of existing methods and appropriate conclusions are drawn as to the efficacy and efficiency of the developed capability.
Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering
Havlicek, Martin; Friston, Karl J.; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D.
2011-01-01
This paper presents a new approach to inverting (fitting) models of coupled dynamical systems based on state-of-the-art (cubature) Kalman filtering. Crucially, this inversion furnishes posterior estimates of both the hidden states and parameters of a system, including any unknown exogenous input. Because the underlying generative model is formulated in continuous time (with a discrete observation process) it can be applied to a wide variety of models specified with either ordinary or stochastic differential equations. These are an important class of models that are particularly appropriate for biological time-series, where the underlying system is specified in terms of kinetics or dynamics (i.e., dynamic causal models). We provide comparative evaluations with generalized Bayesian filtering (dynamic expectation maximization) and demonstrate marked improvements in accuracy and computational efficiency. We compare the schemes using a series of difficult (nonlinear) toy examples and conclude with a special focus on hemodynamic models of evoked brain responses in fMRI. Our scheme promises to provide a significant advance in characterizing the functional architectures of distributed neuronal systems, even in the absence of known exogenous (experimental) input; e.g., resting state fMRI studies and spontaneous fluctuations in electrophysiological studies. Importantly, unlike current Bayesian filters (e.g. DEM), our scheme provides estimates of time-varying parameters, which we will exploit in future work on the adaptation and enabling of connections in the brain. PMID:21396454
NASA Astrophysics Data System (ADS)
Passarelli, G.; De Filippis, G.; Cataudella, V.; Lucignano, P.
2018-02-01
We investigate the quantum annealing of the ferromagnetic p -spin model in a dissipative environment (p =5 and p =7 ). This model, in the large-p limit, codifies Grover's algorithm for searching in an unsorted database [L. K. Grover, Proceedings of the 28th Annual ACM Symposium on Theory of Computing (ACM, New York, 1996), pp. 212-219]. The dissipative environment is described by a phonon bath in thermal equilibrium at finite temperature. The dynamics is studied in the framework of a Lindblad master equation for the reduced density matrix describing only the spins. Exploiting the symmetries of our model Hamiltonian, we can describe many spins and extrapolate expected trends for large N and p . While at weak system-bath coupling the dissipative environment has detrimental effects on the annealing results, we show that in the intermediate-coupling regime, the phonon bath seems to speed up the annealing at low temperatures. This improvement in the performance is likely not due to thermal fluctuation but rather arises from a correlated spin-bath state and persists even at zero temperature. This result may pave the way to a new scenario in which, by appropriately engineering the system-bath coupling, one may optimize quantum annealing performances below either the purely quantum or the classical limit.
Mahoney, P P; Ray, S J; Li, G; Hieftje, G M
1999-04-01
The coupling of an electrothermal vaporization (ETV) apparatus to an inductively coupled plasma time-of-flight mass spectrometer (ICP-TOFMS) is described. The ability of the ICP-TOFMS to produce complete elemental mass spectra at high repetition rates is experimentally demonstrated. A signal-averaging data acquisition board is employed to rapidly record complete elemental spectra throughout the vaporization stage of the ETV temperature cycle; a solution containing 34 elements is analyzed. The reduction of both molecular and atomic isobaric interferences through the temperature program of the furnace is demonstrated. Isobaric overlaps among the isotopes of cadmium, tin, and indium are resolved by exploiting differences in the vaporization characteristics of the elements. Figures of merit for the system are defined with several different data acquisition schemes capable of operating at the high repetition rate of the TOF instrument. With the use of both ion counting and a boxcar averager, the dynamic range is shown to be linear over a range of at least 6 orders of magnitude. A pair of boxcar averagers are used to measure the isotope ratio for silver with a precision of 1.9% RSD, despite a cycle-to-cycle precision of 19% RSD. Detection limits of 10-80 fg are calculated for seven elements, based upon a 10-microL injection.
Coupled dynamic systems and Le Chatelier's principle in noise control
NASA Astrophysics Data System (ADS)
Maidanik, G.; Becker, K. J.
2004-05-01
Investigation of coupling an externally driven dynamic system-a master dynamic system-to a passive one-an adjunct dynamic system-reveals that the response of the adjunct dynamic system affects the precoupled response of the master dynamic system. The responses, in the two dynamic systems when coupled, are estimated by the stored energies (Es) and (E0), respectively. Since the adjunct dynamic system, prior to coupling, was with zero (0) stored energy, E0s=0, the precoupled stored energy (E00) in the master dynamic system is expected to be reduced to (E0) when coupling is instituted; i.e., one expects E0
Experimental validation of a numerical model for subway induced vibrations
NASA Astrophysics Data System (ADS)
Gupta, S.; Degrande, G.; Lombaert, G.
2009-04-01
This paper presents the experimental validation of a coupled periodic finite element-boundary element model for the prediction of subway induced vibrations. The model fully accounts for the dynamic interaction between the train, the track, the tunnel and the soil. The periodicity or invariance of the tunnel and the soil in the longitudinal direction is exploited using the Floquet transformation, which allows for an efficient formulation in the frequency-wavenumber domain. A general analytical formulation is used to compute the response of three-dimensional invariant or periodic media that are excited by moving loads. The numerical model is validated by means of several experiments that have been performed at a site in Regent's Park on the Bakerloo line of London Underground. Vibration measurements have been performed on the axle boxes of the train, on the rail, the tunnel invert and the tunnel wall, and in the free field, both at the surface and at a depth of 15 m. Prior to these vibration measurements, the dynamic soil characteristics and the track characteristics have been determined. The Bakerloo line tunnel of London Underground has been modelled using the coupled periodic finite element-boundary element approach and free field vibrations due to the passage of a train at different speeds have been predicted and compared to the measurements. The correspondence between the predicted and measured response in the tunnel is reasonably good, although some differences are observed in the free field. The discrepancies are explained on the basis of various uncertainties involved in the problem. The variation in the response with train speed is similar for the measurements as well as the predictions. This study demonstrates the applicability of the coupled periodic finite element-boundary element model to make realistic predictions of the vibrations from underground railways.
NASA Astrophysics Data System (ADS)
Ochsenfeld, Christian; Head-Gordon, Martin
1997-05-01
To exploit the exponential decay found in numerical studies for the density matrix and its derivative with respect to nuclear displacements, we reformulate the coupled perturbed self-consistent field (CPSCF) equations and a quadratically convergent SCF (QCSCF) method for Hartree-Fock and density functional theory within a local density matrix-based scheme. Our D-CPSCF (density matrix-based CPSCF) and D-QCSCF schemes open the way for exploiting sparsity and to achieve asymptotically linear scaling of computational complexity with molecular size ( M), in case of D-CPSCF for all O( M) derivative densities. Furthermore, these methods are even for small molecules strongly competitive to conventional algorithms.
Classifying EEG for Brain-Computer Interface: Learning Optimal Filters for Dynamical System Features
Song, Le; Epps, Julien
2007-01-01
Classification of multichannel EEG recordings during motor imagination has been exploited successfully for brain-computer interfaces (BCI). In this paper, we consider EEG signals as the outputs of a networked dynamical system (the cortex), and exploit synchronization features from the dynamical system for classification. Herein, we also propose a new framework for learning optimal filters automatically from the data, by employing a Fisher ratio criterion. Experimental evaluations comparing the proposed dynamical system features with the CSP and the AR features reveal their competitive performance during classification. Results also show the benefits of employing the spatial and the temporal filters optimized using the proposed learning approach. PMID:18364986
NASA Astrophysics Data System (ADS)
Mutabaruka, Patrick; Kamrin, Ken
2018-04-01
A numerical method for particle-laden fluids interacting with a deformable solid domain and mobile rigid parts is proposed and implemented in a full engineering system. The fluid domain is modeled with a lattice Boltzmann representation, the particles and rigid parts are modeled with a discrete element representation, and the deformable solid domain is modeled using a Lagrangian mesh. The main issue of this work, since separately each of these methods is a mature tool, is to develop coupling and model-reduction approaches in order to efficiently simulate coupled problems of this nature, as in various geological and engineering applications. The lattice Boltzmann method incorporates a large eddy simulation technique using the Smagorinsky turbulence model. The discrete element method incorporates spherical and polyhedral particles for stiff contact interactions. A neo-Hookean hyperelastic model is used for the deformable solid. We provide a detailed description of how to couple the three solvers within a unified algorithm. The technique we propose for rubber modeling/coupling exploits a simplification that prevents having to solve a finite-element problem at each time step. We also developed a technique to reduce the domain size of the full system by replacing certain zones with quasi-analytic solutions, which act as effective boundary conditions for the lattice Boltzmann method. The major ingredients of the routine are separately validated. To demonstrate the coupled method in full, we simulate slurry flows in two kinds of piston valve geometries. The dynamics of the valve and slurry are studied and reported over a large range of input parameters.
Let the Force Be with Us: Dyads Exploit Haptic Coupling for Coordination
ERIC Educational Resources Information Center
van der Wel, Robrecht P. R. D.; Knoblich, Guenther; Sebanz, Natalie
2011-01-01
People often perform actions that involve a direct physical coupling with another person, such as when moving furniture together. Here, we examined how people successfully coordinate such actions with others. We tested the hypothesis that dyads amplify their forces to create haptic information to coordinate. Participants moved a pole (resembling a…
A dynamical framework for integrated corridor management.
DOT National Transportation Integrated Search
2016-01-11
We develop analysis and control synthesis tools for dynamic traffic flow over networks. Our analysis : relies on exploiting monotonicity properties of the dynamics, and on adapting relevant tools from : stochastic queuing networks. We develop proport...
NASA Astrophysics Data System (ADS)
Galelli, Stefano; Goedbloed, Albert; Schmitter, Petra; Castelletti, Andrea
2014-05-01
Urban water reservoirs are a viable adaptation option to account for increasing drinking water demand of urbanized areas as they allow storage and re-use of water that is normally lost. In addition, the direct availability of freshwater reduces pumping costs and diversifies the portfolios of drinking water supply. Yet, these benefits have an associated twofold cost. Firstly, the presence of large, impervious areas increases the hydraulic efficiency of urban catchments, with short time of concentration, increased runoff rates, losses of infiltration and baseflow, and higher risk of flash floods. Secondly, the high concentration of nutrients and sediments characterizing urban discharges is likely to cause water quality problems. In this study we propose a new control scheme combining Model Predictive Control (MPC), hydro-meteorological forecasts and dynamic model emulation to design real-time operating policies that conjunctively optimize water quantity and quality targets. The main advantage of this scheme stands in its capability of exploiting real-time hydro-meteorological forecasts, which are crucial in such fast-varying systems. In addition, the reduced computational requests of the MPC scheme allows coupling it with dynamic emulators of water quality processes. The approach is demonstrated on Marina Reservoir, a multi-purpose reservoir located in the heart of Singapore and characterized by a large, highly urbanized catchment with a short (i.e. approximately one hour) time of concentration. Results show that the MPC scheme, coupled with a water quality emulator, provides a good compromise between different operating objectives, namely flood risk reduction, drinking water supply and salinity control. Finally, the scheme is used to assess the effect of source control measures (e.g. green roofs) aimed at restoring the natural hydrological regime of Marina Reservoir catchment.
Learning to Control Advanced Life Support Systems
NASA Technical Reports Server (NTRS)
Subramanian, Devika
2004-01-01
Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for advanced life support.
Guitart-Masip, Marc; Kurth-Nelson, Zeb; Dolan, Raymond J.
2014-01-01
Actions can lead to an immediate reward or punishment and a complex set of delayed outcomes. Adaptive choice necessitates the brain track and integrate both of these potential consequences. Here, we designed a sequential task whereby the decision to exploit or forego an available offer was contingent on comparing immediate value and a state-dependent future cost of expending a limited resource. Crucially, the dynamics of the task demanded frequent switches in policy based on an online computation of changing delayed consequences. We found that human subjects choose on the basis of a near-optimal integration of immediate reward and delayed consequences, with the latter computed in a prefrontal network. Within this network, anterior cingulate cortex (ACC) was dynamically coupled to ventromedial prefrontal cortex (vmPFC) when adaptive switches in choice were required. Our results suggest a choice architecture whereby interactions between ACC and vmPFC underpin an integration of immediate and delayed components of value to support flexible policy switching that accommodates the potential delayed consequences of an action. PMID:24573291
Morosi, J; Berti, N; Akrout, A; Picozzi, A; Guasoni, M; Fatome, J
2018-01-22
In this manuscript, we experimentally and numerically investigate the chaotic dynamics of the state-of-polarization in a nonlinear optical fiber due to the cross-interaction between an incident signal and its intense backward replica generated at the fiber-end through an amplified reflective delayed loop. Thanks to the cross-polarization interaction between the two-delayed counter-propagating waves, the output polarization exhibits fast temporal chaotic dynamics, which enable a powerful scrambling process with moving speeds up to 600-krad/s. The performance of this all-optical scrambler was then evaluated on a 10-Gbit/s On/Off Keying telecom signal achieving an error-free transmission. We also describe how these temporal and chaotic polarization fluctuations can be exploited as an all-optical random number generator. To this aim, a billion-bit sequence was experimentally generated and successfully confronted to the dieharder benchmarking statistic tools. Our experimental analysis are supported by numerical simulations based on the resolution of counter-propagating coupled nonlinear propagation equations that confirm the observed behaviors.
NASA Astrophysics Data System (ADS)
El-Etriby, Ahmed E.; Abdel-Meguid, Mohamed E.; Hatem, Tarek M.; Bahei-El-Din, Yehia A.
2014-03-01
Ambient vibrations are major source of wasted energy, exploiting properly such vibration can be converted to valuable energy and harvested to power up devices, i.e. electronic devices. Accordingly, energy harvesting using smart structures with active piezoelectric ceramics has gained wide interest over the past few years as a method for converting such wasted energy. This paper provides numerical and experimental analysis of piezoelectric fiber based composites for energy harvesting applications proposing a multi-scale modeling approach coupled with experimental verification. The multi-scale approach suggested to predict the behavior of piezoelectric fiber-based composites use micromechanical model based on Transformation Field Analysis (TFA) to calculate the overall material properties of electrically active composite structure. Capitalizing on the calculated properties, single-phase analysis of a homogeneous structure is conducted using finite element method. The experimental work approach involves running dynamic tests on piezoelectric fiber-based composites to simulate mechanical vibrations experienced by a subway train floor tiles. Experimental results agree well with the numerical results both for static and dynamic tests.
Economides, Marcos; Guitart-Masip, Marc; Kurth-Nelson, Zeb; Dolan, Raymond J
2014-02-26
Actions can lead to an immediate reward or punishment and a complex set of delayed outcomes. Adaptive choice necessitates the brain track and integrate both of these potential consequences. Here, we designed a sequential task whereby the decision to exploit or forego an available offer was contingent on comparing immediate value and a state-dependent future cost of expending a limited resource. Crucially, the dynamics of the task demanded frequent switches in policy based on an online computation of changing delayed consequences. We found that human subjects choose on the basis of a near-optimal integration of immediate reward and delayed consequences, with the latter computed in a prefrontal network. Within this network, anterior cingulate cortex (ACC) was dynamically coupled to ventromedial prefrontal cortex (vmPFC) when adaptive switches in choice were required. Our results suggest a choice architecture whereby interactions between ACC and vmPFC underpin an integration of immediate and delayed components of value to support flexible policy switching that accommodates the potential delayed consequences of an action.
Hybrid parameter identification of a multi-modal underwater soft robot.
Giorgio-Serchi, F; Arienti, A; Corucci, F; Giorelli, M; Laschi, C
2017-02-28
We introduce an octopus-inspired, underwater, soft-bodied robot capable of performing waterborne pulsed-jet propulsion and benthic legged-locomotion. This vehicle consists for as much as 80% of its volume of rubber-like materials so that structural flexibility is exploited as a key element during both modes of locomotion. The high bodily softness, the unconventional morphology and the non-stationary nature of its propulsion mechanisms require dynamic characterization of this robot to be dealt with by ad hoc techniques. We perform parameter identification by resorting to a hybrid optimization approach where the characterization of the dual ambulatory strategies of the robot is performed in a segregated fashion. A least squares-based method coupled with a genetic algorithm-based method is employed for the swimming and the crawling phases, respectively. The outcomes bring evidence that compartmentalized parameter identification represents a viable protocol for multi-modal vehicles characterization. However, the use of static thrust recordings as the input signal in the dynamic determination of shape-changing self-propelled vehicles is responsible for the critical underestimation of the quadratic drag coefficient.
Czemeres, Josh; Buse, Kurt
2017-01-01
A fundamental role of the Hsp90 and Cdc37 chaperones in mediating conformational development and activation of diverse protein kinase clients is essential in signal transduction. There has been increasing evidence that the Hsp90-Cdc37 system executes its chaperoning duties by recognizing conformational instability of kinase clients and modulating their folding landscapes. The recent cryo-electron microscopy structure of the Hsp90-Cdc37-Cdk4 kinase complex has provided a framework for dissecting regulatory principles underlying differentiation and recruitment of protein kinase clients to the chaperone machinery. In this work, we have combined atomistic simulations with protein stability and network-based rigidity decomposition analyses to characterize dynamic factors underlying allosteric mechanism of the chaperone-kinase cycle and identify regulatory hotspots that control client recognition. Through comprehensive characterization of conformational dynamics and systematic identification of stabilization centers in the unbound and client- bound Hsp90 forms, we have simulated key stages of the allosteric mechanism, in which Hsp90 binding can induce instability and partial unfolding of Cdk4 client. Conformational landscapes of the Hsp90 and Cdk4 structures suggested that client binding can trigger coordinated dynamic changes and induce global rigidification of the Hsp90 inter-domain regions that is coupled with a concomitant increase in conformational flexibility of the kinase client. This process is allosteric in nature and can involve reciprocal dynamic exchanges that exert global effect on stability of the Hsp90 dimer, while promoting client instability. The network-based rigidity analysis and emulation of thermal unfolding of the Cdk4-cyclin D complex and Hsp90-Cdc37-Cdk4 complex revealed weak spots of kinase instability that are present in the native Cdk4 structure and are targeted by the chaperone during client recruitment. Our findings suggested that this mechanism may be exploited by the Hsp90-Cdc37 chaperone to recruit and protect intrinsically dynamic kinase clients from degradation. The results of this investigation are discussed and interpreted in the context of diverse experimental data, offering new insights into mechanisms of chaperone regulation and binding. PMID:29267381
Simulated population responses of common carp to commercial exploitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Michael J.; Hennen, Matthew J.; Brown, Michael L.
2011-12-01
Common carp Cyprinus carpio is a widespread invasive species that can become highly abundant and impose deleterious ecosystem effects. Thus, aquatic resource managers are interested in controlling common carp populations. Control of invasive common carp populations is difficult, due in part to the inherent uncertainty of how populations respond to exploitation. To understand how common carp populations respond to exploitation, we evaluated common carp population dynamics (recruitment, growth, and mortality) in three natural lakes in eastern South Dakota. Common carp exhibited similar population dynamics across these three systems that were characterized by consistent recruitment (ages 3 to 15 years present),more » fast growth (K = 0.37 to 0.59), and low mortality (A = 1 to 7%). We then modeled the effects of commercial exploitation on size structure, abundance, and egg production to determine its utility as a management tool to control populations. All three populations responded similarly to exploitation simulations with a 575-mm length restriction, representing commercial gear selectivity. Simulated common carp size structure modestly declined (9 to 37%) in all simulations. Abundance of common carp declined dramatically (28 to 56%) at low levels of exploitation (0 to 20%) but exploitation >40% had little additive effect and populations were only reduced by 49 to 79% despite high exploitation (>90%). Maximum lifetime egg production was reduced from 77 to 89% at a moderate level of exploitation (40%), indicating the potential for recruitment overfishing. Exploitation further reduced common carp size structure, abundance, and egg production when simulations were not size selective. Our results provide insights to how common carp populations may respond to exploitation. Although commercial exploitation may be able to partially control populations, an integrated removal approach that removes all sizes of common carp has a greater chance of controlling population abundance and reducing perturbations induced by this invasive species.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDaniel, Hunter; Beard, Matthew C; Wheeler, Lance M
Representing the Center for Advanced Solar Photophysics (CASP), this document is one of the entries in the Ten Hundred and One Word Challenge and was awarded “Overall Winner Runner-up and People’s Choice Winner.” As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of CASP is tomore » explore and exploit the unique physics of nanostructured materials to boost the efficiency of solar energy conversion through novel light-matter interactions, controlled excited-state dynamics, and engineered carrier-carrier coupling.« less
Asymmetry identification in rigid rotating bodies—Theory and experiment
NASA Astrophysics Data System (ADS)
Bucher, Izhak; Shomer, Ofer
2013-12-01
Asymmetry and anisotropy are important parameters in rotating devices that can cause instability; indicate a manufacturing defect or a developing fault. The present paper discusses an identification method capable of detecting minute levels of asymmetry by exploiting the unique dynamics of parametric excitation caused by asymmetry and rotation. The detection relies on rigid body dynamics without resorting to nonlinear vibration analysis, and the natural dynamics of elastically supported systems is exploited in order to increase the sensitivity to asymmetry. It is possible to isolate asymmetry from other rotation-induced phenomena like unbalance. An asymmetry detection machine which was built in the laboratory demonstrates the method alongside theoretical analysis.
Exploiting Many-Body Bus States for Multi-Qubit Entanglement
2013-06-06
ancilla qubits . We studied electron-spin-photon coupling in a single-spin double quantum dot embedded in a superconducting stripline cavity. We... qubit to a superconducting stripline cavity,” Xuedong Hu, Yu-xi Liu, and Franco Nori, Phys. Rev. B 86, 035314 (2012). [9] “Controllable exchange...DARPA) EXPLOITING MANY-BODY BUS STATES FOR MULTI- QUBIT ENTANGLEMENT MARK FRIESEN UNIVERSITY OF WISCONSIN SYSTEM 06/06/2013 Final Report
Exploit and ignore the consequences: A mother of planetary issues.
Moustafa, Khaled
2016-07-01
Many environmental and planetary issues are due to an exploitation strategy based on exploit, consume and ignore the consequences. As many natural and environmental resources are limited in time and space, such exploitation approach causes important damages on earth, in the sea and maybe soon in the space. To sustain conditions under which humans and other living species can coexist in productive and dynamic harmony with their environments, terrestrial and space exploration programs may need to be based on 'scrutinize the consequences, prepare adequate solutions and then, only then, exploit'. Otherwise, the exploitation of planetary resources may put the environmental stability and sustainability at a higher risk than it is currently predicted. Copyright © 2016 Elsevier B.V. All rights reserved.
Exploit and ignore the consequences: A mother of planetary issues
NASA Astrophysics Data System (ADS)
Moustafa, K.
2016-07-01
Many environmental and planetary issues are due to an exploitation strategy based on exploit, consume and ignore the consequences. As many natural and environmental resources are limited in time and space, such exploitation approach causes important damages on earth, in the sea and maybe soon in the space. To sustain conditions under which humans and other living species can coexist in productive and dynamic harmony with their environments, terrestrial and space exploration programs may need to be based on 'scrutinize the consequences, prepare adequate solutions and then, only then, exploit'. Otherwise, the exploitation of planetary resources may put the environmental stability and sustainability at a higher risk than it is currently predicted. (C) 2016 Elsevier B.V. All rights reserved.
Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering.
Havlicek, Martin; Friston, Karl J; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D
2011-06-15
This paper presents a new approach to inverting (fitting) models of coupled dynamical systems based on state-of-the-art (cubature) Kalman filtering. Crucially, this inversion furnishes posterior estimates of both the hidden states and parameters of a system, including any unknown exogenous input. Because the underlying generative model is formulated in continuous time (with a discrete observation process) it can be applied to a wide variety of models specified with either ordinary or stochastic differential equations. These are an important class of models that are particularly appropriate for biological time-series, where the underlying system is specified in terms of kinetics or dynamics (i.e., dynamic causal models). We provide comparative evaluations with generalized Bayesian filtering (dynamic expectation maximization) and demonstrate marked improvements in accuracy and computational efficiency. We compare the schemes using a series of difficult (nonlinear) toy examples and conclude with a special focus on hemodynamic models of evoked brain responses in fMRI. Our scheme promises to provide a significant advance in characterizing the functional architectures of distributed neuronal systems, even in the absence of known exogenous (experimental) input; e.g., resting state fMRI studies and spontaneous fluctuations in electrophysiological studies. Importantly, unlike current Bayesian filters (e.g. DEM), our scheme provides estimates of time-varying parameters, which we will exploit in future work on the adaptation and enabling of connections in the brain. Copyright © 2011 Elsevier Inc. All rights reserved.
Schilde, M; Doerner, K F; Hartl, R F
2014-10-01
In urban areas, logistic transportation operations often run into problems because travel speeds change, depending on the current traffic situation. If not accounted for, time-dependent and stochastic travel speeds frequently lead to missed time windows and thus poorer service. Especially in the case of passenger transportation, it often leads to excessive passenger ride times as well. Therefore, time-dependent and stochastic influences on travel speeds are relevant for finding feasible and reliable solutions. This study considers the effect of exploiting statistical information available about historical accidents, using stochastic solution approaches for the dynamic dial-a-ride problem (dynamic DARP). The authors propose two pairs of metaheuristic solution approaches, each consisting of a deterministic method (average time-dependent travel speeds for planning) and its corresponding stochastic version (exploiting stochastic information while planning). The results, using test instances with up to 762 requests based on a real-world road network, show that in certain conditions, exploiting stochastic information about travel speeds leads to significant improvements over deterministic approaches.
Utilizing a Dynamical Description of IspH to Aid in the Development of Novel Antimicrobial Drugs
Blachly, Patrick G.; de Oliveira, César A. F.; Williams, Sarah L.; McCammon, J. Andrew
2013-01-01
The nonmevalonate pathway is responsible for isoprenoid production in microbes, including H. pylori, M. tuberculosis and P. falciparum, but is nonexistent in humans, thus providing a desirable route for antibacterial and antimalarial drug discovery. We coordinate a structural study of IspH, a [4Fe-4S] protein responsible for converting HMBPP to IPP and DMAPP in the ultimate step in the nonmevalonate pathway. By performing accelerated molecular dynamics simulations on both substrate-free and HMBPP-bound [Fe4S4]2+ IspH, we elucidate how substrate binding alters the dynamics of the protein. Using principal component analysis, we note that while substrate-free IspH samples various open and closed conformations, the closed conformation observed experimentally for HMBPP-bound IspH is inaccessible in the absence of HMBPP. In contrast, simulations with HMBPP bound are restricted from accessing the open states sampled by the substrate-free simulations. Further investigation of the substrate-free simulations reveals large fluctuations in the HMBPP binding pocket, as well as allosteric pocket openings – both of which are achieved through the hinge motions of the individual domains in IspH. Coupling these findings with solvent mapping and various structural analyses reveals alternative druggable sites that may be exploited in future drug design efforts. PMID:24367248
Jacobian projection reduced-order models for dynamic systems with contact nonlinearities
NASA Astrophysics Data System (ADS)
Gastaldi, Chiara; Zucca, Stefano; Epureanu, Bogdan I.
2018-02-01
In structural dynamics, the prediction of the response of systems with localized nonlinearities, such as friction dampers, is of particular interest. This task becomes especially cumbersome when high-resolution finite element models are used. While state-of-the-art techniques such as Craig-Bampton component mode synthesis are employed to generate reduced order models, the interface (nonlinear) degrees of freedom must still be solved in-full. For this reason, a new generation of specialized techniques capable of reducing linear and nonlinear degrees of freedom alike is emerging. This paper proposes a new technique that exploits spatial correlations in the dynamics to compute a reduction basis. The basis is composed of a set of vectors obtained using the Jacobian of partial derivatives of the contact forces with respect to nodal displacements. These basis vectors correspond to specifically chosen boundary conditions at the contacts over one cycle of vibration. The technique is shown to be effective in the reduction of several models studied using multiple harmonics with a coupled static solution. In addition, this paper addresses another challenge common to all reduction techniques: it presents and validates a novel a posteriori error estimate capable of evaluating the quality of the reduced-order solution without involving a comparison with the full-order solution.
Photon gating in four-dimensional ultrafast electron microscopy.
Hassan, Mohammed T; Liu, Haihua; Baskin, John Spencer; Zewail, Ahmed H
2015-10-20
Ultrafast electron microscopy (UEM) is a pivotal tool for imaging of nanoscale structural dynamics with subparticle resolution on the time scale of atomic motion. Photon-induced near-field electron microscopy (PINEM), a key UEM technique, involves the detection of electrons that have gained energy from a femtosecond optical pulse via photon-electron coupling on nanostructures. PINEM has been applied in various fields of study, from materials science to biological imaging, exploiting the unique spatial, energy, and temporal characteristics of the PINEM electrons gained by interaction with a "single" light pulse. The further potential of photon-gated PINEM electrons in probing ultrafast dynamics of matter and the optical gating of electrons by invoking a "second" optical pulse has previously been proposed and examined theoretically in our group. Here, we experimentally demonstrate this photon-gating technique, and, through diffraction, visualize the phase transition dynamics in vanadium dioxide nanoparticles. With optical gating of PINEM electrons, imaging temporal resolution was improved by a factor of 3 or better, being limited only by the optical pulse widths. This work enables the combination of the high spatial resolution of electron microscopy and the ultrafast temporal response of the optical pulses, which provides a promising approach to attain the resolution of few femtoseconds and attoseconds in UEM.
Photon gating in four-dimensional ultrafast electron microscopy
Hassan, Mohammed T.; Liu, Haihua; Baskin, John Spencer; Zewail, Ahmed H.
2015-01-01
Ultrafast electron microscopy (UEM) is a pivotal tool for imaging of nanoscale structural dynamics with subparticle resolution on the time scale of atomic motion. Photon-induced near-field electron microscopy (PINEM), a key UEM technique, involves the detection of electrons that have gained energy from a femtosecond optical pulse via photon–electron coupling on nanostructures. PINEM has been applied in various fields of study, from materials science to biological imaging, exploiting the unique spatial, energy, and temporal characteristics of the PINEM electrons gained by interaction with a “single” light pulse. The further potential of photon-gated PINEM electrons in probing ultrafast dynamics of matter and the optical gating of electrons by invoking a “second” optical pulse has previously been proposed and examined theoretically in our group. Here, we experimentally demonstrate this photon-gating technique, and, through diffraction, visualize the phase transition dynamics in vanadium dioxide nanoparticles. With optical gating of PINEM electrons, imaging temporal resolution was improved by a factor of 3 or better, being limited only by the optical pulse widths. This work enables the combination of the high spatial resolution of electron microscopy and the ultrafast temporal response of the optical pulses, which provides a promising approach to attain the resolution of few femtoseconds and attoseconds in UEM. PMID:26438835
Electric-field-driven electron-transfer in mixed-valence molecules.
Blair, Enrique P; Corcelli, Steven A; Lent, Craig S
2016-07-07
Molecular quantum-dot cellular automata is a computing paradigm in which digital information is encoded by the charge configuration of a mixed-valence molecule. General-purpose computing can be achieved by arranging these compounds on a substrate and exploiting intermolecular Coulombic coupling. The operation of such a device relies on nonequilibrium electron transfer (ET), whereby the time-varying electric field of one molecule induces an ET event in a neighboring molecule. The magnitude of the electric fields can be quite large because of close spatial proximity, and the induced ET rate is a measure of the nonequilibrium response of the molecule. We calculate the electric-field-driven ET rate for a model mixed-valence compound. The mixed-valence molecule is regarded as a two-state electronic system coupled to a molecular vibrational mode, which is, in turn, coupled to a thermal environment. Both the electronic and vibrational degrees-of-freedom are treated quantum mechanically, and the dissipative vibrational-bath interaction is modeled with the Lindblad equation. This approach captures both tunneling and nonadiabatic dynamics. Relationships between microscopic molecular properties and the driven ET rate are explored for two time-dependent applied fields: an abruptly switched field and a linearly ramped field. In both cases, the driven ET rate is only weakly temperature dependent. When the model is applied using parameters appropriate to a specific mixed-valence molecule, diferrocenylacetylene, terahertz-range ET transfer rates are predicted.
Shih, Tsung-Ting; Lin, Cheng-Hsing; Hsu, I-Hsiang; Chen, Jian-Yi; Sun, Yuh-Chang
2013-11-05
We developed a selective and sensitive hyphenated system employing a microfluidic-based vapor generation (VG) system in conjunction with high-performance liquid chromatography (HPLC) separation and inductively coupled plasma-mass spectrometry (ICPMS) detection for the determination of trace inorganic selenium (Se) species. The VG system exploited poly(methyl methacrylate) (PMMA) substrates of high optical quality to fabricate a microfluidic-based photocatalyst-assisted reduction device (microfluidic-based PCARD). Moreover, to reduce the consumption of photocatalysts during analytical procedures, a microfluidic-based PCARD coated with titanium dioxide nanoparticles (nano-TiO2) was employed to avoid consecutive loading. Notably, to simplify the coating procedure and improve the stability of the coating materials, a dynamic coating method was utilized. Under the optimized conditions for the selenicals of interest, the online HPLC/TiO2-coated microfluidic-based PCARD/ICPMS system enabled us to achieve detection limits (based on 3σ) of 0.043 and 0.042 μg L(-1) for Se(IV) and Se(VI), respectively. Both Se(IV) and Se(VI) could be efficiently vaporized within 15 s, while a series of validation experiments indicated that our proposed method could be satisfactorily applied to the determination of inorganic Se species in the environmental water samples.
Spin wave eigenmodes in single and coupled sub-150 nm rectangular permalloy dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlotti, G., E-mail: giovanni.carlotti@fisica.unipg.it; Madami, M.; Tacchi, S.
2015-05-07
We present the results of a Brillouin light scattering investigation of thermally excited spin wave eigenmodes in square arrays of either isolated rectangular dots of permalloy or twins of dipolarly coupled elements, placed side-by-side or head-to-tail. The nanodots, fabricated by e-beam lithography and lift-off, are 20 nm thick and have the major size D in the range between 90 nm and 150 nm. The experimental spectra show the presence of two main peaks, corresponding to modes localized either at the edges or in the center of the dots. Their frequency dependence on the dot size and on the interaction with adjacent elements hasmore » been measured and successfully interpreted on the basis of dynamical micromagnetic simulations. The latter enabled us also to describe the spatial profile of the eigenmodes, putting in evidence the effects induced by the dipolar interaction between coupled dots. In particular, in twinned dots the demagnetizing field is appreciably modified in proximity of the “internal edges” if compared to the “external” ones, leading to a splitting of the edge mode. These results can be relevant for the exploitation of sub-150 nm magnetic dots in new applications, such as magnonic metamaterials, bit-patterned storage media, and nano-magnetic logic devices.« less
NASA Astrophysics Data System (ADS)
Beninato, A.; Emery, T.; Baglio, S.; Andò, B.; Bulsara, A. R.; Jenkins, C.; Palkar, V.
2013-12-01
Multiferroic (MF) composites, in which magnetic and ferroelectric orders coexist, represent a very attractive class of materials with promising applications in areas, such as spintronics, memories, and sensors. One of the most important multiferroics is the perovskite phase of bismuth ferrite, which exhibits weak magnetoelectric properties at room temperature; its properties can be enhanced by doping with other elements such as dysprosium. A recent paper has demonstrated that a thin film of Bi0.7Dy0.3FeO3 shows good magnetoelectric coupling. In separate work it has been shown that a carefully crafted ring connection of N (N odd and N ≥ 3) ferroelectric capacitors yields, past a critical point, nonlinear oscillations that can be exploited for electric (E) field sensing. These two results represent the starting point of our work. In this paper the (electrical) hysteresis, experimentally measured in the MF material Bi0.7Dy0.3FeO3, is characterized with the applied magnetic field (B) taken as a control parameter. This yields a "blueprint" for a magnetic (B) field sensor: a ring-oscillator coupling of N = 3 Sawyer-Tower circuits each underpinned by a mutliferroic element. In this configuration, the changes induced in the ferroelectric behavior by the external or "target" B-field are quantified, thus providing a pathway for very low power and high sensitivity B-field sensing.
NASA Astrophysics Data System (ADS)
Pawar, Prashant M.; Jung, Sung Nam
2008-12-01
In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. Special focus is given to the feasibility of implementing the benefits of the shear actuation mechanism along with elastic couplings of composite blades for achieving maximum vibration reduction. The governing equations of motion for composite rotor blades with surface bonded piezoceramic actuators are obtained using Hamilton's principle. The equations are then solved for dynamic response using finite element discretization in the spatial and time domains. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. A newly developed single-crystal piezoceramic material is introduced as an actuator material to exploit its superior shear actuation authority. Seven rotor blades with different elastic couplings representing stiffness properties similar to stiff-in-plane rotor blades are used to investigate the hub vibration characteristics. The rotor blades are modeled as a box beam with actuator layers bonded on the outer surface of the top and bottom of the box section. Numerical results show that a notable vibration reduction can be achieved for all the combinations of composite rotor blades. This investigation also brings out the effect of different elastic couplings on various vibration-reduction-related parameters which could be useful for the optimal design of composite helicopter blades.
Replicating Human Hand Synergies Onto Robotic Hands: A Review on Software and Hardware Strategies.
Salvietti, Gionata
2018-01-01
This review reports the principal solutions proposed in the literature to reduce the complexity of the control and of the design of robotic hands taking inspiration from the organization of the human brain. Several studies in neuroscience concerning the sensorimotor organization of the human hand proved that, despite the complexity of the hand, a few parameters can describe most of the variance in the patterns of configurations and movements. In other words, humans exploit a reduced set of parameters, known in the literature as synergies, to control their hands. In robotics, this dimensionality reduction can be achieved by coupling some of the degrees of freedom (DoFs) of the robotic hand, that results in a reduction of the needed inputs. Such coupling can be obtained at the software level, exploiting mapping algorithm to reproduce human hand organization, and at the hardware level, through either rigid or compliant physical couplings between the joints of the robotic hand. This paper reviews the main solutions proposed for both the approaches.
Coherent Effects in Tiny Optics: Tunneling Through the Looking Glass
NASA Technical Reports Server (NTRS)
Smith, David D.
2003-01-01
I will discuss two types of one-dimensional photonic bandgap (PBG) effects that can arise in systems of coupled spherical resonators: (1) nearly-free-photon Fabry-Perot photonic bands that arise in quarter-wave concentrically stratified spheres and, (2) tight- binding photonic bands that arise in weakly-coupled mutually-resonant spheres as a result of whispering-gallery mode splitting. These effects can be derived directly from Mie theory, in a more straightforward manner, by exploiting an analogy with stratified planar systems. For odd numbers of mutually-resonant lossless coupled ring resonators, the circulating intensity can increase exponentially with the number of resonators, which can potentially be exploited for the development of advanced sensors. For even numbers of resonators, mode splitting and classical destructive interference lead to a cancellation of absorption and slow light on-resonance, reminiscent of electromagnetic induced transparency. The analogy between these coherent photon trapping effects and population trapping in an atomic system will be explored.
Restoration of rhythmicity in diffusively coupled dynamical networks.
Zou, Wei; Senthilkumar, D V; Nagao, Raphael; Kiss, István Z; Tang, Yang; Koseska, Aneta; Duan, Jinqiao; Kurths, Jürgen
2015-07-15
Oscillatory behaviour is essential for proper functioning of various physical and biological processes. However, diffusive coupling is capable of suppressing intrinsic oscillations due to the manifestation of the phenomena of amplitude and oscillation deaths. Here we present a scheme to revoke these quenching states in diffusively coupled dynamical networks, and demonstrate the approach in experiments with an oscillatory chemical reaction. By introducing a simple feedback factor in the diffusive coupling, we show that the stable (in)homogeneous steady states can be effectively destabilized to restore dynamic behaviours of coupled systems. Even a feeble deviation from the normal diffusive coupling drastically shrinks the death regions in the parameter space. The generality of our method is corroborated in diverse non-linear systems of diffusively coupled paradigmatic models with various death scenarios. Our study provides a general framework to strengthen the robustness of dynamic activity in diffusively coupled dynamical networks.
Role of social interactions in dynamic patterns of resource patches and forager aggregation.
Tania, Nessy; Vanderlei, Ben; Heath, Joel P; Edelstein-Keshet, Leah
2012-07-10
The dynamics of resource patches and species that exploit such patches are of interest to ecologists, conservation biologists, modelers, and mathematicians. Here we consider how social interactions can create unique, evolving patterns in space and time. Whereas simple prey taxis (with consumable prey) promotes spatial uniform distributions, here we show that taxis in producer-scrounger groups can lead to pattern formation. We consider two types of foragers: those that search directly ("producers") and those that exploit other foragers to find food ("scroungers" or exploiters). We show that such groups can sustain fluctuating spatiotemporal patterns, akin to "waves of pursuit." Investigating the relative benefits to the individuals, we observed conditions under which either strategy leads to enhanced success, defined as net food consumption. Foragers that search for food directly have an advantage when food patches are localized. Those that seek aggregations of group mates do better when their ability to track group mates exceeds the foragers' food-sensing acuity. When behavioral switching or reproductive success of the strategies is included, the relative abundance of foragers and exploiters is dynamic over time, in contrast with classic models that predict stable frequencies. Our work shows the importance of considering two-way interaction--i.e., how food distribution both influences and is influenced by social foraging and aggregation of predators.
Counting statistics of chaotic resonances at optical frequencies: Theory and experiments
NASA Astrophysics Data System (ADS)
Lippolis, Domenico; Wang, Li; Xiao, Yun-Feng
2017-07-01
A deformed dielectric microcavity is used as an experimental platform for the analysis of the statistics of chaotic resonances, in the perspective of testing fractal Weyl laws at optical frequencies. In order to surmount the difficulties that arise from reading strongly overlapping spectra, we exploit the mixed nature of the phase space at hand, and only count the high-Q whispering-gallery modes (WGMs) directly. That enables us to draw statistical information on the more lossy chaotic resonances, coupled to the high-Q regular modes via dynamical tunneling. Three different models [classical, Random-Matrix-Theory (RMT) based, semiclassical] to interpret the experimental data are discussed. On the basis of least-squares analysis, theoretical estimates of Ehrenfest time, and independent measurements, we find that a semiclassically modified RMT-based expression best describes the experiment in all its realizations, particularly when the resonator is coupled to visible light, while RMT alone still works quite well in the infrared. In this work we reexamine and substantially extend the results of a short paper published earlier [L. Wang et al., Phys. Rev. E 93, 040201(R) (2016), 10.1103/PhysRevE.93.040201].
Charge Transport in Two-Photon Semiconducting Structures for Solar Fuels.
