Science.gov

Sample records for exploiting disulfide assisted

  1. Display of disulfide-rich proteins by complementary DNA display and disulfide shuffling assisted by protein disulfide isomerase.

    PubMed

    Naimuddin, Mohammed; Kubo, Tai

    2011-12-01

    We report an efficient system to produce and display properly folded disulfide-rich proteins facilitated by coupled complementary DNA (cDNA) display and protein disulfide isomerase-assisted folding. The results show that a neurotoxin protein containing four disulfide linkages can be displayed in the folded state. Furthermore, it can be refolded on a solid support that binds efficiently to its natural acetylcholine receptor. Probing the efficiency of the display proteins prepared by these methods provided up to 8-fold higher enrichment by the selective enrichment method compared with cDNA display alone, more than 10-fold higher binding to its receptor by the binding assays, and more than 10-fold higher affinities by affinity measurements. Cotranslational folding was found to have better efficiency than posttranslational refolding between the two investigated methods. We discuss the utilities of efficient display of such proteins in the preparation of superior quality proteins and protein libraries for directed evolution leading to ligand discovery.

  2. Carbon disulfide assisted polymerization of benzene.

    PubMed

    Zhou, Mi; Li, Zhanlong; Men, Zhiwei; Gao, Shuqin; Li, Zuowei; Lu, Guohui; Sun, Chenglin

    2012-03-01

    The chemical transformation of benzene (C(6)H(6)) and carbon disulfide (CS(2)) binary solution under high pressure condition is investigated by means of Raman spectroscopy up to 6.8 GPa. On increasing the pressure, all the Raman bands of benzene decrease in intensity, whereas new broad bands start to be observed at 1520 and 1450 cm(-1), indicating that a highly cross-linked polymer is formed. The recovered sample is analyzed through Raman and FT-IR spectroscopy and is identified as a saturated hydrocarbon and element sulfur.

  3. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.

    PubMed

    Reiz, Bela; Li, Liang

    2010-09-01

    Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein.

  4. Surface modification of amorphous substrates by disulfide derivatives: A photo-assisted route to direct functionalization of chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Amalric, Julien; Marchand-Brynaert, Jacqueline

    2011-12-01

    A novel route for chalcogenide glass surface modification is disclosed. The formation of an organic monolayer from disulfide derivatives is studied on two different glasses of formula GexAsySez by water contact angle measurement, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR). The potential anchoring group is the disulfide functionality. Since thioctic acid derivatives absorb around 335 nm, an irradiation step is included, in order to favor S-S disruption. Three types of disulfide compounds are grafted onto small glass breaks for contact angle and XPS analyses. The results show effective changes of surface state. According to contact angle measurement, the deposited organic layer functionalized by a small polyethylene glycol chain leads to a more hydrophilic surface, long alkyl chain or a perfluorinated carbon chain leads to a more hydrophobic surface. XPS shows the presence at the surface of an organic layer with sulfur and ethylene oxide chains, or augmentation of organic carbons or fluorine and Csbnd F bonds. The photo-assisted grafting of the disulfides onto an ATR prism made of chalcogenide glass shows that this surface modification process does not affect infrared transparency, despite UV treatment, and accurate structural analysis can be performed.

  5. An Educational Program to Assist Clinicians in Identifying Elder Investment Fraud and Financial Exploitation

    ERIC Educational Resources Information Center

    Mills, Whitney L.; Roush, Robert E.; Moye, Jennifer; Kunik, Mark E.; Wilson, Nancy L.; Taffet, George E.; Naik, Aanand D.

    2012-01-01

    Due to age-related factors and illnesses, older adults may become vulnerable to elder investment fraud and financial exploitation (EIFFE). The authors describe the development and preliminary evaluation of an educational program to raise awareness and assist clinicians in identifying older adults at risk. Participants (n = 127) gave high ratings…

  6. Lignin-assisted exfoliation of molybdenum disulfide in aqueous media and its application in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Wanshuang; Zhao, Chenyang; Zhou, Rui; Zhou, Dan; Liu, Zhaolin; Lu, Xuehong

    2015-05-01

    In this article, alkali lignin (AL)-assisted direct exfoliation of MoS2 mineral into single-layer and few-layer nanosheets in water is reported for the first time. Under optimized conditions, the concentration of MoS2 nanosheets in the obtained dispersion can be as high as 1.75 +/- 0.08 mg mL-1, which is much higher than the typical reported concentrations (<1.0 mg mL-1) using synthetic polymers or compounds as surfactants. The stabilizing mechanism primarily lies in the electrostatic repulsion between negative charged AL, as suggested by zeta-potential measurements. When the exfoliated MoS2 nanosheets are applied as electrode materials for lithium ion batteries, they show much improved electrochemical performance compared with the pristine MoS2 mineral because of the enhanced ion and electron transfer kinetics. This facile, scalable and eco-friendly aqueous-based process in combination with renewable and ultra-low-cost lignin opens up possibilities for large-scale fabrication of MoS2-based nanocomposites and devices. Moreover, herein we demonstrate that AL is also an excellent surfactant for exfoliation of many other types of layered materials, including graphene, tungsten disulfide and boron nitride, in water, providing rich opportunities for a wider range of applications.In this article, alkali lignin (AL)-assisted direct exfoliation of MoS2 mineral into single-layer and few-layer nanosheets in water is reported for the first time. Under optimized conditions, the concentration of MoS2 nanosheets in the obtained dispersion can be as high as 1.75 +/- 0.08 mg mL-1, which is much higher than the typical reported concentrations (<1.0 mg mL-1) using synthetic polymers or compounds as surfactants. The stabilizing mechanism primarily lies in the electrostatic repulsion between negative charged AL, as suggested by zeta-potential measurements. When the exfoliated MoS2 nanosheets are applied as electrode materials for lithium ion batteries, they show much improved

  7. Redox-assisted regulation of Ca2+ homeostasis in the endoplasmic reticulum by disulfide reductase ERdj5

    PubMed Central

    Ushioda, Ryo; Miyamoto, Akitoshi; Inoue, Michio; Watanabe, Satoshi; Okumura, Masaki; Maegawa, Ken-ichi; Uegaki, Kaiku; Fujii, Shohei; Fukuda, Yasuko; Umitsu, Masataka; Takagi, Junichi; Inaba, Kenji; Mikoshiba, Katsuhiko; Nagata, Kazuhiro

    2016-01-01

    Calcium ion (Ca2+) is an important second messenger that regulates numerous cellular functions. Intracellular Ca2+ concentration ([Ca2+]i) is strictly controlled by Ca2+ channels and pumps on the endoplasmic reticulum (ER) and plasma membranes. The ER calcium pump, sarco/endoplasmic reticulum calcium ATPase (SERCA), imports Ca2+ from the cytosol into the ER in an ATPase activity-dependent manner. The activity of SERCA2b, the ubiquitous isoform of SERCA, is negatively regulated by disulfide bond formation between two luminal cysteines. Here, we show that ERdj5, a mammalian ER disulfide reductase, which we reported to be involved in the ER-associated degradation of misfolded proteins, activates the pump function of SERCA2b by reducing its luminal disulfide bond. Notably, ERdj5 activated SERCA2b at a lower ER luminal [Ca2+] ([Ca2+]ER), whereas a higher [Ca2+]ER induced ERdj5 to form oligomers that were no longer able to interact with the pump, suggesting [Ca2+]ER-dependent regulation. Binding Ig protein, an ER-resident molecular chaperone, exerted a regulatory role in the oligomerization by binding to the J domain of ERdj5. These results identify ERdj5 as one of the master regulators of ER calcium homeostasis and thus shed light on the importance of cross talk among redox, Ca2+, and protein homeostasis in the ER. PMID:27694578

  8. Carbon disulfide

    Integrated Risk Information System (IRIS)

    Carbon disulfide ; CASRN 75 - 15 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  9. Tungsten disulfide nanosheet and exonuclease III co-assisted amplification strategy for highly sensitive fluorescence polarization detection of DNA glycosylase activity.

    PubMed

    Zhao, Jingjin; Ma, Yefei; Kong, Rongmei; Zhang, Liangliang; Yang, Wen; Zhao, Shulin

    2015-08-05

    Herein, we introduced a tungsten disulfide (WS2) nanosheet and exonuclease III (Exo III) co-assisted signal amplification strategy for highly sensitive fluorescent polarization (FP) assay of DNA glycosylase activity. Two DNA glycosylases, uracil-DNA glycosylase (UDG) and human 8-oxoG DNA glycosylase 1 (hOGG1), were tested. A hairpin-structured probe (HP) which contained damaged bases in the stem was used as the substrate. The removal of damaged bases from substrate by DNA glycosylase would lower the melting temperature of HP. The HP was then opened and hybridized with a FAM dye-labeled single strand DNA (DP), generating a duplex with a recessed 3'-terminal of DP. This design facilitated the Exo III-assisted amplification by repeating the hybridization and digestion of DP, liberating numerous FAM fluorophores which could not be adsorbed on WS2 nanosheet. Thus, the final system exhibited a small FP signal. However, in the absence of DNA glycosylases, no hybridization between DP and HP was occurred, hampering the hydrolysis of DP by Exo III. The intact DP was then adsorbed on the surface of WS2 nanosheet that greatly amplified the mass of the labeled-FAM fluorophore, resulting in a large FP value. With the co-assisted amplification strategy, the sensitivity was substantially improved. In addition, this method was applied to detect UDG activity in cell extracts. The study of the inhibition of UDG was also performed. Furthermore, this method is simple in design, easy in implementation, and selective, which holds potential applications in the DNA glycosylase related mechanism research and molecular diagnostics.

  10. Manipulation of local optical properties and structures in molybdenum-disulfide monolayers using electric field-assisted near-field techniques

    PubMed Central

    Nozaki, Junji; Fukumura, Musashi; Aoki, Takaaki; Maniwa, Yutaka; Yomogida, Yohei; Yanagi, Kazuhiro

    2017-01-01

    Remarkable optical properties, such as quantum light emission and large optical nonlinearity, have been observed in peculiar local sites of transition metal dichalcogenide monolayers, and the ability to tune such properties is of great importance for their optoelectronic applications. For that purpose, it is crucial to elucidate and tune their local optical properties simultaneously. Here, we develop an electric field-assisted near-field technique. Using this technique we can clarify and tune the local optical properties simultaneously with a spatial resolution of approximately 100 nm due to the electric field from the cantilever. The photoluminescence at local sites in molybdenum-disulfide (MoS2) monolayers is reversibly modulated, and the inhomogeneity of the charge neutral points and quantum yields is suggested. We successfully etch MoS2 crystals and fabricate nanoribbons using near-field techniques in combination with an electric field. This study creates a way to tune the local optical properties and to freely design the structural shapes of atomic monolayers using near-field optics. PMID:28378804

  11. Exploiting Sequential Patterns Found in Users' Solutions and Virtual Tutor Behavior to Improve Assistance in ITS

    ERIC Educational Resources Information Center

    Fournier-Viger, Philippe; Faghihi, Usef; Nkambou, Roger; Nguifo, Engelbert Mephu

    2010-01-01

    We propose to mine temporal patterns in Intelligent Tutoring Systems (ITSs) to uncover useful knowledge that can enhance their ability to provide assistance. To discover patterns, we suggest using a custom, sequential pattern-mining algorithm. Two ways of applying the algorithm to enhance an ITS's capabilities are addressed. The first is to…

  12. Chemical methods for producing disulfide bonds in peptides and proteins to study folding regulation.

    PubMed

    Okumura, Masaki; Shimamoto, Shigeru; Hidaka, Yuji

    2014-04-01

    Disulfide bonds play a critical role in the folding of secretory and membrane proteins. Oxidative folding reactions of disulfide bond-containing proteins typically require several hours or days, and numerous misbridged disulfide isomers are often observed as intermediates. The rate-determining step in refolding is thought to be the disulfide-exchange reaction from nonnative to native disulfide bonds in folding intermediates, which often precipitate during the refolding process because of their hydrophobic properties. To overcome this, chemical additives or a disulfide catalyst, protein disulfide isomerase (PDI), are generally used in refolding experiments to regulate disulfide-coupled peptide and protein folding. This unit describes such methods in the context of the thermodynamic and kinetic control of peptide and protein folding, including (1) regulation of disulfide-coupled peptides and protein folding assisted by chemical additives, (2) reductive unfolding of disulfide-containing peptides and proteins, and (3) regulation of disulfide-coupled peptide and protein folding using PDI.

  13. Protein disulfide engineering.

    PubMed

    Dombkowski, Alan A; Sultana, Kazi Zakia; Craig, Douglas B

    2014-01-21

    Improving the stability of proteins is an important goal in many biomedical and industrial applications. A logical approach is to emulate stabilizing molecular interactions found in nature. Disulfide bonds are covalent interactions that provide substantial stability to many proteins and conform to well-defined geometric conformations, thus making them appealing candidates in protein engineering efforts. Disulfide engineering is the directed design of novel disulfide bonds into target proteins. This important biotechnological tool has achieved considerable success in a wide range of applications, yet the rules that govern the stabilizing effects of disulfide bonds are not fully characterized. Contrary to expectations, many designed disulfide bonds have resulted in decreased stability of the modified protein. We review progress in disulfide engineering, with an emphasis on the issue of stability and computational methods that facilitate engineering efforts.

  14. 46 CFR 153.1040 - Carbon disulfide.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Carbon disulfide. 153.1040 Section 153.1040 Shipping... § 153.1040 Carbon disulfide. (a) No person may load, carry, or discharge carbon disulfide unless the... charge of a carbon disulfide transfer operation shall ensure that carbon disulfide is discharged only...

  15. 46 CFR 153.1040 - Carbon disulfide.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Carbon disulfide. 153.1040 Section 153.1040 Shipping... § 153.1040 Carbon disulfide. (a) No person may load, carry, or discharge carbon disulfide unless the... charge of a carbon disulfide transfer operation shall ensure that carbon disulfide is discharged only...

  16. 46 CFR 153.1040 - Carbon disulfide.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Carbon disulfide. 153.1040 Section 153.1040 Shipping... § 153.1040 Carbon disulfide. (a) No person may load, carry, or discharge carbon disulfide unless the... charge of a carbon disulfide transfer operation shall ensure that carbon disulfide is discharged only...

  17. 46 CFR 153.1040 - Carbon disulfide.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Carbon disulfide. 153.1040 Section 153.1040 Shipping... § 153.1040 Carbon disulfide. (a) No person may load, carry, or discharge carbon disulfide unless the... charge of a carbon disulfide transfer operation shall ensure that carbon disulfide is discharged only...

  18. 46 CFR 153.1040 - Carbon disulfide.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Carbon disulfide. 153.1040 Section 153.1040 Shipping... § 153.1040 Carbon disulfide. (a) No person may load, carry, or discharge carbon disulfide unless the... charge of a carbon disulfide transfer operation shall ensure that carbon disulfide is discharged only...

  19. Quantification of Thiols and Disulfides

    PubMed Central

    Winther, Jakob R.; Thorpe, Colin

    2013-01-01

    Background Disulfide bond formation is a key posttranslational modification, with implications for structure, function and stability of numerous proteins. While disulfide bond formation is a necessary and essential process for many proteins, it is deleterious and disruptive for others. Cells go to great lengths to regulate thiol-disulfide bond homeostasis, typically with several, apparently redundant, systems working in parallel. Dissecting the extent of oxidation and reduction of disulfides is an ongoing challenge due, in part, to the facility of thiol/disulfide exchange reactions. Scope of the review In the present account, we briefly survey the toolbox available to the experimentalist for the chemical determination of thiols and disulfides. We have chosen to focus on the key chemical aspects of current methodology, together with identifying potential difficulties inherent in their experimental implementation. Major conclusions While many reagents have been described for the measurement and manipulation of the redox status of thiols and disulfides, a number of these methods remain underutilized. The ability to effectively quantify changes in redox conditions in living cells presents a continuing challenge. General Significance Many unresolved questions in the metabolic interconversion of thiols and disulfides remain. For example, while pool sizes of redox pairs and their intracellular distribution are being uncovered, very little is known about the flux in thiol-disulfide exchange pathways. New tools are needed to address this important aspect of cellular metabolism. PMID:23567800

  20. Scalability of surrogate-assisted multi-objective optimization of antenna structures exploiting variable-fidelity electromagnetic simulation models

    NASA Astrophysics Data System (ADS)

    Koziel, Slawomir; Bekasiewicz, Adrian

    2016-10-01

    Multi-objective optimization of antenna structures is a challenging task owing to the high computational cost of evaluating the design objectives as well as the large number of adjustable parameters. Design speed-up can be achieved by means of surrogate-based optimization techniques. In particular, a combination of variable-fidelity electromagnetic (EM) simulations, design space reduction techniques, response surface approximation models and design refinement methods permits identification of the Pareto-optimal set of designs within a reasonable timeframe. Here, a study concerning the scalability of surrogate-assisted multi-objective antenna design is carried out based on a set of benchmark problems, with the dimensionality of the design space ranging from six to 24 and a CPU cost of the EM antenna model from 10 to 20 min per simulation. Numerical results indicate that the computational overhead of the design process increases more or less quadratically with the number of adjustable geometric parameters of the antenna structure at hand, which is a promising result from the point of view of handling even more complex problems.

  1. Exploiting the Complementarity between Dereplication and Computer-Assisted Structure Elucidation for the Chemical Profiling of Natural Cosmetic Ingredients: Tephrosia purpurea as a Case Study.

    PubMed

    Hubert, Jane; Chollet, Sébastien; Purson, Sylvain; Reynaud, Romain; Harakat, Dominique; Martinez, Agathe; Nuzillard, Jean-Marc; Renault, Jean-Hugues

    2015-07-24

    The aqueous-ethanolic extract of Tephrosia purpurea seeds is currently exploited in the cosmetic industry as a natural ingredient of skin lotions. The aim of this study was to chemically characterize this ingredient by combining centrifugal partition extraction (CPE) as a fractionation tool with two complementary identification approaches involving dereplication and computer-assisted structure elucidation. Following two rapid fractionations of the crude extract (2 g), seven major compounds namely, caffeic acid, quercetin-3-O-rutinoside, ethyl galactoside, ciceritol, stachyose, saccharose, and citric acid, were unambiguously identified within the CPE-generated simplified mixtures by a recently developed (13)C NMR-based dereplication method. The structures of four additional compounds, patuletin-3-O-rutinoside, kaempferol-3-O-rutinoside, guaiacylglycerol 8-vanillic acid ether, and 2-methyl-2-glucopyranosyloxypropanoic acid, were automatically elucidated by using the Logic for Structure Determination program based on the interpretation of 2D NMR (HSQC, HMBC, and COSY) connectivity data. As more than 80% of the crude extract mass was characterized without need for tedious and labor-intensive multistep purification procedures, the identification tools involved in this work constitute a promising strategy for an efficient and time-saving chemical profiling of natural extracts.

  2. Orthogonal Cysteine-Penicillamine Disulfide Pairing for Directing the Oxidative Folding of Peptides.

    PubMed

    Zheng, Yiwu; Zhai, Linxiang; Zhao, Yibing; Wu, Chuanliu

    2015-12-09

    Precise disulfide pairing in synthetic peptides usually is achieved using orthogonal protecting group strategies or relies on primary sequence manipulation. Orthogonal disulfide pairing technology should be promising for directing the rational folding of multicyclic peptides from the fully reduced peptides. Here, we report a discovery on the orthogonality between heterodisulfide pairing of cysteine (Cys) and penicillamine (Pen) and formation of Cys-Cys/Pen-Pen homodisulfides. The orthogonal Cys-Pen disulfide pairing can be exploited for highly selective production of certain (multi)cyclic structures (or even a sole structure without isomers) through direct oxidation in air or thiol-disulfide exchanges in redox media. This strategy makes rational folding of multicyclic peptides without protecting groups, sequence manipulation, and complex synthetic reactions a reality, thus providing invaluable assets to peptide communities, and should greatly benefit the development of multicyclic peptide therapeutics and ligands.

  3. Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Chen, Zhongxin; Leng, Kai; Zhao, Xiaoxu; Malkhandi, Souradip; Tang, Wei; Tian, Bingbing; Dong, Lei; Zheng, Lirong; Lin, Ming; Yeo, Boon Siang; Loh, Kian Ping

    2017-02-01

    Interface confined reactions, which can modulate the bonding of reactants with catalytic centres and influence the rate of the mass transport from bulk solution, have emerged as a viable strategy for achieving highly stable and selective catalysis. Here we demonstrate that 1T'-enriched lithiated molybdenum disulfide is a highly powerful reducing agent, which can be exploited for the in-situ reduction of metal ions within the inner planes of lithiated molybdenum disulfide to form a zero valent metal-intercalated molybdenum disulfide. The confinement of platinum nanoparticles within the molybdenum disulfide layered structure leads to enhanced hydrogen evolution reaction activity and stability compared to catalysts dispersed on carbon support. In particular, the inner platinum surface is accessible to charged species like proton and metal ions, while blocking poisoning by larger sized pollutants or neutral molecules. This points a way forward for using bulk intercalated compounds for energy related applications.

  4. Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide

    PubMed Central

    Chen, Zhongxin; Leng, Kai; Zhao, Xiaoxu; Malkhandi, Souradip; Tang, Wei; Tian, Bingbing; Dong, Lei; Zheng, Lirong; Lin, Ming; Yeo, Boon Siang; Loh, Kian Ping

    2017-01-01

    Interface confined reactions, which can modulate the bonding of reactants with catalytic centres and influence the rate of the mass transport from bulk solution, have emerged as a viable strategy for achieving highly stable and selective catalysis. Here we demonstrate that 1T′-enriched lithiated molybdenum disulfide is a highly powerful reducing agent, which can be exploited for the in-situ reduction of metal ions within the inner planes of lithiated molybdenum disulfide to form a zero valent metal-intercalated molybdenum disulfide. The confinement of platinum nanoparticles within the molybdenum disulfide layered structure leads to enhanced hydrogen evolution reaction activity and stability compared to catalysts dispersed on carbon support. In particular, the inner platinum surface is accessible to charged species like proton and metal ions, while blocking poisoning by larger sized pollutants or neutral molecules. This points a way forward for using bulk intercalated compounds for energy related applications. PMID:28230105

  5. In-Depth Characterization of Protein Disulfide Bonds by Online Liquid Chromatography-Electrochemistry-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Switzar, Linda; Nicolardi, Simone; Rutten, Julie W.; Oberstein, Saskia A. J. Lesnik; Aartsma-Rus, Annemieke; van der Burgt, Yuri E. M.

    2016-01-01

    Disulfide bonds are an important class of protein post-translational modifications, yet this structurally crucial modification type is commonly overlooked in mass spectrometry (MS)-based proteomics approaches. Recently, the benefits of online electrochemistry-assisted reduction of protein S-S bonds prior to MS analysis were exemplified by successful characterization of disulfide bonds in peptides and small proteins. In the current study, we have combined liquid chromatography (LC) with electrochemistry (EC) and mass analysis by Fourier transform ion cyclotron resonance (FTICR) MS in an online LC-EC-MS platform to characterize protein disulfide bonds in a bottom-up proteomics workflow. A key advantage of a LC-based strategy is the use of the retention time in identifying both intra- and interpeptide disulfide bonds. This is demonstrated by performing two sequential analyses of a certain protein digest, once without and once with electrochemical reduction. In this way, the "parent" disulfide-linked peptide detected in the first run has a retention time-based correlation with the EC-reduced peptides detected in the second run, thus simplifying disulfide bond mapping. Using this platform, both inter- and intra-disulfide-linked peptides were characterized in two different proteins, ß-lactoglobulin and ribonuclease B. In order to prevent disulfide reshuffling during the digestion process, proteins were digested at a relatively low pH, using (a combination of) the high specificity proteases trypsin and Glu-C. With this approach, disulfide bonds in ß-lactoglobulin and ribonuclease B were comprehensively identified and localized, showing that online LC-EC-MS is a useful tool for the characterization of protein disulfide bonds.

  6. Intradomain Confinement of Disulfides in the Folding of Two Consecutive Modules of the LDL Receptor

    PubMed Central

    Martínez-Oliván, Juan; Fraga, Hugo; Arias-Moreno, Xabier; Ventura, Salvador; Sancho, Javier

    2015-01-01

    The LDL receptor internalizes circulating LDL and VLDL particles for degradation. Its extracellular binding domain contains ten (seven LA and three EGF) cysteine-rich modules, each bearing three disulfide bonds. Despite the enormous number of disulfide combinations possible, LDLR oxidative folding leads to a single native species with 30 unique intradomain disulfides. Previous folding studies of the LDLR have shown that non native disulfides are initially formed that lead to compact species. Accordingly, the folding of the LDLR has been described as a "coordinated nonvectorial” reaction, and it has been proposed that early compaction funnels the reaction toward the native structure. Here we analyze the oxidative folding of LA4 and LA5, the modules critical for ApoE binding, isolated and in the LA45 tandem. Compared to LA5, LA4 folding is slow and inefficient, resembling that of LA5 disease-linked mutants. Without Ca++, it leads to a mixture of many two-disulfide scrambled species and, with Ca++, to the native form plus two three-disulfide intermediates. The folding of the LA45 tandem seems to recapitulate that of the individual repeats. Importantly, although the folding of the LA45 tandem takes place through formation of scrambled isomers, no interdomain disulfides are detected, i.e. the two adjacent modules fold independently without the assistance of interdomain covalent interactions. Reduction of incredibly large disulfide combinatorial spaces, such as that in the LDLR, by intradomain confinement of disulfide bond formation might be also essential for the efficient folding of other homologous disulfide-rich receptors. PMID:26168158

  7. Disulfide Trapping for Modeling and Structure Determination of Receptor:Chemokine Complexes

    PubMed Central

    Kufareva, Irina; Gustavsson, Martin; Holden, Lauren G.; Qin, Ling; Zheng, Yi; Handel, Tracy M.

    2016-01-01

    Despite the recent breakthrough advances in GPCR crystallography, structure determination of protein-protein complexes involving chemokine receptors and their endogenous chemokine ligands remains challenging. Here we describe disulfide trapping, a methodology for generating irreversible covalent binary protein complexes from unbound protein partners by introducing two cysteine residues, one per interaction partner, at selected positions within their interaction interface. Disulfide trapping can serve at least two distinct purposes: (i) stabilization of the complex to assist structural studies, and/or (ii) determination of pairwise residue proximities to guide molecular modeling. Methods for characterization of disulfide-trapped complexes are described and evaluated in terms of throughput, sensitivity, and specificity towards the most energetically favorable cross-links. Due to abundance of native disulfide bonds at receptor:chemokine interfaces, disulfide trapping of their complexes can be associated with intramolecular disulfide shuffling and result in misfolding of the component proteins; because of this, evidence from several experiments is typically needed to firmly establish a positive disulfide crosslink. An optimal pipeline that maximizes throughput and minimizes time and costs by early triage of unsuccessful candidate constructs is proposed. PMID:26921956

  8. Thiol/disulfide homeostasis in asphalt workers.

    PubMed

    Yilmaz, Ömer Hınç; Bal, Ceylan; Neşelioglu, Salim; Büyükşekerci, Murat; Gündüzöz, Meşide; Eren, Funda; Tutkun, Lutfiye; Yilmaz, Fatma Meric

    2016-09-02

    The aim of this study was to investigate thiol/disulfide homeostasis in asphalt workers who are exposed to polycyclic aromatic hydrocarbons occupationally. The study was carried out in 34 nonsmoker asphalt workers. Additionally, 35 healthy nonsmoker volunteers were recruited as control group. Thiol and disulfide concentrations were determined using the novel automated measurement method. Levels of urinary 1-OH-pyrene were analyzed by liquid chromatography. Disulfide/thiol ratio was significantly higher in exposed group (p = .034). Also, a positive correlation was detected between disulfide/thiol ratio and 1-OH-pyrene values (r = .249, p = .036). Thiol/disulfide homeostasis was found to be disturbed in asphalt workers. The novel test used in this study may be useful for evaluating the oxidative status in polycyclic aromatic hydrocarbon (PAH) exposure.

  9. Molybdenum disulfide (MoS2) nanoflakes as inherently electroactive labels for DNA hybridization detection.

    PubMed

    Loo, Adeline Huiling; Bonanni, Alessandra; Ambrosi, Adriano; Pumera, Martin

    2014-10-21

    The detection of specific DNA sequences plays a critical role in the areas of medical diagnostics, environmental monitoring, drug discovery and food safety. This has therefore become a strong driving force behind the ever-increasing demand for simple, cost-effective, highly sensitive and selective DNA biosensors. In this study, we report for the first time, a novel approach for the utilization of molybdenum disulfide nanoflakes, a member of the transition metal dichalcogenides family, in the detection of DNA hybridization. Herein, molybdenum disulfide nanoflakes serve as inherently electroactive labels, with the inherent oxidation peak exploited as the analytical signal. The principle of detection is based on the differential affinity of molybdenum disulfide nanoflakes towards single-stranded DNA and double-stranded DNA. The employment of transition metal dichalcogenide nanomaterials for sensing and biosensing purposes represents an upcoming research area which holds great promise. Hence, our findings are anticipated to have significant contributions towards the fabrication of future DNA biosensors.

  10. Soft Computing Methods for Disulfide Connectivity Prediction

    PubMed Central

    Márquez-Chamorro, Alfonso E.; Aguilar-Ruiz, Jesús S.

    2015-01-01

    The problem of protein structure prediction (PSP) is one of the main challenges in structural bioinformatics. To tackle this problem, PSP can be divided into several subproblems. One of these subproblems is the prediction of disulfide bonds. The disulfide connectivity prediction problem consists in identifying which nonadjacent cysteines would be cross-linked from all possible candidates. Determining the disulfide bond connectivity between the cysteines of a protein is desirable as a previous step of the 3D PSP, as the protein conformational search space is highly reduced. The most representative soft computing approaches for the disulfide bonds connectivity prediction problem of the last decade are summarized in this paper. Certain aspects, such as the different methodologies based on soft computing approaches (artificial neural network or support vector machine) or features of the algorithms, are used for the classification of these methods. PMID:26523116

  11. Transfer of molybdenum disulfide to various metals

    NASA Technical Reports Server (NTRS)

    Barton, G. C.; Pepper, S. V.

    1977-01-01

    Sliding friction experiments were conducted with molybdenum disulfide single crystals in contact with sputter cleaned surfaces of copper, nickel, gold, and 304 stainless steel. Transfer of the molybdenum disulfide to the metals was monitored with Auger electron spectroscopy. Results of the investigation indicate molybdenum disulfide transfers to all clean metal surfaces after a single pass over the metal surface with film thickness observed to increase with repeated passes over the same surfaces. Large particle transfer occurs when the orientation of the crystallites is other than basal. This is frequently accompanied by abrasion of the metal. Adhesion of molybdenum disulfide films occurred readily to copper and nickel, less readily to 304 stainless steel, and even less effectively to the gold, which indicates a chemical effect.

  12. Identification of Allosteric Disulfides from Prestress Analysis

    PubMed Central

    Zhou, Beifei; Baldus, Ilona B.; Li, Wenjin; Edwards, Scott A.; Gräter, Frauke

    2014-01-01

    Disulfide bonds serve to form physical cross-links between residues in protein structures, thereby stabilizing the protein fold. Apart from this purely structural role, they can also be chemically active, participating in redox reactions, and they may even potentially act as allosteric switches controlling protein functions. Specific types of disulfide bonds have been identified in static protein structures from their distinctive pattern of dihedral bond angles, and the allosteric function of such bonds is purported to be related to the torsional strain they store. Using all-atom molecular-dynamics simulations for ∼700 disulfide bonded proteins, we analyzed the intramolecular mechanical forces in 20 classes of disulfide bonds. We found that two particular classes, the −RHStaple and the −/+RHHook disulfides, are indeed more stressed than other disulfide bonds, but the stress is carried primarily by stretching of the S-S bond and bending of the neighboring bond angles, rather than by dihedral torsion. This stress corresponds to a tension force of magnitude ∼200 pN, which is balanced by repulsive van der Waals interactions between the cysteine Cα atoms. We confirm stretching of the S-S bond to be a general feature of the −RHStaples and the −/+RHHooks by analyzing ∼20,000 static protein structures. Given that forced stretching of S-S bonds is known to accelerate their cleavage, we propose that prestress of allosteric disulfide bonds has the potential to alter the reactivity of a disulfide, thereby allowing us to readily switch between functional states. PMID:25099806

  13. Overexpression of Protein Disulfide Isomerase DsbC Stabilizes Multiple-Disulfide-Bonded Recombinant Protein Produced and Transported to the Periplasm in Escherichia coli

    PubMed Central

    Kurokawa, Yoichi; Yanagi, Hideki; Yura, Takashi

    2000-01-01

    Dsb proteins (DsbA, DsbB, DsbC, and DsbD) catalyze formation and isomerization of protein disulfide bonds in the periplasm of Escherichia coli. By using a set of Dsb coexpression plasmids constructed recently, we analyzed the effects of Dsb overexpression on production of horseradish peroxidase (HRP) isozyme C that contains complex disulfide bonds and tends to aggregate when produced in E. coli. When transported to the periplasm, HRP was unstable but was markedly stabilized upon simultaneous overexpression of the set of Dsb proteins (DsbABCD). Whereas total HRP production increased severalfold upon overexpression of at least disulfide-bonded isomerase DsbC, maximum transport of HRP to the periplasm seemed to require overexpression of all DsbABCD proteins, suggesting that excess Dsb proteins exert synergistic effects in assisting folding and transport of HRP. Periplasmic production of HRP also increased when calcium, thought to play an essential role in folding of nascent HRP polypeptide, was added to the medium with or without Dsb overexpression. These results suggest that Dsb proteins and calcium play distinct roles in periplasmic production of HRP, presumably through facilitating correct folding. The present Dsb expression plasmids should be useful in assessing and dissecting periplasmic production of proteins that contain multiple disulfide bonds in E. coli. PMID:10966415

  14. Cellular disulfide bond formation in bioactive peptides and proteins.

    PubMed

    Patil, Nitin A; Tailhades, Julien; Hughes, Richard Anthony; Separovic, Frances; Wade, John D; Hossain, Mohammed Akhter

    2015-01-14

    Bioactive peptides play important roles in metabolic regulation and modulation and many are used as therapeutics. These peptides often possess disulfide bonds, which are important for their structure, function and stability. A systematic network of enzymes--a disulfide bond generating enzyme, a disulfide bond donor enzyme and a redox cofactor--that function inside the cell dictates the formation and maintenance of disulfide bonds. The main pathways that catalyze disulfide bond formation in peptides and proteins in prokaryotes and eukaryotes are remarkably similar and share several mechanistic features. This review summarizes the formation of disulfide bonds in peptides and proteins by cellular and recombinant machinery.

  15. Reactive sputter deposition of pyrite structure transition metal disulfide thin films: Microstructure, transport, and magnetism

    SciTech Connect

    Baruth, A.; Manno, M.; Narasimhan, D.; Shankar, A.; Zhang, X.; Johnson, M.; Aydil, E. S.; Leighton, C.

    2012-09-01

    Transition metal disulfides crystallizing in the pyrite structure (e.g., TMS{sub 2}, with TM = Fe, Co, Ni, and Cu) are a class of materials that display a remarkably diverse array of functional properties. These properties include highly spin-polarized ferromagnetism (in Co{sub 1-x}Fe{sub x}S{sub 2}), superconductivity (in CuS{sub 2}), an antiferromagnetic Mott insulating ground state (in NiS{sub 2}), and semiconduction with close to optimal parameters for solar absorber applications (in FeS{sub 2}). Exploitation of these properties in heterostructured devices requires the development of reliable and reproducible methods for the deposition of high quality pyrite structure thin films. In this manuscript, we report on the suitability of reactive sputter deposition from metallic targets in an Ar/H{sub 2}S environment as a method to achieve exactly this. Optimization of deposition temperature, Ar/H{sub 2}S pressure ratio, and total working gas pressure, assisted by plasma optical emission spectroscopy, reveals significant windows over which deposition of single-phase, polycrystalline, low roughness pyrite films can be achieved. This is illustrated for the test cases of the ferromagnetic metal CoS{sub 2} and the diamagnetic semiconductor FeS{sub 2}, for which detailed magnetic and transport characterization are provided. The results indicate significant improvements over alternative deposition techniques such as ex situ sulfidation of metal films, opening up exciting possibilities for all-sulfide heterostructured devices. In particular, in the FeS{sub 2} case it is suggested that fine-tuning of the sputtering conditions provides a potential means to manipulate doping levels and conduction mechanisms, critical issues in solar cell applications. Parenthetically, we note that conditions for synthesis of phase-pure monosulfides and thiospinels are also identified.

  16. Disulfide-Functionalized Diblock Copolymer Worm Gels.

    PubMed

    Warren, Nicholas J; Rosselgong, Julien; Madsen, Jeppe; Armes, Steven P

    2015-08-10

    Two strategies for introducing disulfide groups at the outer surface of RAFT-synthesized poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA, or Gx-Hy for brevity) diblock copolymer worms are investigated. The first approach involved statistical copolymerization of GMA with a small amount of disulfide dimethacrylate (DSDMA, or D) comonomer to afford a G54-D0.50 macromolecular chain transfer agent (macro-CTA); this synthesis was conducted in relatively dilute solution in order to ensure mainly intramolecular cyclization and hence the formation of linear chains. Alternatively, a new disulfide-based bifunctional RAFT agent (DSDB) was used to prepare a G45-S-S-G45 (or (G45-S)2) macro-CTA. A binary mixture of a non-functionalized G55 macro-CTA was utilized with each of these two disulfide-based macro-CTAs in turn for the RAFT aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA). By targeting a PHPMA DP of 130 and systematically varying the molar ratio of the two macro-CTAs, a series of disulfide-functionalized diblock copolymer worm gels were obtained. For both formulations, oscillatory rheology studies confirmed that higher disulfide contents led to stronger gels, presumably as a result of inter-worm covalent bond formation via disulfide/thiol exchange. Using the DSDB-based macro-CTA led to the strongest worm gels, and this formulation also proved to be more effective in suppressing the thermosensitive behavior that is observed for the nondisulfide-functionalized control worm gel. However, macroscopic precipitation occurred when the proportion of DSDB-based macro-CTA was increased to 50 mol %, whereas the DSDMA-based macro-CTA could be utilized at up to 80 mol %. Finally, the worm gel modulus could be reduced to that of a nondisulfide-containing worm gel by reductive cleavage of the inter-worm disulfide bonds using excess tris(2-carboxyethyl)phosphine (TCEP) to yield thiol groups. These new biomimetic worm gels are

  17. Selective and efficient electrochemical biosensing of ultrathin molybdenum disulfide sheets

    NASA Astrophysics Data System (ADS)

    Narayanan, Tharangattu N.; Vusa, Chiranjeevi S. R.; Alwarappan, Subbiah

    2014-08-01

    Atomically thin molybdenum disulfide (MoS2) sheets were synthesized and isolated via solvent-assisted chemical exfoliation. The charge-dependent electrochemical activities of these MoS2 sheets were studied using positively charged hexamine ruthenium (III) chloride and negatively charged ferricyanide/ferrocyanide redox probes. Ultrathin MoS2 sheet-based electrodes were employed for the electrochemical detection of an important neurotransmitter, namely dopamine (DA), in the presence of ascorbic acid (AA). MoS2 electrodes were identified as being capable of distinguishing the coexistence of the DA and the AA with an excellent stability. Moreover, the enzymatic detection of the glucose was studied by immobilizing glucose oxidase on the MoS2. This study opens enzymatic and non-enzymatic electrochemical biosensing applications of atomic MoS2 sheets, which will supplement their established electronic applications.

  18. 46 CFR 153.520 - Special requirements for carbon disulfide.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Special requirements for carbon disulfide. 153.520... Equipment Special Requirements § 153.520 Special requirements for carbon disulfide. A containment system carrying carbon disulfide must meet the following: (a) Each cargo pump must be of the intank type...

  19. 40 CFR 180.467 - Carbon disulfide; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Carbon disulfide; tolerances for... § 180.467 Carbon disulfide; tolerances for residues. Tolerances are established for the nematicide, insecticide, and fungicide carbon disulfide, from the application of sodium tetrathiocarbonate, in or on...

  20. 40 CFR 180.467 - Carbon disulfide; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Carbon disulfide; tolerances for... § 180.467 Carbon disulfide; tolerances for residues. Tolerances are established for the nematicide, insecticide, and fungicide carbon disulfide, from the application of sodium tetrathiocarbonate, in or on...

  1. 46 CFR 153.520 - Special requirements for carbon disulfide.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Special requirements for carbon disulfide. 153.520... Equipment Special Requirements § 153.520 Special requirements for carbon disulfide. A containment system carrying carbon disulfide must meet the following: (a) Each cargo pump must be of the intank type...

  2. 40 CFR 180.467 - Carbon disulfide; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Carbon disulfide; tolerances for... § 180.467 Carbon disulfide; tolerances for residues. Tolerances are established for the nematicide, insecticide, and fungicide carbon disulfide, from the application of sodium tetrathiocarbonate, in or on...

  3. 40 CFR 180.467 - Carbon disulfide; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Carbon disulfide; tolerances for... § 180.467 Carbon disulfide; tolerances for residues. Tolerances are established for the nematicide, insecticide, and fungicide carbon disulfide, from the application of sodium tetrathiocarbonate, in or on...

  4. 40 CFR 180.467 - Carbon disulfide; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Carbon disulfide; tolerances for... § 180.467 Carbon disulfide; tolerances for residues. Tolerances are established for the nematicide, insecticide, and fungicide carbon disulfide, from the application of sodium tetrathiocarbonate, in or on...

  5. 46 CFR 153.520 - Special requirements for carbon disulfide.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Special requirements for carbon disulfide. 153.520... Equipment Special Requirements § 153.520 Special requirements for carbon disulfide. A containment system carrying carbon disulfide must meet the following: (a) Each cargo pump must be of the intank type...

  6. 46 CFR 153.520 - Special requirements for carbon disulfide.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Special requirements for carbon disulfide. 153.520... Equipment Special Requirements § 153.520 Special requirements for carbon disulfide. A containment system carrying carbon disulfide must meet the following: (a) Each cargo pump must be of the intank type...

  7. 21 CFR 524.2101 - Selenium disulfide suspension.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Selenium disulfide suspension. 524.2101 Section... § 524.2101 Selenium disulfide suspension. (a) Specifications. The product contains 0.9-percent weight in weight (w/w) selenium disulfide (1-percent weight in volume (w/v)). (b) Sponsors. See Nos. 000061,...

  8. 21 CFR 524.2101 - Selenium disulfide suspension.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Selenium disulfide suspension. 524.2101 Section... § 524.2101 Selenium disulfide suspension. (a) Specifications. The product contains 0.9-percent weight in weight (w/w) selenium disulfide (1-percent weight in volume (w/v)). (b) Sponsors. See Nos. 000061,...

  9. 21 CFR 524.2101 - Selenium disulfide suspension.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Selenium disulfide suspension. 524.2101 Section... § 524.2101 Selenium disulfide suspension. (a) Specifications. The product contains 0.9-percent weight in weight (w/w) selenium disulfide (1-percent weight in volume (w/v)). (b) Sponsors. See Nos. 000061,...

  10. 21 CFR 524.2101 - Selenium disulfide suspension.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Selenium disulfide suspension. 524.2101 Section... § 524.2101 Selenium disulfide suspension. (a) Specifications. The product contains 0.9-percent weight in weight (w/w) selenium disulfide (1-percent weight in volume (w/v)). (b) Sponsors. See Nos. 000061,...

  11. 21 CFR 524.2101 - Selenium disulfide suspension.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Selenium disulfide suspension. 524.2101 Section... § 524.2101 Selenium disulfide suspension. (a) Specifications. The product contains 0.9-percent weight in weight (w/w) selenium disulfide (1-percent weight in volume (w/v)). (b) Sponsors. See Nos. 000061,...

  12. Disulfide Bond Requirements for Active Wnt Ligands*

    PubMed Central

    MacDonald, Bryan T.; Hien, Annie; Zhang, Xinjun; Iranloye, Oladoyin; Virshup, David M.; Waterman, Marian L.; He, Xi

    2014-01-01

    Secreted Wnt lipoproteins are cysteine-rich and lipid-modified morphogens that bind to the Frizzled (FZD) receptor and LDL receptor-related protein 6 (LRP6). Wnt engages FZD through protruding thumb and index finger domains, which are each assembled from paired β strands secured by disulfide bonds and grasp two sides of the FZD ectodomain. The importance of Wnt disulfide bonds has been assumed but uncharacterized. We systematically analyzed cysteines and associated disulfide bonds in the prototypic Wnt3a. Our data show that mutation of any individual cysteine of Wnt3a results in covalent Wnt oligomers through ectopic intermolecular disulfide bond formation and diminishes/abolishes Wnt signaling. Although individual cysteine mutations in the amino part of the saposin-like domain and in the base of the index finger are better tolerated and permit residual Wnt3a secretion/activity, those in the amino terminus, the thumb, and at the tip of the index finger are incompatible with secretion and/or activity. A few select double cysteine mutants based on the disulfide bond pattern restore Wnt secretion/activity. Further, a double cysteine mutation at the index finger tip results in a Wnt3a with normal secretion but minimal FZD binding and dominant negative properties. Our results experimentally validate predictions from the Wnt crystal structure and highlight critical but different roles of the saposin-like and cytokine-like domains, including the thumb and the index finger in Wnt folding/secretion and FZD binding. Finally, we modified existing expression vectors for 19 epitope-tagged human WNT proteins by removal of a tag-supplied ectopic cysteine, thereby generating tagged WNT ligands active in canonical and non-canonical signaling. PMID:24841207

  13. Assigning Peptide Disulfide Linkage Pattern Among Regio-Isomers via Methoxy Addition to Disulfide and Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Durand, Kirt L.; Tan, Lei; Stinson, Craig A.; Love-Nkansah, Chasity B.; Ma, Xiaoxiao; Xia, Yu

    2017-02-01

    Pinpointing disulfide linkage pattern is critical in the characterization of proteins and peptides consisting of multiple disulfide bonds. Herein, we report a method based on coupling online disulfide modification and tandem mass spectrometry (MS/MS) to distinguish peptide disulfide regio-isomers. Such a method relies on a new disulfide bond cleavage reaction in solution, involving methanol as a reactant and 254 nm ultraviolet (UV) irradiation. This reaction leads to selective cleavage of a disulfide bond and formation of sulfenic methyl ester (-SOCH3) at one cysteine residue and a thiol (-SH) at the other. Under low energy collision-induced dissociation (CID), cysteine sulfenic methyl ester motif produces a signature methanol loss (-32 Da), allowing its identification from other possible isomeric structures such as S-hydroxylmethyl (-SCH2OH) and methyl sulfoxide (-S(O)-CH3). Since disulfide bond can be selectively cleaved and modified upon methoxy addition, subsequent MS2 CID of the methoxy addition product provides enhanced sequence coverage as demonstrated by the analysis of bovine insulin. More importantly, this reaction does not induce disulfide scrambling, likely due to the fact that radical intermediates are not involved in the process. An approach based on methoxy addition followed by MS3 CID has been developed for assigning disulfide linkage patterns in peptide disulfide regio-isomers. This methodology was successfully applied to characterizing peptide systems having two disulfide bonds and three disulfide linkage isomers: side-by-side, overlapped, and looped-within-a-loop configurations.

  14. Protein stabilization by introduction of cross-strand disulfides.

    PubMed

    Chakraborty, Kausik; Thakurela, Sudhir; Prajapati, Ravindra Singh; Indu, S; Ali, P Shaik Syed; Ramakrishnan, C; Varadarajan, Raghavan

    2005-11-08

    Disulfides cross-link residues in a protein that are separated in primary sequence and stabilize the protein through entropic destabilization of the unfolded state. While the removal of naturally occurring disulfides leads to protein destabilization, introduction of engineered disulfides does not always lead to significant stabilization of a protein. We have analyzed naturally occurring disulfides that span adjacent antiparallel strands of beta sheets (cross-strand disulfides). Cross-strand disulfides have recently been implicated as redox-based conformational switches in proteins such as gp120 and CD4. The propensity of these disulfides to act as conformational switches was postulated on the basis of the hypothesis that this class of disulfide is conformationally strained. In the present analysis, there was no evidence to suggest that cross-strand disulfides are more strained compared to other disulfides as assessed by their torsional energy. It was also observed that these disulfides occur solely at non-hydrogen-bonded (NHB) registered pairs of adjacent antiparallel strands and not at hydrogen-bonded (HB) positions as suggested previously. One of the half-cystines involved in cross-strand disulfide formation often occurs at an edge strand. Experimental confirmation of the stabilizing effects of such disulfides was carried out in Escherichia coli thioredoxin. Four pairs of cross-strand cysteines were introduced, two at HB and two at NHB pairs. Disulfides were formed in all four cases. However, as predicted from our analysis, disulfides at NHB positions resulted in an increase in melting temperature of 7-10 degrees C, while at HB positions there was a corresponding decrease of -7 degrees C. The reduced state of all proteins had similar stability.

  15. Molybdenum disulfide (MoS2) nanoflakes as inherently electroactive labels for DNA hybridization detection

    NASA Astrophysics Data System (ADS)

    Loo, Adeline Huiling; Bonanni, Alessandra; Ambrosi, Adriano; Pumera, Martin

    2014-09-01

    The detection of specific DNA sequences plays a critical role in the areas of medical diagnostics, environmental monitoring, drug discovery and food safety. This has therefore become a strong driving force behind the ever-increasing demand for simple, cost-effective, highly sensitive and selective DNA biosensors. In this study, we report for the first time, a novel approach for the utilization of molybdenum disulfide nanoflakes, a member of the transition metal dichalcogenides family, in the detection of DNA hybridization. Herein, molybdenum disulfide nanoflakes serve as inherently electroactive labels, with the inherent oxidation peak exploited as the analytical signal. The principle of detection is based on the differential affinity of molybdenum disulfide nanoflakes towards single-stranded DNA and double-stranded DNA. The employment of transition metal dichalcogenide nanomaterials for sensing and biosensing purposes represents an upcoming research area which holds great promise. Hence, our findings are anticipated to have significant contributions towards the fabrication of future DNA biosensors.The detection of specific DNA sequences plays a critical role in the areas of medical diagnostics, environmental monitoring, drug discovery and food safety. This has therefore become a strong driving force behind the ever-increasing demand for simple, cost-effective, highly sensitive and selective DNA biosensors. In this study, we report for the first time, a novel approach for the utilization of molybdenum disulfide nanoflakes, a member of the transition metal dichalcogenides family, in the detection of DNA hybridization. Herein, molybdenum disulfide nanoflakes serve as inherently electroactive labels, with the inherent oxidation peak exploited as the analytical signal. The principle of detection is based on the differential affinity of molybdenum disulfide nanoflakes towards single-stranded DNA and double-stranded DNA. The employment of transition metal dichalcogenide

  16. The alkaline earth intercalates of molybdenum disulfide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.; Samson, S.; Woollam, J. A.

    1975-01-01

    Molybdenum disulfide has been intercalated with calcium and strontium by means of the liquid ammonia technique. Chemical, X-ray, and superconductivity data are presented. The X-ray data reveal a lowering of crystal symmetry and increase of complexity of the structure upon intercalation with the alkaline earth metals. The Ca and Sr intercalates start to superconduct at 4 and 5.6 K, respectively, and show considerable anisotropy regarding the critical magnetic field.

  17. Application of MALDI TOF/TOF mass spectrometry and collision-induced dissociation for the identification of disulfide-bonded peptides.

    PubMed

    Janecki, Dariusz J; Nemeth, Jennifer F

    2011-07-01

    This paper describes a method for the fast identification and composition of disulfide-bonded peptides. A unique fragmentation signature of inter-disulfide-bonded peptides is detected using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF)/TOF mass spectrometry and high-energy collision-induced dissociation (CID). This fragmentation pattern identifies peptides with an interconnected disulfide bond and provides information regarding the composition of the peptides involved in the pairing. The distinctive signature produced using CID is a triplet of ions resulting from the cleavage of the disulfide bond to produce dehydroalanine, cysteine or thiocysteine product ions. This method is not applicable to intra-peptide disulfide bonds, as the cleavage mechanism is not the same and a triplet pattern is not observed. This method has been successfully applied to identifying disulfide-bonded peptides in a number of control digestions, as well as study samples where disulfide bond networks were postulated and/or unknown.

  18. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production

    DOE PAGES

    Gao, Min -Rui; Chan, Maria K. Y.; Sun, Yugang

    2015-07-03

    In this study, layered molybdenum disulfide has demonstrated great promise as a low-cost alternative to platinum-based catalysts for electrochemical hydrogen production from water. Research effort on this material has focused mainly on synthesizing highly nanostructured molybdenum disulfide that allows the exposure of a large fraction of active edge sites. Here we report a promising microwave-assisted strategy for the synthesis of narrow molybdenum disulfide nanosheets with edge-terminated structure and a significantly expanded interlayer spacing, which exhibit striking kinetic metrics with onset potential of -103 mV, Tafel slope of 49 mV per decade and exchange current density of 9.62 × 10-3 mAmore » cm-2, performing among the best of current molybdenum disulfide catalysts. Besides benefits from the edge-terminated structure, the expanded interlayer distance with modified electronic structure is also responsible for the observed catalytic improvement, which suggests a potential way to design newly advanced molybdenum disulfide catalysts through modulating the interlayer distance.« less

  19. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production

    SciTech Connect

    Gao, Min -Rui; Chan, Maria K. Y.; Sun, Yugang

    2015-07-03

    In this study, layered molybdenum disulfide has demonstrated great promise as a low-cost alternative to platinum-based catalysts for electrochemical hydrogen production from water. Research effort on this material has focused mainly on synthesizing highly nanostructured molybdenum disulfide that allows the exposure of a large fraction of active edge sites. Here we report a promising microwave-assisted strategy for the synthesis of narrow molybdenum disulfide nanosheets with edge-terminated structure and a significantly expanded interlayer spacing, which exhibit striking kinetic metrics with onset potential of -103 mV, Tafel slope of 49 mV per decade and exchange current density of 9.62 × 10-3 mA cm-2, performing among the best of current molybdenum disulfide catalysts. Besides benefits from the edge-terminated structure, the expanded interlayer distance with modified electronic structure is also responsible for the observed catalytic improvement, which suggests a potential way to design newly advanced molybdenum disulfide catalysts through modulating the interlayer distance.

  20. Role of disulfide bridges in the activity and stability of a cold-active alpha-amylase.

    PubMed

    Siddiqui, Khawar Sohail; Poljak, Anne; Guilhaus, Michael; Feller, Georges; D'Amico, Salvino; Gerday, Charles; Cavicchioli, Ricardo

    2005-09-01

    The cold-adapted alpha-amylase from Pseudoalteromonas haloplanktis unfolds reversibly and cooperatively according to a two-state mechanism at 30 degrees C and unfolds reversibly and sequentially with two transitions at temperatures below 12 degrees C. To examine the role of the four disulfide bridges in activity and conformational stability of the enzyme, the eight cysteine residues were reduced with beta-mercaptoethanol or chemically modified using iodoacetamide or iodoacetic acid. Matrix-assisted laser desorption-time of flight mass spectrometry analysis confirmed that all of the cysteines were modified. The iodoacetamide-modified enzyme reversibly folded/unfolded and retained approximately one-third of its activity. Removal of all disulfide bonds resulted in stabilization of the least stable region of the enzyme (including the active site), with a concomitant decrease in activity (increase in activation enthalpy). Disulfide bond removal had a greater impact on enzyme activity than on stability (particularly the active-site region). The functional role of the disulfide bridges appears to be to prevent the active site from developing ionic interactions. Overall, the study demonstrated that none of the four disulfide bonds are important in stabilizing the native structure of enzyme, and instead, they appear to promote a localized destabilization to preserve activity.

  1. GAMMA-RADIOLYSIS OF DISULFIDES IN AQUEOUS SOLUTION. II. D-PENICILLAMINE DISULFIDE,

    DTIC Science & Technology

    The gamma-radiolysis of D- penicillamine disulfide (PenSSPen) in an aqueous solution has been studied under aerated and deaerated conditions. G...values were determined for the following products: penicillamine sulfinic acid (PenSO2H), penicillaminic acid (PenSO3H), beta-hydroxyvaline (PenOH), 2...amino-3-methylbut-3-enoic acid (HOOC.CH(NH2).C(CH3)=CH2), penicillamine (PenSH), penicillamine disulfide-S-monoxide (PenS(O)SPen), valine (PenH

  2. Engineering de novo disulfide bond in bacterial α-type carbonic anhydrase for thermostable carbon sequestration

    NASA Astrophysics Data System (ADS)

    Jo, Byung Hoon; Park, Tae Yoon; Park, Hyun June; Yeon, Young Joo; Yoo, Young Je; Cha, Hyung Joon

    2016-07-01

    Exploiting carbonic anhydrase (CA), an enzyme that rapidly catalyzes carbon dioxide hydration, is an attractive biomimetic route for carbon sequestration due to its environmental compatibility and potential economic viability. However, the industrial applications of CA are strongly hampered by the unstable nature of enzymes. In this work, we introduced in silico designed, de novo disulfide bond in a bacterial α-type CA to enhance thermostability. Three variants were selected and expressed in Escherichia coli with an additional disulfide bridge. One of the variants showed great enhancement in terms of both kinetic and thermodynamic stabilities. This improvement could be attributed to the loss of conformational entropy of the unfolded state, showing increased rigidity. The variant showed an upward-shifted optimal temperature and appeared to be thermoactivated, which compensated for the lowered activity at 25 °C. Collectively, the variant constructed by the rapid and effective de novo disulfide engineering can be used as an efficient biocatalyst for carbon sequestration under high temperature conditions.

  3. Engineering de novo disulfide bond in bacterial α-type carbonic anhydrase for thermostable carbon sequestration

    PubMed Central

    Jo, Byung Hoon; Park, Tae Yoon; Park, Hyun June; Yeon, Young Joo; Yoo, Young Je; Cha, Hyung Joon

    2016-01-01

    Exploiting carbonic anhydrase (CA), an enzyme that rapidly catalyzes carbon dioxide hydration, is an attractive biomimetic route for carbon sequestration due to its environmental compatibility and potential economic viability. However, the industrial applications of CA are strongly hampered by the unstable nature of enzymes. In this work, we introduced in silico designed, de novo disulfide bond in a bacterial α-type CA to enhance thermostability. Three variants were selected and expressed in Escherichia coli with an additional disulfide bridge. One of the variants showed great enhancement in terms of both kinetic and thermodynamic stabilities. This improvement could be attributed to the loss of conformational entropy of the unfolded state, showing increased rigidity. The variant showed an upward-shifted optimal temperature and appeared to be thermoactivated, which compensated for the lowered activity at 25 °C. Collectively, the variant constructed by the rapid and effective de novo disulfide engineering can be used as an efficient biocatalyst for carbon sequestration under high temperature conditions. PMID:27385052

  4. The Dynamic Disulfide Relay of Quiescin Sulfhydryl Oxidase

    PubMed Central

    Alon, Assaf; Grossman, Iris; Gat, Yair; Kodali, Vamsi K.; DiMaio, Frank; Mehlman, Tevie; Haran, Gilad; Baker, David; Thorpe, Colin; Fass, Deborah

    2012-01-01

    Protein stability, assembly, localization, and regulation often depend on formation of disulfide cross-links between cysteine side chains. Enzymes known as sulfhydryl oxidases catalyze de novo disulfide formation and initiate intra- and intermolecular dithiol/disulfide relays to deliver the disulfides to substrate proteins1,2. Quiescin sulfhydryl oxidase (QSOX) is a unique, multi-domain disulfide catalyst that is localized primarily to the Golgi apparatus and secreted fluids3 and has attracted attention due to its over-production in tumors4,5. In addition to its physiological importance, QSOX is a mechanistically intriguing enzyme, encompassing functions typically carried out by a series of proteins in other disulfide formation pathways. How disulfides are relayed through the multiple redox-active sites of QSOX and whether there is a functional benefit to concatenating these sites on a single polypeptide are open questions. We determined the first crystal structure of an intact QSOX enzyme, derived from a trypanosome parasite. Notably, sequential sites in the disulfide relay were found more than 40 Å apart in this structure, too far for direct disulfide transfer. To resolve this puzzle, we trapped and crystallized an intermediate in the disulfide hand-off, which showed a 165° domain rotation relative to the original structure, bringing the two active sites within disulfide bonding distance. The comparable structure of a mammalian QSOX enzyme, also presented herein, reveals additional biochemical features that facilitate disulfide transfer in metazoan orthologs. Finally, we quantified the contribution of concatenation to QSOX activity, providing general lessons for the understanding of multi-domain enzymes and the design of novel catalytic relays. PMID:22801504

  5. Assigning Peptide Disulfide Linkage Pattern Among Regio-Isomers via Methoxy Addition to Disulfide and Tandem Mass Spectrometry.

    PubMed

    Durand, Kirt L; Tan, Lei; Stinson, Craig A; Love-Nkansah, Chasity B; Ma, Xiaoxiao; Xia, Yu

    2017-02-13

    Pinpointing disulfide linkage pattern is critical in the characterization of proteins and peptides consisting of multiple disulfide bonds. Herein, we report a method based on coupling online disulfide modification and tandem mass spectrometry (MS/MS) to distinguish peptide disulfide regio-isomers. Such a method relies on a new disulfide bond cleavage reaction in solution, involving methanol as a reactant and 254 nm ultraviolet (UV) irradiation. This reaction leads to selective cleavage of a disulfide bond and formation of sulfenic methyl ester (-SOCH3) at one cysteine residue and a thiol (-SH) at the other. Under low energy collision-induced dissociation (CID), cysteine sulfenic methyl ester motif produces a signature methanol loss (-32 Da), allowing its identification from other possible isomeric structures such as S-hydroxylmethyl (-SCH2OH) and methyl sulfoxide (-S(O)-CH3). Since disulfide bond can be selectively cleaved and modified upon methoxy addition, subsequent MS(2) CID of the methoxy addition product provides enhanced sequence coverage as demonstrated by the analysis of bovine insulin. More importantly, this reaction does not induce disulfide scrambling, likely due to the fact that radical intermediates are not involved in the process. An approach based on methoxy addition followed by MS(3) CID has been developed for assigning disulfide linkage patterns in peptide disulfide regio-isomers. This methodology was successfully applied to characterizing peptide systems having two disulfide bonds and three disulfide linkage isomers: side-by-side, overlapped, and looped-within-a-loop configurations. Graphical Abstract ᅟ.

  6. The Exploitation of Drug Users.

    PubMed

    Stallings, Shirley; Montagne, Michael

    2015-01-01

    Drug users have been exploited in research studies and clinical practice. We explore ways in which exploitation has occurred and strategies to help patients, research subjects and communities to prevent or avoid exploitation.

  7. Converting a Sulfenic Acid Reductase into a Disulfide Bond Isomerase

    PubMed Central

    Chatelle, Claire; Kraemer, Stéphanie; Ren, Guoping; Chmura, Hannah; Marechal, Nils; Boyd, Dana; Roggemans, Caroline; Ke, Na; Riggs, Paul; Bardwell, James

    2015-01-01

    Abstract Aims: Posttranslational formation of disulfide bonds is essential for the folding of many secreted proteins. Formation of disulfide bonds in a protein with more than two cysteines is inherently fraught with error and can result in incorrect disulfide bond pairing and, consequently, misfolded protein. Protein disulfide bond isomerases, such as DsbC of Escherichia coli, can recognize mis-oxidized proteins and shuffle the disulfide bonds of the substrate protein into their native folded state. Results: We have developed a simple blue/white screen that can detect disulfide bond isomerization in vivo, using a mutant alkaline phosphatase (PhoA*) in E. coli. We utilized this screen to isolate mutants of the sulfenic acid reductase (DsbG) that allowed this protein to act as a disulfide bond isomerase. Characterization of the isolated mutants in vivo and in vitro allowed us to identify key amino acid residues responsible for oxidoreductase properties of thioredoxin-like proteins such as DsbC or DsbG. Innovation and Conclusions: Using these key residues, we also identified and characterized interesting environmental homologs of DsbG with novel properties, thus demonstrating the capacity of this screen to discover and elucidate mechanistic details of in vivo disulfide bond isomerization. Antioxid. Redox Signal. 23, 945–957. PMID:26191605

  8. 46 CFR 151.50-41 - Carbon disulfide (carbon bisulfide).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Carbon disulfide (carbon bisulfide). 151.50-41 Section... CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-41 Carbon disulfide (carbon bisulfide). (a) All openings shall be in the top of the tank. (b) Loading lines...

  9. 46 CFR 151.50-41 - Carbon disulfide (carbon bisulfide).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Carbon disulfide (carbon bisulfide). 151.50-41 Section... CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-41 Carbon disulfide (carbon bisulfide). (a) All openings shall be in the top of the tank. (b) Loading lines...

  10. 46 CFR 151.50-41 - Carbon disulfide (carbon bisulfide).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Carbon disulfide (carbon bisulfide). 151.50-41 Section... CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-41 Carbon disulfide (carbon bisulfide). (a) All openings shall be in the top of the tank. (b) Loading lines...

  11. 46 CFR 151.50-41 - Carbon disulfide (carbon bisulfide).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Carbon disulfide (carbon bisulfide). 151.50-41 Section... CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-41 Carbon disulfide (carbon bisulfide). (a) All openings shall be in the top of the tank. (b) Loading lines...

  12. Disulfide bond structure determination and biochemical analysis of glycoprotein C from herpes simplex virus.

    PubMed Central

    Rux, A H; Moore, W T; Lambris, J D; Abrams, W R; Peng, C; Friedman, H M; Cohen, G H; Eisenberg, R J

    1996-01-01

    A biochemical analysis of glycoprotein C (gC of herpes simplex virus was undertaken to further characterize the structure of the glycoprotein and to determine its disulfide bond arrangement. We used three recombinant forms of gC, gC1(457t), gC1(delta33-123t), and gC2(426t), each truncated prior to the transmembrane region. The proteins were expressed and secreted by using a baculovirus expression system and have been shown to bind to monoclonal antibodies which recognize discontinuous epitopes and to complement component C3b in a dose-dependent manner. We confirmed the N-terminal residues of each mature protein by Edman degradation and confirmed the internal deletion in gC1(delta33-123t). The molecular weight and extent of glycosylation of gC1 (457t), gC1(delta33-123t), and gC2(426t) were determined by treating each protein with endoglycosidases and then subjecting it to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometric analysis. The data indicate that eight to nine of the predicted N-linked oligosaccharide sites on gC1(457t) are occupied by glycans of approximately 1,000 Da. In addition, O-linked oligosaccharides are present on gC1(457t), primarily localized to the N-terminal region (amino acids [aa] 33 to 123) of the protein. gC2(426t) contains N-linked oligosaccharides, but no O-linked oligosaccharides were detected. To determine the disulfide bond arrangement of the eight cysteines of gC1(457t),the protein was cleaved with cyanogen bromide. SDS-PAGE analysis followed by Edman degradation identified three cysteine-containing fragments which are not connected by disulfide linkages. Chemical modification of cysteines combined with matrix-assisted laser desorption ionization mass spectrometry identified disulfide bonds between cysteine 1 (aa 127) and cysteine 2 (aa 144) and between cysteine 3 (aa 286) and cysteine 4 (aa 347). Further proteolysis of the cyanogen bromide-generated fragment containing cysteine 5 through

  13. Direct observation of disulfide isomerization in a single protein

    NASA Astrophysics Data System (ADS)

    Alegre-Cebollada, Jorge; Kosuri, Pallav; Rivas-Pardo, Jaime Andrés; Fernández, Julio M.

    2011-11-01

    Photochemical uncaging techniques use light to release active molecules from otherwise inert compounds. Here we expand this class of techniques by demonstrating the mechanical uncaging of a reactive species within a single protein. We proved this novel technique by capturing the regiospecific reaction between a thiol and a vicinal disulfide bond. We designed a protein that includes a caged cysteine and a buried disulfide. The mechanical unfolding of this protein in the presence of an external nucleophile frees the single reactive cysteine residue, which now can cleave the target disulfide via a nucleophilic attack on either one of its two sulfur atoms. This produces two different and competing reaction pathways. We used single-molecule force spectroscopy to monitor the cleavage of the disulfides, which extends the polypeptide by a magnitude unambiguously associated with each reaction pathway. This allowed us to measure, for the first time, the kinetics of disulfide-bond isomerization in a protein.

  14. Early events in the disulfide-coupled folding of BPTI.

    PubMed Central

    Bulaj, G.; Goldenberg, D. P.

    1999-01-01

    Recent studies of the refolding of reduced bovine pancreatic trypsin inhibitor (BPTI) have shown that a previously unidentified intermediate with a single disulfide is formed much more rapidly than any other one-disulfide species. This intermediate contains a disulfide that is present in the native protein (between Cys14 and 38), but it is thermodynamically less stable than the other two intermediates with single native disulfides. To characterize the role of the [14-38] intermediate and the factors that favor its formation, detailed kinetic and mutational analyses of the early disulfide-formation steps were carried out. The results of these studies indicate that the formation of [14-38] from the fully reduced protein is favored by both local electrostatic effects, which enhance the reactivities of the Cys14 and 38 thiols, and conformational tendencies that are diminished by the addition of urea and are enhanced at lower temperatures. At 25 degrees C and pH 7.3, approximately 35% of the reduced molecules were found to initially form the 14-38 disulfide, but the majority of these molecules then undergo intramolecular rearrangements to generate non-native disulfides, and subsequently the more stable intermediates with native disulfides. Amino acid replacements, other than those involving Cys residues, were generally found to have only small effects on either the rate of forming [14-38] or its thermodynamic stability, even though many of the same substitutions greatly destabilized the native protein and other disulfide-bonded intermediates. In addition, those replacements that did decrease the steady-state concentration of [14-38] did not adversely affect further folding and disulfide formation. These results suggest that the weak and transient interactions that are often detected in unfolded proteins and early folding intermediates may, in some cases, not persist or promote subsequent folding steps. PMID:10493584

  15. Superconductivity in highly disordered dense carbon disulfide.

    PubMed

    Dias, Ranga P; Yoo, Choong-Shik; Struzhkin, Viktor V; Kim, Minseob; Muramatsu, Takaki; Matsuoka, Takahiro; Ohishi, Yasuo; Sinogeikin, Stanislav

    2013-07-16

    High pressure plays an increasingly important role in both understanding superconductivity and the development of new superconducting materials. New superconductors were found in metallic and metal oxide systems at high pressure. However, because of the filled close-shell configuration, the superconductivity in molecular systems has been limited to charge-transferred salts and metal-doped carbon species with relatively low superconducting transition temperatures. Here, we report the low-temperature superconducting phase observed in diamagnetic carbon disulfide under high pressure. The superconductivity arises from a highly disordered extended state (CS4 phase or phase III[CS4]) at ~6.2 K over a broad pressure range from 50 to 172 GPa. Based on the X-ray scattering data, we suggest that the local structural change from a tetrahedral to an octahedral configuration is responsible for the observed superconductivity.

  16. Advances in rechargeable lithium molybdenum disulfide batteries

    NASA Technical Reports Server (NTRS)

    Brandt, K.; Stiles, J. A. R.

    1985-01-01

    The lithium molybdenum disulfide system as demonstrated in a C size cell, offers performance characteristics for applications where light weight and low volume are important. A gravimetric energy density of 90 watt hours per kilogram can be achieved in a C size cell package. The combination of charge retention capabilities, high energy density and a state of charge indicator in a rechargeable cell provides power package for a wide range of devices. The system overcomes the memory effect in Nicads where the full capacity of the battery cannot be utilized unless it was utilized on previous cycles. The development of cells with an advanced electrolyte formulation led to an improved rate capability especially at low temperatures and to a significantly improved life cycle.

  17. Ultrafast response of monolayer molybdenum disulfide photodetectors

    PubMed Central

    Wang, Haining; Zhang, Changjian; Chan, Weimin; Tiwari, Sandip; Rana, Farhan

    2015-01-01

    The strong light emission and absorption exhibited by single atomic layer transitional metal dichalcogenides in the visible to near-infrared wavelength range make them attractive for optoelectronic applications. In this work, using two-pulse photovoltage correlation technique, we show that monolayer molybdenum disulfide photodetector can have intrinsic response times as short as 3 ps implying photodetection bandwidths as wide as 300 GHz. The fast photodetector response is a result of the short electron–hole and exciton lifetimes in this material. Recombination of photoexcited carriers in most two-dimensional metal dichalcogenides is dominated by nonradiative processes, most notable among which is Auger scattering. The fast response time, and the ease of fabrication of these devices, make them interesting for low-cost ultrafast optical communication links. PMID:26572726

  18. Mechanism of SN2 disulfide bond cleavage by phosphorus nucleophiles. Implications for biochemical disulfide reducing agents.

    PubMed

    Dmitrenko, Olga; Thorpe, Colin; Bach, Robert D

    2007-10-26

    The B3LYP variant of DFT has been used to study the mechanism of S-S bond scission in dimethyl disulfide by a phosphorus nucleophile, trimethylphospine (TMP). The reaction is highly endothermic in the gas phase and requires significant external stabilization of the charged products. DFT calculations (B3LYP) were performed with explicit (water molecules added) and implicit solvent corrections (COSMO model). The transition structures for this SN2 displacement reaction in a number of model systems have been located and fully characterized. The reaction barriers calculated with different approaches for different systems are quite close (around 11 kcal/mol). Remarkably, the calculations suggest that the reaction is almost barrierless with respect to the preorganized reaction complex and that most of the activation energy is required to rearrange the disulfide and TMP to its most effective orientation for the SMe group transfer way. Different reactivities of different phosphorus nucleophiles were suggested to be the result of steric effects, as manifested largely by varying amounts of hindrance to solvation of the initial product phosphonium ion. These data indicate that the gas-phase addition of a phosphine to the disulfide moiety will most likely form a phosphonium cation-thiolate anion salt, in the presence of four or more water molecules, that provide sufficient H-bonding stabilization to allow displacement of the thiolate anion, a normal uncomplicated SN2 transition state is to be expected.

  19. Enzyme structure captures four cysteines aligned for disulfide relay

    PubMed Central

    Gat, Yair; Vardi-Kilshtain, Alexandra; Grossman, Iris; Major, Dan Thomas; Fass, Deborah

    2014-01-01

    Thioredoxin superfamily proteins introduce disulfide bonds into substrates, catalyze the removal of disulfides, and operate in electron relays. These functions rely on one or more dithiol/disulfide exchange reactions. The flavoenzyme quiescin sulfhydryl oxidase (QSOX), a catalyst of disulfide bond formation with an interdomain electron transfer step in its catalytic cycle, provides a unique opportunity for exploring the structural environment of enzymatic dithiol/disulfide exchange. Wild-type Rattus norvegicus QSOX1 (RnQSOX1) was crystallized in a conformation that juxtaposes the two redox-active di-cysteine motifs in the enzyme, presenting the entire electron-transfer pathway and proton-transfer participants in their native configurations. As such a state cannot generally be enriched and stabilized for analysis, RnQSOX1 gives unprecedented insight into the functional group environments of the four cysteines involved in dithiol/disulfide exchange and provides the framework for analysis of the energetics of electron transfer in the presence of the bound flavin adenine dinucleotide cofactor. Hybrid quantum mechanics/molecular mechanics (QM/MM) free energy simulations based on the X-ray crystal structure suggest that formation of the interdomain disulfide intermediate is highly favorable and secures the flexible enzyme in a state from which further electron transfer via the flavin can occur. PMID:24888638

  20. Steric effects in peptide and protein exchange with activated disulfides.

    PubMed

    Kerr, Jason; Schlosser, Jessica L; Griffin, Donald R; Wong, Darice Y; Kasko, Andrea M

    2013-08-12

    Disulfide exchange is an important bioconjugation tool, enabling chemical modification of peptides and proteins containing free cysteines. We previously reported the synthesis of a macromer bearing an activated disulfide and its incorporation into hydrogels. Despite their ability to diffuse freely into hydrogels, larger proteins were unable to undergo in-gel disulfide exchange. In order to understand this phenomenon, we synthesized four different activated disulfide-bearing model compounds (Mn = 300 Da to 10 kDa) and quantified their rate of disulfide exchange with a small peptide (glutathione), a moderate-sized protein (β-lactoglobulin), and a large protein (bovine serum albumin) in four different pH solutions (6.0, 7.0, 7.4, and 8.0) to mimic biological systems. Rate constants of exchange depend significantly on the size and accessibility of the thiolate. pH also significantly affects the rate of reaction, with the faster reactions occurring at higher pH. Surprisingly, little difference in exchange rates is seen between macromolecular disulfides of varying size (Mn = 2 kDa - 10 kDa), although all undergo exchange more slowly than their small molecule analogue (MW = 300 g/mol). The maximum exchange efficiencies (% disulfides exchanged after 24 h) are not siginificantly affected by thiol size or pH, but somewhat affected by disulfide size. Therefore, while all three factors investigated (pH, disulfide size, and thiolate size) can influence the exchange kinetics and extent of reaction, the size of the thiolate and its accessibility plays the most significant role.

  1. Transnational gestational surrogacy: does it have to be exploitative?

    PubMed

    Kirby, Jeffrey

    2014-01-01

    This article explores the controversial practice of transnational gestational surrogacy and poses a provocative question: Does it have to be exploitative? Various existing models of exploitation are considered and a novel exploitation-evaluation heuristic is introduced to assist in the analysis of the potentially exploitative dimensions/elements of complex health-related practices. On the basis of application of the heuristic, I conclude that transnational gestational surrogacy, as currently practiced in low-income country settings (such as rural, western India), is exploitative of surrogate women. Arising out of consideration of the heuristic's exploitation conditions, a set of public education and enabled choice, enhanced protections, and empowerment reforms to transnational gestational surrogacy practice is proposed that, if incorporated into a national regulatory framework and actualized within a low income country, could possibly render such practice nonexploitative.

  2. Multisensor staring exploitation

    NASA Astrophysics Data System (ADS)

    Bryant, Michael L.

    2008-04-01

    The focus of this paper is on the exploitation of new staring sensors to address the urban surveillance challenge and help combat the war on terror. A staring sensor visualization environment, known as the Data Table, will be presented which integrates staring sensors with close-in sensors, such as small UAVs, building mounted sensors, and unattended ground sensors (UGS). There are several staring sensors in development, but two in particular will be highlighted in this paper - NightStare and the Gotcha Radar, both under development by the Air Force Research Laboratory (AFRL).

  3. Catalysis of Protein Disulfide Bond Isomerization in a Homogeneous Substrate†

    PubMed Central

    Kersteen, Elizabeth A.; Barrows, Seth R.; Raines, Ronald T.

    2008-01-01

    Protein disulfide isomerase (PDI) catalyzes the rearrangement of nonnative disulfide bonds in the endoplasmic reticulum of eukaryotic cells, a process that often limits the rate at which polypeptide chains fold into a native protein conformation. The mechanism of the reaction catalyzed by PDI is unclear. In assays involving protein substrates, the reaction appears to involve the complete reduction of some or all of its nonnative disulfide bonds followed by oxidation of the resulting dithiols. The substrates in these assays are, however, heterogeneous, which complicates mechanistic analyses. Here, we report the first analysis of disulfide bond isomerization in a homogeneous substrate. Our substrate is based on tachyplesin I, a 17-mer peptide that folds into a _-hairpin stabilized by two disulfide bonds. We describe the chemical synthesis of a variant of tachyplesin I in which its two disulfide bonds are in a nonnative state and side chains near its N-and C-terminus contain a fluorescence donor (tryptophan) and acceptor (N_-dansyllysine). Fluorescence resonance energy transfer from 280 to 465 nm increases by 28-fold upon isomerization of the disulfide bonds into their native state (which has a lower E°_ = -0.313 V than does PDI). We use this continuous assay to analyze catalysis by wild-type human PDI and a variant in which the C-terminal cysteine residue within each Cys—Gly—His—Cys active site is replaced with alanine. We find that wild-type PDI catalyzes the isomerization of the substrate with kcat/KM = 1.7 _ 105 M–1M s–1, which is the largest value yet reported for catalysis of disulfide bond isomerization. The variant, which is a poor catalyst of disulfide bond reduction and dithiol oxidation, retains virtually all of the activity of wild-type PDI in catalysis of disulfide bond isomerization. Thus, the C-terminal cysteine residues play an insignificant role in the isomerization of the disulfide bonds in nonnative tachyplesin I. We conclude that

  4. Chemical shift and coupling constant analysis of dibenzyloxy disulfides

    NASA Astrophysics Data System (ADS)

    Stoutenburg, Eric G.; Gryn'ova, Ganna; Coote, Michelle L.; Priefer, Ronny

    2015-02-01

    Dialkoxy disulfides have found applications in the realm of organic synthesis as an S2 or alkoxy donor, under thermal and photolytic decompositions conditions, respectively. Spectrally, dibenzyloxy disulfides possess an ABq in the 1H NMR, which can shift by over 1.1 ppm depending on the substituents present on the aromatic ring, as well as the solvent employed. The effect of the said substituents and solvent were analyzed and compared to the center of the ABq, geminal coupling, and the differences in chemical shifts of the individual doublets. Additionally, quantum-chemical calculations demonstrated the intramolecular H-bonding arrangement, found within the dibenzyloxy disulfides.

  5. Radical cations of sulfides and disulfides: An ESR study

    SciTech Connect

    Bonazzola, L.; Michaut, J.P.; Roncin, J.

    1985-09-15

    Exposure of dilute solutions of dimethylsulfide, methanethiol, tetrahydrothiophene, terbutyl and diterbutyl-sulfides, dimethyl-disulfide, and diterbutyldisulfide, in freon at 77 K to /sup 60/Co ..gamma.. rays gave the corresponding cations. From the reported ESR spectra, g tensors were obtained. It was found that both sulfide and disulfide cations exhibit the same g tensor: (g/sub max/ = 2.034 +- 0.002, g/sub int/ = 2.017 +- 0.001, g/sub min/ = 2.001 +- 0.005). From this result it has been shown that the disulfide cation is planar. This finding was supported by fully optimized geometry ab initio calculations.

  6. 21 CFR 520.1802a - Piperazine-carbon disulfide complex suspension.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Piperazine-carbon disulfide complex suspension... § 520.1802a Piperazine-carbon disulfide complex suspension. (a) Specifications. Each fluid ounce of suspension contains 7.5 grams of piperazine-carbon disulfide complex. The piperazine-carbon disulfide...

  7. 21 CFR 520.1802a - Piperazine-carbon disulfide complex suspension.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Piperazine-carbon disulfide complex suspension... § 520.1802a Piperazine-carbon disulfide complex suspension. (a) Specifications. Each fluid ounce of suspension contains 7.5 grams of piperazine-carbon disulfide complex. The piperazine-carbon disulfide...

  8. 21 CFR 520.1802a - Piperazine-carbon disulfide complex suspension.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Piperazine-carbon disulfide complex suspension... § 520.1802a Piperazine-carbon disulfide complex suspension. (a) Specifications. Each fluid ounce of suspension contains 7.5 grams of piperazine-carbon disulfide complex. The piperazine-carbon disulfide...

  9. 21 CFR 520.1802a - Piperazine-carbon disulfide complex suspension.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Piperazine-carbon disulfide complex suspension... § 520.1802a Piperazine-carbon disulfide complex suspension. (a) Specifications. Each fluid ounce of suspension contains 7.5 grams of piperazine-carbon disulfide complex. The piperazine-carbon disulfide...

  10. 21 CFR 520.1802a - Piperazine-carbon disulfide complex suspension.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Piperazine-carbon disulfide complex suspension... § 520.1802a Piperazine-carbon disulfide complex suspension. (a) Specifications. Each fluid ounce of suspension contains 7.5 grams of piperazine-carbon disulfide complex. The piperazine-carbon disulfide...

  11. Improved molybdenum disulfide-silver motor brushes have extended life

    NASA Technical Reports Server (NTRS)

    Horton, J. C.; King, H. M.

    1964-01-01

    Motor brushes of proper quantities of molybdenum disulfide and copper or silver are manufactured by sintering techniques. Graphite molds are used. These brushes operate satisfactorily for long periods in normal atmosphere or in a high-vacuum environment.

  12. 46 CFR 151.50-41 - Carbon disulfide (carbon bisulfide).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... disulfide (carbon bisulfide). (a) All openings shall be in the top of the tank. (b) Loading lines shall... extending from the tank top to a point near the tank bottom. A blanket of water shall be formed in this...

  13. A Potent, Versatile Disulfide-Reducing Agent from Aspartic Acid

    PubMed Central

    2013-01-01

    Dithiothreitol (DTT) is the standard reagent for reducing disulfide bonds between and within biological molecules. At neutral pH, however, >99% of DTT thiol groups are protonated and thus unreactive. Herein, we report on (2S)-2-amino-1,4-dimercaptobutane (dithiobutylamine or DTBA), a dithiol that can be synthesized from l-aspartic acid in a few high-yielding steps that are amenable to a large-scale process. DTBA has thiol pKa values that are ∼1 unit lower than those of DTT and forms a disulfide with a similar E°′ value. DTBA reduces disulfide bonds in both small molecules and proteins faster than does DTT. The amino group of DTBA enables its isolation by cation-exchange and facilitates its conjugation. These attributes indicate that DTBA is a superior reagent for reducing disulfide bonds in aqueous solution. PMID:22353145

  14. Association of thiol disulfide homeostasis with slow coronary flow.

    PubMed

    Kundi, Harun; Gok, Murat; Cetin, Mustafa; Kiziltunç, Emrullah; Topcuoglu, Canan; Neşelioğlu, Salim; Erel, Ozcan; Ulusoy, Feridun Vasfi

    2016-08-01

    Objective The aim of this study was to investigate the role of thiol disulfide homeostasis in the presence of slow coronary flow. Material and methods In this cross-sectional study, a total of 110 patients who admitted to our hospital between March 2014 and December 2015 were included in the study. There were 65 patients in the slow coronary flow, and 45 patients in the normal flow groups. Results We found significant differences between slow coronary flow and the normal flow groups for thiol disulfide homeostasis, and the results of our study indicated that hsCRP, and thiol disulfide ratio were independently associated with slow coronary flow. Conclusion Our study showed that thiol disulfide homeostasis was significantly and independently related to the presence of slow coronary flow.

  15. The Geohazards Exploitation Platform

    NASA Astrophysics Data System (ADS)

    Laur, Henri; Casu, Francesco; Bally, Philippe; Caumont, Hervé; Pinto, Salvatore

    2016-04-01

    The Geohazards Exploitation Platform, or Geohazards TEP (GEP), is an ESA originated R&D activity of the EO ground segment to demonstrate the benefit of new technologies for large scale processing of EO data. This encompasses on-demand processing for specific user needs, systematic processing to address common information needs of the geohazards community, and integration of newly developed processors for scientists and other expert users. The platform supports the geohazards community's objectives as defined in the context of the International Forum on Satellite EO and Geohazards organised by ESA and GEO in Santorini in 2012. The GEP is a follow on to the Supersites Exploitation Platform (SSEP) an ESA initiative to support the Geohazards Supersites & Natural Laboratories initiative (GSNL). Today the GEP allows to exploit 70+ Terabyte of ERS and ENVISAT archive and the Copernicus Sentinel-1 data available on line. The platform has already engaged 22 European early adopters in a validation activity initiated in March 2015. Since September, this validation has reached 29 single user projects. Each project is concerned with either integrating an application, running on demand processing or systematically generating a product collection using an application available in the platform. The users primarily include 15 geoscience centres and universities based in Europe: British Geological Survey (UK), University of Leeds (UK), University College London (UK), ETH University of Zurich (CH), INGV (IT), CNR-IREA and CNR-IRPI (IT), University of L'Aquila (IT), NOA (GR), Univ. Blaise Pascal & CNRS (FR), Ecole Normale Supérieure (FR), ISTERRE / University of Grenoble-Alpes (FR). In addition, there are users from Africa and North America with the University of Rabat (MA) and the University of Miami (US). Furthermore two space agencies and four private companies are involved: the German Space Research Centre DLR (DE), the European Space Agency (ESA), Altamira Information (ES

  16. Image exploitation for MISAR

    NASA Astrophysics Data System (ADS)

    Heinze, N.; Edrich, M.; Saur, G.; Krüger, W.

    2007-04-01

    The miniature SAR-system MiSAR has been developed by EADS Germany for lightweight UAVs like the LUNASystem. MiSAR adds to these tactical UAV-systems the all-weather reconnaissance capability, which is missing until now. Unlike other SAR sensors, that produce large strip maps at update rates of several seconds, MiSAR generates sequences of SAR images with approximately 1 Hz frame rate. photo interpreters (PI) of tactical drones, now mainly experienced with visual interpretation, are not used to SARimages, especially not with SAR-image sequence characteristics. So they should be supported to improve their ability to carry out their task with a new, demanding sensor system. We have therefore analyzed and discussed with military PIs in which task MiSAR can be used and how the PIs can be supported by special algorithms. We developed image processing- and exploitation-algorithms for such SAR-image sequences. A main component is the generation of image sequence mosaics to get more oversight. This mosaicing has the advantage that also non straight /linear flight-paths and varying squint angles can be processed. Another component is a screening-component for manmade objects to mark regions of interest in the image sequences. We use a classification based approach, which can be easily adapted to new sensors and scenes. These algorithms are integrated into an image exploitation system to improve the image interpreters ability to get a better oversight, better orientation and helping them to detect relevant objects, especially considering long endurance reconnaissance missions.

  17. User interface development for semiautomated imagery exploitation

    NASA Astrophysics Data System (ADS)

    O'Connor, R. P.; Bohling, Edward H.

    1991-08-01

    Operational reconnaissance technical organizations are burdened by greatly increasing workloads due to expanding capabilities for collection and delivery of large-volume near-real- time multisensor/multispectral softcopy imagery. Related to the tasking of reconnaissance platforms to provide the imagery are more stringent timelines for exploiting the imagery in response to the rapidly changing threat environment being monitored. The development of a semi-automated softcopy multisensor image exploitation capability is a critical step toward integrating existing advanced image processing techniques in conjunction with appropriate intelligence and cartographic data for next-generation image exploitation systems. This paper discusses the results of a recent effort to develop computer-assisted aids for the image analyst (IA) in order to rapidly and accurately exploit multispectral/multisensor imagery in combination with intelligence support data and cartographic information for the purpose of target detection and identification. A key challenge of the effort was to design and implement an effective human-computer interface that would satisfy any generic IA task and readily accommodate the needs of a broad range of IAs.

  18. Ion mobility mass spectrometry as a potential tool to assign disulfide bonds arrangements in peptides with multiple disulfide bridges.

    PubMed

    Echterbille, Julien; Quinton, Loïc; Gilles, Nicolas; De Pauw, Edwin

    2013-05-07

    Disulfide bridges play a major role in defining the structural properties of peptides and proteins. However, the determination of the cysteine pairing is still challenging. Peptide sequences are usually achieved using tandem mass spectrometry (MS/MS) spectra of the totally reduced unfolded species, but the cysteine pairing information is lost. On the other hand, MS/MS experiments performed on native folded species show complex spectra composed of nonclassical ions. MS/MS alone does not allow either the cysteine pairing or the full sequence of an unknown peptide to be determined. The major goal of this work is to set up a strategy for the full structural characterization of peptides including disulfide bridges annotation in the sequence. This strategy was developed by combining ion mobility spectrometry (IMS) and collision-induced dissociation (CID). It is assumed that the opening of one S-S bridge in a peptide leads to a structural evolution which results in a modification of IMS drift time. In the presence of multiple S-S bridges, the shift in arrival time will depend on which disulfide(s) has (have) been reduced and on the shape adopted by the generated species. Due to specific fragmentations observed for each species, CID experiments performed after the mobility separation could provide not only information on peptide sequence but also on the localization of the disulfide bridges. To achieve this goal, synthetic peptides containing two disulfides were studied. The openings of the bridges were carried out following different experimental conditions such as reduction, reduction/alkylation, or oxidation. Due to disulfide scrambling highlighted with the reduction approaches, oxidation of S-S bonds into cysteic acids appeared to be the best strategy. Cysteine connectivity was then unambiguously determined for the two peptides, without any disulfide scrambling interference.

  19. Design, Synthesis and Biological Evaluation of Brain-Targeted Thiamine Disulfide Prodrugs of Ampakine Compound LCX001.

    PubMed

    Xiao, Dian; Meng, Fan-Hua; Dai, Wei; Yong, Zheng; Liu, Jin-Qiu; Zhou, Xin-Bo; Li, Song

    2016-04-14

    Ampakine compounds have been shown to reverse opiate-induced respiratory depression by activation of amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors. However, their pharmacological exploitations are hindered by low blood-brain barrier (BBB) permeability and limited brain distribution. Here, we explored whether thiamine disulfide prodrugs with the ability of "lock-in" can be used to solve these problems. A series of thiamine disulfide prodrugs 7a-7f of ampakine compound LCX001 was synthesized and evaluated. The trials in vitro showed that prodrugs 7e, 7d, 7f possessed a certain stability in plasma and quickly decomposed in brain homogenate by the disulfide reductase. In vivo, prodrug 7e decreased the peripheral distribution of LCX001 and significantly increased brain distribution of LCX001 after i.v. administration. This compound showed 2.23- and 3.29-fold greater increases in the AUC0-t and MRT0-t of LCX001 in brain, respectively, than did LCX001 itself. A preliminary pharmacodynamic study indicated that the required molar dose of prodrug 7e was only one eighth that of LCX001 required to achieve the same effect in mice. These findings provide an important reference to evaluate the clinical outlook of ampakine compounds.

  20. AMU NEXRAD Exploitation Task

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.; Wheeler, Mark M.

    1997-01-01

    This report documents the results of the Applied Meteorology Unit's NEXRAD Exploitation Task. The objectives of this task are to determine what radar signatures are present prior to and at the time of convection initiation, and to determine radar signatures which will help distinguish whether the ensuing convection will become severe. Radar data from the WSR-88D radar located at NWS Melbourne (WSR-88D/KMLB) were collected between June and September 1995, and 16 convective case studies were analyzed for which the radar was operating during the entire period of interest. All WSR-88D/KMLB products were scrutinized for their utility in detecting convection initiation and severe storm signatures. Through process of elimination, it was found that the 0.5 deg reflectivity product with the lowest reflectivity values displayed is the best product to monitor for convection initiation signatures. Seven meteorological features associated with the initiation of deep convection were identified: the Merritt Island and Indian River convergence zones, interlake convergence, horizontal convective rolls, the sea breeze, storm outflow boundaries, and fires. Their reflectivity values ranged from -5 to 20 dBZ. Of the three severe weather phenomena (winds greater than or equal to 50 kts, tornado, 3/4 inch hail), high wind events due to microbursts were most common in the data set. It was found that the values and trends of composite reflectivity, vertically integrated liquid, and core aspect ratio were key indicators of the potential of a cell to produce a microburst. The data were not analyzed for the other two severe weather phenomena because they rarely occurred during the data collection period. This report also includes suggestions for new WSR-88D products, summaries of ongoing research aimed at creating new products, and explicit recommended procedures for detecting convection initiation and severe storm signatures in the radar data using the currently available technology.

  1. Assessment of disulfide and hinge modifications in monoclonal antibodies.

    PubMed

    Moritz, Bernd; Stracke, Jan Olaf

    2016-12-16

    During the last years there was a substantial increase in the use of antibodies and related proteins as therapeutics. The emphasis of the pharmaceutical industry is on IgG1, IgG2, and IgG4 antibodies, which are therefore in the focus of this article. In order to ensure appropriate quality control of such biopharmaceuticals, deep understanding of their chemical degradation pathways and the resulting impact on potency, pharmacokinetics, and safety is required. Criticality of modifications may be specific for individual antibodies and has to be assessed for each molecule. However, some modifications of conserved structure elements occur in all or at least most IgGs. In these cases, criticality assessment may be applicable to related molecules or molecule formats. The relatively low dissociation energy of disulfide bonds and the high flexibility of the hinge region frequently lead to modifications and cleavages. Therefore, the hinge region and disulfide bonds require specific consideration during quality assessment of mAbs. In this review, available literature knowledge on underlying chemical reaction pathways of modifications, analytical methods for quantification and criticality are discussed. The hinge region is prone to cleavage and is involved in pathways that lead to thioether bond formation, cysteine racemization, and iso-Asp (Asp, aspartic acid) formation. Disulfide or sulfhydryl groups were found to be prone to reductive cleavage, trisulfide formation, cysteinylation, glutathionylation, disulfide bridging to further light chains, and disulfide scrambling. With regard to potency, disulfide cleavage, hinge cleavage, disulfide bridging to further light chains, and cysteinylation were found to influence antigen binding and fragment crystallizable (Fc) effector functionalities. Renal clearance of small fragments may be faster, whereas clearance of larger fragments appears to depend on their neonatal Fc receptor (FcRn) functionality, which in turn may be impeded by

  2. Semienzymatic cyclization of disulfide-rich peptides using Sortase A.

    PubMed

    Jia, Xinying; Kwon, Soohyun; Wang, Ching-I Anderson; Huang, Yen-Hua; Chan, Lai Y; Tan, Chia Chia; Rosengren, K Johan; Mulvenna, Jason P; Schroeder, Christina I; Craik, David J

    2014-03-07

    Disulfide-rich cyclic peptides have generated great interest in the development of peptide-based therapeutics due to their exceptional stability toward chemical, enzymatic, or thermal attack. In particular, they have been used as scaffolds onto which bioactive epitopes can be grafted to take advantage of the favorable biophysical properties of disulfide-rich cyclic peptides. To date, the most commonly used method for the head-to-tail cyclization of peptides has been native chemical ligation. In recent years, however, enzyme-mediated cyclization has become a promising new technology due to its efficiency, safety, and cost-effectiveness. Sortase A (SrtA) is a bacterial enzyme with transpeptidase activity. It recognizes a C-terminal penta-amino acid motif, LPXTG, and cleaves the amide bond between Thr and Gly to form a thioacyl-linked intermediate. This intermediate undergoes nucleophilic attack by an N-terminal poly-Gly sequence to form an amide bond between the Thr and N-terminal Gly. Here, we demonstrate that sortase A can successfully be used to cyclize a variety of small disulfide-rich peptides, including the cyclotide kalata B1, α-conotoxin Vc1.1, and sunflower trypsin inhibitor 1. These peptides range in size from 14 to 29 amino acids and contain three, two, or one disulfide bond, respectively, within their head-to-tail cyclic backbones. Our findings provide proof of concept for the potential broad applicability of enzymatic cyclization of disulfide-rich peptides with therapeutic potential.

  3. Disulfide Bridges: Bringing Together Frustrated Structure in a Bioactive Peptide.

    PubMed

    Zhang, Yi; Schulten, Klaus; Gruebele, Martin; Bansal, Paramjit S; Wilson, David; Daly, Norelle L

    2016-04-26

    Disulfide bridges are commonly found covalent bonds that are usually believed to maintain structural stability of proteins. Here, we investigate the influence of disulfide bridges on protein dynamics through molecular dynamics simulations on the cysteine-rich trypsin inhibitor MCoTI-II with three disulfide bridges. Correlation analysis of the reduced cyclic peptide shows that two of the three disulfide distances (Cys(11)-Cys(23) and Cys(17)-Cys(29)) are anticorrelated within ∼1 μs of bridge formation or dissolution: when the peptide is in nativelike structures and one of the distances shortens to allow bond formation, the other tends to lengthen. Simulations over longer timescales, when the denatured state is less structured, do not show the anticorrelation. We propose that the native state contains structural elements that frustrate one another's folding, and that the two bridges are critical for snapping the frustrated native structure into place. In contrast, the Cys(4)-Cys(21) bridge is predicted to form together with either of the other two bridges. Indeed, experimental chromatography and nuclear magnetic resonance data show that an engineered peptide with the Cys(4)-Cys(21) bridge deleted can still fold into its near-native structure even in its noncyclic form, confirming the lesser role of the Cys(4)-Cys(21) bridge. The results highlight the importance of disulfide bridges in a small bioactive peptide to bring together frustrated structure in addition to maintaining protein structural stability.

  4. Thiol/disulfide redox states in signaling and sensing

    PubMed Central

    Go, Young-Mi; Jones, Dean P.

    2015-01-01

    Rapid advances in redox systems biology are creating new opportunities to understand complexities of human disease and contributions of environmental exposures. New understanding of thiol-disulfide systems have occurred during the past decade as a consequence of the discoveries that thiol and disulfide systems are maintained in kinetically controlled steady-states displaced from thermodynamic equilibrium, that a widely distributed family of NADPH oxidases produces oxidants that function in cell signaling, and that a family of peroxiredoxins utilize thioredoxin as a reductant to complement the well-studied glutathione antioxidant system for peroxide elimination and redox regulation. This review focuses on thiol/disulfide redox state in biologic systems and the knowledge base available to support development of integrated redox systems biology models to better understand the function and dysfunction of thiol-disulfide redox systems. In particular, central principles have emerged concerning redox compartmentalization and utility of thiol/disulfide redox measures as indicators of physiologic function. Advances in redox proteomics show that, in addition to functioning in protein active sites and cell signaling, cysteine residues also serve as redox sensors to integrate biologic functions. These advances provide a framework for translation of redox systems biology concepts to practical use in understanding and treating human disease. Biological responses to cadmium, a widespread environmental agent, are used to illustrate the utility of these advances to the understanding of complex pleiotropic toxicities. PMID:23356510

  5. Copper-doped modified ZnO nanorods to tailor its light assisted charge transfer reactions exploited for photo-electrochemical and photo-catalytic application in environmental remediation

    NASA Astrophysics Data System (ADS)

    Singh, Sonal; Pendurthi, Ravi; Khanuja, Manika; Islam, S. S.; Rajput, Suchitra; Shivaprasad, S. M.

    2017-03-01

    The amount of dopant concentration, alongwith the choice of dopant, is one of the most conducive factor for the favourable outcome for light driven activities of a material. The present paper reports on the synthesis of zinc oxide nanorods doped with different concentrations of copper (Cu-ZnO) by simple, low-cost mechanical assisted thermal decomposition process. The as synthesized samples were tested for visible light driven photo-electrochemical (PEC) and photocatalytic activities on various hazardous dyes using methylene blue (MB), methyl orange and mixed green dye (methyl thymol blue + methylene blue). The study helped us to reveal that highest degradation efficiency was achieved for Cu concentration of 5% in ZnO on MB (91.1% degradation in 40 min). Compared to pure ZnO, the photoactivity of 5% Cu-ZnO composites shows higher photodegradation of dyes. Moreover, the photocatalytic results were found consistent with PEC studies which showed maximum current generation of +9.4 mA for 5% Cu-ZnO (carried out under dark and illumination condition). The mechanism for this enhanced photoactivity has been proposed based on the relationship established between oxygen vacancies and defects generation in the material due to different doping concentrations that directly influence its photocatalytic efficiency.

  6. Inhibition of botulinum neurotoxins interchain disulfide bond reduction prevents the peripheral neuroparalysis of botulism.

    PubMed

    Zanetti, Giulia; Azarnia Tehran, Domenico; Pirazzini, Marcon; Binz, Thomas; Shone, Clifford C; Fillo, Silvia; Lista, Florigio; Rossetto, Ornella; Montecucco, Cesare

    2015-12-01

    Botulinum neurotoxins (BoNTs) form a growing family of metalloproteases with a unique specificity either for VAMP, SNAP25 or syntaxin. The BoNTs are grouped in seven different serotypes indicated by letters from A to G. These neurotoxins enter the cytosol of nerve terminals via a 100 kDa chain which binds to the presynaptic membrane and assists the translocation of a 50 kDa metalloprotease chain. These two chains are linked by a single disulfide bridge which plays an essential role during the entry of the metalloprotease chain in the cytosol, but thereafter it has to be reduced to free the proteolytic activity. Its reduction is mediated by thioredoxin which is continuously regenerated by its reductase. Here we show that inhibitors of thioredoxin reductase or of thioredoxin prevent the specific proteolysis of VAMP by the four VAMP-specific BoNTs: type B, D, F and G. These compounds are effective not only in primary cultures of neurons, but also in preventing the in vivo mouse limb neuroparalysis. In addition, one of these inhibitors, Ebselen, largely protects mice from the death caused by a systemic injection. Together with recent results obtained with BoNTs specific for SNAP25 and syntaxin, the present data demonstrate the essential role of the thioredoxin-thioredoxin reductase system in reducing the interchain disulfide during the nerve intoxication mechanism of all serotypes. Therefore its inhibitors should be considered for a possible use to prevent botulism and for treating infant botulism.

  7. Structural basis of protein disulfide bond generation in the cell.

    PubMed

    Inaba, Kenji

    2010-09-01

    The formation of protein disulfide bonds is an oxidative reaction that is crucial for the folding and maturation of many secreted and membrane proteins. Both prokaryotic and eukaryotic cells possess various disulfide oxidoreductases and redox-active cofactors to accelerate this oxidative reaction in a correct manner. Crystal or solution structures have been solved for some of the oxidoreductases in the past 10 years, leading to remarkable progress in the field of thiol-based redox cell biology. Consequently, structural and mechanistic similarities in the disulfide bond formation pathways have been uncovered. This review highlights the molecular basis of the elaborate oxidative systems operating in the Escherichia coli periplasm, the endoplasmic reticulum lumen and the mitochondrial intermembrane space. The accumulated knowledge provides important insights into how protein and redox homeostasis are maintained in the cell.

  8. A molybdenum disulfide/carbon nanotube heterogeneous complementary inverter.

    PubMed

    Huang, Jun; Somu, Sivasubramanian; Busnaina, Ahmed

    2012-08-24

    We report a simple, bottom-up/top-down approach for integrating drastically different nanoscale building blocks to form a heterogeneous complementary inverter circuit based on layered molybdenum disulfide and carbon nanotube (CNT) bundles. The fabricated CNT/MoS(2) inverter is composed of n-type molybdenum disulfide (MOS(2)) and p-type CNT transistors, with a high voltage gain of 1.3. The CNT channels are fabricated using directed assembly while the layered molybdenum disulfide channels are fabricated by mechanical exfoliation. This bottom-up fabrication approach for integrating various nanoscale elements with unique characteristics provides an alternative cost-effective methodology to complementary metal-oxide-semiconductors, laying the foundation for the realization of high performance logic circuits.

  9. From structure to redox: the diverse functional roles of disulfides and implications in disease

    PubMed Central

    Bechtel, Tyler J.; Weerapana, Eranthie

    2017-01-01

    This review provides a comprehensive overview of the functional roles of disulfide bonds and their relevance to human disease. The critical roles of disulfide bonds in protein structure stabilization and redox regulation of protein activity are addressed. Disulfide bonds are essential to the structural stability of many proteins within the secretory pathway and can exist as intramolecular or inter-domain disulfides. The proper formation of these bonds often relies on folding chaperones and oxidases such as members of the protein disulfide isomerase (PDI) family. Many of the PDI family members catalyze disulfide-bond formation, reduction and isomerization through redox-active disulfides and perturbed PDI activity is characteristic of carcinomas and neurodegenerative diseases. In addition to catalytic function in oxidoreductases, redox-active disulfides are also found on a diverse array of cellular proteins and act to regulate protein activity and localization in response to oxidative changes in the local environment. These redox-active disulfides are either dynamic intramolecular protein disulfides or mixed disulfides with small-molecule thiols generating glutathionylation and cysteinylation adducts. The oxidation and reduction of redox-active disulfides are mediated by cellular reactive oxygen species and activity of reductases, such as glutaredoxin and thioredoxin. Dysregulation of cellular redox conditions and resulting changes in mixed disulfide formation are directly linked to diseases such as cardiovascular disease and Parkinson’s disease. PMID:28044432

  10. Disulfide-rich macrocyclic peptides as templates in drug design.

    PubMed

    Northfield, Susan E; Wang, Conan K; Schroeder, Christina I; Durek, Thomas; Kan, Meng-Wei; Swedberg, Joakim E; Craik, David J

    2014-04-22

    Recently disulfide-rich head-to-tail cyclic peptides have attracted the interest of medicinal chemists owing to their exceptional thermal, chemical and enzymatic stability brought about by their constrained structures. Here we review current trends in the field of peptide-based pharmaceuticals and describe naturally occurring cyclic disulfide-rich peptide scaffolds, discussing their pharmaceutically attractive properties and benefits. We describe how we can utilise these stable frameworks to graft and/or engineer pharmaceutically interesting epitopes to increase their selectivity and bioactivity, opening up new possibilities for addressing 'difficult' pharmaceutical targets.

  11. Structures and related properties of helical, disulfide-stabilized peptides

    SciTech Connect

    Pagel, Mark D.

    1993-11-01

    The three dimensional structure of several peptides were determined by NMR spectroscopy and distance geometry calculations. Each peptide formed a predictable, rigid structure, consisting of an α-helix, a "scaffold" region which packed along one face of the helix, and two disulfide bridges which covalently connect the helix and scaffold regions. The peptide Apa-M5 was designed to constrain the M5 peptide from MLCK in a helical geometry using the apamin disulfide scaffold. This scaffold constrains the N- terminal end of the helix with two disulfide bridges and a reverse turn. Like the M5 peptide, Apa-M5 was found to bind calmodulin in a Ca2+-dependent 1:1 stoichiometry. However, the dissociation constant of the (Apa-M5)-calmodulin complex, 107 nM, was 100-fold higher than the dissociation constant of the M5-calmodulin complex. This difference was due to a putative steric overlap between the Apa-M5 scaffold and calmodulin. The peptide Apa-Cro was designed to replace the large structural protein matrix of λ Cro with the apamin disulfide scaffold. However, Apa-Cro did not bind the consensus DNA operator half-site of λ Cro, probably due to a steric overlap between the Apa-Cro disulfide framework and the DNA. The amino acid sequence of the scaffold-disulfide bridge arrangement of the peptide Max was derived from the core sequence of scyllatoxin, which contains an α-helix constrained at the C-terminal end by two disulfide bridges and a two-stranded βsheet scaffold. Max was shown to fold with >84% yield to form a predictable, stable structure that is similar to scyllatoxin. The folding and stability properties of Max make this scaffold and disulfide bridge arrangement an ideal candidate for the development of hybrid sequence peptides. The dynamics of a fraying C-terminal end of the helix of the peptide Apa-AlaN was determined by analysis of 15N NMR relaxation properties.

  12. Synthesis of Neoglycoconjugates by the Desulfurative Rearrangement of Allylic Disulfides

    PubMed Central

    Crich, David; Yang, Fan

    2009-01-01

    Two series of neoglucosyl donors are prepared based on connection of the allylic disulfide motif to the anomeric center via either a simple O-glycosyl linkage or N-glycosyl amide unit. Conjugation of both sets of donors to cysteine in peptides is demonstrated through classical disulfide exchange followed by the phosphine-mediated desulfurative allylic rearrangement resulting in neoglycopeptides characterized by a simple thioether spacer. The conjugation reaction functions in the absence of protecting groups on both the neoglycosyl donor and peptide in aqueous media at room temperature. PMID:18729514

  13. Fusion expression and purification of four disulfide-rich peptides reveals enterokinase secondary cleavage sites in animal toxins.

    PubMed

    Chen, Zongyun; Han, Song; Cao, Zhijian; Wu, Yingliang; Zhuo, Renxi; Li, Wenxin

    2013-01-01

    Animal toxins are powerful tools for testing the pharmacological, physiological, and structural characteristics of ion channels, proteases, and other receptors. However, most animal toxins are disulfide-rich peptides that are difficult to produce functionally. Here, a glutathione S-transferase (GST) fusion expression strategy was used to produce four recombinant animal toxin peptides, ChTX, StKTx23, BmP01, and ImKTx1, with different isoelectric points from 4.7 to 9.2. GST tags were removed by enterokinase, a widely used and effective commercial protease that cleaves after lysine at the cleavage site DDDDK. Using this strategy, two disulfide-rich animal toxins ChTX and StKTx23 were obtained successfully with a yield of approximately 1-2 mg/l culture. Electrophysiological experiments further showed that these two recombinant toxins showed good bioactivities, indicating that our method was effective in producing large amounts of functional disulfide-rich animal toxins. Interestingly, by analyzing the separated fractions of BmP01, StKTx23, and ImKTx1 using matrix-assisted laser desorption ionization time-of-flight mass spectrometry, four new enterokinase secondary cleavage sites were found, consisting of the sequences "WEYR," "EDK," "QNAR," and "DNDK." To our knowledge, this is the first report of the presence of secondary cleavage sites for commercial enterokinase in animal toxins. These findings will help us use commercial enterokinase appropriately as a cleavage tool in the production of animal toxins.

  14. Synergistic toughening of graphene oxide-molybdenum disulfide-thermoplastic polyurethane ternary artificial nacre.

    PubMed

    Wan, Sijie; Li, Yuchen; Peng, Jingsong; Hu, Han; Cheng, Qunfeng; Jiang, Lei

    2015-01-27

    Inspired by the ternary structure of natural nacre, robust ternary artificial nacre is constructed through synergistic toughening of graphene oxide (GO) and molybdenum disulfide (MoS2) nanosheets via a vacuum-assisted filtration self-assembly process. The synergistic toughening effect from high mechanical properties of GO and lubrication of MoS2 nanosheets is successfully demonstrated. Meanwhile, the artificial nacre shows high electrical conductivity. This approach for constructing robust artificial nacre by synergistic effect from GO and MoS2 provides a creative opportunity for designing and fabricating integrated artificial nacre in the near future, and this kind of ternary artificial nacre has great potential applications in aerospace, flexible supercapacitor electrodes, artificial muscle, and tissue engineering.

  15. Acid-denatured Green Fluorescent Protein (GFP) as model substrate to study the chaperone activity of protein disulfide isomerase.

    PubMed

    Mares, Rosa E; Meléndez-López, Samuel G; Ramos, Marco A

    2011-01-01

    Green fluorescent protein (GFP) has been widely used in several molecular and cellular biology applications, since it is remarkably stable in vitro and in vivo. Interestingly, native GFP is resistant to the most common chemical denaturants; however, a low fluorescence signal has been observed after acid-induced denaturation. Furthermore, this acid-denatured GFP has been used as substrate in studies of the folding activity of some bacterial chaperones and other chaperone-like molecules. Protein disulfide isomerase enzymes, a family of eukaryotic oxidoreductases that catalyze the oxidation and isomerization of disulfide bonds in nascent polypeptides, play a key role in protein folding and it could display chaperone activity. However, contrasting results have been reported using different proteins as model substrates. Here, we report the further application of GFP as a model substrate to study the chaperone activity of protein disulfide isomerase (PDI) enzymes. Since refolding of acid-denatured GFP can be easily and directly monitored, a simple micro-assay was used to study the effect of the molecular participants in protein refolding assisted by PDI. Additionally, the effect of a well-known inhibitor of PDI chaperone activity was also analyzed. Because of the diversity their functional activities, PDI enzymes are potentially interesting drug targets. Since PDI may be implicated in the protection of cells against ER stress, including cancer cells, inhibitors of PDI might be able to enhance the efficacy of cancer chemotherapy; furthermore, it has been demonstrated that blocking the reductive cleavage of disulfide bonds of proteins associated with the cell surface markedly reduces the infectivity of the human immunodeficiency virus. Although several high-throughput screening (HTS) assays to test PDI reductase activity have been described, we report here a novel and simple micro-assay to test the chaperone activity of PDI enzymes, which is amenable for HTS of PDI

  16. 21 CFR 520.1802c - Piperazine-carbon disulfide complex with phenothiazine suspension.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Piperazine-carbon disulfide complex with... ANIMAL DRUGS § 520.1802c Piperazine-carbon disulfide complex with phenothiazine suspension. (a) Specifications. Each fluid ounce contains 5 grams of piperazine-carbon disulfide complex and 0.83 gram...