Liu, Guohua; Du, Kang; Haussener, Sophia; Wang, Kaiying
2016-10-20
Semiconducting heterostructures are emerging as promising light absorbers and offer effective electron-hole separation to drive solar chemistry. This technology relies on semiconductor composites or photoelectrodes that work in the presence of a redox mediator and that create cascade junctions to promote surface catalytic reactions. Rational tuning of their structures and compositions is crucial to fully exploit their functionality. In this review, we describe the possibilities of applying the two-photon concept to the field of solar fuels. A wide range of strategies including the indirect combination of two semiconductors by a redox couple, direct coupling of two semiconductors, multicomponent structures with a conductive mediator, related photoelectrodes, as well as two-photon cells are discussed for light energy harvesting and charge transport. Examples of charge extraction models from the literature are summarized to understand the mechanism of interfacial carrier dynamics and to rationalize experimental observations. We focus on a working principle of the constituent components and linking the photosynthetic activity with the proposed models. This work gives a new perspective on artificial photosynthesis by taking simultaneous advantages of photon absorption and charge transfer, outlining an encouraging roadmap towards solar fuels. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method for preparation and readout of polyatomic molecules in single quantum states
NASA Astrophysics Data System (ADS)
Patterson, David
2018-03-01
Polyatomic molecular ions contain many desirable attributes of a useful quantum system, including rich internal degrees of freedom and highly controllable coupling to the environment. To date, the vast majority of state-specific experimental work on molecular ions has concentrated on diatomic species. The ability to prepare and read out polyatomic molecules in single quantum states would enable diverse experimental avenues not available with diatomics, including new applications in precision measurement, sensitive chemical and chiral analysis at the single-molecule level, and precise studies of Hz-level molecular tunneling dynamics. While cooling the motional state of a polyatomic ion via sympathetic cooling with a laser-cooled atomic ion is straightforward, coupling this motional state to the internal state of the molecule has proven challenging. Here we propose a method for readout and projective measurement of the internal state of a trapped polyatomic ion. The method exploits the rich manifold of technically accessible rotational states in the molecule to realize robust state preparation and readout with far less stringent engineering than quantum logic methods recently demonstrated on diatomic molecules. The method can be applied to any reasonably small (≲10 atoms) polyatomic ion with an anisotropic polarizability.
Automated quantification of the synchrogram by recurrence plot analysis.
Nguyen, Chinh Duc; Wilson, Stephen James; Crozier, Stuart
2012-04-01
Recently, the concept of phase synchronization of two weakly coupled oscillators has raised a great research interest and has been applied to characterize synchronization phenomenon in physiological data. Phase synchronization of cardiorespiratory coupling is often studied by a synchrogram analysis, a graphical tool investigating the relationship between instantaneous phases of two signals. Although several techniques have been proposed to automatically quantify the synchrogram, most of them require a preselection of a phase-locking ratio by trial and error. One technique does not require this information; however, it is based on the power spectrum of phase's distribution in the synchrogram, which is vulnerable to noise. This study aims to introduce a new technique to automatically quantify the synchrogram by studying its dynamic structure. Our technique exploits recurrence plot analysis, which is a well-established tool for characterizing recurring patterns and nonstationarities in experiments. We applied our technique to detect synchronization in simulated and measured infants' cardiorespiratory data. Our results suggest that the proposed technique is able to systematically detect synchronization in noisy and chaotic data without preselecting the phase-locking ratio. By embedding phase information of the synchrogram into phase space, the phase-locking ratio is automatically unveiled as the number of attractors.
Integrating Agent Models of Subsistence Farming With Dynamic Models of Water Distribution
NASA Astrophysics Data System (ADS)
Bithell, M.; Brasington, J.
2004-12-01
Subsistence farming communities are dependent on the landscape to provide the resource base upon which their societies can be built. A key component of this is the role of climate, and the feedback between rainfall, crop growth and land clearance, and their coupling to the hydrological cycle. Temporal fluctuations in rainfall on timescales from annual through to decadal and longer, and the associated changes in in the spatial distribution of water availability mediated by the soil-type, slope and landcover determine the locations within the landscape that can support agriculture, and control sustainability of farming practices. We seek to make an integrated modelling system to represent land use change by coupling an agent based model of subsistence farming, and the associated exploitation of natural resources, to a realistic representation of the hydrology at the catchment scale, using TOPMODEL to map the spatial distribution of crop water stress for given time-series of rainfall. In this way we can, for example, investigate how demographic changes and associated removal of forest cover influence the possibilities for field locations within the catchment, through changes in ground water availability. The framework for this modelling exercise will be presented and preliminary results from this system will be discussed.
Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies.
Brown, Sam P; West, Stuart A; Diggle, Stephen P; Griffin, Ashleigh S
2009-11-12
Medical science is typically pitted against the evolutionary forces acting upon infective populations of bacteria. As an alternative strategy, we could exploit our growing understanding of population dynamics of social traits in bacteria to help treat bacterial disease. In particular, population dynamics of social traits could be exploited to introduce less virulent strains of bacteria, or medically beneficial alleles into infective populations. We discuss how bacterial strains adopting different social strategies can invade a population of cooperative wild-type, considering public good cheats, cheats carrying medically beneficial alleles (Trojan horses) and cheats carrying allelopathic traits (anti-competitor chemical bacteriocins or temperate bacteriophage viruses). We suggest that exploitation of the ability of cheats to invade cooperative, wild-type populations is a potential new strategy for treating bacterial disease.
Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies
Brown, Sam P.; West, Stuart A.; Diggle, Stephen P.; Griffin, Ashleigh S.
2009-01-01
Medical science is typically pitted against the evolutionary forces acting upon infective populations of bacteria. As an alternative strategy, we could exploit our growing understanding of population dynamics of social traits in bacteria to help treat bacterial disease. In particular, population dynamics of social traits could be exploited to introduce less virulent strains of bacteria, or medically beneficial alleles into infective populations. We discuss how bacterial strains adopting different social strategies can invade a population of cooperative wild-type, considering public good cheats, cheats carrying medically beneficial alleles (Trojan horses) and cheats carrying allelopathic traits (anti-competitor chemical bacteriocins or temperate bacteriophage viruses). We suggest that exploitation of the ability of cheats to invade cooperative, wild-type populations is a potential new strategy for treating bacterial disease. PMID:19805424
An Assessment of the Impact of the 1997-98 El Nino on the Asian-Australian Monsoon
NASA Technical Reports Server (NTRS)
Lau, K.-M.; Wu, H.-T.
1999-01-01
Using state-of-the-art satellite-gauge monthly rainfall estimate and optimally interpolated sea surface temperature (SST) data, we have assessed the 1997-98 AA-monsoon anomalies in terms of three basic causal factors: basin-scale SST, regional coupling, and internal variability. Singular Value Decomposition analyses of rainfall and SST are carried out globally over the entire tropics and regionally over the AA-monsoon domain. Contributions to monsoon rainfall predictability by various factors are evaluated from cumulative anomaly correlation with dominant regional SVD modes. Results reveal a dominant, large-scale monsoon-El Nino coupled mode with well-defined centers of action in the near-equatorial monsoon regions during the boreal summer and winter respectively. The observed 1997-98 AA-monsoon anomalies are found to be very complex with approximately 34% of the anomalies of the Asian (boreal) summer monsoon and 74% of the Australia (austral) monsoon attributable to basin-scale SST influence associated with El Nino. Regional coupled processes contribute an additional 19% and 10%, leaving about 47% and 16% due to internal dynamics for the boreal and austral monsoon respectively. For the boreal summer monsoon, it is noted that the highest monsoon predictability is not necessary associated with major El Nino events (e.g. 1997, 1982) but rather in non-El Nino years (e.g. 1980, 1988) when contributions from the regional coupled modes far exceed those from the basin-scale SST. The results suggest that in order to improve monsoon seasonal-to-interannual predictability, there is a need to exploit not only monsoon-El Nino relationship, but also intrinsic monsoon regional coupled processes.
Assessment of the 1997-1998 Asian Monsoon Anomalies
NASA Technical Reports Server (NTRS)
Lau, William K.-M.; Wu, H.-T.
1999-01-01
Using State-of-the-art satellite-gauge monthly rainfall estimate and optimally interpolated sea surface temperature (SST) data, we have assessed the 1997-98 Asian monsoon anomalies in terms of three basic causal factors: basin-scale SST, regional coupling, and internal variability. Singular Value Decomposition analysis of rainfall and SST are carried out globally over the entire tropics and regionally over the Asian monsoon domain. Contributions to monsoon rainfall predictability by various factors are evaluated from cumulative anomaly correlation with dominant regional SVD modes. Results reveal a dominant, large-scale monsoon-El Nino coupled mode with well-defined centers of action in the near-equatorial monsoon regions. it is noted that some subcontinental regions such as all-India, or arbitrarily chosen land regions over East Asia, while important socio-economically, are not near the centers of influence from El Nino, hence are not necessarily representative of the response of the entire monsoon region to El Nino. The observed 1997-98 Asian monsoon anomalies are found to be very complex with approximately 34% of the anomalies attributable to basin- scale SST influence associated with El Nino. Regional coupled processes contribute an additional 19%, leaving about 47% due to internal dynamics. Also noted is that the highest monsoon predictability is not necessary associated with major El Nino events (e.g. 1997, 1982) but rather in non-El Nino years (e.g. 1980, 1988) when contributions from the regional coupled modes far exceed those from the basin-scale SST. The results suggest that in order to improve monsoon seasonal-to-interannual predictability, there is a need to exploit not only monsoon-El Nino relationship, but also monsoon regional coupled processes and their modulation by long-term climate change.
Cooling a magnetic nanoisland by spin-polarized currents.
Brüggemann, J; Weiss, S; Nalbach, P; Thorwart, M
2014-08-15
We investigate cooling of a vibrational mode of a magnetic quantum dot by a spin-polarized tunneling charge current exploiting the magnetomechanical coupling. The spin-polarized current polarizes the magnetic nanoisland, thereby lowering its magnetic energy. At the same time, Ohmic heating increases the vibrational energy. A small magnetomechanical coupling then permits us to remove energy from the vibrational motion and cooling is possible. We find a reduction of the vibrational energy below 50% of its equilibrium value. The lowest vibration temperature is achieved for a weak electron-vibration coupling and a comparable magnetomechanical coupling. The cooling rate increases at first with the magnetomechanical coupling and then saturates.
Imaging and tuning of coupled photonic crystal cavities (Conference Presentation)
NASA Astrophysics Data System (ADS)
Gurioli, Massimo
2016-04-01
Photonic microcavities (PMC) coupled through their evanescent field are used for a large variety of classical and quantum devices. In such systems, a molecular-like spatial delocalization of the coupled modes is achieved by an evanescent tunnelling. The tunnelling rate depends on the height and depth of the photonic barrier between two adjacent resonators and therefore it is sensitive to the fabrication-induced disorder present in the center of the molecule. In this contribution, we address the problem of developing a post fabrication control of the tunnelling rate in photonic crystal coupled PMCs. The value of the photonic coupling (proportional to the tunnelling rate) is directly measured by the molecular mode splitting at the anticrossing point. By exploiting a combination of tuning techniques such as local infiltration of water, micro-evaporation, and laser induced non thermal micro-oxidation, we are able to either increase or decrease the detuning and the photonic coupling, independently. Near field imaging is also used for mapping the modes and establish delocalization. By water micro-infiltration, we were able to increase the photon coupling by 28%. On the contrary, by laser induced non thermal oxidation, we got a reduction of g by 30%. The combination of the two methods would therefore give a complete control of g with excellent accuracy. This could make possible the realization of array of photonic cavities with on demand tunnelling rate between each pair of coupled resonators. We believe that this peculiar engineering of photonic crystal molecules would open the road to possible progress in the exploitation of coherent interference between coupled optical resonators both for quantum information processing and optical communication.
The Sexual Exploitation of Missing Children: A Research Review.
ERIC Educational Resources Information Center
Hotaling, Gerald T.; Finkelhor, David
This paper evaluates current knowledge about the prevalence, dynamics, and short- and long-term effects of sexual exploitation among missing children. It is based upon empirical research findings from books, papers presented at professional meetings, doctoral dissertations, works in progress, and more than 75 articles in professional journals.…
High-Performance Ultrathin Active Chiral Metamaterials.
Wu, Zilong; Chen, Xiaodong; Wang, Mingsong; Dong, Jianwen; Zheng, Yuebing
2018-05-22
Ultrathin active chiral metamaterials with dynamically tunable and responsive optical chirality enable new optical sensors, modulators, and switches. Herein, we develop ultrathin active chiral metamaterials of highly tunable chiroptical responses by inducing tunable near-field coupling in the metamaterials and exploit the metamaterials as ultrasensitive sensors to detect trace amounts of solvent impurities. To demonstrate the active chiral metamaterials mediated by tunable near-field coupling, we design moiré chiral metamaterials (MCMs) as model metamaterials, which consist of two layers of identical Au nanohole arrays stacked upon one another in moiré patterns with a dielectric spacer layer between the Au layers. Our simulations, analytical fittings, and experiments reveal that spacer-dependent near-field coupling exists in the MCMs, which significantly enhances the spectral shift and line shape change of the circular dichroism (CD) spectra of the MCMs. Furthermore, we use a silk fibroin thin film as the spacer layer in the MCM. With the solvent-controllable swelling of the silk fibroin thin films, we demonstrate actively tunable near-field coupling and chiroptical responses of the silk-MCMs. Impressively, we have achieved the spectral shift over a wavelength range that is more than one full width at half-maximum and the sign inversion of the CD spectra in a single ultrathin (1/5 of wavelength in thickness) MCM. Finally, we apply the silk-MCMs as ultrasensitive sensors to detect trace amounts of solvent impurities down to 200 ppm, corresponding to an ultrahigh sensitivity of >10 5 nm/refractive index unit (RIU) and a figure of merit of 10 5 /RIU.
Optimal post-experiment estimation of poorly modeled dynamic systems
NASA Technical Reports Server (NTRS)
Mook, D. Joseph
1988-01-01
Recently, a novel strategy for post-experiment state estimation of discretely-measured dynamic systems has been developed. The method accounts for errors in the system dynamic model equations in a more general and rigorous manner than do filter-smoother algorithms. The dynamic model error terms do not require the usual process noise assumptions of zero-mean, symmetrically distributed random disturbances. Instead, the model error terms require no prior assumptions other than piecewise continuity. The resulting state estimates are more accurate than filters for applications in which the dynamic model error clearly violates the typical process noise assumptions, and the available measurements are sparse and/or noisy. Estimates of the dynamic model error, in addition to the states, are obtained as part of the solution of a two-point boundary value problem, and may be exploited for numerous reasons. In this paper, the basic technique is explained, and several example applications are given. Included among the examples are both state estimation and exploitation of the model error estimates.
High-resolution mapping of bifurcations in nonlinear biochemical circuits
NASA Astrophysics Data System (ADS)
Genot, A. J.; Baccouche, A.; Sieskind, R.; Aubert-Kato, N.; Bredeche, N.; Bartolo, J. F.; Taly, V.; Fujii, T.; Rondelez, Y.
2016-08-01
Analog molecular circuits can exploit the nonlinear nature of biochemical reaction networks to compute low-precision outputs with fewer resources than digital circuits. This analog computation is similar to that employed by gene-regulation networks. Although digital systems have a tractable link between structure and function, the nonlinear and continuous nature of analog circuits yields an intricate functional landscape, which makes their design counter-intuitive, their characterization laborious and their analysis delicate. Here, using droplet-based microfluidics, we map with high resolution and dimensionality the bifurcation diagrams of two synthetic, out-of-equilibrium and nonlinear programs: a bistable DNA switch and a predator-prey DNA oscillator. The diagrams delineate where function is optimal, dynamics bifurcates and models fail. Inverse problem solving on these large-scale data sets indicates interference from enzymatic coupling. Additionally, data mining exposes the presence of rare, stochastically bursting oscillators near deterministic bifurcations.
In silico Exploration of the Conformational Universe of GPCRs.
Rodríguez-Espigares, Ismael; Kaczor, Agnieszka A; Selent, Jana
2016-07-01
The structural plasticity of G protein coupled receptors (GPCRs) leads to a conformational universe going from inactive to active receptor states with several intermediate states. Many of them have not been captured yet and their role for GPCR activation is not well understood. The study of this conformational space and the transition dynamics between different receptor populations is a major challenge in molecular biophysics. The rational design of effector molecules that target such receptor populations allows fine-tuning receptor signalling with higher specificity to produce drugs with safer therapeutic profiles. In this minireview, we outline highly conserved receptor regions which are considered determinant for the establishment of distinct receptor states. We then discuss in-silico approaches such as dimensionality reduction methods and Markov State Models to explore the GPCR conformational universe and exploit the obtained conformations through structure-based drug design. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Diffractive paths for weak localization in quantum billiards
NASA Astrophysics Data System (ADS)
Březinová, Iva; Stampfer, Christoph; Wirtz, Ludger; Rotter, Stefan; Burgdörfer, Joachim
2008-04-01
We study the weak-localization effect in quantum transport through a clean ballistic cavity with regular classical dynamics. We address the question which paths account for the suppression of conductance through a system where disorder and chaos are absent. By exploiting both quantum and semiclassical methods, we unambiguously identify paths that are diffractively backscattered into the cavity (when approaching the lead mouths from the cavity interior) to play a key role. Diffractive scattering couples transmitted and reflected paths and is thus essential to reproduce the weak-localization peak in reflection and the corresponding antipeak in transmission. A comparison of semiclassical calculations featuring these diffractive paths yields good agreement with full quantum calculations and experimental data. Our theory provides system-specific predictions for the quantum regime of few open lead modes and can be expected to be relevant also for mixed as well as chaotic systems.
Kar, T K; Ghosh, Bapan
2012-08-01
In the present paper, we develop a simple two species prey-predator model in which the predator is partially coupled with alternative prey. The aim is to study the consequences of providing additional food to the predator as well as the effects of harvesting efforts applied to both the species. It is observed that the provision of alternative food to predator is not always beneficial to the system. A complete picture of the long run dynamics of the system is discussed based on the effort pair as control parameters. Optimal augmentations of prey and predator biomass at final time have been investigated by optimal control theory. Also the short and large time effects of the application of optimal control have been discussed. Finally, some numerical illustrations are given to verify our analytical results with the help of different sets of parameters. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Magneto-ionic control of interfacial magnetism
NASA Astrophysics Data System (ADS)
Bauer, Uwe; Yao, Lide; Tan, Aik Jun; Agrawal, Parnika; Emori, Satoru; Tuller, Harry L.; van Dijken, Sebastiaan; Beach, Geoffrey S. D.
2015-02-01
In metal/oxide heterostructures, rich chemical, electronic, magnetic and mechanical properties can emerge from interfacial chemistry and structure. The possibility to dynamically control interface characteristics with an electric field paves the way towards voltage control of these properties in solid-state devices. Here, we show that electrical switching of the interfacial oxidation state allows for voltage control of magnetic properties to an extent never before achieved through conventional magneto-electric coupling mechanisms. We directly observe in situ voltage-driven O2- migration in a Co/metal-oxide bilayer, which we use to toggle the interfacial magnetic anisotropy energy by >0.75 erg cm-2 at just 2 V. We exploit the thermally activated nature of ion migration to markedly increase the switching efficiency and to demonstrate reversible patterning of magnetic properties through local activation of ionic migration. These results suggest a path towards voltage-programmable materials based on solid-state switching of interface oxygen chemistry.
Gain scheduled linear quadratic control for quadcopter
NASA Astrophysics Data System (ADS)
Okasha, M.; Shah, J.; Fauzi, W.; Hanouf, Z.
2017-12-01
This study exploits the dynamics and control of quadcopters using Linear Quadratic Regulator (LQR) control approach. The quadcopter’s mathematical model is derived using the Newton-Euler method. It is a highly manoeuvrable, nonlinear, coupled with six degrees of freedom (DOF) model, which includes aerodynamics and detailed gyroscopic moments that are often ignored in many literatures. The linearized model is obtained and characterized by the heading angle (i.e. yaw angle) of the quadcopter. The adopted control approach utilizes LQR method to track several reference trajectories including circle and helix curves with significant variation in the yaw angle. The controller is modified to overcome difficulties related to the continuous changes in the operating points and eliminate chattering and discontinuity that is observed in the control input signal. Numerical non-linear simulations are performed using MATLAB and Simulink to illustrate to accuracy and effectiveness of the proposed controller.
Mechanism of Cytokinetic Contractile Ring Constriction in Fission Yeast
Stachowiak, Matthew R.; Laplante, Caroline; Chin, Harvey F.; Guirao, Boris; Karatekin, Erdem; Pollard, Thomas D.; O’Shaughnessy, Ben
2014-01-01
SUMMARY Cytokinesis involves constriction of a contractile actomyosin ring. The mechanisms generating ring tension and setting the constriction rate remain unknown, since the organization of the ring is poorly characterized, its tension was rarely measured, and constriction is coupled to other processes. To isolate ring mechanisms we studied fission yeast protoplasts, where constriction occurs without the cell wall. Exploiting the absence of cell wall and actin cortex, we measured ring tension and imaged ring organization, which was dynamic and disordered. Computer simulations based on the amounts and biochemical properties of the key proteins showed that they spontaneously self-organize into a tension-generating bundle. Together with rapid component turnover, the self-organization mechanism continuously reassembles and remodels the constricting ring. Ring constriction depended on cell shape, revealing that the ring operates close to conditions of isometric tension. Thus, the fission yeast ring sets its own tension, but other processes set the constriction rate. PMID:24914559
A decomposition approach to the design of a multiferroic memory bit
NASA Astrophysics Data System (ADS)
Acevedo, Ruben; Liang, Cheng-Yen; Carman, Gregory P.; Sepulveda, Abdon E.
2017-06-01
The objective of this paper is to present a methodology for the design of a memory bit to minimize the energy required to write data at the bit level. By straining a ferromagnetic nickel nano-dot by means of a piezoelectric substrate, its magnetization vector rotates between two stable states defined as a 1 and 0 for digital memory. The memory bit geometry, actuation mechanism and voltage control law were used as design variables. The approach used was to decompose the overall design process into simpler sub-problems whose structure can be exploited for a more efficient solution. This method minimizes the number of fully dynamic coupled finite element analyses required to converge to a near optimal design, thus decreasing the computational time for the design process. An in-plane sample design problem is presented to illustrate the advantages and flexibility of the procedure.
From transistor to trapped-ion computers for quantum chemistry.
Yung, M-H; Casanova, J; Mezzacapo, A; McClean, J; Lamata, L; Aspuru-Guzik, A; Solano, E
2014-01-07
Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.
Ecosystem approach to inland fisheries: research needs and implementation strategies
Beard, T. Douglas; Arlinghaus, Robert; Cooke, Steven J.; McIntyre, Peter B.; De Silva, Sena; Bartley, Devin; Cowx, Ian G.
2011-01-01
Inland fisheries are a vital component in the livelihoods and food security of people throughout the world, as well as contributing huge recreational and economic benefits. These valuable assets are jeopardized by lack of research-based understanding of the impacts of fisheries on inland ecosystems, and similarly the impact of human activities associated with inland waters on fisheries and aquatic biodiversity. To explore this topic, an international workshop was organized in order to examine strategies to incorporate fisheries into ecosystem approaches for management of inland waters. To achieve this goal, a new research agenda is needed that focuses on: quantifying the ecosystem services provided by fresh waters; quantifying the economic, social and nutritional benefits of inland fisheries; improving assessments designed to evaluate fisheries exploitation potential; and examining feedbacks between fisheries, ecosystem productivity and aquatic biodiversity. Accomplishing these objectives will require merging natural and social science approaches to address coupled social–ecological system dynamics. PMID:21325307
NASA Astrophysics Data System (ADS)
Scalo, Carlo; Migliorino, Mario Tindaro; Chapelier, Jean-Baptiste
2017-11-01
We investigate the stability properties of thermoacoustically unstable planar waves in transcritical fluids via high-fidelity Navier-Stokes simulations based on a Spectral Difference (SD) discretization coupled with the Peng-Robinson equation of state and Chung's method for the fluid transport properties. A canonical thermoacoustically unstable standing-wave resonator filled with supercritical CO2 kept in pseudoboiling conditions in the stack is considered. Real fluid effects near the critical point are shown to boost thermoacoustic energy production, as also confirmed by companion eigenvalue analysis supporting the closure of the acoustic energy budgets. A kink in the eigenmode shape is observed at the location of pseudo phase change, consistent with the abrupt change in base impedance. The current study demonstrates a transformative approach to thermoacoustic energy generation, exploiting otherwise unwanted fluid dynamics instabilities commonly observed in aeronautical applications employing transcritical fluids.
Ecosystem approach to inland fisheries: Research needs and implementation strategies
Beard, T.D.; Arlinghaus, R.; Cooke, S.J.; McIntyre, P.B.; De Silva, S.; Bartley, D.; Cowx, I.G.
2011-01-01
Inland fisheries are a vital component in the livelihoods and food security of people throughout the world, as well as contributing huge recreational and economic benefits. These valuable assets are jeopardized by lack of research-based understanding of the impacts of fisheries on inland ecosystems, and similarly the impact of human activities associated with inland waters on fisheries and aquatic biodiversity. To explore this topic, an international workshop was organized in order to examine strategies to incorporate fisheries into ecosystem approaches for management of inland waters. To achieve this goal, a new research agenda is needed that focuses on: quantifying the ecosystem services provided by fresh waters; quantifying the economic, social and nutritional benefits of inland fisheries; improving assessments designed to evaluate fisheries exploitation potential; and examining feedbacks between fisheries, ecosystem productivity and aquatic biodiversity. Accomplishing these objectives will require merging natural and social science approaches to address coupled social-ecological system dynamics. ?? 2010 The Royal Society.
Ecosystem approach to inland fisheries: research needs and implementation strategies
Beard, T. Douglas; Arlinghaus, Robert; Cooke, Steven J.; McIntyre, Peter B.; De Silva, Sena; Bartley, Devin M.; Cowx, Ian G.
2011-01-01
Inland fisheries are a vital component in the livelihoods and food security of people throughout the world, as well as contributing huge recreational and economic benefits. These valuable assets are jeopardized by lack of research-based understanding of the impacts of fisheries on inland ecosystems, and similarly the impact of human activities associated with inland waters on fisheries and aquatic biodiversity. To explore this topic, an international workshop was organized in order to examine strategies to incorporate fisheries into ecosystem approaches for management of inland waters. To achieve this goal, a new research agenda is needed that focuses on: quantifying the ecosystem services provided by fresh waters; quantifying the economic, social and nutritional benefits of inland fisheries; improving assessments designed to evaluate fisheries exploitation potential; and examining feedbacks between fisheries, ecosystem productivity and aquatic biodiversity. Accomplishing these objectives will require merging natural and social science approaches to address coupled social–ecological system dynamics.
Advanced Multispectral Scanner (AMS) study. [aircraft remote sensing
NASA Technical Reports Server (NTRS)
1978-01-01
The status of aircraft multispectral scanner technology was accessed in order to develop preliminary design specifications for an advanced instrument to be used for remote sensing data collection by aircraft in the 1980 time frame. The system designed provides a no-moving parts multispectral scanning capability through the exploitation of linear array charge coupled device technology and advanced electronic signal processing techniques. Major advantages include: 10:1 V/H rate capability; 120 deg FOV at V/H = 0.25 rad/sec; 1 to 2 rad resolution; high sensitivity; large dynamic range capability; geometric fidelity; roll compensation; modularity; long life; and 24 channel data acquisition capability. The field flattening techniques of the optical design allow wide field view to be achieved at fast f/nos for both the long and short wavelength regions. The digital signal averaging technique permits maximization of signal to noise performance over the entire V/H rate range.
From transistor to trapped-ion computers for quantum chemistry
Yung, M.-H.; Casanova, J.; Mezzacapo, A.; McClean, J.; Lamata, L.; Aspuru-Guzik, A.; Solano, E.
2014-01-01
Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology. PMID:24395054
The Challenges to Coupling Dynamic Geospatial Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, N
2006-06-23
Many applications of modeling spatial dynamic systems focus on a single system and a single process, ignoring the geographic and systemic context of the processes being modeled. A solution to this problem is the coupled modeling of spatial dynamic systems. Coupled modeling is challenging for both technical reasons, as well as conceptual reasons. This paper explores the benefits and challenges to coupling or linking spatial dynamic models, from loose coupling, where information transfer between models is done by hand, to tight coupling, where two (or more) models are merged as one. To illustrate the challenges, a coupled model of Urbanizationmore » and Wildfire Risk is presented. This model, called Vesta, was applied to the Santa Barbara, California region (using real geospatial data), where Urbanization and Wildfires occur and recur, respectively. The preliminary results of the model coupling illustrate that coupled modeling can lead to insight into the consequences of processes acting on their own.« less
Rational Exploitation and Utilizing of Groundwater in Jiangsu Coastal Area
NASA Astrophysics Data System (ADS)
Kang, B.; Lin, X.
2017-12-01
Jiangsu coastal area is located in the southeast coast of China, where is a new industrial base and an important coastal and Land Resources Development Zone of China. In the areas with strong human exploitation activities, regional groundwater evolution is obviously affected by human activities. In order to solve the environmental geological problems caused by groundwater exploitation fundamentally, we must find out the forming conditions of regional groundwater hydrodynamic field, and the impact of human activities on groundwater hydrodynamic field evolution and hydrogeochemical evolition. Based on these results, scientific management and reasonable exploitation of the regional groundwater resources can be provided for the utilization. Taking the coastal area of Jiangsu as the research area, we investigate and analyze of the regional hydrogeological conditions. The numerical simulation model of groundwater flow was established according to the water power, chemical and isotopic methods, the conditions of water flow and the influence of hydrodynamic field on the water chemical field. We predict the evolution of regional groundwater dynamics under the influence of human activities and climate change and evaluate the influence of groundwater dynamic field evolution on the environmental geological problems caused by groundwater exploitation under various conditions. We get the following conclusions: Three groundwater exploitation optimal schemes were established. The groundwater salinization was taken as the primary control condition. The substitution model was proposed to model groundwater exploitation and water level changes by BP network method.Then genetic algorithm was used to solve the optimization solution. Three groundwater exploitation optimal schemes were submit to local water resource management. The first sheme was used to solve the groundwater salinization problem. The second sheme focused on dual water supply. The third sheme concerned on emergency water supppy. This is the first time environment problem taken as water management objectinve in this coastal area.
Synchronization and chaotic dynamics of coupled mechanical metronomes
NASA Astrophysics Data System (ADS)
Ulrichs, Henning; Mann, Andreas; Parlitz, Ulrich
2009-12-01
Synchronization scenarios of coupled mechanical metronomes are studied by means of numerical simulations showing the onset of synchronization for two, three, and 100 globally coupled metronomes in terms of Arnol'd tongues in parameter space and a Kuramoto transition as a function of coupling strength. Furthermore, we study the dynamics of metronomes where overturning is possible. In this case hyperchaotic dynamics associated with some diffusion process in configuration space is observed, indicating the potential complexity of metronome dynamics.
NASA Technical Reports Server (NTRS)
Zang, Thomas A.; Green, Lawrence L.
1999-01-01
A challenge for the fluid dynamics community is to adapt to and exploit the trend towards greater multidisciplinary focus in research and technology. The past decade has witnessed substantial growth in the research field of Multidisciplinary Design Optimization (MDO). MDO is a methodology for the design of complex engineering systems and subsystems that coherently exploits the synergism of mutually interacting phenomena. As evidenced by the papers, which appear in the biannual AIAA/USAF/NASA/ISSMO Symposia on Multidisciplinary Analysis and Optimization, the MDO technical community focuses on vehicle and system design issues. This paper provides an overview of the MDO technology field from a fluid dynamics perspective, giving emphasis to suggestions of specific applications of recent MDO technologies that can enhance fluid dynamics research itself across the spectrum, from basic flow physics to full configuration aerodynamics.
Dynamical Models for Sloshing Dynamics of Helium 2 Under Low-G Conditions
NASA Technical Reports Server (NTRS)
Hung, R. J.; Long, Y. T.
1997-01-01
Coupling of sloshing dynamics within a partially filled rotating dewar of superfluid helium 2 with spacecraft dynamics are investigated in response to the realistic environmental disturbance forces and torques acting on the spacecraft during normal operation. This study investigates: (1) the rotating bubble of superfluid helium 2 reacting to combined environmental disturbances, including gravity gradient, aerodynamic, and magnetic forces and torques; (2) characteristics of slosh reaction forces and torques coupling with spacecraft dynamics; (3) the contribution of slosh dynamics to over-all spacecraft dynamics; and (4) activating of attitude and translation control system. The numerical computation of sloshing dynamics is based on the rotational frame, while the spacecraft dynamics is associated with non-rotational frame. Results show that the contributions of spacecraft dynamics are driven by the environmental disturbances coupling with slosh dynamics. Without considering the effects of environmental disturbances-driven slosh dynamics acting on spacecraft coupling with the spacecraft dynamics may lead to the wrong results for the development of spacecraft system guidance and attitude control techniques.
Schilde, M.; Doerner, K.F.; Hartl, R.F.
2014-01-01
In urban areas, logistic transportation operations often run into problems because travel speeds change, depending on the current traffic situation. If not accounted for, time-dependent and stochastic travel speeds frequently lead to missed time windows and thus poorer service. Especially in the case of passenger transportation, it often leads to excessive passenger ride times as well. Therefore, time-dependent and stochastic influences on travel speeds are relevant for finding feasible and reliable solutions. This study considers the effect of exploiting statistical information available about historical accidents, using stochastic solution approaches for the dynamic dial-a-ride problem (dynamic DARP). The authors propose two pairs of metaheuristic solution approaches, each consisting of a deterministic method (average time-dependent travel speeds for planning) and its corresponding stochastic version (exploiting stochastic information while planning). The results, using test instances with up to 762 requests based on a real-world road network, show that in certain conditions, exploiting stochastic information about travel speeds leads to significant improvements over deterministic approaches. PMID:25844013
NASA Astrophysics Data System (ADS)
Tiwari, Vivek; Peters, William K.; Jonas, David M.
2017-10-01
Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.
Tiwari, Vivek; Peters, William K; Jonas, David M
2017-10-21
Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.
Spin-orbit-torque-induced skyrmion dynamics for different types of spin-orbit coupling
NASA Astrophysics Data System (ADS)
Lee, Seung-Jae; Kim, Kyoung-Whan; Lee, Hyun-Woo; Lee, Kyung-Jin
2018-06-01
We investigate current-induced skyrmion dynamics in the presence of Dzyaloshinskii-Moriya interaction and spin-orbit spin-transfer torque corresponding to various types of spin-orbit coupling. We determine the symmetries of Dzyaloshinskii-Moriya interaction and spin-orbit spin-transfer torque based on linear spin-orbit coupling model. We find that like interfacial Dzyaloshinskii-Moriya interaction (Rashba spin-orbit coupling) and bulk Dzyaloshinskii-Moriya interaction (Weyl spin-orbit coupling), Dresselhaus spin-orbit coupling also has a possibility for stabilizing skyrmion and current-induced skyrmion dynamics.
Role of social interactions in dynamic patterns of resource patches and forager aggregation
Tania, Nessy; Vanderlei, Ben; Heath, Joel P.; Edelstein-Keshet, Leah
2012-01-01
The dynamics of resource patches and species that exploit such patches are of interest to ecologists, conservation biologists, modelers, and mathematicians. Here we consider how social interactions can create unique, evolving patterns in space and time. Whereas simple prey taxis (with consumable prey) promotes spatial uniform distributions, here we show that taxis in producer–scrounger groups can lead to pattern formation. We consider two types of foragers: those that search directly (“producers”) and those that exploit other foragers to find food (“scroungers” or exploiters). We show that such groups can sustain fluctuating spatiotemporal patterns, akin to “waves of pursuit.” Investigating the relative benefits to the individuals, we observed conditions under which either strategy leads to enhanced success, defined as net food consumption. Foragers that search for food directly have an advantage when food patches are localized. Those that seek aggregations of group mates do better when their ability to track group mates exceeds the foragers’ food-sensing acuity. When behavioral switching or reproductive success of the strategies is included, the relative abundance of foragers and exploiters is dynamic over time, in contrast with classic models that predict stable frequencies. Our work shows the importance of considering two-way interaction—i.e., how food distribution both influences and is influenced by social foraging and aggregation of predators. PMID:22745167
NASA Astrophysics Data System (ADS)
Huang, Ailing; Zang, Guangzhi; He, Zhengbing; Guan, Wei
2017-05-01
Urban public transit system is a typical mixed complex network with dynamic flow, and its evolution should be a process coupling topological structure with flow dynamics, which has received little attention. This paper presents the R-space to make a comparative empirical analysis on Beijing’s flow-weighted transit route network (TRN) and we found that both the Beijing’s TRNs in the year of 2011 and 2015 exhibit the scale-free properties. As such, we propose an evolution model driven by flow to simulate the development of TRNs with consideration of the passengers’ dynamical behaviors triggered by topological change. The model simulates that the evolution of TRN is an iterative process. At each time step, a certain number of new routes are generated driven by travel demands, which leads to dynamical evolution of new routes’ flow and triggers perturbation in nearby routes that will further impact the next round of opening new routes. We present the theoretical analysis based on the mean-field theory, as well as the numerical simulation for this model. The results obtained agree well with our empirical analysis results, which indicate that our model can simulate the TRN evolution with scale-free properties for distributions of node’s strength and degree. The purpose of this paper is to illustrate the global evolutional mechanism of transit network that will be used to exploit planning and design strategies for real TRNs.
Extreme scale multi-physics simulations of the tsunamigenic 2004 Sumatra megathrust earthquake
NASA Astrophysics Data System (ADS)
Ulrich, T.; Gabriel, A. A.; Madden, E. H.; Wollherr, S.; Uphoff, C.; Rettenberger, S.; Bader, M.
2017-12-01
SeisSol (www.seissol.org) is an open-source software package based on an arbitrary high-order derivative Discontinuous Galerkin method (ADER-DG). It solves spontaneous dynamic rupture propagation on pre-existing fault interfaces according to non-linear friction laws, coupled to seismic wave propagation with high-order accuracy in space and time (minimal dispersion errors). SeisSol exploits unstructured meshes to account for complex geometries, e.g. high resolution topography and bathymetry, 3D subsurface structure, and fault networks. We present the up-to-date largest (1500 km of faults) and longest (500 s) dynamic rupture simulation modeling the 2004 Sumatra-Andaman earthquake. We demonstrate the need for end-to-end-optimization and petascale performance of scientific software to realize realistic simulations on the extreme scales of subduction zone earthquakes: Considering the full complexity of subduction zone geometries leads inevitably to huge differences in element sizes. The main code improvements include a cache-aware wave propagation scheme and optimizations of the dynamic rupture kernels using code generation. In addition, a novel clustered local-time-stepping scheme for dynamic rupture has been established. Finally, asynchronous output has been implemented to overlap I/O and compute time. We resolve the frictional sliding process on the curved mega-thrust and a system of splay faults, as well as the seismic wave field and seafloor displacement with frequency content up to 2.2 Hz. We validate the scenario by geodetic, seismological and tsunami observations. The resulting rupture dynamics shed new light on the activation and importance of splay faults.
NASA Astrophysics Data System (ADS)
Garza, Alejandro J.
Perhaps the most important approximations to the electronic structure problem in quantum chemistry are those based on coupled cluster and density functional theories. Coupled cluster theory has been called the ``gold standard'' of quantum chemistry due to the high accuracy that it achieves for weakly correlated systems. Kohn-Sham density functionals based on semilocal approximations are, without a doubt, the most widely used methods in chemistry and material science because of their high accuracy/cost ratio. The root of the success of coupled cluster and density functionals is their ability to efficiently describe the dynamic part of the electron correlation. However, both traditional coupled cluster and density functional approximations may fail catastrophically when substantial static correlation is present. This severely limits the applicability of these methods to a plethora of important chemical and physical problems such as, e.g., the description of bond breaking, transition states, transition metal-, lanthanide- and actinide-containing compounds, and superconductivity. In an attempt to tackle this problem, nonstandard (single-reference) coupled cluster-based techniques that aim to describe static correlation have been recently developed: pair coupled cluster doubles (pCCD) and singlet-paired coupled cluster doubles (CCD0). The ability to describe static correlation in pCCD and CCD0 comes, however, at the expense of important amounts of dynamic correlation so that the high accuracy of standard coupled cluster becomes unattainable. Thus, the reliable and efficient description of static and dynamic correlation in a simultaneous manner remains an open problem for quantum chemistry and many-body theory in general. In this thesis, different ways to combine pCCD and CCD0 with density functionals in order to describe static and dynamic correlation simultaneously (and efficiently) are explored. The combination of wavefunction and density functional methods has a long history in quantum chemistry (practical implementations have appeared in the literature since the 1970s). However, this kind of techniques have not achieved widespread use due to problems such as double counting of correlation and the symmetry dilemma--the fact that wavefunction methods respect the symmetries of Hamiltonian, while modern functionals are designed to work with broken symmetry densities. Here, particular mathematical features of pCCD and CCD0 are exploited to avoid these problems in an efficient manner. The two resulting families of approximations, denoted as pCCD+DFT and CCD0+DFT, are shown to be able to describe static and dynamic correlation in standard benchmark calculations. Furthermore, it is also shown that CCD0+DFT lends itself to combination with correlation from the direct random phase approximation (dRPA). Inclusion of dRPA in the long-range via the technique of range-separation allows for the description of dispersion correlation, the remaining part of the correlation. Thus, when combined with the dRPA, CCD0+DFT can account for all three-types of electron correlation that are necessary to accurately describe molecular systems. Lastly, applications of CCD0+DFT to actinide chemistry are considered in this work. The accuracy of CCD0+DFT for predicting equilibrium geometries and vibrational frequencies of actinide molecules and ions is assessed and compared to that of well-established quantum chemical methods. For this purpose, the f0 actinyl series (UO2 2+, NpO 23+, PuO24+, the isoelectronic NUN, and Thorium (ThO, ThO2+) and Nobelium (NoO, NoO2) oxides are studied. It is shown that the CCD0+DFT description of these species agrees with available experimental data and is comparable with the results given by the highest-level calculations that are possible for such heavy compounds while being, at least, an order of magnitude lower in computational cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannatelli, Mark D.
Part one of this dissertation research has focused on harnessing the ability of laccases to generate reactive para-quinones in situ from the corresponding hydroquinones, followed by reaction with a variety of nucleophiles to perform novel carbon-carbon, carbon-nitrogen, and carbon-sulfur bond forming reactions for the synthesis of new and existing compounds. In part two of this dissertation, the fundamental laccase-catalyzed coupling chemistry developed in part one was applied to functionalize the surface of kraft lignin.