  17. 21 CFR 520.1802b - Piperazine-carbon disulfide complex boluses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Piperazine-carbon disulfide complex boluses. 520....1802b Piperazine-carbon disulfide complex boluses. (a) Specifications. Each bolus contains 20 grams of piperazine-carbon disulfide complex. (b) Sponsor. See 000009 in § 510.600(c) of this chapter. (c)...

  18. 21 CFR 520.1802c - Piperazine-carbon disulfide complex with phenothiazine suspension.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Piperazine-carbon disulfide complex with... ANIMAL DRUGS § 520.1802c Piperazine-carbon disulfide complex with phenothiazine suspension. (a) Specifications. Each fluid ounce contains 5 grams of piperazine-carbon disulfide complex and 0.83 gram...

  19. 21 CFR 520.1802b - Piperazine-carbon disulfide complex boluses.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Piperazine-carbon disulfide complex boluses. 520....1802b Piperazine-carbon disulfide complex boluses. (a) Specifications. Each bolus contains 20 grams of piperazine-carbon disulfide complex. (b) Sponsor. See 000009 in § 510.600(c) of this chapter. (c)...

  20. 21 CFR 520.1802c - Piperazine-carbon disulfide complex with phenothiazine suspension.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Piperazine-carbon disulfide complex with... ANIMAL DRUGS § 520.1802c Piperazine-carbon disulfide complex with phenothiazine suspension. (a) Specifications. Each fluid ounce contains 5 grams of piperazine-carbon disulfide complex and 0.83 gram...

  1. 21 CFR 520.1802b - Piperazine-carbon disulfide complex boluses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Piperazine-carbon disulfide complex boluses. 520....1802b Piperazine-carbon disulfide complex boluses. (a) Specifications. Each bolus contains 20 grams of piperazine-carbon disulfide complex. (b) Sponsor. See 000009 in § 510.600(c) of this chapter. (c)...

  2. 21 CFR 520.1802c - Piperazine-carbon disulfide complex with phenothiazine suspension.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Piperazine-carbon disulfide complex with... ANIMAL DRUGS § 520.1802c Piperazine-carbon disulfide complex with phenothiazine suspension. (a) Specifications. Each fluid ounce contains 5 grams of piperazine-carbon disulfide complex and 0.83 gram...

  3. 21 CFR 520.1802c - Piperazine-carbon disulfide complex with phenothiazine suspension.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Piperazine-carbon disulfide complex with... ANIMAL DRUGS § 520.1802c Piperazine-carbon disulfide complex with phenothiazine suspension. (a) Specifications. Each fluid ounce contains 5 grams of piperazine-carbon disulfide complex and 0.83 gram...

  4. 21 CFR 520.1802b - Piperazine-carbon disulfide complex boluses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Piperazine-carbon disulfide complex boluses. 520....1802b Piperazine-carbon disulfide complex boluses. (a) Specifications. Each bolus contains 20 grams of piperazine-carbon disulfide complex. (b) Sponsor. See 000009 in § 510.600(c) of this chapter. (c)...

  5. 21 CFR 520.1802b - Piperazine-carbon disulfide complex boluses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Piperazine-carbon disulfide complex boluses. 520....1802b Piperazine-carbon disulfide complex boluses. (a) Specifications. Each bolus contains 20 grams of piperazine-carbon disulfide complex. (b) Sponsor. See 000009 in § 510.600(c) of this chapter. (c)...

  6. Comparison of Self-Assembled Monolayers on Gold: Coadsorption of Thiols and Disulfides

    DTIC Science & Technology

    1989-02-15

    self-assembled monolayers of thiols and disulfides. Previous studies by Dubois et alt t of the adsorption of dimethyl disulfide and methanethiol on...with an activation energy of desorption of 28 kcal/mol of disulfide, but the methanethiol was only physisorbed on the gold surface and desorbed intact

  7. Echistatin disulfide bridges: selective reduction and linkage assignment.

    PubMed Central

    Gray, W. R.

    1993-01-01

    Echistatin is the smallest member of the disintegrin family of snake venom proteins, containing four disulfides in a peptide chain of 49 residues. Partial assignment of disulfides has been made previously by NMR and chemical approaches. A full assignment was made by a newly developed chemical approach, using partial reduction with tris-(2-carboxyethyl)-phosphine at acid pH. Reduction proceeded in a stepwise manner at pH 3, and the intermediates were isolated by high performance liquid chromatography. Alkylation of free thiols, followed by sequencer analysis, enabled all four bridges to be identified: (1) at 20 degrees C a single bridge linking Cys 2-Cys 11 was broken, giving a relatively stable intermediate; (2) with further treatment at 41 degrees C the bridges Cys 7-Cys 32 and Cys 8-Cys 37 became accessible to the reagent and were reduced at approx. equal rates; (3) the two bicyclic peptides produced in this manner were less stable and could be reduced at 20 degrees C to a peptide that retains a single bridge linking Cys 20-Cys 39; and (4) the monocyclic peptide can be reduced to the linear molecule at 20 degrees C. Some disulfide exchange occurred during alkylation of the bicyclic intermediates, but results unambiguously show the pattern to be [2-11; 7-32; 8-37; 20-39]. A comparison is made with kistrin, a longer disintegrin whose disulfide structure has been proposed from NMR analysis. PMID:8251946

  8. Response of soil organisms to dimethyl disulfide fumigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After the commonly used soil fumigant methyl bromide (MeBr) was phased out in the United States, alternatives to MeBr such as dimethyl disulfide (DMDS) which is known to have broad pest control spectrum, is increasingly used. However, effectiveness of DMDS has been mainly investigated to study targe...

  9. Synthesis of unsymmetric disulfides as potential antiradiation drugs

    SciTech Connect

    Womble, S.W.

    1988-01-01

    This research involved the synthesis of unsymmetric disulfides which contain the radioprotective compound cysteamine attached to a biologically active molecule via a disulfide linkage. This study involved the synthesis of unsymmetric disulfides of cysteamine with amino acids, amino acid esters, steroidal thiols, glutathione, and other known radio-protective compounds which were submitted for biological evaluation. It is hoped that by attaching a known radioprotective compound to a molecule such as an amino acid or steroid we may obtain an enhanced concentration of the radioprotective substance in the target areas within the cell. The use of steroidal thiols coupled to cysteamine may result in the protection of the central nervous system for which there is no known radioprotective agent available. In the second part of this work a synthesis of a thiol containing polymer was developed which would give a highly functionalized product. This thiol containing polymer can be utilized in a solid phase synthesis scheme for the preparation of unsymmetric disulfides free of side products.

  10. Topology of the disulfide bonds in the antiviral lectin scytovirin

    PubMed Central

    Moulaei, Tinoush; Stuchlik, Olga; Reed, Matthew; Yuan, Weirong; Pohl, Jan; Lu, Wuyuan; Haugh-Krumpe, Lauren; O'Keefe, Barry R; Wlodawer, Alexander

    2010-01-01

    The antiviral lectin scytovirin (SVN) contains a total of five disulfide bonds in two structurally similar domains. Previous reports provided contradictory results on the disulfide pairing in each individual domain, and we have now re-examined the disulfide topology. N-terminal sequencing and mass spectrometry were used to analyze proteolytic fragments of native SVN obtained at acidic pH, yielding the assignment as Cys7–Cys55, Cys20–Cys32, Cys26–Cys38, Cys68–Cys80, and Cys74–Cys86. We also analyzed the N-terminal domain of SVN (SD1, residues 1–48) prepared by expression/oxidative folding of the recombinant protein and by chemical synthesis. The disulfide pairing in the chemically synthesized SD1 was forced into predetermined topologies: SD1A (Cys20–Cys26, Cys32–Cys38) or SD1B (Cys20–Cys32, Cys26–Cys38). The topology of native SVN was found to be in agreement with the SD1B and the one determined for the recombinant SD1 domain. Although the two synthetic forms of SD1 were distinct when subjected to chromatography, their antiviral properties were indistinguishable, having low nM activity against HIV. Tryptic fragments, the “cystine clusters” [Cys20–Cys32/Cys26–Cys38; SD1] and [Cys68–Cys80/Cys74–C-86; SD2], were found to undergo rapid disulfide interchange at pH 8. This interchange resulted in accumulation of artifactual fragments in alkaline pH digests that are structurally unrelated to the original topology, providing a rational explanation for the differences between the topology reported herein and the one reported earlier (Bokesh et al., Biochemistry 2003;42:2578–2584). Our observations emphasize the fact that proteins such as SVN, with disulfide bonds in close proximity, require considerable precautions when being fragmented for the purpose of disulfide assignment. PMID:20572021

  11. Semienzymatic Cyclization of Disulfide-rich Peptides Using Sortase A*

    PubMed Central

    Jia, Xinying; Kwon, Soohyun; Wang, Ching-I Anderson; Huang, Yen-Hua; Chan, Lai Y.; Tan, Chia Chia; Rosengren, K. Johan; Mulvenna, Jason P.; Schroeder, Christina I.; Craik, David J.

    2014-01-01

    Disulfide-rich cyclic peptides have generated great interest in the development of peptide-based therapeutics due to their exceptional stability toward chemical, enzymatic, or thermal attack. In particular, they have been used as scaffolds onto which bioactive epitopes can be grafted to take advantage of the favorable biophysical properties of disulfide-rich cyclic peptides. To date, the most commonly used method for the head-to-tail cyclization of peptides has been native chemical ligation. In recent years, however, enzyme-mediated cyclization has become a promising new technology due to its efficiency, safety, and cost-effectiveness. Sortase A (SrtA) is a bacterial enzyme with transpeptidase activity. It recognizes a C-terminal penta-amino acid motif, LPXTG, and cleaves the amide bond between Thr and Gly to form a thioacyl-linked intermediate. This intermediate undergoes nucleophilic attack by an N-terminal poly-Gly sequence to form an amide bond between the Thr and N-terminal Gly. Here, we demonstrate that sortase A can successfully be used to cyclize a variety of small disulfide-rich peptides, including the cyclotide kalata B1, α-conotoxin Vc1.1, and sunflower trypsin inhibitor 1. These peptides range in size from 14 to 29 amino acids and contain three, two, or one disulfide bond, respectively, within their head-to-tail cyclic backbones. Our findings provide proof of concept for the potential broad applicability of enzymatic cyclization of disulfide-rich peptides with therapeutic potential. PMID:24425873

  12. Peptide-drug conjugate linked via a disulfide bond for kidney targeted drug delivery.

    PubMed

    Geng, Qian; Sun, Xun; Gong, Tao; Zhang, Zhi-Rong

    2012-06-20

    Chronic kidney disease (CKD) is a worldwide public health problem, and unfortunately, the therapeutic index of clinically available drugs is limited. Thus, there is a great need to exploit effective treatment strategies, and the carrier-drug approach is an attractive method to improve the kidney specificity of the therapeutic agents. The aim of this present study is to develop a peptide-drug conjugate for the kidney targeted delivery of angiotensin-converting enzyme (ACE) inhibitor captopril (CAP), since G3-C12 peptide (ANTPCGPYTHDCPVKR) could specifically accumulate in the kidney after intravenous injection. Therefore, FITC labeled G3-C12 peptide (G3-C12-FITC) and peptide-drug conjugate (G3-C12-CAP) with a disulfide bond which can be cleaved by reduced glutathione in the kidney were prepared by solid-phase peptide synthesis. The fluorescence imaging of G3-C12-FITC revealed that the labeled peptide specifically accumulated in the kidney soon after i.v. injection to mice, and the accumulation is due largely to the reabsorption of the peptide by the proximal renal tubule cells. Furthermore, in comparison with the corresponding nonconjugated form, a 2.7-fold increase in renal area under concentration-time curve produced by the conjugate was observed in mice. Interestingly, the CAP entirely released in the kidney even at 0.05 h postinjection through disulfide reduction. As a consequence, the in vivo renal ACE inhibition was significantly increased. In conclusion, these findings suggest the potential of G3-C12 peptide serving as a suitable candidate carrier for kidney-targeted drug delivery.

  13. First examples of oxidizing secondary alcohols to ketones in the presence of the disulfide functional group: synthesis of novel diketone disulfides.

    PubMed

    Fang, X; Bandarage, U K; Wang, T; Schroeder, J D; Garvey, D S

    2001-06-01

    The disulfide functionality is present in a number of organic compounds of interest in the fields of both chemistry and biology. Because the disulfide group is known to be highly susceptible to further oxidation by a wide range of agents, performing a chemoselective oxidation without further oxidizing the disulfide moiety poses a synthetic challenge. Reported herein are the first examples of such a chemoselective oxidation in which a series of novel secondary alcohol disulfides 2a-f have been converted to the corresponding symmetrical diketones 3a-f utilizing a modified Swern oxidation.

  14. Examination of the effect of increasing the number of intra-disulfide amino functional groups on the performance of small molecule cyclic polyamine disulfide vectors.

    PubMed

    Drake, Christopher R; Aissaoui, Abderrahim; Argyros, Orestis; Thanou, Maya; Steinke, Joachim H G; Miller, Andrew D

    2013-10-10

    Establishing structure-activity relationships is vital if the efficacy of non-viral vectors is to match that of their viral counter-parts. Recently, we reported on the ability of a series of small molecule, cyclic polyamine disulfides to condense and cage plasmid DNA (pDNA) by a process of thermodynamically controlled templated polymerization, leading to a series of corresponding pDNA-polyplex nanoparticles able to mediate high levels of transfection with no associated cytotoxicities. The leading cyclic polyamine disulfide was shown to be the spermine tetra-amine disulfide (TetraN-3,4,3). Herein we report on the significantly more challenging syntheses of cyclic disulfides with longer polyamine motifs. Two new cyclic polyamine disulfides, based on hexa- and octa-amine inserts, were prepared and their transfection efficacies and cytotoxicities compared with our previously reported cyclic tri- and tetra-amine disulfides. The new cyclic hexa- and octa-amine disulfides prove more effective at transfection in vitro, especially of lung epithelial A549 cell line. By contrast, our original cyclic tetra-amine disulfide remains the most efficient agent for the transfection of lung epithelial cells in vivo following intra-nasal administration. Hypothetical mechanistic reasons are presented to explain this outcome. Our data in toto support the concept of shorter cyclic polyamine disulfides as preferred agents for polycation-mediated controlled condensation and functional delivery of pDNA to lung epithelial cells in vivo.

  15. Sensory exploitation and sexual conflict

    PubMed Central

    Arnqvist, Göran

    2006-01-01

    Much of the literature on male–female coevolution concerns the processes by which male traits and female preferences for these can coevolve and be maintained by selection. There has been less explicit focus on the origin of male traits and female preferences. Here, I argue that it is important to distinguish origin from subsequent coevolution and that insights into the origin can help us appreciate the relative roles of various coevolutionary processes for the evolution of diversity in sexual dimorphism. I delineate four distinct scenarios for the origin of male traits and female preferences that build on past contributions, two of which are based on pre-existing variation in quality indicators among males and two on exploitation of pre-existing sensory biases among females. Recent empirical research, and theoretical models, suggest that origin by sensory exploitation has been widespread. I argue that this points to a key, but perhaps transient, role for sexually antagonistic coevolution (SAC) in the subsequent evolutionary elaboration of sexual traits, because (i) sensory exploitation is often likely to be initially costly for individuals of the exploited sex and (ii) the subsequent evolution of resistance to sensory exploitation should often be associated with costs due to selective constraints. A review of a few case studies is used to illustrate these points. Empirical data directly relevant to the costs of being sensory exploited and the costs of evolving resistance is largely lacking, and I stress that such data would help determining the general importance of sexual conflict and SAC for the evolution of sexual dimorphism. PMID:16612895

  16. Pressure-time profile of multiply shocked carbon disulfide

    NASA Astrophysics Data System (ADS)

    Sutherland, G. T.; Gupta, Y. M.; Bellamy, P. M.

    1986-02-01

    An experimental method was developed to measure the pressure-time profile of a liquid in a reverberation of multiple-shock experiment. Profiles, with peak pressures to 30 kbars, were measured for carbon disulfide using shorted quartz gauges (25.4 mm diameter by 3.15 mm thick); these gauges formed the back surfaces of cells which contained the carbon disulfide. Sapphire plates were used both as impactors and as the front surfaces of the cell. Up to six pressure steps were clearly observed in the quartz-gauge output. Measured pressure-time profiles were compared to profiles calculated with available equations of state. The experiments agreed well with profiles predicted with an equation of state proposed by Sheffield (1983). Calibration experiments were performed to characterize both the initial current response and the subsequent current ramping of the shorted quartz gauges used in this study.

  17. A degradable polydopamine coating based on disulfide-exchange reaction.

    PubMed

    Hong, Daewha; Lee, Hojae; Kim, Beom Jin; Park, Taegyun; Choi, Ji Yu; Park, Matthew; Lee, Juno; Cho, Hyeoncheol; Hong, Seok-Pyo; Yang, Sung Ho; Jung, Sun Ho; Ko, Sung-Bo; Choi, Insung S

    2015-12-21

    Although the programmed degradation of biocompatible films finds applications in various fields including biomedical and bionanotechnological areas, coating methods have generally been limited to be substrate-specific, not applicable to any kinds of substrates. In this paper, we report a dopamine derivative, which allows for both universal coating of various substrates and stimuli-responsive film degradation, inspired by mussel-adhesive proteins. Two dopamine moieties are linked together by the disulfide bond, the cleavage of which enables the programmed film degradation. Mechanistic analysis of the degradable films indicates that the initial cleavage of the disulfide linkage causes rapid uptake of water molecules, hydrating the films, which leads to rapid degradation. Our substrate-independent coating of degradable films provides an advanced tool for drug delivery systems, tissue engineering, and anti-fouling strategies.

  18. Scorpion venom peptides with no disulfide bridges: a review.

    PubMed

    Almaaytah, Ammar; Albalas, Qosay

    2014-01-01

    Scorpion venoms are rich sources of biologically active peptides that are classified into disulfide-bridged peptides (DBPs) and non-disulfide-bridged peptides (NDBPs). DBPs are the main scorpion venom components responsible for the neurotoxic effects observed during scorpion envenomation as they usually target membrane bound ion channels of excitable and non-excitable cells. Several hundred DBPs have been identified and functionally characterized in the past two decades. The NDBPs represent a novel group of molecules that have gained great interest only recently due to their high diversity both in their primary structures and bioactivities. This review provides an overview of scorpion NDBPs focusing on their therapeutic applications, modes of discovery, mechanisms of NDBPs genetic diversity and structural properties. It also provides a simple classification for NDBPs that could be adopted and applied to other NDBPs identified in future studies.

  19. Disulfide isoforms of recombinant glia maturation factor beta.

    PubMed

    Zaheer, A; Lim, R

    1990-09-14

    Recombinant human glia maturation factor beta (r-hGMF-beta) is a single-chain polypeptide (141 amino acid residues) containing three cysteines, at positions 7, 86 and 95. Nascent r-hGMF-beta exists in the reduced state and has no biological activity. The protein can be activated through oxidative refolding by incubation with a mixture of reduced and oxidized glutathione. Reverse-phase HPLC analysis of the refolded r-hGMF-beta shows the presence of four peaks, corresponding to the reduced form plus three newly generated intrachain disulfide-containing isoforms predicted from the number of cysteine residues. Only one isoform shows biological activity when tested for growth suppression on C6 glioma cells. We infer from the HPLC elution pattern that the active form contains the disulfide bridge Cys86-Cys95.

  20. Moderate temperature sodium cells. I - Transition metal disulfide cathodes

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.; Pitts, L.; Schiff, R.

    1980-01-01

    TiS2, VS2, and Nb(1.1)S2 transition metal disulfides were evaluated as cathode materials for a moderate temperature rechargeable Na cell operating at 130 C. The 1st discharge of TiS2 results in a capacity of 0.85 eq/mole; approximately half of the Na in the 1st phase spanning the Na range from zero to 0.30 and almost all the Na in the 2nd phase spanning the 0.37 to 0.80 range are rechargeable. VS2 intercalates up to one mole of Na/mole of VS2 in the 1st discharge; the resulting Na(x)VS2 ternary consists of 3 phases in the 3 ranges of Na from zero to 1. Niobium disulfide undergoes a phase change in the 1st discharge; the average rechargeable capacity in extended cycling of this cathode is 0.50 eq/mole.

  1. High hemoglobin mixed disulfide content in hemolysates from stressed shark.

    PubMed

    Dafré, A L; Reischl, E

    1990-01-01

    1. Hemolysate from heavily stressed smooth hammerhead shark, Sphyrna zygaena, shows three electrophoretic components, SZ I, SZ II and SZ III, whose relative concentrations are 36.4 +/- 6.8, 36.4 +/- 5.0 and 20.8 +/- 5.7%, respectively. After reduction with DTE only SZ I remained. 2. SZ I reacted with glutathione disulfide reconstitute SZ II and SZ III. 3. Non-reduced, DTE-reduced, and denatured hemoglobin were found to have 2.0 +/- 0.4, 3.7 +/- 0.6, and 9.4 +/- 0.7-SH groups, respectively. 4. Erythrocyte non-protein--SH (NPSH), including glutathione present as mixed disulfide with SZ II and SZ III, is 1.7 NPSH/Hb.

  2. A degradable polydopamine coating based on disulfide-exchange reaction

    NASA Astrophysics Data System (ADS)

    Hong, Daewha; Lee, Hojae; Kim, Beom Jin; Park, Taegyun; Choi, Ji Yu; Park, Matthew; Lee, Juno; Cho, Hyeoncheol; Hong, Seok-Pyo; Yang, Sung Ho; Jung, Sun Ho; Ko, Sung-Bo; Choi, Insung S.

    2015-11-01

    Although the programmed degradation of biocompatible films finds applications in various fields including biomedical and bionanotechnological areas, coating methods have generally been limited to be substrate-specific, not applicable to any kinds of substrates. In this paper, we report a dopamine derivative, which allows for both universal coating of various substrates and stimuli-responsive film degradation, inspired by mussel-adhesive proteins. Two dopamine moieties are linked together by the disulfide bond, the cleavage of which enables the programmed film degradation. Mechanistic analysis of the degradable films indicates that the initial cleavage of the disulfide linkage causes rapid uptake of water molecules, hydrating the films, which leads to rapid degradation. Our substrate-independent coating of degradable films provides an advanced tool for drug delivery systems, tissue engineering, and anti-fouling strategies.Although the programmed degradation of biocompatible films finds applications in various fields including biomedical and bionanotechnological areas, coating methods have generally been limited to be substrate-specific, not applicable to any kinds of substrates. In this paper, we report a dopamine derivative, which allows for both universal coating of various substrates and stimuli-responsive film degradation, inspired by mussel-adhesive proteins. Two dopamine moieties are linked together by the disulfide bond, the cleavage of which enables the programmed film degradation. Mechanistic analysis of the degradable films indicates that the initial cleavage of the disulfide linkage causes rapid uptake of water molecules, hydrating the films, which leads to rapid degradation. Our substrate-independent coating of degradable films provides an advanced tool for drug delivery systems, tissue engineering, and anti-fouling strategies. Electronic supplementary information (ESI) available: Synthesis, characterization, and other additional details. See DOI: 10

  3. Performance and Safety Characteristics of Lithium-molybdenum Disulfide Cells

    NASA Technical Reports Server (NTRS)

    Stiles, J. A.

    1984-01-01

    The lithium-molybdenum disulfide system offers attractive characteristics including high rate capability, successful operation up to 75 C, a very low self-discharge rate, a good cycle life and safety characteristics which compare favorably to those of other lithium cells. Moreover, the materials and manufacturing costs for the system is effectively controlled, so the cells should ultimately be competitive with currently marketed rechargeable cells.

  4. Oxidation of kinetically trapped thiols by protein disulfide isomerase.

    PubMed

    Walker, K W; Gilbert, H F

    1995-10-17

    The formation of a stabilized structure during oxidative protein folding can severely retard disulfide formation if the structure must be disrupted to gain access to buried cysteines. These kinetic traps can slow protein folding and disulfide bond formation to the extent that unassisted folding is too slow to be kinetically competent in the cell. Protein disulfide isomerase (PDI) facilitates the oxidation of a kinetically trapped state of RTEM-1 beta-lactamase in which two cysteines that form the single disulfide bond in the native protein are buried and approximately 500-fold less reactive than exposed cysteines. Under second-order conditions, PDI-dependent oxidation of reduced, folded beta-lactamase is 500-fold faster than GSSG-dependent oxidation. The rate difference observed between PDI and GSSG can be accounted for by the 520-fold higher kinetic reactivity of PDI as an oxidant. Noncovalent interactions between PDI (35 microM) and beta-lactamase increase the reactivity or unfolding of beta-lactamase in the steady-state by less than 3-fold. At high concentrations of PDI or alkylating agents, the reaction of beta-lactamase cysteines approaches a constant rate, limited by the spontaneous unfolding of the protein (kunfold = 0.024 +/- 0.005 min-1). PDI does not substantially increase the rate of beta-lactamase unfolding; however, once beta-lactamase spontaneously unfolds, PDI at concentrations greater than 44 +/- 4 microM, oxidizes the unfolded substrate before it can refold (kfold = 1.5 +/- 0.2 min-1).(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Vanadium nitride functionalization and denitrogenation by carbon disulfide and dioxide.

    PubMed

    Brask, Justin K; Durà-Vilà, Víctor; Diaconescu, Paula L; Cummins, Christopher C

    2002-04-21

    A dramatic difference in behavior is observed for the dithiocarbamate and carbamate complexes [Ar(But)N]3V(NCE2)Na(THF)2(E = S or O, respectively), prepared from the corresponding nitride species ([Ar(But)N]3V identical to NNa)2 by way of a nucleophilic addition reaction involving carbon disulfide or dioxide, and is rationalized with the aid of DFT calculations.

  6. The Exploitation of Black Athletes.

    ERIC Educational Resources Information Center

    Edwards, Harry

    1983-01-01

    Colleges and universities have not up held their end of the bargain with athletes, exploiting a disproportionate number of talented Black athletes by not providing the kind of education the students sought or needed and by applying rigid academic standards for eligibility. (MSE)

  7. Selective Gas-Phase Ion/Ion Reactions: Enabling Disulfide Mapping via Oxidation and Cleavage of Disulfide Bonds in Intermolecularly-Linked Polypeptide Ions.

    PubMed

    Pilo, Alice L; McLuckey, Scott A

    2016-09-20

    The selective gas-phase oxidation of disulfide bonds to their thiosulfinate form using ion/ion reactions and subsequent cleavage is demonstrated here. Oxidizing reagent anions are observed to attach to all polypeptides, regardless of amino acid composition. Direct proton transfer yielding a charge-reduced peptide is also frequently observed. Activation of the ion/ion complex between an oxidizing reagent anion and a disulfide-containing peptide cation results in oxygen transfer from the reagent anion to the peptide cation to form the [M+H+O](+) species. This thiosulfinate derivative can undergo one of several rearrangements that result in cleavage of the disulfide bond. Species containing an intermolecular disulfide bond undergo separation of the two chains upon activation. Further activation can be used to generate more sequence information from each chain. These oxidation ion/ion reactions have been used to illustrate the identification of S-glutathionylated and S-cysteinylated peptides, in which low molecular weight thiols are attached to cysteine residues in peptides via disulfide bonds. The oxidation chemistry effectively labels peptide ions with readily oxidized groups, such as disulfide bonds. This enables a screening approach for the identification of disulfide-linked peptides in a disulfide mapping application involving enzymatic digestion. The mixtures of ions generated by tryptic and peptic digestions of lysozyme and insulin, respectively, without prior separation or isolation were subjected both to oxidation and proton transfer ion/ion chemistry to illustrate the identification of peptides in the mixtures with readily oxidized groups.

  8. The influence of zinc(II) on thioredoxin/glutathione disulfide exchange: QM/MM studies to explore how zinc(II) accelerates exchange in higher dielectric environments.

    PubMed

    Kurian, Roby; Bruce, Mitchell R M; Bruce, Alice E; Amar, François G

    2015-08-01

    QM/MM studies were performed to explore the energetics of exchange reactions of glutathione disulfide (GSSG) and the active site of thioredoxin [Cys32-Gly33-Pro34-Cys35] with and without zinc(II), in vacuum and solvated models. The activation energy for exchange, in the absence of zinc, is 29.7 kcal mol(-1) for the solvated model. This is 3.3 kcal mol(-1) higher than the activation energy for exchange in the gas phase, due to ground state stabilization of the active site Cys-32 thiolate in a polar environment. In the presence of zinc, the activation energy for exchange is 4.9 kcal mol(-1) lower than in the absence of zinc (solvated models). The decrease in activation energy is attributed to stabilization of the charge-separated transition state, which has a 4-centered, cyclic arrangement of Zn-S-S-S with an estimated dipole moment of 4.2 D. A difference of 4.9 kcal mol(-1) in activation energy would translate to an increase in rate by a factor of about 4000 for zinc-assisted thiol-disulfide exchange. The calculations are consistent with previously reported experimental results, which indicate that metal-thiolate, disulfide exchange rates increase as a function of solvent dielectric. This trend is opposite to that observed for the influence of the dielectric environment on the rate of thiol-disulfide exchange in the absence of metal. The results suggest a dynamic role for zinc in thiol-disulfide exchange reactions, involving accessible cysteine sites on proteins, which may contribute to redox regulation and mechanistic pathways during oxidative stress.

  9. Dissecting the Machinery That Introduces Disulfide Bonds in Pseudomonas aeruginosa

    PubMed Central

    Arts, Isabelle S.; Ball, Geneviève; Leverrier, Pauline; Garvis, Steven; Nicolaes, Valérie; Vertommen, Didier; Ize, Bérengère; Tamu Dufe, Veronica; Messens, Joris; Voulhoux, Romé; Collet, Jean-François

    2013-01-01

    ABSTRACT Disulfide bond formation is required for the folding of many bacterial virulence factors. However, whereas the Escherichia coli disulfide bond-forming system is well characterized, not much is known on the pathways that oxidatively fold proteins in pathogenic bacteria. Here, we report the detailed unraveling of the pathway that introduces disulfide bonds in the periplasm of the human pathogen Pseudomonas aeruginosa. The genome of P. aeruginosa uniquely encodes two DsbA proteins (P. aeruginosa DsbA1 [PaDsbA1] and PaDsbA2) and two DsbB proteins (PaDsbB1 and PaDsbB2). We found that PaDsbA1, the primary donor of disulfide bonds to secreted proteins, is maintained oxidized in vivo by both PaDsbB1 and PaDsbB2. In vitro reconstitution of the pathway confirms that both PaDsbB1 and PaDsbB2 shuttle electrons from PaDsbA1 to membrane-bound quinones. Accordingly, deletion of both P. aeruginosa dsbB1 (PadsbB1) and PadsbB2 is required to prevent the folding of several P. aeruginosa virulence factors and to lead to a significant decrease in pathogenicity. Using a high-throughput proteomic approach, we also analyzed the impact of PadsbA1 deletion on the global periplasmic proteome of P. aeruginosa, which allowed us to identify more than 20 new potential substrates of this major oxidoreductase. Finally, we report the biochemical and structural characterization of PaDsbA2, a highly oxidizing oxidoreductase, which seems to be expressed under specific conditions. By fully dissecting the machinery that introduces disulfide bonds in P. aeruginosa, our work opens the way to the design of novel antibacterial molecules able to disarm this pathogen by preventing the proper assembly of its arsenal of virulence factors. PMID:24327342

  10. 25 CFR 20.516 - How are child abuse, neglect or exploitation cases to be handled?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false How are child abuse, neglect or exploitation cases to be handled? 20.516 Section 20.516 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR HUMAN SERVICES FINANCIAL ASSISTANCE AND SOCIAL SERVICES PROGRAMS Child Assistance Foster Care § 20.516 How are child...

  11. 25 CFR 20.516 - How are child abuse, neglect or exploitation cases to be handled?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false How are child abuse, neglect or exploitation cases to be handled? 20.516 Section 20.516 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR HUMAN SERVICES FINANCIAL ASSISTANCE AND SOCIAL SERVICES PROGRAMS Child Assistance Foster Care § 20.516 How are child...

  12. 25 CFR 20.516 - How are child abuse, neglect or exploitation cases to be handled?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false How are child abuse, neglect or exploitation cases to be handled? 20.516 Section 20.516 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR HUMAN SERVICES FINANCIAL ASSISTANCE AND SOCIAL SERVICES PROGRAMS Child Assistance Foster Care § 20.516 How are child...

  13. 25 CFR 20.516 - How are child abuse, neglect or exploitation cases to be handled?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true How are child abuse, neglect or exploitation cases to be handled? 20.516 Section 20.516 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR HUMAN SERVICES FINANCIAL ASSISTANCE AND SOCIAL SERVICES PROGRAMS Child Assistance Foster Care § 20.516 How are child...

  14. 25 CFR 20.516 - How are child abuse, neglect or exploitation cases to be handled?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false How are child abuse, neglect or exploitation cases to be handled? 20.516 Section 20.516 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR HUMAN SERVICES FINANCIAL ASSISTANCE AND SOCIAL SERVICES PROGRAMS Child Assistance Foster Care § 20.516 How are child...

  15. Radical induced disulfide bond cleavage within peptides via ultraviolet irradiation of an electrospray plume.

    PubMed

    Stinson, Craig A; Xia, Yu

    2013-05-21

    Radical induced disulfide bond cleavage in peptides was demonstrated by ultraviolet (UV) radiation of the electrospray ionization (ESI) plume using a low pressure mercury (LP-Hg) lamp. Tandem mass spectrometry and accurate mass measurements confirmed that the primary reaction products were due to disulfide bond cleavage to form thiol (-SH) and sulfinyl radical (-SO˙). Mechanistic studies showed that the 185 nm emission from a LP-Hg lamp was responsible for UV photolysis of atmospheric O2, which further initiated secondary radical formation and subsequent disulfide bond cleavage by radical attack. The radical induced disulfide bond cleavage was found to be analytically useful in providing rich sequence information for naturally occurring peptides containing intrachain disulfide bonds. The utility of this method was also demonstrated for facile disulfide peptide identification and characterization from protein digests.

  16. Do Vicinal Disulfide Bridges Mediate Functionally Important Redox Transformations in Proteins?

    PubMed Central

    de Araujo, Aline Dantas; Herzig, Volker; Windley, Monique J.; Dziemborowicz, Sławomir; Mobli, Mehdi; Nicholson, Graham M.

    2013-01-01

    Abstract Vicinal disulfide bridges, in which a disulfide bond is formed between adjacent cysteine residues, constitute an unusual but expanding class of potential allosteric disulfides. Although vicinal disulfide rings (VDRs) are relatively uncommon, they have proven to be functionally critical in almost all proteins in which they have been discovered. However, it has proved difficult to test whether these sterically constrained disulfides participate in functionally important redox transformations. We demonstrate that chemical replacement of VDRs with dicarba or diselenide bridges can be used to assess whether VDRs function as allosteric disulfides. Our approach leads to the hypothesis that not all VDRs participate in functionally important redox reactions. Antioxid. Redox Signal. 19, 1976–1980. PMID:23646911

  17. Dark matters: exploitation as cooperation.

    PubMed

    Dasgupta, Partha

    2012-04-21

    The empirical literature on human cooperation contains studies of communitarian institutions that govern the provision of public goods and management of common property resources in poor countries. Scholars studying those institutions have frequently used the Prisoners' Dilemma game as their theoretical tool-kit. But neither the provision of local public goods nor the management of local common property resources involves the Prisoners' Dilemma. That has implications for our reading of communitarian institutions. By applying a fundamental result in the theory of repeated games to a model of local common property resources, it is shown that communitarian institutions can harbour exploitation of fellow members, something that would not be possible in societies where cooperation amounts to overcoming the Prisoners' Dilemma. The conclusion we should draw is that exploitation can masquerade as cooperation.

  18. Teotihuacan, tepeapulco, and obsidian exploitation.

    PubMed

    Charlton, T H

    1978-06-16

    Current cultural ecological models of the development of civilization in central Mexico emphasize the role of subsistence production techniques and organization. The recent use of established and productive archeological surface survey techniques along natural corridors of communication between favorable niches for cultural development within the Central Mexican symbiotic region resulted in the location of sites that indicate an early development of a decentralized resource exploitation, manufacturing, and exchange network. The association of the development of this system with Teotihuacán indicates the importance such nonsubsistence production and exchange had in the evolution of this first central Mexican civilization. The later expansion of Teotihuacán into more distant areas of Mesoamerica was based on this resource exploitation model. Later civilizations centered at Tula and Tenochtitlán also used such a model in their expansion.

  19. Cathode based on molybdenum disulfide nanoflakes for lithium-oxygen batteries.

    SciTech Connect

    Asadi, Mohammad; Kumar, Bijandra; Liu, Cong; Phillips, Patrick; Yasaei, Poya; Behranginia, Amirhossein; Zapol, Peter; Klie, Robert F.; Curtiss, Larry A.; Salehi-Khojin, Amin

    2016-02-01

    Lithium-oxygen (Li-O-2) batteries have been recognized as an emerging technology for energy storage systems owing to their high theoretical specific energy. One challenge is to find an electrolyte/cathode system that is efficient, stable, and cost-effective. We present such a system based on molybdenum disulfide (MoS2) nanoflakes combined with an ionic liquid (IL) that work together as an effective cocatalyst for discharge and charge in a Li-O-2 battery. Cyclic voltammetry results show superior catalytic performance for this cocatalyst for both oxygen reduction and evolution reactions compared to Au and Pt catalysts. It also performs remarkably well in the Li-O-2 battery system with 85% round-trip efficiency and reversibility up to 50 cycles. Density functional calculations provide a mechanistic understanding of the MoS2 nanoflakes/IL system. cocatalyst reported in this work could open the way for exploiting the unique properties of ionic liquids in Li-air batteries in combination with nanostructured MoS2 as a cathode material.

  20. Disulfides as cyanide antidotes: evidence for a new in vivo oxidative pathway for cyanide detoxification.

    PubMed

    Zottola, Mark A; Beigel, Keith; Soni, Sunil-Datta; Lawrence, Richard

    2009-12-01

    It is known that cyanide is converted to thiocyanate in the presence of the enzyme rhodanese. The enzyme is activated by sulfur transfer from an appropriate sulfur donor. The activated enzyme then binds cyanide and transfers the sulfur atom to cyanide to form thiocyanate. This project began as an exploration of the ability of disulfides to act as sulfur donors in the rhodanese-mediated detoxification of cyanide. To our surprise, and contrary to expectations based on efficacy studies in vivo, our in vitro results showed that disulfides are rather poor sulfur donors. The transfer of a sulfur atom from a disulfide to the enzyme must occur via cleavage of a carbon-sulfur bond either of the original disulfide or in a mixed disulfide arising from the reaction of rhodanese with the original disulfide. Extending the reaction time and addition of chloride anion (a nucleophile) did not significantly change the results of the experiment. Using ultrasound as a means of accelerating bond cleavage also had a minimal effect. Those results ruled out cleavage of the carbon-sulfur bond in the original disulfide but did not preclude formation of a mixed disulfide. S-Methyl methylthiosulfonate (MTSO) was used to determine whether a mixed disulfide, if formed, would result in transfer of a sulfur atom to rhodanese. While no thiocyanate was formed in the reaction between cyanide and rhodanese exposed to MTSO, NMR analysis revealed that MTSO reacted directly with cyanide anion to form methyl thiocyanate. This result reveals the body's possible use of oxidized disulfides as a first line of defense against cyanide intoxication. The oxidation of disulfides to the corresponding thiosulfinate or thiosulfonate will result in facilitating their reaction with other nucleophiles. The reaction of an oxidized disulfide with a sulfur nucleophile from glutathione could be a plausible origin for the cyanide metabolite 2-aminothiazoline-4-carboxylic acid.

  1. Method for removal of asphaltene depositions with amine-activated disulfide oil

    SciTech Connect

    Sharp, S.P.

    1983-04-12

    A method for treating and removing unwanted asphaltene deposits from oil and gas wells, surface equipment, flow lines, and pore spaces of oil-baring formations comprises treatment with an amine -activated aliphatic disulfide oil as an asphaltene solvent. In a preferred aspect, the aliphatic disulfide oil is a dialkyl disulfide oil and is activated by the addition of 10 weight percent of diethylamine. In a specific use, the activated disulfide oil is used to remove asphaltene deposits from an oilbearing formation and a producing well penetrating the formation.

  2. Imaging disulfide dinitroxides at 250 MHz to monitor thiol redox status.

    PubMed

    Elajaili, Hanan; Biller, Joshua R; Rosen, Gerald M; Kao, Joseph P Y; Tseytlin, Mark; Buchanan, Laura A; Rinard, George A; Quine, Richard W; McPeak, Joseph; Shi, Yilin; Eaton, Sandra S; Eaton, Gareth R

    2015-11-01

    Measurement of thiol-disulfide redox status is crucial for characterization of tumor physiology. The electron paramagnetic resonance (EPR) spectra of disulfide-linked dinitroxides are readily distinguished from those of the corresponding monoradicals that are formed by cleavage of the disulfide linkage by free thiols. EPR spectra can thus be used to monitor the rate of cleavage and the thiol redox status. EPR spectra of (1)H,(14)N- and (2)H,(15)N-disulfide dinitroxides and the corresponding monoradicals resulting from cleavage by glutathione have been characterized at 250 MHz, 1.04 GHz, and 9 GHz and imaged by rapid-scan EPR at 250 MHz.

  3. Steps in reductive activation of the disulfide-generating enzyme Ero1p

    PubMed Central

    Heldman, Nimrod; Vonshak, Ohad; Sevier, Carolyn S; Vitu, Elvira; Mehlman, Tevie; Fass, Deborah

    2010-01-01

    Ero1p is the primary catalyst of disulfide bond formation in the yeast endoplasmic reticulum (ER). Ero1p contains a pair of essential disulfide bonds that participate directly in the electron transfer pathway from substrate thiol groups to oxygen. Remarkably, elimination of certain other Ero1p disulfides by mutation enhances enzyme activity. In particular, the C150A/C295A Ero1p mutant exhibits increased thiol oxidation in vitro and in vivo and interferes with redox homeostasis in yeast cells by hyperoxidizing the ER. Inhibitory disulfides of Ero1p are thus important for enzyme regulation. To visualize the differences between de-regulated and wild-type Ero1p, we determined the crystal structure of Ero1p C150A/C295A. The structure revealed local changes compared to the wild-type enzyme around the sites of mutation, but no conformational transitions within 25 Å of the active site were observed. To determine how the C150—C295 disulfide nonetheless participates in redox regulation of Ero1p, we analyzed using mass spectrometry the changes in Ero1p disulfide connectivity as a function of time after encounter with reducing substrates. We found that the C150—C295 disulfide sets a physiologically appropriate threshold for enzyme activation by guarding a key neighboring disulfide from reduction. This study illustrates the diverse and interconnected roles that disulfides can play in redox regulation of protein activity. PMID:20669236

  4. Radiation inactivation of ricin occurs with transfer of destructive energy across a disulfide bridge

    SciTech Connect

    Haigler, H.T.; Woodbury, D.J.; Kempner, E.S.

    1985-08-01

    The ionizing radiation sensitivity of ricin, a disulfide-linked heterodimeric protein, was studied as a model to determine the ability of disulfide bonds to transmit destructive energy. The radiation-dependent loss of A chain enzymatic activity after irradiation of either intact ricin or ricin in which the interchain disulfide bond was disrupted gave target sizes corresponding to the molecular size of dimeric ricin or monomeric A chain, respectively. These results clearly show that a disulfide bond can transmit destructive energy between protein subunits.

  5. Thiol-disulfide exchange in peptides derived from human growth hormone.

    PubMed

    Chandrasekhar, Saradha; Epling, Daniel E; Sophocleous, Andreas M; Topp, Elizabeth M

    2014-04-01

    Disulfide bonds stabilize proteins by cross-linking distant regions into a compact three-dimensional structure. They can also participate in hydrolytic and oxidative pathways to form nonnative disulfide bonds and other reactive species. Such covalent modifications can contribute to protein aggregation. Here, we present experimental data for the mechanism of thiol-disulfide exchange in tryptic peptides derived from human growth hormone in aqueous solution. Reaction kinetics was monitored to investigate the effect of pH (6.0-10.0), temperature (4-50°C), oxidation suppressants [ethylenediaminetetraacetic acid (EDTA) and N2 sparging], and peptide secondary structure (amide cyclized vs. open form). The concentrations of free thiol containing peptides, scrambled disulfides, and native disulfide-linked peptides generated via thiol-disulfide exchange and oxidation reactions were determined using reverse-phase HPLC and liquid chromatography-mass spectrometry. Concentration versus time data were fitted to a mathematical model using nonlinear least squares regression analysis. At all pH values, the model was able to fit the data with R(2) ≥ 0.95. Excluding oxidation suppressants (EDTA and N2 sparging) resulted in an increase in the formation of scrambled disulfides via oxidative pathways but did not influence the intrinsic rate of thiol-disulfide exchange. In addition, peptide secondary structure was found to influence the rate of thiol-disulfide exchange.

  6. Theoretical study of the thermal decomposition of dimethyl disulfide.

    PubMed

    Vandeputte, Aäron G; Reyniers, Marie-Françoise; Marin, Guy B

    2010-10-07

    Despite its use in a wide variety of industrially important thermochemical processes, little is known about the thermal decomposition mechanism of dimethyl disulfide (DMDS). To obtain more insight, the radical decomposition mechanism of DMDS is studied theoretically and a kinetic model is developed accounting for the formation of all the decomposition products observed in the experimental studies available in literature. Thermochemical data and rate coefficients are obtained using the high-level CBS-QB3 composite method. Among five methods tested (BMK/6-311G(2d,d,p), MPW1PW91/6-311G(2d,d,p), G3, G3B3, and CBS-QB3), the CBS-QB3 method was found to reproduce most accurately the experimental standard enthalpies of formation for a set of 17 small organosulfur compounds and the bond dissociation energies for a set of 10 sulfur bonds. Enthalpies of formation were predicted within 4 kJ mol(-1) while the mean absolute deviation on the bond dissociation enthalpies amounts to 7 kJ mol(-1). From the theoretical study, a new reaction path is identified for the formation of carbon disulfide via dithiirane (CH(2)S(2)). A reaction mechanism was constructed containing 36 reactions among 25 species accounting for the formation of all the decomposition products reported in literature. High-pressure limit rate coefficients for the 36 reactions in the reaction mechanism are presented. The kinetic model is able to grasp the experimental observations. With the recombination of thiyl radicals treated as being in the low-pressure limit, the experimentally reported first-order rate coefficients for the decomposition of DMDS are reproduced within 1 order of magnitude, while the observed product selectivities of most compounds are reproduced satisfactory. Simulations indicate that at high conversions most of the carbon disulfide forms according to the newly identified reaction path involving the formation of dithiirane.

  7. Diaryl Disulfides as Novel Stabilizers of Tumor Suppressor Pdcd4

    PubMed Central

    Schmid, Tobias; Blees, Johanna S.; Bajer, Magdalena M.; Wild, Janine; Pescatori, Luca; Cuzzucoli Crucitti, Giuliana; Scipione, Luigi; Costi, Roberta; Henrich, Curtis J.; Brüne, Bernhard; Colburn, Nancy H.; Di Santo, Roberto

    2016-01-01

    The translation inhibitor and tumor suppressor Pdcd4 was reported to be lost in various tumors and put forward as prognostic marker in tumorigenesis. Decreased Pdcd4 protein stability due to PI3K-mTOR-p70S6K1 dependent phosphorylation of Pdcd4 followed by β-TrCP1-mediated ubiquitination, and proteasomal destruction of the protein was characterized as a major mechanism contributing to the loss of Pdcd4 expression in tumors. In an attempt to identify stabilizers of Pdcd4, we used a luciferase-based high-throughput compatible cellular assay to monitor phosphorylation-dependent proteasomal degradation of Pdcd4 in response to mitogen stimulation. Following a screen of approximately 2000 compounds, we identified 1,2-bis(4-chlorophenyl)disulfide as a novel Pdcd4 stabilizer. To determine an initial structure-activity relationship, we used 3 additional compounds, synthesized according to previous reports, and 2 commercially available compounds for further testing, in which either the linker between the aryls was modified (compounds 2–4) or the chlorine residues were replaced by groups with different electronic properties (compounds 5 and 6). We observed that those compounds with alterations in the sulfide linker completely lost the Pdcd4 stabilizing potential. In contrast, modifications in the chlorine residues showed only minor effects on the Pdcd4 stabilizing activity. A reporter with a mutated phospho-degron verified the specificity of the compounds for stabilizing the Pdcd4 reporter. Interestingly, the active diaryl disulfides inhibited proliferation and viability at concentrations where they stabilized Pdcd4, suggesting that Pdcd4 stabilization might contribute to the anti-proliferative properties. Finally, computational modelling indicated that the flexibility of the disulfide linker might be necessary to exert the biological functions of the compounds, as the inactive compound appeared to be energetically more restricted. PMID:26982744

  8. Ultrafast Optical Microscopy of Single Monolayer Molybdenum Disulfide Flakes

    SciTech Connect

    Seo, Minah; Yamaguchi, Hisato; Mohite, Aditya D.; Boubanga-Tombet, Stephane; Blancon, Jean-Christophe; Najmaei, Sina; Ajayan, Pulickel M.; Lou, Jun; Taylor, Antoinette J.; Prasankumar, Rohit P.

    2016-02-15

    We performed ultrafast optical microscopy on single flakes of atomically thin CVD-grown molybdenum disulfide, using non-degenerate femtosecond pump-probe spectroscopy to excite and probe carriers above and below the indirect and direct band gaps. These measurements reveal the influence of layer thickness on carrier dynamics when probing near the band gap. Furthermore, fluence-dependent measurements indicate that carrier relaxation is primarily influenced by surface-related defect and trap states after above-bandgap photoexcitation. Furthermore, the ability to probe femtosecond carrier dynamics in individual flakes can thus give much insight into light-matter interactions in these two-dimensional nanosystems.

  9. A 65 Ah rechargeable lithium molybdenum disulfide battery

    NASA Technical Reports Server (NTRS)

    Brandt, K.

    1986-01-01

    A rechargeable lithium molybdenum disulfide battery which has a number of superior performance characteristics which includes a high energy density, a high power density, and a long charge retention time was developed. The first cell sizes developed included a C size cell and an AA size cell. Over the last two years, a project to demonstrate the feasibility of the scale up to this technology to a BC size cell with 65 Ah capacity was undertaken. The objective was to develop, build, and test a .6 kWh storage battery consisting of 6 BC cells in series.

  10. Ultrafast Optical Microscopy of Single Monolayer Molybdenum Disulfide Flakes

    PubMed Central

    Seo, Minah; Yamaguchi, Hisato; Mohite, Aditya D.; Boubanga-Tombet, Stephane; Blancon, Jean-Christophe; Najmaei, Sina; Ajayan, Pulickel M.; Lou, Jun; Taylor, Antoinette J.; Prasankumar, Rohit P.

    2016-01-01

    We have performed ultrafast optical microscopy on single flakes of atomically thin CVD-grown molybdenum disulfide, using non-degenerate femtosecond pump-probe spectroscopy to excite and probe carriers above and below the indirect and direct band gaps. These measurements reveal the influence of layer thickness on carrier dynamics when probing near the band gap. Furthermore, fluence-dependent measurements indicate that carrier relaxation is primarily influenced by surface-related defect and trap states after above-bandgap photoexcitation. The ability to probe femtosecond carrier dynamics in individual flakes can thus give much insight into light-matter interactions in these two-dimensional nanosystems. PMID:26876194

  11. Routing Algorithm Exploits Spatial Relations

    NASA Technical Reports Server (NTRS)

    Okino, Clayton; Jennings, Esther

    2004-01-01

    A recently developed routing algorithm for broadcasting in an ad hoc wireless communication network takes account of, and exploits, the spatial relationships among the locations of nodes, in addition to transmission power levels and distances between the nodes. In contrast, most prior algorithms for discovering routes through ad hoc networks rely heavily on transmission power levels and utilize limited graph-topology techniques that do not involve consideration of the aforesaid spatial relationships. The present algorithm extracts the relevant spatial-relationship information by use of a construct denoted the relative-neighborhood graph (RNG).

  12. The Effect of Tensile Stress on the Conformational Free Energy Landscape of Disulfide Bonds

    PubMed Central

    Anjukandi, Padmesh; Dopieralski, Przemyslaw; Ribas–Arino, Jordi; Marx, Dominik

    2014-01-01

    Disulfide bridges are no longer considered to merely stabilize protein structure, but are increasingly recognized to play a functional role in many regulatory biomolecular processes. Recent studies have uncovered that the redox activity of native disulfides depends on their C–C–S–S dihedrals, and . Moreover, the interplay of chemical reactivity and mechanical stress of disulfide switches has been recently elucidated using force–clamp spectroscopy and computer simulation. The and angles have been found to change from conformations that are open to nucleophilic attack to sterically hindered, so–called closed states upon exerting tensile stress. In view of the growing evidence of the importance of C–C–S–S dihedrals in tuning the reactivity of disulfides, here we present a systematic study of the conformational diversity of disulfides as a function of tensile stress. With the help of force-clamp metadynamics simulations, we show that tensile stress brings about a large stabilization of the closed conformers, thereby giving rise to drastic changes in the conformational free energy landscape of disulfides. Statistical analysis shows that native TDi, DO and interchain Ig protein disulfides prefer open conformations, whereas the intrachain disulfide bridges in Ig proteins favor closed conformations. Correlating mechanical stress with the distance between the two –carbons of the disulfide moiety reveals that the strain of intrachain Ig protein disulfides corresponds to a mechanical activation of about 100 pN. Such mechanical activation leads to a severalfold increase of the rate of the elementary redox reaction step. All these findings constitute a step forward towards achieving a full understanding of functional disulfides. PMID:25286308

  13. Legionella pneumophila utilizes a single-player disulfide-bond oxidoreductase system to manage disulfide bond formation and isomerization.

    PubMed

    Kpadeh, Zegbeh Z; Day, Shandra R; Mills, Brandy W; Hoffman, Paul S

    2015-03-01

    Legionella pneumophila uses a single homodimeric disulfide bond (DSB) oxidoreductase DsbA2 to catalyze extracytoplasmic protein folding and to correct DSB errors through protein-disulfide isomerase (PDI) activity. In Escherichia coli, these functions are separated to avoid futile cycling. In L. pneumophila, DsbA2 is maintained as a mixture of disulfides (S-S) and free thiols (SH), but when expressed in E. coli, only the SH form is observed. We provide evidence to suggest that structural differences in DsbB oxidases (LpDsbB1 and LpDsbB2) and DsbD reductases (LpDsbD1 and LpDsbD2) (compared with E. coli) permit bifunctional activities without creating a futile cycle. LpdsbB1 and LpdsbB2 partially complemented an EcdsbB mutant while neither LpdsbD1 nor LpdsbD2 complemented an EcdsbD mutant unless DsbA2 was also expressed. When the dsb genes of E. coli were replaced with those of L. pneumophila, motility was restored and DsbA2 was present as a mixture of redox forms. A dominant-negative approach to interfere with DsbA2 function in L. pneumophila determined that DSB oxidase activity was necessary for intracellular multiplication and assembly/function of the Dot/Icm Type IVb secretion system. Our studies show that a single-player system may escape the futile cycle trap by limiting transfer of reducing equivalents from LpDsbDs to DsbA2.

  14. Diversity of the Epsilonproteobacteria Dsb (disulfide bond) systems.

    PubMed

    Bocian-Ostrzycka, Katarzyna M; Grzeszczuk, Magdalena J; Dziewit, Lukasz; Jagusztyn-Krynicka, Elżbieta K

    2015-01-01

    The bacterial proteins of the Dsb family-important components of the post-translational protein modification system-catalyze the formation of disulfide bridges, a process that is crucial for protein structure stabilization and activity. Dsb systems play an essential role in the assembly of many virulence factors. Recent rapid advances in global analysis of bacteria have thrown light on the enormous diversity among bacterial Dsb systems. While the Escherichia coli disulfide bond-forming system is quite well understood, the mechanisms of action of Dsb systems in other bacteria, including members of class Epsilonproteobacteria that contain pathogenic and non-pathogenic bacteria colonizing extremely diverse ecological niches, are poorly characterized. Here we present a review of current knowledge on Epsilonproteobacteria Dsb systems. We have focused on the Dsb systems of Campylobacter spp. and Helicobacter spp. because our knowledge about Dsb proteins of Wolinella and Arcobacter spp. is still scarce and comes mainly from bioinformatic studies. Helicobacter pylori is a common human pathogen that colonizes the gastric epithelium of humans with severe consequences. Campylobacter spp. is a leading cause of zoonotic enteric bacterial infections in most developed and developing nations. We focus on various aspects of the diversity of the Dsb systems and their influence on pathogenicity, particularly because Dsb proteins are considered as potential targets for a new class of anti-virulence drugs to treat human infections by Campylobacter or Helicobacter spp.

  15. Methods of measuring Protein Disulfide Isomerase activity: a critical overview

    NASA Astrophysics Data System (ADS)

    Watanabe, Monica; Laurindo, Francisco; Fernandes, Denise

    2014-09-01

    Protein disulfide isomerase is an essential redox chaperone from the endoplasmic reticulum (ER) and is responsible for correct disulfide bond formation in nascent proteins. PDI is also found in other cellular locations in the cell, particularly the cell surface. Overall, PDI contributes to ER and global cell redox homeostasis and signaling. The knowledge about PDI structure and function progressed substantially based on in vitro studies using recombinant PDI and chimeric proteins. In these experimental scenarios, PDI reductase and chaperone activities are readily approachable. In contrast, assays to measure PDI isomerase activity, the hallmark of PDI family, are more complex. Assessment of PDI roles in cells and tissues mainly relies on gain- or loss-of-function studies. However, there is limited information regarding correlation of experimental readouts with the distinct types of PDI activities. In this mini-review, we evaluate the main methods described for measuring the different kinds of PDI activity: thiol reductase, thiol oxidase, thiol isomerase and chaperone. We emphasize the need to use appropriate controls and the role of critical interferents (e.g., detergent, presence of reducing agents). We also discuss the translation of results from in vitro studies with purified recombinant PDI to cellular and tissue samples, with critical comments on the interpretation of results.

  16. Copper-mediated stereospecific C-H oxidative sulfenylation of terminal alkenes with disulfides.

    PubMed

    Tu, Hai-Yong; Hu, Bo-Lun; Deng, Chen-Liang; Zhang, Xing-Guo

    2015-11-04

    A copper and iodine-mediated C-H oxidative sulfenylation of olefins with diaryl disulfides has been developed for the stereospecific synthesis of vinyl thioether. With the combination of Cu(OTf)2 and I2, a variety of terminal alkenes underwent oxidative coupling reaction with various diaryl disulfides successfully to afford the corresponding E-vinyl sulfides in moderate to good yields.

  17. 21 CFR 520.1802 - Piperazine-carbon disulfide complex oral dosage forms.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Piperazine-carbon disulfide complex oral dosage forms. 520.1802 Section 520.1802 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... § 520.1802 Piperazine-carbon disulfide complex oral dosage forms....

  18. 46 CFR 151.50-40 - Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Additional requirements for carbon disulfide (carbon... Special Requirements § 151.50-40 Additional requirements for carbon disulfide (carbon bisulfide) and ethyl... waterways at the loading and unloading points. (f) The special requirements of § 151.50-41 for...

  19. 21 CFR 520.1802 - Piperazine-carbon disulfide complex oral dosage forms.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Piperazine-carbon disulfide complex oral dosage forms. 520.1802 Section 520.1802 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... § 520.1802 Piperazine-carbon disulfide complex oral dosage forms....

  20. 46 CFR 151.50-40 - Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Additional requirements for carbon disulfide (carbon... Special Requirements § 151.50-40 Additional requirements for carbon disulfide (carbon bisulfide) and ethyl... waterways at the loading and unloading points. (f) The special requirements of § 151.50-41 for...

  1. 46 CFR 151.50-40 - Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Additional requirements for carbon disulfide (carbon... Special Requirements § 151.50-40 Additional requirements for carbon disulfide (carbon bisulfide) and ethyl... waterways at the loading and unloading points. (f) The special requirements of § 151.50-41 for...

  2. 21 CFR 520.1802 - Piperazine-carbon disulfide complex oral dosage forms.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Piperazine-carbon disulfide complex oral dosage forms. 520.1802 Section 520.1802 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... § 520.1802 Piperazine-carbon disulfide complex oral dosage forms....

  3. 21 CFR 520.1802 - Piperazine-carbon disulfide complex oral dosage forms.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Piperazine-carbon disulfide complex oral dosage forms. 520.1802 Section 520.1802 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... § 520.1802 Piperazine-carbon disulfide complex oral dosage forms....

  4. 46 CFR 151.50-40 - Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Additional requirements for carbon disulfide (carbon... Special Requirements § 151.50-40 Additional requirements for carbon disulfide (carbon bisulfide) and ethyl... waterways at the loading and unloading points. (f) The special requirements of § 151.50-41 for...

  5. 46 CFR 151.50-40 - Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Additional requirements for carbon disulfide (carbon... Special Requirements § 151.50-40 Additional requirements for carbon disulfide (carbon bisulfide) and ethyl... waterways at the loading and unloading points. (f) The special requirements of § 151.50-41 for...

  6. 21 CFR 520.1802 - Piperazine-carbon disulfide complex oral dosage forms.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Piperazine-carbon disulfide complex oral dosage forms. 520.1802 Section 520.1802 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... § 520.1802 Piperazine-carbon disulfide complex oral dosage forms....

  7. Regulation of interleukin-4 signaling by extracellular reduction of intramolecular disulfides

    SciTech Connect

    Curbo, Sophie; Gaudin, Raphael; Carlsten, Mattias; Malmberg, Karl-Johan; Troye-Blomberg, Marita; Ahlborg, Niklas; Karlsson, Anna; Johansson, Magnus; Lundberg, Mathias

    2009-12-25

    Interleukin-4 (IL-4) contains three structurally important intramolecular disulfides that are required for the bioactivity of the cytokine. We show that the cell surface of HeLa cells and endotoxin-activated monocytes can reduce IL-4 intramolecular disulfides in the extracellular space and inhibit binding of IL-4 to the IL-4R{alpha} receptor. IL-4 disulfides were in vitro reduced by thioredoxin 1 (Trx1) and protein disulfide isomerase (PDI). Reduction of IL-4 disulfides by the cell surface of HeLa cells was inhibited by auranofin, an inhibitor of thioredoxin reductase that is an electron donor to both Trx1 and PDI. Both Trx1 and PDI have been shown to be located at the cell surface and our data suggests that these enzymes are involved in catalyzing reduction of IL-4 disulfides. The pro-drug N-acetylcysteine (NAC) that promotes T-helper type 1 responses was also shown to mediate the reduction of IL-4 disulfides. Our data provides evidence for a novel redox dependent pathway for regulation of cytokine activity by extracellular reduction of intramolecular disulfides at the cell surface by members of the thioredoxin enzyme family.

  8. Gamma-Radiolysis of Cysteine-Cysteamine Disulfide in Aqueous Solution,

    DTIC Science & Technology

    Gamma-radiolysis of a mixed disulfide, cysteine- cysteamine disulfide, in unbuffered aqueous solution (0.3 mM) was investigated in the presence and...absence of oxygen. The principal products were the thiols (cysteine and cysteamine ), the corresponding sulfinic and sulfonic acids, the symmetrical

  9. Overview of the regulation of disulfide bond formation in Peptide and protein folding.

    PubMed

    Hidaka, Yuji

    2014-04-01

    Disulfide bonds play a critical role in the maintenance of the native conformation of proteins under thermodynamic control. In general, disulfide bond formation is associated with protein folding, and this restricts the formation of folding intermediates such as misbridged disulfide isomers or kinetically trapped conformations, which provide important information related to how proteins fold into their native conformation. Therefore, numerous studies have focused on the structural analysis of folding intermediates in vitro. However, isolating or trapping folding intermediates, as well as the entire proteins, including mutant proteins, is not an easy task. Several chemical methods have recently been developed for examining peptide and protein folding and for producing, e.g., intact, post-translationally modified, or kinetically trapped proteins, or proteins with misbridged disulfide bonds. This overview introduces chemical methods for regulating the formation of disulfide bonds of peptides and proteins in the context of the thermodynamic and kinetic control of peptide and protein folding.

  10. Air oxidation method employed for the disulfide bond formation of natural and synthetic peptides.

    PubMed

    Calce, Enrica; Vitale, Rosa Maria; Scaloni, Andrea; Amodeo, Pietro; De Luca, Stefania

    2015-08-01

    Among the available protocols, chemically driven approaches to oxidize cysteine may not be required for molecules that, under the native-like conditions, naturally fold in conformations ensuring an effective pairing of the right disulfide bridge pattern. In this contest, we successfully prepared the distinctin, a natural heterodimeric peptide, and some synthetic cyclic peptides that are inhibitors of the CXCR4 receptor. In the first case, the air oxidation reaction allowed to connect two peptide chains via disulfide bridge, while in the second case allowed the cyclization of rationally designed peptides by an intramolecular disulfide bridge. Computational approaches helped to either drive de-novo design or suggest structural modifications and optimal oxidization protocols for disulfide-containing molecules. They are able to both predict and to rationalize the propensity of molecules to spontaneously fold in suitable conformations to achieve the right disulfide bridges.

  11. Chemical methods and approaches to the regioselective formation of multiple disulfide bonds.

    PubMed

    Shimamoto, Shigeru; Katayama, Hidekazu; Okumura, Masaki; Hidaka, Yuji

    2014-04-01

    Disulfide-bond formation plays an important role in the stabilization of the native conformation of peptides and proteins. In the case of multidisulfide-containing peptides and proteins, numerous folding intermediates are produced, including molecules that contain non-native and native disulfide bonds during in vitro folding. These intermediates can frequently be trapped covalently during folding and subsequently analyzed. The structural characterization of these kinetically trapped disulfide intermediates provides a clue to understanding the oxidative folding pathway. To investigate the folding of disulfide-containing peptides and proteins, in this unit, chemical methods are described for regulating regioselective disulfide formation (1) by using a combination of several types of thiol protecting groups, (2) by incorporating unique SeCys residues into a protein or peptide molecule, and (3) by combining with post-translational modification.

  12. Tunable Fabrication of Molybdenum Disulfide Quantum Dots for Intracellular MicroRNA Detection and Multiphoton Bioimaging.

    PubMed

    Dai, Wenhao; Dong, Haifeng; Fugetsu, Bunshi; Cao, Yu; Lu, Huiting; Ma, Xinlei; Zhang, Xueji

    2015-09-02

    Molybdenum disulfide (MoS2 ) quantum dots (QDs) (size <10 nm) possess attractive new properties due to the quantum confinement and edge effects as graphene QDs. However, the synthesis and application of MoS2 QDs has not been investigated in great detail. Here, a facile and efficient approach for synthesis of controllable-size MoS2 QDs with excellent photoluminescence (PL) by using a sulfuric acid-assisted ultrasonic route is developed for this investigation. Various MoS2 structures including monolayer MoS2 flake, nanoporous MoS2 , and MoS2 QDs can be yielded by simply controlling the ultrasonic durations. Comprehensive microscopic and spectroscopic tools demonstrate that the MoS2 QDs have uniform lateral size and possess excellent excitation-independent blue PL. The as-generated MoS2 QDs show high quantum yield of 9.65%, long fluorescence lifetime of 4.66 ns, and good fluorescent stability over broad pH values from 4 to 10. Given the good intrinsic optical properties and large surface area combined with excellent physiological stability and biocompatibility, a MoS2 QDs-based intracellular microRNA imaging analysis system is successfully constructed. Importantly, the MoS2 QDs show good performance as multiphoton bioimaging labeling. The proposed synthesis strategy paves a new way for facile and efficient preparing MoS2 QDs with tunable-size for biomedical imaging and optoelectronic devices application.

  13. Electrocatalytic Hydrogen Evolution Reaction on Edges of a Few Layer Molybdenum Disulfide Nanodots.

    PubMed

    Benson, John; Li, Meixian; Wang, Shuangbao; Wang, Peng; Papakonstantinou, Pagona

    2015-07-01

    The design and development of inexpensive highly efficient electrocatalysts for hydrogen production underpins several emerging clean-energy technologies. In this work, for the first time, molybdenum disulfide (MoS2) nanodots have been synthesized by ionic liquid assisted grinding exfoliation of bulk platelets and isolated by sequential centrifugation. The nanodots have a thickness of up to 7 layers (∼4 nm) and an average lateral size smaller than 20 nm. Detailed structural characterization established that the nanodots retained the crystalline quality and low oxidation states of the bulk material. The small lateral size and reduced number of layers provided these nanodots with an easier path for the electron transport and plentiful active sites for the catalysis of hydrogen evolution reaction (HER) in acidic electrolyte. The MoS2 nanodots exhibited good durability and a Tafel slope of 61 mV dec(-1) with an estimated onset potential of -0.09 V vs RHE, which are considered among the best values achieved for 2H phase. It is envisaged that this work may provide a simplistic route to synthesize a wide range of 2D layered nanodots that have applications in water splitting and other energy related technologies.

  14. Macromolecule functionalization of disulfide-bonded polymer hydrogel capsules and cancer cell targeting.

    PubMed

    Shimoni, Olga; Postma, Almar; Yan, Yan; Scott, Andrew M; Heath, Joan K; Nice, Edouard C; Zelikin, Alexander N; Caruso, Frank

    2012-02-28

    We present a generic and versatile method for functionalization of disulfide-stabilized PMA hydrogel capsules (HCs) with macromolecules, including a number of specific antibodies to cancer cells. Functionalization was achieved by reversible addition-fragmentation chain transfer (RAFT) polymerization of poly(N-vinyl pyrrolidone) (PVPON), which introduced biorelevant heterotelechelic end groups (thiol and amine) to the polymer chain. The PVPON with heterotelechelic end groups was conjugated to the outermost layer of PMA HCs through the thiol groups and reacted with biotin via the amine groups to generate PMA/PVPON(biotin) HCs. On the basis of the high specific interaction and high affinity between biotin and avidin, and its derivates, such as NeutrAvidin (NAv), we functionalized the PMA HCs with biotinylated antibodies. We demonstrate significantly enhanced cellular binding and internalization of the antibody (Ab)-functionalized capsules compared with control human immunoglobulin (IgG)-functionalized capsules, suggesting these capsules can specifically interact with cells through antibody/antigen recognition. We anticipate that the versatility of the functionalization approach reported in this study will assist in targeted therapeutic delivery applications.

  15. Exploiting social evolution in biofilms.

    PubMed

    Boyle, Kerry E; Heilmann, Silja; van Ditmarsch, Dave; Xavier, Joao B

    2013-04-01

    Bacteria are highly social organisms that communicate via signaling molecules, move collectively over surfaces and make biofilm communities. Nonetheless, our main line of defense against pathogenic bacteria consists of antibiotics-drugs that target individual-level traits of bacterial cells and thus, regrettably, select for resistance against their own action. A possible solution lies in targeting the mechanisms by which bacteria interact with each other within biofilms. The emerging field of microbial social evolution combines molecular microbiology with evolutionary theory to dissect the molecular mechanisms and the evolutionary pressures underpinning bacterial sociality. This exciting new research can ultimately lead to new therapies against biofilm infections that exploit evolutionary cheating or the trade-off between biofilm formation and dispersal.

  16. Molecular Bases of Cyclic and Specific Disulfide Interchange between Human ERO1α Protein and Protein-disulfide Isomerase (PDI)*

    PubMed Central

    Masui, Shoji; Vavassori, Stefano; Fagioli, Claudio; Sitia, Roberto; Inaba, Kenji

    2011-01-01

    In the endoplasmic reticulum (ER) of human cells, ERO1α and protein-disulfide isomerase (PDI) constitute one of the major electron flow pathways that catalyze oxidative folding of secretory proteins. Specific and limited PDI oxidation by ERO1α is essential to avoid ER hyperoxidation. To investigate how ERO1α oxidizes PDI selectively among more than 20 ER-resident PDI family member proteins, we performed docking simulations and systematic biochemical analyses. Our findings reveal that a protruding β-hairpin of ERO1α specifically interacts with the hydrophobic pocket present in the redox-inactive PDI b′-domain through the stacks between their aromatic residues, leading to preferred oxidation of the C-terminal PDI a′-domain. ERO1α associated preferentially with reduced PDI, explaining the stepwise disulfide shuttle mechanism, first from ERO1α to PDI and then from oxidized PDI to an unfolded polypeptide bound to its hydrophobic pocket. The interaction of ERO1α with ERp44, another PDI family member protein, was also analyzed. Notably, ERO1α-dependent PDI oxidation was inhibited by a hyperactive ERp44 mutant that lacks the C-terminal tail concealing the substrate-binding hydrophobic regions. The potential ability of ERp44 to inhibit ERO1α activity may suggest its physiological role in ER redox and protein homeostasis. PMID:21398518

  17. Energy for lunar resource exploitation

    NASA Technical Reports Server (NTRS)

    Glaser, Peter E.

    1992-01-01

    Humanity stands at the threshold of exploiting the known lunar resources that have opened up with the access to space. America's role in the future exploitation of space, and specifically of lunar resources, may well determine the level of achievement in technology development and global economic competition. Space activities during the coming decades will significantly influence the events on Earth. The 'shifting of history's tectonic plates' is a process that will be hastened by the increasingly insistent demands for higher living standards of the exponentially growing global population. Key to the achievement of a peaceful world in the 21st century, will be the development of a mix of energy resources at a societally acceptable and affordable cost within a realistic planning horizon. This must be the theme for the globally applicable energy sources that are compatible with the Earth's ecology. It is in this context that lunar resources development should be a primary goal for science missions to the Moon, and for establishing an expanding human presence. The economic viability and commercial business potential of mining, extracting, manufacturing, and transporting lunar resource based materials to Earth, Earth orbits, and to undertake macroengineering projects on the Moon remains to be demonstrated. These extensive activities will be supportive of the realization of the potential of space energy sources for use on Earth. These may include generating electricity for use on Earth based on beaming power from Earth orbits and from the Moon to the Earth, and for the production of helium 3 as a fuel for advanced fusion reactors.

  18. Energy for lunar resource exploitation

    NASA Astrophysics Data System (ADS)

    Glaser, Peter E.

    1992-02-01

    Humanity stands at the threshold of exploiting the known lunar resources that have opened up with the access to space. America's role in the future exploitation of space, and specifically of lunar resources, may well determine the level of achievement in technology development and global economic competition. Space activities during the coming decades will significantly influence the events on Earth. The 'shifting of history's tectonic plates' is a process that will be hastened by the increasingly insistent demands for higher living standards of the exponentially growing global population. Key to the achievement of a peaceful world in the 21st century, will be the development of a mix of energy resources at a societally acceptable and affordable cost within a realistic planning horizon. This must be the theme for the globally applicable energy sources that are compatible with the Earth's ecology. It is in this context that lunar resources development should be a primary goal for science missions to the Moon, and for establishing an expanding human presence. The economic viability and commercial business potential of mining, extracting, manufacturing, and transporting lunar resource based materials to Earth, Earth orbits, and to undertake macroengineering projects on the Moon remains to be demonstrated. These extensive activities will be supportive of the realization of the potential of space energy sources for use on Earth. These may include generating electricity for use on Earth based on beaming power from Earth orbits and from the Moon to the Earth, and for the production of helium 3 as a fuel for advanced fusion reactors.

  19. Cell-free synthesis system suitable for disulfide-containing proteins

    SciTech Connect

    Matsuda, Takayoshi; Watanabe, Satoru; Kigawa, Takanori

    2013-02-08

    Highlights: ► Cell-free synthesis system suitable for disulfide-containing proteins is proposed. ► Disulfide bond formation was facilitated by the use of glutathione buffer. ► DsbC catalyzed the efficient shuffling of incorrectly formed disulfide bonds. ► Milligram quantities of functional {sup 15}N-labeled BPTI and lysozyme C were obtained. ► Synthesized proteins were both catalytically functional and properly folded. -- Abstract: Many important therapeutic targets are secreted proteins with multiple disulfide bonds, such as antibodies, cytokines, hormones, and proteases. The preparation of these proteins for structural and functional analyses using cell-based expression systems still suffers from several issues, such as inefficiency, low yield, and difficulty in stable-isotope labeling. The cell-free (or in vitro) protein synthesis system has become a useful protein production method. The openness of the cell-free system allows direct control of the reaction environment to promote protein folding, making it well suited for the synthesis of disulfide-containing proteins. In this study, we developed the Escherichia coli (E. coli) cell lysate-based cell-free synthesis system for disulfide-containing proteins, which can produce sufficient amounts of functional proteins for NMR analyses. Disulfide bond formation was facilitated by the use of glutathione buffer. In addition, disulfide isomerase, DsbC, catalyzed the efficient shuffling of incorrectly formed disulfide bonds during the protein synthesis reaction. We successfully synthesized milligram quantities of functional {sup 15}N-labeled higher eukaryotic proteins, bovine pancreatic trypsin inhibitor (BPTI) and human lysozyme C (LYZ). The NMR spectra and functional analyses indicated that the synthesized proteins are both catalytically functional and properly folded. Thus, the cell-free system is useful for the synthesis of disulfide-containing proteins for structural and functional analyses.

  20. The moral basis of animal-assisted therapy.

    PubMed

    Zamir, Tzachi

    2006-01-01

    Is nonhuman animal-assisted therapy (AAT) a form of exploitation? After exploring possible moral vindications of AAT and after establishing a distinction between "use" and "exploitation," the essay distinguishes between forms of animal-assisted therapy that are morally unobjectionable and those modes of it that ought to be abolished.

  1. Opportunistic exploitation: an overlooked pathway to extinction.

    PubMed

    Branch, Trevor A; Lobo, Aaron S; Purcell, Steven W

    2013-07-01

    How can species be exploited economically to extinction? Past single-species hypotheses examining the economic plausibility of exploiting rare species have argued that the escalating value of rarity allows extinction to be profitable. We describe an alternative pathway toward extinction in multispecies exploitation systems, termed 'opportunistic exploitation'. In this mode, highly valued species that are targeted first by fishing, hunting, and logging become rare, but their populations can decline further through opportunistic exploitation while more common but less desirable species are targeted. Effectively, expanding exploitation to more species subsidizes the eventual extinction of valuable species at low densities. Managers need to recognize conditions that permit opportunistic depletion and pass regulations to protect highly desirable species when exploitation can expand to other species.

  2. Temperature-dependent morphology of chemical vapor grown molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoyin; Wang, Yantao; Zhou, Jiadong; Liu, Zheng

    2017-04-01

    Monolayered molybdenum disulfide (MoS2) is a 2D direct band gap semiconductor with promising potential applications. In this work, we observed the temperature dependency of the morphologies of MoS2 monolayers from chemical vapor deposition. At a low growing temperature below 850 °C, MoS2 flakes tend to be trianglular in shape. At 850–950 °C, hexagonal MoS2 flakes can be observed. While at a temperature over 950 °C, MoS2 flakes can form rectangular shapes. Complementary characterizations have been made to these samples. We also proposed a mechanism for such temperature-dependent shape evolution based on thermodynamic simulation.

  3. Peptide Bond Formation in Water Mediated by Carbon Disulfide.

    PubMed

    Leman, Luke J; Huang, Zheng-Zheng; Ghadiri, M Reza

    2015-09-01

    Demonstrating plausible nonenzymatic polymerization mechanisms for prebiotic monomers represents a fundamental goal in prebiotic chemistry. While a great deal is now known about the potentially prebiotic synthesis of amino acids, our understanding of abiogenic polymerization processes to form polypeptides is less well developed. Here, we show that carbon disulfide (CS2), a component of volcanic emission and sulfide mineral weathering, and a widely used synthetic reagent and solvent, promotes peptide bond formation in modest yields (up to ∼20%) from α-amino acids under mild aqueous conditions. Exposure of a variety of α-amino acids to CS2 initially yields aminoacyl dithiocarbamates, which in turn generate reactive 2-thiono-5-oxazolidone intermediates, the thio analogues of N-carboxyanhydrides. Along with peptides, thiourea and thiohydantoin species are produced. Amino acid stereochemistry was preserved in the formation of peptides. Our findings reveal that CS2 could contribute to peptide bond formation, and possibly other condensation reactions, in abiogenic settings.

  4. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation

    PubMed Central

    Zhu, Gaohua; Liu, Jun; Zheng, Qiye; Zhang, Ruigang; Li, Dongyao; Banerjee, Debasish; Cahill, David G.

    2016-01-01

    Thermal conductivity of two-dimensional (2D) materials is of interest for energy storage, nanoelectronics and optoelectronics. Here, we report that the thermal conductivity of molybdenum disulfide can be modified by electrochemical intercalation. We observe distinct behaviour for thin films with vertically aligned basal planes and natural bulk crystals with basal planes aligned parallel to the surface. The thermal conductivity is measured as a function of the degree of lithiation, using time-domain thermoreflectance. The change of thermal conductivity correlates with the lithiation-induced structural and compositional disorder. We further show that the ratio of the in-plane to through-plane thermal conductivity of bulk crystal is enhanced by the disorder. These results suggest that stacking disorder and mixture of phases is an effective mechanism to modify the anisotropic thermal conductivity of 2D materials. PMID:27767030

  5. High Performance Molybdenum Disulfide Amorphous Silicon Heterojunction Photodetector

    PubMed Central

    Esmaeili-Rad, Mohammad R.; Salahuddin, Sayeef

    2013-01-01

    One important use of layered semiconductors such as molybdenum disulfide (MoS2) could be in making novel heterojunction devices leading to functionalities unachievable using conventional semiconductors. Here we demonstrate a metal-semiconductor-metal heterojunction photodetector, made of MoS2 and amorphous silicon (a-Si), with rise and fall times of about 0.3 ms. The transient response does not show persistent (residual) photoconductivity, unlike conventional a-Si devices where it may last 3–5 ms, thus making this heterojunction roughly 10X faster. A photoresponsivity of 210 mA/W is measured at green light, the wavelength used in commercial imaging systems, which is 2−4X larger than that of a-Si and best reported MoS2 devices. The device could find applications in large area electronics, such as biomedical imaging, where a fast response is critical. PMID:23907598

  6. Wet chemical thinning of molybdenum disulfide down to its monolayer

    SciTech Connect

    Amara, Kiran Kumar; Chu, Leiqiang; Kumar, Rajeev; Toh, Minglin; Eda, Goki

    2014-09-01

    We report on the preparation of mono- and bi-layer molybdenum disulfide (MoS{sub 2}) from a bulk crystal by facile wet chemical etching. We show that concentrated nitric acid (HNO{sub 3}) effectively etches thin MoS{sub 2} crystals from their edges via formation of MoO{sub 3}. Interestingly, etching of thin crystals on a substrate leaves behind unreacted mono- and bilayer sheets. The flakes obtained by chemical etching exhibit electronic quality comparable to that of mechanically exfoliated counterparts. Our findings indicate that the self-limiting chemical etching is a promising top-down route to preparing atomically thin crystals from bulk layer compounds.

  7. ALS-linked protein disulfide isomerase variants cause motor dysfunction.

    PubMed

    Woehlbier, Ute; Colombo, Alicia; Saaranen, Mirva J; Pérez, Viviana; Ojeda, Jorge; Bustos, Fernando J; Andreu, Catherine I; Torres, Mauricio; Valenzuela, Vicente; Medinas, Danilo B; Rozas, Pablo; Vidal, Rene L; Lopez-Gonzalez, Rodrigo; Salameh, Johnny; Fernandez-Collemann, Sara; Muñoz, Natalia; Matus, Soledad; Armisen, Ricardo; Sagredo, Alfredo; Palma, Karina; Irrazabal, Thergiory; Almeida, Sandra; Gonzalez-Perez, Paloma; Campero, Mario; Gao, Fen-Biao; Henny, Pablo; van Zundert, Brigitte; Ruddock, Lloyd W; Concha, Miguel L; Henriquez, Juan P; Brown, Robert H; Hetz, Claudio

    2016-04-15

    Disturbance of endoplasmic reticulum (ER) proteostasis is a common feature of amyotrophic lateral sclerosis (ALS). Protein disulfide isomerases (PDIs) areERfoldases identified as possibleALSbiomarkers, as well as neuroprotective factors. However, no functional studies have addressed their impact on the disease process. Here, we functionally characterized fourALS-linked mutations recently identified in two majorPDIgenes,PDIA1 andPDIA3/ERp57. Phenotypic screening in zebrafish revealed that the expression of thesePDIvariants induce motor defects associated with a disruption of motoneuron connectivity. Similarly, the expression of mutantPDIs impaired dendritic outgrowth in motoneuron cell culture models. Cellular and biochemical studies identified distinct molecular defects underlying the pathogenicity of thesePDImutants. Finally, targetingERp57 in the nervous system led to severe motor dysfunction in mice associated with a loss of neuromuscular synapses. This study identifiesERproteostasis imbalance as a risk factor forALS, driving initial stages of the disease.

  8. Intercalation Pseudocapacitance of Exfoliated Molybdenum Disulfide for Ultrafast Energy Storage

    DOE PAGES

    Yoo, Hyun Deog; Li, Yifei; Liang, Yanliang; ...

    2016-05-23

    In this study, we report intercalation pseudocapacitance of 250 F g-1 for exfoliated molybdenum disulfide (MoS2) in non-aqueous electrolytes that contain lithium ions. The exfoliated MoS2 shows surface-limited reaction kinetics with high rate capability up to 3 min of charge or discharge. The intercalation pseudocapacitance originates from the extremely fast kinetics due to the enhanced ionic and electronic transport enabled by the slightly expanded layer structure as well as the metallic 1T-phase. The exfoliated MoS2 could be also used in a Li-Mg-ion hybrid capacitor, which shows full cell specific capacitance of 240 F g-1.

  9. Intercalation Pseudocapacitance of Exfoliated Molybdenum Disulfide for Ultrafast Energy Storage

    SciTech Connect

    Yoo, Hyun Deog; Li, Yifei; Liang, Yanliang; Lan, Yucheng; Wang, Feng; Yao, Yan

    2016-05-23

    In this study, we report intercalation pseudocapacitance of 250 F g-1 for exfoliated molybdenum disulfide (MoS2) in non-aqueous electrolytes that contain lithium ions. The exfoliated MoS2 shows surface-limited reaction kinetics with high rate capability up to 3 min of charge or discharge. The intercalation pseudocapacitance originates from the extremely fast kinetics due to the enhanced ionic and electronic transport enabled by the slightly expanded layer structure as well as the metallic 1T-phase. The exfoliated MoS2 could be also used in a Li-Mg-ion hybrid capacitor, which shows full cell specific capacitance of 240 F g-1.

  10. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation.

    PubMed

    Zhu, Gaohua; Liu, Jun; Zheng, Qiye; Zhang, Ruigang; Li, Dongyao; Banerjee, Debasish; Cahill, David G

    2016-10-21

    Thermal conductivity of two-dimensional (2D) materials is of interest for energy storage, nanoelectronics and optoelectronics. Here, we report that the thermal conductivity of molybdenum disulfide can be modified by electrochemical intercalation. We observe distinct behaviour for thin films with vertically aligned basal planes and natural bulk crystals with basal planes aligned parallel to the surface. The thermal conductivity is measured as a function of the degree of lithiation, using time-domain thermoreflectance. The change of thermal conductivity correlates with the lithiation-induced structural and compositional disorder. We further show that the ratio of the in-plane to through-plane thermal conductivity of bulk crystal is enhanced by the disorder. These results suggest that stacking disorder and mixture of phases is an effective mechanism to modify the anisotropic thermal conductivity of 2D materials.

  11. Diameter-dependent wetting of tungsten disulfide nanotubes.

    PubMed

    Goldbart, Ohad; Cohen, Sidney R; Kaplan-Ashiri, Ifat; Glazyrina, Polina; Wagner, H Daniel; Enyashin, Andrey; Tenne, Reshef

    2016-11-29

    The simple process of a liquid wetting a solid surface is controlled by a plethora of factors-surface texture, liquid droplet size and shape, energetics of both liquid and solid surfaces, as well as their interface. Studying these events at the nanoscale provides insights into the molecular basis of wetting. Nanotube wetting studies are particularly challenging due to their unique shape and small size. Nonetheless, the success of nanotubes, particularly inorganic ones, as fillers in composite materials makes it essential to understand how common liquids wet them. Here, we present a comprehensive wetting study of individual tungsten disulfide nanotubes by water. We reveal the nature of interaction at the inert outer wall and show that remarkably high wetting forces are attained on small, open-ended nanotubes due to capillary aspiration into the hollow core. This study provides a theoretical and experimental paradigm for this intricate problem.

  12. Protein disulfide isomerase is essential for viability in Saccharomyces cerevisiae.

    PubMed

    Farquhar, R; Honey, N; Murant, S J; Bossier, P; Schultz, L; Montgomery, D; Ellis, R W; Freedman, R B; Tuite, M F

    1991-12-01

    Protein disulfide isomerase (PDI) is an enzyme involved in the catalysis of disulfide bond formation in secretory and cell-surface proteins. Using an oligodeoxyribonucleotide designed to detect the conserved 'thioredoxin-like' active site of vertebrate PDIs, we have isolated a gene encoding PDI from the lower eukaryote, Saccharomyces cerevisiae. The nucleotide sequence and deduced open reading frame of the cloned gene predict a 530-amino-acid (aa) protein of Mr 59,082 and a pI of 4.1, physical properties characteristic of mammalian PDIs. Furthermore, the aa sequence shows 30-32% identity with mammalian and avian PDI sequences and has a very similar overall organisation, namely the presence of two approx. 100-aa segments, each of which is repeated, with the most significant homologies to mammalian and avian PDIs being in the regions (a, a') that contain the conserved 'thioredoxin-like' active site. The N-terminal region has the characteristics of a cleavable secretory signal sequence and the C-terminal four aa (-His-Asp-Glu-Leu) are consistent with the protein being a component of the S. cerevisiae endoplasmic reticulum. Transformants carrying multiple copies of this gene (designated PDI1) have tenfold higher levels of PDI activity and overproduce a protein of the predicted Mr. The PDI1 gene is unique in the yeast genome and encodes a single 1.8-kb transcript that is not found in stationary phase cells. Disruption of the PDI1 gene is haplo-lethal indicating that the product of this gene is essential for viability.

  13. Design study for asteroidal exploitation

    NASA Astrophysics Data System (ADS)

    Adams, Carl; Blissit, Jim; Jarrett, Dave; Sanner, Rob; Yanagawa, Koji

    1985-08-01

    A systematic approach to asteroidal exploitation for the 1990 to 2010 time frame is presented as an initial step toward expanding the use of space beyond the space station by providing a source of lower cost materials. With only a limited amount of information known about the asteroids, reconnaissance and exploration phases to determine the exact locations and compositions of several earth-approaching asteroids are required. Earth-based telescopes are used to locate and study the asteroids, while unmanned probes will return samples of asteroidal material to earth for analysis. After these phases are completed, the retrieval of a 35,000 metric ton piece of the asteroid Anteros is undertaken. A cargo transporter uses magnetoplasmadynamic (MPD) arcjets outbound and a mass-driver using asteroidal material inbound. A crew ship uses ion engines. Low thrust trajectories are used for both spacecraft. A materials processing facility will manufacture propellant pellets and retrieve non-propellant materials for spacecraft use. The cost is 1/10th that to transport the same materials from earth to high earth orbit. The project will cost 25 percent less if done in conjunction with a lunar and Martian base.

  14. The Gaia scientific exploitation networks

    NASA Astrophysics Data System (ADS)

    Figueras, F.; Jordi, C.

    2015-05-01

    On July 2014 the Gaia satellite, placed at L2 since January 2014, finished their commissioning phase and started collecting high accurate scientific data. New and more realistic estimations of the astrometric, photometric and spectroscopic accuracy expected after five years mission operation (2014-2019) have been recently published in the Gaia Science Performance Web page. Here we present the coordination efforts and the activities being conducted through the two GREAT (Gaia Research for European Astronomy Training) European Networks, the GREAT-ESF, a programme supported by the European Science Foundation (2010-2015), and the GREAT-ITN network, from the European Union's Seventh Framework Programme (2011-2015). The main research theme of these networks is to unravel the origin and history of our home galaxy. Emphasis is placed on the research projects being conducted by the Spanish Researchers through these networks, well coordinated by the Red Española de Explotación Científica de Gaia (REG network, with more than 140 participants). Members of the REG play an important role on the collection of complementary spectroscopic data from ground based telescopes, on the development of new tools for an optimal scientific exploitation of Gaia data and on the preparation task to create the Gaia archive.

  15. Exploiting dual otoacoustic emission sources

    NASA Astrophysics Data System (ADS)

    Abdala, Carolina; Kalluri, Radha

    2015-12-01

    Two distinct processes generate otoacoustic emissions (OAEs). Reflection-source emissions, here recorded as stimulus frequency OAEs, are optimally informative at low sound levels and are more sensitive to slight hearing loss; they have been linked to cochlear amplifier gain and tuning. Distortion-source emissions are strongest at moderate-high sound levels and persist despite mild hearing loss; they likely originate in the nonlinear process of hair cell transduction. In this preliminary study, we exploit the unique features of each by generating a combined reflection-distortion OAE profile in normal hearing and hearing-impaired ears. Distortion-product (DP) and stimulus-frequency (SF) OAEs were recorded over a broad range of stimulus levels and frequencies. Individual I/O and transfer functions were generated for both emission types in each ear, and OAE peak strength, compression threshold, and rate of compression were calculated. These combined SFOAE and DPOAE features in normal and hearing-impaired ears may provide a potentially informative and novel index of hearing loss. This is an initial step toward utilizing OAE source in characterizing cochlear function and dysfunction.

  16. Human β-defensin 4 with non-native disulfide bridges exhibit antimicrobial activity.

    PubMed

    Sharma, Himanshu; Nagaraj, Ramakrishnan

    2015-01-01

    Human defensins play multiple roles in innate immunity including direct antimicrobial killing and immunomodulatory activity. They have three disulfide bridges which contribute to the stability of three anti-parallel β-strands. The exact role of disulfide bridges and canonical β-structure in the antimicrobial action is not yet fully understood. In this study, we have explored the antimicrobial activity of human β-defensin 4 (HBD4) analogs that differ in the number and connectivity of disulfide bridges. The cysteine framework was similar to the disulfide bridges present in μ-conotoxins, an unrelated class of peptide toxins. All the analogs possessed enhanced antimicrobial potency as compared to native HBD4. Among the analogs, the single disulfide bridged peptide showed maximum potency. However, there were no marked differences in the secondary structure of the analogs. Subtle variations were observed in the localization and membrane interaction of the analogs with bacteria and Candida albicans, suggesting a role for disulfide bridges in modulating their antimicrobial action. All analogs accumulated in the cytosol where they can bind to anionic molecules such as nucleic acids which would affect several cellular processes leading to cell death. Our study strongly suggests that native disulfide bridges or the canonical β-strands in defensins have not evolved for maximal activity but they play important roles in determining their antimicrobial potency.

  17. Thermodynamic and mechanical effects of disulfide bonds in CXCLl7 chemokine

    NASA Astrophysics Data System (ADS)

    Singer, Christopher

    Chemokines are a family of signaling proteins mainly responsible for the chemotaxis of leukocytes, where their biological activity is modulated by their oligomerization state. Here, the dynamics and thermodynamic stability are characterized in monomer and homodimer structures of CXCL7, one of the most abundant platelet chemokines. The effects of dimerization and disulfide bond formation are investigated using computational methods that include molecular dynamics (MD) simulations and the Distance Constraint Model (DCM). A consistent picture emerges for the effect of dimerization and role of the Cys5-Cys31 and Cys7- Cys47 disulfide bonds. Surprisingly, neither disulfide bond is critical for maintaining structural stability in the monomer or dimer, although the monomer is destabilized more than the dimer upon removal of disulfide bonds. Instead, it is found that disulfide bonds influence the native state dynamics as well as modulates the relative stability between monomer and dimer. The combined analysis elucidates how CXCL7 is mechanically stable as a monomer, and how upon dimerization flexibly correlated motions are induced between the 30s and 50s loop within each monomer and across the dimer interface. Interestingly, the greatest gain in flexibility upon dimerization occurs when both disulfide bonds are present in each domain, and the homodimer is least stable relative to its two monomers. These results suggest the highly conserved disulfide bonds in chemokines facilitate a structural mechanism for distinguishing functional characteristics between monomer and dimer.

  18. An in vivo pathway for disulfide bond isomerization in Escherichia coli.

    PubMed

    Rietsch, A; Belin, D; Martin, N; Beckwith, J

    1996-11-12

    Biochemical studies have shown that the periplasmic protein disulfide oxidoreductase DsbC can isomerize aberrant disulfide bonds. Here we present the first evidence for an in vivo role of DsbC in disulfide bond isomerization. Furthermore, our data suggest that the enzymes DsbA and DsbC play distinct roles in the cell in disulfide bond formation and isomerization, respectively. We have shown that mutants in dsbC display a defect in disulfide bond formation specific for proteins with multiple disulfide bonds. The defect can be complemented by the addition of reduced dithiothreitol to the medium, suggesting that absence of DsbC results in accumulation of misoxidized proteins. Mutations in the dipZ and trxA genes have similar phenotypes. We propose that DipZ, a cytoplasmic membrane protein with a thioredoxin-like domain, and thioredoxin, the product of the trxA gene, are components of a pathway for maintaining DsbC active as a protein disulfide bond isomerase.

  19. Simple plate-based, parallel synthesis of disulfide fragments using the CuAAC click reaction.

    PubMed

    Turner, David M; Tom, Christopher T M B; Renslo, Adam R

    2014-12-08

    Disulfide exchange screening is a site-directed approach to fragment-based lead discovery that requires a bespoke library of disulfide-containing fragments. Previously, we described a simple one-pot, two-step synthesis of disulfide fragments from amine- or acid-bearing starting materials. Here, we describe the synthesis of disulfide fragments that bear a 1,4-substituted-1,2,3-triazole linkage between disulfide and molecular diversity element. This work establishes the compatibility of copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry with a one-pot, two-step reaction sequence that can be readily parallelized. We performed 96 reactions in a single deep-well microtiter plate, employing 48 alkynes and two different azide linker reagents. From this effort, a total of 81 triazole-containing disulfide fragments were obtained in useful isolated yields. Thus, CuAAC chemistry offers an experimentally convenient method to rapidly prepare disulfide fragments that are structurally distinct from fragments accessed via amide, sulfonamide, or isocyanate chemistries.

  20. Evaluation of protein disulfide conversion in vitro using a continuous flow dialysis system.

    PubMed

    Jiang, Xinzhao Grace; Wang, Tian; Kaltenbrunner, Oliver; Chen, Kenneth; Flynn, Gregory C; Huang, Gang

    2013-01-15

    Recombinant therapeutic proteins are heterogeneous due to chemical and physical modifications. Understanding the impact of these modifications on drug safety and efficacy is critical for optimal process development and for setting reasonable specification limits. In this study, we describe the development of an in vitro continuous flow dialysis system to evaluate potential in vivo behavior of thiol adducted species and incorrectly disulfide bonded species of therapeutic proteins. The system is capable of maintaining the low-level cysteine concentrations found in human blood. Liabilities of cysteamine adducted species, incorrectly disulfide bonded species, and the correctly disulfide bonded form of an Fc-fusion protein were studied using this system. Results showed that 90% of the cysteamine adduct converted into the correctly disulfide bonded form and incorrectly disulfide bonded species in approximately 4 h under physiological conditions. Approximately 50% of incorrectly disulfide bonded species converted into the correctly bonded form in 2 days. These results provide valuable information on potential in vivo stability of the cysteamine adduct, incorrectly disulfide bonded species, and the correctly bonded form of the Fc-fusion protein. These are important considerations when evaluating the criticality of product quality attributes.

  1. Light-induced disulfide dimerization of recoverin under ex vivo and in vivo conditions.

    PubMed

    Zernii, Evgeni Yu; Nazipova, Aliya A; Gancharova, Olga S; Kazakov, Alexey S; Serebryakova, Marina V; Zinchenko, Dmitry V; Tikhomirova, Natalya K; Senin, Ivan I; Philippov, Pavel P; Permyakov, Eugene A; Permyakov, Sergei E

    2015-06-01

    Despite vast knowledge of the molecular mechanisms underlying photochemical damage of photoreceptors, linked to progression of age-related macular degeneration, information on specific protein targets of the light-induced oxidative stress is scarce. Here, we demonstrate that prolonged intense illumination (halogen bulb, 1500 lx, 1-5 h) of mammalian eyes under ex vivo (cow) or in vivo (rabbit) conditions induces disulfide dimerization of recoverin, a Ca(2+)-dependent inhibitor of rhodopsin kinase. Western blotting and mass spectrometry analysis of retinal extracts reveals illumination time-dependent accumulation of disulfide homodimers of recoverin and its higher order disulfide cross-linked species, including a minor fraction of mixed disulfides with intracellular proteins (tubulins, etc.). Meanwhile, monomeric bovine recoverin remains mostly reduced. These effects are accompanied by accumulation of disulfide homodimers of visual arrestin. Histological studies demonstrate that the light-induced oxidation of recoverin and arrestin occurs in intact retina (illumination for 2 h), while illumination for 5 h is associated with damage of the photoreceptor layer. A comparison of ex vivo levels of disulfide homodimers of bovine recoverin with redox dependence of its in vitro thiol-disulfide equilibrium (glutathione redox pair) gives the lowest estimate of redox potential in rod outer segments under illumination from -160 to -155 mV. Chemical crosslinking and dynamic light scattering data demonstrate an increased propensity of disulfide dimer of bovine recoverin to multimerization/aggregation. Overall, the oxidative stress caused by the prolonged intense illumination of retina might affect rhodopsin desensitization via concerted disulfide dimerization of recoverin and arrestin. The developed herein models of eye illumination are useful for studies of the light-induced thiol oxidation of visual proteins.

  2. Characterization of disulfide bonds by planned digestion and tandem mass spectrometry.

    PubMed

    Na, Seungjin; Paek, Eunok; Choi, Jong-Soon; Kim, Duwoon; Lee, Seung Jae; Kwon, Joseph

    2015-04-01

    The identification of disulfide bonds provides critical information regarding the structure and function of a protein and is a key aspect in understanding signaling cascades in biological systems. Recent proteomic approaches using digestion enzymes have facilitated the characterization of disulfide-bonds and/or oxidized products from cysteine residues, although these methods have limitations in the application of MS/MS. For example, protein digestion to obtain the native form of disulfide bonds results in short lengths of amino acids, which can cause ambiguous MS/MS analysis due to false positive identifications. In this study we propose a new approach, termed planned digestion, to obtain sufficient amino acid lengths after cleavage for proteomic approaches. Application of the DBond software to planned digestion of specific proteins accurately identified disulfide-linked peptides. RNase A was used as a model protein in this study because the disulfide bonds of this protein have been well characterized. Application of this approach to peptides digested with Asp-N/C (chemical digestion) and trypsin under acid hydrolysis conditions identified the four native disulfide bonds of RNase A. Missed cleavages introduced by trypsin treatment for only 3 hours generated sufficient lengths of amino acids for identification of the disulfide bonds. Analysis using MS/MS successfully showed additional fragmentation patterns that are cleavage products of S-S and C-S bonds of disulfide-linkage peptides. These fragmentation patterns generate thioaldehydes, persulfide, and dehydroalanine. This approach of planned digestion with missed cleavages using the DBond algorithm could be applied to other proteins to determine their disulfide linkage and the oxidation patterns of cysteine residues.

  3. Processes of carbon disulfide degradation under the action of a pulsed corona discharge

    NASA Astrophysics Data System (ADS)

    Kuznetsov, D. L.; Filatov, I. E.; Uvarin, V. V.

    2016-08-01

    Experiments on decomposition of carbon disulfide CS2 in air under the action of a pulsed nanosecond corona discharge have been carried out. The energetic efficiency of the degradation amounted to 290-340 g (kW h)-1, which is significantly higher than with the use of a corona discharge at a constant voltage. The main degradation products are sulfur dioxide SO2, carbonyl sulfide COS, sulfuric acid, and carbon dioxide. Processes occurring in pulsed corona discharge plasma and leading to carbon disulfide degradation are considered. Different methods of air purification from carbon disulfide are compared.

  4. Site-Selective Disulfide Modification of Proteins: Expanding Diversity beyond the Proteome.

    PubMed

    Kuan, Seah Ling; Wang, Tao; Weil, Tanja

    2016-11-21

    The synthetic transformation of polypeptides with molecular accuracy holds great promise for providing functional and structural diversity beyond the proteome. Consequently, the last decade has seen an exponential growth of site-directed chemistry to install additional features into peptides and proteins even inside living cells. The disulfide rebridging strategy has emerged as a powerful tool for site-selective modifications since most proteins contain disulfide bonds. In this Review, we present the chemical design, advantages and limitations of the disulfide rebridging reagents, while summarizing their relevance for synthetic customization of functional protein bioconjugates, as well as the resultant impact and advancement for biomedical applications.

  5. Combined use of ion mobility and collision-induced dissociation to investigate the opening of disulfide bridges by electron-transfer dissociation in peptides bearing two disulfide bonds.

    PubMed

    Massonnet, Philippe; Upert, Gregory; Smargiasso, Nicolas; Gilles, Nicolas; Quinton, Loïc; De Pauw, Edwin

    2015-01-01

    Disulfide bonds are post-translational modifications (PTMs) often found in peptides and proteins. They increase their stability toward enzymatic degradations and provide the structure and (consequently) the activity of such folded proteins. The characterization of disulfide patterns, i.e., the cysteine connectivity, is crucial to achieve a global picture of the active conformation of the protein of interest. Electron-transfer dissociation (ETD) constitutes a valuable tool to cleave the disulfide bonds in the gas phase, avoiding chemical reduction/alkylation in solution. To characterize the cysteine pairing, the present work proposes (i) to reduce by ETD one of the two disulfide bridges of model peptides, resulting in the opening of the cyclic structures, (ii) to separate the generated species by ion mobility, and (iii) to characterize the species using collision-induced dissociation (CID). Results of this strategy applied to several peptides show different behaviors depending on the connectivity. The loss of SH· radical species, observed for all the peptides, confirms the cleavage of the disulfides during the ETD process.

  6. Identifying the presence of a disulfide linkage in peptides by the selective elimination of hydrogen disulfide from collisionally activated alkali and alkaline earth metal complexes.

    PubMed

    Kim, Hugh I; Beauchamp, J L

    2008-01-30

    We report a new method for identifying disulfide linkages in peptides using mass spectrometry. This is accomplished by collisional activation of singly charged cationic alkali and alkaline earth metal complexes, which results in the highly selective elimination of hydrogen disulfide (H2S2). Complexes of peptides possessing disulfide bonds with sodium and alkaline earth metal are generated using electrospray ionization (ESI). Isolation followed by collision induced dissociation (CID) of singly charged peptide complexes results in selective elimination of H2S2 to leave newly formed dehydroalanine residues in the peptide. Further activation of the product yields sequence information in the region previously short circuited by the disulfide bond. For example, singly charged magnesium and calcium ion bound complexes of [Lys8]-vasopressin exhibit selective elimination of H2S2 via low-energy CID. Further isolation of the product followed by CID yields major b- and z-type fragments revealing the peptide sequence in the region between the newly formed dehydroalanine residues. Numerous model peptides provide mechanistic details for the selective elimination of H2S2. The process is initiated starting with a metal stabilized enolate anion at Cys, followed by cleavage of the S-C bond. An examination of the peptic digest of insulin provides an example of the application of the selective elimination of H2S2 for the identification of peptides with disulfide linkages. The energetics and mechanisms of H2S2 elimination from model compounds are investigated using density functional theory (DFT) calculations.

  7. Reactivity of disulfide bonds is markedly affected by structure and environment: implications for protein modification and stability

    PubMed Central

    Karimi, Maryam; Ignasiak, Marta T.; Chan, Bun; Croft, Anna K.; Radom, Leo; Schiesser, Carl H.; Pattison, David I.; Davies, Michael J.

    2016-01-01

    Disulfide bonds play a key role in stabilizing protein structures, with disruption strongly associated with loss of protein function and activity. Previous data have suggested that disulfides show only modest reactivity with oxidants. In the current study, we report kinetic data indicating that selected disulfides react extremely rapidly, with a variation of 104 in rate constants. Five-membered ring disulfides are particularly reactive compared with acyclic (linear) disulfides or six-membered rings. Particular disulfides in proteins also show enhanced reactivity. This variation occurs with multiple oxidants and is shown to arise from favorable electrostatic stabilization of the incipient positive charge on the sulfur reaction center by remote groups, or by the neighboring sulfur for conformations in which the orbitals are suitably aligned. Controlling these factors should allow the design of efficient scavengers and high-stability proteins. These data are consistent with selective oxidative damage to particular disulfides, including those in some proteins. PMID:27941824

  8. Reactivity of disulfide bonds is markedly affected by structure and environment: implications for protein modification and stability

    NASA Astrophysics Data System (ADS)

    Karimi, Maryam; Ignasiak, Marta T.; Chan, Bun; Croft, Anna K.; Radom, Leo; Schiesser, Carl H.; Pattison, David I.; Davies, Michael J.

    2016-12-01

    Disulfide bonds play a key role in stabilizing protein structures, with disruption strongly associated with loss of protein function and activity. Previous data have suggested that disulfides show only modest reactivity with oxidants. In the current study, we report kinetic data indicating that selected disulfides react extremely rapidly, with a variation of 104 in rate constants. Five-membered ring disulfides are particularly reactive compared with acyclic (linear) disulfides or six-membered rings. Particular disulfides in proteins also show enhanced reactivity. This variation occurs with multiple oxidants and is shown to arise from favorable electrostatic stabilization of the incipient positive charge on the sulfur reaction center by remote groups, or by the neighboring sulfur for conformations in which the orbitals are suitably aligned. Controlling these factors should allow the design of efficient scavengers and high-stability proteins. These data are consistent with selective oxidative damage to particular disulfides, including those in some proteins.

  9. Reactivity of disulfide bonds is markedly affected by structure and environment: implications for protein modification and stability.

    PubMed

    Karimi, Maryam; Ignasiak, Marta T; Chan, Bun; Croft, Anna K; Radom, Leo; Schiesser, Carl H; Pattison, David I; Davies, Michael J

    2016-12-12

    Disulfide bonds play a key role in stabilizing protein structures, with disruption strongly associated with loss of protein function and activity. Previous data have suggested that disulfides show only modest reactivity with oxidants. In the current study, we report kinetic data indicating that selected disulfides react extremely rapidly, with a variation of 10(4) in rate constants. Five-membered ring disulfides are particularly reactive compared with acyclic (linear) disulfides or six-membered rings. Particular disulfides in proteins also show enhanced reactivity. This variation occurs with multiple oxidants and is shown to arise from favorable electrostatic stabilization of the incipient positive charge on the sulfur reaction center by remote groups, or by the neighboring sulfur for conformations in which the orbitals are suitably aligned. Controlling these factors should allow the design of efficient scavengers and high-stability proteins. These data are consistent with selective oxidative damage to particular disulfides, including those in some proteins.

  10. Effects of adding low levels of a disulfide reducing agent on the disulfide interactions of β-lactoglobulin and κ-casein in skim milk.

    PubMed

    Nguyen, Nguyen H A; Wong, Marie; Anema, Skelte G; Havea, Palatasa; Guyomarc'h, Fanny

    2012-03-07

    Low concentrations of a disulfide reducing agent were added to unheated and heated (80 °C for 30 min) skim milk, with and without added whey protein. The reduction of the β-lactoglobulin and κ-casein disulfide bonds was monitored over time using electrophoresis. The distribution of the proteins between the colloidal and serum phases was also investigated. κ-Casein disulfide bonds were reduced in preference to those of β-lactoglobulin in both unheated and heated skim milk (with or without added whey protein). In addition, in heated skim milk, while the serum κ-casein was reduced more readily than the colloidal κ-casein, the distribution of κ-casein between the two phases was not affected.

  11. Heterologous expression of five disulfide-bonded insecticidal spider peptides.

    PubMed

    Estrada, Georgina; Silva, Anita O; Villegas, Elba; Ortiz, Ernesto; Beirão, Paulo S L; Corzo, Gerardo

    2016-09-01

    The genes of the five disulfide-bonded peptide toxins 1 and 2 (named Oxytoxins or Oxotoxins) from the spider Oxyopes lineatus were cloned into the expression vector pQE30 containing a 6His-tag and a Factor Xa proteolytic cleavage region. These two recombinant vectors were transfected into Escherichia coli BL21 cells and expressed under induction with isopropyl thiogalactoside (IPTG). The product of each gene was named HisrOxyTx1 or HisrOxyTx2, and the protein expression was ca 14 and 6 mg/L of culture medium, respectively. Either recombinant toxin HisrOxyTx1 or HisrOxyTx2 were found exclusively in inclusion bodies, which were solubilized using a chaotropic agent, and then, purified using affinity chromatography and reverse-phase HPLC (RP-HPLC). The HisrOxyTx1 and HisrOxyTx2 products, obtained from the affinity chromatographic step, showed several peptide fractions having the same molecular mass of 9913.1 and 8030.1 Da, respectively, indicating that both HisrOxyTx1 and HisrOxyTx2 were oxidized forming several distinct disulfide bridge arrangements. The isoforms of both HisrOxyTx1 and HisrOxyTx2 after DTT reduction eluted from the column as a single protein component of 9923 and 8040 Da, respectively. In vitro folding of either HisrOxyTx1 or HisrOxyTx2 yielded single oxidized components, which were cleaved independently by the proteolytic enzyme Factor Xa to give the recombinant peptides rOxyTx1 and rOxyTx2. The experimental molecular masses of rOxyTx1 and rOxyTx2 were 8059.0 and 6176.4 Da, respectively, which agree with their expected theoretical masses. The recombinant peptides rOxyTx1 and rOxyTx2 showed lower but comparable toxicity to the native toxins when injected into lepidopteran larvae; furthermore, rOxyTx1 was able to inhibit calcium ion currents on dorsal unpaired median (DUM) neurons from Periplaneta americana.

  12. Direct palladium-mediated on-resin disulfide formation from Allocam protected peptides.

    PubMed

    Kondasinghe, Thilini D; Saraha, Hasina Y; Odeesho, Samantha B; Stockdill, Jennifer L

    2017-04-05

    The synthesis of disulfide-containing polypeptides represents a long-standing challenge in peptide chemistry, and broadly applicable methods for the construction of disulfides are in constant demand. Few strategies exist for on-resin formation of disulfides directly from their protected counterparts. We present herein a novel strategy for the on-resin construction of disulfides directly from Allocam-protected cysteines. Our palladium-mediated approach is mild and uses readily available reagents, requiring no special equipment. No reduced peptide intermediates or S-allylated products are observed, and no residual palladium can be detected in the final products. The utility of this method is demonstrated through the synthesis of the C-carboxy analog of oxytocin.

  13. Rapid expansion of the protein disulfide isomerase gene family facilitates the folding of venom peptides

    PubMed Central

    Safavi-Hemami, Helena; Li, Qing; Jackson, Ronneshia L.; Song, Albert S.; Boomsma, Wouter; Bandyopadhyay, Pradip K.; Gruber, Christian W.; Purcell, Anthony W.; Yandell, Mark; Olivera, Baldomero M.