The emergence of cooperation from a single cooperative mutant
NASA Astrophysics Data System (ADS)
Cremer, Jonas; Melbinger, Anna; Frey, Erwin
2012-02-01
Population structure is one central condition which promotes the stability of cooperation: If cooperators more likely interact with other cooperators (positive assortment), they keep most of their benefit for themselves and are less exploited by non-cooperators. However, positive assortment can only act successfully if cooperation is already well established in the population such that cooperative individuals can successfully assort. But how can cooperation emerge when starting with a single cooperative mutant? Here we study this issue for a generic situation of microbial systems where microbes regularly form new colonies and show strong population growth. We show how and when the dynamical interplay between colony formation, population growth and evolution within colonies can provoke the emergence of cooperation. In particular, the probability for a single cooperative mutant to succeed is robustly large when colony-formation is fast or comparable to the time-scale of growth within colonies; growth supports cooperation.[4pt] [1] A. Melbinger, J. Cremer, and E. Frey, Evolutionary game theory in growing populations, Phys. Rev. Lett. 105, 178101 (2010)[0pt] [2] J. Cremer, A. Melbinger, and E. Frey, Evolutionary and population dynamics: a coupled approach, arXiv:1108.2604
A numerical method for simulations of rigid fiber suspensions
NASA Astrophysics Data System (ADS)
Tornberg, Anna-Karin; Gustavsson, Katarina
2006-06-01
In this paper, we present a numerical method designed to simulate the challenging problem of the dynamics of slender fibers immersed in an incompressible fluid. Specifically, we consider microscopic, rigid fibers, that sediment due to gravity. Such fibers make up the micro-structure of many suspensions for which the macroscopic dynamics are not well understood. Our numerical algorithm is based on a non-local slender body approximation that yields a system of coupled integral equations, relating the forces exerted on the fibers to their velocities, which takes into account the hydrodynamic interactions of the fluid and the fibers. The system is closed by imposing the constraints of rigid body motions. The fact that the fibers are straight have been further exploited in the design of the numerical method, expanding the force on Legendre polynomials to take advantage of the specific mathematical structure of a finite-part integral operator, as well as introducing analytical quadrature in a manner possible only for straight fibers. We have carefully treated issues of accuracy, and present convergence results for all numerical parameters before we finally discuss the results from simulations including a larger number of fibers.
A programmable metasurface with dynamic polarization, scattering and focusing control
NASA Astrophysics Data System (ADS)
Yang, Huanhuan; Cao, Xiangyu; Yang, Fan; Gao, Jun; Xu, Shenheng; Li, Maokun; Chen, Xibi; Zhao, Yi; Zheng, Yuejun; Li, Sijia
2016-10-01
Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications.
A programmable metasurface with dynamic polarization, scattering and focusing control
Yang, Huanhuan; Cao, Xiangyu; Yang, Fan; Gao, Jun; Xu, Shenheng; Li, Maokun; Chen, Xibi; Zhao, Yi; Zheng, Yuejun; Li, Sijia
2016-01-01
Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications. PMID:27774997
A programmable metasurface with dynamic polarization, scattering and focusing control.
Yang, Huanhuan; Cao, Xiangyu; Yang, Fan; Gao, Jun; Xu, Shenheng; Li, Maokun; Chen, Xibi; Zhao, Yi; Zheng, Yuejun; Li, Sijia
2016-10-24
Diverse electromagnetic (EM) responses of a programmable metasurface with a relatively large scale have been investigated, where multiple functionalities are obtained on the same surface. The unit cell in the metasurface is integrated with one PIN diode, and thus a binary coded phase is realized for a single polarization. Exploiting this anisotropic characteristic, reconfigurable polarization conversion is presented first. Then the dynamic scattering performance for two kinds of sources, i.e. a plane wave and a point source, is carefully elaborated. To tailor the scattering properties, genetic algorithm, normally based on binary coding, is coupled with the scattering pattern analysis to optimize the coding matrix. Besides, inverse fast Fourier transform (IFFT) technique is also introduced to expedite the optimization process of a large metasurface. Since the coding control of each unit cell allows a local and direct modulation of EM wave, various EM phenomena including anomalous reflection, diffusion, beam steering and beam forming are successfully demonstrated by both simulations and experiments. It is worthwhile to point out that a real-time switch among these functionalities is also achieved by using a field-programmable gate array (FPGA). All the results suggest that the proposed programmable metasurface has great potentials for future applications.
Watching hydrogen-bond dynamics in a β-turn by transient two-dimensional infrared spectroscopy
NASA Astrophysics Data System (ADS)
Kolano, Christoph; Helbing, Jan; Kozinski, Mariusz; Sander, Wolfram; Hamm, Peter
2006-11-01
X-ray crystallography and nuclear magnetic resonance measurements provide us with atomically resolved structures of an ever-growing number of biomolecules. These static structural snapshots are important to our understanding of biomolecular function, but real biomolecules are dynamic entities that often exploit conformational changes and transient molecular interactions to perform their tasks. Nuclear magnetic resonance methods can follow such structural changes, but only on millisecond timescales under non-equilibrium conditions. Time-resolved X-ray crystallography has recently been used to monitor the photodissociation of CO from myoglobin on a subnanosecond timescale, yet remains challenging to apply more widely. In contrast, two-dimensional infrared spectroscopy, which maps vibrational coupling between molecular groups and hence their relative positions and orientations, is now routinely used to study equilibrium processes on picosecond timescales. Here we show that the extension of this method into the non-equilibrium regime allows us to observe in real time in a short peptide the weakening of an intramolecular hydrogen bond and concomitant opening of a β-turn. We find that the rate of this process is two orders of magnitude faster than the `folding speed limit' established for contact formation between protein side chains.
Computational design of hepatitis C vaccines using maximum entropy models and population dynamics
NASA Astrophysics Data System (ADS)
Hart, Gregory; Ferguson, Andrew
Hepatitis C virus (HCV) afflicts 170 million people and kills 350,000 annually. Vaccination offers the most realistic and cost effective hope of controlling this epidemic. Despite 20 years of research, no vaccine is available. A major obstacle is the virus' extreme genetic variability and rapid mutational escape from immune pressure. Improvements in the vaccine design process are urgently needed. Coupling data mining with spin glass models and maximum entropy inference, we have developed a computational approach to translate sequence databases into empirical fitness landscapes. These landscapes explicitly connect viral genotype to phenotypic fitness and reveal vulnerable targets that can be exploited to rationally design immunogens. Viewing these landscapes as the mutational ''playing field'' over which the virus is constrained to evolve, we have integrated them with agent-based models of the viral mutational and host immune response dynamics, establishing a data-driven immune simulator of HCV infection. We have employed this simulator to perform in silico screening of HCV immunogens. By systematically identifying a small number of promising vaccine candidates, these models can accelerate the search for a vaccine by massively reducing the experimental search space.
Anderson, D.R.
1974-01-01
Optimal exploitation strategies were studied for an animal population in a stochastic, serially correlated environment. This is a general case and encompasses a number of important cases as simplifications. Data on the mallard (Anas platyrhynchos) were used to explore the exploitation strategies and test several hypotheses because relatively much is known concerning the life history and general ecology of this species and extensive empirical data are available for analysis. The number of small ponds on the central breeding grounds was used as an index to the state of the environment. Desirable properties of an optimal exploitation strategy were defined. A mathematical model was formulated to provide a synthesis of the existing literature, estimates of parameters developed from an analysis of data, and hypotheses regarding the specific effect of exploitation on total survival. Both the literature and the analysis of data were inconclusive concerning the effect of exploitation on survival. Therefore, alternative hypotheses were formulated: (1) exploitation mortality represents a largely additive form of mortality, or (2 ) exploitation mortality is compensatory with other forms of mortality, at least to some threshold level. Models incorporating these two hypotheses were formulated as stochastic dynamic programming models and optimal exploitation strategies were derived numerically on a digital computer. Optimal exploitation strategies were found to exist under rather general conditions. Direct feedback control was an integral component in the optimal decision-making process. Optimal exploitation was found to be substantially different depending upon the hypothesis regarding the effect of exploitation on the population. Assuming that exploitation is largely an additive force of mortality, optimal exploitation decisions are a convex function of the size of the breeding population and a linear or slightly concave function of the environmental conditions. Optimal exploitation under this hypothesis tends to reduce the variance of the size of the population. Under the hypothesis of compensatory mortality forces, optimal exploitation decisions are approximately linearly related to the size of the breeding population. Environmental variables may be somewhat more important than the size of the breeding population to the production of young mallards. In contrast, the size of the breeding population appears to be more important in the exploitation process than is the state of the environment. The form of the exploitation strategy appears to be relatively insensitive to small changes in the production rate. In general, the relative importance of the size of the breeding population may decrease as fecundity increases. The optimal level of exploitation in year t must be based on the observed size of the population and the state of the environment in year t unless the dynamics of the population, the state of the environment, and the result of the exploitation decisions are completely deterministic. Exploitation based on an average harvest, harvest rate, or designed to maintain a constant breeding population size is inefficient.
Seasonal source-sink dynamics at the edge of a species' range
Kanda, L.L.; Fuller, T.K.; Sievert, P.R.; Kellogg, R.L.
2009-01-01
The roles of dispersal and population dynamics in determining species' range boundaries recently have received theoretical attention but little empirical work. Here we provide data on survival, reproduction, and movement for a Virginia opossum (Didelphis virginiana) population at a local distributional edge in central Massachusetts (USA). Most juvenile females that apparently exploited anthropogenic resources survived their first winter, whereas those using adjacent natural resources died of starvation. In spring, adult females recolonized natural areas. A life-table model suggests that a population exploiting anthropogenic resources may grow, acting as source to a geographically interlaced sink of opossums using only natural resources, and also providing emigrants for further range expansion to new human-dominated landscapes. In a geographical model, this source-sink dynamic is consistent with the local distribution identified through road-kill surveys. The Virginia opossum's exploitation of human resources likely ameliorates energetically restrictive winters and may explain both their local distribution and their northward expansion in unsuitable natural climatic regimes. Landscape heterogeneity, such as created by urbanization, may result in source-sink dynamics at highly localized scales. Differential fitness and individual dispersal movements within local populations are key to generating regional distributions, and thus species ranges, that exceed expectations. ?? 2009 by the Ecological Society of America.
A locomotive-track coupled vertical dynamics model with gear transmissions
NASA Astrophysics Data System (ADS)
Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun
2017-02-01
A gear transmission system is a key element in a locomotive for the transmission of traction or braking forces between the motor and the wheel-rail interface. Its dynamic performance has a direct effect on the operational reliability of the locomotive and its components. This paper proposes a comprehensive locomotive-track coupled vertical dynamics model, in which the locomotive is driven by axle-hung motors. In this coupled dynamics model, the dynamic interactions between the gear transmission system and the other components, e.g. motor and wheelset, are considered based on the detailed analysis of its structural properties and working mechanism. Thus, the mechanical transmission system for power delivery from the motor to the wheelset via gear transmission is coupled with a traditional locomotive-track dynamics system via the wheel-rail contact interface and the gear mesh interface. This developed dynamics model enables investigations of the dynamic performance of the entire dynamics system under the excitations from the wheel-rail contact interface and/or the gear mesh interface. Dynamic interactions are demonstrated by numerical simulations using this dynamics model. The results indicate that both of the excitations from the wheel-rail contact interface and the gear mesh interface have a significant effect on the dynamic responses of the components in this coupled dynamics system.
Dhatt, Sharmistha; Bhattacharyya, Kamal
2012-08-01
Appropriate constructions of Padé approximants are believed to provide reasonable estimates of the asymptotic (large-coupling) amplitude and exponent of an observable, given its weak-coupling expansion to some desired order. In many instances, however, sequences of such approximants are seen to converge very poorly. We outline here a strategy that exploits the idea of fractional calculus to considerably improve the convergence behavior. Pilot calculations on the ground-state perturbative energy series of quartic, sextic, and octic anharmonic oscillators reveal clearly the worth of our endeavor.
NASA Astrophysics Data System (ADS)
Zamaro, M.; Biggs, J. D.
2015-07-01
The Martian moon Phobos is becoming an appealing destination for future scientific missions. The orbital dynamics around this planetary satellite is particularly complex due to the unique combination of both small mass-ratio and length-scale of the Mars-Phobos couple: the resulting sphere of influence of the moon is very close to its surface, therefore both the classical two-body problem and circular restricted three-body problem (CR3BP) do not provide an accurate approximation to describe the spacecraft's dynamics in the vicinity of Phobos. The aim of this paper is to extend the model of the CR3BP to consider the orbital eccentricity and the highly-inhomogeneous gravity field of Phobos, by incorporating the gravity harmonics series expansion into an elliptic R3BP, named ER3BP-GH. Following this, the dynamical substitutes of the Libration Point Orbits (LPOs) are computed in this more realistic model of the relative dynamics around Phobos, combining methodologies from dynamical systems theory and numerical continuation techniques. Results obtained show that the structure of the periodic and quasi-periodic LPOs differs substantially from the classical case without harmonics. Several potential applications of these natural orbits are presented to enable unique low-cost operations in the proximity of Phobos, such as close-range observation, communication, and passive radiation shielding for human spaceflight. Furthermore, their invariant manifolds are demonstrated to provide high-performance natural landing and take-off pathways to and from Phobos' surface, and transfers from and to Martian orbits. These orbits could be exploited in upcoming and future space missions targeting the exploration of this Martian moon.
A rain pixel recovery algorithm for videos with highly dynamic scenes.
Jie Chen; Lap-Pui Chau
2014-03-01
Rain removal is a very useful and important technique in applications such as security surveillance and movie editing. Several rain removal algorithms have been proposed these years, where photometric, chromatic, and probabilistic properties of the rain have been exploited to detect and remove the rainy effect. Current methods generally work well with light rain and relatively static scenes, when dealing with heavier rainfall in dynamic scenes, these methods give very poor visual results. The proposed algorithm is based on motion segmentation of dynamic scene. After applying photometric and chromatic constraints for rain detection, rain removal filters are applied on pixels such that their dynamic property as well as motion occlusion clue are considered; both spatial and temporal informations are then adaptively exploited during rain pixel recovery. Results show that the proposed algorithm has a much better performance for rainy scenes with large motion than existing algorithms.
NASA Astrophysics Data System (ADS)
Cheng, H.; Zhang, H.; Pang, Y. J.; Shi, Y.
2017-12-01
With the quick urban development, over-exploitation of groundwater resources becomes more and more intense, which leads to not only widespread groundwater depression cones but also a series of harsh environmental and geological hazards. Among which, the most intuitive phenomenon is the ground subsidence in loose sediments. However, another direct consequence triggered by the groundwater depletion is the substantial crustal deformation and potential modulation of crustal stress underneath the groundwater over-pumping zones. In our previous 3-D viscoelastic finite element model, we found that continuous over-exploitation of groundwater resources in North China Plain during the past 60 years give rise to crustal-scale uplift reaching 4.9cm, with the Coulomb failure stress decreasing by up to 12 kPa, which may inhibit the nucleation of possible big earthquake events. Furthermore, according to the effective pressure principle and lab experiments, the pore pressure may also have changed due to the reduced water level. In order to quantitatively analyze the stress changes due to the regional groundwater exploitation in North China Plain, a three-dimensional fully coupled poroelastic finite element model is developed in this study. The high resolution topography, grounwater level fluctuation, fault parameters and etc, are taken into consideration. Further, the changes of Coulomb Failure Stress, in correspondence to elastic stress and pore pressure changes induced by fluid diffusion are calculated. Meanwhile, the elastic strain energy accumulation in region due to the regional groundwater exploitation is obtained. Finally, we try to analyze the seismic risk of major faults within North China Plain to further discuss the regional seismic activities.
Vehicle systems: coupled and interactive dynamics analysis
NASA Astrophysics Data System (ADS)
Vantsevich, Vladimir V.
2014-11-01
This article formulates a new direction in vehicle dynamics, described as coupled and interactive vehicle system dynamics. Formalised procedures and analysis of case studies are presented. An analytical consideration, which explains the physics of coupled system dynamics and its consequences for dynamics of a vehicle, is given for several sets of systems including: (i) driveline and suspension of a 6×6 truck, (ii) a brake mechanism and a limited slip differential of a drive axle and (iii) a 4×4 vehicle steering system and driveline system. The article introduces a formal procedure to turn coupled system dynamics into interactive dynamics of systems. A new research direction in interactive dynamics of an active steering and a hybrid-electric power transmitting unit is presented and analysed to control power distribution between the drive axles of a 4×4 vehicle. A control strategy integrates energy efficiency and lateral dynamics by decoupling dynamics of the two systems thus forming their interactive dynamics.
Coherently coupling distinct spin ensembles through a high-Tc superconducting resonator
NASA Astrophysics Data System (ADS)
Ghirri, A.; Bonizzoni, C.; Troiani, F.; Buccheri, N.; Beverina, L.; Cassinese, A.; Affronte, M.
2016-06-01
The problem of coupling multiple spin ensembles through cavity photons is revisited by using (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl (PyBTM) organic radicals and a high-Tc superconducting coplanar resonator. An exceptionally strong coupling is obtained and up to three spin ensembles are simultaneously coupled. The ensembles are made physically distinguishable by chemically varying the g factor and by exploiting the inhomogeneities of the applied magnetic field. The coherent mixing of the spin and field modes is demonstrated by the observed multiple anticrossing, along with the simulations performed within the input-output formalism, and quantified by suitable entropic measures.
Heteroclinic dynamics of coupled semiconductor lasers with optoelectronic feedback.
Shahin, S; Vallini, F; Monifi, F; Rabinovich, M; Fainman, Y
2016-11-15
Generalized Lotka-Volterra (GLV) equations are important equations used in various areas of science to describe competitive dynamics among a population of N interacting nodes in a network topology. In this Letter, we introduce a photonic network consisting of three optoelectronically cross-coupled semiconductor lasers to realize a GLV model. In such a network, the interaction of intensity and carrier inversion rates, as well as phases of laser oscillator nodes, result in various dynamics. We study the influence of asymmetric coupling strength and frequency detuning between semiconductor lasers and show that inhibitory asymmetric coupling is required to achieve consecutive amplitude oscillations of the laser nodes. These studies were motivated primarily by the dynamical models used to model brain cognitive activities and their correspondence with dynamics obtained among coupled laser oscillators.
Electric-field-driven electron-transfer in mixed-valence molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, Enrique P., E-mail: enrique-blair@baylor.edu; Corcelli, Steven A., E-mail: scorcell@nd.edu; Lent, Craig S., E-mail: lent@nd.edu
2016-07-07
Molecular quantum-dot cellular automata is a computing paradigm in which digital information is encoded by the charge configuration of a mixed-valence molecule. General-purpose computing can be achieved by arranging these compounds on a substrate and exploiting intermolecular Coulombic coupling. The operation of such a device relies on nonequilibrium electron transfer (ET), whereby the time-varying electric field of one molecule induces an ET event in a neighboring molecule. The magnitude of the electric fields can be quite large because of close spatial proximity, and the induced ET rate is a measure of the nonequilibrium response of the molecule. We calculate themore » electric-field-driven ET rate for a model mixed-valence compound. The mixed-valence molecule is regarded as a two-state electronic system coupled to a molecular vibrational mode, which is, in turn, coupled to a thermal environment. Both the electronic and vibrational degrees-of-freedom are treated quantum mechanically, and the dissipative vibrational-bath interaction is modeled with the Lindblad equation. This approach captures both tunneling and nonadiabatic dynamics. Relationships between microscopic molecular properties and the driven ET rate are explored for two time-dependent applied fields: an abruptly switched field and a linearly ramped field. In both cases, the driven ET rate is only weakly temperature dependent. When the model is applied using parameters appropriate to a specific mixed-valence molecule, diferrocenylacetylene, terahertz-range ET transfer rates are predicted.« less
Trajectory-probed instability and statistics of desynchronization events in coupled chaotic systems
NASA Astrophysics Data System (ADS)
de Oliveira, Gilson F.; Chevrollier, Martine; Passerat de Silans, Thierry; Oriá, Marcos; de Souza Cavalcante, Hugo L. D.
2015-11-01
Complex systems, such as financial markets, earthquakes, and neurological networks, exhibit extreme events whose mechanisms of formation are not still completely understood. These mechanisms may be identified and better studied in simpler systems with dynamical features similar to the ones encountered in the complex system of interest. For instance, sudden and brief departures from the synchronized state observed in coupled chaotic systems were shown to display non-normal statistical distributions similar to events observed in the complex systems cited above. The current hypothesis accepted is that these desynchronization events are influenced by the presence of unstable object(s) in the phase space of the system. Here, we present further evidence that the occurrence of large events is triggered by the visitation of the system's phase-space trajectory to the vicinity of these unstable objects. In the system studied here, this visitation is controlled by a single parameter, and we exploit this feature to observe the effect of the visitation rate in the overall instability of the synchronized state. We find that the probability of escapes from the synchronized state and the size of those desynchronization events are enhanced in attractors whose shapes permit the chaotic trajectories to approach the region of strong instability. This result shows that the occurrence of large events requires not only a large local instability to amplify noise, or to amplify the effect of parameter mismatch between the coupled subsystems, but also that the trajectories of the system wander close to this local instability.
Multilevel relaxation phenomena and population trapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hioe, F.T.
1991-11-01
This final report summarizes the main results of our work supported by DOE since 1982. A list of 45 publications supported by this DOE Grant is attached at the end of this report. The use and exploitation of the SU(N) dynamic symmetry to the study of the dynamics of laser-atom interaction was the starting point of our research work under this DOE Grant, and is our most original contribution to the field of quantum electrodynamics. Many results of general and special interests have been derived and developed from this starting point and the following is a summary of them: (1)more » We have introduced a set of simple relations based on the principle of unitary invariance which has proved to be useful for the study of the dynamics of a quantum system involving coupling. (2) We have found various specific conditions under which (a) we may have trapped population, or (b) we may send laser pulses through a multilevel atomic medium without attenuation. (3) We have found a remarkably efficient method for optimal state selective multiphoton population transfer, that employs two or more spatially overlapping lasers arranged in an unconventional sequence which we called counterintuitive''. A recent suggestion by Profs. P. Marte, P. Zoller and J.L. Hall to use this counterintuitive method for atomic beam deflections promises to make this remarkably effective procedure to become an important method in atomic interferometry.« less
A pressure and shear sensor system for stress measurement at lower limb residuum/socket interface.
Laszczak, P; McGrath, M; Tang, J; Gao, J; Jiang, L; Bader, D L; Moser, D; Zahedi, S
2016-07-01
A sensor system for measurement of pressure and shear at the lower limb residuum/socket interface is described. The system comprises of a flexible sensor unit and a data acquisition unit with wireless data transmission capability. Static and dynamic performance of the sensor system was characterised using a mechanical test machine. The static calibration results suggest that the developed sensor system presents high linearity (linearity error ≤ 3.8%) and resolution (0.9 kPa for pressure and 0.2 kPa for shear). Dynamic characterisation of the sensor system shows hysteresis error of approximately 15% for pressure and 8% for shear. Subsequently, a pilot amputee walking test was conducted. Three sensors were placed at the residuum/socket interface of a knee disarticulation amputee and simultaneous measurements were obtained during pilot amputee walking test. The pressure and shear peak values as well as their temporal profiles are presented and discussed. In particular, peak pressure and shear of approximately 58 kPa and 27 kPa, respectively, were recorded. Their temporal profiles also provide dynamic coupling information at this critical residuum/socket interface. These preliminary amputee test results suggest strong potential of the developed sensor system for exploitation as an assistive technology to facilitate socket design, socket fit and effective monitoring of lower limb residuum health. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
A model-based gain scheduling approach for controlling the common-rail system for GDI engines
NASA Astrophysics Data System (ADS)
di Gaeta, Alessandro; Montanaro, Umberto; Fiengo, Giovanni; Palladino, Angelo; Giglio, Veniero
2012-04-01
The progressive reduction in vehicle emission requirements have forced the automotive industry to invest in research for developing alternative and more efficient control strategies. All control features and resources are permanently active in an electronic control unit (ECU), ensuring the best performance with respect to emissions, fuel economy, driveability and diagnostics, independently from engine working point. In this article, a considerable step forward has been achieved by the common-rail technology which has made possible to vary the injection pressure over the entire engine speed range. As a consequence, the injection of a fixed amount of fuel is more precise and multiple injections in a combustion cycle can be made. In this article, a novel gain scheduling pressure controller for gasoline direct injection (GDI) engine is designed to stabilise the mean fuel pressure into the rail and to track demanded pressure trajectories. By exploiting a simple control-oriented model describing the mean pressure dynamics in the rail, the control structure turns to be simple enough to be effectively implemented in commercial ECUs. Experimental results in a wide range of operating points confirm the effectiveness of the proposed control method to tame efficiently the mean value pressure dynamics of the plant showing a good accuracy and robustness with respect to unavoidable parameters uncertainties, unmodelled dynamics, and hidden coupling terms.
Reducing the Dynamical Degradation by Bi-Coupling Digital Chaotic Maps
NASA Astrophysics Data System (ADS)
Liu, Lingfeng; Liu, Bocheng; Hu, Hanping; Miao, Suoxia
A chaotic map which is realized on a computer will suffer dynamical degradation. Here, a coupled chaotic model is proposed to reduce the dynamical degradation. In this model, the state variable of one digital chaotic map is used to control the parameter of the other digital map. This coupled model is universal and can be used for all chaotic maps. In this paper, two coupled models (one is coupled by two logistic maps, the other is coupled by Chebyshev map and Baker map) are performed, and the numerical experiments show that the performances of these two coupled chaotic maps are greatly improved. Furthermore, a simple pseudorandom bit generator (PRBG) based on coupled digital logistic maps is proposed as an application for our method.
Coupling Dynamics in Aircraft: A Historical Perspective
NASA Technical Reports Server (NTRS)
Day, Richard E.
1997-01-01
Coupling dynamics can produce either adverse or beneficial stability and controllability, depending on the characteristics of the aircraft. This report presents archival anecdotes and analyses of coupling problems experienced by the X-series, Century series, and Space Shuttle aircraft. The three catastrophic sequential coupling modes of the X-2 airplane and the two simultaneous unstable modes of the X-15 and Space Shuttle aircraft are discussed. In addition, the most complex of the coupling interactions, inertia roll coupling, is discussed for the X-2, X-3, F-100A, and YF-102 aircraft. The mechanics of gyroscopics, centrifugal effect, and resonance in coupling dynamics are described. The coupling modes discussed are interacting multiple degrees of freedom of inertial and aerodynamic forces and moments. The aircraft are assumed to be rigid bodies. Structural couplings are not addressed. Various solutions for coupling instabilities are discussed.
Comparative dynamics in a health investment model.
Eisenring, C
1999-10-01
The method of comparative dynamics fully exploits the inter-temporal structure of optimal control models. I derive comparative dynamic results in a simplified demand for health model. The effect of a change in the depreciation rate on the optimal paths for health capital and investment in health is studied by use of a phase diagram.
Renormalization of Collective Modes in Large-Scale Neural Dynamics
NASA Astrophysics Data System (ADS)
Moirogiannis, Dimitrios; Piro, Oreste; Magnasco, Marcelo O.
2017-05-01
The bulk of studies of coupled oscillators use, as is appropriate in Physics, a global coupling constant controlling all individual interactions. However, because as the coupling is increased, the number of relevant degrees of freedom also increases, this setting conflates the strength of the coupling with the effective dimensionality of the resulting dynamics. We propose a coupling more appropriate to neural circuitry, where synaptic strengths are under biological, activity-dependent control and where the coupling strength and the dimensionality can be controlled separately. Here we study a set of N→ ∞ strongly- and nonsymmetrically-coupled, dissipative, powered, rotational dynamical systems, and derive the equations of motion of the reduced system for dimensions 2 and 4. Our setting highlights the statistical structure of the eigenvectors of the connectivity matrix as the fundamental determinant of collective behavior, inheriting from this structure symmetries and singularities absent from the original microscopic dynamics.
Average dynamics of a finite set of coupled phase oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dima, Germán C., E-mail: gdima@df.uba.ar; Mindlin, Gabriel B.
2014-06-15
We study the solutions of a dynamical system describing the average activity of an infinitely large set of driven coupled excitable units. We compared their topological organization with that reconstructed from the numerical integration of finite sets. In this way, we present a strategy to establish the pertinence of approximating the dynamics of finite sets of coupled nonlinear units by the dynamics of its infinitely large surrogate.
Average dynamics of a finite set of coupled phase oscillators
Dima, Germán C.; Mindlin, Gabriel B.
2014-01-01
We study the solutions of a dynamical system describing the average activity of an infinitely large set of driven coupled excitable units. We compared their topological organization with that reconstructed from the numerical integration of finite sets. In this way, we present a strategy to establish the pertinence of approximating the dynamics of finite sets of coupled nonlinear units by the dynamics of its infinitely large surrogate. PMID:24985426
Average dynamics of a finite set of coupled phase oscillators.
Dima, Germán C; Mindlin, Gabriel B
2014-06-01
We study the solutions of a dynamical system describing the average activity of an infinitely large set of driven coupled excitable units. We compared their topological organization with that reconstructed from the numerical integration of finite sets. In this way, we present a strategy to establish the pertinence of approximating the dynamics of finite sets of coupled nonlinear units by the dynamics of its infinitely large surrogate.
Deception in plants: mimicry or perceptual exploitation?
Schaefer, H Martin; Ruxton, Graeme D
2009-12-01
Mimicry involves adaptive resemblance between a mimic and a model. However, despite much recent research, it remains contentious in plants. Here, we review recent progress on studying deception by flowers, distinguishing between plants relying on mimicry to achieve pollination and those relying on the exploitation of the perceptual biases of animals. We disclose fundamental differences between both mechanisms and explain why the evolution of exploitation is less constrained than that of mimicry. Exploitation of perceptual biases might thus be a precursor for the gradual evolution of mimicry. Increasing knowledge on the sensory and cognitive filters in animals, and on the selective pressures that maintain them, should aid researchers in tracing the evolutionary dynamics of deception in plants.
Safonov, Dmitry A; Vanag, Vladimir K
2018-05-03
The dynamical regimes of two almost identical Belousov-Zhabotinsky oscillators with both pulsatile (with time delay) and diffusive coupling have been studied theoretically with the aid of ordinary differential equations for four combinations of these types of coupling: inhibitory diffusive and inhibitory pulsatile (IDIP); excitatory diffusive and inhibitory pulsatile; inhibitory diffusive and excitatory pulsatile; and finally, excitatory diffusive and excitatory pulsatile (EDEP). The combination of two types of coupling creates a condition for new feedback, which promotes new dynamical modes for the IDIP and EDEP coupling.
Non-equilibrium quantum phase transition via entanglement decoherence dynamics.
Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min
2016-10-07
We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained.
Seizure Dynamics of Coupled Oscillators with Epileptor Field Model
NASA Astrophysics Data System (ADS)
Zhang, Honghui; Xiao, Pengcheng
The focus of this paper is to investigate the dynamics of seizure activities by using the Epileptor coupled model. Based on the coexistence of seizure-like event (SLE), refractory status epilepticus (RSE), depolarization block (DB), and normal state, we first study the dynamical behaviors of two coupled oscillators in different activity states with Epileptor model by linking them with slow permittivity coupling. Our research has found that when one oscillator in normal states is coupled with any oscillator in SLE, RSE or DB states, these two oscillators can both evolve into SLE states under appropriate coupling strength. And then these two SLE oscillators can perform epileptiform synchronization or epileptiform anti-synchronization. Meanwhile, SLE can be depressed when considering the fast electrical or chemical coupling in Epileptor model. Additionally, a two-dimensional reduced model is also given to show the effect of coupling number on seizures. Those results can help to understand the dynamical mechanism of the initiation, maintenance, propagation and termination of seizures in focal epilepsy.
Molecular nanomagnets with switchable coupling for quantum simulation
Chiesa, Alessandro; Whitehead, George F. S.; Carretta, Stefano; ...
2014-12-11
Molecular nanomagnets are attractive candidate qubits because of their wide inter- and intra-molecular tunability. Uniform magnetic pulses could be exploited to implement one- and two-qubit gates in presence of a properly engineered pattern of interactions, but the synthesis of suitable and potentially scalable supramolecular complexes has proven a very hard task. Indeed, no quantum algorithms have ever been implemented, not even a proof-of-principle two-qubit gate. In this paper we show that the magnetic couplings in two supramolecular {Cr7Ni}-Ni-{Cr7Ni} assemblies can be chemically engineered to fit the above requisites for conditional gates with no need of local control. Microscopic parameters aremore » determined by a recently developed many-body ab-initio approach and used to simulate quantum gates. We find that these systems are optimal for proof-of-principle two-qubit experiments and can be exploited as building blocks of scalable architectures for quantum simulation.« less
Traction patterns of tumor cells.
Ambrosi, D; Duperray, A; Peschetola, V; Verdier, C
2009-01-01
The traction exerted by a cell on a planar deformable substrate can be indirectly obtained on the basis of the displacement field of the underlying layer. The usual methodology used to address this inverse problem is based on the exploitation of the Green tensor of the linear elasticity problem in a half space (Boussinesq problem), coupled with a minimization algorithm under force penalization. A possible alternative strategy is to exploit an adjoint equation, obtained on the basis of a suitable minimization requirement. The resulting system of coupled elliptic partial differential equations is applied here to determine the force field per unit surface generated by T24 tumor cells on a polyacrylamide substrate. The shear stress obtained by numerical integration provides quantitative insight of the traction field and is a promising tool to investigate the spatial pattern of force per unit surface generated in cell motion, particularly in the case of such cancer cells.
Fehl, Charlie
2016-01-01
Despite nature’s prevalent use of metals as prosthetics to adapt or enhance the behaviour of proteins, our ability to programme such architectural organization remains underdeveloped. Multi-metal clusters buried in proteins underpin the most remarkable chemical transformations in nature, but we are not yet in a position to fully mimic or exploit such systems. With the advent of copious, relevant structural information, judicious mechanistic studies and the use of accessible computational methods in protein design coupled with new synthetic methods for building biomacromolecules, we can envisage a ‘new dawn’ that will allow us to build de novo metalloenzymes that move beyond mono-metal centres. In particular, we highlight the need for systems that approach the multi-centred clusters that have evolved to couple electron shuttling with catalysis. Such hybrids may be viewed as exciting mid-points between homogeneous and heterogeneous catalysts which also exploit the primary benefits of biocatalysis. PMID:27279776
Nonspherical dynamics and shape mode stability of ultrasound contrast agent microbubbles
NASA Astrophysics Data System (ADS)
Calvisi, Michael
2016-11-01
Ultrasound contrast agents (UCAs) are shell encapsulated microbubbles developed originally for ultrasound imaging enhancement. UCAs are more recently being exploited for therapeutic applications, such as for drug delivery, gene therapy, and tissue ablation. Ultrasound transducer pulses can induce spherical (radial) UCA oscillations, translation, and nonspherical shape oscillations, the dynamics of which are highly coupled. If driven sufficiently strongly, the ultrasound can induce breakup of UCAs, which can facilitate drug or gene delivery but should be minimized for imaging purposes to increase residence time and maximize diagnostic effect. Therefore, an understanding of the interplay between the acoustic driving and nonspherical shape mode stability of UCAs is essential for both diagnostic and therapeutic applications. In this work, we use both analytical and numerical methods to analyze shape mode stability for cases of small and large nonspherical oscillations, respectively. To analyze shape mode stability in the limit of small nonspherical perturbations, we couple a radial model of a lipid-coated microbubble with a model for bubble translation and nonspherical shape oscillation. This hybrid model is used to predict shape mode stability for ultrasound driving frequencies and pressure amplitudes of clinical interest. In addition, calculations of the stability of individual shape modes, residence time, maximum radius, and translation are provided with respect to acoustic driving parameters and compared to an unshelled bubble. The effects of shell elasticity, shell viscosity, and initial radius on stability are investigated. Furthermore, the well-established boundary element method (BEM) is used to investigate the dynamics and shape stability of large amplitude nonspherical oscillations of an ultrasonically-forced, polymer-coated microbubble near a rigid boundary. Different instability modes are identified based on the degree of jetting and proximity to the boundary. This insight is used to develop diagrams that delineate regions of stability from instability based on the breakup mechanism, in parameter ranges of ultrasound frequency and amplitude relevant to medical applications.
Acoustically and Electrokinetically Driven Transport in Microfluidic Devices
NASA Astrophysics Data System (ADS)
Sayar, Ersin
Electrokinetically driven flows are widely employed as a primary method for liquid pumping in micro-electromechanical systems. Mixing of analytes and reagents is limited in microfluidic devices due to the low Reynolds number of the flows. Acoustic excitations have recently been suggested to promote mixing in the microscale flow systems. Electrokinetic flows through straight microchannels were investigated using the Poisson-Boltzmann and Nernst-Planck models. The acoustic wave/fluid flow interactions in a microchannel were investigated via the development of two and three-dimensional dynamic predictive models for flows with field couplings of the electrical, mechanical and fluid flow quantities. The effectiveness and applicability of electrokinetic augmentation in flexural plate wave micropumps for enhanced capabilities were explored. The proposed concept can be exploited to integrate micropumps into complex microfluidic chips improving the portability of micro-total-analysis systems along with the capabilities of actively controlling acoustics and electrokinetics for micro-mixer applications. Acoustically excited flows in microchannels consisting of flexural plate wave devices and thin film resonators were considered. Compressible flow fields were considered to accommodate the acoustic excitations produced by a vibrating wall. The velocity and pressure profiles for different parameters including frequency, channel height, wave amplitude and length were investigated. Coupled electrokinetics and acoustics cases were investigated while the electric field intensity of the electrokinetic body forces and actuation frequency of acoustic excitations were varied. Multifield analysis of a piezoelectrically actuated valveless micropump was also presented. The effect of voltage and frequency on membrane deflection and flow rate were investigated. Detailed fluid/solid deformation coupled simulations of piezoelectric valveless micropump have been conducted to predict the generated time averaged flow rates. Developed coupled solid and fluid mechanics models can be utilized to integrate flow-through sensors with microfluidic chips.
Coupled Simulation of Thermomagnetic Energy Generation Based on NiMnGa Heusler Alloy Films
NASA Astrophysics Data System (ADS)
Kohl, Manfred; Gueltig, Marcel; Wendler, Frank
2018-03-01
This paper presents a simulation model for the coupled dynamic properties of thermomagnetic generators based on magnetic shape memory alloy (MSMA) films. MSMA thermomagnetic generators exploit the large abrupt temperature-induced change of magnetization at the first- or second-order magnetic transition as well as the short heat transfer times due to the large surface-to-volume ratio of films. These properties allow for resonant self-actuation of freely movable MSMA cantilever devices showing thermomagnetic duty cycles in the order of 10 ms duration, which matches with the period of oscillatory motion. We present a numerical analysis of the energy conversion processes to understand the effect of design parameters on efficiency and power output. A lumped element model is chosen to describe the time dependence of MSMA cantilever deflection and of temperature profiles as well as the magnitude and phase dependency of magnetization change. The simulation model quantitatively describes experimentally observed oscillatory motion and resulting power output in the order of 100 mW cm-3. Furthermore, it predicts a power output of 490 mW cm-3 for advanced film materials with temperature-dependent change of magnetization Δ M/Δ T of 4 A m2 (kg K)-1, which challenges state-of-the-art thermoelectric devices.
Electron-nuclear coherent spin oscillations probed by spin-dependent recombination
NASA Astrophysics Data System (ADS)
Azaizia, S.; Carrère, H.; Sandoval-Santana, J. C.; Ibarra-Sierra, V. G.; Kalevich, V. K.; Ivchenko, E. L.; Bakaleinikov, L. A.; Marie, X.; Amand, T.; Kunold, A.; Balocchi, A.
2018-04-01
We demonstrate the triggering and detection of coherent electron-nuclear spin oscillations related to the hyperfine interaction in Ga deep paramagnetic centers in GaAsN by band-to-band photoluminescence without an external magnetic field. In contrast to other point defects such as Cr4 + in SiC, Ce3 + in yttrium aluminum garnet crystals, nitrogen-vacancy centers in diamond, and P atoms in silicon, the bound-electron spin in Ga centers is not directly coupled to the electromagnetic field via the spin-orbit interaction. However, this apparent drawback can be turned into an advantage by exploiting the spin-selective capture of conduction band electrons to the Ga centers. On the basis of a pump-probe photoluminescence experiment we measure directly in the temporal domain the hyperfine constant of an electron coupled to a gallium defect in GaAsN by tracing the dynamical behavior of the conduction electron spin-dependent recombination to the defect site. The hyperfine constants and the relative abundance of the nuclei isotopes involved can be determined without the need of an electron spin resonance technique and in the absence of any magnetic field. Information on the nuclear and electron spin relaxation damping parameters can also be estimated from the oscillation amplitude decay and the long-time-delay behavior.
Bello, Martiniano; Saldaña-Rivero, Lucia; Correa-Basurto, José; García, Benjamín; Sánchez-Espinosa, Victor Armando
2018-05-01
Activation of EGFR starts by ligand binding at the extracellular domain which results in homo and heterodimerization, leading to phosphorylation, activation of downstream signaling pathways which upregulate expression of genes, proliferation and angiogenesis. Abnormalities in the expression of EGFR play a critical role in the development of different types of cancer. HER2 is the preferred heterodimerization partner for EGFR; this biological characteristic together with the high percentage of structural homology has been exploited in the design of dual synthetic inhibitors against EGFR/HER2. Herein we combined structural data and molecular dynamics (MD) simulations coupled to an MMGBSA approach to provide insight into the binding mechanism between two dual synthetics (lapatinib and TAK-285) and one dual natural inhibitor (EGCG) which target EGFR/HER2. In addition, we proposed some EGCG derivatives which were filtered through in silico screening. Structural analysis demonstrated that the coupling of synthetic, natural or newly designed compounds impacts the conformational space of EGFR and HER2 differently. Energetic analysis points out that lapatinib and TAK-285 have better affinity for inactive EGFR than the active EGFR state or HER2, whereas some EGCG derivatives seem to form binding affinities similar to those observed for lapatinib or TAK-285. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Florini, Nikoletta; Dimitrakopulos, George P.; Kioseoglou, Joseph; Pelekanos, Nikos T.; Kehagias, Thomas
2017-04-01
We are briefly reviewing the current status of elastic strain field determination in III-V heteroepitaxial nanostructures, linking finite elements (FE) calculations with quantitative nanoscale imaging and atomistic calculation techniques. III-V semiconductor nanostructure systems of various dimensions are evaluated in terms of their importance in photonic and microelectronic devices. As elastic strain distribution inside nano-heterostructures has a significant impact on the alloy composition, and thus their electronic properties, it is important to accurately map its components both at the interface plane and along the growth direction. Therefore, we focus on the determination of the stress-strain fields in III-V heteroepitaxial nanostructures by experimental and theoretical methods with emphasis on the numerical FE method by means of anisotropic continuum elasticity (CE) approximation. Subsequently, we present our contribution to the field by coupling FE simulations on InAs quantum dots (QDs) grown on (211)B GaAs substrate, either uncapped or buried, and GaAs/AlGaAs core-shell nanowires (NWs) grown on (111) Si, with quantitative high-resolution transmission electron microscopy (HRTEM) methods and atomistic molecular dynamics (MD) calculations. Full determination of the elastic strain distribution can be exploited for band gap tailoring of the heterostructures by controlling the content of the active elements, and thus influence the emitted radiation.