    2016-01-01

    Formation of correct disulfide bonds in the endoplasmic reticulum is a crucial step for folding proteins destined for secretion. Protein disulfide isomerases (PDIs) play a central role in this process. We report a previously unidentified, hypervariable family of PDIs that represents the most diverse gene family of oxidoreductases described in a single genus to date. These enzymes are highly expressed specifically in the venom glands of predatory cone snails, animals that synthesize a remarkably diverse set of cysteine-rich peptide toxins (conotoxins). Enzymes in this PDI family, termed conotoxin-specific PDIs, significantly and differentially accelerate the kinetics of disulfide-bond formation of several conotoxins. Our results are consistent with a unique biological scenario associated with protein folding: The diversification of a family of foldases can be correlated with the rapid evolution of an unprecedented diversity of disulfide-rich structural domains expressed by venomous marine snails in the superfamily Conoidea. PMID:26957604

  14. The interdomain disulfide bond of a homogeneous rabbit pneumococcal antibody light chain.

    PubMed

    Strosberg, A D; Margolies, M N; Haber, E

    1975-11-01

    Rabbit light chain 3315, prepared from a homogeneous antipneumococcal antibody, was subjected to hydrolysis by pepsin without prior reduction and alkylation of the intrachain disulfide bonds. Gel filtration of the hydrolysate on Sephadex G-10, G-15, and G-25 and ion exchange chromatography on SP-Sephadex yielded several disulfide bridge peptides. These were fully reduced and alkulated and sequenced by Edman degradation. The peptides were located in the light chain sequence determined in independent studies from our laboratory. The half-cystine residues in this KB rabbit chain are located at positions 23, 80, 88, 134, 171, 194, and 214. The extra disulfide bridge extends between residues 80 and 171, thus joining the variable and constant domains. This is consistent with x-ray diffraction crystallographic studies showing that the corresponding residues in human light chains are separated by a distance compatible with disulfide bond formation.

  15. The exploitation of Gestalt principles by magicians.

    PubMed

    Barnhart, Anthony S

    2010-01-01

    Magicians exploit a host of psychological principles in deceiving their audiences. Psychologists have recently attempted to pinpoint the most common psychological tendencies exploited by magicians. This paper highlights two co-occurring principles that appear to be the basis for many popular magic tricks: accidental alignment and good continuation.

  16. Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins.

    PubMed Central

    Stewart, E J; Aslund, F; Beckwith, J

    1998-01-01

    Cytoplasmic proteins do not generally contain structural disulfide bonds, although certain cytoplasmic enzymes form such bonds as part of their catalytic cycles. The disulfide bonds in these latter enzymes are reduced in Escherichia coli by two systems; the thioredoxin pathway and the glutathione/glutaredoxin pathway. However, structural disulfide bonds can form in proteins in the cytoplasm when the gene (trxB) for the enzyme thioredoxin reductase is inactivated by mutation. This disulfide bond formation can be detected by assessing the state of the normally periplasmic enzyme alkaline phosphatase (AP) when it is localized to the cytoplasm. Here we show that the formation of disulfide bonds in cytoplasmic AP in the trxB mutant is dependent on the presence of two thioredoxins in the cell, thioredoxins 1 and 2, the products of the genes trxA and trxC, respectively. Our evidence supports a model in which the oxidized forms of these thioredoxins directly catalyze disulfide bond formation in cytoplasmic AP, a reversal of their normal role. In addition, we show that the recently discovered thioredoxin 2 can perform many of the roles of thioredoxin 1 in vivo, and thus is able to reduce certain essential cytoplasmic enzymes. Our results suggest that the three most effective cytoplasmic disulfide-reducing proteins are thioredoxin 1, thioredoxin 2 and glutaredoxin 1; expression of any one of these is sufficient to support aerobic growth. Our results help to explain how the reducing environment in the cytoplasm is maintained so that disulfide bonds do not normally occur. PMID:9755155

  17. Method for direct production of carbon disulfide and hydrogen from hydrocarbons and hydrogen sulfide feedstock

    SciTech Connect

    Miao, Frank Q.; Erekson, Erek James

    1998-12-01

    A method for converting hydrocarbons and hydrogen sulfide to carbon disulfide and hydrogen is provided comprising contacting the hydrocarbons and hydrogen sulfide to a bi-functional catalyst residing in a controlled atmosphere for a time and at a temperature sufficient to produce carbon disulfide and hydrogen. Also provided is a catalyst for converting carbon sulfides and hydrogen sulfides to gasoline range hydrocarbons comprising a mixture containing a zeolite catalyst and a hydrogenating catalyst.

  18. Effect of the Metal on Disulfide/Thiolate Interconversion: Manganese versus Cobalt.

    PubMed

    Gennari, Marcello; Brazzolotto, Deborah; Yu, Shengying; Pécaut, Jacques; Philouze, Christian; Rouzières, Mathieu; Clérac, Rodolphe; Orio, Maylis; Duboc, Carole

    2015-12-14

    It has recently been proposed that disulfide/thiolate interconversion supported by transition-metal ions is involved in several relevant biological processes. In this context, the present contribution represents a unique investigation of the effect of the coordinated metal (M) on the M(n+)-disulfide/M((n+1)+)-thiolate switch properties. Like its isostructural Co(II)-based parent compound, Co(II)2SS (Angew. Chem. Int. Ed.- 2014, 53, 5318), the new dinuclear disulfide-bridged Mn(II) complex Mn(II)2SS can undergo an M(II)-disulfide/M(III)-thiolate interconversion, which leads to the first disulfide/thiolate switch based on Mn. The coordination of iodide to the metal ion stabilizes the oxidized form, as the disulfide is reduced to the thiolate. The reverse process, which involves the reduction of M(III) to M(II) with the concomitant oxidation of the thiolates, requires the release of iodide. The Mn(II)2SS complex slowly reacts with Bu4NI in CH2Cl2 to afford the mononuclear Mn(III)-thiolate complex Mn(III)I. The process is much slower (ca. 16 h) and much less efficient (ca. 30% yield) with respect to the instantaneous and quantitative conversion of Co(II)2SS into Co(III)I under similar conditions. This distinctive behavior can be rationalized by considering the different electrochemical properties of the involved Co and Mn complexes and the DFT-calculated driving force of the disulfide/thiolate conversion. For both Mn and Co systems, M(II)-disulfide/M(III)-thiolate interconversion is reversible. However, when the iodide is removed with Ag(+), the M(II)2SS complexes are regenerated, albeit much slower for Mn than for Co systems.

  19. Impaired color discrimination among viscose rayon workers exposed to carbon disulfide

    SciTech Connect

    Raitta, C.; Teir, H.; Tolonen, M.; Nurminen, M.; Helpioe, E.M.; Malmstroem, S.

    1981-03-01

    A possible effect of chronic carbon disulfide exposure on the optic nerve was studied by giving the Farnsworth Munsell 100-Hue Test for color discrimination to 62 exposed and 40 nonexposed men. Carbon disulfide exposure did not relate to specific pattern defects in color discrimination, but impaired color discrimination occurred significantly more often in the exposed group than among the referents. The abnormal findings suggest an impairment in the receptiveness of the ganglion cells or demyelination of the optic nerve fibers.

  20. Structure-based approach to the prediction of disulfide bonds in proteins.

    PubMed

    Salam, Noeris K; Adzhigirey, Matvey; Sherman, Woody; Pearlman, David A

    2014-10-01

    Protein engineering remains an area of growing importance in pharmaceutical and biotechnology research. Stabilization of a folded protein conformation is a frequent goal in projects that deal with affinity optimization, enzyme design, protein construct design, and reducing the size of functional proteins. Indeed, it can be desirable to assess and improve protein stability in order to avoid liabilities such as aggregation, degradation, and immunogenic response that may arise during development. One way to stabilize a protein is through the introduction of disulfide bonds. Here, we describe a method to predict pairs of protein residues that can be mutated to form a disulfide bond. We combine a physics-based approach that incorporates implicit solvent molecular mechanics with a knowledge-based approach. We first assign relative weights to the terms that comprise our scoring function using a genetic algorithm applied to a set of 75 wild-type structures that each contains a disulfide bond. The method is then tested on a separate set of 13 engineered proteins comprising 15 artificial stabilizing disulfides introduced via site-directed mutagenesis. We find that the native disulfide in the wild-type proteins is scored well, on average (within the top 6% of the reasonable pairs of residues that could form a disulfide bond) while 6 out of the 15 artificial stabilizing disulfides scored within the top 13% of ranked predictions. Overall, this suggests that the physics-based approach presented here can be useful for triaging possible pairs of mutations for disulfide bond formation to improve protein stability.

  1. Carbonyl sulfide and carbon disulfide from the eruptions of mount st. Helens.

    PubMed

    Rasmussen, R A; Khalil, M A; Dalluge, R W; Penkett, S A; Jones, B

    1982-02-05

    Ash from the massive 18 May 1980 eruption of Mount St. Helens readily gave off large amounts of carbonyl sulfide and carbon disulfide gases at room temperature. These findings suggest that the sulfur that enhances the Junge sulfate layer in the stratosphere after volcanic eruptions could be carried directly to the upper atmosphere as carbonyl sulfide and carbon disulfide adsorbed on ash particles from major volcanic eruptions.

  2. Carbonyl sulfide and carbon disulfide from the eruptions of Mount St. Helens

    SciTech Connect

    Rasmussen, R.A.; Khalil, M.A.K.; Dalluge, R.W.; Penkett, S.A.; Jones, B.

    1982-01-01

    Ash from the massive 18 May 1980 eruption of Mount St. Helens readily gave off large amounts of carbonyl sulfide and carbon disulfide gases at room temperature. These findings suggest that the sulfur that enhances the Junge sulfate layer in the stratosphere after volcanic eruptions could be carried directly to the upper atmosphere as carbonyl sulfide and carbon disulfide adsorbed on ash particles from major volcanic eruptions.

  3. Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions.

    PubMed

    Netto, Luis Eduardo S; de Oliveira, Marcos Antonio; Tairum, Carlos A; da Silva Neto, José Freire

    2016-01-01

    Thiol-disulfide exchange reactions are highly reversible, displaying nucleophilic substitutions mechanism (S(N)2 type). For aliphatic, low molecular thiols, these reactions are slow, but can attain million times faster rates in enzymatic processes. Thioredoxin (Trx) proteins were the first enzymes described to accelerate thiol-disulfide exchange reactions and their high reactivity is related to the high nucleophilicity of the attacking thiol. Substrate specificity in Trx is achieved by several factors, including polar, hydrophobic, and topological interactions through a groove in the active site. Glutaredoxin (Grx) enzymes also contain the Trx fold, but they do not share amino acid sequence similarity with Trx. A conserved glutathione binding site is a typical feature of Grx that can reduce substrates by two mechanisms (mono and dithiol). The high reactivity of Grx enzymes is related to the very acid pK(a) values of reactive Cys that plays roles as good leaving groups. Therefore, although distinct oxidoreductases catalyze similar thiol–disulfide exchange reactions, their enzymatic mechanisms vary. PDI and DsbA are two other oxidoreductases, but they are involved in disulfide bond formation, instead of disulfide reduction, which is related to the oxidative environment where they are found. PDI enzymes and DsbC are endowed with disulfide isomerase activity, which is related with their tetra-domain architecture. As illustrative description of specificity in thiol-disulfide exchange, redox aspects of transcription activation in bacteria, yeast, and mammals are presented in an evolutionary perspective. Therefore, thiol-disulfide exchange reactions play important roles in conferring specificity to pathways, a required feature for signaling.

  4. A New Measure of Interpersonal Exploitativeness

    PubMed Central

    Brunell, Amy B.; Davis, Mark S.; Schley, Dan R.; Eng, Abbey L.; van Dulmen, Manfred H.M.; Wester, Kelly L.; Flannery, Daniel J.

    2013-01-01

    Measures of exploitativeness evidence problems with validity and reliability. The present set of studies assessed a new measure [the Interpersonal Exploitativeness Scale (IES)] that defines exploitativeness in terms of reciprocity. In Studies 1 and 2, 33 items were administered to participants. Exploratory and Confirmatory Factor Analysis demonstrated that a single factor consisting of six items adequately assess interpersonal exploitativeness. Study 3 results revealed that the IES was positively associated with “normal” narcissism, pathological narcissism, psychological entitlement, and negative reciprocity and negatively correlated with positive reciprocity. In Study 4, participants competed in a commons dilemma. Those who scored higher on the IES were more likely to harvest a greater share of resources over time, even while controlling for other relevant variables, such as entitlement. Together, these studies show the IES to be a valid and reliable measure of interpersonal exploitativeness. The authors discuss the implications of these studies. PMID:23755031

  5. Oxidation of Disulfides to Thiolsulfinates with Hydrogen Peroxide and a Cyclic Seleninate Ester Catalyst.

    PubMed

    McNeil, Nicole M R; McDonnell, Ciara; Hambrook, Miranda; Back, Thomas G

    2015-06-11

    Cyclic seleninate esters function as mimetics of the antioxidant selenoenzyme glutathione peroxidase. They catalyze the reduction of harmful peroxides with thiols, which are converted to disulfides in the process. The possibility that the seleninate esters could also catalyze the further oxidation of disulfides to thiolsulfinates and other overoxidation products under these conditions was investigated. This has ramifications in potential medicinal applications of seleninate esters because of the possibility of catalyzing the unwanted oxidation of disulfide-containing spectator peptides and proteins. A variety of aryl and alkyl disulfides underwent facile oxidation with hydrogen peroxide in the presence of catalytic benzo-1,2-oxaselenolane Se-oxide affording the corresponding thiolsulfinates as the principal products. Unsymmetrical disulfides typically afforded mixtures of regioisomers. Lipoic acid and N,N'-dibenzoylcystine dimethyl ester were oxidized readily under similar conditions. Although isolated yields of the product thiolsulfinates were generally modest, these experiments demonstrate that the method nevertheless has preparative value because of its mild conditions. The results also confirm the possibility that cyclic seleninate esters could catalyze the further undesired oxidation of disulfides in vivo.

  6. Stabilization of cyclohexanone monooxygenase by a computationally designed disulfide bond spanning only one residue

    PubMed Central

    van Beek, Hugo L.; Wijma, Hein J.; Fromont, Lucie; Janssen, Dick B.; Fraaije, Marco W.

    2014-01-01

    Enzyme stability is an important parameter in biocatalytic applications, and there is a strong need for efficient methods to generate robust enzymes. We investigated whether stabilizing disulfide bonds can be computationally designed based on a model structure. In our approach, unlike in previous disulfide engineering studies, short bonds spanning only a few residues were included. We used cyclohexanone monooxygenase (CHMO), a Baeyer–Villiger monooxygenase (BVMO) from Acinetobacter sp. NCIMB9871 as the target enzyme. This enzyme has been the prototype BVMO for many biocatalytic studies even though it is notoriously labile. After creating a small library of mutant enzymes with introduced cysteine pairs and subsequent screening for improved thermostability, three stabilizing disulfide bonds were identified. The introduced disulfide bonds are all within 12 Å of each other, suggesting this particular region is critical for unfolding. This study shows that stabilizing disulfide bonds do not have to span many residues, as the most stabilizing disulfide bond, L323C–A325C, spans only one residue while it stabilizes the enzyme, as shown by a 6 °C increase in its apparent melting temperature. PMID:24649397

  7. Stabilization of cyclohexanone monooxygenase by a computationally designed disulfide bond spanning only one residue.

    PubMed

    van Beek, Hugo L; Wijma, Hein J; Fromont, Lucie; Janssen, Dick B; Fraaije, Marco W

    2014-01-01

    Enzyme stability is an important parameter in biocatalytic applications, and there is a strong need for efficient methods to generate robust enzymes. We investigated whether stabilizing disulfide bonds can be computationally designed based on a model structure. In our approach, unlike in previous disulfide engineering studies, short bonds spanning only a few residues were included. We used cyclohexanone monooxygenase (CHMO), a Baeyer-Villiger monooxygenase (BVMO) from Acinetobacter sp. NCIMB9871 as the target enzyme. This enzyme has been the prototype BVMO for many biocatalytic studies even though it is notoriously labile. After creating a small library of mutant enzymes with introduced cysteine pairs and subsequent screening for improved thermostability, three stabilizing disulfide bonds were identified. The introduced disulfide bonds are all within 12 Å of each other, suggesting this particular region is critical for unfolding. This study shows that stabilizing disulfide bonds do not have to span many residues, as the most stabilizing disulfide bond, L323C-A325C, spans only one residue while it stabilizes the enzyme, as shown by a 6 °C increase in its apparent melting temperature.

  8. The presence of disulfide bonds reveals an evolutionarily conserved mechanism involved in mitochondrial protein translocase assembly

    PubMed Central

    Wrobel, Lidia; Sokol, Anna M.; Chojnacka, Magdalena; Chacinska, Agnieszka

    2016-01-01

    Disulfide bond formation is crucial for the biogenesis and structure of many proteins that are localized in the intermembrane space of mitochondria. The importance of disulfide bond formation within mitochondrial proteins was extended beyond soluble intermembrane space proteins. Tim22, a membrane protein and core component of the mitochondrial translocase TIM22, forms an intramolecular disulfide bond in yeast. Tim22 belongs to the Tim17/Tim22/Tim23 family of protein translocases. Here, we present evidence of the high evolutionary conservation of disulfide bond formation in Tim17 and Tim22 among fungi and metazoa. Topological models are proposed that include the location of disulfide bonds relative to the predicted transmembrane regions. Yeast and human Tim22 variants that are not oxidized do not properly integrate into the membrane complex. Moreover, the lack of Tim17 oxidation disrupts the TIM23 translocase complex. This underlines the importance of disulfide bond formation for mature translocase assembly through membrane stabilization of weak transmembrane domains. PMID:27265872

  9. Evidence for thiol/disulfide exchange reactions between tubulin and glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Landino, Lisa M; Hagedorn, Tara D; Kennett, Kelly L

    2014-12-01

    While thiol redox reactions are a common mechanism to regulate protein structure and function, protein disulfide bond formation is a marker of oxidative stress that has been linked to neurodegeneration. Both tubulin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) contain multiple cysteines that have been identified as targets for oxidation to disulfides, S-nitrosation and S-glutathionylation. We show that GAPDH is one of three prominent brain microtubule-associated proteins (MAPs), in addition to MAP-2 and tau, with reactive cysteines. We detected a threefold to fourfold increase in tubulin cysteine oxidation by hydrogen peroxide in the presence of rabbit muscle GAPDH by 5-iodoacetamidofluorescein labeling and by Western blot detection of higher molecular weight inter-chain tubulin disulfides. In thiol/disulfide exchange experiments, tubulin restored ∼50% of oxidized GAPDH cysteines and the equilibrium favored reduced GAPDH. Further, we report that oxidized GAPDH is repaired by the thioredoxin reductase system (TRS). Restoration of GAPDH activity after reduction by both tubulin and the TRS was time-dependent suggesting conformational changes near the active site cysteine149. The addition of brain MAPs to oxidized tubulin reduced tubulin disulfides and labeling of MAP-2 and of GAPDH decreased. Because the extent of tubulin repair of oxidized GAPDH was dependent on buffer strength, we conclude that electrostatics influence thiol/disulfide exchange between the two proteins. The novel interactions presented herein may protect GAPDH from inhibition under oxidative stress conditions.

  10. Tension-Enhanced Hydrogen Evolution Reaction on Vanadium Disulfide Monolayer.

    PubMed

    Pan, Hui

    2016-12-01

    Water electrolysis is an efficient way for hydrogen production. Finding efficient, cheap, and eco-friendly electrocatalysts is essential to the development of this technology. In the work, we present a first-principles study on the effects of tension on the hydrogen evolution reaction of a novel electrocatalyst, vanadium disulfide (VS2) monolayer. Two electrocatalytic processes, individual and collective processes, are investigated. We show that the catalytic ability of VS2 monolayer at higher hydrogen coverage can be efficiently improved by escalating tension. We find that the individual process is easier to occur in a wide range of hydrogen coverage and the collective process is possible at a certain hydrogen coverage under the same tension. The best hydrogen evolution reaction with near-zero Gibbs free energy can be achieved by tuning tension. We further show that the change of catalytic activity with tension and hydrogen coverage is induced by the change of free carrier density around the Fermi level, that is, higher carrier density, better catalytic performance. It is expected that tension can be a simple way to improve the catalytic activity, leading to the design of novel electrocatalysts for efficient hydrogen production from water electrolysis.

  11. Preclinical pharmacokinetic analysis of NOV-002, a glutathione disulfide mimetic.

    PubMed

    Uys, J D; Manevich, Y; Devane, L C; He, L; Garret, T E; Pazoles, C J; Tew, K D; Townsend, D M

    2010-09-01

    NOV-002 is a glutathione disulfide (GSSG) mimetic that is the subject of clinical investigation in oncology indications. GSSG is reduced by glutathione reductase (GR) to form glutathione (GSH), thereby maintaining redox homeostasis. The purpose of the study was to report the pharmacokinetic properties of NOV-002 and evaluate the effect that NOV-002 elicits in redox homeostasis. The pharmacokinetic analysis and tissue distribution of NOV-002 and GSH was evaluated in mice following a dose of 250 mg/kg, i.p. The redox potential and total protein thiol status was calculated. Here we show that NOV-002 is a substrate for GR and that GSH is a primary metabolite. Non-linear pharmacokinetic modeling predicted that the estimated absorption and elimination rate constants correspond to a half-life of approximately 13 min with an AUC of 1.18 μgh/mL, a C(max) of 2.16 μg/ml and a volume of distribution of 42.61 L/kg. In addition, measurement of the redox potential and total protein thiol status indicated the generation of a transient oxidative signal in the plasma compartment after administration of NOV-002. These results indicate that NOV-002 exerts kinetic and dynamic effects in mice consistent with the GSSG component as the active pharmacological constituent of the drug. A longer-lasting decrease in total plasma free thiol content was also seen, suggesting that the oxidative effect of the GSSG from NOV-002 was impacting redox homeostasis.

  12. Diallyl disulfide attenuates acetaminophen-induced renal injury in rats

    PubMed Central

    Shin, Jin-Young; Han, Ji-Hee; Ko, Je-Won; Park, Sung-Hyeuk; Shin, Na-Rae; Jung, Tae-Yang; Kim, Hyun-A; Kim, Sung-Hwan; Shin, In-Sik

    2016-01-01

    This study investigated the protective effects of diallyl disulfide (DADS) against acetaminophen (AAP)-induced acute renal injury in male rats. We also investigated the effects of DADS on kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL), which are novel biomarkers of nephrotoxicity in renal tissues, in response to AAP treatment. The following four experimental groups were evaluated: (1) vehicle control, (2) AAP (1,000 mg/kg), (3) AAP&DADS, and (4) DADS (50 mg/kg/day). AAP treatment caused acute kidney injury evidenced by increased serum blood urea nitrogen (BUN) levels and histopathological alterations. Additionally, Western blot and immunohistochemistry analysis showed increased expression of KIM-1 and NGAL proteins in renal tissues of AAP-treated rats. In contrast, DADS pretreatment significantly attenuated the AAP-induced nephrotoxic effects, including serum BUN level and expression of KIM-1 and NGAL proteins. Histopathological studies confirmed the renoprotective effect of DADS. The results suggest that DADS prevents AAP-induced acute nephrotoxicity, and that KIM-1 and NGAL may be useful biomarkers for the detection and monitoring of acute kidney injury associated with AAP exposure. PMID:28053613

  13. Tension-Enhanced Hydrogen Evolution Reaction on Vanadium Disulfide Monolayer

    NASA Astrophysics Data System (ADS)

    Pan, Hui

    2016-02-01

    Water electrolysis is an efficient way for hydrogen production. Finding efficient, cheap, and eco-friendly electrocatalysts is essential to the development of this technology. In the work, we present a first-principles study on the effects of tension on the hydrogen evolution reaction of a novel electrocatalyst, vanadium disulfide (VS2) monolayer. Two electrocatalytic processes, individual and collective processes, are investigated. We show that the catalytic ability of VS2 monolayer at higher hydrogen coverage can be efficiently improved by escalating tension. We find that the individual process is easier to occur in a wide range of hydrogen coverage and the collective process is possible at a certain hydrogen coverage under the same tension. The best hydrogen evolution reaction with near-zero Gibbs free energy can be achieved by tuning tension. We further show that the change of catalytic activity with tension and hydrogen coverage is induced by the change of free carrier density around the Fermi level, that is, higher carrier density, better catalytic performance. It is expected that tension can be a simple way to improve the catalytic activity, leading to the design of novel electrocatalysts for efficient hydrogen production from water electrolysis.

  14. Template synthesis and characterization of molybdenum disulfide nanotubules

    SciTech Connect

    Yu, Dongbo; Feng, Yi; Zhu, Yanfang; Zhang, Xuebin; Li, Bin; Liu, Huiqiang

    2011-09-15

    Graphical abstract: The image is a SEM image of branched MoS{sub 2} nanotubes, which are prepared in AAO templates. It is obvious to observe the branch of MoS{sub 2} nanotubes (labeled by arrows), and it reflects the microcosmic morphologies of pores in templates. Highlights: {yields} Large quantities of hollow MoS2 tubules. {yields} Explanation for the formation of branched shape. {yields} Explanation for the morphology of bamboo-like structure. -- Abstract: Molybdenum disulfide nanotubules were prepared by thermal decomposition of ammonium thiomolybdate ((NH{sub 4}){sub 2}MoS{sub 4}) precursors on anodized aluminum oxide template. Large quantities of hollow MoS{sub 2} nanotubules with the bamboo-like structure were obtained. The morphology and structures of MoS{sub 2} tubules were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy, electron diffraction and optical absorption spectroscopy. MoS{sub 2} nanotubules completely reflected the three-dimensional structure of nanopores in template. The properties of Mo-S chemical bonds in lattice structure and the wetting state between porous surface and precursor have a great effect on the formation of sections in nanotubules, the ridges in the nanopores also play a very special role of this formation.

  15. Biotechnology for removal of carbon disulfide emissions. Final report

    SciTech Connect

    McIntosh, M.J.

    1995-07-01

    Biological removal in a ``biofilter`` plant of carbon disulfide and hydrogen sulfide from the air effluent of a viscose plant at Teepak, Inc., is analyzed from process and economic standpoints by use of the Aspen Plus simulation program. The metabolic product from the biofilter, 3% sulfuric acid, must be transformed at the source into either a marketable or recyclable commodity (such as 95% sulfuric acid, high-quality sulfur, or high-quality gypsum) or a material with reasonable landfill costs (such as sulfur or gypsum). The simulations indicate that the total capital requirement for production of concentrated sulfuric acid is $48.9 million; for high-quality gypsum, $40.4 million; and for high-quality sulfur, $29.4 million. Production of concentrated sulfur for landfill is not economically practical. The process to neutralize the 3% acid effluent with limestone and landfill the resulting low-quality gypsum requires the lowest total investment of the processes simulated, $8.7 million, including the biofilter plant.

  16. Cardiovascular effects in viscose rayon workers exposed to carbon disulfide.

    PubMed

    Kotseva, K; Braeckman, L; De Bacquer, D; Bulat, P; Vanhoorne, M

    2001-01-01

    The objectives of this study were to investigate the cardiovascular effects in workers currently exposed to carbon disulfide (CS2) below the threshold limit value (TLV) of 31 mg/m3 and to determine the prevalence of coronary heart disease (CHD) after long-term exposure. 172 men (91 workers exposed to CS2 in a viscose rayon factory and 81 referent workers) were examined using a medical and job history questionnaire, Rose's questionnaire, and electrocardiography at rest, and by measuring blood pressure and serum lipids and lipoproteins. Personal exposures were monitored simultaneously with active sampling and findings were analyzed according to the NIOSH 1600 method. As a result of technical and organizational improvements, personal CS2 exposures were well below the TLV (5.4-13.02 mg/m3). No significant effect of CS2 on blood pressure or lipids (total cholesterol, HDL and LDL cholesterol, triglycerides, and apolipoproteins AI and B) was found, even after allowance for confounding factors. The prevalence of CHD (ECG abnormalities and chest pain) was higher in the viscose rayon workers than in the workers with no exposure but reached statistical significance for men with exposure histories often years and more only (cumulative CS9 index > or = 150 mg/m3, the most highly exposed group). The findings suggest that the coronary risk is increased in workers previously exposed to high CS2 concentrations but not in those exposed to CS2 levels below the current TLV.

  17. Optical absorption and transmission in a molybdenum disulfide monolayer

    NASA Astrophysics Data System (ADS)

    Rukelj, Zoran; Štrkalj, Antonio; Despoja, Vito

    2016-09-01

    Our recently proposed theoretical formulation [presented in D. Novko et al., Phys. Rev. B 93, 125413 (2016), 10.1103/PhysRevB.93.125413] is used to study optical absorption and transmission in molybdenum disulfide (MoS2) monolayer as a function of incident photon energy and angle. The investigation is not focused on exploration of well-documented spin-orbit split excitons around optical absorption onset, but rather on the most intensive features in absorption spectrum in the visible and near-ultraviolet photon energy range (1.7 -4 eV ). It is shown that three most intensive peaks, at 2.7, 3.1, and 3.7 eV, result from transitions between Mo(d ) and S(p ) valence and conduction bands and that the character of their charge/current density fluctuations is intrinsically in plane, located in the molybdenum plane. This also implies that MoS2 monolayer is completely transparent when illuminated by grazing incidence p -polarized light. The validity of the presented results is supported by our effective two-band tight-binding model and finally by good agreement with some recent experimental results.

  18. Diallyl disulfide attenuates acetaminophen-induced renal injury in rats.

    PubMed

    Shin, Jin-Young; Han, Ji-Hee; Ko, Je-Won; Park, Sung-Hyeuk; Shin, Na-Rae; Jung, Tae-Yang; Kim, Hyun-A; Kim, Sung-Hwan; Shin, In-Sik; Kim, Jong-Choon

    2016-12-01

    This study investigated the protective effects of diallyl disulfide (DADS) against acetaminophen (AAP)-induced acute renal injury in male rats. We also investigated the effects of DADS on kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL), which are novel biomarkers of nephrotoxicity in renal tissues, in response to AAP treatment. The following four experimental groups were evaluated: (1) vehicle control, (2) AAP (1,000 mg/kg), (3) AAP&DADS, and (4) DADS (50 mg/kg/day). AAP treatment caused acute kidney injury evidenced by increased serum blood urea nitrogen (BUN) levels and histopathological alterations. Additionally, Western blot and immunohistochemistry analysis showed increased expression of KIM-1 and NGAL proteins in renal tissues of AAP-treated rats. In contrast, DADS pretreatment significantly attenuated the AAP-induced nephrotoxic effects, including serum BUN level and expression of KIM-1 and NGAL proteins. Histopathological studies confirmed the renoprotective effect of DADS. The results suggest that DADS prevents AAP-induced acute nephrotoxicity, and that KIM-1 and NGAL may be useful biomarkers for the detection and monitoring of acute kidney injury associated with AAP exposure.

  19. The flexibility and dynamics of protein disulfide isomerase

    PubMed Central

    Wells, Stephen A.; Emilio Jimenez‐Roldan, J.; Bhattacharyya, Moitrayee; Vishweshwara, Saraswathi; Freedman, Robert B.

    2016-01-01

    ABSTRACT We have studied the mobility of the multidomain folding catalyst, protein disulfide isomerase (PDI), by a coarse‐graining approach based on flexibility. We analyze our simulations of yeast PDI (yPDI) using measures of backbone movement, relative positions and orientations of domains, and distances between functional sites. We find that there is interdomain flexibility at every interdomain junction but these show very different characteristics. The extent of interdomain flexibility is such that yPDI's two active sites can approach much more closely than is found in crystal structures—and indeed hinge motion to bring these sites into proximity is the lowest energy normal mode of motion of the protein. The flexibility predicted for yPDI (based on one structure) includes the other known conformation of yPDI and is consistent with (i) the mobility observed experimentally for mammalian PDI and (ii) molecular dynamics. We also observe intradomain flexibility and clear differences between the domains in their propensity for internal motion. Our results suggest that PDI flexibility enables it to interact with many different partner molecules of widely different sizes and shapes, and highlights considerable similarities of yPDI and mammalian PDI. Proteins 2016; 84:1776–1785. © 2016 Wiley Periodicals, Inc. PMID:27616289

  20. Expression and Localization of Plant Protein Disulfide Isomerase.

    PubMed Central

    Shorrosh, B. S.; Subramaniam, J.; Schubert, K. R.; Dixon, R. A.

    1993-01-01

    A cDNA clone encoding a putative protein disulfide isomerase (PDI, EC 5.3.4.1) from alfalfa (Medicago sativa L.) was expressed in Escherichia coli cells, and an antiserum was raised against the expressed PDI-active protein. The antiserum recognized a protein of approximately 60 kD in extracts from alfalfa, soybean, and tobacco roots and stems. Levels of this protein remained relatively constant on exposure of alfalfa cell suspension cultures to the protein glycosylation inhibitor tunicamycin, whereas a slightly lower molecular mass form, also detected by the antiserum, was induced by this treatment. A lower molecular mass form of PDI was also observed in roots of alfalfa seedlings during the first 5 weeks after germination. PDI levels increased in developing soybean seeds up to 17 d after fertilization and then declined. Tissue print immunoblots revealed highest levels of PDI protein in the cambial tissues of soybean stems and petioles and in epidermal, subepidermal, cortical, and pith tissues of stems of alfalfa and tobacco. Immunogold electron microscopy confirmed the localization of PDI to the endoplasmic reticulum in soybean root nodules. PMID:12231974

  1. 9-Fluorenylmethyl (Fm) Disulfides: Biomimetic Precursors for Persulfides

    SciTech Connect

    Park, Chung-Min; Johnson, Brett A.; Duan, Jicheng; Park, Jeong-Jin; Day, Jacob J.; Gang, David; Qian, Wei-Jun; Xian, Ming

    2016-03-04

    Protein S-sulfhydration has been recognized as an important post-translational modification that regulates H2S signals. However, the reactivity and biological implications of the products of S-sulfhydration, i.e. persulfides, are still unclear. This is mainly due to the instability of persulfides and difficulty to access these molecules. Under physiological conditions persulfides mainly exist in anionic forms because of their low pKa values. However, current methods do not allow for the direct generation of persulfide anions under biomimetic and non-H2S conditions. Herein we report the development of a functional disulfide, FmSSPy-A (Fm =9-fluorenylmethyl; Py = pyridinyl). This reagent can effectively convert both small molecule and protein thiols (-SH) to form –S-SFm adducts under mild conditions. It allows for a H2S-free and biomimetic protocol to generate highly reactive persulfides (in their anionic forms). We also demonstrated the high nucleophilicity of persulfides toward a number of thiol-blocking reagents. This method holds promise for further understanding the chemical biology of persulfides and S-sulfhydration.

  2. The role of intra-domain disulfide bonds in heat-induced irreversible denaturation of camelid single domain VHH antibodies

    PubMed Central

    Akazawa-Ogawa, Yoko; Uegaki, Koichi; Hagihara, Yoshihisa

    2016-01-01

    Camelid-derived single domain VHH antibodies are highly heat resistant, and the mechanism of heat-induced VHH denaturation predominantly relies on the chemical modification of amino acids. Although chemical modification of disulfide bonds has been recognized as a cause for heat-induced denaturation of many proteins, there have been no mutagenesis studies, in which the number of disulfide bonds was controlled. In this article, we examined a series of mutants of two different VHHs with single, double or no disulfide bonds, and scrutinized the effects of these disulfide bond modifications on VHH denaturation. With the exception of one mutant, the heat resistance of VHHs decreased when the number of disulfide bonds increased. The effect of disulfide bonds on heat denaturation was more striking if the VHH had a second disulfide bond, suggesting that the contribution of disulfide shuffling is significant in proteins with multiple disulfide bonds. Furthermore, our results directly indicate that removal of a disulfide bond can indeed increase the heat resistance of a protein, irrespective of the negative impact on equilibrium thermodynamic stability. PMID:26289739

  3. The role of intra-domain disulfide bonds in heat-induced irreversible denaturation of camelid single domain VHH antibodies.

    PubMed

    Akazawa-Ogawa, Yoko; Uegaki, Koichi; Hagihara, Yoshihisa

    2016-01-01

    Camelid-derived single domain VHH antibodies are highly heat resistant, and the mechanism of heat-induced VHH denaturation predominantly relies on the chemical modification of amino acids. Although chemical modification of disulfide bonds has been recognized as a cause for heat-induced denaturation of many proteins, there have been no mutagenesis studies, in which the number of disulfide bonds was controlled. In this article, we examined a series of mutants of two different VHHs with single, double or no disulfide bonds, and scrutinized the effects of these disulfide bond modifications on VHH denaturation. With the exception of one mutant, the heat resistance of VHHs decreased when the number of disulfide bonds increased. The effect of disulfide bonds on heat denaturation was more striking if the VHH had a second disulfide bond, suggesting that the contribution of disulfide shuffling is significant in proteins with multiple disulfide bonds. Furthermore, our results directly indicate that removal of a disulfide bond can indeed increase the heat resistance of a protein, irrespective of the negative impact on equilibrium thermodynamic stability.

  4. Global Climate Responses to Anthropogenic Groundwater Exploitation

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Xie, Z.

    2015-12-01

    In this study, a groundwater exploitation scheme is incorporated into the earth system model, Community Earth System Model 1.2.0 (CESM1.2.0), which is called CESM1.2_GW, and the climatic responses to anthropogenic groundwater withdrawal are then investigated on global scale. The scheme models anthropogenic groundwater exploitation and consumption, which are then divided into agricultural irrigation, industrial use and domestic use. A group of 41-year ensemble groundwater exploitation simulations with six different initial conditions, and a group of ensemble control simulations without exploitation are conducted using the developed model CESM1.2_GW with water supplies and demands estimated. The results reveal that the groundwater exploitation and water consumption cause drying effects on soil moisture in deep layers and wetting effects in upper layers, along with a rapidly declining groundwater table in Central US, Haihe River Basin in China and Northern India and Pakistan where groundwater extraction are most severe in the world. The atmosphere also responds to anthropogenic groundwater exploitation. Cooling effects on lower troposphere appear in large areas of North China Plain and of Northern India and Pakistan. Increased precipitation occurs in Haihe River Basin due to increased evapotranspiration from irrigation. Decreased precipitation occurs in Northern India because water vapor here is taken away by monsoon anomalies induced by anthropogenic alteration of groundwater. The local reducing effects of anthropogenic groundwater exploitation on total terrestrial water storage evinces that water resource is unsustainable with the current high exploitation rate. Therefore, a balance between slow groundwater withdrawal and rapid human economic development must be achieved to maintain a sustainable water resource, especially in over-exploitation regions such as Central US, Northern China, India and Pakistan.

  5. The disulfide bond pattern of catrocollastatin C, a disintegrin-like/cysteine-rich protein isolated from Crotalus atrox venom.

    PubMed Central

    Calvete, J. J.; Moreno-Murciano, M. P.; Sanz, L.; Jürgens, M.; Schrader, M.; Raida, M.; Benjamin, D. C.; Fox, J. W.

    2000-01-01

    The disulfide bond pattern of catrocollastatin-C was determined by N-terminal sequencing and mass spectrometry. The N-terminal disintegrin-like domain is a compact structure including eight disulfide bonds, seven of them in the same pattern as the disintegrin bitistatin. The protein has two extra cysteine residues (XIII and XVI) that form an additional disulfide bond that is characteristically found in the disintegrin-like domains of cellular metalloproteinases (ADAMs) and PIII snake venom Zn-metalloproteinases (SVMPs). The C-terminal cysteine-rich domain of catrocollastatin-C contains five disulfide bonds between nearest-neighbor cysteines and a long range disulfide bridge between CysV and CysX. These results provide structural evidence for a redefinition of the disintegrin-like and cysteine-rich domain boundaries. An evolutionary pathway for ADAMs, PIII, and PII SVMPs based on disulfide bond engineering is also proposed. PMID:10933502

  6. Observation of two distinct negative trions in tungsten disulfide monolayers

    SciTech Connect

    Boulesbaa, Abdelaziz; Huang, Bing; Wang, Kai; Lin, Ming-Wei; Mahjouri-Samani, Masoud; Rouleau, Christopher M.; Xiao, Kai; Yoon, Mina; Sumpter, Bobby G.; Puretzky, Alexander A.; Geohegan, David B.

    2015-09-25

    We report on the observation of two distinct photogenerated negative trion states TA and TB in two-dimensional tungsten disulfide (2D-WS2) monolayers. These trions are postulated to emerge from their parent excitons XA and XB, which originate from spin-orbit-split (SOS) levels in the conduction band (CB) and valence band (VB). Time-resolved spectroscopy measurements suggests that Pauli blocking controls a competition process between TA and TB photoformation, following dissociation of XA and XB through hole trapping at internal or substrate defect sites. While TA arises directly from its parent XA, TB emerges through a different transition accessible only after XB dissociates through a hole trapping channel. This discovery of additional optically-active band-edge transitions in atomically-thin metal dichalcogenides may revolutionize optoelectronic applications and fundamental research opportunities for many-body interaction physics. Ultrafast pump-probe spectroscopy of two-dimensional tungsten disulfide monolayers (2D-WS2) grown on sapphire substrates revealed two transient absorption spectral peaks that are attributed to distinct negative trions at ~2.02 eV (T1) and ~1.98 eV (T2). The dynamics measurements indicate that trion formation by the probe is enabled by photodoped electrons that remain after trapping of holes from excitons or free electron-hole pairs at defect sites in the crystal or on the substrate. Dynamics of the excitons XA and XB’s characteristic absorption bands, at ~2.03 and ~2.40 eV, respectively, were separately monitored and compared with the photoinduced absorption features. Selective excitation of the lowest exciton level XA using λpump < 2.4 eV forms only trion T1, which implies that the electron that remains

  7. Observation of two distinct negative trions in tungsten disulfide monolayers

    DOE PAGES

    Boulesbaa, Abdelaziz; Huang, Bing; Wang, Kai; ...

    2015-09-25

    We report on the observation of two distinct photogenerated negative trion states TA and TB in two-dimensional tungsten disulfide (2D-WS2) monolayers. These trions are postulated to emerge from their parent excitons XA and XB, which originate from spin-orbit-split (SOS) levels in the conduction band (CB) and valence band (VB). Time-resolved spectroscopy measurements suggests that Pauli blocking controls a competition process between TA and TB photoformation, following dissociation of XA and XB through hole trapping at internal or substrate defect sites. While TA arises directly from its parent XA, TB emerges through a different transition accessible only after XB dissociates throughmore » a hole trapping channel. This discovery of additional optically-active band-edge transitions in atomically-thin metal dichalcogenides may revolutionize optoelectronic applications and fundamental research opportunities for many-body interaction physics. Ultrafast pump-probe spectroscopy of two-dimensional tungsten disulfide monolayers (2D-WS2) grown on sapphire substrates revealed two transient absorption spectral peaks that are attributed to distinct negative trions at ~2.02 eV (T1) and ~1.98 eV (T2). The dynamics measurements indicate that trion formation by the probe is enabled by photodoped electrons that remain after trapping of holes from excitons or free electron-hole pairs at defect sites in the crystal or on the substrate. Dynamics of the excitons XA and XB’s characteristic absorption bands, at ~2.03 and ~2.40 eV, respectively, were separately monitored and compared with the photoinduced absorption features. Selective excitation of the lowest exciton level XA using λpump < 2.4 eV forms only trion T1, which implies that the electron that remains from the dissociation of exciton XA is involved in the creation of this trion with a binding energy ~ 10 meV with respect to XA. The absorption peak that corresponds to trion T2 appears when λpump > 2.4 eV, which is just

  8. Assistive Technology

    MedlinePlus

    ... allcontacts/statewidecontacts.html . Some Area Agencies on Aging (AAA) have programs or link to services that assist ... obtain low-cost assistive technology. To locate your AAA, call the Eldercare Locator at 1-800-677- ...

  9. Assisted Living

    MedlinePlus

    ... but they don't need full-time nursing care. Some assisted living facilities are part of retirement ... change. Assisted living costs less than nursing home care. It is still fairly expensive. Older people or ...

  10. Dental Assistants

    MedlinePlus

    ... help keep the dental office running smoothly. Important Qualities Detail oriented. Dental assistants must follow specific rules and protocols, such as infection control procedures, when helping dentists treat patients. Assistants also ...

  11. First principles investigation of copper and silver intercalated molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Guzman, D. M.; Onofrio, N.; Strachan, A.

    2017-02-01

    We characterize the energetics and atomic structures involved in the intercalation of copper and silver into the van der Waals gap of molybdenum disulfide as well as the resulting ionic and electronic transport properties using first-principles density functional theory. The intercalation energy of systems with formula (Cu,Ag)xMoS2 decreases with ion concentration and ranges from 1.2 to 0.8 eV for Cu; Ag exhibits a stronger concentration dependence from 2.2 eV for x = 0.014 to 0.75 eV for x = 1 (using the fcc metal as a reference). Partial atomic charge analysis indicates that approximately half an electron is transferred per metallic ion in the case of Cu at low concentrations and the ionicity decreases only slightly with concentration. In contrast, while Ag is only slightly less ionic than Cu for low concentrations, charge transfer reduces significantly to approximately 0.1 e for x = 1. This difference in ionicity between Cu and Ag correlates with their intercalation energies. Importantly, the predicted values indicate the possibility of electrochemical intercalation of both Cu and Ag into MoS2 and the calculated activation energies associated with ionic transport within the gaps, 0.32 eV for Cu and 0.38 eV for Ag, indicate these materials to be good ionic conductors. Analysis of the electronic structure shows that charge transfer leads to a shift of the Fermi energy into the conduction band resulting in a semiconductor-to-metal transition. Electron transport calculations based on non-equilibrium Green's function show that the low-bias conductance increases with metal concentration and is comparable in the horizontal and vertical transport directions. These properties make metal intercalated transition metal di-chalcogenides potential candidates for several applications including electrochemical metallization cells and contacts in electronics based on 2D materials.

  12. Unprecedented formation of novel phosphonodithioate ligands from diferrocenyldithiadiphosphetane disulfide.

    PubMed

    Barranco, Eva M; Crespo, Olga; Gimeno, M Concepción; Jones, Peter G; Laguna, Antonio

    2008-08-04

    The reaction of the phosphetane disulfide, FcP(S)S 2P(S)Fc ( 1) (Fc = (eta (5)-C 5H 5)Fe(eta (5)-C 5H 4)), the ferrocenyl analogue of the Lawesson reagent, with gold and palladium complexes leads to the unprecedented formation of phosphonodithioate ligands upon coordination to the metal centers. The reaction of 1 with gold complexes such as [AuCl(PR 3)] affords the species [Au{S 2P(OH)Fc}(PR 3)] (PR 3 = PPh 3 ( 2), PPh 2Me ( 3)), in which the phosphonodithioate ligand Fc(OH)PS 2 (-) has been formed. The same ligand is present in the compound [Au 2{S 2P(OH)Fc} 2].[N(PPh 3) 2]Cl ( 4), obtained by reaction of 1 with [N(PPh 3) 2][AuCl 2]. It crystallizes with one molecule of [N(PPh 3) 2]Cl, whereby complex 4 acts as an anion receptor and forms strong hydrogen bonds between the chloro and the hydroxyl groups. The reaction with palladium derivatives is different; two complexes, [Pd 2(S 4OP 2Fc 2) 2] ( 5) and [Pd 4Cl 4(S 4OP 2Fc 2) 2] ( 6), are obtained in molar ratio 2:1 and 1:1, respectively. In these complexes a new phosphonodithioate ligand is present and probably arises from the condensation of two molecules of Fc(OH)PS 2 (-). Complex 5 has also been characterized by X-ray methods.

  13. Preclinical Pharmacokinetic Analysis of NOV-002, a Glutathione Disulfide Mimetic

    PubMed Central

    Uys, Joachim D.; Manevich, Yefim; DeVane, Lindsay C.; He, Lin; Garret, Tracy E.; Pazoles, Christopher J.; Tew, Kenneth D.; Townsend, Danyelle M.

    2010-01-01

    Summary NOV-002 is a glutathione disulfide (GSSG) mimetic that is in Phase III clinical trials for the treatment of advanced non-small cell lung cancer and other oncology indications. GSSG is reduced by glutathione reductase (GR) to form glutathione (GSH), thereby maintaining redox homeostasis. The purpose of the study was to report the pharmacokinetic properties of NOV-002 and evaluate the effect that NOV-002 elicits in redox homeostasis. The pharmacokinetic analysis and tissue distribution of NOV-002 and GSH was evaluated in mice following a dose of 250 mg/kg, i.p. The redox potential and total protein thiol status was calculated. Here we show that NOV-002 is a substrate for GR and that GSH is a primary metabolite. Nonlinear pharmacokinetic modeling predicted that the estimated absorption and elimination rate constants correspond to a half-life of ~13 mins with an AUC of 1.18 μg.h/ml, a Cmax of 2.16 μg/ml and a volume of distribution of 42.61 L/kg. In addition, measurement of the redox potential and total protein thiol status indicated the generation of a transient oxidative signal in the plasma compartment after administration of NOV-002. These results indicate that NOV-002 exerts kinetic and dynamic effects in mice consistent with the GSSG component as the active pharmacological constituent of the drug. A longer-lasting decrease in total plasma free thiol content was also seen, suggesting that the oxidative effect of the GSSG from NOV-002 was impacting redox homeostasis. PMID:20359856

  14. Carbon Disulfide Mediates Socially-Acquired Nicotine Self-Administration

    PubMed Central

    Wang, Tengfei; Chen, Hao

    2014-01-01

    The social environment plays a critical role in smoking initiation as well as relapse. We previously reported that rats acquired nicotine self-administration with an olfactogustatory cue only when another rat consuming the same cue was present during self-administration. Because carbon disulfide (CS2) mediates social learning of food preference in rodents, we hypothesized that socially acquired nicotine self-administration is also mediated by CS2. We tested this hypothesis by placing female adolescent Sprague-Dawley rats in operant chambers equipped with two lickometers. Licking on the active spout meeting a fixed-ratio 10 schedule triggered the concurrent delivery of an i.v. infusion (saline, or 30 µg/kg nicotine, free base) and an appetitive olfactogustatory cue containing CS2 (0–500 ppm). Rats that self-administered nicotine with the olfactogustatory cue alone licked less on the active spout than on the inactive spout. Adding CS2 to the olfactogustatory cue reversed the preference for the spouts. The group that received 500 ppm CS2 and the olfactogustatory cue obtained a significantly greater number of nicotine infusions than other groups. After extinction training, the original self-administration context reinstated nicotine-seeking behavior in all nicotine groups. In addition, in rats that received the olfactogustatory cue and 500 ppm CS2 during SA, a social environment where the nicotine-associated olfactory cue is present, induced much stronger drug-seeking behavior compared to a social environment lacking the olfactogustatory cue. These data established that CS2 is a critical signal that mediates social learning of nicotine self-administration with olfactogustatory cues in rodents. Additionally, these data showed that the social context can further enhance the drug-seeking behavior induced by the drug-taking environment. PMID:25532105

  15. Carbon disulfide exposure and neurotoxic sequelae among viscose rayon workers

    SciTech Connect

    Aaserud, O.; Hommeren, O.J.; Tvedt, B.; Nakstad, P.; Mowe, G.; Efskind, J.; Russell, D.; Joergensen, E.B.N.; Nyberg-Hansen, R.; Rootwelt, K. )

    1990-01-01

    In Norway's only viscose rayon plant, carbon disulfide (CS2) concentrations in ambient air usually were between 30 and 50 mg/m3 during the first 23 years of production. From 1970/1971 until the factory was closed in 1982, corresponding values were 10-25 mg/m3. Through all of these years, high peak exposures of CS2 and H2S occurred. In 1986, 16 of the 24 men still at work in 1982 and with at least 10 years' experience in the spinning room agreed to participate in this study. Clinical neurological examination demonstrated abnormalities in 15; neuropsychological tests showed impairments of probable organic origin in 14. Thirteen had cerebral atrophy demonstrated by cerebral computed tomography (CT). Electromyography (EMG) was abnormal in six, neurography in 11. Regional cerebral blood flow measurements indicated flow asymmetries in eight, whereas Doppler investigation of the extracranial carotid and vertebral arteries, electroencephalography (EEG), and evoked response investigations were mostly normal. Based on these results and the exposure data, a diagnosis of CS2-induced encephalopathy was reached in eight workers; another six had an encephalopathy in which CS2 exposure was regarded as a partial cause. Correspondingly, seven had a neuropathy probably caused by CS2 exposure alone; in three others, CS2 was found to be the partial cause of a neuropathy. This indicates that long-term, relatively moderate exposure to CS2 in association with high peak exposures to CS2 and H2S involves a substantial risk of developing neurotoxic disease.

  16. Tungsten disulfide nanotubes reinforced biodegradable polymers for bone tissue engineering.

    PubMed

    Lalwani, Gaurav; Henslee, Allan M; Farshid, Behzad; Parmar, Priyanka; Lin, Liangjun; Qin, Yi-Xian; Kasper, F Kurtis; Mikos, Antonios G; Sitharaman, Balaji

    2013-09-01

    In this study, we have investigated the efficacy of inorganic nanotubes as reinforcing agents to improve the mechanical properties of poly(propylene fumarate) (PPF) composites as a function of nanomaterial loading concentration (0.01-0.2 wt.%). Tungsten disulfide nanotubes (WSNTs) were used as reinforcing agents in the experimental group. Single- and multi-walled carbon nanotubes (SWCNTs and MWCNTs) were used as positive controls, and crosslinked PPF composites were used as the baseline control. Mechanical testing (compression and three-point bending) shows a significant enhancement (up to 28-190%) in the mechanical properties (compressive modulus, compressive yield strength, flexural modulus and flexural yield strength) of WSNT-reinforced PPF nanocomposites compared to the baseline control. In comparison to the positive controls, significant improvements in the mechanical properties of WSNT nanocomposites were also observed at various concentrations. In general, the inorganic nanotubes (WSNTs) showed mechanical reinforcement better than (up to 127%) or equivalent to that of carbon nanotubes (SWCNTs and MWCNTs). Sol fraction analysis showed significant increases in the crosslinking density of PPF in the presence of WSNTs (0.01-0.2 wt.%). Transmission electron microscopy (TEM) analysis on thin sections of crosslinked nanocomposites showed the presence of WSNTs as individual nanotubes in the PPF matrix, whereas SWCNTs and MWCNTs existed as micron-sized aggregates. The trend in the surface area of nanostructures obtained by Brunauer-Emmett-Teller (BET) surface area analysis was SWCNTs>MWCNTs>WSNTs. The BET surface area analysis, TEM analysis and sol fraction analysis results taken together suggest that chemical composition (inorganic vs. carbon nanomaterials), the presence of functional groups (such as sulfide and oxysulfide) and individual dispersion of the nanomaterials in the polymer matrix (absence of aggregation of the reinforcing agent) are the key parameters

  17. Nanoparticles synthesis of tungsten disulfide via AOT-based microemulsions

    SciTech Connect

    Ghoreishi, S.M.; Meshkat, S.S.; Ghiaci, M.; Dadkhah, A.A.

    2012-06-15

    Graphical abstract: A controlled synthesis of WS2 nanoparticles (most probably inorganic fullerene (IF)) via microemulsion was applied for the first time to prepare WS2 (7–12 nm) by acidification of the water cores of the AOT reverse microemulsion. Highlights: ► An innovative reverse microemulsion technique was developed for WS{sub 2} synthesis. ► WS{sub 2} nanoparticles were obtained with narrow size distribution in range of 7–12 nm. ► Operating cost of microemulsion was lower in contrast to quartz reactor method. ► WS{sub 2} morphology could be controlled to obtain highly active and selective catalysts. ► Lower size of WS{sub 2} in this study overcomes the shortcoming of quartz reactor method. -- Abstract: The tungsten disulfide (WS{sub 2}) nanoparticles (most probably inorganic fullerene (IF)) with a narrow size distribution were synthesized by a reverse micelle technique for the first time. The particle size was controlled by varying water-to-surfactant molar ratio (W{sub 0}), aging time and reagent concentration. The synthesized WS{sub 2} nanoparticles were characterized by zetasizer, UV–visible spectrophotometers and transmission electron microscopy (TEM). The WS{sub 2} nanoparticles with particle diameter size of 7–12 nm were obtained via 24 h aging time. The particle size was controlled by changing the aging time and molar ratio of water/surfactant. Doubling W{sub 0} increased the amount and particle size of WS{sub 2} by 22 and 26%, respectively. The effect of aging time in the range of 6–24 h was investigated and the complete disappearance of yellowish color at 24 h resulted in an optically clear solution, which was the indication of WS{sub 2} formation with 100% conversion of reactant ((NH{sub 4}){sub 2}WS{sub 4}) in the batch reactor.

  18. Fate and Transport of Molybdenum Disulfide Nanomaterials in Sand Columns

    PubMed Central

    Lanphere, Jacob D.; Luth, Corey J.; Guiney, Linda M.; Mansukhani, Nikhita D.; Hersam, Mark C.; Walker, Sharon L.

    2015-01-01

    Abstract Research and development of two-dimensional transition metal dichalcogenides (TMDC) (e.g., molybdenum disulfide [MoS2]) in electronic, optical, and catalytic applications has been growing rapidly. However, there is little known regarding the behavior of these particles once released into aquatic environments. Therefore, an in-depth study regarding the fate and transport of two popular types of MoS2 nanomaterials, lithiated (MoS2-Li) and Pluronic PF-87 dispersed (MoS2-PL), was conducted in saturated porous media (quartz sand) to identify which form would be least mobile in aquatic environments. The electrokinetic properties and hydrodynamic diameters of MoS2 as a function of ionic strength and pH were determined using a zeta potential analyzer and dynamic light scattering techniques. Results suggest that the stability is significantly decreased beginning at 10 and 31.6 mM KCl, for MoS2-PL and MoS2-Li, respectively. Transport study results from breakthrough curves, column dissections, and release experiments suggest that MoS2-PL exhibits a greater affinity to be irreversibly bound to quartz surfaces as compared with the MoS2-Li at a similar ionic strength. Derjaguin–Landau–Verwey–Overbeek theory was used to help explain the unique interactions between the MoS2-PL and MoS2-Li surfaces between particles and with the quartz collectors. Overall, the results suggest that the fate and transport of MoS2 is dependent on the type of MoS2 that enters the environment, where MoS2-PL will be least mobile and more likely be deposited in porous media from pluronic–quartz interactions, whereas MoS2-Li will travel greater distances and have a greater tendency to be remobilized in sand columns. PMID:25741176

  19. Structure of Coenzyme A-Disulfide Reductase from Staphylococcus aureus at 1.54 Angstrom Resolution

    SciTech Connect

    Mallett,T.; Wallen, J.; Karplus, P.; Sakai, H.; Tsukihara, T.; Claiborne, A.

    2006-01-01

    Coenzyme A (CoASH) replaces glutathione as the major low molecular weight thiol in Staphylococcus aureus; it is maintained in the reduced state by coenzyme A-disulfide reductase (CoADR), a homodimeric enzyme similar to NADH peroxidase but containing a novel Cys43-SSCoA redox center. The crystal structure of S. aureus CoADR has been solved using multiwavelength anomalous dispersion data and refined at a resolution of 1.54 {angstrom}. The resulting electron density maps define the Cys43-SSCoA disulfide conformation, with Cys43-S{gamma} located at the flavin si face, 3.2 {angstrom} from FAD-C4aF, and the CoAS- moiety lying in an extended conformation within a cleft at the dimer interface. A well-ordered chloride ion is positioned adjacent to the Cys43-SSCoA disulfide and receives a hydrogen bond from Tyr361'-OH of the complementary subunit, suggesting a role for Tyr361' as an acid-base catalyst during the reduction of CoAS-disulfide. Tyr419'-OH is located 3.2 {angstrom} from Tyr361'-OH as well and, based on its conservation in known functional CoADRs, also appears to be important for activity. Identification of residues involved in recognition of the CoAS-disulfide substrate and in formation and stabilization of the Cys43-SSCoA redox center has allowed development of a CoAS-binding motif. Bioinformatics analyses indicate that CoADR enzymes are broadly distributed in both bacterial and archaeal kingdoms, suggesting an even broader significance for the CoASH/CoAS-disulfide redox system in prokaryotic thiol/disulfide homeostasis.

  20. Tissue factor de-encryption, thrombus formation, and thiol-disulfide exchange.

    PubMed

    Chen, Vivien M Y

    2013-02-01

    Tissue factor (TF) by forming a complex with factor VIIa (FVIIa) initiates blood coagulation. It was traditionally believed that the separation of FVIIa in circulation from subendothelial TF was the main control that was preventing spontaneous initiation of thrombosis and that circulating cells and endothelium did not express TF protein at rest in healthy individuals. However, TF has been detected in healthy human plasma and animal models of thrombosis, which indicate that TF in circulation can contribute to thrombin generation and fibrin formation after an activation event. Circulating TF-and indeed, most of the TF on the cell surface-is "encrypted" or coagulation inactive. The de-encryption step involves exposure of phosphatidylserine (PS), but PS exposure alone is insufficient for full TF activity. Allosteric disulfide bonds control protein function by mediating conformal change through the formation and breaking of disulfide bonds. TF contains a typical surface exposed allosteric bond in the membrane proximal fibronectin type III domain. Thiol-disulfide exchange involving this disulfide is implicated in TF activation with the formation of the disulfide bond corresponding with the active conformation of TF and free thiol or thiol-modified forms corresponding with encryption. Although the exact mechanism by which TF de-encryption occurs remains a subject of debate, thiol blockade and inhibition of oxidoreductases show an important role for thiol-disulfide reactions in platelet-independent pathways of coagulation in vitro and in vivo. In particular, redox active extracellular protein disulfide isomerase is involved in the earliest stages of thrombus initiation and has proven to be a potential target for antithrombotic drug development.

  1. Protein-thiol substitution or protein dethiolation by thiol/disulfide exchange reactions: the albumin model.

    PubMed

    Summa, Domenico; Spiga, Ottavia; Bernini, Andrea; Venditti, Vincenzo; Priora, Raffaella; Frosali, Simona; Margaritis, Antonios; Di Giuseppe, Danila; Niccolai, Neri; Di Simplicio, Paolo

    2007-11-01

    Dethiolation experiments of thiolated albumin with thionitrobenzoic acid and thiols (glutathione, cysteine, homocysteine) were carried out to understand the role of albumin in plasma distribution of thiols and disulfide species by thiol/disulfide (SH/SS) exchange reactions. During these experiments we observed that thiolated albumin underwent thiol substitution (Alb-SS-X+RSH<-->Alb-SS-R+XSH) or dethiolation (Alb-SS-X+XSH<-->Alb-SH+XSSX), depending on the different pK(a) values of thiols involved in protein-thiol mixed disulfides (Alb-SS-X). It appeared in these reactions that the compound with lower pK(a) in mixed disulfide was a good leaving group and that the pK(a) differences dictated the kind of reaction (substitution or dethiolation). Thionitrobenzoic acid, bound to albumin by mixed disulfide (Alb-TNB), underwent rapid substitution after thiol addition, forming the corresponding Alb-SS-X (peaks at 0.25-1 min). In turn, Alb-SS-X were dethiolated by the excess nonprotein SH groups because of the lower pK(a) value in mixed disulfide with respect to that of other thiols. Dethiolation of Alb-SS-X was accompanied by formation of XSSX and Alb-SH up to equilibrium levels at 35 min, which were different for each thiol. Structures by molecular simulation of thiolated albumin, carried out for understanding the role of sulfur exposure in mixed disulfides in dethiolation process, evidenced that the sulfur exposure is important for the rate but not for determining the kind of reaction (substitution or dethiolation). Our data underline the contribution of SH/SS exchanges to determine levels of various thiols as reduced and oxidized species in human plasma.

  2. National Center for Missing and Exploited Children

    MedlinePlus

    ... Team HOPE provides peer and emotional support to families. Contact Us Legal Information DONATE Careers Site Index Copyright © 2016 National Center for Missing & Exploited Children. All rights reserved. This Web site ...

  3. Collision-activated cleavage of a peptide/antibiotic disulfide linkage: possible evidence for intramolecular disulfide bond rearrangement upon collisional activation.

    PubMed

    Fagerquist, Clifton K

    2004-01-01

    Ceftiofur is an important veterinary beta-lactam antibiotic whose bioactive metabolite, desfuroylceftiofur, has a free thiol group. Desfuroylceftiofur (DFC) was reacted with two peptides, [Arg8]-vasopressin and reduced glutathione, both of which have cysteine residues to form disulfide-linked peptide/antibiotic complexes. The products of the reaction, [vasopressin + (DFC-H) + (DFC-H) + H]+, [(vasopressin+H) + (DFC-H) + H]+ and [(glutathione-H) + (DFC-H) + H]+, were analyzed using collision-activated dissociation (CAD) with a quadrupole ion trap tandem mass spectrometer. MS/MS of [vasopressin + (DFC-H) + (DFC-H) + H]+ resulted in facile dissociative loss of one and two covalently bound DFC moieties. Loss of one DFC resulted from either homolytic or heterolytic dissociation of the peptide/antibiotic disulfide bond with equal or unequal partitioning of the two sulfur atoms between the fragment ion and neutral loss. Hydrogen migration preceded heterolytic dissociation. Loss of two DFC moieties from [vasopressin + (DFC-H) + (DFC-H) + H]+ appears to result from collision-activated intramolecular disulfide bond rearrangement (IDBR) to produce cyclic [vasopressin + H]+ (at m/z 1084) as well as other cyclic fragment ions at m/z 1084 +/- 32 and +64. The cyclic structure of these ions could only be inferred as MS/MS may result in rearrangement to non-cyclic structures prior to dissociative loss. IDBR was also detected from MS(3) experiments of [vasopressin + (DFC-H) + (DFC-H) + H]+ fragment ions. MS/MS of [(glutathione-H) + (DFC-H) + H]+ resulted in cleavage of the peptide backbone with retention of the DFC moiety as well as heterolytic cleavage of the peptide/antibiotic disulfide bond to produce the fragment ion: [(DFC-2H) + H]+. These results demonstrate the facile dissociative loss by CAD of DFC moieties covalently attached to peptides through disulfide bonds. Published in 2004 by John Wiley & Sons, Ltd.

  4. Computer-assisted threat evaluation

    NASA Astrophysics Data System (ADS)

    Bains, Jatin S.; Davies, Livingston

    2006-05-01

    The use of a CATE (Computer Assisted Threat Evaluation) System in the Maritime Domain lends itself technically and operationally to data exploitation thru the use of domain forensics and link analysis of fragmented information utilizing data prioritization and suspicion indicators for an aggressor's method of operation. The timely availability of threat mitigating actionable information is one of the key tools for success in the Global War On Terror (GWOT). The global supply chain is vulnerable to exploitation by nefarious individuals, governments, and terrorist organizations. For example, Figure 1 illustrates one of many potential methods that could be used to circumvent regulations limiting proliferation of WMDs.

  5. Exploiting Spatial Channel Occupancy Information in WLANs

    DTIC Science & Technology

    2014-05-15

    Exploiting Spatial Channel Occupancy Information in WLANs Michael N Krishnan Electrical Engineering and Computer Sciences University of California at...3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Exploiting Spatial Channel Occupancy Information in WLANs 5a. CONTRACT NUMBER...length adaptation, and 50% via carrier sense threshold adaptation. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

  6. Assistive Technologies

    ERIC Educational Resources Information Center

    Auat Cheein, Fernando A., Ed.

    2012-01-01

    This book offers the reader new achievements within the Assistive Technology field made by worldwide experts, covering aspects such as assistive technology focused on teaching and education, mobility, communication and social interactivity, among others. Each chapter included in this book covers one particular aspect of Assistive Technology that…

  7. General Approach To Determine Disulfide Connectivity in Cysteine-Rich Peptides by Sequential Alkylation on Solid Phase and Mass Spectrometry.

    PubMed

    Albert, Anastasia; Eksteen, J Johannes; Isaksson, Johan; Sengee, Myagmarsuren; Hansen, Terkel; Vasskog, Terje

    2016-10-04

    Within the field of bioprospecting, disulfide-rich peptides are a promising group of compounds that has the potential to produce important leads for new pharmaceuticals. The disulfide bridges stabilize the tertiary structure of the peptides and often make them superior drug candidates to linear peptides. However, determination of disulfide connectivity in peptides with many disulfide bridges has proven to be laborious and general methods are lacking. This study presents a general approach for structure elucidation of disulfide-rich peptides. The method features sequential reduction and alkylation of a peptide on solid phase combined with sequencing of the fully alkylated peptide by tandem mass spectrometry. Subsequently, the disulfide connectivity is assigned on the basis of the determined alkylation pattern. The presented method is especially suitable for peptides that are prone to disulfide scrambling or are unstable in solution with partly reduced bridges. Additionally, the use of small amounts of peptide in the lowest nmol range makes the method ideal for structure elucidation of unknown peptides from the bioprospecting process. This study successfully demonstrates the new method for seven different peptides with two to four disulfide bridges. Two peptides with previous contradicting publications, μ-conotoxin KIIA and hepcidin-25, are included, and their disulfide connectivity is confirmed in accordance with the latest published results.

  8. DBCP: a web server for disulfide bonding connectivity pattern prediction without the prior knowledge of the bonding state of cysteines

    PubMed Central

    Lin, Hsuan-Hung; Tseng, Lin-Yu

    2010-01-01

    The proper prediction of the location of disulfide bridges is efficient in helping to solve the protein folding problem. Most of the previous works on the prediction of disulfide connectivity pattern use the prior knowledge of the bonding state of cysteines. The DBCP web server provides prediction of disulfide bonding connectivity pattern without the prior knowledge of the bonding state of cysteines. The method used in this server improves the accuracy of disulfide connectivity pattern prediction (Qp) over the previous studies reported in the literature. This DBCP server can be accessed at http://120.107.8.16/dbcp or http://140.120.14.136/dbcp. PMID:20530534

  9. Green polymer chemistry: Synthesis of poly(disulfide) polymers and networks

    NASA Astrophysics Data System (ADS)

    Rosenthal-Kim, Emily Quinn

    The disulfide group is unique in that it presents a covalent bond that is easily formed and cleaved under certain biological conditions. While the ease of disulfide bond cleavage is often harnessed as a method of biodegradation, the ease of disulfide bond formation as a synthetic strategy is often overlooked. The objective this research was to synthesize poly(disulfide) polymers and disulfide crosslinked networks from a green chemistry approach. The intent of the green chemistry approach was to take advantage of the mild conditions applicable to disulfide bond synthesis from thiols. With anticipated use as biomaterials, it was also desired that the polymer materials could be degraded under biological conditions. Here, a new method of poly(disulfide) polymer synthesis is introduced which was inspired by the reaction conditions and reagents found in Nature. Ambient temperatures and aqueous mixtures were used in the new method. Hydrogen peroxide, one of the Nature's most powerful oxidizing species was used as the oxidant in the new polymerization reaction. The dithiol monomer, 3,6-dioxa-1,8-octanedithiol was first solubilized in triethylamine, which activated the thiol groups and made the monomer water soluble. At room temperature, the organic dithiol/amine solution was then mixed with dilute aqueous hydrogen peroxide (3% by weight) to make the poly(disulfide) polymers. The presence of a two phase system (organic and aqueous phases) was critical to the polymerization reaction. As the reaction progresses, a third, polymer phase appeared. At ambient temperatures and above, this phase separated from the reaction mixture and the polymer product was easily removed from the reaction solution. These polymers reach Mn > 250,000 g/mol in under two hours. Molecular weight distributions were between 1.5 and 2.0. Reactions performed in an ice bath which remain below room temperature contain high molecular weight polymers with Mn ≈ 120,000 g/mol and have a molecular weight

  10. Pressure Induced Resonance Raman Effects in Shocked Carbon Disulfide

    DTIC Science & Technology

    1989-03-01

    currently underway. The assistance of Paul Bellamy and Jerry Thompson with the experimental work is acknowledged. This work was supported by ONR contract...Renlund, S.A. Sheffiel, and W.M. Trott , ’Time Resolved Infrared Spec- tral Photograph Studies of Shock Induced Chemistry in CS2 ’ pp 237 in Ref. 1 14. N.C

  11. CHANGES IN DISULFIDE BOND CONTENT OF PROTEINS IN A YEAST STRAIN LACKING MAJOR SOURCES OF NADPH

    PubMed Central

    Minard, Karyl I.; Carroll, Christopher A.; Weintraub, Susan T.; Mc-Alister-Henn, Lee

    2006-01-01

    A yeast mutant lacking the two major cytosolic sources of NADPH, glucose-6-phosphate dehydrogenase (Zwf1p) and NADP+-specific isocitrate dehydrogenase (Idp2p), has been demonstrated to lose viability when shifted to medium with acetate or oleate as the carbon source. This loss in viability was found to correlate with an accumulation of endogenous oxidative byproducts of respiration and peroxisomal β-oxidation. To assess effects on cellular protein of endogenous versus exogenous oxidative stress, a proteomics approach was used to compare disulfide bond-containing proteins in the idp2Δzwf1Δ strain following shifts to acetate and oleate media with those in the parental strain following similar shifts to media containing hydrogen peroxide. Among prominent disulfide bond-containing proteins were several with known antioxidant functions. These and several other proteins were detected as multiple electrophoretic isoforms, with some isoforms containing disulfide bonds under all conditions and other isoforms exhibiting a redox-sensitive content of disulfide bonds, i.e., in the idp2Δzwf1Δ strain and in the hydrogen peroxide-challenged parental strain. The disulfide bond content of some isoforms of these proteins was also elevated in the parental strain grown on glucose, possibly suggesting a redirection of NADPH reducing equivalents to support rapid growth. Further examination of protein carbonylation in the idp2Δzwf1Δ strain shifted to oleate medium also led to identification of common and unique protein targets of endogenous oxidative stress. PMID:17157197

  12. The significance of disulfide bonding in biological activity of HB-EGF, a mutagenesis approach

    SciTech Connect

    Hoskins, J.T.; Zhou, Z.; Harding, P.A.

    2008-10-31

    A site-directed mutagenesis approach was taken to disrupt each of 3 disulfide bonds within human HB-EGF by substituting serine for both cysteine residues that contribute to disulfide bonding. Each HB-EGF disulfide analogue (HB-EGF-Cys/Ser{sub 108/121}, HB-EGF-Cys/Ser{sub 116/132}, and HB-EGF-Cys/Ser{sub 134/143}) was cloned under the regulation of the mouse metallothionein (MT) promoter and stably expressed in mouse fibroblasts. HB-EGF immunoreactive proteins with M{sub r} of 6.5, 21 and 24 kDa were observed from lysates of HB-EGF and each HB-EGF disulfide analogue. HB-EGF immunohistochemical analyses of each HB-EGF stable cell line demonstrated ubiquitous protein expression except HB-EGF-Cys/Ser{sub 108/121} and HB-EGF-Cys/Ser{sub 116/132} stable cell lines which exhibited accumulated expression immediately outside the nucleus. rHB-EGF, HB-EGF, and HB-EGF{sub 134/143} proteins competed with {sup 125}I-EGF in an A431 competitive binding assay, whereas HB-EGF-Cys/Ser{sub 108/121} and HB-EGF-Cys/Ser{sub 116/132} failed to compete. Each HB-EGF disulfide analogue lacked the ability to stimulate tyrosine phosphorylation of the 170 kDa EGFR. These results suggest that HB-EGF-Cys/Ser{sub 134/143} antagonizes EGFRs.

  13. Size and conformation limits to secretion of disulfide-bonded loops in autotransporter proteins.

    PubMed

    Leyton, Denisse L; Sevastsyanovich, Yanina R; Browning, Douglas F; Rossiter, Amanda E; Wells, Timothy J; Fitzpatrick, Rebecca E; Overduin, Michael; Cunningham, Adam F; Henderson, Ian R

    2011-12-09

    Autotransporters are a superfamily of virulence factors typified by a channel-forming C terminus that facilitates translocation of the functional N-terminal passenger domain across the outer membrane of Gram-negative bacteria. This final step in the secretion of autotransporters requires a translocation-competent conformation for the passenger domain that differs markedly from the structure of the fully folded secreted protein. The nature of the translocation-competent conformation remains controversial, in particular whether the passenger domain can adopt secondary structural motifs, such as disulfide-bonded segments, while maintaining a secretion-competent state. Here, we used the endogenous and closely spaced cysteine residues of the plasmid-encoded toxin (Pet) from enteroaggregative Escherichia coli to investigate the effect of disulfide bond-induced folding on translocation of an autotransporter passenger domain. We reveal that rigid structural elements within disulfide-bonded segments are resistant to autotransporter-mediated secretion. We define the size limit of disulfide-bonded segments tolerated by the autotransporter system demonstrating that, when present, cysteine pairs are intrinsically closely spaced to prevent congestion of the translocator pore by large disulfide-bonded regions. These latter data strongly support the hairpin mode of autotransporter biogenesis.

  14. Eight at one stroke - a synthetic tetra-disulfide peptide epitope.

    PubMed

    Schrimpf, Andreas; Linne, Uwe; Geyer, Armin

    2017-02-13

    We have designed a cysteine-rich β-hairpin peptide which dimerises spontaneously to the antiparallel double β-hairpin motif C1-C12', C1'-C12, C5-C8, C5'-C8'-tricyclo-(CHWECCitGCRLVC)2. The highly regioselective oxidation of eight cysteines yields an intermolecular bi-disulfide 24mer hinge peptide from two individual 12mer β-hairpins, each rigidified by an additional intramolecular disulfide bond - all in all a tetra-disulfide. The reaction kinetics of air-oxidation were followed by HPLC and the constitutional isomer was identified by mass spectrometry. The hairpin conformation was characterised in detail by NMR spectroscopy and the opening angle of the antiparallel hinge was estimated from drift times obtained by ion-mobility spectrometry. Based on a set of investigated disulfide motifs, we are able to rationalise how the unbalanced number of bonded and non-bonded hydrogen pairs in a 12 mer hairpin causes their dimerisation. The unique dimeric bi-/tetra-disulfides provide systematic insights into β-hairpin formation. They can serve as a standalone structural element for the oligomerisation of peptide epitopes where structural diversity is generated from a minimal number of amino acids.

  15. Assignment of disulfide-linked peptides using automatic a1 ion recognition.

    PubMed

    Huang, Sheng Yu; Wen, Chien Hsien; Li, Ding Tzai; Hsu, Jue Liang; Chen, Chinpan; Shi, Fong Ku; Lin, Yueh Yi

    2008-12-01

    We present a novel approach for the assignment of peptides containing disulfide linkages. Dimethyl labeling is introduced to generate labeled peptides which exhibit enhanced a1 ion signals during MS/MS fragmentation. For disulfide-linked peptides, multiple a1 ions can be observed due to multiple N-termini. This distinct feature allows sieving out the disulfide-linked peptides; meanwhile, the N-terminal amino acids can be identified. With such information, the number of possible peptide combinations involved in a disulfide bond dramatically narrows down. Furthermore, we developed a computational algorithm to perform target a1 ion screening followed by molecular weight matching of cysteine-containing peptides with specific amino acids at the N-termini. Once the protein sequence and the peak list from a LC-MS/MS survey scan of labeled peptides are imported, the identities of disulfide-linked peptides can be readily obtained. The presented approach is simple and straightforward, offering a valuable tool for protein structural characterization.

  16. Disulfide Connectivity Prediction Based on Modelled Protein 3D Structural Information and Random Forest Regression.

    PubMed

    Yu, Dong-Jun; Li, Yang; Hu, Jun; Yang, Xibei; Yang, Jing-Yu; Shen, Hong-Bin

    2015-01-01

    Disulfide connectivity is an important protein structural characteristic. Accurately predicting disulfide connectivity solely from protein sequence helps to improve the intrinsic understanding of protein structure and function, especially in the post-genome era where large volume of sequenced proteins without being functional annotated is quickly accumulated. In this study, a new feature extracted from the predicted protein 3D structural information is proposed and integrated with traditional features to form discriminative features. Based on the extracted features, a random forest regression model is performed to predict protein disulfide connectivity. We compare the proposed method with popular existing predictors by performing both cross-validation and independent validation tests on benchmark datasets. The experimental results demonstrate the superiority of the proposed method over existing predictors. We believe the superiority of the proposed method benefits from both the good discriminative capability of the newly developed features and the powerful modelling capability of the random forest. The web server implementation, called TargetDisulfide, and the benchmark datasets are freely available at: http://csbio.njust.edu.cn/bioinf/TargetDisulfide for academic use.

  17. Dual Beneficial Effect of Interloop Disulfide Bond for Single Domain Antibody Fragments*

    PubMed Central

    Govaert, Jochen; Pellis, Mireille; Deschacht, Nick; Vincke, Cécile; Conrath, Katja; Muyldermans, Serge; Saerens, Dirk

    2012-01-01

    The antigen-binding fragment of functional heavy chain antibodies (HCAbs) in camelids comprises a single domain, named the variable domain of heavy chain of HCAbs (VHH). The VHH harbors remarkable amino acid substitutions in the framework region-2 to generate an antigen-binding domain that functions in the absence of a light chain partner. The substitutions provide a more hydrophilic, hence more soluble, character to the VHH but decrease the intrinsic stability of the domain. Here we investigate the functional role of an additional hallmark of dromedary VHHs, i.e. the extra disulfide bond between the first and third antigen-binding loops. After substituting the cysteines forming this interloop cystine by all 20 amino acids, we selected and characterized several VHHs that retain antigen binding capacity. Although VHH domains can function in the absence of an interloop disulfide bond, we demonstrate that its presence constitutes a net advantage. First, the disulfide bond stabilizes the domain and counteracts the destabilization by the framework region-2 hallmark amino acids. Second, the disulfide bond rigidifies the long third antigen-binding loop, leading to a stronger antigen interaction. This dual beneficial effect explains the in vivo antibody maturation process favoring VHH domains with an interloop disulfide bond. PMID:22128183

  18. Delicate balance of electrostatic interactions and disulfide bridges in thermostability of firefly luciferase.

    PubMed

    Karimzadeh, Somayeh; Moradi, Maryam; Hosseinkhani, Saman

    2012-12-01

    The wild type Photinus pyralis luciferase does not have any disulfide bridge. Disulfide bridges are determinant in inherent stability of protein at moderate temperatures. Meanwhile, arginin is responsible for thermostability at higher temperatures. In this study, by concomitant introduction of disulfide bridge and a surface arginin in a mutant (A296C-A326C/I232R), the contribution of disulfide bridge introduction and surface hydrophilic residue on activity and global stability of P. pyralis luciferase is investigated. In addition to the mentioned mutant; I232R, A296C-A326C and wild type luciferases are characterized. Though addition of Arg caused stability against proteolysis but in combination with disulfide bridge resulted in decreased thermal stability compared to A296C-A326C mutant. In spite of long distance of two different mutations (A296C-A326C and I232R) from each other in the three-dimensional structure, combination of their effects on the stability of luciferase was not cumulative.

  19. Social class and mental health: testing exploitation as a relational determinant of depression.

    PubMed

    Muntaner, Carles; Ng, Edwin; Prins, Seth J; Bones-Rocha, Katia; Espelt, Albert; Chung, Haejoo

    2015-01-01

    This study tests whether social class exploitation operates as a relational mechanism that generates mental health inequalities in the nursing home industry. We ask, does social class exploitation (i.e., the acquisition of economic benefits from the labor of those who are dominated) have a systematic and predictable impact on depression among nursing assistants? Using cross-sectional data from 868 nursing assistants employed in 50 nursing homes in three U.S. states, we measure social class exploitation as "ownership type" (private for-profit, private not-for-profit, and public) and "managerial domination" (labor relations violations, perceptions of labor-management conflict). Depression is assessed using the original and revised versions of the Center for Epidemiologic Studies Depression Scale (CES-D and CESD-R). Using two-level logistic regressions, we find that private for-profit ownership and higher managerial domination are predictive of depression among nursing assistants even after adjustment for potential confounders and mediators. Our findings confirm the theoretical and empirical value of applying a social class approach to understanding how mental health inequalities are generated through exploitative mechanisms. Ownership type and managerial domination appear to affect depression through social relations that generate mental health inequalities through the process of acquiring profits, controlling production, supervising and monitoring labor, and enforcing disciplinary sanctions.

  20. Social Class and Mental Health: Testing Exploitation as a Relational Determinant of Depression

    PubMed Central

    Muntaner, Carles; Ng, Edwin; Prins, Seth J.; Bones-Rocha, Katia; Espelt, Albert; Chung, Haejoo

    2016-01-01

    This study tests whether social class exploitation operates as a relational mechanism that generates mental health inequalities in the nursing home industry. We ask, does social class exploitation (i.e., the acquisition of economic benefits from the labor of those who are dominated) have a systematic and predictable impact on depression among nursing assistants? Using cross-sectional data from 868 nursing assistants employed in 50 nursing homes in three U.S. states, we measure social class exploitation as “ownership type” (private for-profit, private not-for-profit, and public) and “managerial domination” (labor relations violations, perceptions of labor-management conflict). Depression is assessed using the original and revised versions of the Center for Epidemiologic Studies Depression Scale (CES-D and CESD-R). Using two-level logistic regressions, we find that private for-profit ownership and higher managerial domination are predictive of depression among nursing assistants even after adjustment for potential confounders and mediators. Our findings confirm the theoretical and empirical value of applying a social class approach to understanding how mental health inequalities are generated through exploitative mechanisms. Ownership type and managerial domination appear to affect depression through social relations that generate mental health inequalities through the process of acquiring profits, controlling production, supervising and monitoring labor, and enforcing disciplinary sanctions. PMID:25813501

  1. Exploitation in International Paid Surrogacy Arrangements

    PubMed Central

    Wilkinson, Stephen

    2015-01-01

    Abstract Many critics have suggested that international paid surrogacy is exploitative. Taking such concerns as its starting point, this article asks: (1) how defensible is the claim that international paid surrogacy is exploitative and what could be done to make it less exploitative? (2) In the light of the answer to (1), how strong is the case for prohibiting it? Exploitation could in principle be dealt with by improving surrogates' pay and conditions. However, doing so may exacerbate problems with consent. Foremost amongst these is the argument that surrogates from economically disadvantaged countries cannot validly consent because their background circumstances are coercive. Several versions of this argument are examined and I conclude that at least one has some merit. The article's overall conclusion is that while ethically there is something to be concerned about, paid surrogacy is in no worse a position than many other exploitative commercial transactions which take place against a backdrop of global inequality and constrained options, such as poorly‐paid and dangerous construction work. Hence, there is little reason to single surrogacy out for special condemnation. On a policy level, the case for prohibiting international commercial surrogacy is weak, despite legitimate concerns about consent and background poverty. PMID:27471338

  2. Electron transfer and coupling in graphene-tungsten disulfide van der Waals heterostructures.

    PubMed

    He, Jiaqi; Kumar, Nardeep; Bellus, Matthew Z; Chiu, Hsin-Ying; He, Dawei; Wang, Yongsheng; Zhao, Hui

    2014-11-25

    The newly discovered two-dimensional materials can be used to form atomically thin and sharp van der Waals heterostructures with nearly perfect interface qualities, which can transform the science and technology of semiconductor heterostructures. Owing to the weak van der Waals interlayer coupling, the electronic states of participating materials remain largely unchanged. Hence, emergent properties of these structures rely on two key elements: electron transfer across the interface and interlayer coupling. Here we show, using graphene-tungsten disulfide heterostructures as an example, evidence of ultrafast and highly efficient interlayer electron transfer and strong interlayer coupling and control. We find that photocarriers injected in tungsten disulfide transfer to graphene in 1 ps and with near-unity efficiency. We also demonstrate that optical properties of tungsten disulfide can be effectively tuned by carriers in graphene. These findings illustrate basic processes required for using van der Waals heterostructures in electronics and photonics.

  3. TXNDC5, a newly discovered disulfide isomerase with a key role in cell physiology and pathology.

    PubMed

    Horna-Terrón, Elena; Pradilla-Dieste, Alberto; Sánchez-de-Diego, Cristina; Osada, Jesús

    2014-12-17

    Thioredoxin domain-containing 5 (TXNDC5) is a member of the protein disulfide isomerase family, acting as a chaperone of endoplasmic reticulum under not fully characterized conditions As a result, TXNDC5 interacts with many cell proteins, contributing to their proper folding and correct formation of disulfide bonds through its thioredoxin domains. Moreover, it can also work as an electron transfer reaction, recovering the functional isoform of other protein disulfide isomerases, replacing reduced glutathione in its role. Finally, it also acts as a cellular adapter, interacting with the N-terminal domain of adiponectin receptor. As can be inferred from all these functions, TXNDC5 plays an important role in cell physiology; therefore, dysregulation of its expression is associated with oxidative stress, cell ageing and a large range of pathologies such as arthritis, cancer, diabetes, neurodegenerative diseases, vitiligo and virus infections. Its implication in all these important diseases has made TXNDC5 a susceptible biomarker or even a potential pharmacological target.

  4. Cytosolic disulfide bond formation in cells infected with large nucleocytoplasmic DNA viruses.

    PubMed

    Hakim, Motti; Fass, Deborah

    2010-10-01

    Proteins that have evolved to contain stabilizing disulfide bonds generally fold in a membrane-delimited compartment in the cell [i.e., the endoplasmic reticulum (ER) or the mitochondrial intermembrane space (IMS)]. These compartments contain sulfhydryl oxidase enzymes that catalyze the pairing and oxidation of cysteine residues. In contrast, most proteins in a healthy cytosol are maintained in reduced form through surveillance by NADPH-dependent reductases and the lack of sulfhydryl oxidases. Nevertheless, one of the core functionalities that unify the broad and diverse set of nucleocytoplasmic large DNA viruses (NCLDVs) is the ability to catalyze disulfide formation in the cytosol. The substrates of this activity are proteins that contribute to the assembly, structure, and infectivity of the virions. If the last common ancestor of NCLDVs was present during eukaryogenesis as has been proposed, it is interesting to speculate that viral disulfide bond formation pathways may have predated oxidative protein folding in intracellular organelles.

  5. Disulfide Bond Formation and Activation of Escherichia coli β-Galactosidase under Oxidizing Conditions

    PubMed Central

    Seras-Franzoso, Joaquin; Affentranger, Roman; Ferrer-Navarro, Mario; Daura, Xavier; Villaverde, Antonio

    2012-01-01

    Escherichia coli β-galactosidase is probably the most widely used reporter enzyme in molecular biology, cell biology, and biotechnology because of the easy detection of its activity. Its large size and tetrameric structure make this bacterial protein an interesting model for crystallographic studies and atomic mapping. In the present study, we investigate a version of Escherichia coli β-galactosidase produced under oxidizing conditions, in the cytoplasm of an Origami strain. Our data prove the activation of this microbial enzyme under oxidizing conditions and clearly show the occurrence of a disulfide bond in the β-galactosidase structure. Additionally, the formation of this disulfide bond is supported by the analysis of a homology model of the protein that indicates that two cysteines located in the vicinity of the catalytic center are sufficiently close for disulfide bond formation. PMID:22286993

  6. Distinct folding pathways of two homologous disulfide proteins: bovine pancreatic trypsin inhibitor and tick anticoagulant peptide.

    PubMed

    Chang, Jui-Yoa

    2011-01-01

    The folding pathways of disulfide proteins vary substantially (Arolas et al., Trends Biochem Sci 31: 292-301, 2006). The diversity is mainly manifested by (a) the extent of heterogeneity of folding intermediates, (b) the extent of presence of native-like intermediates, and (c) the variation of folding kinetics. Even among structurally similar proteins, the difference can be enormous. This is demonstrated in this concise review with two structurally homologous kunitz-type protease inhibitors, bovine pancreatic trypsin inhibitor and tick anticoagulant peptide, as well as a group of cystine knot proteins. The diversity of their folding mechanisms is illustrated with two different folding techniques: (a) the conventional method of disulfide oxidation (oxidative folding), and (b) the novel method of disulfide scrambling (Chang, J Biol Chem 277: 120-126, 2002). This review also highlights the convergence of folding models concluded form the conventional conformational folding and those obtained by oxidative folding.

  7. Lid mobility in lipase SMG1 validated using a thiol/disulfide redox potential probe.

    PubMed

    Guo, Shaohua; Popowicz, Grzegorz Maria; Li, Daoming; Yuan, Dongjuan; Wang, Yonghua

    2016-05-01

    Most lipases possess a lid domain above the catalytic site that is responsible for their activation. Lipase SMG1 from Malassezia globose CBS 7966 (Malassezia globosa LIP1), is a mono- and diacylglycerol lipase with an atypical loop-like lid domain. Activation of SMG1 was proposed to be solely through a gating mechanism involving two residues (F278 and N102). However, through disulfide bond cross-linking of the lid, this study shows that full activation also requires mobility of the lid domain, contrary to a previous proposal. The newly introduced disulfide bond makes lipase SMG1 eligible as a ratiometric thiol/disulfide redox potential probe, when it is coupled with chromogenic substrates. This redox-switch lipase could also be of potential use in cascade biocatalysis.

  8. New analogs of the CART peptide with anorexigenic potency: the importance of individual disulfide bridges.

    PubMed

    Blechová, Miroslava; Nagelová, Veronika; Záková, Lenka; Demianová, Zuzana; Zelezná, Blanka; Maletínská, Lenka

    2013-01-01

    The CART (cocaine- and amphetamine-regulated transcript) peptide is an anorexigenic neuropeptide that acts in the hypothalamus. The receptor and the mechanism of action of this peptide are still unknown. In our previous study, we showed that the CART peptide binds specifically to PC12 rat pheochromocytoma cells in both the native and differentiated into neuronal phenotype. Two biologically active forms, CART(55-102) and CART(61-102), with equal biological activity, contain three disulfide bridges. To clarify the importance of each of these disulfide bridges in maintaining the biological activity of CART(61-102), an Ala scan at particular S-S bridges forming cysteines was performed, and analogs with only one or two disulfide bridges were synthesized. In this study, a stabilized CART(61-102) analog with norleucine instead of methionine at position 67 was also prepared and was found to bind to PC12 cells with an anorexigenic potency similar to that of CART(61-102). The binding study revealed that out of all analogs tested, [Ala(68,86)]CART(61-102), which contains two disulfide bridges (positions 74-94 and 88-101), preserved a high affinity to both native PC12 cells and those that had been differentiated into neurons. In food intake and behavioral tests with mice after intracerebroventricular administration, this analog showed strong and long-lasting anorexigenic potency. Therefore, the disulfide bridge between cysteines 68 and 86 in CART(61-102) can be omitted without a loss of biological activity, but the preservation of two other disulfide bridges and the full-length peptide are essential for biological activity.

  9. Insulin analog with additional disulfide bond has increased stability and preserved activity

    PubMed Central

    Vinther, Tine N; Norrman, Mathias; Ribel, Ulla; Huus, Kasper; Schlein, Morten; Steensgaard, Dorte B; Pedersen, Thomas Å; Pettersson, Ingrid; Ludvigsen, Svend; Kjeldsen, Thomas; Jensen, Knud J; Hubálek, František

    2013-01-01

    Insulin is a key hormone controlling glucose homeostasis. All known vertebrate insulin analogs have a classical structure with three 100% conserved disulfide bonds that are essential for structural stability and thus the function of insulin. It might be hypothesized that an additional disulfide bond may enhance insulin structural stability which would be highly desirable in a pharmaceutical use. To address this hypothesis, we designed insulin with an additional interchain disulfide bond in positions A10/B4 based on Cα-Cα distances, solvent exposure, and side-chain orientation in human insulin (HI) structure. This insulin analog had increased affinity for the insulin receptor and apparently augmented glucodynamic potency in a normal rat model compared with HI. Addition of the disulfide bond also resulted in a 34.6°C increase in melting temperature and prevented insulin fibril formation under high physical stress even though the C-terminus of the B-chain thought to be directly involved in fibril formation was not modified. Importantly, this analog was capable of forming hexamer upon Zn addition as typical for wild-type insulin and its crystal structure showed only minor deviations from the classical insulin structure. Furthermore, the additional disulfide bond prevented this insulin analog from adopting the R-state conformation and thus showing that the R-state conformation is not a prerequisite for binding to insulin receptor as previously suggested. In summary, this is the first example of an insulin analog featuring a fourth disulfide bond with increased structural stability and retained function. PMID:23281053

  10. Stabilization of HIV-1 gp120-CD4 Receptor Complex through Targeted Interchain Disulfide Exchange*

    PubMed Central

    Cerutti, Nichole; Mendelow, Barry V.; Napier, Grant B.; Papathanasopoulos, Maria A.; Killick, Mark; Khati, Makobetsa; Stevens, Wendy; Capovilla, Alexio

    2010-01-01

    HIV-1 enters cells via interaction between the trimeric envelope (Env) glycoprotein gp120/gp41 and the host cell surface receptor molecule CD4. The requirement of CD4 for viral entry has rationalized the development of recombinant CD4-based proteins as competitive viral attachment inhibitors and immunotherapeutic agents. In this study, we describe a novel recombinant CD4 protein designed to bind gp120 through a targeted disulfide-exchange mechanism. According to structural models of the gp120-CD4 receptor complex, substitution of Ser60 on the CD4 domain 1 α-helix with Cys positions a thiol in proximity of the gp120 V1/V2 loop disulfide (Cys126–Cys196), satisfying the stereochemical and geometric conditions for redox exchange between CD4 Cys60 and gp120 Cys126, and the consequent formation of an interchain disulfide bond. In this study, we provide experimental evidence for this effect by describing the expression, purification, refolding, receptor binding and antiviral activity analysis of a recombinant two-domain CD4 variant containing the S60C mutation (2dCD4-S60C). We show that 2dCD4-S60C binds HIV-1 gp120 with a significantly higher affinity than wild-type protein under conditions that facilitate disulfide exchange and that this translates into a corresponding increase in the efficacy of CD4-mediated viral entry inhibition. We propose that targeted redox exchange between conserved gp120 disulfides and nucleophilic moieties positioned strategically on CD4 (or CD4-like scaffolds) conceptualizes a new strategy in the development of high affinity HIV-1 Env ligands, with important implications for therapy and vaccine development. More generally, this chalcogen substitution approach provides a general means of stabilizing receptor-ligand complexes where the structural and biophysical conditions for disulfide exchange are satisfied. PMID:20538591

  11. On the relevance of sophisticated structural annotations for disulfide connectivity pattern prediction.

    PubMed

    Becker, Julien; Maes, Francis; Wehenkel, Louis

    2013-01-01

    Disulfide bridges strongly constrain the native structure of many proteins and predicting their formation is therefore a key sub-problem of protein structure and function inference. Most recently proposed approaches for this prediction problem adopt the following pipeline: first they enrich the primary sequence with structural annotations, second they apply a binary classifier to each candidate pair of cysteines to predict disulfide bonding probabilities and finally, they use a maximum weight graph matching algorithm to derive the predicted disulfide connectivity pattern of a protein. In this paper, we adopt this three step pipeline and propose an extensive study of the relevance of various structural annotations and feature encodings. In particular, we consider five kinds of structural annotations, among which three are novel in the context of disulfide bridge prediction. So as to be usable by machine learning algorithms, these annotations must be encoded into features. For this purpose, we propose four different feature encodings based on local windows and on different kinds of histograms. The combination of structural annotations with these possible encodings leads to a large number of possible feature functions. In order to identify a minimal subset of relevant feature functions among those, we propose an efficient and interpretable feature function selection scheme, designed so as to avoid any form of overfitting. We apply this scheme on top of three supervised learning algorithms: k-nearest neighbors, support vector machines and extremely randomized trees. Our results indicate that the use of only the PSSM (position-specific scoring matrix) together with the CSP (cysteine separation profile) are sufficient to construct a high performance disulfide pattern predictor and that extremely randomized trees reach a disulfide pattern prediction accuracy of [Formula: see text] on the benchmark dataset SPX[Formula: see text], which corresponds to [Formula: see text

  12. Changes in serum angiotensin I converting enzyme activity due to carbon disulfide exposure.

    PubMed

    Filipović, N; Bilalbegović, Z; Sefić, M; Djurić, D

    1984-01-01

    The activity of serum angiotensin I converting enzyme (ACE) was determined in 50 workers from a viscose factory in Banja Luka, Yugoslavia, and in 50 control subjects. Activity of serum ACE was significantly lower in workers exposed to carbon disulfide than in the control group. No correlation was found between a decrease of serum ACE in exposed workers and duration of exposure. These findings indicate that the serum ACE may be influenced by carbon disulfide, but the mechanism of these changes remains to be elucidated in this case.

  13. Minor element distribution in iron disulfides in coal: a geochemical review

    USGS Publications Warehouse

    Kolker, Allan

    2012-01-01

    Electron beam microanalysis of coal samples in U.S. Geological Survey (USGS) labs confirms that As is the most abundant minor constituent in Fe disulfides in coal and that Se, Ni, and other minor constituents are present less commonly and at lower concentrations than those for As. In nearly all cases, Hg occurs in Fe disulfides in coal at concentrations below detection by electron beam instruments. Its presence is shown by laser ablation ICP-MS, by selective leaching studies of bulk coal, and by correlation with Fe disulfide proxies such as total Fe and pyritic sulfur. Multiple generations of Fe disulfides are present in coal. These commonly show grain-to-grain and within-grain minor- or trace element compositional variation that is a function of the early diagenetic, coalification, and post-coalification history of the coal. Framboidal pyrite is almost always the earliest Fe disulfide generation, as shown by overgrowths of later Fe disulfides which may include pyrite or marcasite. Cleat- (or vein) pyrite (or marcasite) is typically the latest Fe disulfide generation, as shown by cross-cutting relations. Cleat pyrite forms by fluid migration within a coal basin and consequently may be enriched in elements such as As by deposition from compaction-driven fluids, metal enriched basinal brines or hydrothermal fluids. In some cases, framboidal pyrite shows preferential Ni enrichment with respect to co-occurring pyrite forms. This is consistent with bacterial complexing of metals in anoxic sediments and derivation of framboidal pyrite from greigite (Fe3S4), an Fe monosulfide precursor to framboidal pyrite having the thio-spinel structure which accommodates transition metals. Elements such as As, Se, and Sb substitute for S in the pyrite structure whereas metals, including transition metals, Hg and Pb, are thought to substitute for Fe. Understanding the distribution of minor and trace elements in Fe disulfides in coal has important implications for their availability to

  14. Identification of disulfide bond formation between MitoNEET and glutamate dehydrogenase 1.

    PubMed

    Roberts, Morgan E; Crail, Jacquelyn P; Laffoon, Megan M; Fernandez, William G; Menze, Michael A; Konkle, Mary E

    2013-12-17

    MitoNEET is a protein that was identified as a drug target for diabetes, but its cellular function as well as its role in diabetes remains elusive. Protein pull-down experiments identified glutamate dehydrogenase 1 (GDH1) as a potential binding partner. GDH1 is a key metabolic enzyme with emerging roles in insulin regulation. MitoNEET forms a covalent complex with GDH1 through disulfide bond formation and acts as an activator. Proteomic analysis identified the specific cysteine residues that participate in the disulfide bond. This is the first report that effectively links mitoNEET to activation of the insulin regulator GDH1.

  15. Gravitational Assist

    NASA Technical Reports Server (NTRS)

    Diehl, R.

    1995-01-01

    Deep-space missions some times use close gravity-assist 'swingbys' of planets and moons to gain or lose velocity. These maneuvers increase the amount of mass that can be delivered and/or decrease mission flight times. The two Voyager spacecraft used gravity assists to leave the solar system. The Galileo spacecraft is using gravity assists to move among the various moons of Jupiter and the Cassini spacecraft will do similar maneuvers around Saturn.

  16. A Primary Role for Disulfide Formation in the Productive Folding of Prokaryotic Cu,Zn-superoxide Dismutase*

    PubMed Central

    Sakurai, Yasuyuki; Anzai, Itsuki; Furukawa, Yoshiaki

    2014-01-01

    Enzymatic activation of Cu,Zn-superoxide dismutase (SOD1) requires not only binding of a catalytic copper ion but also formation of an intramolecular disulfide bond. Indeed, the disulfide bond is completely conserved among all species possessing SOD1; however, it remains obscure how disulfide formation controls the enzymatic activity of SOD1. Here, we show that disulfide formation is a primary event in the folding process of prokaryotic SOD1 (SodC) localized to the periplasmic space. Escherichia coli SodC was found to attain β-sheet structure upon formation of the disulfide bond, whereas disulfide-reduced SodC assumed little secondary structure even in the presence of copper and zinc ions. Moreover, reduction of the disulfide bond made SodC highly susceptible to proteolytic degradation. We thus propose that the thiol-disulfide status in SodC controls the intracellular stability of this antioxidant enzyme and that the oxidizing environment of the periplasm is required for the enzymatic activation of SodC. PMID:24917671

  17. Quantitation of protein S-glutathionylation by liquid chromatograph-tandem mass spectrometry: Correction for contaminating glutathione and glutathione disulfide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein S-glutathionylation is a posttranslational modification that links oxidative stimuli to reversible changes in cellular function. Protein-glutathione mixed disulfides (PSSG) are commonly quantified by the reduction of the disulfide and detection of the resultant glutathione species. This met...

  18. Disulfide-Dependent Self-Assembly of Adiponectin Octadecamers from Trimers and Presence of Stable Octadecameric Adiponectin Lacking Disulfide Bonds In Vitro†

    PubMed Central

    Briggs, David B.; Jones, Christopher M.; Mashalidis, Ellene H.; Nuñez, Martha; Hausrath, Andrew C.; Wysocki, Vicki H.; Tsao, Tsu-Shuen

    2009-01-01

    Adiponectin is a circulating insulin-sensitizing hormone that homo-oligomerizes into trimers, hexamers, and higher molecular weight (HMW) species. Low levels of circulating HMW adiponectin appear to increase the risk for insulin resistance. Currently, assembly of adiponectin oligomers, and consequently mechanisms responsible for decreased HMW adiponectin in insulin resistance, are not well understood. In the work reported here, we analyzed the re-assembly of the most abundant HMW adiponectin species, the octadecamer, following its collapse to smaller oligomers in vitro. Purified bovine serum adiponectin octadecamer was treated with reducing agents at pH 5 to obtain trimers. These reduced trimers partially and spontaneously reassembled into octadecamers upon oxidative formation of disulfide bonds. Disulfide bonds appear to occupy a greater role in the process of oligomerization than in the structural stabilization of mature octadecamer. Stable octadecamers lacking virtually all disulfide bonds could be observed in abundance using native gel electrophoresis, dynamic light scattering, and collision-induced dissociation nano-electrospray ionization mass spectrometry. These findings indicate that while disulfide bonds help to maintain the mature octadecameric adiponectin structure, their more important function is to stabilize intermediates during the assembly of octadecamer. Adiponectin oligomerization must proceed through intermediates that are at least partially reduced. Accordingly, fully oxidized adiponectin hexamers failed to reassemble into octadecamers at a rate comparable to that of reduced trimers. As the findings from the present study are based on in vitro experiments, their in vivo relevance remains unclear. Nevertheless, they describe a redox environment-dependent model of adiponectin oligomerization that can be tested using cell-based approaches. PMID:19943704

  19. Modulating Therapeutic Activity and Toxicity of Pyrrolobenzodiazepine Antibody-Drug Conjugates with Self-Immolative Disulfide Linkers.

    PubMed

    Pillow, Thomas H; Schutten, Melissa; Yu, Shang-Fan; Ohri, Rachana; Sadowsky, Jack; Poon, Kirsten Achilles; Solis, Willy; Zhong, Fiona; Del Rosario, Geoffrey; Go, Mary Ann T; Lau, Jeffery; Yee, Sharon; He, Jintang; Liu, Luna; Ng, Carl; Xu, Keyang; Leipold, Douglas D; Kamath, Amrita V; Zhang, Donglu; Masterson, Luke; Gregson, Stephen J; Howard, Philip W; Fang, Fan; Chen, Jinhua; Gunzner-Toste, Janet; Kozak, Katherine K; Spencer, Susan; Polakis, Paul; Polson, Andrew G; Flygare, John A; Junutula, Jagath R

    2017-02-21

    A novel disulfide linker was designed to enable a direct connection between cytotoxic pyrrolobenzodiazepine (PBD) drugs and the cysteine on a targeting antibody for use in antibody-drug conjugates (ADCs). ADCs composed of a cysteine-engineered antibody were armed with a PBD using a self-immolative disulfide linker. Both the chemical linker and the antibody site were optimized for this new bioconjugation strategy to provide a highly stable and efficacious ADC. This novel disulfide ADC was compared to a conjugate containing the same PBD drug, but attached to the antibody via a peptide linker. Both ADCs had similar efficacy in mice bearing human tumor xenografts. Safety studies in rats revealed that the disulfide-linked ADC had a higher maximum tolerated dose (MTD) than the peptide-linked ADC. Overall, these data suggest that the novel self-immolative disulfide linker represents a valuable way to construct ADCs with equivalent efficacy and improved safety.

  20. Preventing the Sexual Exploitation of Children

    MedlinePlus

    ... a person in a position of trust or responsibility living in their own community. But there are steps that need to be taken. When taken they could lead to a reduction in the incidence of sexual exploitation, an improvement in how we protect our children from this scourge, and caring and ...

  1. Exploiting a natural auxotrophy for genetic selection.

    PubMed

    Ramage, Elizabeth; Gallagher, Larry; Manoil, Colin

    2012-08-01

    We exploited the natural histidine auxotrophy of Francisella species to develop hisD (encodes histidinol dehydrogenase) as a positive selection marker. A shuttle plasmid (pBR103) carrying Escherichia coli hisD and designed for cloning of PCR fragments replicated in both attenuated and highly virulent Francisella strains. During this work, we formulated a simplified defined growth medium for Francisella novicida.

  2. Child Exploitation: Some Pieces of the Puzzle.

    ERIC Educational Resources Information Center

    Rohlader, Dorothy

    The report addresses the status in North Carolina and in the nation of child exploitation. Legislative and judicial backgrounds of child pornography and child prostitution are reviewed, and difficulties in obtaining statistical data are noted. Law enforcement issues in pornography are cited, and suggestions for further legislation regarding child…

  3. Geothermal energy exploitation in New Zealand

    SciTech Connect

    Elder, J.W.

    1980-01-01

    The essential factors, human and technical, which control the operation of geothermal systems, particularly those which allow prediction of behavior during and after exploitation, are sketched. The strategy and co-ordination involved in using New Zealand's geothermal resources for power production are considered. The broader aspects of the technical matters involved in the design of the parasitic plant reservoir system are described. (MHR)

  4. Different dynamics and pathway of disulfide bonds reduction of two human defensins, a molecular dynamics simulation study.

    PubMed

    Zhang, Liqun

    2017-04-01

    Human defensins are a class of antimicrobial peptides that are crucial components of the innate immune system. Both human α defensin type 5 (HD5) and human β defensin type 3 (hBD-3) have 6 cysteine residues which form 3 pairs of disulfide bonds in oxidizing condition. Disulfide bond linking is important to the protein structure stabilization, and the disulfide bond linking and breaking order have been shown to influence protein function. In this project, microsecond long molecular dynamics simulations were performed to study the structure and dynamics of HD5 and hBD-3 wildtype and analogs which have all 3 disulfide bonds released in reducing condition. The structure of hBD-3 was found to be more dynamic and flexible than HD5, based on RMSD, RMSF, and radius of gyration calculations. The disulfide bridge breaking order of HD5 and hBD-3 in reducing condition was predicted by two kinds of methods, which gave consistent results. It was found that the disulfide bonds breaking pathways for HD5 and hBD-3 are very different. The breaking of disulfide bonds can influence the dimer interface by making the dimer structure less stable for both kinds of defensin. In order to understand the difference in dynamics and disulfide bond breaking pathway, hydrophilic and hydrophobic accessible surface areas (ASA), buried surface area between cysteine pairs, entropy of cysteine pairs, and internal energy were calculated. Comparing to the wildtype, hBD-3 analog is more hydrophobic, while HD5 is more hydrophilic. For hBD-3, the disulfide breaking is mainly entropy driven, while other factors such as the solvation effects may take the major role in controlling HD5 disulfide breaking pathway. Proteins 2017; 85:665-681. © 2016 Wiley Periodicals, Inc.

  5. Trolling may intensify exploitation in crappie fisheries

    USGS Publications Warehouse

    Meals, K. O.; Dunn, A. W.; Miranda, Leandro E.

    2012-01-01

    In some parts of the USA, anglers targeting crappies Pomoxis spp. are transitioning from mostly stationary angling with a single pole around submerged structures to using multiple poles while drifting with the wind or under power. This shift in fishing methods could result in a change in catch efficiency, possibly increasing exploitation rates to levels that would be of concern to managers. We studied the catch statistics of anglers fishing while trolling with multiple poles (trollers) and those fishing with single poles (polers) in Mississippi reservoirs. Specifically, we tested whether (1) various catch statistics differed between trollers and polers, (2) catch rates of trollers were related to the number of poles fished, and (3) trollers could raise exploitation rates to potentially unsustainable levels. Results showed that participation in the crappie fisheries was about equally split between polers and trollers. In spring, 90% of crappie anglers were polers; in summer, 85% of crappie anglers were trollers. The size of harvested crappies was similar for the two angler groups, but the catch per hour was almost three times higher for trollers than for polers. Catch rates by trollers were directly correlated to the number of poles fished, although the relationship flattened as the number of poles increased. The average harvest rate for one troller fishing with three poles was similar to the harvest rate obtained by one poler. Simulations predicted that at the existing mix of about 50% polers and 50% trollers and with no restrictions on the number of poles used by trollers, exploitation of crappies is about 1.3 times higher than that in a polers-only fishery; under a scenario in which 100% of crappie anglers were trollers, exploitation was forecasted to increase to about 1.7 times the polers-only rate. The efficiency of trolling for crappies should be of concern to fishery managers because crappie fisheries are mostly consumptive and may increase exploitation

  6. Solvation agent for disulfide precipitates from inhibited glycol-water solutions

    NASA Technical Reports Server (NTRS)

    Taylor, M. F.

    1971-01-01

    Small additions /0.01 percent or less/ of triethanoloamine sodium sulfite adduct to mercapto benzothiazole inhibited glycol water heat transfer solutions containing disulfide precipitate produce marked reduction in amount of precipitate. Adduct is useful as additive in glycol base antifreezes and coolants.

  7. Protein disulfide isomerase homolog TrPDI2 contributing to cellobiohydrolase production in Trichoderma reesei.

    PubMed

    Wang, Guokun; Lv, Pin; He, Ronglin; Wang, Haijun; Wang, Lixian; Zhang, Dongyuan; Chen, Shulin

    2015-09-01

    The majority of the cysteine residues in the secreted proteins form disulfide bonds via protein disulfide isomerase (PDI)-mediated catalysis, stabilizing the enzyme activity. The role of PDI in cellulase production is speculative, as well as the possibility of PDI as a target for improving enzyme production efficiency of Trichoderma reesei, a widely used producer of enzyme for the production of lignocellulose-based biofuels and biochemicals. Here, we report that a PDI homolog, TrPDI2 in T. reesei exhibited a 36.94% and an 11.81% similarity to Aspergillus niger TIGA and T. reesei PDI1, respectively. The capability of TrPDI2 to recover the activity of reduced and denatured RNase by promoting refolding verified its protein disulfide isomerase activity. The overexpression of Trpdi2 increased the secretion and the activity of CBH1 at the early stage of cellulase induction. In addition, both the expression level and redox state of TrPDI2 responded to cellulase induction in T. reesei, providing sustainable oxidative power to ensure cellobiohydrolase maturation and production. The results suggest that TrPDI2 may contribute to cellobiohydrolase secretion by enhancing the capability of disulfide bond formation, which is essential for protein folding and maturation.

  8. Multiple disulfide bridges modulate conformational stability and flexibility in hyperthermophilic archaeal purine nucleoside phosphorylase.