Coupled Simulation of Thermomagnetic Energy Generation Based on NiMnGa Heusler Alloy Films
NASA Astrophysics Data System (ADS)
Kohl, Manfred; Gueltig, Marcel; Wendler, Frank
2018-01-01
This paper presents a simulation model for the coupled dynamic properties of thermomagnetic generators based on magnetic shape memory alloy (MSMA) films. MSMA thermomagnetic generators exploit the large abrupt temperature-induced change of magnetization at the first- or second-order magnetic transition as well as the short heat transfer times due to the large surface-to-volume ratio of films. These properties allow for resonant self-actuation of freely movable MSMA cantilever devices showing thermomagnetic duty cycles in the order of 10 ms duration, which matches with the period of oscillatory motion. We present a numerical analysis of the energy conversion processes to understand the effect of design parameters on efficiency and power output. A lumped element model is chosen to describe the time dependence of MSMA cantilever deflection and of temperature profiles as well as the magnitude and phase dependency of magnetization change. The simulation model quantitatively describes experimentally observed oscillatory motion and resulting power output in the order of 100 mW cm-3. Furthermore, it predicts a power output of 490 mW cm-3 for advanced film materials with temperature-dependent change of magnetization ΔM/ΔT of 4 A m2 (kg K)-1, which challenges state-of-the-art thermoelectric devices.
NASA Astrophysics Data System (ADS)
Luo, JunYan; Yan, Yiying; Huang, Yixiao; Yu, Li; He, Xiao-Ling; Jiao, HuJun
2017-01-01
We investigate the noise correlations of spin and charge currents through an electron spin resonance (ESR)-pumped quantum dot, which is tunnel coupled to three electrodes maintained at an equivalent chemical potential. A recursive scheme is employed with inclusion of the spin degrees of freedom to account for the spin-resolved counting statistics in the presence of non-Markovian effects due to coupling with a dissipative heat bath. For symmetric spin-up and spin-down tunneling rates, an ESR-induced spin flip mechanism generates a pure spin current without an accompanying net charge current. The stochastic tunneling of spin carriers, however, produces universal shot noises of both charge and spin currents, revealing the effective charge and spin units of quasiparticles in transport. In the case of very asymmetric tunneling rates for opposite spins, an anomalous relationship between noise autocorrelations and cross correlations is revealed, where super-Poissonian autocorrelation is observed in spite of a negative cross correlation. Remarkably, with strong dissipation strength, non-Markovian memory effects give rise to a positive cross correlation of the charge current in the absence of a super-Poissonian autocorrelation. These unique noise features may offer essential methods for exploiting internal spin dynamics and various quasiparticle tunneling processes in mesoscopic transport.
Atomic-Scale Nuclear Spin Imaging Using Quantum-Assisted Sensors in Diamond
NASA Astrophysics Data System (ADS)
Ajoy, A.; Bissbort, U.; Lukin, M. D.; Walsworth, R. L.; Cappellaro, P.
2015-01-01
Nuclear spin imaging at the atomic level is essential for the understanding of fundamental biological phenomena and for applications such as drug discovery. The advent of novel nanoscale sensors promises to achieve the long-standing goal of single-protein, high spatial-resolution structure determination under ambient conditions. In particular, quantum sensors based on the spin-dependent photoluminescence of nitrogen-vacancy (NV) centers in diamond have recently been used to detect nanoscale ensembles of external nuclear spins. While NV sensitivity is approaching single-spin levels, extracting relevant information from a very complex structure is a further challenge since it requires not only the ability to sense the magnetic field of an isolated nuclear spin but also to achieve atomic-scale spatial resolution. Here, we propose a method that, by exploiting the coupling of the NV center to an intrinsic quantum memory associated with the nitrogen nuclear spin, can reach a tenfold improvement in spatial resolution, down to atomic scales. The spatial resolution enhancement is achieved through coherent control of the sensor spin, which creates a dynamic frequency filter selecting only a few nuclear spins at a time. We propose and analyze a protocol that would allow not only sensing individual spins in a complex biomolecule, but also unraveling couplings among them, thus elucidating local characteristics of the molecule structure.
Coupling functions: Universal insights into dynamical interaction mechanisms
NASA Astrophysics Data System (ADS)
Stankovski, Tomislav; Pereira, Tiago; McClintock, Peter V. E.; Stefanovska, Aneta
2017-10-01
The dynamical systems found in nature are rarely isolated. Instead they interact and influence each other. The coupling functions that connect them contain detailed information about the functional mechanisms underlying the interactions and prescribe the physical rule specifying how an interaction occurs. A coherent and comprehensive review is presented encompassing the rapid progress made recently in the analysis, understanding, and applications of coupling functions. The basic concepts and characteristics of coupling functions are presented through demonstrative examples of different domains, revealing the mechanisms and emphasizing their multivariate nature. The theory of coupling functions is discussed through gradually increasing complexity from strong and weak interactions to globally coupled systems and networks. A variety of methods that have been developed for the detection and reconstruction of coupling functions from measured data is described. These methods are based on different statistical techniques for dynamical inference. Stemming from physics, such methods are being applied in diverse areas of science and technology, including chemistry, biology, physiology, neuroscience, social sciences, mechanics, and secure communications. This breadth of application illustrates the universality of coupling functions for studying the interaction mechanisms of coupled dynamical systems.
Structure and Dynamics of Interacting Nanoparticles in Semidilute Polymer Solutions
Pollng-Skutvik, Ryan; Mongcopa, Katrina Irene S.; Faraone, Antonio; ...
2016-08-17
We investigate the structure and dynamics of silica nanoparticles and polymer chains in semidilute solutions of high molecular weight polystyrene in 2-butanone to determine the effect of long-range interparticle interactions on the coupling between particle and polymer dynamics. Particles at concentrations of 1–10 wt % are well dispersed in the semidilute polymer solutions and exhibit long-range electrostatic repulsions between particles. Because the particles are comparably sized to the radius of gyration of the polymer, the particle dynamics is predicted to couple to that of the polymer. We verify that the polymer structure and dynamics are not significantly affected by themore » particles, indicating that the particle–polymer coupling does not change with increasing particle loading. We find that the coupling between the dynamics of comparably sized particles and polymer results in subdiffusive particle dynamics, as expected. Over the interparticle distance, however, the particle dynamics is hindered and not fully described by the relaxation of the surrounding polymer chains. Instead, the particle dynamics is inversely related to the structure factor, suggesting that physical particle–polymer coupling on short length scales and interparticle interactions on long length scales both present energetic barriers to particle motion that lead to subdiffusive dynamics and de Gennes narrowing, respectively.« less
Nitroethylation of Vinyl Triflates and Bromides
Padilla–Salinas, Rosaura; Walvoord, Ryan R.; Tcyrulnikov, Sergei
2013-01-01
A two-carbon homologation of vinyl triflates and bromides for the synthesis of homoallylic nitro products is described. This palladium-catalyzed double coupling of nitromethane exploits the anion stabilizing and leaving group properties of nitromethane, generating the homo allyl nitro products via a tandem cross-coupling/π-allylation sequence. The resultant process provides a mild and convenient entry of nitroethylated products, which are versatile precursors to β,γ-unsaturated carbonyls, homoallylic amines, and nitrile oxides. PMID:23885976
Exploiting the Dynamics of Soft Materials for Machine Learning
Hauser, Helmut; Li, Tao; Pfeifer, Rolf
2018-01-01
Abstract Soft materials are increasingly utilized for various purposes in many engineering applications. These materials have been shown to perform a number of functions that were previously difficult to implement using rigid materials. Here, we argue that the diverse dynamics generated by actuating soft materials can be effectively used for machine learning purposes. This is demonstrated using a soft silicone arm through a technique of multiplexing, which enables the rich transient dynamics of the soft materials to be fully exploited as a computational resource. The computational performance of the soft silicone arm is examined through two standard benchmark tasks. Results show that the soft arm compares well to or even outperforms conventional machine learning techniques under multiple conditions. We then demonstrate that this system can be used for the sensory time series prediction problem for the soft arm itself, which suggests its immediate applicability to a real-world machine learning problem. Our approach, on the one hand, represents a radical departure from traditional computational methods, whereas on the other hand, it fits nicely into a more general perspective of computation by way of exploiting the properties of physical materials in the real world. PMID:29708857
Exploiting the Dynamics of Soft Materials for Machine Learning.
Nakajima, Kohei; Hauser, Helmut; Li, Tao; Pfeifer, Rolf
2018-06-01
Soft materials are increasingly utilized for various purposes in many engineering applications. These materials have been shown to perform a number of functions that were previously difficult to implement using rigid materials. Here, we argue that the diverse dynamics generated by actuating soft materials can be effectively used for machine learning purposes. This is demonstrated using a soft silicone arm through a technique of multiplexing, which enables the rich transient dynamics of the soft materials to be fully exploited as a computational resource. The computational performance of the soft silicone arm is examined through two standard benchmark tasks. Results show that the soft arm compares well to or even outperforms conventional machine learning techniques under multiple conditions. We then demonstrate that this system can be used for the sensory time series prediction problem for the soft arm itself, which suggests its immediate applicability to a real-world machine learning problem. Our approach, on the one hand, represents a radical departure from traditional computational methods, whereas on the other hand, it fits nicely into a more general perspective of computation by way of exploiting the properties of physical materials in the real world.
NASA Astrophysics Data System (ADS)
Müller, Jens; Hartmann, Benedikt; Sasaki, Takahiko
2017-12-01
The unique possibilities of fine-tuning their physical properties in the vicinity of the Mott metal-insulator transition make the quasi-two-dimensional organic charge-transfer salts ?-(BEDT-TTF)?X unprecedented model systems for studying the fundamentals of electron-electron correlations and the coupling between charge, spin and lattice degrees of freedom in reduced dimensions. The critical properties and the universality class of the Mott transition, however, are controversially debated for these materials, and information on the low-frequency dynamical properties of the correlated electrons is rather limited. By introducing fluctuation (noise) spectroscopy as a powerful new tool for studying the slow dynamics of charge carriers, in the past years we have been able to extract spectroscopic information on the coupling of charge carriers to the vibrational degrees of freedom of the crystal lattice. This is related to a glassy freezing of the BEDT-TTF molecules' ethylene end-group (EEG) rotations at elevated temperatures, which (i) results in a small amount of (intrinsic) disorder and (ii) crucially influences the ratio of bandwidth to on-site Coulomb repulsion (W / U) and therefore the samples' position in the phase diagram, i.e. the electronic ground state. The low-frequency resistance fluctuations show a dramatic enhancement and divergent behaviour when tuning the sample close to the critical point of the Mott transition, accompanied by a strong shift of spectral weight to low frequencies and the onset of non-Gaussian behaviour. This indicates the critical slowing down of the order-parameter (doublon density) fluctuations and suggests a collective dynamics of the correlated electrons. In order to enable detailed investigations of this hypothesis in future experiments, by exploiting the structural EEG relaxation, a 'warming cycle' protocol can be established that allows for fine-tuning the sample across the Mott transition and therefore precisely accessing the finite-temperature critical endpoint. We 'calibrate' this procedure by a comparison to pressure-tuning experiments on the same sample. This method will allow to map out the region of ergodicity breaking around the critical endpoint and its dependence on disorder.
NASA Astrophysics Data System (ADS)
Maslennikov, O. V.; Nekorkin, V. I.
2017-10-01
Dynamical networks are systems of active elements (nodes) interacting with each other through links. Examples are power grids, neural structures, coupled chemical oscillators, and communications networks, all of which are characterized by a networked structure and intrinsic dynamics of their interacting components. If the coupling structure of a dynamical network can change over time due to nodal dynamics, then such a system is called an adaptive dynamical network. The term ‘adaptive’ implies that the coupling topology can be rewired; the term ‘dynamical’ implies the presence of internal node and link dynamics. The main results of research on adaptive dynamical networks are reviewed. Key notions and definitions of the theory of complex networks are given, and major collective effects that emerge in adaptive dynamical networks are described.
The coupled dynamics of fluids and spacecraft in low gravity and low gravity fluid measurement
NASA Technical Reports Server (NTRS)
Hansman, R. John; Peterson, Lee D.; Crawley, Edward F.
1987-01-01
The very large mass fraction of liquids stored on broad current and future generation spacecraft has made critical the technologies of describing the fluid-spacecraft dynamics and measuring or gauging the fluid. Combined efforts in these areas are described, and preliminary results are presented. The coupled dynamics of fluids and spacecraft in low gravity study is characterizing the parametric behavior of fluid-spacecraft systems in which interaction between the fluid and spacecraft dynamics is encountered. Particular emphasis is given to the importance of nonlinear fluid free surface phenomena to the coupled dynamics. An experimental apparatus has been developed for demonstrating a coupled fluid-spacecraft system. In these experiments, slosh force signals are fed back to a model tank actuator through a tunable analog second order integration circuit. In this manner, the tank motion is coupled to the resulting slosh force. Results are being obtained in 1-g and in low-g (on the NASA KC-135) using dynamic systems nondimensionally identical except for the Bond numbers.
Modal resonant dynamics of cables with a flexible support: A modulated diffraction problem
NASA Astrophysics Data System (ADS)
Guo, Tieding; Kang, Houjun; Wang, Lianhua; Liu, Qijian; Zhao, Yueyu
2018-06-01
Modal resonant dynamics of cables with a flexible support is defined as a modulated (wave) diffraction problem, and investigated by asymptotic expansions of the cable-support coupled system. The support-cable mass ratio, which is usually very large, turns out to be the key parameter for characterizing cable-support dynamic interactions. By treating the mass ratio's inverse as a small perturbation parameter and scaling the cable tension properly, both cable's modal resonant dynamics and the flexible support dynamics are asymptotically reduced by using multiple scale expansions, leading finally to a reduced cable-support coupled model (i.e., on a slow time scale). After numerical validations of the reduced coupled model, cable-support coupled responses and the flexible support induced coupling effects on the cable, are both fully investigated, based upon the reduced model. More explicitly, the dynamic effects on the cable's nonlinear frequency and force responses, caused by the support-cable mass ratio, the resonant detuning parameter and the support damping, are carefully evaluated.
Measure synchronization in a spin-orbit-coupled bosonic Josephson junction
NASA Astrophysics Data System (ADS)
Wang, Wen-Yuan; Liu, Jie; Fu, Li-Bin
2015-11-01
We present measure synchronization (MS) in a bosonic Josephson junction with spin-orbit coupling. The two atomic hyperfine states are coupled by a Raman dressing scheme, and they are regarded as two orientations of a pseudo-spin-1 /2 system. A feature specific to a spin-orbit-coupled (SOC) bosonic Josephson junction is that the transition from non-MS to MS dynamics can be modulated by Raman laser intensity, even in the absence of interspin atomic interaction. A phase diagram of non-MS and MS dynamics as functions of Raman laser intensity and Josephson tunneling amplitude is presented. Taking into account interspin atomic interactions, the system exhibits MS breaking dynamics resulting from the competition between intraspin and interspin atomic interactions. When interspin atomic interactions dominate in the competition, the system always exhibits MS dynamics. For interspin interaction weaker than intraspin interaction, a window for non-MS dynamics is present. Since SOC Bose-Einstein condensates provide a powerful platform for studies on physical problems in various fields, the study of MS dynamics is valuable in researching the collective coherent dynamical behavior in a spin-orbit-coupled bosonic Josephson junction.
High-fidelity readout in circuit quantum electrodynamics using the Jaynes-Cummings nonlinearity.
Reed, M D; DiCarlo, L; Johnson, B R; Sun, L; Schuster, D I; Frunzio, L; Schoelkopf, R J
2010-10-22
We demonstrate a qubit readout scheme that exploits the Jaynes-Cummings nonlinearity of a superconducting cavity coupled to transmon qubits. We find that, in the strongly driven dispersive regime of this system, there is the unexpected onset of a high-transmission "bright" state at a critical power which depends sensitively on the initial qubit state. A simple and robust measurement protocol exploiting this effect achieves a single-shot fidelity of 87% using a conventional sample design and experimental setup, and at least 61% fidelity to joint correlations of three qubits.
Inverse dynamic substructuring using the direct hybrid assembly in the frequency domain
NASA Astrophysics Data System (ADS)
D'Ambrogio, Walter; Fregolent, Annalisa
2014-04-01
The paper deals with the identification of the dynamic behaviour of a structural subsystem, starting from the known dynamic behaviour of both the coupled system and the remaining part of the structural system (residual subsystem). This topic is also known as decoupling problem, subsystem subtraction or inverse dynamic substructuring. Whenever it is necessary to combine numerical models (e.g. FEM) and test models (e.g. FRFs), one speaks of experimental dynamic substructuring. Substructure decoupling techniques can be classified as inverse coupling or direct decoupling techniques. In inverse coupling, the equations describing the coupling problem are rearranged to isolate the unknown substructure instead of the coupled structure. On the contrary, direct decoupling consists in adding to the coupled system a fictitious subsystem that is the negative of the residual subsystem. Starting from a reduced version of the 3-field formulation (dynamic equilibrium using FRFs, compatibility and equilibrium of interface forces), a direct hybrid assembly is developed by requiring that both compatibility and equilibrium conditions are satisfied exactly, either at coupling DoFs only, or at additional internal DoFs of the residual subsystem. Equilibrium and compatibility DoFs might not be the same: this generates the so-called non-collocated approach. The technique is applied using experimental data from an assembled system made by a plate and a rigid mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mbarki, R.; Baccam, N.; Dayal, Kaushik
Most technologically relevant ferroelectrics typically lose piezoelectricity above the Curie temperature. This limits their use to relatively low temperatures. In this Letter, exploiting a combination of flexoelectricity and simple functional grading, we propose a strategy for high-temperature electromechanical coupling in a standard thin film configuration. We use continuum modeling to quantitatively demonstrate the possibility of achieving apparent piezoelectric materials with large and temperature-stable electromechanical coupling across a wide temperature range that extends significantly above the Curie temperature. With Barium and Strontium Titanate, as example materials, a significant electromechanical coupling that is potentially temperature-stable up to 900 °C is possible.
Constraining Light-Quark Yukawa Couplings from Higgs Distributions.
Bishara, Fady; Haisch, Ulrich; Monni, Pier Francesco; Re, Emanuele
2017-03-24
We propose a novel strategy to constrain the bottom and charm Yukawa couplings by exploiting Large Hadron Collider (LHC) measurements of transverse momentum distributions in Higgs production. Our method does not rely on the reconstruction of exclusive final states or heavy-flavor tagging. Compared to other proposals, it leads to an enhanced sensitivity to the Yukawa couplings due to distortions of the differential Higgs spectra from emissions which either probe quark loops or are associated with quark-initiated production. We derive constraints using data from LHC run I, and we explore the prospects of our method at future LHC runs. Finally, we comment on the possibility of bounding the strange Yukawa coupling.
Constraining Light-Quark Yukawa Couplings from Higgs Distributions
NASA Astrophysics Data System (ADS)
Bishara, Fady; Haisch, Ulrich; Monni, Pier Francesco; Re, Emanuele
2017-03-01
We propose a novel strategy to constrain the bottom and charm Yukawa couplings by exploiting Large Hadron Collider (LHC) measurements of transverse momentum distributions in Higgs production. Our method does not rely on the reconstruction of exclusive final states or heavy-flavor tagging. Compared to other proposals, it leads to an enhanced sensitivity to the Yukawa couplings due to distortions of the differential Higgs spectra from emissions which either probe quark loops or are associated with quark-initiated production. We derive constraints using data from LHC run I, and we explore the prospects of our method at future LHC runs. Finally, we comment on the possibility of bounding the strange Yukawa coupling.
Verhagen, Ewold; de Waele, René; Kuipers, L; Polman, Albert
2010-11-26
We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. Control of waveguide coupling yields a metamaterial consisting of a one-dimensional multilayer stack that exhibits an isotropic index of -1 at a free-space wavelength of 400 nm. The concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency.
Non-equilibrium quantum phase transition via entanglement decoherence dynamics
Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min
2016-01-01
We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained. PMID:27713556
Dynamics of multi-frequency oscillator ensembles with resonant coupling
NASA Astrophysics Data System (ADS)
Lück, S.; Pikovsky, A.
2011-07-01
We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2:1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed.
Suzuki-miyaura cross-coupling in acylation reactions, scope and recent developments.
Blangetti, Marco; Rosso, Heléna; Prandi, Cristina; Deagostino, Annamaria; Venturello, Paolo
2013-01-17
Since the first report and due to its handiness and wide scope, the Suzuki-Miyaura (SM) cross coupling reaction has become a routine methodology in many laboratories worldwide. With respect to other common transition metal catalyzed cross couplings, the SM reaction has been so far less exploited as a tool to introduce an acyl function into a specific substrate. In this review, the various approaches found in the literature will be considered, starting from the direct SM acylative coupling to the recent developments of cross coupling between boronates and acyl chlorides or anhydrides. Special attention will be dedicated to the use of masked acyl boronates, alkoxy styryl and alkoxy dienyl boronates as coupling partners. A final section will be then focused on the acyl SM reaction as key synthetic step in the framework of natural products synthesis.
Chimera states in nonlocally coupled phase oscillators with biharmonic interaction
NASA Astrophysics Data System (ADS)
Cheng, Hongyan; Dai, Qionglin; Wu, Nianping; Feng, Yuee; Li, Haihong; Yang, Junzhong
2018-03-01
Chimera states, which consist of coexisting domains of coherent and incoherent parts, have been observed in a variety of systems. Most of previous works on chimera states have taken into account specific form of interaction between oscillators, for example, sinusoidal coupling or diffusive coupling. Here, we investigate chimera dynamics in nonlocally coupled phase oscillators with biharmonic interaction. We find novel chimera states with features such as that oscillators in the same coherent cluster may split into two groups with a phase difference around π/2 and that oscillators in adjacent coherent clusters may have a phase difference close to π/2. The different impacts of the coupling ranges in the first and the second harmonic interactions on chimera dynamics are investigated based on the synchronous dynamics in globally coupled phase oscillators. Our study suggests a new direction in the field of chimera dynamics.
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh
2013-01-01
This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.
NASA Astrophysics Data System (ADS)
Oktem, R.; Wainwright, H. M.; Curtis, J. B.; Dafflon, B.; Peterson, J.; Ulrich, C.; Hubbard, S. S.; Torn, M. S.
2016-12-01
Predicting carbon cycling in Arctic requires quantifying tightly coupled surface and subsurface processes including permafrost, hydrology, vegetation and soil biogeochemistry. The challenge has been a lack of means to remotely sense key ecosystem properties in high resolution and over large areas. A particular challenge has been characterizing soil properties that are known to be highly heterogeneous. In this study, we exploit tightly-coupled above/belowground ecosystem functioning (e.g., the correlations among soil moisture, vegetation and carbon fluxes) to estimate subsurface and other key properties over large areas. To test this concept, we have installed a ground-based remote sensing platform - a track-mounted tram system - along a 70 m transect in the ice-wedge polygonal tundra near Barrow, Alaska. The tram carries a suite of near-surface remote sensing sensors, including sonic depth, thermal IR, NDVI and multispectral sensors. Joint analysis with multiple ground-based measurements (soil temperature, active layer soil moisture, and carbon fluxes) was performed to quantify correlations and the dynamics of above/belowground processes at unprecedented resolution, both temporally and spatially. We analyzed the datasets with particular focus on correlating key subsurface and ecosystem properties with surface properties that can be measured by satellite/airborne remote sensing over a large area. Our results provided several new insights about system behavior and also opens the door for new characterization approaches. We documented that: (1) soil temperature (at >5 cm depth; critical for permafrost thaw) was decoupled from soil surface temperature and was influenced strongly by soil moisture, (2) NDVI and greenness index were highly correlated with both soil moisture and gross primary productivity (based on chamber flux data), and (3) surface deformation (which can be measured by InSAR) was a good proxy for thaw depth dynamics at non-inundated locations.
Microscopic theory for coupled atomistic magnetization and lattice dynamics
NASA Astrophysics Data System (ADS)
Fransson, J.; Thonig, D.; Bessarab, P. F.; Bhattacharjee, S.; Hellsvik, J.; Nordström, L.
2017-12-01
A coupled atomistic spin and lattice dynamics approach is developed which merges the dynamics of these two degrees of freedom into a single set of coupled equations of motion. The underlying microscopic model comprises local exchange interactions between the electron spin and magnetic moment and the local couplings between the electronic charge and lattice displacements. An effective action for the spin and lattice variables is constructed in which the interactions among the spin and lattice components are determined by the underlying electronic structure. In this way, expressions are obtained for the electronically mediated couplings between the spin and lattice degrees of freedom, besides the well known interatomic force constants and spin-spin interactions. These former susceptibilities provide an atomistic ab initio description for the coupled spin and lattice dynamics. It is important to notice that this theory is strictly bilinear in the spin and lattice variables and provides a minimal model for the coupled dynamics of these subsystems and that the two subsystems are treated on the same footing. Questions concerning time-reversal and inversion symmetry are rigorously addressed and it is shown how these aspects are absorbed in the tensor structure of the interaction fields. By means of these results regarding the spin-lattice coupling, simple explanations of ionic dimerization in double-antiferromagnetic materials, as well as charge density waves induced by a nonuniform spin structure, are given. In the final parts, coupled equations of motion for the combined spin and lattice dynamics are constructed, which subsequently can be reduced to a form which is analogous to the Landau-Lifshitz-Gilbert equations for spin dynamics and a damped driven mechanical oscillator for the ionic motion. It is important to notice, however, that these equations comprise contributions that couple these descriptions into one unified formulation. Finally, Kubo-like expressions for the discussed exchanges in terms of integrals over the electronic structure and, moreover, analogous expressions for the damping within and between the subsystems are provided. The proposed formalism and types of couplings enable a step forward in the microscopic first principles modeling of coupled spin and lattice quantities in a consistent format.
NASA Astrophysics Data System (ADS)
Zhou, Shihua; Song, Guiqiu; Sun, Maojun; Ren, Zhaohui; Wen, Bangchun
2018-01-01
In order to analyze the nonlinear dynamics and stability of a novel design for the monowheel inclined vehicle-vibration platform coupled system (MIV-VPCS) with intermediate nonlinearity support subjected to a harmonic excitation, a multi-degree of freedom lumped parameter dynamic model taking into account the dynamic interaction of the MIV-VPCS with quadratic and cubic nonlinearities is presented. The dynamical equations of the coupled system are derived by applying the displacement relationship, interaction force relationship at the contact position and Lagrange's equation, which are further discretized into a set of nonlinear ordinary differential equations with coupled terms by Galerkin's truncation. Based on the mathematical model, the coupled multi-body nonlinear dynamics of the vibration system is investigated by numerical method, and the parameters influences of excitation amplitude, mass ratio and inclined angle on the dynamic characteristics are precisely analyzed and discussed by bifurcation diagram, Largest Lyapunov exponent and 3-D frequency spectrum. Depending on different ranges of system parameters, the results show that the different motions and jump discontinuity appear, and the coupled system enters into chaotic behavior through different routes (period-doubling bifurcation, inverse period-doubling bifurcation, saddle-node bifurcation and Hopf bifurcation), which are strongly attributed to the dynamic interaction of the MIV-VPCS. The decreasing excitation amplitude and inclined angle could reduce the higher order bifurcations, and effectively control the complicated nonlinear dynamic behaviors under the perturbation of low rotational speed. The first bifurcation and chaotic motion occur at lower value of inclined angle, and the chaotic behavior lasts for larger intervals with higher rotational speed. The investigation results could provide a better understanding of the nonlinear dynamic behaviors for the dynamic interaction of the MIV-VPCS.
Coupled intertwiner dynamics: A toy model for coupling matter to spin foam models
NASA Astrophysics Data System (ADS)
Steinhaus, Sebastian
2015-09-01
The universal coupling of matter and gravity is one of the most important features of general relativity. In quantum gravity, in particular spin foams, matter couplings have been defined in the past, yet the mutual dynamics, in particular if matter and gravity are strongly coupled, are hardly explored, which is related to the definition of both matter and gravitational degrees of freedom on the discretization. However, extracting these mutual dynamics is crucial in testing the viability of the spin foam approach and also establishing connections to other discrete approaches such as lattice gauge theories. Therefore, we introduce a simple two-dimensional toy model for Yang-Mills coupled to spin foams, namely an Ising model coupled to so-called intertwiner models defined for SU (2 )k. The two systems are coupled by choosing the Ising coupling constant to depend on spin labels of the background, as these are interpreted as the edge lengths of the discretization. We coarse grain this toy model via tensor network renormalization and uncover an interesting dynamics: the Ising phase transition temperature turns out to be sensitive to the background configurations and conversely, the Ising model can induce phase transitions in the background. Moreover, we observe a strong coupling of both systems if close to both phase transitions.
Finite temperature dynamics of a Holstein polaron: The thermo-field dynamics approach
NASA Astrophysics Data System (ADS)
Chen, Lipeng; Zhao, Yang
2017-12-01
Combining the multiple Davydov D2 Ansatz with the method of thermo-field dynamics, we study finite temperature dynamics of a Holstein polaron on a lattice. It has been demonstrated, using the hierarchy equations of motion method as a benchmark, that our approach provides an efficient, robust description of finite temperature dynamics of the Holstein polaron in the simultaneous presence of diagonal and off-diagonal exciton-phonon coupling. The method of thermo-field dynamics handles temperature effects in the Hilbert space with key numerical advantages over other treatments of finite-temperature dynamics based on quantum master equations in the Liouville space or wave function propagation with Monte Carlo importance sampling. While for weak to moderate diagonal coupling temperature increases inhibit polaron mobility, it is found that off-diagonal coupling induces phonon-assisted transport that dominates at high temperatures. Results on the mean square displacements show that band-like transport features dominate the diagonal coupling cases, and there exists a crossover from band-like to hopping transport with increasing temperature when including off-diagonal coupling. As a proof of concept, our theory provides a unified treatment of coherent and incoherent transport in molecular crystals and is applicable to any temperature.
Coupled diffusion in lipid bilayers upon close approach
Pronk, Sander; Lindahl, Erik; Kasson, Peter M.
2014-12-23
Biomembrane interfaces create regions of slowed water dynamics in their vicinity. When two lipid bilayers come together, this effect is further accentuated, and the associated slowdown can affect the dynamics of larger-scale processes such as membrane fusion. We have used molecular dynamics simulations to examine how lipid and water dynamics are affected as two lipid bilayers approach each other. These two interacting fluid systems, lipid and water, both slow and become coupled when the lipid membranes are separated by a thin water layer. We show in particular that the water dynamics become glassy, and diffusion of lipids in the apposedmore » leaflets becomes coupled across the water layer, while the “outer” leaflets remain unaffected. This dynamic coupling between bilayers appears mediated by lipid–water–lipid hydrogen bonding, as it occurs at bilayer separations where water–lipid hydrogen bonds become more common than water–water hydrogen bonds. We further show that such coupling occurs in simulations of vesicle–vesicle fusion prior to the fusion event itself. As a result, such altered dynamics at membrane–membrane interfaces may both stabilize the interfacial contact and slow fusion stalk formation within the interface region.« less
Irwin, Gareth; Kerwin, David G; Williams, Genevieve; Van Emmerik, Richard E A; Newell, Karl M; Hamill, Joseph
2018-06-18
A case study visualisation approach to examining the coordination and variability of multiple interacting segments is presented using a whole-body gymnastic skill as the task example. One elite male gymnast performed 10 trials of 10 longswings whilst three-dimensional locations of joint centres were tracked using a motion analysis system. Segment angles were used to define coupling between the arms and trunk, trunk and thighs and thighs and shanks. Rectified continuous relative phase profiles for each interacting couple for 80 longswings were produced. Graphical representations of coordination couplings are presented that include the traditional single coupling, followed by the relational dynamics of two couplings and finally three couplings simultaneously plotted. This method highlights the power of visualisation of movement dynamics and identifies properties of the global interacting segmental couplings that a more formal analysis may not reveal. Visualisation precedes and informs the appropriate qualitative and quantitative analysis of the dynamics.
Exciton Transport Simulations in Phenyl Cored Thiophene Dendrimers
NASA Astrophysics Data System (ADS)
Kim, Kwiseon; Erkan Kose, Muhammet; Graf, Peter; Kopidakis, Nikos; Rumbles, Garry; Shaheen, Sean E.
2009-03-01
Phenyl cored 3-arm and 4-arm thiophene dendrimers are promising materials for use in photovoltaic devices. It is important to understand the energy transfer mechanisms in these molecules to guide the synthesis of novel dendrimers with improved efficiency. A method is developed to estimate the exciton diffusion lengths for the dendrimers and similar chromophores in amorphous films. The approach exploits Fermi's Golden Rule to estimate the energy transfer rates for an ensemble of bimolecular complexes in random orientations. Using Poisson's equation to evaluate Coulomb integrals led to efficient calculation of excitonic couplings between the transition densities. Monte-Carlo simulations revealed the dynamics of energy transport in the dendrimers. Experimental exciton diffusion lengths of the dendrimers range 10 ˜ 20 nm, increasing with the size of the dendrimer. Simulated diffusion lengths correlate well with experiments. The chemical structure of the chromophore, the shape of the transition densities and the exciton lifetime are found to be the most important factors that determine the exciton diffusion length in amorphous films.
Moretti, Francesca; Rolando, Chiara; Winker, Moritz; Ivanek, Robert; Rodriguez, Javier; Von Kriegsheim, Alex; Taylor, Verdon; Bustin, Michael
2015-01-01
Neurons exploit local mRNA translation and retrograde transport of transcription factors to regulate gene expression in response to signaling events at distal neuronal ends. Whether epigenetic factors could also be involved in such regulation is not known. We report that the mRNA encoding the high-mobility group N5 (HMGN5) chromatin binding protein localizes to growth cones of both neuron-like cells and of hippocampal neurons, where it has the potential to be translated, and that HMGN5 can be retrogradely transported into the nucleus along neurites. Loss of HMGN5 function induces transcriptional changes and impairs neurite outgrowth, while HMGN5 overexpression induces neurite outgrowth and chromatin decompaction; these effects are dependent on growth cone localization of Hmgn5 mRNA. We suggest that the localization and local translation of transcripts coding for epigenetic factors couple the dynamic neuronal outgrowth process with chromatin regulation in the nucleus. PMID:25825524
Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C. elegans.
Flavell, Steven W; Pokala, Navin; Macosko, Evan Z; Albrecht, Dirk R; Larsch, Johannes; Bargmann, Cornelia I
2013-08-29
Foraging animals have distinct exploration and exploitation behaviors that are organized into discrete behavioral states. Here, we characterize a neuromodulatory circuit that generates long-lasting roaming and dwelling states in Caenorhabditis elegans. We find that two opposing neuromodulators, serotonin and the neuropeptide pigment dispersing factor (PDF), each initiate and extend one behavioral state. Serotonin promotes dwelling states through the MOD-1 serotonin-gated chloride channel. The spontaneous activity of serotonergic neurons correlates with dwelling behavior, and optogenetic modulation of the critical MOD-1-expressing targets induces prolonged dwelling states. PDF promotes roaming states through a Gαs-coupled PDF receptor; optogenetic activation of cAMP production in PDF receptor-expressing cells induces prolonged roaming states. The neurons that produce and respond to each neuromodulator form a distributed circuit orthogonal to the classical wiring diagram, with several essential neurons that express each molecule. The slow temporal dynamics of this neuromodulatory circuit supplement fast motor circuits to organize long-lasting behavioral states. Copyright © 2013 Elsevier Inc. All rights reserved.
Vorticity and helicity decompositions and dynamics with real Schur form of the velocity gradient
NASA Astrophysics Data System (ADS)
Zhu, Jian-Zhou
2018-03-01
The real Schur form (RSF) of a generic velocity gradient field ∇u is exploited to expose the structures of flows, in particular, our field decomposition resulting in two vorticities with only mutual linkage as the topological content of the global helicity (accordingly decomposed into two equal parts). The local transformation to the RSF may indicate alternative (co)rotating frame(s) for specifying the objective argument(s) of the constitutive equation. When ∇u is uniformly of RSF in a fixed Cartesian coordinate frame, i.e., ux = ux(x, y) and uy = uy(x, y), but uz = uz(x, y, z), the model, with the decomposed vorticities both frozen-in to u, is for two-component-two-dimensional-coupled-with-one-component-three-dimensional flows in between two-dimensional-three-component (2D3C) and fully three-dimensional-three-component ones and may help curing the pathology in the helical 2D3C absolute equilibrium, making the latter effectively work in more realistic situations.
Serotonin and the Neuropeptide PDF Initiate and Extend Opposing Behavioral States in C. elegans
Flavell, Steven W.; Pokala, Navin; Macosko, Evan Z.; Albrecht, Dirk R.; Larsch, Johannes; Bargmann, Cornelia I.
2013-01-01
SUMMARY Foraging animals have distinct exploration and exploitation behaviors that are organized into discrete behavioral states. Here we characterize a neuromodulatory circuit that generates long-lasting roaming and dwelling states in Caenorhabditis elegans. We find that two opposing neuromodulators, serotonin and the neuropeptide pigment dispersing factor (PDF), each initiate and extend one behavioral state. Serotonin promotes dwelling states through the MOD-1 serotonin-gated chloride channel. The spontaneous activity of serotonergic neurons correlates with dwelling behavior, and optogenetic modulation of the critical MOD-1-expressing targets induces prolonged dwelling states. PDF promotes roaming states through a Gαs-coupled PDF receptor; optogenetic activation of cAMP production in PDF receptor-expressing cells induces prolonged roaming states. The neurons that produce and respond to each neuromodulator form a distributed circuit orthogonal to the classical wiring diagram, with several essential neurons that express each molecule. The slow temporal dynamics of this neuromodulatory circuit supplement fast motor circuits to organize long-lasting behavioral states. PMID:23972393
Pu, Mingbo; Ma, Xiaoliang; Zhao, Zeyu; Li, Xiong; Wang, Yanqin; Gao, Hui; Hu, Chenggang; Gao, Ping; Wang, Changtao; Luo, Xiangang
2015-07-10
The orbital angular momentum (OAM) of light, as an emerging hotspot in optics and photonics, introduces many degrees of freedom for applications ranging from optical communication and quantum processing to micromanipulation. To achieve a high degree of integration, optical circuits for OAM light are essential, which are, however, challenging in the optical regime owing to the lack of well-developed theory. Here we provide a scheme to guide and collimate the OAM beam at the micro- and nano-levels. The coaxial plasmonic slit was exploited as a naturally occurring waveguide for light carrying OAM. Concentric grooves etched on the output surface of the coaxial waveguide were utilized as a plasmonic metasurface to couple the OAM beam to free space with greatly increased beam directivity. Experimental results at λ = 532 nm validated the novel transportation and collimating effect of the OAM beam. Furthermore, dynamic tuning of the topological charges was demonstrated by using a liquid crystal spatial light modulator (SLM).
NASA Astrophysics Data System (ADS)
Pu, Mingbo; Ma, Xiaoliang; Zhao, Zeyu; Li, Xiong; Wang, Yanqin; Gao, Hui; Hu, Chenggang; Gao, Ping; Wang, Changtao; Luo, Xiangang
2015-07-01
The orbital angular momentum (OAM) of light, as an emerging hotspot in optics and photonics, introduces many degrees of freedom for applications ranging from optical communication and quantum processing to micromanipulation. To achieve a high degree of integration, optical circuits for OAM light are essential, which are, however, challenging in the optical regime owing to the lack of well-developed theory. Here we provide a scheme to guide and collimate the OAM beam at the micro- and nano-levels. The coaxial plasmonic slit was exploited as a naturally occurring waveguide for light carrying OAM. Concentric grooves etched on the output surface of the coaxial waveguide were utilized as a plasmonic metasurface to couple the OAM beam to free space with greatly increased beam directivity. Experimental results at λ = 532 nm validated the novel transportation and collimating effect of the OAM beam. Furthermore, dynamic tuning of the topological charges was demonstrated by using a liquid crystal spatial light modulator (SLM).
Pu, Mingbo; Ma, Xiaoliang; Zhao, Zeyu; Li, Xiong; Wang, Yanqin; Gao, Hui; Hu, Chenggang; Gao, Ping; Wang, Changtao; Luo, Xiangang
2015-01-01
The orbital angular momentum (OAM) of light, as an emerging hotspot in optics and photonics, introduces many degrees of freedom for applications ranging from optical communication and quantum processing to micromanipulation. To achieve a high degree of integration, optical circuits for OAM light are essential, which are, however, challenging in the optical regime owing to the lack of well-developed theory. Here we provide a scheme to guide and collimate the OAM beam at the micro- and nano-levels. The coaxial plasmonic slit was exploited as a naturally occurring waveguide for light carrying OAM. Concentric grooves etched on the output surface of the coaxial waveguide were utilized as a plasmonic metasurface to couple the OAM beam to free space with greatly increased beam directivity. Experimental results at λ = 532 nm validated the novel transportation and collimating effect of the OAM beam. Furthermore, dynamic tuning of the topological charges was demonstrated by using a liquid crystal spatial light modulator (SLM). PMID:26159423
AP-1 and KIF13A coordinate endosomal sorting and positioning during melanosome biogenesis
Delevoye, Cédric; Hurbain, Ilse; Tenza, Danièle; Sibarita, Jean-Baptiste; Uzan-Gafsou, Stéphanie; Ohno, Hiroshi; Geerts, Willie J.C.; Verkleij, Arie J.; Salamero, Jean; Marks, Michael S.
2009-01-01
Specialized cell types exploit endosomal trafficking to deliver protein cargoes to cell type–specific lysosome-related organelles (LROs), but how endosomes are specified for this function is not known. In this study, we show that the clathrin adaptor AP-1 and the kinesin motor KIF13A together create peripheral recycling endosomal subdomains in melanocytes required for cargo delivery to maturing melanosomes. In cells depleted of AP-1 or KIF13A, a subpopulation of recycling endosomes redistributes to pericentriolar clusters, resulting in sequestration of melanosomal enzymes like Tyrp1 in vacuolar endosomes and consequent inhibition of melanin synthesis and melanosome maturation. Immunocytochemistry, live cell imaging, and electron tomography reveal AP-1– and KIF13A-dependent dynamic close appositions and continuities between peripheral endosomal tubules and melanosomes. Our results reveal that LRO protein sorting is coupled to cell type–specific positioning of endosomes that facilitate endosome–LRO contacts and are required for organelle maturation. PMID:19841138
A second-order shock-adaptive Godunov scheme based on the generalized Lagrangian formulation
NASA Astrophysics Data System (ADS)
Lepage, Claude
Application of the Godunov scheme to the Euler equations of gas dynamics, based on the Eulerian formulation of flow, smears discontinuities (especially sliplines) over several computational cells, while the accuracy in the smooth flow regions is of the order of a function of the cell width. Based on the generalized Lagrangian formulation (GLF), the Godunov scheme yields far superior results. By the use of coordinate streamlines in the GLF, the slipline (itself a streamline) is resolved crisply. Infinite shock resolution is achieved through the splitting of shock cells, while the accuracy in the smooth flow regions is improved using a nonconservative formulation of the governing equations coupled to a second order extension of the Godunov scheme. Furthermore, GLF requires no grid generation for boundary value problems and the simple structure of the solution to the Riemann problem in the GLF is exploited in the numerical implementation of the shock adaptive scheme. Numerical experiments reveal high efficiency and unprecedented resolution of shock and slipline discontinuities.
NASA Astrophysics Data System (ADS)
Jousset, P. G.; Jaya, M. S.; Sule, R.; Diningrat, W.; Gassner, A.; Akbar, F.; Ryannugroho, R.; Hendryana, A.; Kusnadi, Y.; Syahbana, D.; Nugraha, A. D.; Umar, M.; Indrinanto, Y.; Erbas, K.
2013-12-01
The assessment of geothermal resources requires the understanding of the structure and the dynamics of geothermal reservoirs. We deployed a multidisciplinary geophysical network around geothermal areas in the south of Bandung, West Java, Indonesia. The first deployment included a network of 30 broadband and 4 short-period seismic stations with Güralp and Trillium sensors (0.008 - 100 Hz) since October 2012. In a second step, we extended the network in June 2013 with 16 short-period (1 Hz) seismometers. We describe the set-up of the seismic networks and discuss first observations and results. The co-existence of a large variety of intense surface manifestations like geysers, hot-steaming grounds, hot water pools, and active volcanoes suggest an intimate coupling between volcanic, tectonic and hydrothermal processes in this area. Preliminary location of earthquakes is performed using a non-linear algorithm, which allows us to define at least 3 seismic clusters. We discuss this seismic pattern within the geothermal fields.
Voluntary control of intracortical oscillations for reconfiguration of network activity
Corlier, Juliana; Valderrama, Mario; Navarrete, Miguel; Lehongre, Katia; Hasboun, Dominique; Adam, Claude; Belaid, Hayat; Clémenceau, Stéphane; Baulac, Michel; Charpier, Stéphane; Navarro, Vincent; Le Van Quyen, Michel
2016-01-01
Voluntary control of oscillatory activity represents a key target in the self-regulation of brain function. Using a real-time closed-loop paradigm and simultaneous macro- and micro-electrode recordings, we studied the effects of self-induced intracortical oscillatory activity (4–8 Hz) in seven neurosurgical patients. Subjects learned to robustly and specifically induce oscillations in the target frequency, confirmed by increased oscillatory event density. We have found that the session-to-session variability in performance was explained by the functional long-range decoupling of the target area suggesting a training-induced network reorganization. Downstream effects on more local activities included progressive cross-frequency-coupling with gamma oscillations (30–120 Hz), and the dynamic modulation of neuronal firing rates and spike timing, indicating an improved temporal coordination of local circuits. These findings suggest that effects of voluntary control of intracortical oscillations can be exploited to specifically target plasticity processes to reconfigure network activity, with a particular relevance for memory function or skill acquisition. PMID:27808225
Modeling oscillations and spiral waves in Dictyostelium populations
NASA Astrophysics Data System (ADS)
Noorbakhsh, Javad; Schwab, David J.; Sgro, Allyson E.; Gregor, Thomas; Mehta, Pankaj
2015-06-01
Unicellular organisms exhibit elaborate collective behaviors in response to environmental cues. These behaviors are controlled by complex biochemical networks within individual cells and coordinated through cell-to-cell communication. Describing these behaviors requires new mathematical models that can bridge scales—from biochemical networks within individual cells to spatially structured cellular populations. Here we present a family of "multiscale" models for the emergence of spiral waves in the social amoeba Dictyostelium discoideum. Our models exploit new experimental advances that allow for the direct measurement and manipulation of the small signaling molecule cyclic adenosine monophosphate (cAMP) used by Dictyostelium cells to coordinate behavior in cellular populations. Inspired by recent experiments, we model the Dictyostelium signaling network as an excitable system coupled to various preprocessing modules. We use this family of models to study spatially unstructured populations of "fixed" cells by constructing phase diagrams that relate the properties of population-level oscillations to parameters in the underlying biochemical network. We then briefly discuss an extension of our model that includes spatial structure and show how this naturally gives rise to spiral waves. Our models exhibit a wide range of novel phenomena. including a density-dependent frequency change, bistability, and dynamic death due to slow cAMP dynamics. Our modeling approach provides a powerful tool for bridging scales in modeling of Dictyostelium populations.
Direct observation of surface-state thermal oscillations in SmB6 oscillators
NASA Astrophysics Data System (ADS)
Casas, Brian; Stern, Alex; Efimkin, Dmitry K.; Fisk, Zachary; Xia, Jing
2018-01-01
SmB6 is a mixed valence Kondo insulator that exhibits a sharp increase in resistance following an activated behavior that levels off and saturates below 4 K. This behavior can be explained by the proposal of SmB6 representing a new state of matter, a topological Kondo insulator, in which a Kondo gap is developed, and topologically protected surface conduction dominates low-temperature transport. Exploiting its nonlinear dynamics, a tunable SmB6 oscillator device was recently demonstrated, where a small dc current generates large oscillating voltages at frequencies from a few Hz to hundreds of MHz. This behavior was explained by a theoretical model describing the thermal and electronic dynamics of coupled surface and bulk states. However, a crucial aspect of this model, the predicted temperature oscillation in the surface state, has not been experimentally observed to date. This is largely due to the technical difficulty of detecting an oscillating temperature of the very thin surface state. Here we report direct measurements of the time-dependent surface-state temperature in SmB6 with a RuO2 microthermometer. Our results agree quantitatively with the theoretically simulated temperature waveform, and hence support the validity of the oscillator model, which will provide accurate theoretical guidance for developing future SmB6 oscillators at higher frequencies.
NASA Astrophysics Data System (ADS)
Horikawa, Yo
2013-12-01
Transient patterns in a bistable ring of bidirectionally coupled sigmoidal neurons were studied. When the system had a pair of spatially uniform steady solutions, the instability of unstable spatially nonuniform steady solutions decreased exponentially with the number of neurons because of the symmetry of the system. As a result, transient spatially nonuniform patterns showed dynamical metastability: Their duration increased exponentially with the number of neurons and the duration of randomly generated patterns obeyed a power-law distribution. However, these metastable dynamical patterns were easily stabilized in the presence of small variations in coupling strength. Metastable rotating waves and their pinning in the presence of asymmetry in the direction of coupling and the disappearance of metastable dynamical patterns due to asymmetry in the output function of a neuron were also examined. Further, in a two-dimensional array of neurons with nearest-neighbor coupling, intrinsically one-dimensional patterns were dominant in transients, and self-excitation in these neurons affected the metastable dynamical patterns.
Methodologies for launcher-payload coupled dynamic analysis
NASA Astrophysics Data System (ADS)
Fransen, S. H. J. A.
2012-06-01
An important step in the design and verification process of spacecraft structures is the coupled dynamic analysis with the launch vehicle in the low-frequency domain, also referred to as coupled loads analysis (CLA). The objective of such analyses is the computation of the dynamic environment of the spacecraft (payload) in terms of interface accelerations, interface forces, center of gravity (CoG) accelerations as well as the internal state of stress. In order to perform an efficient, fast and accurate launcher-payload coupled dynamic analysis, various methodologies have been applied and developed. The methods are related to substructuring techniques, data recovery techniques, the effects of prestress and fluids and time integration problems. The aim of this paper was to give an overview of these methodologies and to show why, how and where these techniques can be used in the process of launcher-payload coupled dynamic analysis. In addition, it will be shown how these methodologies fit together in a library of procedures which can be used with the MSC.Nastran™ solution sequences.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Long, Y. T.; Zu, G. J.
1996-01-01
The coupling of slosh dynamics within a partially filled rotating dewar of superfluid helium 11 with spacecraft orbital dynamics is investigated in response to the environmental disturbances of (a) lateral impulses, (b) gravity gradients and (c) g-jitter forces. The purpose of this study is to investigate how the coupling of helium 11 fluid slosh dynamics driven by three cases of environmental force with spacecraft dynamics can affect the bubble deformations and their associated fluid and spacecraft mass centre fluctuations. The numerical computation of slosh dynamics is based on a rotational frame, while the spacecraft dynamics is associated with a non-rotational frame. Results show that the major contribution of orbital dynamics is driven by coupling with slosh dynamics. Neglecting the effect of slosh dynamics acting on the spacecraft may lead to the wrong results for the development of orbital and attitude control techniques.
Foraging at the edge of the world: low-altitude, high-speed manoeuvering in barn swallows
Warrick, Douglas R.; Hedrick, Tyson L.; Crandell, Kristen E.
2016-01-01
While prior studies of swallow manoeuvering have focused on slow-speed flight and obstacle avoidance in still air, swallows survive by foraging at high speeds in windy environments. Recent advances in field-portable, high-speed video systems, coupled with precise anemometry, permit measures of high-speed aerial performance of birds in a natural state. We undertook the present study to test: (i) the manner in which barn swallows (Hirundo rustica) may exploit wind dynamics and ground effect while foraging and (ii) the relative importance of flapping versus gliding for accomplishing high-speed manoeuvers. Using multi-camera videography synchronized with wind-velocity measurements, we tracked coursing manoeuvers in pursuit of prey. Wind speed averaged 1.3–2.0 m s−1 across the atmospheric boundary layer, exhibiting a shear gradient greater than expected, with instantaneous speeds of 0.02–6.1 m s−1. While barn swallows tended to flap throughout turns, they exhibited reduced wingbeat frequency, relying on glides and partial bounds during maximal manoeuvers. Further, the birds capitalized on the near-earth wind speed gradient to gain kinetic and potential energy during both flapping and gliding turns; providing evidence that such behaviour is not limited to large, fixed-wing soaring seabirds and that exploitation of wind gradients by small aerial insectivores may be a significant aspect of their aeroecology. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight'. PMID:27528781
Dynamics of a network of phase oscillators with plastic couplings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nekorkin, V. I.; Kasatkin, D. V.; Moscow Institute of Physics and Technology
The processes of synchronization and phase cluster formation are investigated in a complex network of dynamically coupled phase oscillators. Coupling weights evolve dynamically depending on the phase relations between the oscillators. It is shown that the network exhibits several types of behavior: the globally synchronized state, two-cluster and multi-cluster states, different synchronous states with a fixed phase relationship between the oscillators and chaotic desynchronized state.
Simmons, Janie
2006-01-01
Background The drug treatment field tends to place emphasis on the individual rather than the individual in social context. While there are a growing number of studies indicating that drug-using intimate partners are likely to play an important role in determining treatment options, little attention has been given to the experience and complex treatment needs of illicit drug-using (heroin, cocaine, crack) couples. Methods This exploratory study used in-depth interviews and ethnographic engagement to better understand the relationship between interpersonal dynamics and the treatment experience of ten relatively stable drug-using couples in Hartford, CT. Semi-structured and open-ended qualitative interviews were conducted with each couple and separately with each partner. Whenever possible, the day-to-day realities and contexts of risk were also observed via participant and non-participant observation of these couples in the community. A grounded theory approach was used to inductively code and analyze nearly 40 transcripts of 60–90 minute interviews as well as fieldnotes. Results This study builds on a concept of complex interpersonal dynamics among drug users. Interpersonal dynamics of care and collusion were identified: couples cared for each other and colluded to acquire and use drugs. Care and collusion operate at the micro level of the risk environment. Treatment barriers and inadequacies were identified as part of the risk environment at the meso or intermediate level of analysis, and larger social forces such as gender dynamics, poverty and the "War on Drugs" were identified at the macro level. Interpersonal dynamics posed problems for couples when one or both partners were interested in accessing treatment. Structural barriers presented additional obstacles with the denial of admittance of both partners to treatment programs which had a sole focus on the individual and avoided treating couples. Conclusion Detoxification and treatment facilities need to recognize the complex interplay between interpersonal dynamics which shape the treatment experience of couples, and which are also shaped by larger structural dynamics, including barriers in the treatment system. Improvements to the treatment system in general will go a long way in improving treatment for couples. Couples-specific programming also needs to be developed. PMID:16722545
Strongly Coupled Nanotube Electromechanical Resonators.
Deng, Guang-Wei; Zhu, Dong; Wang, Xin-He; Zou, Chang-Ling; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Liu, Di; Li, Yan; Xiao, Ming; Guo, Guang-Can; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guo-Ping
2016-09-14
Coupling an electromechanical resonator with carbon-nanotube quantum dots is a significant method to control both the electronic charge and the spin quantum states. By exploiting a novel microtransfer technique, we fabricate two separate strongly coupled and electrically tunable mechanical resonators for the first time. The frequency of the two resonators can be individually tuned by the bottom gates, and in each resonator, the electron transport through the quantum dot can be strongly affected by the phonon mode and vice versa. Furthermore, the conductance of either resonator can be nonlocally modulated by the other resonator through phonon-phonon interaction between the two resonators. Strong coupling is observed between the phonon modes of the two resonators, where the coupling strength larger than 200 kHz can be reached. This strongly coupled nanotube electromechanical resonator array provides an experimental platform for future studies of the coherent electron-phonon interaction, the phonon-mediated long-distance electron interaction, and entanglement state generation.
Scheme variations of the QCD coupling
NASA Astrophysics Data System (ADS)
Boito, Diogo; Jamin, Matthias; Miravitllas, Ramon
2017-03-01
The Quantum Chromodynamics (QCD) coupling αs is a central parameter in the Standard Model of particle physics. However, it depends on theoretical conventions related to renormalisation and hence is not an observable quantity. In order to capture this dependence in a transparent way, a novel definition of the QCD coupling, denoted by â, is introduced, whose running is explicitly renormalisation scheme invariant. The remaining renormalisation scheme dependence is related to transformations of the QCD scale Λ, and can be parametrised by a single parameter C. Hence, we call â the C-scheme coupling. The dependence on C can be exploited to study and improve perturbative predictions of physical observables. This is demonstrated for the QCD Adler function and hadronic decays of the τ lepton.
Xu, W; Zhu, Z H; Liu, K; Zhang, J F; Yuan, X D; Lu, Q S; Qin, S Q
2015-07-15
We exploit the concept of critical coupling to graphene based chip-integrated applications and numerically demonstrate that a chip-integrated nearly perfect graphene absorber at wavelengths around 1.55 μm can be obtained by graphene nearly critical coupling with a nanobeam cavity. The key points are reducing the radiation loss and transmission possibly, together with controlling the coupling rate of the cavity to the input waveguide to be equal to the absorption rate of the cavity caused by graphene. Simulation results show that the absorption of monolayer graphene with a total length of only a few microns is raised up to 97%. Our study may have potential applications in chip-integrated photodetectors.
NASA Astrophysics Data System (ADS)
Wang, Chen; Chen, Xu-Min; Sun, Ke-Wei; Ren, Jie
2018-05-01
We investigate the nonequilibrium quantum heat transfer in a quantum thermal transistor, constructed by a triangle-coupled spin-boson system in a three-terminal setup. By exploiting the nonequilibrium noninteracting blip approximation approach combined with full counting statistics, we obtain the steady-state thermal transport, such as heat currents. We identify the giant heat amplification feature in a strong coupling regime, which results from the negative differential thermal conductance with respect to the gate temperature. Analysis shows that the strong coupling between the gate qubit and corresponding gate thermal bath plays the crucial role in exhibiting these far-from-equilibrium features. These results would have potential implications in designing efficient quantum thermal transistors in the future.
NASA Astrophysics Data System (ADS)
Ghirri, Alberto; Bonizzoni, Claudio; Troiani, Filippo; Affronte, Marco
The problem of coupling remote ensembles of two-level systems through cavity photons is revisited by using molecular spin centers and a high critical temperature superconducting coplanar resonator. By using PyBTM organic radicals, we achieved the strong coupling regime with values of the cooperativity reaching 4300 at 2 K. We show that up to three distinct spin ensembles are simultaneously coupled through the resonator mode. The ensembles are made physically distinguishable by chemically varying the g-factor and by exploiting the inhomogeneities of the applied magnetic field. The coherent mixing of the spin and field modes is demonstrated by the observed multiple anticrossing, along with the simulations performed within the input-output formalism, and quantified by suitable entropic measures.
Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes
NASA Astrophysics Data System (ADS)
Mazzeo, M.; Genco, A.; Gambino, S.; Ballarini, D.; Mangione, F.; Di Stefano, O.; Patanè, S.; Savasta, S.; Sanvitto, D.; Gigli, G.
2014-06-01
The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.
In vivo optical imaging and dynamic contrast methods for biomedical research
Hillman, Elizabeth M. C.; Amoozegar, Cyrus B.; Wang, Tracy; McCaslin, Addason F. H.; Bouchard, Matthew B.; Mansfield, James; Levenson, Richard M.
2011-01-01
This paper provides an overview of optical imaging methods commonly applied to basic research applications. Optical imaging is well suited for non-clinical use, since it can exploit an enormous range of endogenous and exogenous forms of contrast that provide information about the structure and function of tissues ranging from single cells to entire organisms. An additional benefit of optical imaging that is often under-exploited is its ability to acquire data at high speeds; a feature that enables it to not only observe static distributions of contrast, but to probe and characterize dynamic events related to physiology, disease progression and acute interventions in real time. The benefits and limitations of in vivo optical imaging for biomedical research applications are described, followed by a perspective on future applications of optical imaging for basic research centred on a recently introduced real-time imaging technique called dynamic contrast-enhanced small animal molecular imaging (DyCE). PMID:22006910
Horikawa, Yo
2016-04-01
Metastable dynamical transient patterns in arrays of bidirectionally coupled neurons with self-coupling and asymmetric output were studied. First, an array of asymmetric sigmoidal neurons with symmetric inhibitory bidirectional coupling and self-coupling was considered and the bifurcations of its steady solutions were shown. Metastable dynamical transient spatially nonuniform states existed in the presence of a pair of spatially symmetric stable solutions as well as unstable spatially nonuniform solutions in a restricted range of the output gain of a neuron. The duration of the transients increased exponentially with the number of neurons up to the maximum number at which the spatially nonuniform steady solutions were stabilized. The range of the output gain for which they existed reduced as asymmetry in a sigmoidal output function of a neuron increased, while the existence range expanded as the strength of inhibitory self-coupling increased. Next, arrays of spiking neuron models with slow synaptic inhibitory bidirectional coupling and self-coupling were considered with computer simulation. In an array of Class 1 Hindmarsh-Rose type models, in which each neuron showed a graded firing rate, metastable dynamical transient firing patterns were observed in the presence of inhibitory self-coupling. This agreed with the condition for the existence of metastable dynamical transients in an array of sigmoidal neurons. In an array of Class 2 Bonhoeffer-van der Pol models, in which each neuron had a clear threshold between firing and resting, long-lasting transient firing patterns with bursting and irregular motion were observed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multilevel relaxation phenomena and population trapping. Final report, July 1, 1984--June 30, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hioe, F.T.
1991-11-01
This final report summarizes the main results of our work supported by DOE since 1982. A list of 45 publications supported by this DOE Grant is attached at the end of this report. The use and exploitation of the SU(N) dynamic symmetry to the study of the dynamics of laser-atom interaction was the starting point of our research work under this DOE Grant, and is our most original contribution to the field of quantum electrodynamics. Many results of general and special interests have been derived and developed from this starting point and the following is a summary of them: (1)more » We have introduced a set of simple relations based on the principle of unitary invariance which has proved to be useful for the study of the dynamics of a quantum system involving coupling. (2) We have found various specific conditions under which (a) we may have trapped population, or (b) we may send laser pulses through a multilevel atomic medium without attenuation. (3) We have found a remarkably efficient method for optimal state selective multiphoton population transfer, that employs two or more spatially overlapping lasers arranged in an unconventional sequence which we called ``counterintuitive``. A recent suggestion by Profs. P. Marte, P. Zoller and J.L. Hall to use this counterintuitive method for atomic beam deflections promises to make this remarkably effective procedure to become an important method in atomic interferometry.« less
Pulsatile Hormonal Signaling to Extracellular Signal-regulated Kinase
Perrett, Rebecca M.; Voliotis, Margaritis; Armstrong, Stephen P.; Fowkes, Robert C.; Pope, George R.; Tsaneva-Atanasova, Krasimira; McArdle, Craig A.
2014-01-01
Gonadotropin-releasing hormone (GnRH) is secreted in brief pulses that stimulate synthesis and secretion of pituitary gonadotropin hormones and thereby mediate control of reproduction. It acts via G-protein-coupled receptors to stimulate effectors, including ERK. Information could be encoded in GnRH pulse frequency, width, amplitude, or other features of pulse shape, but the relative importance of these features is unknown. Here we examine this using automated fluorescence microscopy and mathematical modeling, focusing on ERK signaling. The simplest scenario is one in which the system is linear, and response dynamics are relatively fast (compared with the signal dynamics). In this case integrated system output (ERK activation or ERK-driven transcription) will be roughly proportional to integrated input, but we find that this is not the case. Notably, we find that relatively slow response kinetics lead to ERK activity beyond the GnRH pulse, and this reduces sensitivity to pulse width. More generally, we show that the slowing of response kinetics through the signaling cascade creates a system that is robust to pulse width. We, therefore, show how various levels of response kinetics synergize to dictate system sensitivity to different features of pulsatile hormone input. We reveal the mathematical and biochemical basis of a dynamic GnRH signaling system that is robust to changes in pulse amplitude and width but is sensitive to changes in receptor occupancy and frequency, precisely the features that are tightly regulated and exploited to exert physiological control in vivo. PMID:24482225
Accelerated dynamic EPR imaging using fast acquisition and compressive recovery
NASA Astrophysics Data System (ADS)
Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L.
2016-12-01
Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques.
Antoneli, Fernando; Ferreira, Renata C; Briones, Marcelo R S
2016-06-01
Here we propose a new approach to modeling gene expression based on the theory of random dynamical systems (RDS) that provides a general coupling prescription between the nodes of any given regulatory network given the dynamics of each node is modeled by a RDS. The main virtues of this approach are the following: (i) it provides a natural way to obtain arbitrarily large networks by coupling together simple basic pieces, thus revealing the modularity of regulatory networks; (ii) the assumptions about the stochastic processes used in the modeling are fairly general, in the sense that the only requirement is stationarity; (iii) there is a well developed mathematical theory, which is a blend of smooth dynamical systems theory, ergodic theory and stochastic analysis that allows one to extract relevant dynamical and statistical information without solving the system; (iv) one may obtain the classical rate equations form the corresponding stochastic version by averaging the dynamic random variables (small noise limit). It is important to emphasize that unlike the deterministic case, where coupling two equations is a trivial matter, coupling two RDS is non-trivial, specially in our case, where the coupling is performed between a state variable of one gene and the switching stochastic process of another gene and, hence, it is not a priori true that the resulting coupled system will satisfy the definition of a random dynamical system. We shall provide the necessary arguments that ensure that our coupling prescription does indeed furnish a coupled regulatory network of random dynamical systems. Finally, the fact that classical rate equations are the small noise limit of our stochastic model ensures that any validation or prediction made on the basis of the classical theory is also a validation or prediction of our model. We illustrate our framework with some simple examples of single-gene system and network motifs. Copyright © 2016 Elsevier Inc. All rights reserved.
Stochastic dynamics of coupled active particles in an overdamped limit
NASA Astrophysics Data System (ADS)
Ann, Minjung; Lee, Kong-Ju-Bock; Park, Pyeong Jun
2015-10-01
We introduce a model for Brownian dynamics of coupled active particles in an overdamped limit. Our system consists of several identical active particles and one passive particle. Each active particle is elastically coupled to the passive particle and there is no direct coupling among the active particles. We investigate the dynamics of the system with respect to the number of active particles, viscous friction, and coupling between the active and passive particles. For this purpose, we consider an intracellular transport process as an application of our model and perform a Brownian dynamics simulation using realistic parameters for processive molecular motors such as kinesin-1. We determine an adequate energy conversion function for molecular motors and study the dynamics of intracellular transport by multiple motors. The results show that the average velocity of the coupled system is not affected by the number of active motors and that the stall force increases linearly as the number of motors increases. Our results are consistent with well-known experimental observations. We also examine the effects of coupling between the motors and the cargo, as well as of the spatial distribution of the motors around the cargo. Our model might provide a physical explanation of the cooperation among active motors in the cellular transport processes.
Good coupling for the multiscale patch scheme on systems with microscale heterogeneity
NASA Astrophysics Data System (ADS)
Bunder, J. E.; Roberts, A. J.; Kevrekidis, I. G.
2017-05-01
Computational simulation of microscale detailed systems is frequently only feasible over spatial domains much smaller than the macroscale of interest. The 'equation-free' methodology couples many small patches of microscale computations across space to empower efficient computational simulation over macroscale domains of interest. Motivated by molecular or agent simulations, we analyse the performance of various coupling schemes for patches when the microscale is inherently 'rough'. As a canonical problem in this universality class, we systematically analyse the case of heterogeneous diffusion on a lattice. Computer algebra explores how the dynamics of coupled patches predict the large scale emergent macroscale dynamics of the computational scheme. We determine good design for the coupling of patches by comparing the macroscale predictions from patch dynamics with the emergent macroscale on the entire domain, thus minimising the computational error of the multiscale modelling. The minimal error on the macroscale is obtained when the coupling utilises averaging regions which are between a third and a half of the patch. Moreover, when the symmetry of the inter-patch coupling matches that of the underlying microscale structure, patch dynamics predicts the desired macroscale dynamics to any specified order of error. The results confirm that the patch scheme is useful for macroscale computational simulation of a range of systems with microscale heterogeneity.
Quantification of causal couplings via dynamical effects: A unifying perspective
NASA Astrophysics Data System (ADS)
Smirnov, Dmitry A.
2014-12-01
Quantitative characterization of causal couplings from time series is crucial in studies of complex systems of different origin. Various statistical tools for that exist and new ones are still being developed with a tendency to creating a single, universal, model-free quantifier of coupling strength. However, a clear and generally applicable way of interpreting such universal characteristics is lacking. This work suggests a general conceptual framework for causal coupling quantification, which is based on state space models and extends the concepts of virtual interventions and dynamical causal effects. Namely, two basic kinds of interventions (state space and parametric) and effects (orbital or transient and stationary or limit) are introduced, giving four families of coupling characteristics. The framework provides a unifying view of apparently different well-established measures and allows us to introduce new characteristics, always with a definite "intervention-effect" interpretation. It is shown that diverse characteristics cannot be reduced to any single coupling strength quantifier and their interpretation is inevitably model based. The proposed set of dynamical causal effect measures quantifies different aspects of "how the coupling manifests itself in the dynamics," reformulating the very question about the "causal coupling strength."
Bender, Matthias; Turnbull, Ben W H; Ambler, Brett R; Krische, Michael J
2017-08-25
Current catalytic processes involving carbon-carbon bond activation rely on π-unsaturated coupling partners. Exploiting the concept of transfer hydrogenative coupling, we report a ruthenium(0)-catalyzed cycloaddition of benzocyclobutenones that functionalizes two adjacent saturated diol carbon-hydrogen bonds. These regio- and diastereoselective processes enable convergent construction of type II polyketide substructures. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Modal simulation of gearbox vibration with experimental correlation
NASA Technical Reports Server (NTRS)
Choy, Fred K.; Ruan, Yeefeng F.; Zakrajsek, James J.; Oswald, Fred B.
1992-01-01
A newly developed global dynamic model was used to simulate the dynamics of a gear noise rig at NASA Lewis Research Center. Experimental results from the test rig were used to verify the analytical model. In this global dynamic model, the number of degrees of freedom of the system are reduced by transforming the system equations of motion into modal coordinates. The vibration of the individual gear-shaft system are coupled through the gear mesh forces. A three-dimensional, axial-lateral coupled, bearing model was used to couple the casing structural vibration to the gear-rotor dynamics. The coupled system of modal equations is solved to predict the resulting vibration at several locations on the test rig. Experimental vibration data was compared to the predictions of the global dynamic model. There is excellent agreement between the vibration results from analysis and experiment.
NASA Astrophysics Data System (ADS)
Jing, Ze; Yong, Huadong; Zhou, Youhe
2018-05-01
In this paper, vortex dynamics of superconducting thin films are numerically investigated by the generalized time-dependent Ginzburg–Landau (TDGL) theory. Interactions between vortex motion and the motion induced energy dissipation is considered by solving the coupled TDGL equation and the heat diffusion equation. It is found that thermal coupling has significant effects on the vortex dynamics of superconducting thin films. Branching in the vortex penetration path originates from the coupling between vortex motion and the motion induced energy dissipation. In addition, the environment temperature, the magnetic field ramp rate and the geometry of the superconducting film also greatly influence the vortex dynamic behaviors. Our results provide new insights into the dynamics of superconducting vortices, and give a mesoscopic understanding on the channeling and branching of vortex penetration paths during flux avalanches.
NASA Technical Reports Server (NTRS)
Ransom, Jonathan B.
2002-01-01
A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.
Izaguirre, Eder; Lin, Tongyan; Shuve, Brian
2017-03-15
Here, we propose new searches for axion-like particles (ALPs) produced in flavor-changing neutral current (FCNC) processes. This proposal exploits the often-overlooked coupling of ALPs to W ± bosons, leading to FCNC production of ALPs even in the absence of a direct coupling to fermions. Our proposed searches for resonant ALP production in decays such as B→K(*)a, a→γγ, and K→πa, a→γγ could greatly improve upon the current sensitivity to ALP couplings to standard model particles. Finally, we also determine analogous constraints and discovery prospects for invisibly decaying ALPs.
The effect of movement and load on the dynamic coupling of abdominal electromyography.
King, Adam C
2018-05-14
This study investigated the degree of neural coupling in abdominal muscle activity and whether the task constraints of movement and load altered the coupling within three muscle pairings. Nineteen young, physically-active individuals performed sit-up and reverse crunch movements in bodyweight (BW) and loaded (+4.54 kg) conditions. Surface electromyography (sEMG) was recorded from the rectus abdominus (RA), external oblique (EO), and transverse abdominus (TA) muscles. Linear (correlation coefficient) and non-linear (Cross-Approximate Entropy) measurements evaluated the degree of couplings across three muscle pairings. Compared to a resting coupling state, most conditions showed evidence of coupling. The linear coupling showed greater coupling compared to the resting state. Dynamic coupling showed lower degrees of coupling for the RA-EO and RA-TA pairings but stronger coupling for the EO-TA pairing with the sit-up movement exhibiting lower Cross-ApEn (higher dynamic coupling) than the reverse crunch. The results provide preliminary evidence of coupling in abdominal muscle activity that was influenced by movement, but not load. The functional roles of the RA (prime mover), EO and TA (stabilizers) muscles may have influenced the degree of coupling and future investigations are needed to better understand the coupling of abdominal muscle activity. Copyright © 2018 Elsevier B.V. All rights reserved.
Tagliavia, Marcello; Cuttitta, Angela
2016-01-01
High rates of plasmid instability are associated with the use of some expression vectors in Escherichia coli, resulting in the loss of recombinant protein expression. This is due to sequence alterations in vector promoter elements caused by the background expression of the cloned gene, which leads to the selection of fast-growing, plasmid-containing cells that do not express the target protein. This phenomenon, which is worsened when expressing toxic proteins, results in preparations containing very little or no recombinant protein, or even in clone loss; however, no methods to prevent loss of recombinant protein expression are currently available. We have exploited the phenomenon of translational coupling, a mechanism of prokaryotic gene expression regulation, in order to select cells containing plasmids still able to express recombinant proteins. Here we designed an expression vector in which the cloned gene and selection marker are co-expressed. Our approach allowed for the selection of the recombinant protein-expressing cells and proved effective even for clones encoding toxic proteins.
Ramskold, Louise Anna Helena; Posner, Marcus Paul
2013-06-01
Increasing globalisation and advances in artificial reproductive techniques have opened up a whole new range of possibilities for infertile couples across the globe. Inter-country gestational surrogacy with monetary remuneration is one of the products of medical tourism meeting in vitro fertilisation embryo transfer. Filled with potential, it has also been a hot topic of discussion in legal and bioethics spheres. Fears of exploitation and breach of autonomy have sprung from the current situation, where there is no international regulation of surrogacy agreements--only a web of conflicting national laws that generates loopholes and removes safeguards for both the surrogate and commissioning couple. This article argues the need for evidence-based international laws and regulations as the only way to resolve both the ethical and legal issues around commercial surrogacy. In addition, a Hague Convention on inter-country surrogacy agreements is proposed to resolve the muddled state of affairs and enable commercial surrogacy to demonstrate its full potential.
System Simulation by Recursive Feedback: Coupling a Set of Stand-Alone Subsystem Simulations
NASA Technical Reports Server (NTRS)
Nixon, D. D.
2001-01-01
Conventional construction of digital dynamic system simulations often involves collecting differential equations that model each subsystem, arran g them to a standard form, and obtaining their numerical gin solution as a single coupled, total-system simultaneous set. Simulation by numerical coupling of independent stand-alone subsimulations is a fundamentally different approach that is attractive because, among other things, the architecture naturally facilitates high fidelity, broad scope, and discipline independence. Recursive feedback is defined and discussed as a candidate approach to multidiscipline dynamic system simulation by numerical coupling of self-contained, single-discipline subsystem simulations. A satellite motion example containing three subsystems (orbit dynamics, attitude dynamics, and aerodynamics) has been defined and constructed using this approach. Conventional solution methods are used in the subsystem simulations. Distributed and centralized implementations of coupling have been considered. Numerical results are evaluated by direct comparison with a standard total-system, simultaneous-solution approach.
Dynamic acousto-optic control of a strongly coupled photonic molecule
Kapfinger, Stephan; Reichert, Thorsten; Lichtmannecker, Stefan; Müller, Kai; Finley, Jonathan J.; Wixforth, Achim; Kaniber, Michael; Krenner, Hubert J.
2015-01-01
Strongly confined photonic modes can couple to quantum emitters and mechanical excitations. To harness the full potential in quantum photonic circuits, interactions between different constituents have to be precisely and dynamically controlled. Here, a prototypical coupled element, a photonic molecule defined in a photonic crystal membrane, is controlled by a radio frequency surface acoustic wave. The sound wave is tailored to deliberately switch on and off the bond of the photonic molecule on sub-nanosecond timescales. In time-resolved experiments, the acousto-optically controllable coupling is directly observed as clear anticrossings between the two nanophotonic modes. The coupling strength is determined directly from the experimental data. Both the time dependence of the tuning and the inter-cavity coupling strength are found to be in excellent agreement with numerical calculations. The demonstrated mechanical technique can be directly applied for dynamic quantum gate operations in state-of-the-art-coupled nanophotonic, quantum cavity electrodynamic and optomechanical systems. PMID:26436203
Study on the Vehicle Dynamic Load Considering the Vehicle-Pavement Coupled Effect
NASA Astrophysics Data System (ADS)
Xu, H. L.; He, L.; An, D.
2017-11-01
The vibration of vehicle-pavement interaction system is sophisticated random vibration process and the vehicle-pavement coupled effect was not considered in the previous study. A new linear elastic model of the vehicle-pavement coupled system was established in the paper. The new model was verified with field measurement which could reflect the real vibration between vehicle and pavement. Using the new model, the study on the vehicle dynamic load considering the vehicle-pavement coupled effect showed that random forces (centralization) between vehicle and pavement were influenced largely by vehicle-pavement coupled effect. Numerical calculation indicated that the maximum of random forces in coupled model was 2.4 times than that in uncoupled model. Inquiring the reason, it was found that the main vibration frequency of the vehicle non-suspension system was similar with that of the vehicle suspension system in the coupled model and the resonance vibration lead to vehicle dynamic load increase significantly.
Coupled dynamics analysis of wind energy systems
NASA Technical Reports Server (NTRS)
Hoffman, J. A.
1977-01-01
A qualitative description of all key elements of a complete wind energy system computer analysis code is presented. The analysis system addresses the coupled dynamics characteristics of wind energy systems, including the interactions of the rotor, tower, nacelle, power train, control system, and electrical network. The coupled dynamics are analyzed in both the frequency and time domain to provide the basic motions and loads data required for design, performance verification and operations analysis activities. Elements of the coupled analysis code were used to design and analyze candidate rotor articulation concepts. Fundamental results and conclusions derived from these studies are presented.
Explore or Exploit? A Generic Model and an Exactly Solvable Case
NASA Astrophysics Data System (ADS)
Gueudré, Thomas; Dobrinevski, Alexander; Bouchaud, Jean-Philippe
2014-02-01
Finding a good compromise between the exploitation of known resources and the exploration of unknown, but potentially more profitable choices, is a general problem, which arises in many different scientific disciplines. We propose a stylized model for these exploration-exploitation situations, including population or economic growth, portfolio optimization, evolutionary dynamics, or the problem of optimal pinning of vortices or dislocations in disordered materials. We find the exact growth rate of this model for treelike geometries and prove the existence of an optimal migration rate in this case. Numerical simulations in the one-dimensional case confirm the generic existence of an optimum.
Explore or exploit? A generic model and an exactly solvable case.
Gueudré, Thomas; Dobrinevski, Alexander; Bouchaud, Jean-Philippe
2014-02-07
Finding a good compromise between the exploitation of known resources and the exploration of unknown, but potentially more profitable choices, is a general problem, which arises in many different scientific disciplines. We propose a stylized model for these exploration-exploitation situations, including population or economic growth, portfolio optimization, evolutionary dynamics, or the problem of optimal pinning of vortices or dislocations in disordered materials. We find the exact growth rate of this model for treelike geometries and prove the existence of an optimal migration rate in this case. Numerical simulations in the one-dimensional case confirm the generic existence of an optimum.
Dynamic characteristic of electromechanical coupling effects in motor-gear system
NASA Astrophysics Data System (ADS)
Bai, Wenyu; Qin, Datong; Wang, Yawen; Lim, Teik C.
2018-06-01
Dynamic characteristics of an electromechanical model which combines a nonlinear permeance network model (PNM) of a squirrel-cage induction motor and a coupled lateral-torsional dynamic model of a planetary geared rotor system is analyzed in this study. The simulations reveal the effects of internal excitations or parameters like machine slotting, magnetic saturation, time-varying mesh stiffness and shaft stiffness on the system dynamics. The responses of the electromechanical system with PNM motor model are compared with those responses of the system with dynamic motor model. The electromechanical coupling due to the interactions between the motor and gear system are studied. Furthermore, the frequency analysis of the electromechanical system dynamic characteristics predicts an efficient way to detect work condition of unsymmetrical voltage sag.
Chen, Bor-Sen; Hsu, Chih-Yuan
2012-10-26
Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with the help of LMI toolbox in MATLAB easily. If the synchronization robustness criterion, i.e. the synchronization robustness ≥ intrinsic robustness + extrinsic robustness, then the stochastic coupled synthetic oscillators can be robustly synchronized in spite of intrinsic parameter fluctuation and extrinsic noise. If the synchronization robustness criterion is violated, external control scheme by adding inducer can be designed to improve synchronization robustness of coupled synthetic genetic oscillators. The investigated robust synchronization criteria and proposed external control method are useful for a population of coupled synthetic networks with emergent synchronization behavior, especially for multi-cellular, engineered networks.
2012-01-01
Background Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Results Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with the help of LMI toolbox in MATLAB easily. Conclusion If the synchronization robustness criterion, i.e. the synchronization robustness ≥ intrinsic robustness + extrinsic robustness, then the stochastic coupled synthetic oscillators can be robustly synchronized in spite of intrinsic parameter fluctuation and extrinsic noise. If the synchronization robustness criterion is violated, external control scheme by adding inducer can be designed to improve synchronization robustness of coupled synthetic genetic oscillators. The investigated robust synchronization criteria and proposed external control method are useful for a population of coupled synthetic networks with emergent synchronization behavior, especially for multi-cellular, engineered networks. PMID:23101662
Parameter Sweep and Optimization of Loosely Coupled Simulations Using the DAKOTA Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elwasif, Wael R; Bernholdt, David E; Pannala, Sreekanth
2012-01-01
The increasing availability of large scale computing capabilities has accelerated the development of high-fidelity coupled simulations. Such simulations typically involve the integration of models that implement various aspects of the complex phenomena under investigation. Coupled simulations are playing an integral role in fields such as climate modeling, earth systems modeling, rocket simulations, computational chemistry, fusion research, and many other computational fields. Model coupling provides scientists with systematic ways to virtually explore the physical, mathematical, and computational aspects of the problem. Such exploration is rarely done using a single execution of a simulation, but rather by aggregating the results from manymore » simulation runs that, together, serve to bring to light novel knowledge about the system under investigation. Furthermore, it is often the case (particularly in engineering disciplines) that the study of the underlying system takes the form of an optimization regime, where the control parameter space is explored to optimize an objective functions that captures system realizability, cost, performance, or a combination thereof. Novel and flexible frameworks that facilitate the integration of the disparate models into a holistic simulation are used to perform this research, while making efficient use of the available computational resources. In this paper, we describe the integration of the DAKOTA optimization and parameter sweep toolkit with the Integrated Plasma Simulator (IPS), a component-based framework for loosely coupled simulations. The integration allows DAKOTA to exploit the internal task and resource management of the IPS to dynamically instantiate simulation instances within a single IPS instance, allowing for greater control over the trade-off between efficiency of resource utilization and time to completion. We present a case study showing the use of the combined DAKOTA-IPS system to aid in the design of a lithium ion battery (LIB) cell, by studying a coupled system involving the electrochemistry and ion transport at the lower length scales and thermal energy transport at the device scales. The DAKOTA-IPS system provides a flexible tool for use in optimization and parameter sweep studies involving loosely coupled simulations that is suitable for use in situations where changes to the constituent components in the coupled simulation are impractical due to intellectual property or code heritage issues.« less
Artificial neural networks in models of specialization, guild evolution and sympatric speciation.
Holmgren, Noél M A; Norrström, Niclas; Getz, Wayne M
2007-03-29
Sympatric speciation can arise as a result of disruptive selection with assortative mating as a pleiotropic by-product. Studies on host choice, employing artificial neural networks as models for the host recognition system in exploiters, illustrate how disruptive selection on host choice coupled with assortative mating can arise as a consequence of selection for specialization. Our studies demonstrate that a generalist exploiter population can evolve into a guild of specialists with an 'ideal free' frequency distribution across hosts. The ideal free distribution arises from variability in host suitability and density-dependent exploiter fitness on different host species. Specialists are less subject to inter-phenotypic competition than generalists and to harmful mutations that are common in generalists exploiting multiple hosts. When host signals used as cues by exploiters coevolve with exploiter recognition systems, our studies show that evolutionary changes may be continuous and cyclic. Selection changes back and forth between specialization and generalization in the exploiters, and weak and strong mimicry in the hosts, where non-defended hosts use the host investing in defence as a model. Thus, host signals and exploiter responses are engaged in a red-queen mimicry process that is ultimately cyclic rather then directional. In one phase, evolving signals of exploitable hosts mimic those of hosts less suitable for exploitation (i.e. the model). Signals in the model hosts also evolve through selection to escape the mimic and its exploiters. Response saturation constraints in the model hosts lead to the mimic hosts finally perfecting its mimicry, after which specialization in the exploiter guild is lost. This loss of exploiter specialization provides an opportunity for the model hosts to escape their mimics. Therefore, this cycle then repeats. We suggest that a species can readily evolve sympatrically when disruptive selection for specialization on hosts is the first step. In a sexual reproduction setting, partial reproductive isolation may first evolve by mate choice being confined to individuals on the same host. Secondly, this disruptive selection will favour assortative mate choice on genotype, thereby leading to increased reproductive isolation.