    PubMed

    Bagarolo, Maria Libera; Porcelli, Marina; Martino, Elisa; Feller, Georges; Cacciapuoti, Giovanna

    2015-10-01

    5'-Deoxy-5'-methylthioadenosine phosphorylase from Sulfolobus solfataricus is a hexameric hyperthermophilic protein containing in each subunit two pairs of disulfide bridges, a CXC motif, and one free cysteine. The contribution of each disulfide bridge to the protein conformational stability and flexibility has been assessed by comparing the thermal unfolding and the limited proteolysis of the wild-type enzyme and its variants obtained by site-directed mutagenesis of the seven cysteine residues. All variants catalyzed efficiently MTA cleavage with specific activity similar to the wild-type enzyme. The elimination of all cysteine residues caused a substantial decrease of ΔHcal (850 kcal/mol) and Tmax (39°C) with respect to the wild-type indicating that all cysteine pairs and especially the CXC motif significantly contribute to the enzyme thermal stability. Disulfide bond Cys200-Cys262 and the CXC motif weakly affected protein flexibility while the elimination of the disulfide bond Cys138-Cys205 lead to an increased protease susceptibility. Experimental evidence from limited proteolysis, differential scanning calorimetry, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing and nonreducing conditions also allowed to propose a stabilizing role for the free Cys164.

  9. Negative Ion Drift Velocity and Longitudinal Diffusion in Mixtures of Carbon Disulfide and Methane

    NASA Technical Reports Server (NTRS)

    Dion, Michael P.; Son, S.; Hunter, S. D.; deNolfo, G. A.

    2011-01-01

    Negative ion drift velocity and longitudinal diffusion has been measured for gas mixtures of carbon disulfide (CS2) and methane (CH4)' Measurements were made as a function of total pressure, CS2 partial pressure and electric field. Constant mobility and thermal-limit longitudinal diffusion is observed for all gas mixtures tested. Gas gain for some of the mixtures is also included.

  10. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation.

    PubMed

    Gao, Min-Rui; Liang, Jin-Xia; Zheng, Ya-Rong; Xu, Yun-Fei; Jiang, Jun; Gao, Qiang; Li, Jun; Yu, Shu-Hong

    2015-01-14

    The electroreduction of water for sustainable hydrogen production is a critical component of several developing clean-energy technologies, such as water splitting and fuel cells. However, finding a cheap and efficient alternative catalyst to replace currently used platinum-based catalysts is still a prerequisite for the commercialization of these technologies. Here we report a robust and highly active catalyst for hydrogen evolution reaction that is constructed by in situ growth of molybdenum disulfide on the surface of cobalt diselenide. In acidic media, the molybdenum disulfide/cobalt diselenide catalyst exhibits fast hydrogen evolution kinetics with onset potential of -11 mV and Tafel slope of 36 mV per decade, which is the best among the non-noble metal hydrogen evolution catalysts and even approaches to the commercial platinum/carbon catalyst. The high hydrogen evolution activity of molybdenum disulfide/cobalt diselenide hybrid is likely due to the electrocatalytic synergistic effects between hydrogen evolution-active molybdenum disulfide and cobalt diselenide materials and the much increased catalytic sites.

  11. Soil biotic and abiotic responses to dimethyl disulfide spot drip fumigation in established grape vines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dimethyl disulfide (DMDS) is a soil fumigant used in agricultural systems as an alternative to methyl bromide (MeBr) for the control of soilborne pests and pathogens. However, fumigants including DMDS that have broad biocidal activity can affect both target and non-target organisms in soil. Many bio...

  12. Degradation and adsorption of carbonated dimethyl disulfide in soils with grape production in california

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The common method to apply pre-plant soil fumigants is through pressurizing the pesticides with compressed nitrogen gas. However, it is believed that fumigants with relatively low vapor pressure, such as dimethyl disulfide or DMDS, can be better dispersed in soil when applied using CO2 gas. A labor...

  13. Direct evidence that two cysteines in the dopamine transporter form a disulfide bond.

    PubMed

    Chen, Rong; Wei, Hua; Hill, Erik R; Chen, Lucy; Jiang, Liying; Han, Dawn D; Gu, Howard H

    2007-04-01

    We have generated a fully functional dopamine transporter (DAT) mutant (dmDATx7) with all cysteines removed except the two cysteines in extracellular loop 2 (EL2). Random mutagenesis at either or both EL2 cysteines did not produce any functional transporter mutants, suggesting that the two cysteines cannot be replaced by any other amino acids. The cysteine-specific reagent MTSEA-biotin labeled dmDATx7 only after a DTT treatment which reduces disulfide bond. Since there are no other cysteines in dmDATx7, the MTSEA-biotin labeling must be on the EL2 cysteines made available by the DTT treatment. This result provides the first direct evidence that the EL2 cysteines form a disulfide bond. Interestingly, the DTT treatment had little effect on transport activity suggesting that the disulfide bond is not necessary for the uptake function of DAT. Our results and previous results are consistent with the notion that the disulfide bond between EL2 cysteines is required for DAT biosynthesis and/or its delivery to the cell surface.

  14. Disulfide-modified antigen for detection of celiac disease-associated anti-tissue transglutaminase autoantibodies.

    PubMed

    Rosales-Rivera, Luis Carlos; Dulay, Samuel; Lozano-Sánchez, Pablo; Katakis, Ioanis; Acero-Sánchez, Josep Lluís; O'Sullivan, Ciara K

    2017-03-29

    A simple and rapid immunosensor for the determination of the celiac disease-related antibody, anti-tissue transglutaminase, was investigated. The antigenic protein tissue transglutaminase was chemically modified, introducing disulfide groups through different moieties of the molecule (amine, carboxylic, and hydroxyl groups), self-assembled on gold surfaces, and used for the detection of IgA and IgG autoantibodies. The modified proteins were evaluated using enzyme-linked immunosorbent assay and surface plasmon resonance, which showed that only introduction of the disulfide groups through amine moieties in the tissue transglutaminase preserved its antigenic properties. The disulfide-modified antigen was co-immobilized via chemisorption with a poly(ethylene glycol) alkanethiol on gold electrodes. The modified electrodes were then exposed to IgA anti-tissue transglutaminase antibodies and subsequently to horseradish peroxidase-labeled anti-idiotypic antibodies, achieving a detection limit of 260 ng ml(-1). Immunosensor performance in the presence of complex matrixes, including clinically relevant serum reference solutions and real patient samples, was evaluated. The introduction of disulfides in the antigenic protein enabled a simple and convenient one-step surface immobilization procedure involving only spontaneous gold-thiol covalent binding. Complete amperometric assay time was 30 min.

  15. Linker Immolation Determines Cell Killing Activity of Disulfide-Linked Pyrrolobenzodiazepine Antibody-Drug Conjugates.

    PubMed

    Zhang, Donglu; Pillow, Thomas H; Ma, Yong; Cruz-Chuh, Josefa Dela; Kozak, Katherine R; Sadowsky, Jack D; Lewis Phillips, Gail D; Guo, Jun; Darwish, Martine; Fan, Peter; Chen, Jingtian; He, Changrong; Wang, Tao; Yao, Hui; Xu, Zijin; Chen, Jinhua; Wai, John; Pei, Zhonghua; Hop, Cornelis E C A; Khojasteh, S Cyrus; Dragovich, Peter S

    2016-11-10

    Disulfide bonds could be valuable linkers for a variety of therapeutic applications requiring tunable cleavage between two parts of a molecule (e.g., antibody-drug conjugates). The in vitro linker immolation of β-mercaptoethyl-carbamate disulfides and DNA alkylation properties of associated payloads were investigated to understand the determinant of cell killing potency of anti-CD22 linked pyrrolobenzodiazepine (PBD-dimer) conjugates. Efficient immolation and release of a PBD-dimer with strong DNA alkylation properties were observed following disulfide cleavage of methyl- and cyclobutyl-substituted disulfide linkers. However, the analogous cyclopropyl-containing linker did not immolate, and the associated thiol-containing product was a poor DNA alkylator. As predicted from these in vitro assessments, the related anti-CD22 ADCs showed different target-dependent cell killing activities in WSU-DLCL2 and BJAB cell lines. These results demonstrate how the in vitro immolation models can be used to help design efficacious ADCs.

  16. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation

    NASA Astrophysics Data System (ADS)

    Gao, Min-Rui; Liang, Jin-Xia; Zheng, Ya-Rong; Xu, Yun-Fei; Jiang, Jun; Gao, Qiang; Li, Jun; Yu, Shu-Hong

    2015-01-01

    The electroreduction of water for sustainable hydrogen production is a critical component of several developing clean-energy technologies, such as water splitting and fuel cells. However, finding a cheap and efficient alternative catalyst to replace currently used platinum-based catalysts is still a prerequisite for the commercialization of these technologies. Here we report a robust and highly active catalyst for hydrogen evolution reaction that is constructed by in situ growth of molybdenum disulfide on the surface of cobalt diselenide. In acidic media, the molybdenum disulfide/cobalt diselenide catalyst exhibits fast hydrogen evolution kinetics with onset potential of -11 mV and Tafel slope of 36 mV per decade, which is the best among the non-noble metal hydrogen evolution catalysts and even approaches to the commercial platinum/carbon catalyst. The high hydrogen evolution activity of molybdenum disulfide/cobalt diselenide hybrid is likely due to the electrocatalytic synergistic effects between hydrogen evolution-active molybdenum disulfide and cobalt diselenide materials and the much increased catalytic sites.

  17. Universal ultrafast sandpaper assisting rubbing method for room temperature fabrication of two-dimensional nanosheets directly on flexible polymer substrate

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Jiang, Shenglin; Zhang, Guangzu; Zhou, Wenli; Miao, Xiangshui; Zeng, Yike; Wang, Jing; He, Jungang; Zhang, Ling

    2012-08-01

    In this letter, a universal ultrafast sandpaper assisting rubbing method was proposed to fabricate two-dimensional nanosheets (graphene, hexagonal boron nitride, tungsten disulfide, molybdenum disulfide) directly on flexible polymer substrate under room temperature. By two steps of rubbing progresses totally within 2 min, raw materials could be evolved to be thinner and to be attached onto polymer substrate. The final products showed high surface stability, which would be very useful during applications, and the physical mechanisms of surface stability were discussed. The micro-morphology evolutions of two-dimensional powders and sandpapers were tested to study the physical mechanisms of the method.

  18. Dissecting the role of disulfide bonds on the amyloid formation of insulin

    SciTech Connect

    Li, Yang; Gong, Hao; Sun, Yue; Yan, Juan; Cheng, Biao; Zhang, Xin; Huang, Jing; Yu, Mengying; Guo, Yu; Zheng, Ling; Huang, Kun

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer We dissect how individual disulfide bond affects the amyloidogenicity of insulin. Black-Right-Pointing-Pointer A controlled reduction system for insulin is established in this study. Black-Right-Pointing-Pointer Disulfide breakage is associated with unfolding and increased amyloidogenicity. Black-Right-Pointing-Pointer Breakage of A6-A11 is associated with significantly increased cytotoxicity. Black-Right-Pointing-Pointer Analogs without A6-A11 have a higher potency to form high order toxic oligomers. -- Abstract: Disulfide bonds play a critical role in the stability and folding of proteins. Here, we used insulin as a model system, to investigate the role of its individual disulfide bond during the amyloid formation of insulin. Tris(2-carboxyethyl)phosphine (TCEP) was applied to reduce two of the three disulfide bonds in porcine insulin and the reduced disulfide bonds were then alkylated by iodoacetamide. Three disulfide bond-modified insulin analogs, INS-2 (lack of A6-A11), INS-3 (lack of A7-B7) and INS-6 (lack of both A6-A11 and A7-B7), were obtained. Far-UV circular dichroism (CD) spectroscopy results indicated that the secondary structure of INS-2 was the closest to insulin under neutral conditions, followed by INS-3 and INS-6, whereas in an acidic solution all analogs were essentially unfolded. To test how these modifications affect the amyloidogenicity of insulin, thioflavin-T (ThT) fluorescence and transmission electronic microscopy (TEM) were performed. Our results showed that all analogs were more prone to aggregation than insulin, with the order of aggregation rates being INS-6 > INS-3 > INS-2. Cross-linking of unmodified proteins (PICUP) assay results showed that analogs without A6-A11 (INS-2 and INS-6) have a higher potential for oligomerization than insulin and INS-3, which is accompanied with a higher cytotoxicity as the hemolytic assays of human erythrocytes suggested. The results indicated that breakage of A7

  19. Intelligence, mapping, and geospatial exploitation system (IMAGES)

    NASA Astrophysics Data System (ADS)

    Moellman, Dennis E.; Cain, Joel M.

    1998-08-01

    This paper provides further detail to one facet of the battlespace visualization concept described in last year's paper Battlespace Situation Awareness for Force XXI. It focuses on the National Imagery and Mapping Agency (NIMA) goal to 'provide customers seamless access to tailorable imagery, imagery intelligence, and geospatial information.' This paper describes Intelligence, Mapping, and Geospatial Exploitation System (IMAGES), an exploitation element capable of CONUS baseplant operations or field deployment to provide NIMA geospatial information collaboratively into a reconnaissance, surveillance, and target acquisition (RSTA) environment through the United States Imagery and Geospatial Information System (USIGS). In a baseplant CONUS setting IMAGES could be used to produce foundation data to support mission planning. In the field it could be directly associated with a tactical sensor receiver or ground station (e.g. UAV or UGV) to provide near real-time and mission specific RSTA to support mission execution. This paper provides IMAGES functional level design; describes the technologies, their interactions and interdependencies; and presents a notional operational scenario to illustrate the system flexibility. Using as a system backbone an intelligent software agent technology, called Open Agent ArchitectureTM (OAATM), IMAGES combines multimodal data entry, natural language understanding, and perceptual and evidential reasoning for system management. Configured to be DII COE compliant, it would utilize, to the extent possible, COTS applications software for data management, processing, fusion, exploitation, and reporting. It would also be modular, scaleable, and reconfigurable. This paper describes how the OAATM achieves data synchronization and enables the necessary level of information to be rapidly available to various command echelons for making informed decisions. The reasoning component will provide for the best information to be developed in the timeline

  20. Disulfide bond cleavage in TEMPO-free radical initiated peptide sequencing mass spectrometry.

    PubMed

    Lee, Minhee; Lee, Younjin; Kang, Minhyuk; Park, Hyeyeon; Seong, Yeonmi; Sung, Bong June; Moon, Bongjin; Oh, Han Bin

    2011-08-01

    The gas-phase free radical initiated peptide sequencing (FRIPS) fragmentation behavior of o-TEMPO-Bz-conjugated peptides with an intra- and intermolecular disulfide bond was investigated using MS(n) tandem mass spectrometry experiments. Investigated peptides included four peptides with an intramolecular cyclic disulfide bond, Bactenecin (RLCRIVVIRVCR), TGF-α (CHSGYVGVRC), MCH (DFDMLRCMLGRVFRPCWQY) and Adrenomedullin (16-31) (CRFGTCTVQKLAHQIY), and two peptides with an intermolecular disulfide bond. Collisional activation of the benzyl radical conjugated peptide cation, which was generated through the release of a TEMPO radical from o-TEMPO-Bz-conjugated peptides upon initial collisional activation, produced a large number of peptide backbone fragments in which the S-S or C-S bond was readily cleaved. The observed peptide backbone fragments included a-, c-, x- or z-types, which indicates that the radical-driven peptide fragmentation mechanism plays an important role in TEMPO-FRIPS mass spectrometry. FRIPS application of the linearly linked disulfide peptides further showed that the S-S or C-S bond was selectively and preferentially cleaved, followed by peptide backbone dissociations. In the FRIPS mass spectra, the loss of •SH or •SSH was also abundantly found. On the basis of these findings, FRIPS fragmentation pathways for peptides with a disulfide bond are proposed. For the cleavage of the S-S bond, the abstraction of a hydrogen atom at C(β) by the benzyl radical is proposed to be the initial radical abstraction/transfer reaction. On the other hand, H-abstraction at C(α) is suggested to lead to C-S bond cleavage, which yields [ion ± S] fragments or the loss of •SH or •SSH.

  1. Importance of the disulfide bridges in the antibacterial activity of human hepcidin.

    PubMed

    Hocquellet, Agnès; le Senechal, Caroline; Garbay, Bertrand

    2012-08-01

    Hepcidin was first identified as an antimicrobial peptide present in human serum and urine. It was later demonstrated that hepcidin is the long sought hormone that regulates iron homeostasis in mammals. The native peptide of 25 amino acids (Hepc25) contains four disulfide bridges that maintain a β-hairpin motif. The aim of the present study was to assess whether the intramolecular disulfide bridges are necessary for Hepc25 antimicrobial activity. We show that a synthetic peptide corresponding to human Hepc25, and which contains the four disulfide bridges, has an antibacterial activity against several strains of Gram-positive and Gram-negative bacteria. On the contrary, a synthetic peptide where all cysteines were replaced by alanines (Hepc25-Ala) had no detectable activity against the same strains of bacteria. In a further step, the mode of action of Hepc25 on Escherichia coli was studied. SYTOX Green uptake was used to assess bacterial membrane integrity. No permeabilization of the membrane was observed with Hepc25, indicating that this peptide does not kill bacteria by destroying their membranes. Gel retardation assay showed that the Hepc25 binds to DNA with high efficiency, and that this binding ability is dependent on the presence of the intramolecular disulfide bridges. Reduction of Hepc25 or replacement of the eight cysteines by alanine residues led to peptides that were no longer able to bind DNA in the in vitro assay. Altogether, these results demonstrate that Hepc25 should adopt a three-dimensional structure stabilized by the intramolecular disulfide bridges in order to have antibacterial activity.

  2. Characterization of disulfide-linked heterodimers containing apolipoprotein D in human plasma lipoproteins.

    PubMed

    Blanco-Vaca, F; Via, D P; Yang, C Y; Massey, J B; Pownall, H J

    1992-12-01

    Human plasma apolipoprotein (apo) D is a glycoprotein with an apparent molecular weight of 29,000 M(r). It is present, mainly, in high density lipoproteins (HDL) and very high density lipoproteins (VHDL). Western blot analysis of HDL and VHDL using rabbit antibodies to human apoD revealed major immunoreactive bands at 29,000 and 38,000 M(r), with minor bands ranging from 50,000 to and 80,000 M(r). Only the 29,000 M(r) band corresponding to apoD remained when the electrophoresis was conducted under reducing conditions, demonstrating that apoD is cross-linked to other proteins via disulfide bonds. The broad pattern of immunoreactivity was also observed under nonreducing conditions when the blood was collected into a solution of sulfhydryl-trapping reagents, or when these reagents were added to the isolated lipoproteins. These results indicated that the disulfide bonds were not the result of disulfide exchange during the experimental procedures. On the basis of amino acid sequencing and reactions to antibodies, the 38,000 M(r) band was identified as an apoD-apoA-II heterodimer. The apoD-apoA-II was also demonstrated in plasma. In both HDL and plasma, the apoD-apoA-II heterodimer constituted the major form of apoD. Disulfide-linked heterodimers of apoD and apoB-100 were also found in low and very low density lipoproteins, and in whole plasma. It is concluded that a fraction of human apoD, like other cysteine-containing apolipoproteins, exists as a disulfide-linked heterodimer with other apolipoproteins in all major human lipoprotein fractions.

  3. Two-laser mass spectrometry of thiolate, disulfide, and sulfide self-assembled monolayers.

    SciTech Connect

    Trevor, J. L.; Lykke, K. R.; Chemistry; Univ. of Illinois at Chicago

    1998-03-31

    Self-assembled monolayers (SAMs) of thiolates, disulfides (RSSR+), and sulfides were studied on Au by N2 laser desorption followed by vacuum ultraviolet (VUV) (118-nm) photoionization of secondary neutrals in a time-of-flight mass spectrometer. Dimers (RSSR+) dominated the photoionization mass spectrum from all chain lengths of alkanethiolates and disulfides studied. Nonmethyl-terminated alkanethiolates with X = (OH and COOH) were detected as dimers without loss of the terminal group. Phenyl-SAMs with X = (H, OH, OCH3, Cl, and NO2) were detected as both monomers and dimers. Thiocholesterol SAMs were detected solely as monomers. The data suggest that dimerization occurs as a result of the recombination of surface thiolates during desorption. The alkane sulfides were detected intact, but with additional monomer and dimer species present in the spectra. The appearance of dimers is not a strong function of adsorbate structure or ordering and therefore cannot be taken as evidence for or against the recently proposed model of thiolate dimers on Au surfaces. Two receptor adsorbates, resorcin[4]arene tetrasulfide and {beta}-cyclodextrin sulfide were examined by two-laser mass spectrometry (L2MS), but only the former gave identifiable high mass peaks. Mixed thiolate and disulfide monolayers generated both pure and mixed dimers, providing information on nearest neighbor interactions. The mixed disulfide results indicate there is a common adsorption state for thiolates and disulfides. The laser desorption and VUV photoionization cross sections for these various organosulfur SAMs were found to be similar. L2MS with VUV photoionization was nonselective in its detection of these organosulfur species and produced mass spectra with little fragmentation.

  4. Interdisciplinary neurotoxicity inhalation studies: Carbon disulfide and carbonyl sulfide research in F344 rats

    SciTech Connect

    Sills, Robert C. . E-mail: sills@niehs.nih.gov; Harry, G. Jean; Valentine, William M.; Morgan, Daniel L.

    2005-09-01

    Inhalation studies were conducted on the hazardous air pollutants, carbon disulfide, which targets the central nervous system (spinal cord) and peripheral nervous system (distal portions of long myelinated axons), and carbonyl sulfide, which targets the central nervous system (brain). The objectives were to investigate the neurotoxicity of these compounds by a comprehensive evaluation of function, structure, and mechanisms of disease. Through interdisciplinary research, the major finding in the carbon disulfide inhalation studies was that carbon disulfide produced intra- and intermolecular protein cross-linking in vivo. The observation of dose-dependent covalent cross-linking in neurofilament proteins prior to the onset of lesions is consistent with this process contributing to the development of the neurofilamentous axonal swellings characteristic of carbon disulfide neurotoxicity. Of significance is that valine-lysine thiourea cross-linking on rat globin and lysine-lysine thiourea cross-linking on erythrocyte spectrin reflect cross-linking events occurring within the axon and could potentially serve as biomarkers of carbon disulfide exposure and effect. In the carbonyl sulfide studies, using magnetic resonance microscopy (MRM), we determined that carbonyl sulfide targets the auditory pathway in the brain. MRM allowed the examination of 200 brain slices and made it possible to identify the most vulnerable sites of neurotoxicity, which would have been missed in our traditional neuropathology evaluations. Electrophysiological studies were focused on the auditory system and demonstrated decreases in auditory brain stem evoked responses. Similarly, mechanistic studies focused on evaluating cytochrome oxidase activity in the posterior colliculus and parietal cortex. A decrease in cytochrome oxidase activity was considered to be a contributing factor to the pathogenesis of carbonyl sulfide neurotoxicity.

  5. Contribution of Disulfide Bridges to the Thermostability of a Type A Feruloyl Esterase from Aspergillus usamii.

    PubMed

    Yin, Xin; Hu, Die; Li, Jian-Fang; He, Yao; Zhu, Tian-Di; Wu, Min-Chen

    2015-01-01

    The contribution of disulfide bridges to the thermostability of a type A feruloyl esterase (AuFaeA) from Aspergillus usamii E001 was studied by introducing an extra disulfide bridge or eliminating a native one from the enzyme. MODIP and DbD, two computational tools that can predict the possible disulfide bridges in proteins for thermostability improvement, and molecular dynamics (MD) simulations were used to design the extra disulfide bridge. One residue pair A126-N152 was chosen, and the respective amino acid residues were mutated to cysteine. The wild-type AuFaeA and its variants were expressed in Pichia pastoris GS115. The temperature optimum of the recombinant (re-) AuFaeAA126C-N152C was increased by 6°C compared to that of re-AuFaeA. The thermal inactivation half-lives of re-AuFaeAA126C-N152C at 55 and 60°C were 188 and 40 min, which were 12.5- and 10-folds longer than those of re-AuFaeA. The catalytic efficiency (kcat/Km) of re-AuFaeAA126C-N152C was similar to that of re-AuFaeA. Additionally, after elimination of each native disulfide bridge in AuFaeA, a great decrease in expression level and at least 10°C decrease in thermal stability of recombinant AuEaeA variants were also observed.

  6. Exploiting Quantum Resonance to Solve Combinatorial Problems

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Fijany, Amir

    2006-01-01

    Quantum resonance would be exploited in a proposed quantum-computing approach to the solution of combinatorial optimization problems. In quantum computing in general, one takes advantage of the fact that an algorithm cannot be decoupled from the physical effects available to implement it. Prior approaches to quantum computing have involved exploitation of only a subset of known quantum physical effects, notably including parallelism and entanglement, but not including resonance. In the proposed approach, one would utilize the combinatorial properties of tensor-product decomposability of unitary evolution of many-particle quantum systems for physically simulating solutions to NP-complete problems (a class of problems that are intractable with respect to classical methods of computation). In this approach, reinforcement and selection of a desired solution would be executed by means of quantum resonance. Classes of NP-complete problems that are important in practice and could be solved by the proposed approach include planning, scheduling, search, and optimal design.

  7. Exploiting Non-Markovianity for Quantum Control

    NASA Astrophysics Data System (ADS)

    Reich, Daniel M.; Katz, Nadav; Koch, Christiane P.

    2015-07-01

    Quantum technology, exploiting entanglement and the wave nature of matter, relies on the ability to accurately control quantum systems. Quantum control is often compromised by the interaction of the system with its environment since this causes loss of amplitude and phase. However, when the dynamics of the open quantum system is non-Markovian, amplitude and phase flow not only from the system into the environment but also back. Interaction with the environment is then not necessarily detrimental. We show that the back-flow of amplitude and phase can be exploited to carry out quantum control tasks that could not be realized if the system was isolated. The control is facilitated by a few strongly coupled, sufficiently isolated environmental modes. Our paradigmatic example considers a weakly anharmonic ladder with resonant amplitude control only, restricting realizable operations to SO(N). The coupling to the environment, when harnessed with optimization techniques, allows for full SU(N) controllability.

  8. Tribal children are most exploited - UNICEF.

    PubMed

    A workshop sponsored by the UN Children's Fund in the Philippines examined the status of the children of indigenous people and found that exploitation of the assets of indigenous people in the name of development has resulted in social inequalities that have damaged the indigenous children. As examples of the disregard for the human rights of the children, participants cited projects in Davao, Boracay, and Benguet that have displaced native children. These include mining schemes that have "raped" ancestral lands, large-scale agricultural enterprises, promotion of tourism, and creation of hydroelectric dams. The children rarely benefit at all from any of these projects as their families are moved from a position of isolated independence to one of exploited dependence. Social changes accompanying development ruin traditional culture without providing a better or even similar basis of existence.

  9. Formation of methanethiol and dimethyl disulfide in crushed tissues of broccoli florets and their inhibition by freeze-thawing.

    PubMed

    Tulio, Artemio Z; Yamanaka, Hiroyuki; Ueda, Yoshinori; Imahori, Yoshihiro

    2002-03-13

    The formation of methanethiol and dimethyl disulfide in crushed, homogenized, and frozen-thawed tissues of broccoli florets was investigated. These volatile sulfur compounds were produced in crushed florets, but their formation was inhibited in frozen-thawed tissues. Only dimethyl disulfide was formed in homogenized tissues. High pH treatment triggered the release of dimethyl disulfide in frozen-thawed tissues and also enhanced the action of cysteine sulfoxide lyase in all disrupted tissues. Methyl methanethiosulfinate and methyl methanethiosulfonate were not detected in crushed florets; thus, the favored mechanism for the formation of methanethiol and dimethyl disulfide is the chemical disproportionation of methanesulfenic acid. In contrast, the formation of dimethyl disulfide in frozen-thawed and homogenized tissues occurs from the chemical disproportionation of methyl methanethiosulfinate that was detected in these tissues. The inhibition of dimethyl disulfide production during freeze-thawing must be caused by a sudden drop in the pH of the tissue, adherence of dimethyl disulfide on the tissue surfaces, and weakening of the cysteine sulfoxide lyase activity under acidic conditions.

  10. Macropinocytosis Exploitation by Cancers and Cancer Therapeutics

    PubMed Central

    Ha, Kevin D.; Bidlingmaier, Scott M.; Liu, Bin

    2016-01-01

    Macropinocytosis has long been known as a primary method for cellular intake of fluid-phase and membrane-bound bulk cargo. This review seeks to re-examine the latest studies to emphasize how cancers exploit macropinocytosis to further their tumorigenesis, including details in how macropinocytosis can be adapted to serve diverse functions. Furthermore, this review will also cover the latest endeavors in targeting macropinocytosis as an avenue for novel therapeutics. PMID:27672367

  11. Exploiting Data Similarity to Reduce Memory Footprints

    DTIC Science & Technology

    2011-01-01

    addresses for each of these categories. Figure 10 shows the state machine that we use to categorize and to process groups of pages once our interrupt...handler observes that memory usage exceeds the threshold. This state machine uses MergePendingPages to perform the merging, which uses mmap, mremap...exploit these techniques to detect when identical pages diverge. Waldspurger [23] incorporated searching for identical data in virtual machines (VMs

  12. DANDRUFF: THE MOST COMMERCIALLY EXPLOITED SKIN DISEASE

    PubMed Central

    Ranganathan, S; Mukhopadhyay, T

    2010-01-01

    The article discuss in detail about the prevalence, pathophysiology, clinical manifestations of dandruff including the etio-pathology. The article also discusses in detail about various treatment methods available for dandruff. The status of dandruff being amphibious – a disease/disorder, and relatively less medical intervention is sought after for the treatment, dandruff is the most commercially exploited skin and scalp disorder/disease by personal care industries. PMID:20606879

  13. Assisted Living

    MedlinePlus

    ... Transportation Back to top How to Choose a Facility? The following suggestions can help you get started ... for a safe, comfortable and appropriate assisted living facility: Think ahead. What will the resident’s future needs ...

  14. Assisted Living

    MedlinePlus

    ... Recreational activities Security Transportation How to Choose a Facility A good match between a facility and a resident's needs depends as much on the philosophy and services of the assisted living facility as it does on the quality of care. ...

  15. Identification of disulfide bonds in wheat gluten proteins by means of mass spectrometry/electron transfer dissociation.

    PubMed

    Lutz, Elena; Wieser, Herbert; Koehler, Peter

    2012-04-11

    Disulfide bonds within gluten proteins play a key role in the breadmaking performance of wheat flour. In the present study, disulfide bonds of wheat gluten proteins were identified by using a new liquid chromatography-mass spectrometry (LC-MS) technique with alternating electron transfer dissociation (ETD)/collision-induced dissociation (CID). Wheat flour was partially hydrolyzed with thermolysin (pH 6.5, 37 °C, 16 h), and the digest was subjected to LC-MS with alternating ETD/CID fragmentation. Whereas CID provided peptide fragments with intact disulfide bonds, cleavage of disulfide bonds was preferred over peptide backbone fragmentations in ETD. The simultaneous observation of disulfide-linked and disulfide-cleaved peptide ions in the mass spectra not only provided distinct interpretation with high confidence but also simplified the conventional approach for determination of disulfide bonds, which often requires two separate experiments with and without chemical reduction. By application of the new method 14 cystine peptides were identified. Eight peptides confirmed previously established disulfide bonds within gluten proteins, and the other six cystine peptides were identified for the first time. One of the newly identified cystine peptides represented a "head-to-tail" cross-link between high molecular weight glutenin subunits. This type of cross-link, which has been postulated as an integral part of glutenin models published previously, has now been proven experimentally for the first time. From the six remaining cystine peptides interchain disulfide bonds between α-gliadins, γ-gliadins, and low molecular weight glutenin subunits were established.

  16. Conformational analysis by quantitative NOE measurements of the β-proton pairs across individual disulfide bonds in proteins.

    PubMed

    Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune

    2012-02-01

    NOEs between the β-protons of cysteine residues across disulfide bonds in proteins provide direct information on the connectivities and conformations of these important cross-links, which are otherwise difficult to investigate. With conventional [U-(13)C, (15)N]-proteins, however, fast spin diffusion processes mediated by strong dipolar interactions between geminal β-protons prohibit the quantitative measurements and thus the analyses of long-range NOEs across disulfide bonds. We describe a robust approach for alleviating such difficulties, by using proteins selectively labeled with an equimolar mixture of (2R, 3S)-[β-(13)C; α,β-(2)H(2)] Cys and (2R, 3R)-[β-(13)C; α,β-(2)H(2)] Cys, but otherwise fully deuterated. Since either one of the prochiral methylene protons, namely β2 (proS) or β3 (proR), is always replaced with a deuteron and no other protons remain in proteins prepared by this labeling scheme, all four of the expected NOEs for the β-protons across disulfide bonds could be measured without any spin diffusion interference, even with long mixing times. Therefore, the NOEs for the β2 and β3 pairs across each of the disulfide bonds could be observed at high sensitivity, even though they are 25% of the theoretical maximum for each pair. With the NOE information, the disulfide bond connectivities can be unambiguously established for proteins with multiple disulfide bonds. In addition, the conformations around disulfide bonds, namely χ(2) and χ(3), can be determined based on the precise proton distances of the four β-proton pairs, by quantitative measurements of the NOEs across the disulfide bonds. The feasibility of this method is demonstrated for bovine pancreatic trypsin inhibitor, which has three disulfide bonds.

  17. Dynamical roles of metal ions and the disulfide bond in Cu, Zn superoxide dismutase folding and aggregation.

    PubMed

    Ding, Feng; Dokholyan, Nikolay V

    2008-12-16

    Misfolding and aggregation of Cu, Zn superoxide dismutase (SOD1) is implicated in neuronal death in amyotrophic lateral sclerosis. Each SOD1 monomer binds to 1 copper and 1 zinc ion and maintains its disulfide bond (Cys-57-Cys-146) in the reducing cytoplasm of cell. Mounting experimental evidence suggests that metal loss and/or disulfide reduction are important for initiating misfolding and aggregation of SOD1. To uncover the role of metals and the disulfide bond in the SOD1 folding, we systemically study the folding thermodynamics and structural dynamics of SOD1 monomer and dimer with and without metal binding and under disulfide-intact or disulfide-reduced environments in computational simulations. We use all-atom discrete molecular dynamics for sampling. Our simulation results provide dynamical evidence to the stabilizing role of metal ions in both dimer and monomer SOD1. The disulfide bond anchors a loop (Glu-49 to Asn-53) that contributes to the dimer interface. The reduction of the disulfide bond in SOD1 with metal ions depleted results in a flexible Glu-49-Asn-53 loop, which, in turn, disrupts dimer formation. Interestingly, the disulfide bond reduction does not affect the thermostability of monomer SOD1 as significantly as the metal ions do. We further study the structural dynamics of metal-free SOD1 monomers, the precursor for aggregation, in simulations and find inhomogeneous local unfolding of beta-strands. The strands protected by the metal-binding and electrostatic loops are found to unfold first after metal loss, leading to a partially unfolded beta-sheet prone to aggregation. Our simulation study sheds light on the critical role of metals and disulfide bond in SOD1 folding and aggregation.

  18. Assisted Ventilation.

    PubMed

    Dries, David J

    2016-01-01

    Controlled Mechanical Ventilation may be essential in the setting of severe respiratory failure but consequences to the patient including increased use of sedation and neuromuscular blockade may contribute to delirium, atelectasis, and diaphragm dysfunction. Assisted ventilation allows spontaneous breathing activity to restore physiological displacement of the diaphragm and recruit better perfused lung regions. Pressure Support Ventilation is the most frequently used mode of assisted mechanical ventilation. However, this mode continues to provide a monotonous pattern of support for respiration which is normally a dynamic process. Noisy Pressure Support Ventilation where tidal volume is varied randomly by the ventilator may improve ventilation and perfusion matching but the degree of support is still determined by the ventilator. Two more recent modes of ventilation, Proportional Assist Ventilation and Neurally Adjusted Ventilatory Assist (NAVA), allow patient determination of the pattern and depth of ventilation. Proposed advantages of Proportional Assist Ventilation and NAVA include decrease in patient ventilator asynchrony and improved adaptation of ventilator support to changing patient demand. Work of breathing can be normalized with these modes as well. To date, however, a clear pattern of clinical benefit has not been demonstrated. Existing challenges for both of the newer assist modes include monitoring patients with dynamic hyperinflation (auto-positive end expiratory pressure), obstructive lung disease, and air leaks in the ventilator system. NAVA is dependent on consistent transduction of diaphragm activity by an electrode system placed in the esophagus. Longevity of effective support with this technique is unclear.

  19. Effectively Responding to the Commercial Sexual Exploitation of Children: A Comprehensive Approach to Prevention, Protection, and Reintegration Services.

    ERIC Educational Resources Information Center

    Barnitz, Laura

    2001-01-01

    Discusses the international problem of commercial sexual exploitation of children (CSEC) and efforts to stop the practice and assist the victims. Considers initiatives to formulate a worldwide policy against CSEC, and anti-CSEC efforts in the United States, including law enforcement and education, and advocacy efforts and services for youth.…

  20. Cell-type specific requirements for thiol/disulfide exchange during HIV-1 entry and infection

    PubMed Central

    2012-01-01

    Background The role of disulfide bond remodeling in HIV-1 infection is well described, but the process still remains incompletely characterized. At present, the data have been predominantly obtained using established cell lines and/or CXCR4-tropic laboratory-adapted virus strains. There is also ambiguity about which disulfide isomerases/ reductases play a major role in HIV-1 entry, as protein disulfide isomerase (PDI) and/or thioredoxin (Trx) have emerged as the two enzymes most often implicated in this process. Results We have extended our previous findings and those of others by focusing on CCR5-using HIV-1 strains and their natural targets - primary human macrophages and CD4+ T lymphocytes. We found that the nonspecific thiol/disulfide exchange inhibitor, 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), significantly reduced HIV-1 entry and infection in cell lines, human monocyte-derived macrophages (MDM), and also phytohemagglutinin (PHA)-stimulated peripheral blood mononuclear cells (PBMC). Subsequent studies were performed using specific anti-PDI or Trx monoclonal antibodies (mAb) in HIV-1 envelope pseudotyped and wild type (wt) virus infection systems. Although human donor-to-donor variability was observed as expected, Trx appeared to play a greater role than PDI in HIV-1 infection of MDM. In contrast, PDI, but not Trx, was predominantly involved in HIV-1 entry and infection of the CD4+/CCR5+ T cell line, PM-1, and PHA-stimulated primary human T lymphocytes. Intriguingly, both PDI and Trx were present on the surface of MDM, PM-1 and PHA-stimulated CD4+ T cells. However, considerably lower levels of Trx were detected on freshly isolated CD4+ lymphocytes, compared to PHA-stimulated cells. Conclusions Our findings clearly demonstrate the role of thiol/disulfide exchange in HIV-1 entry in primary T lymphocytes and MDM. They also establish a cell-type specificity regarding the involvement of particular disulfide isomerases/reductases in this process and may provide an

  1. The Structure of Eukaryotic Translation Initiation Factor-4E from Wheat Reveals a Novel Disulfide Bond

    SciTech Connect

    Monzingo,A.; Dhaliwal, S.; Dutt-Chaudhuri, A.; Lyon, A.; Sadow, J.; Hoffman, D.; Robertus, J.; Browning, K.

    2007-01-01

    Eukaryotic translation initiation factor-4E (eIF4E) recognizes and binds the m{sup 7} guanosine nucleotide at the 5' end of eukaryotic messenger RNAs; this protein-RNA interaction is an essential step in the initiation of protein synthesis. The structure of eIF4E from wheat (Triticum aestivum) was investigated using a combination of x-ray crystallography and nuclear magnetic resonance (NMR) methods. The overall fold of the crystallized protein was similar to eIF4E from other species, with eight {beta}-strands, three {alpha}-helices, and three extended loops. Surprisingly, the wild-type protein did not crystallize with m{sup 7}GTP in its binding site, despite the ligand being present in solution; conformational changes in the cap-binding loops created a large cavity at the usual cap-binding site. The eIF4E crystallized in a dimeric form with one of the cap-binding loops of one monomer inserted into the cavity of the other. The protein also contained an intramolecular disulfide bridge between two cysteines (Cys) that are conserved only in plants. A Cys-to-serine mutant of wheat eIF4E, which lacked the ability to form the disulfide, crystallized with m{sup 7}GDP in its binding pocket, with a structure similar to that of the eIF4E-cap complex of other species. NMR spectroscopy was used to show that the Cys that form the disulfide in the crystal are reduced in solution but can be induced to form the disulfide under oxidizing conditions. The observation that the disulfide-forming Cys are conserved in plants raises the possibility that their oxidation state may have a role in regulating protein function. NMR provided evidence that in oxidized eIF4E, the loop that is open in the ligand-free crystal dimer is relatively flexible in solution. An NMR-based binding assay showed that the reduced wheat eIF4E, the oxidized form with the disulfide, and the Cys-to-serine mutant protein each bind m{sup 7}GTP in a similar and labile manner, with dissociation rates in the range of 20

  2. Solution structure and activity of the synthetic four-disulfide bond Mediterranean mussel defensin (MGD-1).

    PubMed

    Yang, Y S; Mitta, G; Chavanieu, A; Calas, B; Sanchez, J F; Roch, P; Aumelas, A

    2000-11-28

    MGD-1 is a 39-residue defensin-like peptide isolated from the edible Mediterranean mussel, Mytilus galloprovincialis. This peptide is characterized by the presence of four disulfide bonds. We report here its solid-phase synthesis and an easy way to improve the yield of the four native disulfide bonds. Synthetic and native MGD-1 display similar antibacterial activity, suggesting that the hydroxylation of Trp28 observed in native MGD-1 is not involved in the antimicrobial effect. The three-dimensional solution structure of MGD-1 has been established using (1)H NMR and mainly consists of a helical part (Asn7-Ser16) and two antiparallel beta-strands (Arg20-Cys25 and Cys33-Arg37), together giving rise to the common cystine-stabilized alpha-beta motif frequently observed in scorpion toxins. In MGD-1, the cystine-stabilized alpha-beta motif is stabilized by four disulfide bonds (Cys4-Cys25, Cys10-Cys33, Cys14-Cys35, and Cys21-Cys38), instead of by the three disulfide bonds commonly found in arthropod defensins. Except for the Cys21-Cys38 disulfide bond which is solvent-exposed, the three others belong to the particularly hydrophobic core of the highly constrained structure. Moreover, the C4-P5 amide bond in the cis conformation characterizes the MGD-1 structure. MGD-1 and insect defensin A possess similar bactericidal anti-Gram-positive activity, suggesting that the fourth disulfide bond of MGD-1 is not essential for the biological activity. In agreement with the general features of antibacterial peptides, the MGD-1 and defensin A structures display a typical distribution of positively charged and hydrophobic side chains. The positively charged residues of MGD-1 are located in three clusters. For these two defensin peptides isolated from insects and mollusks, it appears that the rather well conserved location of certain positively charged residues and of the large hydrophobic cluster are enough to generate the bactericidal potency and the Gram-positive specificity.

  3. Exploitation of subsea gas hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2016-04-01

    Natural gas hydrates are considered to be a potential energy resource in the future. They occur in permafrost areas as well as in subsea sediments and are stable at high pressure and low temperature conditions. According to estimations the amount of carbon bonded in natural gas hydrates worldwide is two times larger than in all known conventional fossil fuels. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e.g. depressurization and/or injection of carbon dioxide) is numerically studied in the frame of the German research project »SUGAR«. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into a numerical model. The physics of the process leads to strong non-linear couplings between hydraulic fluid flow, hydrate dissociation and formation, hydraulic properties of the sediment, partial pressures and seawater solution of components and the thermal budget of the system described by the heat equation. This paper is intended to provide an overview of the recent development regarding the production of natural gas from subsea gas hydrate reservoirs. It aims at giving a broad insight into natural gas hydrates and covering relevant aspects of the exploitation process. It is focused on the thermodynamic principles and technological approaches for the exploitation. The effects occurring during natural gas production within hydrate filled sediment layers are identified and discussed by means of numerical simulation results. The behaviour of relevant process parameters such as pressure, temperature and phase saturations is described and compared for different strategies. The simulations are complemented by calculations for different safety relevant problems.

  4. Algorithms exploiting ultrasonic sensors for subject classification

    NASA Astrophysics Data System (ADS)

    Desai, Sachi; Quoraishee, Shafik

    2009-09-01

    Proposed here is a series of techniques exploiting micro-Doppler ultrasonic sensors capable of characterizing various detected mammalian targets based on their physiological movements captured a series of robust features. Employed is a combination of unique and conventional digital signal processing techniques arranged in such a manner they become capable of classifying a series of walkers. These processes for feature extraction develops a robust feature space capable of providing discrimination of various movements generated from bipeds and quadrupeds and further subdivided into large or small. These movements can be exploited to provide specific information of a given signature dividing it in a series of subset signatures exploiting wavelets to generate start/stop times. After viewing a series spectrograms of the signature we are able to see distinct differences and utilizing kurtosis, we generate an envelope detector capable of isolating each of the corresponding step cycles generated during a walk. The walk cycle is defined as one complete sequence of walking/running from the foot pushing off the ground and concluding when returning to the ground. This time information segments the events that are readily seen in the spectrogram but obstructed in the temporal domain into individual walk sequences. This walking sequence is then subsequently translated into a three dimensional waterfall plot defining the expected energy value associated with the motion at particular instance of time and frequency. The value is capable of being repeatable for each particular class and employable to discriminate the events. Highly reliable classification is realized exploiting a classifier trained on a candidate sample space derived from the associated gyrations created by motion from actors of interest. The classifier developed herein provides a capability to classify events as an adult humans, children humans, horses, and dogs at potentially high rates based on the tested sample

  5. Art Therapy Exhibitions: Exploitation or Advocacy?

    PubMed

    Davis, Terri

    2017-01-01

    Promoting awareness of human trafficking by sharing trauma survivors' art and summaries of their life stories suggests ethical complexities that have been typically neglected by bioethicists. Although these survivors voluntarily share the objects they created during art therapy sessions, they are still at risk of harm, including further exploitation, due to their vulnerability, high rates of victim sensitivity, and the mental health consequences of their traumatic experiences. While some argue that the benefits of sublimation and art therapy for human trafficking survivors make sharing their art worth the risk, anti-trafficking organizations and supporters of such art exhibitions have responsibilities to be trauma informed.

  6. On-Line Electrochemical Reduction of Disulfide Bonds: Improved FTICR-CID and -ETD Coverage of Oxytocin and Hepcidin

    NASA Astrophysics Data System (ADS)

    Nicolardi, Simone; Giera, Martin; Kooijman, Pieter; Kraj, Agnieszka; Chervet, Jean-Pierre; Deelder, André M.; van der Burgt, Yuri E. M.

    2013-12-01

    Particularly in the field of middle- and top-down peptide and protein analysis, disulfide bridges can severely hinder fragmentation and thus impede sequence analysis (coverage). Here we present an on-line/electrochemistry/ESI-FTICR-MS approach, which was applied to the analysis of the primary structure of oxytocin, containing one disulfide bridge, and of hepcidin, containing four disulfide bridges. The presented workflow provided up to 80 % (on-line) conversion of disulfide bonds in both peptides. With minimal sample preparation, such reduction resulted in a higher number of peptide backbone cleavages upon CID or ETD fragmentation, and thus yielded improved sequence coverage. The cycle times, including electrode recovery, were rapid and, therefore, might very well be coupled with liquid chromatography for protein or peptide separation, which has great potential for high-throughput analysis.

  7. The compromise of dynamic disulfide/thiol homeostasis as a biomarker of oxidative stress in trichloroethylene exposure.

    PubMed

    Bal, C; Büyükşekerci, M; Koca, C; Ağış, E R; Erdoğan, S; Baran, P; Gündüzöz, M; Yilmaz, Öh

    2016-09-01

    In this study, we aimed to investigate disulfide/thiol homeostasis in trichloroethylene (TCE) exposure. The study was carried out in 30 nonsmoker TCE-exposed workers with a variety of occupations. Additionally, 30 healthy nonsmoker volunteers were recruited as the control group. TCE exposure was determined by measuring urinary trichloroacetic acid (TCA) concentration. Median urinary TCA levels of exposed workers (20.5 mg/L) were significantly higher than control subjects (5 mg/L). Thiol and disulfide concentrations were determined using a novel automated method. Disulfide/thiol ratio was significantly higher in the exposed group (p < 0.001). Thiol/disulfide homeostasis was found to be disturbed in TCE-exposed workers. We predict that in TCE-exposed workers this disturbance can be a therapeutic target, and the efficiency of the treatment can easily be monitored by the novel method we used.

  8. Blood-Stable, Tumor-Adaptable Disulfide Bonded mPEG-(Cys)4-PDLLA Micelles for Chemotherapy

    PubMed Central

    Lee, Seung-Young; Kim, Sungwon; Tyler, Jacqueline; Park, Kinam; Cheng, Ji-Xin

    2012-01-01

    Although targeted delivery mediated by ligand modified or tumor microenvironment sensitive nanocarriers has been extensively pursued for cancer chemotherapy, the efficiency is still limited by premature drug release after systemic administration. Herein we report a highly blood-stable, tumor-adaptable drug carrier made of disulfide (DS) bonded mPEG-(Cys)4-PDLLA micelles. Intravenously injected disulfide bonded micelles stably retained doxorubicin in the bloodstream and efficiently delivered the drug to a tumor, with a 7-fold increase of the drug in the tumor and 1.9-fold decrease in the heart, as compared with self-assembled (SA), non-crosslinked mPEG-PDLLA micelles. In vivo administration of disulfide bonded micelles led to doxorubicin accumulation in cancer cell nuclei, which was not observed after administration of self-assembled micelles. With a doxorubicin dose as low as 2 mg/kg, disulfide bonded micelles almost completely suppressed tumor growth in mice. PMID:23079665

  9. Cytotoxic effects of 1,2-dichloroethane, nitrobenzene, and carbon disulfide on human KB and monkey AGMK cells.

    PubMed

    Mochida, K; Ito, Y; Saito, K; Gomyoda, M

    1986-12-01

    The toxicity of 1,2-dichloroethane, carbon disulfide, and nitrobenzene on cultured human (KB) and African green monkey kidney (AGMK) cells was studied. Nitrobenzene proved to be the most toxic to these two cell lines.

  10. Aromatic glycosyl disulfide derivatives: evaluation of their inhibitory activities against Trypanosoma cruzi.

    PubMed

    Gutiérrez, Bessy; Muñoz, Christian; Osorio, Luis; Fehér, Krisztina; Illyés, Tünde-Zita; Papp, Zsuzsa; Kumar, Ambati Ashok; Kövér, Katalin E; Sagua, Hernán; Araya, Jorge E; Morales, Patricio; Szilágyi, László; González, Jorge

    2013-06-15

    Aromatic oligovalent glycosyl disulfides and some diglycosyl disulfides were tested against three different Trypanosoma cruzi strains. Di-(β-D-galactopyranosyl-dithiomethylene) benzenes 2b and 4b proved to be the most active derivatives against all three strains of cell culture-derived trypomastigotes with IC50 values ranging from 4 to 11 μM at 37 °C. The inhibitory activities were maintained, although somewhat lowered, at a temperature of 4 °C as well. Three further derivatives displayed similar activities against at least one of the three strains. Low cytotoxicities of the active compounds, tested on confluent HeLa, Vero and peritoneal macrophage cell cultures, resulted in significantly higher selectivity indices (SI) than that of the reference drug benznidazole. Remarkably, several molecules of the tested panel strongly inhibited the parasite release from T. cruzi infected HeLa cell cultures suggesting an effect against the intracellular development of T. cruzi amastigotes as well.

  11. Selective removal of heavy metal ions by disulfide linked polymer networks.

    PubMed

    Ko, Dongah; Lee, Joo Sung; Patel, Hasmukh A; Jakobsen, Mogens H; Hwang, Yuhoon; Yavuz, Cafer T; Hansen, Hans Chr Bruun; Andersen, Henrik R

    2017-03-06

    Heavy metal contaminated surface water is one of the oldest pollution problems, which is critical to ecosystems and human health. We devised disulfide linked polymer networks and employed as a sorbent for removing heavy metal ions from contaminated water. Although the polymer network material has a moderate surface area, it demonstrated cadmium removal efficiency equivalent to highly porous activated carbon while it showed 16 times faster sorption kinetics compared to activated carbon, owing to the high affinity of cadmium towards disulfide and thiol functionality in the polymer network. The metal sorption mechanism on polymer network was studied by sorption kinetics, effect of pH, and metal complexation. We observed that the metal ions-copper, cadmium, and zinc showed high binding affinity in polymer network, even in the presence of competing cations like calcium in water.

  12. Tetracene dicarboxylic imide and its disulfide: synthesis of ambipolar organic semiconductors for organic photovoltaic cells.

    PubMed

    Okamoto, Toshihiro; Suzuki, Tsuyoshi; Tanaka, Hideyuki; Hashizume, Daisuke; Matsuo, Yutaka

    2012-01-02

    We have designed and synthesized a new donor/acceptor-type tetracene derivative by the introduction of dicarboxylic imide and disulfide groups as electron-withdrawing and -donating units, respectively. The prepared compounds, tetracene dicarboxylic imide (TI) and its disulfide (TIDS) have high chemical and electrochemical stability as well as long-wavelength absorptions of up to 886 nm in the thin films. The crystal packing structure of TIDS molecules features face-to-face π-stacking, derived from dipole-dipole interactions. Notably, TIDS exhibited ambipolar properties of both electron-donating and -accepting natures in p-n and p-i-n heterojunction organic thin-film photovoltaic devices. Accordingly, TI and TIDS are expected to be promising compounds for designing new organic semiconductors.

  13. A protein disulfide isomerase gene fusion expression system that increases the extracellular productivity of Bacillus brevis.

    PubMed

    Kajino, T; Ohto, C; Muramatsu, M; Obata, S; Udaka, S; Yamada, Y; Takahashi, H

    2000-02-01

    We have developed a versatile Bacillus brevis expression and secretion system based on the use of fungal protein disulfide isomerase (PDI) as a gene fusion partner. Fusion with PDI increased the extracellular production of heterologous proteins (light chain of immunoglobulin G, 8-fold; geranylgeranyl pyrophosphate synthase, 12-fold). Linkage to PDI prevented the aggregation of the secreted proteins, resulting in high-level accumulation of fusion proteins in soluble and biologically active forms. We also show that the disulfide isomerase activity of PDI in a fusion protein is responsible for the suppression of the aggregation of the protein with intradisulfide, whereas aggregation of the protein without intradisulfide was prevented even when the protein was fused to a mutant PDI whose two active sites were disrupted, suggesting that another PDI function, such as chaperone-like activity, synergistically prevented the aggregation of heterologous proteins in the PDI fusion expression system.

  14. Disulfide bond bridge insertion turns hydrophobic anticancer prodrugs into self-assembled nanomedicines.

    PubMed

    Wang, Yongjun; Liu, Dan; Zheng, Qingchuan; Zhao, Qiang; Zhang, Hongjuan; Ma, Yan; Fallon, John K; Fu, Qiang; Haynes, Matthew T; Lin, Guimei; Zhang, Rong; Wang, Dun; Yang, Xinggang; Zhao, Linxiang; He, Zhonggui; Liu, Feng

    2014-10-08

    It is commonly observed that hydrophobic molecules alone cannot self-assemble into stable nanoparticles, requiring amphiphilic or ionic materials to support nanoparticle stability and function in vivo. We report herein newly self-assembled nanomedicines through entirely different mechanisms. We present proof-of-concept methodology and results in support of our hypothesis that disulfide-induced nanomedicines (DSINMs) are promoted and stabilized by the insertion of a single disulfide bond into hydrophobic molecules, in order to balance the competition between intermolecular forces involved in the self-assembly of nanomedicines. This hypothesis has been explored through diverse synthetic compounds, which include four first-line chemotherapy drugs (paclitaxel, doxorubicin, fluorouracil, and gemcitabine), two small-molecule natural products and their derivatives, as well as a fluorescent probe. Such an unprecedented and highly reproducible system has the potential to serve as a synthetic platform for a wide array of safe and effective therapeutic and diagnostic nanomedicine strategies.

  15. Nicotinamidase/pyrazinamidase of Mycobacterium tuberculosis forms homo-dimers stabilized by disulfide bonds

    PubMed Central

    Rueda, Daniel; Sheen, Patricia; Gilman, Robert H.; Bueno, Carlos; Santos, Marco; Pando-Robles, Victoria; Batista, Cesar V.; Zimic, Mirko

    2014-01-01

    Recombinant wild-pyrazinamidase from H37Rv M. tuberculosis was analyzed by gel electrophoresis under differential reducing conditions to evaluate its quaternary structure. PZAse was fractionated by size exclusion chromatography under non-reducing conditions. PZAse activity was measured and mass spectrometry analysis was performed to determine the identity of proteins by de novo sequencing and to determine the presence of disulfide bonds. This study confirmed that M. tuberculosis wild type PZAse was able to form homo-dimers in vitro. Homo-dimers showed a slightly lower specific PZAse activity compared to monomeric PZAse. PZAse dimers were dissociated into monomers in response to reducing conditions. Mass spectrometry analysis confirmed the existence of disulfide bonds (C72-C138 and C138-C138) stabilizing the quaternary structure of the PZAse homo-dimer. PMID:25199451

  16. Prediction of the disulfide-bonding state of cysteines in proteins based on dipeptide composition.

    PubMed

    Song, Jiang-Ning; Wang, Ming-Lei; Li, Wei-Jiang; Xu, Wen-Bo

    2004-05-21

    In this paper, a novel approach has been introduced to predict the disulfide-bonding state of cysteines in proteins by means of a linear discriminator based on their dipeptide composition. The prediction is performed with a newly enlarged dataset with 8114 cysteine-containing segments extracted from 1856 non-homologous proteins of well-resolved three-dimensional structures. The oxidation of cysteines exhibits obvious cooperativity: almost all cysteines in disulfide-bond-containing proteins are in the oxidized form. This cooperativity can be well described by protein's dipeptide composition, based on which the prediction accuracy of the oxidation form of cysteines scores as high as 89.1% and 85.2%, when measured on cysteine and protein basis using the rigorous jack-knife procedure, respectively. The result demonstrates the applicability of this new relatively simple method and provides superior prediction performance compared with existing methods for the prediction of the oxidation states of cysteines in proteins.