Cosmological dynamics with non-minimally coupled scalar field and a constant potential function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrycyna, Orest; Szydłowski, Marek, E-mail: orest.hrycyna@ncbj.gov.pl, E-mail: marek.szydlowski@uj.edu.pl
2015-11-01
Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of themore » dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory.« less
Optimal control of dissipative nonlinear dynamical systems with triggers of coupled singularities
NASA Astrophysics Data System (ADS)
Stevanović Hedrih, K.
2008-02-01
This paper analyses the controllability of motion of nonconservative nonlinear dynamical systems in which triggers of coupled singularities exist or appear. It is shown that the phase plane method is useful for the analysis of nonlinear dynamics of nonconservative systems with one degree of freedom of control strategies and also shows the way it can be used for controlling the relative motion in rheonomic systems having equivalent scleronomic conservative or nonconservative system For the system with one generalized coordinate described by nonlinear differential equation of nonlinear dynamics with trigger of coupled singularities, the functions of system potential energy and conservative force must satisfy some conditions defined by a Theorem on the existence of a trigger of coupled singularities and the separatrix in the form of "an open a spiral form" of number eight. Task of the defined dynamical nonconservative system optimal control is: by using controlling force acting to the system, transfer initial state of the nonlinear dynamics of the system into the final state of the nonlinear dynamics in the minimal time for that optimal control task
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Khaled Z.; Epifanovsky, Evgeny; Williams, Samuel
Coupled-cluster methods provide highly accurate models of molecular structure through explicit numerical calculation of tensors representing the correlation between electrons. These calculations are dominated by a sequence of tensor contractions, motivating the development of numerical libraries for such operations. While based on matrix–matrix multiplication, these libraries are specialized to exploit symmetries in the molecular structure and in electronic interactions, and thus reduce the size of the tensor representation and the complexity of contractions. The resulting algorithms are irregular and their parallelization has been previously achieved via the use of dynamic scheduling or specialized data decompositions. We introduce our efforts tomore » extend the Libtensor framework to work in the distributed memory environment in a scalable and energy-efficient manner. We achieve up to 240× speedup compared with the optimized shared memory implementation of Libtensor. We attain scalability to hundreds of thousands of compute cores on three distributed-memory architectures (Cray XC30 and XC40, and IBM Blue Gene/Q), and on a heterogeneous GPU-CPU system (Cray XK7). As the bottlenecks shift from being compute-bound DGEMM's to communication-bound collectives as the size of the molecular system scales, we adopt two radically different parallelization approaches for handling load-imbalance, tasking and bulk synchronous models. Nevertheless, we preserve a unified interface to both programming models to maintain the productivity of computational quantum chemists.« less
Ibrahim, Khaled Z.; Epifanovsky, Evgeny; Williams, Samuel; ...
2017-03-08
Coupled-cluster methods provide highly accurate models of molecular structure through explicit numerical calculation of tensors representing the correlation between electrons. These calculations are dominated by a sequence of tensor contractions, motivating the development of numerical libraries for such operations. While based on matrix–matrix multiplication, these libraries are specialized to exploit symmetries in the molecular structure and in electronic interactions, and thus reduce the size of the tensor representation and the complexity of contractions. The resulting algorithms are irregular and their parallelization has been previously achieved via the use of dynamic scheduling or specialized data decompositions. We introduce our efforts tomore » extend the Libtensor framework to work in the distributed memory environment in a scalable and energy-efficient manner. We achieve up to 240× speedup compared with the optimized shared memory implementation of Libtensor. We attain scalability to hundreds of thousands of compute cores on three distributed-memory architectures (Cray XC30 and XC40, and IBM Blue Gene/Q), and on a heterogeneous GPU-CPU system (Cray XK7). As the bottlenecks shift from being compute-bound DGEMM's to communication-bound collectives as the size of the molecular system scales, we adopt two radically different parallelization approaches for handling load-imbalance, tasking and bulk synchronous models. Nevertheless, we preserve a unified interface to both programming models to maintain the productivity of computational quantum chemists.« less
Natural highways for end-of-life solutions in the LEO region
NASA Astrophysics Data System (ADS)
Alessi, Elisa Maria; Schettino, Giulia; Rossi, Alessandro; Valsecchi, Giovanni B.
2018-05-01
We present the main findings of a dynamical mapping performed in the Low Earth Orbit region. The results were obtained by propagating an extended grid of initial conditions, considering two different epochs and area-to-mass ratios, by means of a singly averaged numerical propagator. It turns out that dynamical resonances associated with high-degree geopotential harmonics, lunisolar perturbations and Solar radiation pressure can open natural deorbiting highways. For area-to-mass ratios typical of the orbiting intact objects, these corridors can be exploited only in combination with the action exerted by the atmospheric drag. For satellites equipped with an area augmentation device, we show the boundary of application of the drag, and where the Solar radiation pressure can be exploited.
Autonomous cycling between excitatory and inhibitory coupling in photosensitive chemical oscillators
NASA Astrophysics Data System (ADS)
Yengi, Desmond; Tinsley, Mark R.; Showalter, Kenneth
2018-04-01
Photochemically coupled Belousov-Zhabotinsky micro-oscillators are studied in experiments and simulations. The photosensitive oscillators exhibit excitatory or inhibitory coupling depending on the surrounding reaction mixture composition, which can be systematically varied. In-phase or out-of-phase synchronization is observed with predominantly excitatory or inhibitory coupling, respectively, and complex frequency cycling between excitatory and inhibitory coupling is found between these extremes. The dynamical behavior is characterized in terms of the corresponding phase response curves, and a map representation of the dynamics is presented.
Qualitative models and experimental investigation of chaotic NOR gates and set/reset flip-flops
NASA Astrophysics Data System (ADS)
Rahman, Aminur; Jordan, Ian; Blackmore, Denis
2018-01-01
It has been observed through experiments and SPICE simulations that logical circuits based upon Chua's circuit exhibit complex dynamical behaviour. This behaviour can be used to design analogues of more complex logic families and some properties can be exploited for electronics applications. Some of these circuits have been modelled as systems of ordinary differential equations. However, as the number of components in newer circuits increases so does the complexity. This renders continuous dynamical systems models impractical and necessitates new modelling techniques. In recent years, some discrete dynamical models have been developed using various simplifying assumptions. To create a robust modelling framework for chaotic logical circuits, we developed both deterministic and stochastic discrete dynamical models, which exploit the natural recurrence behaviour, for two chaotic NOR gates and a chaotic set/reset flip-flop. This work presents a complete applied mathematical investigation of logical circuits. Experiments on our own designs of the above circuits are modelled and the models are rigorously analysed and simulated showing surprisingly close qualitative agreement with the experiments. Furthermore, the models are designed to accommodate dynamics of similarly designed circuits. This will allow researchers to develop ever more complex chaotic logical circuits with a simple modelling framework.
Qualitative models and experimental investigation of chaotic NOR gates and set/reset flip-flops.
Rahman, Aminur; Jordan, Ian; Blackmore, Denis
2018-01-01
It has been observed through experiments and SPICE simulations that logical circuits based upon Chua's circuit exhibit complex dynamical behaviour. This behaviour can be used to design analogues of more complex logic families and some properties can be exploited for electronics applications. Some of these circuits have been modelled as systems of ordinary differential equations. However, as the number of components in newer circuits increases so does the complexity. This renders continuous dynamical systems models impractical and necessitates new modelling techniques. In recent years, some discrete dynamical models have been developed using various simplifying assumptions. To create a robust modelling framework for chaotic logical circuits, we developed both deterministic and stochastic discrete dynamical models, which exploit the natural recurrence behaviour, for two chaotic NOR gates and a chaotic set/reset flip-flop. This work presents a complete applied mathematical investigation of logical circuits. Experiments on our own designs of the above circuits are modelled and the models are rigorously analysed and simulated showing surprisingly close qualitative agreement with the experiments. Furthermore, the models are designed to accommodate dynamics of similarly designed circuits. This will allow researchers to develop ever more complex chaotic logical circuits with a simple modelling framework.
Investigating Joint Attention Mechanisms through Spoken Human-Robot Interaction
ERIC Educational Resources Information Center
Staudte, Maria; Crocker, Matthew W.
2011-01-01
Referential gaze during situated language production and comprehension is tightly coupled with the unfolding speech stream (Griffin, 2001; Meyer, Sleiderink, & Levelt, 1998; Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995). In a shared environment, utterance comprehension may further be facilitated when the listener can exploit the speaker's…
Zhou, Ping; Ahmad, Bashir; Ren, Guodong; Wang, Chunni
2018-01-01
In this paper, a new four-variable dynamical system is proposed to set chaotic circuit composed of memristor and Josephson junction, and the dependence of chaotic behaviors on nonlinearity is investigated. A magnetic flux-controlled memristor is used to couple with the RCL-shunted junction circuit, and the dynamical behaviors can be modulated by changing the coupling intensity between the memristor and the RCL-shunted junction. Bifurcation diagram and Lyapunov exponent are calculated to confirm the emergence of chaos in the improved dynamical system. The outputs and dynamical behaviors can be controlled by the initial setting and external stimulus as well. As a result, chaos can be suppressed and spiking occurs in the sampled outputs under negative feedback, while applying positive feedback type via memristor can be effective to trigger chaos. Furthermore, it is found that the number of multi-attractors in the Jerk circuit can be modulated when memristor coupling is applied on the circuit. These results indicate that memristor coupling can be effective to control chaotic circuits and it is also useful to reproduce dynamical behaviors for neuronal activities. PMID:29342178
Ma, Jun; Zhou, Ping; Ahmad, Bashir; Ren, Guodong; Wang, Chunni
2018-01-01
In this paper, a new four-variable dynamical system is proposed to set chaotic circuit composed of memristor and Josephson junction, and the dependence of chaotic behaviors on nonlinearity is investigated. A magnetic flux-controlled memristor is used to couple with the RCL-shunted junction circuit, and the dynamical behaviors can be modulated by changing the coupling intensity between the memristor and the RCL-shunted junction. Bifurcation diagram and Lyapunov exponent are calculated to confirm the emergence of chaos in the improved dynamical system. The outputs and dynamical behaviors can be controlled by the initial setting and external stimulus as well. As a result, chaos can be suppressed and spiking occurs in the sampled outputs under negative feedback, while applying positive feedback type via memristor can be effective to trigger chaos. Furthermore, it is found that the number of multi-attractors in the Jerk circuit can be modulated when memristor coupling is applied on the circuit. These results indicate that memristor coupling can be effective to control chaotic circuits and it is also useful to reproduce dynamical behaviors for neuronal activities.
Exciton-Polariton Dynamics of a Monolayer Semiconductor Coupled to a Microcavity
NASA Astrophysics Data System (ADS)
Chen, Yen-Jung; Stanev, Teodor K.; Stern, Nathaniel P.; Cain, Jeffrey D.; Dravid, Vinayak P.
Strong light-matter interactions, evidenced by exciton-polariton states, have been observed in the two-dimensional limit with monolayer transition metal dichalcogenides (TMDs) embedded in a microcavity. Because of the valley degree of freedom in monolayer TMDs, these hybrid light-matter states can exhibit valley polarization as in a bare monolayer, with strongly-coupled dynamics determined by the relative rates of exciton relaxation and intervalley scattering, which can be highly modified in on-resonant cavities. Here, we test this intuitive picture of the polarized exciton-polariton dynamics with monolayer MoS2 coupled to detuned cavities. Upper and lower polariton branches exhibit distinct decay rates indicative of different cavity dynamics. As with on-resonant, strongly-coupled exciton-polaritons, the weakly-coupled regime causes exciton-polariton valley polarization to persist at room temperature, demonstrating that dynamics of valley-polarized excitations can be controlled by engineering light-matter interactions. This work is supported by the U.S. Department of Energy (BES DE-SC0012130) and the National Science Foundation MRSEC program (DMR-1121262). N.P.S. is an Alfred P. Sloan Research Fellow.
Context-Aware Local Binary Feature Learning for Face Recognition.
Duan, Yueqi; Lu, Jiwen; Feng, Jianjiang; Zhou, Jie
2018-05-01
In this paper, we propose a context-aware local binary feature learning (CA-LBFL) method for face recognition. Unlike existing learning-based local face descriptors such as discriminant face descriptor (DFD) and compact binary face descriptor (CBFD) which learn each feature code individually, our CA-LBFL exploits the contextual information of adjacent bits by constraining the number of shifts from different binary bits, so that more robust information can be exploited for face representation. Given a face image, we first extract pixel difference vectors (PDV) in local patches, and learn a discriminative mapping in an unsupervised manner to project each pixel difference vector into a context-aware binary vector. Then, we perform clustering on the learned binary codes to construct a codebook, and extract a histogram feature for each face image with the learned codebook as the final representation. In order to exploit local information from different scales, we propose a context-aware local binary multi-scale feature learning (CA-LBMFL) method to jointly learn multiple projection matrices for face representation. To make the proposed methods applicable for heterogeneous face recognition, we present a coupled CA-LBFL (C-CA-LBFL) method and a coupled CA-LBMFL (C-CA-LBMFL) method to reduce the modality gap of corresponding heterogeneous faces in the feature level, respectively. Extensive experimental results on four widely used face datasets clearly show that our methods outperform most state-of-the-art face descriptors.
Understanding transient uncoupling induced synchronization through modified dynamic coupling
NASA Astrophysics Data System (ADS)
Ghosh, Anupam; Godara, Prakhar; Chakraborty, Sagar
2018-05-01
An important aspect of the recently introduced transient uncoupling scheme is that it induces synchronization for large values of coupling strength at which the coupled chaotic systems resist synchronization when continuously coupled. However, why this is so is an open problem? To answer this question, we recall the conventional wisdom that the eigenvalues of the Jacobian of the transverse dynamics measure whether a trajectory at a phase point is locally contracting or diverging with respect to another nearby trajectory. Subsequently, we go on to highlight a lesser appreciated fact that even when, under the corresponding linearised flow, the nearby trajectory asymptotically diverges away, its distance from the reference trajectory may still be contracting for some intermediate period. We term this phenomenon transient decay in line with the phenomenon of the transient growth. Using these facts, we show that an optimal coupling region, i.e., a region of the phase space where coupling is on, should ideally be such that at any of the constituent phase point either the maximum of the real parts of the eigenvalues is negative or the magnitude of the positive maximum is lesser than that of the negative minimum. We also invent and employ a modified dynamics coupling scheme—a significant improvement over the well-known dynamic coupling scheme—as a decisive tool to justify our results.
DOT National Transportation Integrated Search
2011-10-19
"Highway stakeholders continue to support research studies that address critical issues of the current era, including congestion mitigation and revenue generation. A mechanism that addresses both concerns is congestion pricing which establishes a dir...
Coherence resonance and stochastic resonance in directionally coupled rings
NASA Astrophysics Data System (ADS)
Werner, Johannes Peter; Benner, Hartmut; Florio, Brendan James; Stemler, Thomas
2011-11-01
In coupled systems, symmetry plays an important role for the collective dynamics. We investigate the dynamical response to noise with and without weak periodic modulation for two classes of ring systems. Each ring system consists of unidirectionally coupled bistable elements but in one class, the number of elements is even while in the other class the number is odd. Consequently, the rings without forcing show at a certain coupling strength, either ordering (similar to anti-ferromagnetic chains) or auto-oscillations. Analysing the bifurcations and fixed points of the two ring classes enables us to explain the dynamical response measured to noise and weak modulation. Moreover, by analysing a simplified model, we demonstrate that the response is universal for systems having a directional component in their stochastic dynamics in phase space around the origin.
Molecular dynamics study of naturally existing cavity couplings in proteins.
Barbany, Montserrat; Meyer, Tim; Hospital, Adam; Faustino, Ignacio; D'Abramo, Marco; Morata, Jordi; Orozco, Modesto; de la Cruz, Xavier
2015-01-01
Couplings between protein sub-structures are a common property of protein dynamics. Some of these couplings are especially interesting since they relate to function and its regulation. In this article we have studied the case of cavity couplings because cavities can host functional sites, allosteric sites, and are the locus of interactions with the cell milieu. We have divided this problem into two parts. In the first part, we have explored the presence of cavity couplings in the natural dynamics of 75 proteins, using 20 ns molecular dynamics simulations. For each of these proteins, we have obtained two trajectories around their native state. After applying a stringent filtering procedure, we found significant cavity correlations in 60% of the proteins. We analyze and discuss the structure origins of these correlations, including neighbourhood, cavity distance, etc. In the second part of our study, we have used longer simulations (≥100 ns) from the MoDEL project, to obtain a broader view of cavity couplings, particularly about their dependence on time. Using moving window computations we explored the fluctuations of cavity couplings along time, finding that these couplings could fluctuate substantially during the trajectory, reaching in several cases correlations above 0.25/0.5. In summary, we describe the structural origin and the variations with time of cavity couplings. We complete our work with a brief discussion of the biological implications of these results.
Molecular Dynamics Study of Naturally Existing Cavity Couplings in Proteins
Barbany, Montserrat; Meyer, Tim; Hospital, Adam; Faustino, Ignacio; D'Abramo, Marco; Morata, Jordi; Orozco, Modesto; de la Cruz, Xavier
2015-01-01
Couplings between protein sub-structures are a common property of protein dynamics. Some of these couplings are especially interesting since they relate to function and its regulation. In this article we have studied the case of cavity couplings because cavities can host functional sites, allosteric sites, and are the locus of interactions with the cell milieu. We have divided this problem into two parts. In the first part, we have explored the presence of cavity couplings in the natural dynamics of 75 proteins, using 20 ns molecular dynamics simulations. For each of these proteins, we have obtained two trajectories around their native state. After applying a stringent filtering procedure, we found significant cavity correlations in 60% of the proteins. We analyze and discuss the structure origins of these correlations, including neighbourhood, cavity distance, etc. In the second part of our study, we have used longer simulations (≥100ns) from the MoDEL project, to obtain a broader view of cavity couplings, particularly about their dependence on time. Using moving window computations we explored the fluctuations of cavity couplings along time, finding that these couplings could fluctuate substantially during the trajectory, reaching in several cases correlations above 0.25/0.5. In summary, we describe the structural origin and the variations with time of cavity couplings. We complete our work with a brief discussion of the biological implications of these results. PMID:25816327
Lezon, Timothy R.; Bahar, Ivet
2012-01-01
Substrate transport in sodium-coupled amino acid symporters involves a large-scale conformational change that shifts the access to the substrate-binding site from one side of the membrane to the other. The structural change is particularly substantial and entails a unique piston-like quaternary rearrangement in glutamate transporters, as evidenced by the difference between the outward-facing and inward-facing structures resolved for the archaeal aspartate transporter GltPh. These structural changes occur over time and length scales that extend beyond the reach of current fully atomic models, but are regularly explored with the use of elastic network models (ENMs). Despite their success with other membrane proteins, ENM-based approaches for exploring the collective dynamics of GltPh have fallen short of providing a plausible mechanism. This deficiency is attributed here to the anisotropic constraints imposed by the membrane, which are not incorporated into conventional ENMs. Here we employ two novel (to our knowledge) ENMs to demonstrate that one can largely capture the experimentally observed structural change using only the few lowest-energy modes of motion that are intrinsically accessible to the transporter, provided that the surrounding lipid molecules are incorporated into the ENM. The presence of the membrane reduces the overall energy of the transition compared with conventional models, showing that the membrane not only guides the selected mechanism but also acts as a facilitator. Finally, we show that the dynamics of GltPh is biased toward transitions of individual subunits of the trimer rather than cooperative transitions of all three subunits simultaneously, suggesting a mechanism of transport that exploits the intrinsic dynamics of individual subunits. Our software is available online at http://www.membranm.csb.pitt.edu. PMID:22455916
Lezon, Timothy R; Bahar, Ivet
2012-03-21
Substrate transport in sodium-coupled amino acid symporters involves a large-scale conformational change that shifts the access to the substrate-binding site from one side of the membrane to the other. The structural change is particularly substantial and entails a unique piston-like quaternary rearrangement in glutamate transporters, as evidenced by the difference between the outward-facing and inward-facing structures resolved for the archaeal aspartate transporter Glt(Ph). These structural changes occur over time and length scales that extend beyond the reach of current fully atomic models, but are regularly explored with the use of elastic network models (ENMs). Despite their success with other membrane proteins, ENM-based approaches for exploring the collective dynamics of Glt(Ph) have fallen short of providing a plausible mechanism. This deficiency is attributed here to the anisotropic constraints imposed by the membrane, which are not incorporated into conventional ENMs. Here we employ two novel (to our knowledge) ENMs to demonstrate that one can largely capture the experimentally observed structural change using only the few lowest-energy modes of motion that are intrinsically accessible to the transporter, provided that the surrounding lipid molecules are incorporated into the ENM. The presence of the membrane reduces the overall energy of the transition compared with conventional models, showing that the membrane not only guides the selected mechanism but also acts as a facilitator. Finally, we show that the dynamics of Glt(Ph) is biased toward transitions of individual subunits of the trimer rather than cooperative transitions of all three subunits simultaneously, suggesting a mechanism of transport that exploits the intrinsic dynamics of individual subunits. Our software is available online at http://www.membranm.csb.pitt.edu. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Lesbian, Gay, and Heterosexual Couples in Open Adoption Arrangements: A Qualitative Study
ERIC Educational Resources Information Center
Goldberg, Abbie E.; Kinkler, Lori A.; Richardson, Hannah B.; Downing, Jordan B.
2011-01-01
Little research has attended to the role of gender and sexual orientation in shaping open adoption dynamics. This qualitative, longitudinal study of 45 adoptive couples (15 lesbian, 15 gay, and 15 heterosexual couples) examined adopters' motivations for open adoption, changes in attitudes about openness, and early relationship dynamics. Key…
The nonlinear dynamics of a spacecraft coupled to the vibration of a contained fluid
NASA Technical Reports Server (NTRS)
Peterson, Lee D.; Crawley, Edward F.; Hansman, R. John
1988-01-01
The dynamics of a linear spacecraft mode coupled to a nonlinear low gravity slosh of a fluid in a cylindrical tank is investigated. Coupled, nonlinear equations of motion for the fluid-spacecraft dynamics are derived through an assumed mode Lagrangian method. Unlike linear fluid slosh models, this nonlinear slosh model retains two fundamental slosh modes and three secondary modes. An approximate perturbation solution of the equations of motion indicates that the nonlinear coupled system response involves fluid-spacecraft modal resonances not predicted by either a linear, or a nonlinear, uncoupled slosh analysis. Experimental results substantiate the analytical predictions.
Linear dynamic coupling in geared rotor systems
NASA Technical Reports Server (NTRS)
David, J. W.; Mitchell, L. D.
1986-01-01
The effects of high frequency oscillations caused by the gear mesh, on components of a geared system that can be modeled as rigid discs are analyzed using linear dynamic coupling terms. The coupled, nonlinear equations of motion for a disc attached to a rotating shaft are presented. The results of a trial problem analysis show that the inclusion of the linear dynamic coupling terms can produce significant changes in the predicted response of geared rotor systems, and that the produced sideband responses are greater than the unbalanced response. The method is useful in designing gear drives for heavy-lift helicopters, industrial speed reducers, naval propulsion systems, and heavy off-road equipment.
Synchronization of heteroclinic circuits through learning in coupled neural networks
NASA Astrophysics Data System (ADS)
Selskii, Anton; Makarov, Valeri A.
2016-01-01
The synchronization of oscillatory activity in neural networks is usually implemented by coupling the state variables describing neuronal dynamics. Here we study another, but complementary mechanism based on a learning process with memory. A driver network, acting as a teacher, exhibits winner-less competition (WLC) dynamics, while a driven network, a learner, tunes its internal couplings according to the oscillations observed in the teacher. We show that under appropriate training the learner can "copy" the coupling structure and thus synchronize oscillations with the teacher. The replication of the WLC dynamics occurs for intermediate memory lengths only, consequently, the learner network exhibits a phenomenon of learning resonance.
NASA Astrophysics Data System (ADS)
Malard, J. J.; Adamowski, J. F.; Wang, L. Y.; Rojas, M.; Carrera, J.; Gálvez, J.; Tuy, H. A.; Melgar-Quiñonez, H.
2015-12-01
The modelling of the impacts of climate change on agriculture requires the inclusion of socio-economic factors. However, while cropping models and economic models of agricultural systems are common, dynamically coupled socio-economic-biophysical models have not received as much success. A promising methodology for modelling the socioeconomic aspects of coupled natural-human systems is participatory system dynamics modelling, in which stakeholders develop mental maps of the socio-economic system that are then turned into quantified simulation models. This methodology has been successful in the water resources management field. However, while the stocks and flows of water resources have also been represented within the system dynamics modelling framework and thus coupled to the socioeconomic portion of the model, cropping models are ill-suited for such reformulation. In addition, most of these system dynamics models were developed without stakeholder input, limiting the scope for the adoption and implementation of their results. We therefore propose a new methodology for the analysis of climate change variability on agroecosystems which uses dynamically coupled system dynamics (socio-economic) and biophysical (cropping) models to represent both physical and socioeconomic aspects of the agricultural system, using two case studies (intensive market-based agricultural development versus subsistence crop-based development) from rural Guatemala. The system dynamics model component is developed with relevant governmental and NGO stakeholders from rural and agricultural development in the case study regions and includes such processes as education, poverty and food security. Common variables with the cropping models (yield and agricultural management choices) are then used to dynamically couple the two models together, allowing for the analysis of the agroeconomic system's response to and resilience against various climatic and socioeconomic shocks.
NASA Astrophysics Data System (ADS)
Kral, Q.; Thebault, P.; Charnoz, S.
2014-01-01
The first attempt at developing a fully self-consistent code coupling dynamics and collisions to study debris discs (Kral et al. 2013) is presented. So far, these two crucial mechanisms were studied separately, with N-body and statistical collisional codes respectively, because of stringent computational constraints. We present a new model named LIDT-DD which is able to follow over long timescales the coupled evolution of dynamics (including radiation forces) and collisions in a self-consistent way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malerba, M.; De Angelis, F., E-mail: francesco.deangelis@iit.it; Ongarello, T.
2016-07-11
We report a crucial step towards single-object cavity electrodynamics in the mid-infrared spectral range using resonators that borrow functionalities from antennas. Room-temperature strong light-matter coupling is demonstrated in the mid-infrared between an intersubband transition and an extremely reduced number of sub-wavelength resonators. By exploiting 3D plasmonic nano-antennas featuring an out-of-plane geometry, we observed strong light-matter coupling in a very low number of resonators: only 16, more than 100 times better than what reported to date in this spectral range. The modal volume addressed by each nano-antenna is sub-wavelength-sized and it encompasses only ≈4400 electrons.
Dynamical transition between weak and strong coupling in Brillouin laser pulse amplification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schluck, F.; Lehmann, G.; Müller, C.
Short laser pulse amplification via stimulated Brillouin backscattering in plasma is considered. Previous work distinguishes between the weakly and strongly coupled regime and treats them separately. It is shown here that such a separation is not generally applicable because strong and weak coupling interaction regimes are entwined with each other. An initially weakly coupled amplification scenario may dynamically transform into strong coupling. This happens when the local seed amplitude grows and thus triggers the strongly driven plasma response. On the other hand, when in a strong coupling scenario, the pump pulse gets depleted, and its amplitude might drop below themore » strong coupling threshold. This may cause significant changes in the final seed pulse shape. Furthermore, experimentally used pump pulses are typically Gaussian-shaped. The intensity threshold for strong coupling may only be exceeded around the maximum and not in the wings of the pulse. Also here, a description valid in both strong and weak coupling regimes is required. We propose such a unified treatment which allows us, in particular, to study the dynamic transition between weak and strong coupling. Consequences for the pulse forms of the amplified seed are discussed.« less
A 37-mm Ceramic Gun Nozzle Stress Analysis
2006-05-01
Figures iv List of Tables iv 1 . Introduction 1 2. Ceramic Nozzle Structure and Materials 1 3. Sequentially-Coupled and Fully-Coupled Thermal Stress...FEM Analysis 1 4. Ceramic Nozzle Thermal Stress Response 4 5. Ceramic Nozzle Dynamic FEM 7 6. Ceramic Nozzle Dynamic Responses and Discussions 8 7...candidate ceramics and the test fixture model components are listed in table 1 . 3. Sequentially-Coupled and Fully-Coupled Thermal Stress FEM Analysis
Compressive Sensing via Nonlocal Smoothed Rank Function
Fan, Ya-Ru; Liu, Jun; Zhao, Xi-Le
2016-01-01
Compressive sensing (CS) theory asserts that we can reconstruct signals and images with only a small number of samples or measurements. Recent works exploiting the nonlocal similarity have led to better results in various CS studies. To better exploit the nonlocal similarity, in this paper, we propose a non-convex smoothed rank function based model for CS image reconstruction. We also propose an efficient alternating minimization method to solve the proposed model, which reduces a difficult and coupled problem to two tractable subproblems. Experimental results have shown that the proposed method performs better than several existing state-of-the-art CS methods for image reconstruction. PMID:27583683
2015-09-30
Wireless Networks (WUWNet’14), Rome, Italy, Nov. 12 14, 2014. J. Preisig, “ Underwater Acoustic Communications: Enabling the Next Generation at the...on Wireless Communication. M. Pajovic, J. Preisig, “Performance Analytics and Optimal Design of Multichannel Equalizers for Underwater Acoustic Communications”, to appear in IEEE Journal of Oceanic Engineering. 6 ...Exploiting Structured Dependencies in the Design of Adaptive Algorithms for Underwater Communication Award #3
Dynamical localization of coupled relativistic kicked rotors
NASA Astrophysics Data System (ADS)
Rozenbaum, Efim B.; Galitski, Victor
2017-02-01
A periodically driven rotor is a prototypical model that exhibits a transition to chaos in the classical regime and dynamical localization (related to Anderson localization) in the quantum regime. In a recent work [Phys. Rev. B 94, 085120 (2016), 10.1103/PhysRevB.94.085120], A. C. Keser et al. considered a many-body generalization of coupled quantum kicked rotors, and showed that in the special integrable linear case, dynamical localization survives interactions. By analogy with many-body localization, the phenomenon was dubbed dynamical many-body localization. In the present work, we study nonintegrable models of single and coupled quantum relativistic kicked rotors (QRKRs) that bridge the gap between the conventional quadratic rotors and the integrable linear models. For a single QRKR, we supplement the recent analysis of the angular-momentum-space dynamics with a study of the spin dynamics. Our analysis of two and three coupled QRKRs along with the proved localization in the many-body linear model indicate that dynamical localization exists in few-body systems. Moreover, the relation between QRKR and linear rotor models implies that dynamical many-body localization can exist in generic, nonintegrable many-body systems. And localization can generally result from a complicated interplay between Anderson mechanism and limiting integrability, since the many-body linear model is a high-angular-momentum limit of many-body QRKRs. We also analyze the dynamics of two coupled QRKRs in the highly unusual superballistic regime and find that the resonance conditions are relaxed due to interactions. Finally, we propose experimental realizations of the QRKR model in cold atoms in optical lattices.
Spin-current emission governed by nonlinear spin dynamics.
Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya
2015-10-16
Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators.
Spin-current emission governed by nonlinear spin dynamics
Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya
2015-01-01
Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators. PMID:26472712
NASA Astrophysics Data System (ADS)
Park, DaeKil
2018-06-01
The dynamics of entanglement and uncertainty relation is explored by solving the time-dependent Schrödinger equation for coupled harmonic oscillator system analytically when the angular frequencies and coupling constant are arbitrarily time dependent. We derive the spectral and Schmidt decompositions for vacuum solution. Using the decompositions, we derive the analytical expressions for von Neumann and Rényi entropies. Making use of Wigner distribution function defined in phase space, we derive the time dependence of position-momentum uncertainty relations. To show the dynamics of entanglement and uncertainty relation graphically, we introduce two toy models and one realistic quenched model. While the dynamics can be conjectured by simple consideration in the toy models, the dynamics in the realistic quenched model is somewhat different from that in the toy models. In particular, the dynamics of entanglement exhibits similar pattern to dynamics of uncertainty parameter in the realistic quenched model.
Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.
Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming
2015-01-01
The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail.
Coupled Attitude-Orbit Dynamics and Control for an Electric Sail in a Heliocentric Transfer Mission
Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming
2015-01-01
The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail. PMID:25950179
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, T.
Some aspects concerning the coupling of quasi-stationary electromagnetics and the dynamics of structure and fluid are investigated. The necessary equations are given in a dimensionless form. The dimensionless parameters in these equations are used to evaluate the importance of the different coupling effects. A finite element formulation of the eddy-current damping in solid structures is developed. With this formulation, an existing finite element method (FEM) structural dynamics code is extended and coupled to an FEM eddy-current code. With this program system, the influence of the eddy-current damping on the dynamic loading of the dual coolant blanket during a centered plasmamore » disruption is determined. The analysis proves that only in loosely fixed or soft structures will eddy-current damping considerably reduce the resulting stresses. Additionally, the dynamic behavior of the liquid metal in the blankets` poloidal channels is described with a simple two-dimensional magnetohydrodynamic approach. The analysis of the dimensionless parameters shows that for small-scale experiments, which are designed to model the coupled electromagnetic and structural/fluid dynamic effects in such a blanket, the same magnetic fields must be applied as in the real fusion device. This will be the easiest way to design experiments that produce transferable results. 10 refs., 7 figs.« less
Effect of correlations on the polarizability of the one component plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carini, P.R.
Correlational effects on the dynamical polarizability ..cap alpha..(k,..omega..) of the one component plasma (OCP) are investigated in both the weak (..gamma.. < 1) and strong (..gamma.. < 1) coupling regions (..gamma.. is the plasma parameter, ..gamma.. = k/sup 3//4..pi..n where k/sup -1/ is the Debye length and n is the number density. In the weak coupling region a numerical solution is presented over a wide range of frequencies of the complete first order (in ..gamma..) correction to the dynamical polarizability which fully accounts for dynamical screening effects and is exact in the long wavelength and weak coupling limits (k ..-->..more » 0, ..gamma.. ..-->.. 0). This complete result is compared with a similar numerical solution for the dynamical polarizability obtained from the Golden-Kalman (GK) dynamical theory for strongly coupled plasmas. Contrary to previous results reported in the literature it was found that both theories predict the change in the dispersion of the long wavelength plasmons due to finite ..gamma.. effects to be that the slope of the plasmon dispersion curve decreases from its Bohm-Gross value as the plasma parameter increases from 0. In the strong coupling region two hydrodynamical model solutions of the GK dynamical theory for the polarizability are presented.« less
Performance Analysis of Constrained Loosely Coupled GPS/INS Integration Solutions
Falco, Gianluca; Einicke, Garry A.; Malos, John T.; Dovis, Fabio
2012-01-01
The paper investigates approaches for loosely coupled GPS/INS integration. Error performance is calculated using a reference trajectory. A performance improvement can be obtained by exploiting additional map information (for example, a road boundary). A constrained solution has been developed and its performance compared with an unconstrained one. The case of GPS outages is also investigated showing how a Kalman filter that operates on the last received GPS position and velocity measurements provides a performance benefit. Results are obtained by means of simulation studies and real data. PMID:23202241
Characterization of the IEC 61000-4-6 Electromagnetic Clamp for Conducted-Immunity Testing
NASA Astrophysics Data System (ADS)
Grassi, F.; Pignari, S. A.; Spadacini, G.; Toscani, N.; Pelissou, P.
2016-05-01
A multiconductor transmission line model (MTL) is used to investigate the operation of the IEC 61000-4-6 electromagnetic (EM) clamp in a conducted-immunity test setup for aerospace applications. Aspects of interest include the performance of such a coupling device at very high frequencies (up to 1 GHz), and for extreme values of the common-mode impedance of equipment (short circuits, open circuits). The MTL model is finally exploited to predict the frequency response of coupling and decoupling factors defined in the IEC 61000-4-6 standard.
Complex Dynamics of Delay-Coupled Neural Networks
NASA Astrophysics Data System (ADS)
Mao, Xiaochen
2016-09-01
This paper reveals the complicated dynamics of a delay-coupled system that consists of a pair of sub-networks and multiple bidirectional couplings. Time delays are introduced into the internal connections and network-couplings, respectively. The stability and instability of the coupled network are discussed. The sufficient conditions for the existence of oscillations are given. Case studies of numerical simulations are given to validate the analytical results. Interesting and complicated neuronal activities are observed numerically, such as rest states, periodic oscillations, multiple switches of rest states and oscillations, and the coexistence of different types of oscillations.
Influence of coupling on thermal forces and dynamic friction in plasmas with multiple ion species
NASA Astrophysics Data System (ADS)
Kagan, Grigory; Baalrud, Scott D.; Daligault, Jérôme
2017-07-01
The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] is used to investigate the influence of coupling on inter-ion-species diffusion and momentum exchange in multi-component plasmas. Thermo-diffusion and the thermal force are found to diminish rapidly as strong coupling onsets. For the same coupling parameters, the dynamic friction coefficient is found to tend to unity. These results provide an impetus for addressing the role of coupling on diffusive processes in inertial confinement fusion experiments.
Influence of coupling on thermal forces and dynamic friction in plasmas with multiple ion species
Kagan, Grigory; Baalrud, Scott D.; Daligault, Jérôme
2017-07-05
The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] is used to investigate the influence of coupling on inter-ion-species diffusion and momentum exchange in multi-component plasmas. Thermo-diffusion and the thermal force are found to diminish rapidly as strong coupling onsets. We found that for the same coupling parameters, the dynamic friction coefficient there tends to be unity. Our results provide an impetus for addressing the role of coupling on diffusive processes in inertial confinement fusion experiments.
Influence of coupling on thermal forces and dynamic friction in plasmas with multiple ion species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kagan, Grigory; Baalrud, Scott D.; Daligault, Jérôme
The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] is used to investigate the influence of coupling on inter-ion-species diffusion and momentum exchange in multi-component plasmas. Thermo-diffusion and the thermal force are found to diminish rapidly as strong coupling onsets. We found that for the same coupling parameters, the dynamic friction coefficient there tends to be unity. Our results provide an impetus for addressing the role of coupling on diffusive processes in inertial confinement fusion experiments.
Vulnerabilities, Stressors, and Adaptations in Situationally Violent Relationships
ERIC Educational Resources Information Center
Stith, Sandra M.; Amanor-Boadu, Yvonne; Miller, Marjorie Strachman; Menhusen, Erin; Morgan, Carla; Few-Demo, April
2011-01-01
Very little research has examined the dynamics within couple relationships that may lead to situational couple violence (SCV; M. P. Johnson, 2006a; K. H. Rosen, S. M. Stith, A. L. Few, K. L. Daly, & D. R. Tritt, 2005). To enhance understanding of these dynamics, we conducted a qualitative analysis of interviews with 11 couples previously…
NASA Astrophysics Data System (ADS)
Balakin, M.; Gulyaev, A.; Kazaryan, A.; Yarovoy, O.
2018-04-01
We study influence of time delay in coupling on the dynamics of two coupled multimode optoelectronic oscillators. We reveal the structure of main synchronization region on the parameter plane and main bifurcations leading to synchronization and multistability formation. The dynamics of the system is studied in a wide range of values of control parameters.
Semiconductor Laser Complex Dynamics: From Optical Neurons to Optical Rogue Waves
2017-02-11
laser dynamics for innovative applications. The results of the project were published in 5 high- impact journal papers and were presented as invited or...stochastic phenomena and ii) to exploit the laser dynamics for innovative applications. The results of the project were published in 5 high-impact...RESULTS AND DISCUSSION The results of our research were published in 5 articles in high-impact journals in the fields of photonics and nonlinear physics
Dynamical generation of noiseless quantum subsystems
Viola; Knill; Lloyd
2000-10-16
We combine dynamical decoupling and universal control methods for open quantum systems with coding procedures. By exploiting a general algebraic approach, we show how appropriate encodings of quantum states result in obtaining universal control over dynamically generated noise-protected subsystems with limited control resources. In particular, we provide a constructive scheme based on two-body Hamiltonians for performing universal quantum computation over large noiseless spaces which can be engineered in the presence of arbitrary linear quantum noise.
Tinamit: Making coupled system dynamics models accessible to stakeholders
NASA Astrophysics Data System (ADS)
Malard, Julien; Inam Baig, Azhar; Rojas Díaz, Marcela; Hassanzadeh, Elmira; Adamowski, Jan; Tuy, Héctor; Melgar-Quiñonez, Hugo
2017-04-01
Model coupling is increasingly used as a method of combining the best of two models when representing socio-environmental systems, though barriers to successful model adoption by stakeholders are particularly present with the use of coupled models, due to their high complexity and typically low implementation flexibility. Coupled system dynamics - physically-based modelling is a promising method to improve stakeholder participation in environmental modelling while retaining a high level of complexity for physical process representation, as the system dynamics components are readily understandable and can be built by stakeholders themselves. However, this method is not without limitations in practice, including 1) inflexible and complicated coupling methods, 2) difficult model maintenance after the end of the project, and 3) a wide variety of end-user cultures and languages. We have developed the open-source Python-language software tool Tinamit to overcome some of these limitations to the adoption of stakeholder-based coupled system dynamics - physically-based modelling. The software is unique in 1) its inclusion of both a graphical user interface (GUI) and a library of available commands (API) that allow users with little or no coding abilities to rapidly, effectively, and flexibly couple models, 2) its multilingual support for the GUI, allowing users to couple models in their preferred language (and to add new languages as necessary for their community work), and 3) its modular structure allowing for very easy model coupling and modification without the direct use of code, and to which programming-savvy users can easily add support for new types of physically-based models. We discuss how the use of Tinamit for model coupling can greatly increase the accessibility of coupled models to stakeholders, using an example of a stakeholder-built system dynamics model of soil salinity issues in Pakistan coupled with the physically-based soil salinity and water flow model SAHYSMOD. Different socioeconomic and environmental policies for soil salinity remediation are tested within the coupled model, allowing for the identification of the most efficient actions from an environmental and a farmer economy standpoint while taking into account the complex feedbacks between socioeconomics and the physical environment.
A review of dynamic inflow and its effect on experimental correlations
NASA Technical Reports Server (NTRS)
Gaonkar, G. H.; Peters, D. A.
1985-01-01
A review is given of the relationship between experimental data and the development of modern dynamic-inflow theory. Some of the most interesting data, first presented 10 years ago at the Dynamic Specialist's Meeting, is now reviewed in light of the newer theories. These pure blade-flapping data correlate very well with analyses that include the new dynamic inflow theory, thus verifying the theory. Experimental data are also presented for damping with coupled inplane and body motions. Although inclusion of dynamic inflow is often required to correlate this coupled data, the data cannot be used to verify any particular dynamic inflow theory due to the uncertainties in modeling the inplane degree of freedom. For verification, pure flapping is required. However, the coupled data do show that inflow is often important in such computations.
A global view on the Higgs self-coupling at lepton colliders
Di Vita, Stefano; Durieux, Gauthier; Grojean, Christophe; ...
2018-02-28
We perform a global effective-field-theory analysis to assess the precision on the determination of the Higgs trilinear self-coupling at future lepton colliders. Two main scenarios are considered, depending on whether the center-of-mass energy of the colliders is sufficient or not to access Higgs pair production processes. Low-energy machines allow for ~40% precision on the extraction of the Higgs trilinear coupling through the exploitation of next-to-leading-order effects in single Higgs measurements, provided that runs at both 240/250 GeV and 350 GeV are available with luminosities in the few attobarns range. A global fit, including possible deviations in other SM couplings, ismore » essential in this case to obtain a robust determination of the Higgs self-coupling. High-energy machines can easily achieve a ~20% precision through Higgs pair production processes. In this case, the impact of additional coupling modifications is milder, although not completely negligible.« less
A global view on the Higgs self-coupling at lepton colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Vita, Stefano; Durieux, Gauthier; Grojean, Christophe
We perform a global effective-field-theory analysis to assess the precision on the determination of the Higgs trilinear self-coupling at future lepton colliders. Two main scenarios are considered, depending on whether the center-of-mass energy of the colliders is sufficient or not to access Higgs pair production processes. Low-energy machines allow for ~40% precision on the extraction of the Higgs trilinear coupling through the exploitation of next-to-leading-order effects in single Higgs measurements, provided that runs at both 240/250 GeV and 350 GeV are available with luminosities in the few attobarns range. A global fit, including possible deviations in other SM couplings, ismore » essential in this case to obtain a robust determination of the Higgs self-coupling. High-energy machines can easily achieve a ~20% precision through Higgs pair production processes. In this case, the impact of additional coupling modifications is milder, although not completely negligible.« less
Optical Control of Mechanical Mode-Coupling within a MoS2 Resonator in the Strong-Coupling Regime.
Liu, Chang-Hua; Kim, In Soo; Lauhon, Lincoln J
2015-10-14
Two-dimensional (2-D) materials including graphene and transition metal dichalcogenides (TMDs) are an exciting platform for ultrasensitive force and displacement detection in which the strong light-matter coupling is exploited in the optical control of nanomechanical motion. Here we report the optical excitation and displacement detection of a ∼ 3 nm thick MoS2 resonator in the strong-coupling regime, which has not previously been achieved in 2-D materials. Mechanical mode frequencies can be tuned by more than 12% by optical heating, and they exhibit avoided crossings indicative of strong intermode coupling. When the membrane is optically excited at the frequency difference between vibrational modes, normal mode splitting is observed, and the intermode energy exchange rate exceeds the mode decay rate by a factor of 15. Finite element and analytical modeling quantifies the extent of mode softening necessary to control intermode energy exchange in the strong coupling regime.
Emergence of Landauer transport from quantum dynamics: A model Hamiltonian approach
NASA Astrophysics Data System (ADS)
Pal, Partha Pratim; Ramakrishna, S.; Seideman, Tamar
2018-04-01
The Landauer expression for computing current-voltage characteristics in nanoscale devices is efficient but not suited to transient phenomena and a time-dependent current because it is applicable only when the charge carriers transition into a steady flux after an external perturbation. In this article, we construct a very general expression for time-dependent current in an electrode-molecule-electrode arrangement. Utilizing a model Hamiltonian (consisting of the subsystem energy levels and their electronic coupling terms), we propagate the Schrödinger wave function equation to numerically compute the time-dependent population in the individual subsystems. The current in each electrode (defined in terms of the rate of change of the corresponding population) has two components, one due to the charges originating from the same electrode and the other due to the charges initially residing at the other electrode. We derive an analytical expression for the first component and illustrate that it agrees reasonably with its numerical counterpart at early times. Exploiting the unitary evolution of a wavefunction, we construct a more general Landauer style formula and illustrate the emergence of Landauer transport from our simulations without the assumption of time-independent charge flow. Our generalized Landauer formula is valid at all times for models beyond the wide-band limit, non-uniform electrode density of states and for time and energy-dependent electronic coupling between the subsystems. Subsequently, we investigate the ingredients in our model that regulate the onset time scale of this steady state. We compare the performance of our general current expression with the Landauer current for time-dependent electronic coupling. Finally, we comment on the applicability of the Landauer formula to compute hot-electron current arising upon plasmon decoherence.
Emergence of Landauer transport from quantum dynamics: A model Hamiltonian approach.
Pal, Partha Pratim; Ramakrishna, S; Seideman, Tamar
2018-04-14
The Landauer expression for computing current-voltage characteristics in nanoscale devices is efficient but not suited to transient phenomena and a time-dependent current because it is applicable only when the charge carriers transition into a steady flux after an external perturbation. In this article, we construct a very general expression for time-dependent current in an electrode-molecule-electrode arrangement. Utilizing a model Hamiltonian (consisting of the subsystem energy levels and their electronic coupling terms), we propagate the Schrödinger wave function equation to numerically compute the time-dependent population in the individual subsystems. The current in each electrode (defined in terms of the rate of change of the corresponding population) has two components, one due to the charges originating from the same electrode and the other due to the charges initially residing at the other electrode. We derive an analytical expression for the first component and illustrate that it agrees reasonably with its numerical counterpart at early times. Exploiting the unitary evolution of a wavefunction, we construct a more general Landauer style formula and illustrate the emergence of Landauer transport from our simulations without the assumption of time-independent charge flow. Our generalized Landauer formula is valid at all times for models beyond the wide-band limit, non-uniform electrode density of states and for time and energy-dependent electronic coupling between the subsystems. Subsequently, we investigate the ingredients in our model that regulate the onset time scale of this steady state. We compare the performance of our general current expression with the Landauer current for time-dependent electronic coupling. Finally, we comment on the applicability of the Landauer formula to compute hot-electron current arising upon plasmon decoherence.
Analysis of shallow-groundwater dynamic responses to water supply change in the Haihe River plain
NASA Astrophysics Data System (ADS)
Lin, Z.; Lin, W.; Pengfei, L.
2015-05-01
When the middle route of the South-to-North Water Diversion Project is completed, the water supply pattern of the Haihe River plain in North China will change significantly due to the replenishment of water sources and groundwater-exploitation control. The water-cycle-simulation model - MODCYCLE, has been used in simulating the groundwater dynamic balance for 2001-2010. Then different schemes of water supply in 2020 and 2030 were set up to quantitatively simulate the shallow-groundwater dynamic responses in the future. The results show that the total shallow-groundwater recharge is mainly raised by the increases in precipitation infiltration and surface-water irrigation infiltration. Meanwhile, the decrease of groundwater withdrawal contributes to reduce the total discharge. The recharge-discharge structure of local groundwater was still in a negative balance but improved gradually. The shallow-groundwater level in most parts was still falling before 2030, but more slowly. This study can benefit the rational exploitation of water resources in the Haihe River plain.
Georgy, Jacques; Noureldin, Aboelmagd
2011-01-01
Satellite navigation systems such as the global positioning system (GPS) are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS)-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF). Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF) was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D) reduced inertial sensors system (RISS) with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle's odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s) even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift, which are loosely-coupled updates, a hybrid loosely/tightly coupled solution is proposed. This solution is suitable for downtown environments because of the long natural outages or degradation of GPS. The performance of the proposed 3D Navigation solution using Mixture PF for 3D RISS/GPS integration is examined by road test trajectories in a land vehicle and compared to the KF counterpart.
Georgy, Jacques; Noureldin, Aboelmagd
2011-01-01
Satellite navigation systems such as the global positioning system (GPS) are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS)-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF). Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF) was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D) reduced inertial sensors system (RISS) with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle’s odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s) even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift, which are loosely-coupled updates, a hybrid loosely/tightly coupled solution is proposed. This solution is suitable for downtown environments because of the long natural outages or degradation of GPS. The performance of the proposed 3D Navigation solution using Mixture PF for 3D RISS/GPS integration is examined by road test trajectories in a land vehicle and compared to the KF counterpart. PMID:22163846
A Social Approach to High-Level Context Generation for Supporting Context-Aware M-Learning
ERIC Educational Resources Information Center
Pan, Xu-Wei; Ding, Ling; Zhu, Xi-Yong; Yang, Zhao-Xiang
2017-01-01
In m-learning environments, context-awareness is for wide use where learners' situations are varied, dynamic and unpredictable. We are facing the challenge of requirements of both generality and depth in generating and processing high-level context. In this paper, we present a social approach which exploits social dynamics and social computing for…
Bondar, Ana-Nicoleta; Smith, Jeremy C.
2017-07-25
Channel and pump rhodopsins use energy from light absorbed by a covalently bound retinal chromophore to transport ions across membranes of microbial cells. Ion transfer steps, including proton transfer, can couple to changes in protein conformational dynamics and water positions. Although general principles of how microbial rhodopsins function are largely understood, key issues pertaining to reaction mechanisms remain unclear. Here, we compare the protonation-coupled dynamics of pump and channelrhodopsins, highlighting the roles that water dynamics, protein electrostatics and protein flexibility can have in ion transport mechanisms. We discuss observations supporting important functional roles of inter- and intra-helical carboxylate/hydroxyl hydrogen-bonding motifs.more » Specifically, we use the proton pump bacteriorhodopsin, the sodium pump KR2, channelrhodopsins and Anabaena sensory rhodopsin. We outline the usefulness of theoretic biophysics approaches to the study of retinal proteins, challenges in studying the hydrogen-bond dynamics of rhodopsin active sites, and implications for conformational coupling in membrane transporters.« less
The effect of inertial coupling in the dynamics and control of flexible robotic manipulators
NASA Technical Reports Server (NTRS)
Tesar, Delbert; Curran, Carol Cockrell; Graves, Philip Lee
1988-01-01
A general model of the dynamics of flexible robotic manipulators is presented, including the gross motion of the links, the vibrations of the links and joints, and the dynamic coupling between the gross motions and vibrations. The vibrations in the links may be modeled using lumped parameters, truncated modal summation, a component mode synthesis method, or a mixture of these methods. The local link inertia matrix is derived to obtain the coupling terms between the gross motion of the link and the vibrations of the link. Coupling between the motions of the links results from the kinematic model, which utilizes the method of kinematic influence. The model is used to simulate the dynamics of a flexible space-based robotic manipulator which is attached to a spacecraft, and is free to move with respect to the inertial reference frame. This model may be used to study the dynamic response of the manipulator to the motions of its joints, or to externally applied disturbances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bondar, Ana-Nicoleta; Smith, Jeremy C.
Channel and pump rhodopsins use energy from light absorbed by a covalently bound retinal chromophore to transport ions across membranes of microbial cells. Ion transfer steps, including proton transfer, can couple to changes in protein conformational dynamics and water positions. Although general principles of how microbial rhodopsins function are largely understood, key issues pertaining to reaction mechanisms remain unclear. Here, we compare the protonation-coupled dynamics of pump and channelrhodopsins, highlighting the roles that water dynamics, protein electrostatics and protein flexibility can have in ion transport mechanisms. We discuss observations supporting important functional roles of inter- and intra-helical carboxylate/hydroxyl hydrogen-bonding motifs.more » Specifically, we use the proton pump bacteriorhodopsin, the sodium pump KR2, channelrhodopsins and Anabaena sensory rhodopsin. We outline the usefulness of theoretic biophysics approaches to the study of retinal proteins, challenges in studying the hydrogen-bond dynamics of rhodopsin active sites, and implications for conformational coupling in membrane transporters.« less
The ups and downs of trophic control in continental shelf ecosystems.
Frank, Kenneth T; Petrie, Brian; Shackell, Nancy L
2007-05-01
Traditionally, marine ecosystem structure was thought to be determined by phytoplankton dynamics. However, an integrated view on the relative roles of top-down (consumer-driven) and bottom-up (resource-driven) forcing in large-scale, exploited marine ecosystems is emerging. Long time series of scientific survey data, underpinning the management of commercially exploited species such as cod, are being used to diagnose mechanisms that could affect the composition and relative abundance of species in marine food webs. By assembling published data from studies in exploited North Atlantic ecosystems, we found pronounced geographical variation in top-down and bottom-up trophic forcing. The data suggest that ecosystem susceptibility to top-down control and their resiliency to exploitation are related to species richness and oceanic temperature conditions. Such knowledge could be used to produce ecosystem guidelines to regulate and manage fisheries in a sustainable fashion.
The microeconomics of sexual exploitation of girls and young women in the Peruvian Amazon.
Mujica, Jaris
2013-01-01
This paper examines the sexual exploitation of girls and young women as an increasing phenomenon within the extractive industries of wood, oil, minerals and gas in Peruvian Amazonia. The analysis focuses on the city of Pucallpa and the northern part of the Ucayali River and aims to identify the social and economic dynamics underpinning the commercial sexual exploitation of female children and teenagers around the main river port. The study describes the local operating mechanisms of bars and restaurants in the port, the demand for and perceptions of the sexual exploitation of children and teenagers, and the economic logic that it entails. Using a discourse analytic approach, it is argued that this is a business whose profitability is tied to the trade in alcoholic beverages and foods and which responds to a set of family connections and networks.
NASA Astrophysics Data System (ADS)
Kounalakis, M.; Langford, N. K.; Sagastizabal, R.; Dickel, C.; Bruno, A.; Luthi, F.; Thoen, D. J.; Endo, A.; Dicarlo, L.
The field dipole coupling of quantum light and matter, described by the quantum Rabi model, leads to exotic phenomena when the coupling strength g becomes comparable or larger than the atom and photon frequencies ωq , r. In this ultra-strong coupling regime, excitations are not conserved, leading to collapse-revival dynamics in atom and photon parity and Schrödinger-cat-like atom-photon entanglement. We realize a quantum simulation of the Rabi model using a transmon qubit coupled to a resonator. In this first part, we describe our analog-digital approach to implement up to 90 symmetric Trotter steps, combining single-qubit gates with the Jaynes-Cummings interaction naturally present in our circuit QED system. Controlling the phase of microwave pulses defines a rotating frame and enables simulation of arbitrary parameter regimes of the Rabi model. We demonstrate measurements of qubit parity dynamics showing revivals at g /ωr > 0 . 8 for ωq = 0 and characteristic dynamics for nondegenerate ωq from g / 4 to g. Funding from the EU FP7 Project ScaleQIT, an ERC Grant, the Dutch Research Organization NWO, and Microsoft Research.
Magneto-optic dynamics in a ferromagnetic nematic liquid crystal
NASA Astrophysics Data System (ADS)
Potisk, Tilen; Mertelj, Alenka; Sebastián, Nerea; Osterman, Natan; Lisjak, Darja; Brand, Helmut R.; Pleiner, Harald; Svenšek, Daniel
2018-01-01
We investigate dynamic magneto-optic effects in a ferromagnetic nematic liquid crystal experimentally and theoretically. Experimentally we measure the magnetization and the phase difference of the transmitted light when an external magnetic field is applied. As a model we study the coupled dynamics of the magnetization, M , and the director field, n , associated with the liquid crystalline orientational order. We demonstrate that the experimentally studied macroscopic dynamic behavior reveals the importance of a dynamic cross-coupling between M and n . The experimental data are used to extract the value of the dissipative cross-coupling coefficient. We also make concrete predictions about how reversible cross-coupling terms between the magnetization and the director could be detected experimentally by measurements of the transmitted light intensity as well as by analyzing the azimuthal angle of the magnetization and the director out of the plane spanned by the anchoring axis and the external magnetic field. We derive the eigenmodes of the coupled system and study their relaxation rates. We show that in the usual experimental setup used for measuring the relaxation rates of the splay-bend or twist-bend eigenmodes of a nematic liquid crystal one expects for a ferromagnetic nematic liquid crystal a mixture of at least two eigenmodes.
Dynamical Principles of Emotion-Cognition Interaction: Mathematical Images of Mental Disorders
Rabinovich, Mikhail I.; Muezzinoglu, Mehmet K.; Strigo, Irina; Bystritsky, Alexander
2010-01-01
The key contribution of this work is to introduce a mathematical framework to understand self-organized dynamics in the brain that can explain certain aspects of itinerant behavior. Specifically, we introduce a model based upon the coupling of generalized Lotka-Volterra systems. This coupling is based upon competition for common resources. The system can be regarded as a normal or canonical form for any distributed system that shows self-organized dynamics that entail winnerless competition. Crucially, we will show that some of the fundamental instabilities that arise in these coupled systems are remarkably similar to endogenous activity seen in the brain (using EEG and fMRI). Furthermore, by changing a small subset of the system's parameters we can produce bifurcations and metastable sequential dynamics changing, which bear a remarkable similarity to pathological brain states seen in psychiatry. In what follows, we will consider the coupling of two macroscopic modes of brain activity, which, in a purely descriptive fashion, we will label as cognitive and emotional modes. Our aim is to examine the dynamical structures that emerge when coupling these two modes and relate them tentatively to brain activity in normal and non-normal states. PMID:20877723
Dynamical principles of emotion-cognition interaction: mathematical images of mental disorders.
Rabinovich, Mikhail I; Muezzinoglu, Mehmet K; Strigo, Irina; Bystritsky, Alexander
2010-09-21
The key contribution of this work is to introduce a mathematical framework to understand self-organized dynamics in the brain that can explain certain aspects of itinerant behavior. Specifically, we introduce a model based upon the coupling of generalized Lotka-Volterra systems. This coupling is based upon competition for common resources. The system can be regarded as a normal or canonical form for any distributed system that shows self-organized dynamics that entail winnerless competition. Crucially, we will show that some of the fundamental instabilities that arise in these coupled systems are remarkably similar to endogenous activity seen in the brain (using EEG and fMRI). Furthermore, by changing a small subset of the system's parameters we can produce bifurcations and metastable sequential dynamics changing, which bear a remarkable similarity to pathological brain states seen in psychiatry. In what follows, we will consider the coupling of two macroscopic modes of brain activity, which, in a purely descriptive fashion, we will label as cognitive and emotional modes. Our aim is to examine the dynamical structures that emerge when coupling these two modes and relate them tentatively to brain activity in normal and non-normal states.
Communication: Adiabatic and non-adiabatic electron-nuclear motion: Quantum and classical dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Julian; Kaiser, Dustin; Engel, Volker
2016-05-07
Using a model for coupled electronic-nuclear motion we investigate the range from negligible to strong non-adiabatic coupling. In the adiabatic case, the quantum dynamics proceeds in a single electronic state, whereas for strong coupling a complete transition between two adiabatic electronic states takes place. It is shown that in all coupling regimes the short-time wave-packet dynamics can be described using ensembles of classical trajectories in the phase space spanned by electronic and nuclear degrees of freedom. We thus provide an example which documents that the quantum concept of non-adiabatic transitions is not necessarily needed if electronic and nuclear motion ismore » treated on the same footing.« less
Effect of Coriolis coupling in chemical reaction dynamics.
Chu, Tian-Shu; Han, Ke-Li
2008-05-14
It is essential to evaluate the role of Coriolis coupling effect in molecular reaction dynamics. Here we consider Coriolis coupling effect in quantum reactive scattering calculations in the context of both adiabaticity and nonadiabaticity, with particular emphasis on examining the role of Coriolis coupling effect in reaction dynamics of triatomic molecular systems. We present the results of our own calculations by the time-dependent quantum wave packet approach for H + D2 and F(2P3/2,2P1/2) + H2 as well as for the ion-molecule collisions of He + H2 +, D(-) + H2, H(-) + D2, and D+ + H2, after reviewing in detail other related research efforts on this issue.
Coriolis coupling and nonadiabaticity in chemical reaction dynamics.
Wu, Emilia L
2010-12-01
The nonadiabatic quantum dynamics and Coriolis coupling effect in chemical reaction have been reviewed, with emphasis on recent progress in using the time-dependent wave packet approach to study the Coriolis coupling and nonadiabatic effects, which was done by K. L. Han and his group. Several typical chemical reactions, for example, H+D(2), F+H(2)/D(2)/HD, D(+)+H(2), O+H(2), and He+H(2)(+), have been discussed. One can find that there is a significant role of Coriolis coupling in reaction dynamics for the ion-molecule collisions of D(+)+H(2), Ne+H(2)(+), and He+H(2)(+) in both adiabatic and nonadiabatic context. © 2010 Wiley Periodicals, Inc.
Modeling Quantum Dynamics in Multidimensional Systems
NASA Astrophysics Data System (ADS)
Liss, Kyle; Weinacht, Thomas; Pearson, Brett
2017-04-01
Coupling between different degrees-of-freedom is an inherent aspect of dynamics in multidimensional quantum systems. As experiments and theory begin to tackle larger molecular structures and environments, models that account for vibrational and/or electronic couplings are essential for interpretation. Relevant processes include intramolecular vibrational relaxation, conical intersections, and system-bath coupling. We describe a set of simulations designed to model coupling processes in multidimensional molecular systems, focusing on models that provide insight and allow visualization of the dynamics. Undergraduates carried out much of the work as part of a senior research project. In addition to the pedagogical value, the simulations allow for comparison between both explicit and implicit treatments of a system's many degrees-of-freedom.
Brandt, C; Thakur, S C; Light, A D; Negrete, J; Tynan, G R
2014-12-31
Spatiotemporal splitting events of drift wave (DW) eigenmodes due to nonlinear coupling are investigated in a cylindrical helicon plasma device. DW eigenmodes in the radial-azimuthal cross section have been experimentally observed to split at radial locations and recombine into the global eigenmode with a time shorter than the typical DW period (t≪fDW(-1)). The number of splits correlates with the increase of turbulence. The observed dynamics can be theoretically reproduced by a Kuramoto-type model of a network of radially coupled azimuthal eigenmodes. Coupling by E×B-vortex convection cell dynamics and ion gyro radii motion leads to cross-field synchronization and occasional mode splitting events.
NASA Astrophysics Data System (ADS)
Coll, Marta; Palomera, Isabel; Tudela, Sergi; Sardà, Francesc
2006-01-01
An exploited ecosystem from the continental shelf and upper slope of the Northwestern Mediterranean Sea was described by means of an Ecopath mass-balance model with the aim of characterising its functioning and structure and describing the ecosystem impacts of fishing. This application included some complexities added to the general modelling methodology due to the high biodiversity of the Mediterranean Sea and the multispecific nature of the fishery, and to the difficulties of working with fishing data which are usually irregularly or imprecisely collected. The model comprised 40 functional groups including primary producers, the main species of benthic, demersal and pelagic invertebrates, fishes and non-fish vertebrates and three detritus groups. In addition, trawling, purse seine, longline and troll bait fishing fleets were included. Results showed that the functional groups were organized into four trophic levels with the highest levels corresponding to anglerfish, dolphins, large pelagic fishes and adult hake. The system was dominated by the pelagic fraction, where sardine and anchovy prevailed in terms of fish biomasses and catches. Detritus and detritivorous groups also played key roles in the ecosystem and important coupled pelagic-demersal interactions were described. Considering Odum's theory of ecosystem development, the ecosystem was placed on an intermediate-low developmental stage due, at least partially, to the impact of fishing activity. This highlighted the high intensity of fishing in the ecosystem, in accordance with the general assessment of western Mediterranean marine resources, and fishing fleets were ranked as top predators of the system. The low trophic level of the catch was in line with the long history of exploitation in the area. However, the steady decline of pelagic landings between 1994 and 2003, coupled with a decrease of the pelagic biomass within the system, underlined the low resistance of the system in front of perturbations. This decline was reproduced under Ecosim dynamic simulations combining different scenarios of moderate increase of fishing effort and an environmental forcing affecting the availability of preys to small and medium-sized pelagic fishes under wasp-waist flow control.
Physics of Life: A Model for Non-Newtonian Properties of Living Systems
NASA Technical Reports Server (NTRS)
Zak, Michail
2010-01-01
This innovation proposes the reconciliation of the evolution of life with the second law of thermodynamics via the introduction of the First Principle for modeling behavior of living systems. The structure of the model is quantum-inspired: it acquires the topology of the Madelung equation in which the quantum potential is replaced with the information potential. As a result, the model captures the most fundamental property of life: the progressive evolution; i.e. the ability to evolve from disorder to order without any external interference. The mathematical structure of the model can be obtained from the Newtonian equations of motion (representing the motor dynamics) coupled with the corresponding Liouville equation (representing the mental dynamics) via information forces. All these specific non-Newtonian properties equip the model with the levels of complexity that matches the complexity of life, and that makes the model applicable for description of behaviors of ecological, social, and economical systems. Rather than addressing the six aspects of life (organization, metabolism, growth, adaptation, response to stimuli, and reproduction), this work focuses only on biosignature ; i.e. the mechanical invariants of life, and in particular, the geometry and kinematics of behavior of living things. Living things obey the First Principles of Newtonian mechanics. One main objective of this model is to extend the First Principles of classical physics to include phenomenological behavior on living systems; to develop a new mathematical formalism within the framework of classical dynamics that would allow one to capture the specific properties of natural or artificial living systems such as formation of the collective mind based upon abstract images of the selves and non-selves; exploitation of this collective mind for communications and predictions of future expected characteristics of evolution; and for making decisions and implementing the corresponding corrections if the expected scenario is different from the originally planned one. This approach postulates that even a primitive living species possesses additional, non-Newtonian properties that are not included in the laws of Newtonian or statistical mechanics. These properties follow from a privileged ability of living systems to possess a self-image (a concept introduced in psychology) and to interact with it. The proposed mathematical system is based on the coupling of the classical dynamical system representing the motor dynamics with the corresponding Liouville equation describing the evolution of initial uncertainties in terms of the probability density and representing the mental dynamics. The coupling is implemented by the information-based supervising forces that can be associated with self-awareness. These forces fundamentally change the pattern of the probability evolution, and therefore, lead to a major departure of the behavior of living systems from the patterns of both Newtonian and statistical mechanics. This innovation is meant to capture the signature of life based only on observable behavior, not on any biochemistry. This will not prevent the use of this model for developing artificial living systems, as well as for studying some general properties of behavior of natural, living systems.
Inference of Time-Evolving Coupled Dynamical Systems in the Presence of Noise
NASA Astrophysics Data System (ADS)
Stankovski, Tomislav; Duggento, Andrea; McClintock, Peter V. E.; Stefanovska, Aneta
2012-07-01
A new method is introduced for analysis of interactions between time-dependent coupled oscillators, based on the signals they generate. It distinguishes unsynchronized dynamics from noise-induced phase slips and enables the evolution of the coupling functions and other parameters to be followed. It is based on phase dynamics, with Bayesian inference of the time-evolving parameters achieved by shaping the prior densities to incorporate knowledge of previous samples. The method is tested numerically and applied to reveal and quantify the time-varying nature of cardiorespiratory interactions.
Ramanathan, Arvind; Savol, Andrej J.; Agarwal, Pratul K.; Chennubhotla, Chakra S.
2012-01-01
Biomolecular simulations at milli-second and longer timescales can provide vital insights into functional mechanisms. Since post-simulation analyses of such large trajectory data-sets can be a limiting factor in obtaining biological insights, there is an emerging need to identify key dynamical events and relating these events to the biological function online, that is, as simulations are progressing. Recently, we have introduced a novel computational technique, quasi-anharmonic analysis (QAA) (PLoS One 6(1): e15827), for partitioning the conformational landscape into a hierarchy of functionally relevant sub-states. The unique capabilities of QAA are enabled by exploiting anharmonicity in the form of fourth-order statistics for characterizing atomic fluctuations. In this paper, we extend QAA for analyzing long time-scale simulations online. In particular, we present HOST4MD - a higher-order statistical toolbox for molecular dynamics simulations, which (1) identifies key dynamical events as simulations are in progress, (2) explores potential sub-states and (3) identifies conformational transitions that enable the protein to access those sub-states. We demonstrate HOST4MD on micro-second time-scale simulations of the enzyme adenylate kinase in its apo state. HOST4MD identifies several conformational events in these simulations, revealing how the intrinsic coupling between the three sub-domains (LID, CORE and NMP) changes during the simulations. Further, it also identifies an inherent asymmetry in the opening/closing of the two binding sites. We anticipate HOST4MD will provide a powerful and extensible framework for detecting biophysically relevant conformational coordinates from long time-scale simulations. PMID:22733562
Accelerated dynamic EPR imaging using fast acquisition and compressive recovery.
Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L
2016-12-01
Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kodali, Anuradha
In this thesis, we develop dynamic multiple fault diagnosis (DMFD) algorithms to diagnose faults that are sporadic and coupled. Firstly, we formulate a coupled factorial hidden Markov model-based (CFHMM) framework to diagnose dependent faults occurring over time (dynamic case). Here, we implement a mixed memory Markov coupling model to determine the most likely sequence of (dependent) fault states, the one that best explains the observed test outcomes over time. An iterative Gauss-Seidel coordinate ascent optimization method is proposed for solving the problem. A soft Viterbi algorithm is also implemented within the framework for decoding dependent fault states over time. We demonstrate the algorithm on simulated and real-world systems with coupled faults; the results show that this approach improves the correct isolation rate as compared to the formulation where independent fault states are assumed. Secondly, we formulate a generalization of set-covering, termed dynamic set-covering (DSC), which involves a series of coupled set-covering problems over time. The objective of the DSC problem is to infer the most probable time sequence of a parsimonious set of failure sources that explains the observed test outcomes over time. The DSC problem is NP-hard and intractable due to the fault-test dependency matrix that couples the failed tests and faults via the constraint matrix, and the temporal dependence of failure sources over time. Here, the DSC problem is motivated from the viewpoint of a dynamic multiple fault diagnosis problem, but it has wide applications in operations research, for e.g., facility location problem. Thus, we also formulated the DSC problem in the context of a dynamically evolving facility location problem. Here, a facility can be opened, closed, or can be temporarily unavailable at any time for a given requirement of demand points. These activities are associated with costs or penalties, viz., phase-in or phase-out for the opening or closing of a facility, respectively. The set-covering matrix encapsulates the relationship among the rows (tests or demand points) and columns (faults or locations) of the system at each time. By relaxing the coupling constraints using Lagrange multipliers, the DSC problem can be decoupled into independent subproblems, one for each column. Each subproblem is solved using the Viterbi decoding algorithm, and a primal feasible solution is constructed by modifying the Viterbi solutions via a heuristic. The proposed Viterbi-Lagrangian relaxation algorithm (VLRA) provides a measure of suboptimality via an approximate duality gap. As a major practical extension of the above problem, we also consider the problem of diagnosing faults with delayed test outcomes, termed delay-dynamic set-covering (DDSC), and experiment with real-world problems that exhibit masking faults. Also, we present simulation results on OR-library datasets (set-covering formulations are predominantly validated on these matrices in the literature), posed as facility location problems. Finally, we implement these algorithms to solve problems in aerospace and automotive applications. Firstly, we address the diagnostic ambiguity problem in aerospace and automotive applications by developing a dynamic fusion framework that includes dynamic multiple fault diagnosis algorithms. This improves the correct fault isolation rate, while minimizing the false alarm rates, by considering multiple faults instead of the traditional data-driven techniques based on single fault (class)-single epoch (static) assumption. The dynamic fusion problem is formulated as a maximum a posteriori decision problem of inferring the fault sequence based on uncertain outcomes of multiple binary classifiers over time. The fusion process involves three steps: the first step transforms the multi-class problem into dichotomies using error correcting output codes (ECOC), thereby solving the concomitant binary classification problems; the second step fuses the outcomes of multiple binary classifiers over time using a sliding window or block dynamic fusion method that exploits temporal data correlations over time. We solve this NP-hard optimization problem via a Lagrangian relaxation (variational) technique. The third step optimizes the classifier parameters, viz., probabilities of detection and false alarm, using a genetic algorithm. The proposed algorithm is demonstrated by computing the diagnostic performance metrics on a twin-spool commercial jet engine, an automotive engine, and UCI datasets (problems with high classification error are specifically chosen for experimentation). We show that the primal-dual optimization framework performed consistently better than any traditional fusion technique, even when it is forced to give a single fault decision across a range of classification problems. Secondly, we implement the inference algorithms to diagnose faults in vehicle systems that are controlled by a network of electronic control units (ECUs). The faults, originating from various interactions and especially between hardware and software, are particularly challenging to address. Our basic strategy is to divide the fault universe of such cyber-physical systems in a hierarchical manner, and monitor the critical variables/signals that have impact at different levels of interactions. The proposed diagnostic strategy is validated on an electrical power generation and storage system (EPGS) controlled by two ECUs in an environment with CANoe/MATLAB co-simulation. Eleven faults are injected with the failures originating in actuator hardware, sensor, controller hardware and software components. Diagnostic matrix is established to represent the relationship between the faults and the test outcomes (also known as fault signatures) via simulations. The results show that the proposed diagnostic strategy is effective in addressing the interaction-caused faults.
Synchronization Dynamics of Coupled Chemical Oscillators
NASA Astrophysics Data System (ADS)
Tompkins, Nathan
The synchronization dynamics of complex networks have been extensively studied over the past few decades due to their ubiquity in the natural world. Prominent examples include cardiac rhythms, circadian rhythms, the flashing of fireflies, predator/prey population dynamics, mammalian gait, human applause, pendulum clocks, the electrical grid, and of the course the brain. Detailed experiments have been done to map the topology of many of these systems and significant advances have been made to describe the mathematics of these networks. Compared to these bodies of work relatively little has been done to directly test the role of topology in the synchronization dynamics of coupled oscillators. This Dissertation develops technology to examine the dynamics due to topology within networks of discrete oscillatory components. The oscillatory system used here consists of the photo-inhibitable Belousov-Zhabotinsky (BZ) reaction water-in-oil emulsion where the oscillatory drops are diffusively coupled to one another and the topology is defined by the geometry of the diffusive connections. Ring networks are created from a close-packed 2D array of drops using the Programmable Illumination Microscope (PIM) in order to test Turing's theory of morphogenesis directly. Further technology is developed to create custom planar networks of BZ drops in more complicated topologies which can be individually perturbed using illumination from the PIM. The work presented here establishes the validity of using the BZ emulsion system with a PIM to study the topology induced effects on the synchronization dynamics of coupled chemical oscillators, tests the successes and limitations of Turing's theory of morphogenesis, and develops new technology to further probe the effects of network topology on a system of coupled oscillators. Finally, this Dissertation concludes by describing ongoing experiments which utilize this new technology to examine topology induced transitions of synchronization dynamics of diffusively coupled chemical oscillators.
Doshi, Urmi; Holliday, Michael J.; Eisenmesser, Elan Z.; Hamelberg, Donald
2016-01-01
Detailed understanding of how conformational dynamics orchestrates function in allosteric regulation of recognition and catalysis remains ambiguous. Here, we simulate CypA using multiple-microsecond-long atomistic molecular dynamics in explicit solvent and carry out NMR experiments. We analyze a large amount of time-dependent multidimensional data with a coarse-grained approach and map key dynamical features within individual macrostates by defining dynamics in terms of residue–residue contacts. The effects of substrate binding are observed to be largely sensed at a location over 15 Å from the active site, implying its importance in allostery. Using NMR experiments, we confirm that a dynamic cluster of residues in this distal region is directly coupled to the active site. Furthermore, the dynamical network of interresidue contacts is found to be coupled and temporally dispersed, ranging over 4 to 5 orders of magnitude. Finally, using network centrality measures we demonstrate the changes in the communication network, connectivity, and influence of CypA residues upon substrate binding, mutation, and during catalysis. We identify key residues that potentially act as a bottleneck in the communication flow through the distinct regions in CypA and, therefore, as targets for future mutational studies. Mapping these dynamical features and the coupling of dynamics to function has crucial ramifications in understanding allosteric regulation in enzymes and proteins, in general. PMID:27071107
Correlated Fluctuations in Strongly Coupled Binary Networks Beyond Equilibrium
NASA Astrophysics Data System (ADS)
Dahmen, David; Bos, Hannah; Helias, Moritz
2016-07-01
Randomly coupled Ising spins constitute the classical model of collective phenomena in disordered systems, with applications covering glassy magnetism and frustration, combinatorial optimization, protein folding, stock market dynamics, and social dynamics. The phase diagram of these systems is obtained in the thermodynamic limit by averaging over the quenched randomness of the couplings. However, many applications require the statistics of activity for a single realization of the possibly asymmetric couplings in finite-sized networks. Examples include reconstruction of couplings from the observed dynamics, representation of probability distributions for sampling-based inference, and learning in the central nervous system based on the dynamic and correlation-dependent modification of synaptic connections. The systematic cumulant expansion for kinetic binary (Ising) threshold units with strong, random, and asymmetric couplings presented here goes beyond mean-field theory and is applicable outside thermodynamic equilibrium; a system of approximate nonlinear equations predicts average activities and pairwise covariances in quantitative agreement with full simulations down to hundreds of units. The linearized theory yields an expansion of the correlation and response functions in collective eigenmodes, leads to an efficient algorithm solving the inverse problem, and shows that correlations are invariant under scaling of the interaction strengths.
Inductive-dynamic magnetosphere-ionosphere coupling via MHD waves
NASA Astrophysics Data System (ADS)
Tu, Jiannan; Song, Paul; Vasyliūnas, Vytenis M.
2014-01-01
In the present study, we investigate magnetosphere-ionosphere/thermosphere (M-IT) coupling via MHD waves by numerically solving time-dependent continuity, momentum, and energy equations for ions and neutrals, together with Maxwell's equations (Ampère's and Faraday's laws) and with photochemistry included. This inductive-dynamic approach we use is fundamentally different from those in previous magnetosphere-ionosphere (M-I) coupling models: all MHD wave modes are retained, and energy and momentum exchange between waves and plasma are incorporated into the governing equations, allowing a self-consistent examination of dynamic M-I coupling. Simulations, using an implicit numerical scheme, of the 1-D ionosphere/thermosphere system responding to an imposed convection velocity at the top boundary are presented to show how magnetosphere and ionosphere are coupled through Alfvén waves during the transient stage when the IT system changes from one quasi steady state to another. Wave reflection from the low-altitude ionosphere plays an essential role, causing overshoots and oscillations of ionospheric perturbations, and the dynamical Hall effect is an inherent aspect of the M-I coupling. The simulations demonstrate that the ionosphere/thermosphere responds to magnetospheric driving forces as a damped oscillator.
Bursting synchronization dynamics of pancreatic β-cells with electrical and chemical coupling.
Meng, Pan; Wang, Qingyun; Lu, Qishao
2013-06-01
Based on bifurcation analysis, the synchronization behaviors of two identical pancreatic β-cells connected by electrical and chemical coupling are investigated, respectively. Various firing patterns are produced in coupled cells when a single cell exhibits tonic spiking or square-wave bursting individually, irrespectively of what the cells are connected by electrical or chemical coupling. On the one hand, cells can burst synchronously for both weak electrical and chemical coupling when an isolated cell exhibits tonic spiking itself. In particular, for electrically coupled cells, under the variation of the coupling strength there exist complex transition processes of synchronous firing patterns such as "fold/limit cycle" type of bursting, then anti-phase continuous spiking, followed by the "fold/torus" type of bursting, and finally in-phase tonic spiking. On the other hand, it is shown that when the individual cell exhibits square-wave bursting, suitable coupling strength can make the electrically coupled system generate "fold/Hopf" bursting via "fold/fold" hysteresis loop; whereas, the chemically coupled cells generate "fold/subHopf" bursting. Especially, chemically coupled bursters can exhibit inverse period-adding bursting sequence. Fast-slow dynamics analysis is applied to explore the generation mechanism of these bursting oscillations. The above analysis of bursting types and the transition may provide us with better insight into understanding the role of coupling in the dynamic behaviors of pancreatic β-cells.
NASA Astrophysics Data System (ADS)
Álvarez, Gonzalo A.; Levstein, Patricia R.; Pastawski, Horacio M.
2007-09-01
We have observed an environmentally induced quantum dynamical phase transition in the dynamics of a two-spin experimental swapping gate [G.A. Álvarez, E.P. Danieli, P.R. Levstein, H.M. Pastawski, J. Chem. Phys. 124 (2006) 194507]. There, the exchange of the coupled states |↑,↓> and |↓,↑> gives an oscillation with a Rabi frequency b/ℏ (the spin-spin coupling). The interaction, ℏ/τSE with a spin-bath degrades the oscillation with a characteristic decoherence time. We showed that the swapping regime is restricted only to bτSE≳ℏ. However, beyond a critical interaction with the environment the swapping freezes and the system enters to a Quantum Zeno dynamical phase where relaxation decreases as coupling with the environment increases. Here, we solve the quantum dynamics of a two-spin system coupled to a spin-bath within a Liouville-von Neumann quantum master equation and we compare the results with our previous work within the Keldysh formalism. Then, we extend the model to a three interacting spin system where only one is coupled to the environment. Beyond a critical interaction the two spins not coupled to the environment oscillate with the bare Rabi frequency and relax more slowly. This effect is more pronounced when the anisotropy of the system-environment (SE) interaction goes from a purely XY to an Ising interaction form.
Parallel algorithm for multiscale atomistic/continuum simulations using LAMMPS
NASA Astrophysics Data System (ADS)
Pavia, F.; Curtin, W. A.
2015-07-01
Deformation and fracture processes in engineering materials often require simultaneous descriptions over a range of length and time scales, with each scale using a different computational technique. Here we present a high-performance parallel 3D computing framework for executing large multiscale studies that couple an atomic domain, modeled using molecular dynamics and a continuum domain, modeled using explicit finite elements. We use the robust Coupled Atomistic/Discrete-Dislocation (CADD) displacement-coupling method, but without the transfer of dislocations between atoms and continuum. The main purpose of the work is to provide a multiscale implementation within an existing large-scale parallel molecular dynamics code (LAMMPS) that enables use of all the tools associated with this popular open-source code, while extending CADD-type coupling to 3D. Validation of the implementation includes the demonstration of (i) stability in finite-temperature dynamics using Langevin dynamics, (ii) elimination of wave reflections due to large dynamic events occurring in the MD region and (iii) the absence of spurious forces acting on dislocations due to the MD/FE coupling, for dislocations further than 10 Å from the coupling boundary. A first non-trivial example application of dislocation glide and bowing around obstacles is shown, for dislocation lengths of ∼50 nm using fewer than 1 000 000 atoms but reproducing results of extremely large atomistic simulations at much lower computational cost.
Hamiltonian dynamics for complex food webs
NASA Astrophysics Data System (ADS)
Kozlov, Vladimir; Vakulenko, Sergey; Wennergren, Uno
2016-03-01
We investigate stability and dynamics of large ecological networks by introducing classical methods of dynamical system theory from physics, including Hamiltonian and averaging methods. Our analysis exploits the topological structure of the network, namely the existence of strongly connected nodes (hubs) in the networks. We reveal new relations between topology, interaction structure, and network dynamics. We describe mechanisms of catastrophic phenomena leading to sharp changes of dynamics and hence completely altering the ecosystem. We also show how these phenomena depend on the structure of interaction between species. We can conclude that a Hamiltonian structure of biological interactions leads to stability and large biodiversity.
NASA Astrophysics Data System (ADS)
Mann, Ian; Chi, Peter
2016-07-01
Networks of ground-based magnetometers now provide the basis for the diagnosis of magnetic disturbances associated with solar wind-magnetosphere-ionosphere coupling on a truly global scale. Advances in sensor and digitisation technologies offer increases in sensitivity in fluxgate, induction coil, and new micro-sensor technologies - including the promise of hybrid sensors. Similarly, advances in remote connectivity provide the capacity for truly real-time monitoring of global dynamics at cadences sufficient for monitoring and in many cases resolving system level spatio-temporal ambiguities especially in combination with conjugate satellite measurements. A wide variety of the plasmaphysical processes active in driving geospace dynamics can be monitored based on the response of the electrical current system, including those associated with changes in global convection, magnetospheric substorms and nightside tail flows, as well as due to solar wind changes in both dynamic pressure and in response to rotations of the direction of the IMF. Significantly, any changes to the dynamical system must be communicated by the propagation of long-period Alfven and/or compressional waves. These wave populations hence provide diagnostics for not only the energy transport by the wave fields themselves, but also provide a mechanism for diagnosing the structure of the background plasma medium through which the waves propagate. Ultra-low frequency (ULF) waves are especially significant in offering a monitor for mass density profiles, often invisible to particle detectors because of their very low energy, through the application of a variety of magneto-seismology and cross-phase techniques. Renewed scientific interest in the plasma waves associated with near-Earth substorm dynamics, including magnetosphere-ionosphere coupling at substorm onset and their relation to magnetotail flows, as well the importance of global scale ultra-low frequency waves for the energisation, transport, acceleration, and loss of electrons in the radiation belts promise high profile science returns. Integrated, global scale data products also have potential importance and application for real-time monitoring of the space weather threats to electrical power grids from geomagnetically induced currents. Such data exploitation increasingly relies on the collaborations between multiple national magnetometer arrays to generate single data products with common file format and data properties. We review advances in geospace science which can be delivered by networks of ground-based magnetometers - in terms of advances in sensors, data collection, and data integration - including through collaborations within the Ultra-Large Terrestrial International Magnetometer Array (ULTIMA) consortium.
An HF and lower VHF spectrum assessment system exploiting instantaneously wideband capture
NASA Astrophysics Data System (ADS)
Barnes, Rod I.; Singh, Malkiat; Earl, Fred
2017-09-01
We report on a spectral environment evaluation and recording (SEER) system, for instantaneously wideband spectral capture and characterization in the HF and lower VHF band, utilizing a direct digital receiver coupled to a data recorder. The system is designed to contend with a wide variety of electromagnetic environments and to provide accurately calibrated spectral characterization and display from very short (ms) to synoptic scales. The system incorporates a novel RF front end involving automated gain and equalization filter selection which provides an analogue frequency-dependent gain characteristic that mitigates the high dynamic range found across the HF and lower VHF spectrum. The system accurately calibrates its own internal noise and automatically subtracts this from low variance, external spectral estimates, further extending the dynamic range over which robust characterization is possible. Laboratory and field experiments demonstrate that the implementation of these concepts has been effective. Sensitivity to varying antenna load impedance of the internal noise reduction process has been examined. Examples of software algorithms to provide extraction and visualization of spectral behavior over narrowband, wideband, short, and synoptic scales are provided. Application in HF noise spectral density monitoring, spectral signal strength assessment, and electromagnetic interference detection is possible with examples provided. The instantaneously full bandwidth collection provides some innovative applications, and this is demonstrated by the collection of discrete lightning emissions, which form fast ionograms called "flashagrams" in power-delay-frequency plots.
Ultrafast Silicon Photonics with Visible to Mid-Infrared Pumping of Silicon Nanocrystals.
Diroll, Benjamin T; Schramke, Katelyn S; Guo, Peijun; Kortshagen, Uwe R; Schaller, Richard D
2017-10-11
Dynamic optical control of infrared (IR) transparency and refractive index is achieved using boron-doped silicon nanocrystals excited with mid-IR optical pulses. Unlike previous silicon-based optical switches, large changes in transmittance are achieved without a fabricated structure by exploiting strong light coupling of the localized surface plasmon resonance (LSPR) produced from free holes of p-type silicon nanocrystals. The choice of optical excitation wavelength allows for selectivity between hole heating and carrier generation through intraband or interband photoexcitation, respectively. Mid-IR optical pumping heats the free holes of p-Si nanocrystals to effective temperatures greater than 3500 K. Increases of the hole effective mass at high effective hole temperatures lead to a subpicosecond change of the dielectric function, resulting in a redshift of the LSPR, modulating mid-IR transmission by as much as 27%, and increasing the index of refraction by more than 0.1 in the mid-IR. Low hole heat capacity dictates subpicosecond hole cooling, substantially faster than carrier recombination, and negligible heating of the Si lattice, permitting mid-IR optical switching at terahertz repetition frequencies. Further, the energetic distribution of holes at high effective temperatures partially reverses the Burstein-Moss effect, permitting the modulation of transmittance at telecommunications wavelengths. The results presented here show that doped silicon, particularly in micro- or nanostructures, is a promising dynamic metamaterial for ultrafast IR photonics.
Adaptive Tracking Control for Robots With an Interneural Computing Scheme.
Tsai, Feng-Sheng; Hsu, Sheng-Yi; Shih, Mau-Hsiang
2018-04-01
Adaptive tracking control of mobile robots requires the ability to follow a trajectory generated by a moving target. The conventional analysis of adaptive tracking uses energy minimization to study the convergence and robustness of the tracking error when the mobile robot follows a desired trajectory. However, in the case that the moving target generates trajectories with uncertainties, a common Lyapunov-like function for energy minimization may be extremely difficult to determine. Here, to solve the adaptive tracking problem with uncertainties, we wish to implement an interneural computing scheme in the design of a mobile robot for behavior-based navigation. The behavior-based navigation adopts an adaptive plan of behavior patterns learning from the uncertainties of the environment. The characteristic feature of the interneural computing scheme is the use of neural path pruning with rewards and punishment interacting with the environment. On this basis, the mobile robot can be exploited to change its coupling weights in paths of neural connections systematically, which can then inhibit or enhance the effect of flow elimination in the dynamics of the evolutionary neural network. Such dynamical flow translation ultimately leads to robust sensory-to-motor transformations adapting to the uncertainties of the environment. A simulation result shows that the mobile robot with the interneural computing scheme can perform fault-tolerant behavior of tracking by maintaining suitable behavior patterns at high frequency levels.
Ultrafast Silicon Photonics with Visible to Mid-Infrared Pumping of Silicon Nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diroll, Benjamin T.; Schramke, Katelyn S.; Guo, Peijun
Dynamic optical control of infrared (IR) transparency and refractive index is achieved using boron-doped silicon nanocrystals excited with mid-IR optical pulses. Also, unlike previous silicon-based optical switches, large changes in transmittance are achieved without a fabricated structure by exploiting strong light coupling of the localized surface plasmon resonance (LSPR) produced from free holes of p-type silicon nanocrystals. The choice of optical excitation wavelength allows selectivity between hole heating and carrier generation through intraband or interband photoexcitation, respectively. Mid-IR optical pumping heats the free holes of p-Si nanocrystals to effective temperatures greater than 3500 K. Increases of the hole effective massmore » at high effective hole temperatures lead to a sub-picosecond change of the dielectric function resulting in a redshift of the LSPR, modulating mid-IR transmission by as much as 27% and increasing the index of refraction by more than 0.1 in the mid-IR. Low hole heat capacity dictates sub-picosecond hole cooling, substantially faster than carrier recombination, and negligible heating of the Si lattice, permitting mid-IR optical switching at terahertz repetition frequencies. Further, the energetic distribution of holes at high effective temperatures partially reverses the Burstein-Moss effect, permitting modulation of transmittance at telecommunications wavelengths. Lastly, the results presented here show that doped silicon, particularly in micro- or nanostructures, is a promising dynamic metamaterial for ultrafast IR photonics.« less
When fast is better: protein folding fundamentals and mechanisms from ultrafast approaches
Muñoz, Victor; Cerminara, Michele
2016-01-01
Protein folding research stalled for decades because conventional experiments indicated that proteins fold slowly and in single strokes, whereas theory predicted a complex interplay between dynamics and energetics resulting in myriad microscopic pathways. Ultrafast kinetic methods turned the field upside down by providing the means to probe fundamental aspects of folding, test theoretical predictions and benchmark simulations. Accordingly, experimentalists could measure the timescales for all relevant folding motions, determine the folding speed limit and confirm that folding barriers are entropic bottlenecks. Moreover, a catalogue of proteins that fold extremely fast (microseconds) could be identified. Such fast-folding proteins cross shallow free energy barriers or fold downhill, and thus unfold with minimal co-operativity (gradually). A new generation of thermodynamic methods has exploited this property to map folding landscapes, interaction networks and mechanisms at nearly atomic resolution. In parallel, modern molecular dynamics simulations have finally reached the timescales required to watch fast-folding proteins fold and unfold in silico. All of these findings have buttressed the fundamentals of protein folding predicted by theory, and are now offering the first glimpses at the underlying mechanisms. Fast folding appears to also have functional implications as recent results connect downhill folding with intrinsically disordered proteins, their complex binding modes and ability to moonlight. These connections suggest that the coupling between downhill (un)folding and binding enables such protein domains to operate analogically as conformational rheostats. PMID:27574021
Ultrafast Silicon Photonics with Visible to Mid-Infrared Pumping of Silicon Nanocrystals
Diroll, Benjamin T.; Schramke, Katelyn S.; Guo, Peijun; ...
2017-09-11
Dynamic optical control of infrared (IR) transparency and refractive index is achieved using boron-doped silicon nanocrystals excited with mid-IR optical pulses. Also, unlike previous silicon-based optical switches, large changes in transmittance are achieved without a fabricated structure by exploiting strong light coupling of the localized surface plasmon resonance (LSPR) produced from free holes of p-type silicon nanocrystals. The choice of optical excitation wavelength allows selectivity between hole heating and carrier generation through intraband or interband photoexcitation, respectively. Mid-IR optical pumping heats the free holes of p-Si nanocrystals to effective temperatures greater than 3500 K. Increases of the hole effective massmore » at high effective hole temperatures lead to a sub-picosecond change of the dielectric function resulting in a redshift of the LSPR, modulating mid-IR transmission by as much as 27% and increasing the index of refraction by more than 0.1 in the mid-IR. Low hole heat capacity dictates sub-picosecond hole cooling, substantially faster than carrier recombination, and negligible heating of the Si lattice, permitting mid-IR optical switching at terahertz repetition frequencies. Further, the energetic distribution of holes at high effective temperatures partially reverses the Burstein-Moss effect, permitting modulation of transmittance at telecommunications wavelengths. Lastly, the results presented here show that doped silicon, particularly in micro- or nanostructures, is a promising dynamic metamaterial for ultrafast IR photonics.« less
On the Exploitation of Sensitivity Derivatives for Improving Sampling Methods
NASA Technical Reports Server (NTRS)
Cao, Yanzhao; Hussaini, M. Yousuff; Zang, Thomas A.
2003-01-01
Many application codes, such as finite-element structural analyses and computational fluid dynamics codes, are capable of producing many sensitivity derivatives at a small fraction of the cost of the underlying analysis. This paper describes a simple variance reduction method that exploits such inexpensive sensitivity derivatives to increase the accuracy of sampling methods. Three examples, including a finite-element structural analysis of an aircraft wing, are provided that illustrate an order of magnitude improvement in accuracy for both Monte Carlo and stratified sampling schemes.
NASA Astrophysics Data System (ADS)
Shu, Chang; Chen, Qing-Guo; Mei, Jin-Shuo; Yin, Jing-Hua
2018-03-01
In this paper, we numerically demonstrated a dynamically tunable implementation of electromagnetically induced transparency (EIT) response with two coupling graphene-nanostrips in terahertz region. Compared to the metal-based structures or separated graphene structures, the Fermi energies of proposed two coupling graphene-nanostrips can be independently tuned by changing bias voltage between the metallic pads and substrate, the EIT window which appears from the near-field coupling between two resonators can be dynamically tuned without reoptimizing and refabricating the structures. As a result, the EIT window has a significant tunable capacity which can realize a higher frequency modulation depth and control the amplitude of transmission peak at a fixed frequency; moreover, the group delay of transmission peak at a fixed frequency with the amplitude of over 0.95 could be dynamically tuned. These results would exhibit potential applications in modulators and tunable slow light devices.
Spontaneous mode switching in coupled oscillators competing for constant amounts of resources
NASA Astrophysics Data System (ADS)
Hirata, Yoshito; Aono, Masashi; Hara, Masahiko; Aihara, Kazuyuki
2010-03-01
We propose a widely applicable scheme of coupling that models competitions among dynamical systems for fixed amounts of resources. Two oscillators coupled in this way synchronize in antiphase. Three oscillators coupled circularly show a number of oscillation modes such as rotation and partially in-phase synchronization. Intriguingly, simple oscillators in the model also produce complex behavior such as spontaneous switching among different modes. The dynamics reproduces well the spatiotemporal oscillatory behavior of a true slime mold Physarum, which is capable of computational optimization.
Modeling of inter-neuronal coupling medium and its impact on neuronal synchronization
Iqbal, Muhammad; Hong, Keum-Shik
2017-01-01
In this paper, modeling of the coupling medium between two neurons, the effects of the model parameters on the synchronization of those neurons, and compensation of coupling strength deficiency in synchronization are studied. Our study exploits the inter-neuronal coupling medium and investigates its intrinsic properties in order to get insight into neuronal-information transmittance and, there from, brain-information processing. A novel electrical model of the coupling medium that represents a well-known RLC circuit attributable to the coupling medium’s intrinsic resistive, inductive, and capacitive properties is derived. Surprisingly, the integration of such properties reveals the existence of a natural three-term control strategy, referred to in the literature as the proportional integral derivative (PID) controller, which can be responsible for synchronization between two neurons. Consequently, brain-information processing can rely on a large number of PID controllers based on the coupling medium properties responsible for the coherent behavior of neurons in a neural network. Herein, the effects of the coupling model (or natural PID controller) parameters are studied and, further, a supervisory mechanism is proposed that follows a learning and adaptation policy based on the particle swarm optimization algorithm for compensation of the coupling strength deficiency. PMID:28486505
Collective phenomena in photonic, plasmonic and hybrid structures.
Boriskina, Svetlana V; Povinelli, Michelle; Astratov, Vasily N; Zayats, Anatoly V; Podolskiy, Viktor A
2011-10-24
Preface to a focus issue of invited articles that review recent progress in studying the fundamental physics of collective phenomena associated with coupling of confined photonic, plasmonic, electronic and phononic states and in exploiting these phenomena to engineer novel devices for light generation, optical sensing, and information processing. © 2011 Optical Society of America
Exploiting Inherent Robustness and Natural Dynamics in the Control of Bipedal Walking Robots
2000-06-01
physical models of bipedal walking. The insight gained from these models is used in the development of three planar (motion only in the sagittal plane ...ground is implemented and tested in simulation. The dynamics of the sagittal plane are suffciently decoupled from the dynamics of the frontal and...transverse planes such that control of each can be treated separately. We achieve three-dimensional walking by adding lateral balance to the planar algorithms
Bi, Kun; Hua, Lingling; Wei, Maobin; Qin, Jiaolong; Lu, Qing; Yao, Zhijian
2016-02-01
Dynamic functional-structural connectivity (FC-SC) coupling might reflect the flexibility by which SC relates to functional connectivity (FC). However, during the dynamic acute state change phases of FC, the relationship between FC and SC may be distinctive and embody the abnormality inherent in depression. This study investigated the depression-related inter-network FC-SC coupling within particular dynamic acute state change phases of FC. Magnetoencephalography (MEG) and diffusion tensor imaging (DTI) data were collected from 26 depressive patients (13 women) and 26 age-matched controls (13 women). We constructed functional brain networks based on MEG data and structural networks from DTI data. The dynamic connectivity regression algorithm was used to identify the state change points of a time series of inter-network FC. The time period of FC that contained change points were partitioned into types of dynamic phases (acute rising phase, acute falling phase,acute rising and falling phase and abrupt FC variation phase) to explore the inter-network FC-SC coupling. The selected FC-SC couplings were then fed into the support vector machine (SVM) for depression recognition. The best discrimination accuracy was 82.7% (P=0.0069) with FC-SC couplings, particularly in the acute rising phase of FC. Within the FC phases of interest, the significant discriminative network pair was related to the salience network vs ventral attention network (SN-VAN) (P=0.0126) during the early rising phase (70-170ms). This study suffers from a small sample size, and the individual acute length of the state change phases was not considered. The increased values of significant discriminative vectors of FC-SC coupling in depression suggested that the capacity to process negative emotion might be more directly related to the SC abnormally and be indicative of more stringent and less dynamic brain function in SN-VAN, especially in the acute rising phase of FC. We demonstrated that depressive brain dysfunctions could be better characterized by reduced FC-SC coupling flexibility in this particular phase. Copyright © 2015 Elsevier B.V. All rights reserved.
On the use of attachment modes in substructure coupling for dynamic analysis
NASA Technical Reports Server (NTRS)
Craig, R. R., Jr.; Chang, C.-J.
1977-01-01
Substructure coupling or component-mode synthesis may be employed in the solution of dynamics problems for complex structures. Although numerous substructure-coupling methods have been devised, little attention has been devoted to methods employing attachment modes. In the present paper the various mode sets (normal modes, constraint modes, attachment modes) are defined. A generalized substructure-coupling procedure is described. Those substructure-coupling methods which employ attachment modes are described in detail. One of these methods is shown to lead to results (e.g., system natural frequencies) comparable to or better than those obtained by the Hurty (1965) method.
Enhancing synchrony in chaotic oscillators by dynamic relaying
NASA Astrophysics Data System (ADS)
Banerjee, Ranjib; Ghosh, Dibakar; Padmanaban, E.; Ramaswamy, R.; Pecora, L. M.; Dana, Syamal K.
2012-02-01
In a chain of mutually coupled oscillators, the coupling threshold for synchronization between the outermost identical oscillators decreases when a type of impurity (in terms of parameter mismatch) is introduced in the inner oscillator(s). The outer oscillators interact indirectly via dynamic relaying, mediated by the inner oscillator(s). We confirm this enhancing of critical coupling in the chaotic regimes of the Lorenz system, in the Rössler system in the absence of coupling delay, and in the Mackey-Glass system with delay coupling. The enhancing effect is experimentally verified in the electronic circuit of Rössler oscillators.
Chiacchiaretta, Piero; Cerritelli, Francesco; Bubbico, Giovanna; Perrucci, Mauro Gianni; Ferretti, Antonio
2018-01-01
Measurement of the dynamic coupling between spontaneous Blood Oxygenation Level Dependent (BOLD) and cerebral blood flow (CBF) fluctuations has been recently proposed as a method to probe resting-state brain physiology. Here we investigated how the dynamic BOLD-CBF coupling during resting-state is affected by aging. Fifteen young subjects and 17 healthy elderlies were studied using a dual-echo pCASL sequence. We found that the dynamic BOLD-CBF coupling was markedly reduced in elderlies, in particular in the left supramarginal gyrus, an area known to be involved in verbal working memory and episodic memory. Moreover, correcting for temporal shift between BOLD and CBF timecourses resulted in an increased correlation of the two signals for both groups, but with a larger increase for elderlies. However, even after temporal shift correction, a significantly decreased correlation was still observed for elderlies in the left supramarginal gyrus, indicating that the age-related dynamic BOLD-CBF uncoupling in this region is more pronounced and can be only partially explained with a simple time-shift between the two signals. Interestingly, these results were observed in a group of elderlies with normal cognitive functions, suggesting that the study of dynamic BOLD-CBF coupling during resting-state is a promising technique, potentially able to provide early biomarkers of functional changes in the aging brain.
NASA Astrophysics Data System (ADS)
Ge, Li; Zhao, Nan
2018-04-01
We study the coherence dynamics of a qubit coupled to a harmonic oscillator with both linear and quadratic interactions. As long as the linear coupling strength is much smaller than the oscillator frequency, the long time behavior of the coherence is dominated by the quadratic coupling strength g 2. The coherence decays and revives at a period , with the width of coherence peak decreasing as the temperature increases, hence providing a way to measure g 2 precisely without cooling. Unlike the case of linear coupling, here the coherence dynamics never reduces to the classical limit in which the oscillator is classical. Finally, the validity of linear coupling approximation is discussed and the coherence under Hahn-echo is evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pistolesi, F.; Strinati, G.C.
1996-06-01
We consider a fermionic system at zero temperature interacting through an effective nonretarded potential of the type introduced by Nozi{grave e}res and Schmitt-Rink, and calculate the {ital phase} coherence length {xi}{sub phase} (associated with the spatial fluctuations of the superconducting order parameter) by exploiting a functional-integral formulation for the correlation functions and the associated loop expansion. This formulation is especially suited to follow the evolution of the fermionic system from a BCS-type superconductor for weak coupling to a Bose-condensed system for strong coupling, since in the latter limit a {ital direct} mapping of the original fermionic system onto an effectivemore » system of bosons with a residual boson-boson interaction can be established. Explicit calculations are performed at the one-loop order. The phase coherence length {xi}{sub phase} is compared with the coherence length {xi}{sub pair} for two-electron correlation, which is relevant to distinguish the weak- ({ital k}{sub {ital F}}{xi}{sub pair}{gt}1) from the strong- ({ital k}{sub {ital F}}{xi}{sub pair}{lt}1) coupling limits ({ital k}{sub {ital F}} being the Fermi wave vector) {ital as} {ital well} {ital as} to follow the crossover in between. It is shown that {xi}{sub phase} coincides with {xi}{sub pair} down to {ital k}{sub {ital F}}{xi}{sub pair}{approx_equal}10, {xi}{sub pair} in turn coinciding with the Pippard coherence length. In the strong-coupling limit we find instead that {xi}{sub phase}{gt}{xi}{sub pair}, with {xi}{sub pair} coinciding with the radius of the bound-electron pair. From the mapping onto an effective system of bosons in the strong-coupling limit we further relate {xi}{sub pair} with the {open_quote}{open_quote}range{close_quote}{close_quote} of the residual boson-boson interaction, which is physically the only significant length associated with the dynamics of the bosonic system. {copyright} {ital 1996 The American Physical Society.}« less
Bifurcation behaviors of synchronized regions in logistic map networks with coupling delay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Longkun, E-mail: tomlk@hqu.edu.cn, E-mail: xqwu@whu.edu.cn; Wu, Xiaoqun, E-mail: tomlk@hqu.edu.cn, E-mail: xqwu@whu.edu.cn; Lu, Jun-an, E-mail: jalu@whu.edu.cn
2015-03-15
Network synchronized regions play an extremely important role in network synchronization according to the master stability function framework. This paper focuses on network synchronous state stability via studying the effects of nodal dynamics, coupling delay, and coupling way on synchronized regions in Logistic map networks. Theoretical and numerical investigations show that (1) network synchronization is closely associated with its nodal dynamics. Particularly, the synchronized region bifurcation points through which the synchronized region switches from one type to another are in good agreement with those of the uncoupled node system, and chaotic nodal dynamics can greatly impede network synchronization. (2) Themore » coupling delay generally impairs the synchronizability of Logistic map networks, which is also dominated by the parity of delay for some nodal parameters. (3) A simple nonlinear coupling facilitates network synchronization more than the linear one does. The results found in this paper will help to intensify our understanding for the synchronous state stability in discrete-time networks with coupling delay.« less
Detection of coupling delay: A problem not yet solved
NASA Astrophysics Data System (ADS)
Coufal, David; Jakubík, Jozef; Jajcay, Nikola; Hlinka, Jaroslav; Krakovská, Anna; Paluš, Milan
2017-08-01
Nonparametric detection of coupling delay in unidirectionally and bidirectionally coupled nonlinear dynamical systems is examined. Both continuous and discrete-time systems are considered. Two methods of detection are assessed—the method based on conditional mutual information—the CMI method (also known as the transfer entropy method) and the method of convergent cross mapping—the CCM method. Computer simulations show that neither method is generally reliable in the detection of coupling delays. For continuous-time chaotic systems, the CMI method appears to be more sensitive and applicable in a broader range of coupling parameters than the CCM method. In the case of tested discrete-time dynamical systems, the CCM method has been found to be more sensitive, while the CMI method required much stronger coupling strength in order to bring correct results. However, when studied systems contain a strong oscillatory component in their dynamics, results of both methods become ambiguous. The presented study suggests that results of the tested algorithms should be interpreted with utmost care and the nonparametric detection of coupling delay, in general, is a problem not yet solved.
A Coupled Aeroelastic Model for Launch Vehicle Stability Analysis
NASA Technical Reports Server (NTRS)
Orr, Jeb S.
2010-01-01
A technique for incorporating distributed aerodynamic normal forces and aeroelastic coupling effects into a stability analysis model of a launch vehicle is presented. The formulation augments the linear state-space launch vehicle plant dynamics that are compactly derived as a system of coupled linear differential equations representing small angular and translational perturbations of the rigid body, nozzle, and sloshing propellant coupled with normal vibration of a set of orthogonal modes. The interaction of generalized forces due to aeroelastic coupling and thrust can be expressed as a set of augmenting non-diagonal stiffness and damping matrices in modal coordinates with no penalty on system order. While the eigenvalues of the structural response in the presence of thrust and aeroelastic forcing can be predicted at a given flight condition independent of the remaining degrees of freedom, the coupled model provides confidence in closed-loop stability in the presence of rigid-body, slosh, and actuator dynamics. Simulation results are presented that characterize the coupled dynamic response of the Ares I launch vehicle and the impact of aeroelasticity on control system stability margins.
Computational analysis of nonlinearities within dynamics of cable-based driving systems
NASA Astrophysics Data System (ADS)
Anghelache, G. D.; Nastac, S.
2017-08-01
This paper deals with computational nonlinear dynamics of mechanical systems containing some flexural parts within the actuating scheme, and, especially, the situations of the cable-based driving systems were treated. It was supposed both functional nonlinearities and the real characteristic of the power supply, in order to obtain a realistically computer simulation model being able to provide very feasible results regarding the system dynamics. It was taken into account the transitory and stable regimes during a regular exploitation cycle. The authors present a particular case of a lift system, supposed to be representatively for the objective of this study. The simulations were made based on the values of the essential parameters acquired from the experimental tests and/or the regular practice in the field. The results analysis and the final discussions reveal the correlated dynamic aspects within the mechanical parts, the driving system, and the power supply, whole of these supplying potential sources of particular resonances, within some transitory phases of the working cycle, and which can affect structural and functional dynamics. In addition, it was underlines the influences of computational hypotheses on the both quantitative and qualitative behaviour of the system. Obviously, the most significant consequence of this theoretical and computational research consist by developing an unitary and feasible model, useful to dignify the nonlinear dynamic effects into the systems with cable-based driving scheme, and hereby to help an optimization of the exploitation regime including a dynamics control measures.
Experimental study on synchronization of three coupled mechanical metronomes
NASA Astrophysics Data System (ADS)
Hu, Qiang; Liu, Weiqing; Yang, Hujiang; Xiao, Jinghua; Qian, Xiaolan
2013-03-01
In this paper, a CCD acquisition system is set up to explore the dynamics of three coupled mechanical metronomes in order to compensate for the defects of visual observation. The facility is efficient to observe rich dynamics in an experiment, such as phase synchronization, partial phase synchronization and quasi-periodical oscillation, by accurately recording the trajectory of three coupled metronomes. The parameters, e.g., pendulum length and rolling friction are deemed to significantly influence the dynamics of three coupled mechanical metronomes judging from the experimental phenomena. The experimental results are confirmed by the numerical simulation based on the model with different intrinsic frequencies between three metronomes. The metronome and CCD acquisition systems are excellent demonstration apparatuses for a class and an undergraduate physics laboratory.
Impact of symmetry breaking in networks of globally coupled oscillators
NASA Astrophysics Data System (ADS)
Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.
2015-05-01
We analyze the consequences of symmetry breaking in the coupling in a network of globally coupled identical Stuart-Landau oscillators. We observe that symmetry breaking leads to increased disorderliness in the dynamical behavior of oscillatory states and consequently results in a rich variety of dynamical states. Depending on the strength of the nonisochronicity parameter, we find various dynamical states such as amplitude chimera, amplitude cluster, frequency chimera, and frequency cluster states. In addition we also find disparate transition routes to recently observed chimera death states in the presence of symmetry breaking even with global coupling. We also analytically verify the chimera death region, which corroborates the numerical results. These results are compared with that of the symmetry-preserving case as well.
Pan, Deng; Hu, Zhe; Qiu, Fengwu; Huang, Zhen-Li; Ma, Yilong; Wang, Yina; Qin, Lingsong; Zhang, Zhihong; Zeng, Shaoqun; Zhang, Yu-Hui
2014-11-20
Single-molecule localization microscopy (SMLM) achieves super-resolution imaging beyond the diffraction limit but critically relies on the use of photo-modulatable fluorescent probes. Here we report a general strategy for constructing cell-permeable photo-modulatable organic fluorescent probes for live-cell SMLM by exploiting the remarkable cytosolic delivery ability of a cell-penetrating peptide (rR)3R2. We develop photo-modulatable organic fluorescent probes consisting of a (rR)3R2 peptide coupled to a cell-impermeable organic fluorophore and a recognition unit. Our results indicate that these organic probes are not only cell permeable but can also specifically and directly label endogenous targeted proteins. Using the probes, we obtain super-resolution images of lysosomes and endogenous F-actin under physiological conditions. We resolve the dynamics of F-actin with 10 s temporal resolution in live cells and discern fine F-actin structures with diameters of ~80 nm. These results open up new avenues in the design of fluorescent probes for live-cell super-resolution imaging.
Warfarin traps human vitamin K epoxide reductase in an intermediate state during electron transfer
Shen, Guomin; Cui, Weidong; Zhang, Hao; Zhou, Fengbo; Huang, Wei; Liu, Qian; Yang, Yihu; Li, Shuang; Bowman, Gregory R.; Sadler, J. Evan; Gross, Michael L.; Li, Weikai
2017-01-01
Although warfarin is the most widely used anticoagulant worldwide, the mechanism by which warfarin inhibits its target, human vitamin K epoxide reductase (hVKOR), remains unclear. Here we show that warfarin blocks a dynamic electron-transfer process in hVKOR. A major fraction of cellular hVKOR is at an intermediate redox state of this process containing a Cys51-Cys132 disulfide, a characteristic accommodated by a four-transmembrane-helix structure of hVKOR. Warfarin selectively inhibits this major cellular form of hVKOR, whereas disruption of the Cys51-Cys132 disulfide impairs warfarin binding and causes warfarin resistance. Relying on binding interactions identified by cysteine alkylation footprinting and mass spectrometry coupled with mutagenesis analysis, we are able to conduct structure simulations to reveal a closed warfarin-binding pocket stabilized by the Cys51-Cys132 linkage. Understanding the selective warfarin inhibition of a specific redox state of hVKOR should enable the rational design of drugs that exploit the redox chemistry and associated conformational changes in hVKOR. PMID:27918545
Computational investigation of large-scale vortex interaction with flexible bodies
NASA Astrophysics Data System (ADS)
Connell, Benjamin; Yue, Dick K. P.
2003-11-01
The interaction of large-scale vortices with flexible bodies is examined with particular interest paid to the energy and momentum budgets of the system. Finite difference direct numerical simulation of the Navier-Stokes equations on a moving curvilinear grid is coupled with a finite difference structural solver of both a linear membrane under tension and linear Euler-Bernoulli beam. The hydrodynamics and structural dynamics are solved simultaneously using an iterative procedure with the external structural forcing calculated from the hydrodynamics at the surface and the flow-field velocity boundary condition given by the structural motion. We focus on an investigation into the canonical problem of a vortex-dipole impinging on a flexible membrane. It is discovered that the structural properties of the membrane direct the interaction in terms of the flow evolution and the energy budget. Pressure gradients associated with resonant membrane response are shown to sustain the oscillatory motion of the vortex pair. Understanding how the key mechanisms in vortex-body interactions are guided by the structural properties of the body is a prerequisite to exploiting these mechanisms.
Engineered Ferritin for Magnetogenetic Manipulation of Proteins and Organelles Inside Living Cells.
Liße, Domenik; Monzel, Cornelia; Vicario, Chiara; Manzi, John; Maurin, Isabelle; Coppey, Mathieu; Piehler, Jacob; Dahan, Maxime
2017-11-01
Magnetogenetics is emerging as a novel approach for remote-controlled manipulation of cellular functions in tissues and organisms with high spatial and temporal resolution. A critical, still challenging issue for these techniques is to conjugate target proteins with magnetic probes that can satisfy multiple colloidal and biofunctional constraints. Here, semisynthetic magnetic nanoparticles are tailored based on human ferritin coupled to monomeric enhanced green fluorescent protein (mEGFP) for magnetic manipulation of proteins inside living cells. This study demonstrates efficient delivery, intracellular stealth properties, and rapid subcellular targeting of those magnetic nanoparticles via GFP-nanobody interactions. By means of magnetic field gradients, rapid spatial reorganization in the cytosol of proteins captured to the nanoparticle surface is achieved. Moreover, exploiting efficient nanoparticle targeting to intracellular membranes, remote-controlled arrest of mitochondrial dynamics using magnetic fields is demonstrated. The studies establish subcellular control of proteins and organelles with unprecedented spatial and temporal resolution, thus opening new prospects for magnetogenetic applications in fundamental cell biology and nanomedicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Amirjani, Amirmostafa; Bagheri, Mozhgan; Heydari, Mojgan; Hesaraki, Saeed
2016-09-01
In this work, a rapid and simple colorimetric method based on the surface plasmon resonance of silver nanoparticles (AgNPs) was developed for the detection of the drug Timolol. The method used is based on the interaction of Timolol with the surface of the as-synthesized AgNPs, which promotes aggregation of the nanoparticles. This aggregation exploits the surface plasmon resonance through the electric dipole-dipole interaction and coupling among the agglomerated particles, hence bringing forth distinctive changes in the spectra as well as the color of colloidal silver. UV-vis spectrophotometery was used to monitor the changes of the localized surface plasmon resonance of AgNPs at wavelengths of 400 and 550 nm. The developed colorimetric sensor has a wide dynamic range of 1.0 × 10-7 M-1.0 × 10-3 M for detection of Timolol with a low detection limit of 1.2 × 10-6 M. The proposed method was successfully applied for the determination of Timolol concentration in ophthalmic eye-drop solution with a response time lower than 40 s.
Assessment of management options in marine fisheries by qualitative modelling techniques.
Eisenack, K; Kropp, J
2001-01-01
An effective management of the rapidly dwindling marine fish resources is of great ecological, economic and social importance for the future. An over-development of commercial fisheries has brought about a multitude of negative environmental impacts, such as an accelerated exploitation of stocks or a decrease of marine biodiversity, and furthermore, a profound structural change in fish industry. However, the main reason for the non-prosperous rationing of marine resources is the lack of knowledge about certain processes as well as the non-availability of adequate steering instruments. This paper addresses the lack of conceptualization in the case of uncertain knowledge. It proposes a model approach which can be used for weak but improved decision support under the premise of vague knowledge. The usage of qualitative differential equations illustrates general patterns of overcapitalization of fishing fleets. The extension of traditional model approaches by integration of additional socio-economic phenomena in this context supplies deeper insights in the dynamics of a coupled economic and ecological system. The approach provides a set of characteristic system behaviours which can be fruitfully used for the development of future management tasks.
Systems view on spatial planning and perception based on invariants in agent-environment dynamics
Mettler, Bérénice; Kong, Zhaodan; Li, Bin; Andersh, Jonathan
2015-01-01
Modeling agile and versatile spatial behavior remains a challenging task, due to the intricate coupling of planning, control, and perceptual processes. Previous results have shown that humans plan and organize their guidance behavior by exploiting patterns in the interactions between agent or organism and the environment. These patterns, described under the concept of Interaction Patterns (IPs), capture invariants arising from equivalences and symmetries in the interaction with the environment, as well as effects arising from intrinsic properties of human control and guidance processes, such as perceptual guidance mechanisms. The paper takes a systems' perspective, considering the IP as a unit of organization, and builds on its properties to present a hierarchical model that delineates the planning, control, and perceptual processes and their integration. The model's planning process is further elaborated by showing that the IP can be abstracted, using spatial time-to-go functions. The perceptual processes are elaborated from the hierarchical model. The paper provides experimental support for the model's ability to predict the spatial organization of behavior and the perceptual processes. PMID:25628524
Quaternion-valued echo state networks.
Xia, Yili; Jahanchahi, Cyrus; Mandic, Danilo P
2015-04-01
Quaternion-valued echo state networks (QESNs) are introduced to cater for 3-D and 4-D processes, such as those observed in the context of renewable energy (3-D wind modeling) and human centered computing (3-D inertial body sensors). The introduction of QESNs is made possible by the recent emergence of quaternion nonlinear activation functions with local analytic properties, required by nonlinear gradient descent training algorithms. To make QENSs second-order optimal for the generality of quaternion signals (both circular and noncircular), we employ augmented quaternion statistics to introduce widely linear QESNs. To that end, the standard widely linear model is modified so as to suit the properties of dynamical reservoir, typically realized by recurrent neural networks. This allows for a full exploitation of second-order information in the data, contained both in the covariance and pseudocovariances, and a rigorous account of second-order noncircularity (improperness), and the corresponding power mismatch and coupling between the data components. Simulations in the prediction setting on both benchmark circular and noncircular signals and on noncircular real-world 3-D body motion data support the analysis.
NASA Astrophysics Data System (ADS)
Murali, K.; Sinah, Sudeshna; Ditto, William
2004-03-01
Recently there has been a new theoretical direction in harnessing the richness of spatially extended chaotic systems, namely the exploitation of coupled chaotic elements to do flexible computations [1]. The aim of this presentation is to demonstrate the use a single chaotic element to emulate different logic gates and perform different arithmetic tasks. Additionally we demonstrate that the elements can be controlled to switch easily between the different operational roles. Such a computing unit may then allow a more dynamic computer architecture and serve as ingredients of a general-purpose device more flexible than statically wired hardware. The theoretical scheme for flexible implementation of all these fundamental logical operations utilizing low dimensional chaos [1] will be reviewed along with a specific realization of the theory in a chaotic circuit [2]. Results will also be presented from experiments done on leech neurons. [1] Sinha, S., Munakata, T. and Ditto, W.L., Phys. Rev. E 65 036216 [2] "Experimental realization of the fundamental NOR Gate using a chaotic circuit," K. Murali, Sudeshna Sinha and William L. Ditto Phys. Rev. E 68, 016205 (2003).
Programmable cells: Interfacing natural and engineered gene networks
NASA Astrophysics Data System (ADS)
Kobayashi, Hideki; Kærn, Mads; Araki, Michihiro; Chung, Kristy; Gardner, Timothy S.; Cantor, Charles R.; Collins, James J.
2004-06-01
Novel cellular behaviors and characteristics can be obtained by coupling engineered gene networks to the cell's natural regulatory circuitry through appropriately designed input and output interfaces. Here, we demonstrate how an engineered genetic circuit can be used to construct cells that respond to biological signals in a predetermined and programmable fashion. We employ a modular design strategy to create Escherichia coli strains where a genetic toggle switch is interfaced with: (i) the SOS signaling pathway responding to DNA damage, and (ii) a transgenic quorum sensing signaling pathway from Vibrio fischeri. The genetic toggle switch endows these strains with binary response dynamics and an epigenetic inheritance that supports a persistent phenotypic alteration in response to transient signals. These features are exploited to engineer cells that form biofilms in response to DNA-damaging agents and cells that activate protein synthesis when the cell population reaches a critical density. Our work represents a step toward the development of "plug-and-play" genetic circuitry that can be used to create cells with programmable behaviors. heterologous gene expression | synthetic biology | Escherichia coli
Moving Target Techniques: Leveraging Uncertainty for Cyber Defense
2015-08-24
vulnerability (a flaw or bug that an attacker can exploit to penetrate or disrupt a system) to successfully compromise systems. Defenders, however...device drivers, numerous software applications, and hardware components. Within the cyberspace, this imbalance between a simple, one- bug attack...parsing code itself could have security-relevant software bugs . Dynamic Network Techniques in the dynamic network domain change the properties
ERIC Educational Resources Information Center
Pugh, G.; Mangan, J.; Blackburn, V.; Radicic, D.
2015-01-01
This article estimates the effects of school expenditure on school performance in government secondary schools in New South Wales, Australia over the period 2006-2010. It uses dynamic panel analysis to exploit time series data on individual schools that only recently has become available. We find a significant but small effect of expenditure on…
Molecular controlled of quantum nano systems
NASA Astrophysics Data System (ADS)
Paltiel, Yossi
2014-03-01
A century ago quantum mechanics created a conceptual revolution whose fruits are now seen in almost any aspect of our day-to-day life. Lasers, transistors and other solid state and optical devices represent the core technology of current computers, memory devices and communication systems. However, all these examples do not exploit fully the quantum revolution as they do not take advantage of the coherent wave-like properties of the quantum wave function. Controlled coherent system and devices at ambient temperatures are challenging to realize. We are developing a novel nano tool box with control coupling between the quantum states and the environment. This tool box that combines nano particles with organic molecules enables the integration of quantum properties with classical existing devices at ambient temperatures. The nano particles generate the quantum states while the organic molecules control the coupling and therefore the energy, charge, spin, or quasi particle transfer between the layers. Coherent effects at ambient temperatures can be measured in the strong coupling regime. In the talk I will present our nano tool box and show studies of charge transfer, spin transfer and energy transfer in the hybrid layers as well as collective transfer phenomena. These enable the realization of room temperature operating quantum electro optical devices. For example I will present in details, our recent development of a new type of chiral molecules based magnetless universal memory exploiting selective spin transfer.
Tunable Mode Coupling in Nanocontact Spin-Torque Oscillators
Zhang, Steven S. -L.; Iacocca, Ezio; Heinonen, Olle
2017-07-27
Recent experiments on spin-torque oscillators have revealed interactions between multiple magneto-dynamic modes, including mode coexistence, mode hopping, and temperature-driven crossover between modes. The initial multimode theory indicates that a linear coupling between several dominant modes, arising from the interaction of the subdynamic system with a magnon bath, plays an essential role in the generation of various multimode behaviors, such as mode hopping and mode coexistence. In this work, we derive a set of rate equations to describe the dynamics of coupled magneto-dynamic modes in a nanocontact spin-torque oscillator. Here, expressions for both linear and nonlinear coupling terms are obtained, whichmore » allow us to analyze the dependence of the coupled dynamic behaviors of modes on external experimental conditions as well as intrinsic magnetic properties. For a minimal two-mode system, we further map the energy and phase difference of the two modes onto a two-dimensional phase space and demonstrate in the phase portraits how the manifolds of periodic orbits and fixed points vary with an external magnetic field as well as with the temperature.« less