  17. Enhancing the thermal stability of avidin. Introduction of disulfide bridges between subunit interfaces.

    PubMed

    Nordlund, Henri R; Laitinen, Olli H; Uotila, Sanna T H; Nyholm, Thomas; Hytönen, Vesa P; Slotte, J Peter; Kulomaa, Markku S

    2003-01-24

    In this study we showed that tetrameric chicken avidin can be stabilized by introducing intermonomeric disulfide bridges between its subunits. These covalent bonds had no major effects on the biotin binding properties of the respective mutants. Moreover, one of the mutants (Avd-ccci) maintained its tetrameric integrity even in denaturing conditions. The new avidin forms Avd-ci and Avd-ccci, which have native --> denatured transition midpoints (T(m)) of 98.6 and 94.7 degrees C, respectively, in the absence of biotin, will find use in applications where extreme stability or minimal leakage of subunits is required. Furthermore, we showed that the intramonomeric disulfide bridges found in the wild-type avidin affect its stability. The mutant Avd-nc, in which this bridge was removed, had a lower T(m) in the absence of biotin than the wild-type avidin but showed comparable stability in the presence of biotin.

  18. Enhancing the Thermal Resistance of a Novel Acidobacteria-Derived Phytase by Engineering of Disulfide Bridges.

    PubMed

    Tan, Hao; Miao, Renyun; Liu, Tianhai; Cao, Xuelian; Wu, Xiang; Xie, Liyuan; Huang, Zhongqian; Peng, Weihong; Gan, Bingcheng

    2016-10-28

    A novel phytase of Acidobacteria was identified from a soil metagenome, cloned, overexpressed, and purified. It has low sequence similarity (<44%) to all the known phytases. At the optimum pH (2.5), the phytase shows an activity level of 1,792 μmol/min/mg at physiological temperature (37°C) and could retain 92% residual activity after 30 min, indicating the phytase is acidophilic and acidostable. However the phytase shows poor stability at high temperatures. To improve its thermal resistance, the enzyme was redesigned using Disulfide by Design 2.0, introducing four additional disulfide bridges. The half-life time of the engineered phytase at 60°C and 80°C, respectively, is 3.0× and 2.8× longer than the wild-type, and its activity and acidostability are not significantly affected.

  19. Stimulated Raman scattering from sulfur-II produced by laser decomposition of liquid carbon disulfide.

    PubMed

    Fang, Wenhui; Li, Zhanlong; Li, Dongfei; Li, Zuowei; Zhou, Mi; Men, Zhiwei; Sun, Chenglin

    2013-03-15

    Stimulated Raman scattering (SRS) of sulfur-II (S-II) phase was investigated by laser decomposition of liquid carbon disulfide. As a matter of fact, above a threshold of the laser intensity, it is suggested that a strong shock wave is generated in the liquid carbon disulfide, which is decomposed owing to the induced high dynamic pressure and temperature. One bending mode E frequency at 289 cm(-1) and one symmetric stretching mode A1 frequency at 490 cm(-1) of S-II phase were observed. The SRS spectra indicated that S-II structure is formed by laser decomposition, as the strong shock wave generates the stable pressure-temperature range of S-II phase. The dynamic high-pressure and static-electric field generated by laser-induced breakdown results in the softening A1 mode becoming more hardened.

  20. Conversion of a disulfide bond into a thioacetal group during echinomycin biosynthesis

    SciTech Connect

    Hotta, Kinya; Keegan, Ronan M.; Ranganathan, Soumya; Fang, Minyi; Bibby, Jaclyn; Winn, Martyn D.; Sato, Michio; Lian, Mingzhu; Watanabe, Kenji; Rigden, Daniel J.; Kim, Chu-Young

    2013-12-02

    Echinomycin is a nonribosomal depsipeptide natural product with a range of interesting bioactivities that make it an important target for drug discovery and development. It contains a thioacetal bridge, a unique chemical motif derived from the disulfide bond of its precursor antibiotic triostin A by the action of an S-adenosyl-L-methionine-dependent methyltransferase, Ecm18. The crystal structure of Ecm18 in complex with its reaction products S-adenosyl-L-homocysteine and echinomycin was determined at 1.50 Å resolution. Phasing was achieved using a new molecular replacement package called AMPLE, which automatically derives search models from structure predictions based on ab initio protein modelling. Structural analysis indicates that a combination of proximity effects, medium effects, and catalysis by strain drives the unique transformation of the disulfide bond into the thioacetal linkage.

  1. Disulfide Bond Bridge Insertion Turns Hydrophobic Anticancer Prodrugs into Self-Assembled Nanomedicines

    PubMed Central

    2015-01-01

    It is commonly observed that hydrophobic molecules alone cannot self-assemble into stable nanoparticles, requiring amphiphilic or ionic materials to support nanoparticle stability and function in vivo. We report herein newly self-assembled nanomedicines through entirely different mechanisms. We present proof-of-concept methodology and results in support of our hypothesis that disulfide-induced nanomedicines (DSINMs) are promoted and stabilized by the insertion of a single disulfide bond into hydrophobic molecules, in order to balance the competition between intermolecular forces involved in the self-assembly of nanomedicines. This hypothesis has been explored through diverse synthetic compounds, which include four first-line chemotherapy drugs (paclitaxel, doxorubicin, fluorouracil, and gemcitabine), two small-molecule natural products and their derivatives, as well as a fluorescent probe. Such an unprecedented and highly reproducible system has the potential to serve as a synthetic platform for a wide array of safe and effective therapeutic and diagnostic nanomedicine strategies. PMID:25188744

  2. Facile Synthesis and Characterization of Two Dimensional Layered Tin Disulfide Nanowalls

    NASA Astrophysics Data System (ADS)

    Mutlu, Zafer; Shahrezaei, Sina; Temiz, Selcuk; Ozkan, Mihrimah; Ozkan, Cengiz S.

    2016-04-01

    Two dimensional layered metal chalcogenides, especially tin sulfides, have recently received great interest due to their enticing physical and chemical properties and hold promise for various applications. We report on synthesis of phase-pure two dimensional tin disulfide nanowalls by a facile vapor-phase synthesis method on insulator substrates such as silicon dioxide and magnesium oxide using tin dioxide and sulfur powders as precursors. The synthesized tin disulfide nanowalls have been characterized to study their fundamental properties by using various techniques such as scanning electron microscopy, x-ray diffraction, Raman spectroscopy, x-ray photoelectron spectroscopy, and ultraviolet photoelectron spectroscopy. The synthesized films have an open network structure constituted of very uniform interconnected nanowalls with high crystallinity.

  3. Organic Matter Polymerization by Disulfide Bonding Near the Chemocline in Cariaco Basin

    NASA Astrophysics Data System (ADS)

    Raven, M. R.; Adkins, J. F.; Sessions, A. L.

    2013-12-01

    The preservation of organic carbon in sediments as kerogen is an essential pathway in the global carbon cycle, but the chemical reactions involved in kerogen formation remain poorly understood. Previous researchers have found that many sediments deposited under euxinic conditions contain sulfur-bearing non-polar lipids as well as disulfide bonds among lipid and carbohydrate monomers. It remains unclear, however, when during organic matter decomposition and diagenesis these different sulfur-bearing structures form, and how different environmental conditions affect the extent of organic matter sulfurization. We investigate organic sulfurization processes armed with a technique for measuring the sulfur-isotopic compositions of individual organosulfur compounds by coupled gas chromatography - inductively coupled plasma mass spectrometry. Organic compounds were extracted from sediments and water column sediment traps from Cariaco Basin, a euxinic basin in the Caribbean Sea. We measured the sulfur-isotopic compositions of both non-polar lipids and of derivatized disulfide-bound compounds from eight sediment trap profiles and a six-meter-long sediment core. In Cariaco Basin, lipid sulfurization processes appear to begin near the chemocline and continue in sediments on timescales of thousands of years. Slow diagenetic sulfurization in sediments produces lipid monomers with sulfur atoms in ring structures that are 34S-depleted relative to coexisting dissolved sulfide. Lipid monomers become progressively enriched in 34S over time, indicating ongoing formation coinciding with an increase in the amount of total sulfur in bulk kerogen. One of the most abundant monomers observed in Cariaco sediments, a phytol-related thiophene, is also produced intermittently near the chemocline. Phytol thiophene δ34S values in sediment traps are similar to those observed in shallow Cariaco sediments except during occasional ';enrichment events,' when phytol thiophene δ34S values increase to

  4. Reactive superhydrophobic surface and its photoinduced disulfide-ene and thiol-ene (bio)functionalization.

    PubMed

    Li, Junsheng; Li, Linxian; Du, Xin; Feng, Wenqian; Welle, Alexander; Trapp, Oliver; Grunze, Michael; Hirtz, Michael; Levkin, Pavel A

    2015-01-14

    Reactive superhydrophobic surfaces are highly promising for biotechnological, analytical, sensor, or diagnostic applications but are difficult to realize due to their chemical inertness. In this communication, we report on a photoactive, inscribable, nonwettable, and transparent surface (PAINTS), prepared by polycondensation of trichlorovinylsilane to form thin transparent reactive porous nanofilament on a solid substrate. The PAINTS shows superhydrophobicity and can be conveniently functionalized with the photoclick thiol-ene reaction. In addition, we show for the first time that the PAINTS bearing vinyl groups can be easily modified with disulfides under UV irradiation. The effect of superhydrophobicity of PAINTS on the formation of high-resolution surface patterns has been investigated. The developed reactive superhydrophobic coating can find applications for surface biofunctionalization using abundant thiol or disulfide bearing biomolecules, such as peptides, proteins, or antibodies.

  5. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity.

    PubMed

    Krause, A; Neitz, S; Mägert, H J; Schulz, A; Forssmann, W G; Schulz-Knappe, P; Adermann, K

    2000-09-01

    We report the isolation and characterization of a novel human peptide with antimicrobial activity, termed LEAP-1 (liver-expressed antimicrobial peptide). Using a mass spectrometric assay detecting cysteine-rich peptides, a 25-residue peptide containing four disulfide bonds was identified in human blood ultrafiltrate. LEAP-1 expression was predominantly detected in the liver, and, to a much lower extent, in the heart. In radial diffusion assays, Gram-positive Bacillus megaterium, Bacillus subtilis, Micrococcus luteus, Staphylococcus carnosus, and Gram-negative Neisseria cinerea as well as the yeast Saccharomyces cerevisiae dose-dependently exhibited sensitivity upon treatment with synthetic LEAP-1. The discovery of LEAP-1 extends the known families of mammalian peptides with antimicrobial activity by its novel disulfide motif and distinct expression pattern.

  6. Investigation of the deposition and thermal behavior of striped phases of unsymmetric disulfide self-assembled monolayers on Au(111): The case of 11-hydroxyundecyl decyl disulfide

    SciTech Connect

    Albayrak, Erol; Karabuga, Semistan; Bracco, Gianangelo; Danışman, M. Fatih

    2015-01-07

    Self-assembled monolayers (SAMs) of unsymmetric disulfides on Au(111) are used to form mixed SAMs that can be utilized in many applications. Here, we have studied 11-hydroxyundecyl decyl disulfide (CH{sub 3}–(CH{sub 2}){sub 9}–S–S–(CH{sub 2}){sub 11}–OH, HDD) SAMs produced by supersonic molecular beam deposition and characterized by He diffraction. The film growth was monitored at different temperatures up to a coverage which corresponds to a full lying down phase and the diffraction analysis shows that below 250 K the phase is different from the phase measured above 300 K. During the annealing of the film, two phase transitions were observed, at 250 K and 350 K. The overall data suggest that the former is related to an irreversible phase separation of HDD above 250 K to decanethiolate (–S–(CH{sub 2}){sub 9}–CH{sub 3}, DTT) and hydroxyundecylthiolate (–S–(CH{sub 2}){sub 11}–OH, MUDT), while the latter to a reversible melting of the film. Above 450 K, the specular intensity shows an increase related to film desorption and different chemisorbed states were observed with energies in the same range as observed for decanethiol (H–S–(CH{sub 2}){sub 9}–CH{sub 3}, DT) and mercaptoundecanol (H–S–(CH{sub 2}){sub 11}–OH, MUD) SAMs.

  7. Competing Discourses about Youth Sexual Exploitation in Canadian News Media.

    PubMed

    Saewyc, Elizabeth M; Miller, Bonnie B; Rivers, Robert; Matthews, Jennifer; Hilario, Carla; Hirakata, Pam

    2013-10-01

    Media holds the power to create, maintain, or break down stigmatizing attitudes, which affect policies, funding, and services. To understand how Canadian news media depicts the commercial sexual exploitation of children and youth, we examined 835 Canadian newspaper articles from 1989-2008 using a mixed methods critical discourse analysis approach, comparing representations to existing research about sexually exploited youth. Despite research evidence that equal rates of boys and girls experience exploitation, Canadian news media depicted exploited youth predominantly as heterosexual girls, and described them alternately as victims or workers in a trade, often both in the same story. News media mentioned exploiters far less often than victims, and portrayed them almost exclusively as male, most often called 'customers' or 'consumers,' and occasionally 'predators'; in contrast, research has documented the majority of sexually exploited boys report female exploiters. Few news stories over the past two decades portrayed the diversity of victims, perpetrators, and venues of exploitation reported in research. The focus on victims but not exploiters helps perpetuate stereotypes of sexual exploitation as business or a 'victimless crime,' maintains the status quo, and blurs responsibility for protecting youth under the UN Convention on the Rights of the Child. Health care providers and researchers can be advocates for accuracy in media coverage about sexual exploitation; news reporters and editors should focus on exploiters more than victims, draw on existing research evidence to avoid perpetuating stereotypes, and use accurate terms, such as commercial sexual exploitation, rather than terms related to business or trade.

  8. Maternal nicotine exposure leads to impaired disulfide bond formation and augmented endoplasmic reticulum stress in the rat placenta.

    PubMed

    Wong, Michael K; Nicholson, Catherine J; Holloway, Alison C; Hardy, Daniel B

    2015-01-01

    Maternal nicotine exposure has been associated with many adverse fetal and placental outcomes. Although underlying mechanisms remain elusive, recent studies have identified that augmented endoplasmic reticulum (ER) stress is linked to placental insufficiency. Moreover, ER function depends on proper disulfide bond formation--a partially oxygen-dependent process mediated by protein disulfide isomerase (PDI) and ER oxidoreductases. Given that nicotine compromised placental development in the rat, and placental insufficiency has been associated with poor disulfide bond formation and ER stress, we hypothesized that maternal nicotine exposure leads to both placental ER stress and impaired disulfide bond formation. To test this hypothesis, female Wistar rats received daily subcutaneous injections of either saline (vehicle) or nicotine bitartrate (1 mg/kg) for 14 days prior to mating and during pregnancy. Placentas were harvested on embryonic day 15 for analysis. Protein and mRNA expression of markers involved in ER stress (e.g., phosphorylated eIF2α, Grp78, Atf4, and CHOP), disulfide bond formation (e.g., PDI, QSOX1, VKORC1), hypoxia (Hif1α), and amino acid deprivation (GCN2) were quantified via Western blot and/or Real-time PCR. Maternal nicotine exposure led to increased expression of Grp78, phosphorylated eIF2α, Atf4, and CHOP (p<0.05) in the rat placenta, demonstrating the presence of augmented ER stress. Decreased expression of PDI and QSOX1 (p<0.05) reveal an impaired disulfide bond formation pathway, which may underlie nicotine-induced ER stress. Finally, elevated expression of Hif1α and GCN2 (p<0.05) indicate hypoxia and amino acid deprivation in nicotine-exposed placentas, respectively, which may also cause impaired disulfide bond formation and augmented ER stress. This study is the first to link maternal nicotine exposure with both placental ER stress and disulfide bond impairment in vivo, providing novel insight into the mechanisms underlying nicotine

  9. Interplay between disulfide bonding and N-glycosylation defines SLC4 Na+-coupled transporter extracellular topography.

    PubMed

    Zhu, Quansheng; Kao, Liyo; Azimov, Rustam; Abuladze, Natalia; Newman, Debra; Kurtz, Ira

    2015-02-27

    The extracellular loop 3 (EL-3) of SLC4 Na(+)-coupled transporters contains 4 highly conserved cysteines and multiple N-glycosylation consensus sites. In the electrogenic Na(+)-HCO3(-) cotransporter NBCe1-A, EL-3 is the largest extracellular loop and is predicted to consist of 82 amino acids. To determine the structural-functional importance of the conserved cysteines and the N-glycosylation sites in NBCe1-A EL-3, we analyzed the potential interplay between EL-3 disulfide bonding and N-glycosylation and their roles in EL-3 topological folding. Our results demonstrate that the 4 highly conserved cysteines form two intramolecular disulfide bonds, Cys(583)-Cys(585) and Cys(617)-Cys(642), respectively, that constrain EL-3 in a folded conformation. The formation of the second disulfide bond is spontaneous and unaffected by the N-glycosylation state of EL-3 or the first disulfide bond, whereas formation of the first disulfide bond relies on the presence of the second disulfide bond and is affected by N-glycosylation. Importantly, EL-3 from each monomer is adjacently located at the NBCe1-A dimeric interface. When the two disulfide bonds are missing, EL-3 adopts an extended conformation highly accessible to protease digestion. This unique adjacent parallel location of two symmetrically folded EL-3 loops from each monomer resembles a domain-like structure that is potentially important for NBCe1-A function in vivo. Moreover, the formation of this unique structure is critically dependent on the finely tuned interplay between disulfide bonding and N-glycosylation in the membrane processed NBCe1-A dimer.

  10. The disulfide relay system of mitochondria is required for the biogenesis of mitochondrial Ccs1 and Sod1.

    PubMed

    Reddehase, Silvia; Grumbt, Barbara; Neupert, Walter; Hell, Kai

    2009-01-16

    Cells protect themselves against oxygen stress and reactive oxygen species. An important enzyme in this process is superoxide dismutase, Sod1, which converts superoxide radicals into water and hydrogen peroxide. The biogenesis of functional Sod1 is dependent on its copper chaperone, Ccs1, which introduces a disulfide bond and a copper ion into Sod1. Ccs1 and Sod1 are present in the cytosol but are also found in the mitochondrial intermembrane space (IMS), the compartment between the outer and the inner membrane of mitochondria. Ccs1 mediates mitochondrial localization of Sod1. Here, we report on the biogenesis of the fractions of Ccs1 and Sod1 present in mitochondria of Saccharomyces cerevisiae. The IMS of mitochondria harbors a disulfide relay system consisting of the import receptor Mia40 and the thiol oxidase Erv1, which drives the import of substrates with conserved cysteine residues arranged in typical twin Cx(3)C and twin Cx(9)C motifs. We show that depletion of Mia40 results in decreased levels of Ccs1 and Sod1. On the other hand, overexpression of Mia40 increased the mitochondrial fraction of both proteins. In addition, the import rates of Ccs1 were enhanced by increased levels of Mia40 and reduced upon depletion of Mia40. Mia40 forms mixed disulfides with Ccs1, suggesting a role of Mia40 for the generation of disulfide bonds in Ccs1. We suggest that the disulfide relay system transfers disulfide bonds via Mia40 to Ccs1, which then shuttles disulfide bonds to Sod1. In conclusion, the disulfide relay system is crucial for the import of Ccs1, thereby affecting the transport of Sod1, and it can control the distribution of Ccs1 and Sod1 between the IMS of mitochondria and the cytosol.

  11. Chemical Vapor Deposition of Atomically-Thin Molybdenum Disulfide (MoS2)

    DTIC Science & Technology

    2015-03-01

    UNCLASSIFIED AD-E403 625 Technical Report ARMET-TR-14041 CHEMICAL VAPOR DEPOSITION OF ATOMICALLY -THIN MOLYBDENUM...4. TITLE AND SUBTITLE CHEMICAL VAPOR DEPOSITION OF ATOMICALLY -THIN MOLYBDENUM DISULFIDE (MoS2) 5a. CONTRACT NUMBER 5b. GRANT NUMBER...materials, in their bulk form exist as lamellar structures, they can be exfoliated into individual, atomically -thin layers . While the exfoliated 2D materials

  12. Characterization of an NADH oxidase of the flavin-dependent disulfide reductase family from Methanocaldococcus jannaschii.

    PubMed

    Case, Christopher L; Rodriguez, Jason R; Mukhopadhyay, Biswarup

    2009-01-01

    Methanocaldococcus jannaschii, a deeply rooted hyperthermophilic anaerobic methanarchaeon from a deep-sea hydrothermal vent, carries an NADH oxidase (Nox) homologue (MJ0649). According to the characteristics described here, MJ0649 represents an unusual member within group 3 of the flavin-dependent disulfide reductase (FDR) family. This FDR group comprises Nox, NADH peroxidases (Npx) and coenzyme A disulfide reductases (CoADRs); each carries a Cys residue that forms Cys-sulfenic acid during catalysis. A sequence analysis identified MJ0649 as a CoADR homologue. However, recombinant MJ0649 (rMJNox), expressed in Escherichia coli and purified to homogeneity an 86 kDa homodimer with 0.27 mol FAD (mol subunit)(-1), showed Nox but not CoADR activity. Incubation with FAD increased FAD content to 1 mol (mol subunit)(-1) and improved NADH oxidase activity 3.4-fold. The FAD-incubated enzyme was characterized further. The optimum pH and temperature were > or =10 and > or =95 degrees C, respectively. At pH 7 and 83 degrees C, apparent Km values for NADH and O2 were 3 microM and 1.9 mM, respectively, and the specific activity at 1.4 mM O2 was 60 micromol min(-1) mg(-1); 62 % of NADH-derived reducing equivalents were recovered as H2O2 and the rest probably generated H2O. rMjNox had poor NADPH oxidase, NADH peroxidase and superoxide formation activities. It reduced ferricyanide, plumbagin and 5,5'-dithiobis(2-nitrobenzoic acid), but not disulfide coenzyme A and disulfide coenzyme M. Due to a high Km, O2 is not a physiologically relevant substrate for MJ0649; its true substrate remains unknown.

  13. Disulfide cross-linking influences symbiotic activities of nodule peptide NCR247.

    PubMed

    Shabab, Mohammed; Arnold, Markus F F; Penterman, Jon; Wommack, Andrew J; Bocker, Hartmut T; Price, Paul A; Griffitts, Joel S; Nolan, Elizabeth M; Walker, Graham C

    2016-09-06

    Interactions of rhizobia with legumes establish the chronic intracellular infection that underlies symbiosis. Within nodules of inverted repeat-lacking clade (IRLC) legumes, rhizobia differentiate into nitrogen-fixing bacteroids. This terminal differentiation is driven by host nodule-specific cysteine-rich (NCR) peptides that orchestrate the adaptation of free-living bacteria into intracellular residents. Medicago truncatula encodes a family of >700 NCR peptides that have conserved cysteine motifs. NCR247 is a cationic peptide with four cysteines that can form two intramolecular disulfide bonds in the oxidized forms. This peptide affects Sinorhizobium meliloti transcription, translation, and cell division at low concentrations and is antimicrobial at higher concentrations. By preparing the three possible disulfide-cross-linked NCR247 regioisomers, the reduced peptide, and a variant lacking cysteines, we performed a systematic study of the effects of intramolecular disulfide cross-linking and cysteines on the activities of an NCR peptide. The relative activities of the five NCR247 variants differed strikingly among the various bioassays, suggesting that the NCR peptide-based language used by plants to control the development of their bacterial partners during symbiosis is even greater than previously recognized. These patterns indicate that certain NCR bioactivities require cysteines whereas others do not. The results also suggest that NCR247 may exert some of its effects within the cell envelope whereas other activities occur in the cytoplasm. BacA, a membrane protein that is critical for symbiosis, provides protection against all bactericidal forms of NCR247. Oxidative folding protects NCR247 from degradation by the symbiotically relevant metalloprotease HrrP (host range restriction peptidase), suggesting that disulfide bond formation may additionally stabilize NCR peptides during symbiosis.

  14. Reaction of Hydrogen Sulfide with Disulfide and Sulfenic Acid to Form the Strongly Nucleophilic Persulfide.

    PubMed

    Cuevasanta, Ernesto; Lange, Mike; Bonanata, Jenner; Coitiño, E Laura; Ferrer-Sueta, Gerardo; Filipovic, Milos R; Alvarez, Beatriz

    2015-11-06

    Hydrogen sulfide (H2S) is increasingly recognized to modulate physiological processes in mammals through mechanisms that are currently under scrutiny. H2S is not able to react with reduced thiols (RSH). However, H2S, more precisely HS(-), is able to react with oxidized thiol derivatives. We performed a systematic study of the reactivity of HS(-) toward symmetric low molecular weight disulfides (RSSR) and mixed albumin (HSA) disulfides. Correlations with thiol acidity and computational modeling showed that the reaction occurs through a concerted mechanism. Comparison with analogous reactions of thiolates indicated that the intrinsic reactivity of HS(-) is 1 order of magnitude lower than that of thiolates. In addition, H2S is able to react with sulfenic acids (RSOH). The rate constant of the reaction of H2S with the sulfenic acid formed in HSA was determined. Both reactions of H2S with disulfides and sulfenic acids yield persulfides (RSSH), recently identified post-translational modifications. The formation of this derivative in HSA was determined, and the rate constants of its reactions with a reporter disulfide and with peroxynitrite revealed that persulfides are better nucleophiles than thiols, which is consistent with the α effect. Experiments with cells in culture showed that treatment with hydrogen peroxide enhanced the formation of persulfides. Biological implications are discussed. Our results give light on the mechanisms of persulfide formation and provide quantitative evidence for the high nucleophilicity of these novel derivatives, setting the stage for understanding the contribution of the reactions of H2S with oxidized thiol derivatives to H2S effector processes.

  15. Disulfides as Cyanide Antidotes: Evidence for a New In Vivo Oxidative Pathway for Cyanide Detoxification

    DTIC Science & Technology

    2009-01-01

    defense against cyanide intoxication . The oxidation of disulfides to the corresponding thiosulfinate or thiosulfonate will result in facilitating their...high probability (1). While antidotes for cyanide intoxication exist (2-4), it has yet to be shown that they can be effectively administered in the...garlic] have been found to be effective as in vivo therapeutic agents for cyanide intoxication (10, 11). It is believed that the efficacy of these

  16. Controlled Molybdenum Disulfide Assembly inside Carbon Nanofiber by Boudouard Reaction Inspired Selective Carbon Oxidation.

    PubMed

    Nam, Dae-Hyun; Kang, Ho-Young; Jo, Jun-Hyun; Kim, Byung Kyu; Na, Sekwon; Sim, Uk; Ahn, In-Kyoung; Yi, Kyung-Woo; Nam, Ki Tae; Joo, Young-Chang

    2017-03-01

    Vertical stacking and lateral growth of molybdenum disulfide (MoS2 ) are controlled with remarkable precision, and MoS2 nanotubes are directly converted from nanofibers. Predictive synthesis is enabled by identifying the specific thermodynamic region where the Boudouard reaction becomes favored. It reveals how the chemical potential of each species in the MoSCO system can predict phase behaviors.

  17. Evaporation dynamics of microdroplets on self-assembled monolayers of dialkyl disulfides.

    PubMed

    Li, Guangfen; Flores, Susana Moreno; Vavilala, Chandrasekhar; Schmittel, Michael; Graf, Karlheinz

    2009-12-01

    We present a study of the static wettability and evaporation dynamics of sessile microdroplets of water on self-assembled monolayers (SAMs) prepared with unsymmetric dialkyl disulfides CH(3)-(CH(2))(11+m)-S-S-(CH(2))(11)-OH (m = 0, +/- 2, +/- 4, +/- 6) on gold-covered mica. The advancing and receding contact angles decrease linearly with increasing hydrophilicity of the SAM. The latter was changed either via the molar ratio or via the chain length of the hydroxyl-terminated alkyl chains in the monolayer. In contrast to SAMs made of thiols, the contact angle hysteresis was 10 degrees for all disulfides, irrespective of their chain lengths. During evaporation of single droplets, a transition from pinning to constant contact angle mode was observed. The transition time between the modes increases with the surface hydrophilicity, leading to longer pinning. This way, the time for complete droplet evaporation decreases by approximately 30% owing to the fact that during pinning the overall droplet area stays large for a longer time. For single droplets the measured total evaporation times agree well with the calculated ones, showing the validity of the standard evaporation model for both evaporation modes. In contrast to the results for single droplets, many droplets with different initial volumes show a power-law dependence on the total evaporation time with an exponent different from 1.5 as expected from the standard model. For disulfides with m not equal 0, the exponent is in the range of 1.40-1.47 increasing with the surface hydrophilicity. For the SAMs with m = 0 the exponent increases up to 1.61 for the most hydrophilic surface. We explain this deviation from the standard evaporation model with the presence of a liquid precursor film around the droplet, which either enhances or decelerates evaporation. Our results suggest that SAMs of dialkyl disulfides offer the possibility to tune the wettability of gold surfaces in a more controlled way than thiols do.

  18. Selective disulfide reduction for labeling and enhancement of Fab antibody fragments.

    PubMed

    Kirley, Terence L; Greis, Kenneth D; Norman, Andrew B

    2016-11-25

    Many methods have been developed for chemical labeling and enhancement of the properties of antibodies and their common fragments, including the Fab and F(ab')2 fragments. Somewhat selective reduction of some antibody disulfide bonds has been previously achieved, yielding antibodies and antibody fragments that can be labeled at defined sites, enhancing their utility and properties. Selective reduction of the two hinge disulfide bonds present in F(ab')2 fragments using mild reduction has been useful. However, such reduction is often not quantitative and results in the reduction of multiple disulfide bonds, and therefore subsequent multiple labeling or conjugation sites are neither homogenous nor stoichiometric. Here, a simple and efficient selective reduction of the single disulfide bond linking the partial heavy chain and the intact light chain which compose the Fab fragment is accomplished utilizing tris(2-carboxyethyl)phosphine (TCEP) immobilized on agarose beads. The resultant reduced cysteine residues were labeled with several cysteine-selective fluorescent reagents, as well as by cysteine-directed PEGylation. These two cysteine residues can also be re-ligated by means of a bifunctional cysteine cross-linking agent, dibromobimane, thereby both restoring a covalent linkage between the heavy and light chains at this site, far removed from the antigen binding site, and also introducing a fluorescent probe. There are many other research and clinical uses for these selectively partially reduced Fab fragments, including biotinylation, toxin and drug conjugation, and incorporation of radioisotopes, and this technique enables simple generation of very useful Fab fragment derivatives with many potential applications.

  19. Cooperative Protein Folding by Two Protein Thiol Disulfide Oxidoreductases and ERO1 in Soybean1[OPEN

    PubMed Central

    Okuda, Aya; Masuda, Taro; Koishihara, Katsunori; Mita, Ryuta; Iwasaki, Kensuke; Hara, Kumiko; Naruo, Yurika; Hirose, Akiho; Tsuchi, Yuichiro

    2016-01-01

    Most proteins produced in the endoplasmic reticulum (ER) of eukaryotic cells fold via disulfide formation (oxidative folding). Oxidative folding is catalyzed by protein disulfide isomerase (PDI) and PDI-related ER protein thiol disulfide oxidoreductases (ER oxidoreductases). In yeast and mammals, ER oxidoreductin-1s (Ero1s) supply oxidizing equivalent to the active centers of PDI. In this study, we expressed recombinant soybean Ero1 (GmERO1a) and found that GmERO1a oxidized multiple soybean ER oxidoreductases, in contrast to mammalian Ero1s having a high specificity for PDI. One of these ER oxidoreductases, GmPDIM, associated in vivo and in vitro with GmPDIL-2, was unable to be oxidized by GmERO1a. We therefore pursued the possible cooperative oxidative folding by GmPDIM, GmERO1a, and GmPDIL-2 in vitro and found that GmPDIL-2 synergistically accelerated oxidative refolding. In this process, GmERO1a preferentially oxidized the active center in the a′ domain among the a, a′, and b domains of GmPDIM. A disulfide bond introduced into the active center of the a′ domain of GmPDIM was shown to be transferred to the active center of the a domain of GmPDIM and the a domain of GmPDIM directly oxidized the active centers of both the a or a′ domain of GmPDIL-2. Therefore, we propose that the relay of an oxidizing equivalent from one ER oxidoreductase to another may play an essential role in cooperative oxidative folding by multiple ER oxidoreductases in plants. PMID:26645455

  20. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes.

  1. Purely heterometallic lanthanide(III) macrocycles through controlled assembly of disulfide bonds for dual color emission.

    PubMed

    Lewis, David J; Glover, Peter B; Solomons, Melissa C; Pikramenou, Zoe

    2011-02-02

    Lanthanide complexes based on bis(amides) of diethylenetriaminepentaacetic acid with thiol functionalities are modified with 2,2'-dipyridyl disulfide to give activated complexes that can selectively react with thiol-functionalized complexes to form heterometallic lanthanide macrocycles. The preparation and full characterization of the polyaminocarboxylate ligands N,N''-bis[p-thiophenyl(aminocarbonyl)]diethylenetriamine-N,N',N''-triacetic acid (H(3)L(x)) and the activated N,N''-bis[p-(pyridyldithio)[phenyl(aminocarbonyl)

  2. Compressed sensing MRI exploiting complementary dual decomposition.

    PubMed

    Park, Suhyung; Park, Jaeseok

    2014-04-01

    Compressed sensing (CS) MRI exploits the sparsity of an image in a transform domain to reconstruct the image from incoherently under-sampled k-space data. However, it has been shown that CS suffers particularly from loss of low-contrast image features with increasing reduction factors. To retain image details in such degraded experimental conditions, in this work we introduce a novel CS reconstruction method exploiting feature-based complementary dual decomposition with joint estimation of local scale mixture (LSM) model and images. Images are decomposed into dual block sparse components: total variation for piecewise smooth parts and wavelets for residuals. The LSM model parameters of residuals in the wavelet domain are estimated and then employed as a regional constraint in spatially adaptive reconstruction of high frequency subbands to restore image details missing in piecewise smooth parts. Alternating minimization of the dual image components subject to data consistency is performed to extract image details from residuals and add them back to their complementary counterparts while the LSM model parameters and images are jointly estimated in a sequential fashion. Simulations and experiments demonstrate the superior performance of the proposed method in preserving low-contrast image features even at high reduction factors.

  3. Large size space construction for space exploitation

    NASA Astrophysics Data System (ADS)

    Kondyurin, Alexey

    2016-07-01

    Space exploitation is impossible without large space structures. We need to make sufficient large volume of pressurized protecting frames for crew, passengers, space processing equipment, & etc. We have to be unlimited in space. Now the size and mass of space constructions are limited by possibility of a launch vehicle. It limits our future in exploitation of space by humans and in development of space industry. Large-size space construction can be made with using of the curing technology of the fibers-filled composites and a reactionable matrix applied directly in free space. For curing the fabric impregnated with a liquid matrix (prepreg) is prepared in terrestrial conditions and shipped in a container to orbit. In due time the prepreg is unfolded by inflating. After polymerization reaction, the durable construction can be fitted out with air, apparatus and life support systems. Our experimental studies of the curing processes in the simulated free space environment showed that the curing of composite in free space is possible. The large-size space construction can be developed. A project of space station, Moon base, Mars base, mining station, interplanet space ship, telecommunication station, space observatory, space factory, antenna dish, radiation shield, solar sail is proposed and overviewed. The study was supported by Humboldt Foundation, ESA (contract 17083/03/NL/SFe), NASA program of the stratospheric balloons and RFBR grants (05-08-18277, 12-08-00970 and 14-08-96011).

  4. Exploiting Allee effects for managing biological invasions.

    PubMed

    Tobin, Patrick C; Berec, Luděk; Liebhold, Andrew M

    2011-06-01

    Biological invasions are a global and increasing threat to the function and diversity of ecosystems. Allee effects (positive density dependence) have been shown to play an important role in the establishment and spread of non-native species. Although Allee effects can be considered a bane in conservation efforts, they can be a benefit in attempts to manage non-native species. Many biological invaders are subject to some form of an Allee effect, whether due to a need to locate mates, cooperatively feed or reproduce or avoid becoming a meal, yet attempts to highlight the specific exploitation of Allee effects in biological invasions are surprisingly unprecedented. In this review, we highlight current strategies that effectively exploit an Allee effect, and propose novel means by which Allee effects can be manipulated to the detriment of biological invaders. We also illustrate how the concept of Allee effects can be integral in risk assessments and in the prioritization of resources allocated to manage non-native species, as some species beset by strong Allee effects could be less successful as invaders. We describe how tactics that strengthen an existing Allee effect or create new ones could be used to manage biological invasions more effectively.

  5. Disulfide cross-linked phosphorylcholine micelles for triggered release of camptothecin

    PubMed Central

    McRae Page, Samantha; Martorella, Molly; Parelkar, Sangram; Kosif, Irem

    2013-01-01

    A series of block copolymers based on 2-methacryloyloxyethyl phosphorylcholine (MPC) were synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. Incorporation of dihydrolipoic acid (DHLA) into the hydrophobic block led to formation of block copolymer micelles in water. The micelles were between 15 and 30 nm in diameter, as characterized by dynamic light scattering (DLS), with some size control achieved by adjusting the hydrophobic/hydrophilic balance. Cross-linked micelles were prepared by disulfide formation, and observed to be stable in solution for weeks. The micelles proved amenable to disassembly when treated with a reducing agent, such as dithiothreitol (DTT), and represent a potential delivery platform for chemotherapeutic agents. As a proof-of-concept, camptothecin (CPT) was conjugated to the polymer scaffold through a disulfide linkage, and release of the drug from the micelle was monitored by fluorescence spectroscopy. These CPT-loaded prodrug micelles showed a reduction in release rate compared to physically encapsulated CPT. The use of disulfide conjugation facilitated drug release under reducing conditions, with a half-life (t1/2) of 5.5 hours in the presence of 3 mM DTT, compared to 28 hours in PBS. The toxicity of the micellar prodrugs was evaluated in cell culture against human breast (MCF7) and colorectal (COLO205) cancer cell lines. PMID:23742055

  6. Intramolecular disulfide bonds between conserved cysteines in wheat gliadins control their deposition into protein bodies.

    PubMed

    Shimoni, Y; Galili, G

    1996-08-02

    Following synthesis, wheat gliadin storage proteins are deposited into protein bodies inside the endomembrane system in a way that enables not only their efficient accumulation and dehydration during seed maturation, but also their rapid rehydration and degradation during germination. In the present report, we studied the mechanism of gliadin deposition and whether it was controlled by the conformation of these proteins. Although gliadins are generally known to be insoluble in aqueous solutions, sucrose gradient analysis showed that a considerable amount of these proteins appeared as relatively soluble monomers in developing grains. In vitro reduction of the intramolecular disulfide bonds that are present in natural monomeric gliadins caused their precipitation into insoluble aggregates. In addition, pulse-chase experiments in the absence or presence of reducing agents showed that formation of intramolecular disulfide bonds also played a major role in folding and deposition of the gliadins in vivo. Our results imply that following sequestration into the endoplasmic reticulum, the gliadins fold into relatively soluble monomers, which are incompetent for rapid aggregation and gradually assemble into protein bodies. This pattern of deposition apparently depends on the conformation of the gliadins, which is stabilized by intramolecular disulfide bonds formed between the conserved cysteines. The contribution of this study to the understanding of the evolution and function of gliadins is discussed.

  7. SO2−· Electron Transfer Ion/Ion Reactions with Disulfide Linked Polypeptide Ions

    PubMed Central

    Chrisman, Paul A.; Pitteri, Sharon J.; Hogan, Jason M.; McLuckey, Scott A.

    2005-01-01

    Multiply-charged peptide cations comprised of two polypeptide chains (designated A and B) bound via a disulfide linkage have been reacted with SO2−· in an electrodynamic ion trap mass spectrometer. These reactions proceed through both proton transfer (without dissociation) and electron transfer (with and without dissociation). Electron transfer reactions are shown to give rise to cleavage along the peptide backbone, loss of neutral molecules, and cleavage of the cystine bond. Disulfide bond cleavage is the preferred dissociation channel and both Chain A (or B)—S· and Chain A (or B)—SH fragment ions are observed, similar to those observed with electron capture dissociation (ECD) of disulfide-bound peptides. Electron transfer without dissociation produces [M + 2H]+· ions, which appear to be less kinetically stable than the proton transfer [M + H]+ product. When subjected to collision-induced dissociation (CID), the [M + 2H]+· ions fragment to give products that were also observed as dissociation products during the electron transfer reaction. However, not all dissociation channels noted in the electron transfer reaction were observed in the CID of the [M + 2H]+· ions. The charge state of the peptide has a significant effect on both the extent of electron transfer dissociation observed and the variety of dissociation products, with higher charge states giving more of each. PMID:15914021

  8. Mapping the accessibility of the disulfide crosslink network in the wool fiber cortex.

    PubMed

    Deb-Choudhury, Santanu; Plowman, Jeffrey E; Rao, Kelsey; Lee, Erin; van Koten, Chikako; Clerens, Stefan; Dyer, Jolon M; Harland, Duane P

    2015-02-01

    The disulfide bond network within the cortex of mammalian hair has a critical influence on the physical and mechanical characteristics of the fiber. The location, pattern, and accessibility of free and crosslinked cysteines underpin the properties of this network, but have been very difficult to map and understand, because traditional protein extraction techniques require the disruption of these disulfide bonds. Cysteine accessibility in both trichocyte keratins and keratin associated proteins (KAPs) of wool was investigated using staged labeling, where reductants and chaotropic agents were used to expose cysteines in a stepwise fashion according to their accessibility. Cysteines thus exposed were labeled with distinguishable alkylation agents. Proteomic profiling was used to map peptide modifications and thereby explore the role of KAPs in crosslinking keratins. Labeled cysteines from KAPs were detected when wool was extracted with reductant only. Among them were sequences from the end domains of KAPs, indicating that those cysteines were easily accessible in the fiber and could be involved in forming interdisulfide linkages with keratins or with other KAPs. Some of the identified peptides were from the rod domains of Types I and II keratins, with their cysteines positioned on the exposed surface of the α-helix. Peptides were also identified from keratin head and tail domains, demonstrating that they are not buried within the filament structure and, hence, have a possible role in forming disulfide linkages. From this study, a deeper understanding of the accessibility and potential reactivity of cysteine residues in the wool fiber cortex was obtained.

  9. Resolution of Disulfide Heterogeneity in Nogo Receptor 1 Fusion Proteins by Molecular Engineering

    SciTech Connect

    P Weinreb; D Wen; F Qian; C Wildes; E Garber; L Walus; M Jung; J Wang; J Relton; et al.

    2011-12-31

    NgRI (Nogo-66 receptor) is part of a signalling complex that inhibits axon regeneration in the central nervous system. Truncated soluble versions of NgRI have been used successfully to promote axon regeneration in animal models of spinal-cord injury, raising interest in this protein as a potential therapeutic target. The LRR (leucine-rich repeat) regions in NgRI are flanked by N- and C-terminal disulfide-containing 'cap' domains (LRRNT and LRRCT respectively). In the present work we show that, although functionally active, the NgRI(310)-Fc fusion protein contains mislinked and heterogeneous disulfide patterns in the LRRCT domain, and we report the generation of a series of variant molecules specifically designed to prevent this heterogeneity. Using these variants we explored the effects of modifying the NgRI truncation site or the spacing between the NgRI and Fc domains, or replacing cysteines within the NgRI or IgG hinge regions. One variant, which incorporates replacements of Cys{sup 266} and Cys{sup 309} with alanine residues, completely eliminated disulfide scrambling while maintaining functional in vitro and in vivo efficacy. This modified NgRI-Fc molecule represents a significantly improved candidate for further pharmaceutical development, and may serve as a useful model for the optimization of other IgG fusion proteins made from LRR proteins.

  10. Oxidative modification of caspase-9 facilitates its activation via disulfide-mediated interaction with Apaf-1.

    PubMed

    Zuo, Yong; Xiang, Binggang; Yang, Jie; Sun, Xuxu; Wang, Yumei; Cang, Hui; Yi, Jing

    2009-04-01

    Intracellular reactive oxygen species (ROS) are known to regulate apoptosis. Activation of caspase-9, the initial caspase in the mitochondrial apoptotic cascade, is closely associated with ROS, but it is unclear whether ROS regulate caspase-9 via direct oxidative modification. The present study aims to elucidate the molecular mechanisms by which ROS mediate caspase-9 activation. Our results show that the cellular oxidative state facilitates caspase-9 activation. Hydrogen peroxide treatment causes the activation of caspase-9 and apoptosis, and promotes an interaction between caspase-9 and apoptotic protease-activating factor 1 (Apaf-1) via disulfide formation. In addition, in an in vitro mitochondria-free system, the thiol-oxidant diamide promotes auto-cleavage of caspase-9 and the caspase-9/Apaf-1 interaction by facilitating the formation of disulfide-linked complexes. Finally, a point mutation at C403 of caspase-9 impairs both H(2)O(2)-promoted caspase-9 activation and interaction with Apaf-1 through the abolition of disulfide formation. The association between cytochrome c and the C403S mutant is significantly weaker than that between cytochrome c and wild-type caspase-9, indicating that oxidative modification of caspase-9 contributes to apoptosome formation under oxidative stress. Taken together, oxidative modification of caspase-9 by ROS can mediate its interaction with Apaf-1, and can thus promote its auto-cleavage and activation. This mechanism may facilitate apoptosome formation and caspase-9 activation under oxidative stress.

  11. Photoinduced Cross-Linking of Dynamic Poly(disulfide) Films via Thiol Oxidative Coupling.

    PubMed

    Feillée, Noémi; Chemtob, Abraham; Ley, Christian; Croutxé-Barghorn, Céline; Allonas, Xavier; Ponche, Arnaud; Le Nouen, Didier; Majjad, Hicham; Jacomine, Léandro

    2016-01-01

    Initially developed as an elastomer with an excellent record of barrier and chemical resistance properties, poly(disulfide) has experienced a revival linked to the dynamic nature of the S-S covalent bond. A novel photobase-catalyzed oxidative polymerization of multifunctional thiols to poly(disulfide) network is reported. Based solely on air oxidation, the single-step process is triggered by the photodecarboxylation of a xanthone acetic acid liberating a strong bicyclic guanidine base. Starting with a 1 μm thick film based on trithiol poly(ethylene oxide) oligomer, the UV-mediated oxidation of thiols to disulfides occurs in a matter of minutes both selectively, i.e., without overoxidation, and quantitatively as assessed by a range of spectroscopic techniques. Thiolate formation and film thickness determine the reaction rates and yield. Spatial control of the photopolymerization serves to generate robust micropatterns, while the reductive cleavage of S-S bridges allows the recycling of 40% of the initial thiol groups.

  12. The drosomycin multigene family: three-disulfide variants from Drosophila takahashii possess antibacterial activity

    PubMed Central

    Gao, Bin; Zhu, Shunyi

    2016-01-01

    Drosomycin (DRS) is a strictly antifungal peptide in Drosophila melanogaster, which contains four disulfide bridges (DBs) with three buried in molecular interior and one exposed on molecular surface to tie the amino- and carboxyl-termini of the molecule together (called wrapper disulfide bridge, WDB). Based on computational analysis of genomes of Drosophila species belonging to the Oriental lineage, we identified a new multigene family of DRS in Drosphila takahashii that includes a total of 11 DRS-encoding genes (termed DtDRS-1 to DtDRS-11) and a pseudogene. Phylogenetic tree and synteny analyses reveal orthologous relationship between DtDRSs and DRSs, indicating that orthologous genes of DRS-1, DRS-2, DRS-3 and DRS-6 have undergone duplication in D. takahashii and three amplifications (DtDRS-9 to DtDRS-11) of DRS-3 have lost WDB. Among the 11 genes, five are transcriptionally active in adult fruitflies. The ortholog of DRS (DtDRS-1) shows high structural and functional similarity to DRS while two WDB-deficient members display antibacterial activity accompanying complete loss or remarkable reduction of antifungal activity. To the best of our knowledge, this is the first report on the presence of three-disulfide antibacterial DRSs in a specific Drosophila species, suggesting a potential role of DB loss in neofunctionalization of a protein via structural adjustment. PMID:27562645

  13. INACTIVATION OF SEXUAL AGGLUTINATION IN HANSENULA WINGEI AND SACCHAROMYCES KLUYVERI BY DISULFIDE-CLEAVING AGENTS.

    PubMed

    TAYLOR, N W

    1964-10-01

    Taylor, Neil W. (Northern Regional Research Laboratory, Peoria, Ill.). Inactivation of sexual agglutination in Hansenula wingei and Saccharomyces kluyveri by disulfide-cleaving agents. J. Bacteriol. 88:929-936. 1964.-Mating types of both Hansenula wingei and Saccharomyces kluyveri can be activated to produce uniformly strong sexual agglutination by treatments with various solvents, such as 8 m LiBr. The strongly agglutinative mating-type preparations were irreversibly inactivated for sexual agglutination by various chemical treatments. Type 5 of H. wingei was inactivated by disulfide-cleaving reagents, but type 21 of H. wingei was not. Type 3 of S. kluyveri was more sensitive than type 26 of S. kluyveri to inactivation by disulfide-cleaving reagents. Comparison of sensitivities to these and other treatments, plus a moderately strong cross-agglutination between type 3 and type 21, indicated that the sexually agglutinative elements on type 3 are similar to type 5, and those of type 21 are similar to those of type 26. Inactivation-rate experiments showed a loss of agglutinative ability according to a sigmoid decrement with time for both types 5 and 21. The apparent extent of inactivation depended markedly on agglutination test conditions. Results of these experiments were interpreted to indicate tentatively, first, that the agglutinative elements of both types of a species are proteins and, second, that several agglutinating linkages are formed between any two cells in sexual agglutination.

  14. Molecular weight-dependent genetic information transfer with disulfide-linked polyethylenimine-based nonviral vectors.

    PubMed

    Parhiz, Hamideh; Hashemi, Maryam; Hatefi, Arash; Shier, Wayne Thomas; Farzad, Sara Amel; Ramezani, Mohammad

    2013-07-01

    One strategy for improving gene vector properties of polyethylenimine is to facilitate individual transfection mechanism steps. This study investigates (i) improving transfection efficiency by attaching peptide nuclear localization signals (nuclear localization signals: SV40 large T antigen nuclear localization signal or C-terminus of histone H1) to polyethylenimine (10 kDa) and (ii) using disulfide linkages, which are expected to be stable during polyplex formation, but cleaved inside cells giving improved gene release. Nuclear localization signal-containing polyplexes exhibited low cytotoxicity, whereas transfection efficiency with high molecular weight plasmid DNA increased up to 3.6 times that of underivatized polyethylenimine in Neuro2A cells at higher molar ratio of polyethylenimine-nitrogen to DNA-phosphate (N/P) ratios. However, with luciferase-specific low molecular weight small interfering RNA in Neuro2A/EGFPLuc cells, nuclear localization signal-containing polyplexes with disulfide linkages caused substantial cytotoxicity at N/P ratios >15 and no consistent significant reduction in luciferase expression. Possible explanations for molecular weight-dependent differences in genetic information transfer by polyplexes containing disulfide-linked nuclear localization signals are discussed.

  15. Prm1 Functions as a Disulfide-linked Complex in Yeast Mating*

    PubMed Central

    Olmo, Valerie N.; Grote, Eric

    2010-01-01

    Prm1 is a pheromone-induced membrane glycoprotein that promotes plasma membrane fusion in yeast mating pairs. HA-Prm1 migrates at twice its expected molecular weight on non-reducing SDS-PAGE gels and coprecipitates with Prm1-TAP, indicating that Prm1 is a disulfide-linked homodimer. The N terminus of a plasma membrane-localized GFP-Prm1 endocytic mutant projects into the cytoplasm, where it is protected from low pH quenching in live cells and from external protease in spheroplasts. In a revised topological map, Prm1 has four transmembrane domains and two large extracellular loops. Mutation of all four cysteines in the extracellular loops blocked disulfide bond formation and destabilized the Prm1 homodimer without preventing Prm1 transport to contact sites in mating pairs. Cys120 in loop 1 and Cys545 in loop 2 form disulfide cross-links in the Prm1 homodimer and are required for fusion activity. Cys120 lies between a hydrophobic segment formerly thought to be a transmembrane domain and an amphipathic helix. An interaction between either of these regions and the opposing membrane could promote fusion. PMID:19933274

  16. Different disulfide bridge connectivity drives alternative folds in highly homologous Brassicaceae trypsin inhibitors.

    PubMed

    Leboffe, Loris; Angelini, Riccardo; Menegatti, Enea; Polticelli, Fabio; Ascenzi, Paolo

    2015-12-01

    Low-molecular-mass trypsin inhibitors from Arabidopsis thaliana, Brassica napus var. oleifera, and Sinapis alba L. (ATTI, RTI, and MTI, respectively) display more than 69% amino acid sequence identity. Among others, the amino acid sequence Cys-Ala-Pro-Arg-Ile building up the inhibitor reactive site, and the eight Cys residues forming four disulfide bridges are conserved. However, the disulfide bridge connectivity of RTI and MTI (C1-C3, C2-C4, C5-C6, and C7-C8) is different from that of ATTI Cys (C1-C8, C2-C5, C3-C6, and C4-C7). Despite the different disulfide bridge connectivity, the reactive site loop of ATTI, RTI, and MTI is solvent exposed permitting trypsin recognition. Structural considerations here reported suggest that proteins showing high amino acid sequence identity and common functional properties could display different three-dimensional structures. This may reflect high inhibitor plasticity in relation to plant-pathogen interactions, plant tissue development as well as the different redox potential of cell compartments.

  17. Photonic activation of disulfide bridges achieves oriented protein immobilization on biosensor surfaces.

    PubMed

    Neves-Petersen, Maria Teresa; Snabe, Torben; Klitgaard, Søren; Duroux, Meg; Petersen, Steffen B

    2006-02-01

    Photonic induced immobilization is a novel technology that results in spatially oriented and spatially localized covalent coupling of biomolecules onto thiol-reactive surfaces. Immobilization using this technology has been achieved for a wide selection of proteins, such as hydrolytic enzymes (lipases/esterases, lysozyme), proteases (human plasminogen), alkaline phosphatase, immunoglobulins' Fab fragment (e.g., antibody against PSA [prostate specific antigen]), Major Histocompability Complex class I protein, pepsin, and trypsin. The reaction mechanism behind the reported new technology involves "photonic activation of disulfide bridges," i.e., light-induced breakage of disulfide bridges in proteins upon UV illumination of nearby aromatic amino acids, resulting in the formation of free, reactive thiol groups that will form covalent bonds with thiol-reactive surfaces (see Fig. 1). Interestingly, the spatial proximity of aromatic residues and disulfide bridges in proteins has been preserved throughout molecular evolution. The new photonic-induced method for immobilization of proteins preserves the native structural and functional properties of the immobilized protein, avoiding the use of one or more chemical/thermal steps. This technology allows for the creation of spatially oriented as well as spatially defined multiprotein/DNA high-density sensor arrays with spot size of 1 microm or less, and has clear potential for biomedical, bioelectronic, nanotechnology, and therapeutic applications.

  18. The intracellular delivery of plasmid DNA using cationic reducible carbon nanotube - Disulfide conjugates of polyethylenimine.

    PubMed

    Nia, Azadeh Hashem; Eshghi, Hossein; Abnous, Kalil; Ramezani, Mohammad

    2017-03-30

    A series of polyethylenimine conjugates of single-walled carbon nanotube (PEI-SWNT) containing bioreducible disulfide bonds was synthesized and evaluated for their transfection efficiency. Different molecular weights of polyethylenimine (PEI) were thiolated with different mole ratio of 2-iminothiolane (2-IT). Single-walled carbon nanotube (SWNT) was first carboxylated and then three different cysteine-functionalized SWNT formulations were synthesized via introduced linkers: a) carbonyl group b) spermidine c) 1,8-diamino 3,6-dioxo octane. The final nanocarriers were fabricated upon conjugation of thiolated PEIs and thiolated SWNT via oxidative disulfide bond formation. All PEI-disulfide-SWNT conjugates were capable of DNA condensation and showed improved viability and transfection efficiency compared to PEI itself. Transfection efficiencies were up to 1500 times greater than PEI 25kDa (C/P=0.8). The results of this study suggest that the synthesized formulations based on SWNT-CO-Cysteine and PEI 1.8kDa were the most efficient carriers. Considering the decreased cytotoxicity and higher transfection levels, the conjugates bear the potential for effective delivery of genetic materials.

  19. Self-Immolative Linkers Literally Bridge Disulfide Chemistry and the Realm of Thiol-Free Drugs.

    PubMed

    Riber, Camilla Frich; Smith, Anton A A; Zelikin, Alexander N

    2015-08-26

    The ultimate goal of controlled, intracellulardrug delivery is to get the drug to the target cell without spilling the contents in transit and then release the entire payload upon cell entry. One of the most powerful platforms to achieve this relies on the intracellular disulfide reshuffling as a trigger for drug release form the engineered prodrugs. However, utility of disulfide reshuffling for drug release is naturally applicable only to the thiol containing molecules-ultimately leaving nearly all commercialized drugs beyond the scope of this platform. This is a drastic limitation. A cunning new tool of organic chemistry is fast entering the mainstream of prodrug design: the self-immolative linkers. This platform allows overcoming the natural chemical barrier and makes it possible to link virtually any drug to its carrier via a disulfide bond and engineer a specific intracellular release. It is a game-changing accomplishment of modern organic chemistry. The scope and limitations of this novel opportunity for medicinal chemistry and nanomedicine are outlined.

  20. Characterization the effect of disulfide compound on the devulcanization of thermoplastic vulcanizate

    NASA Astrophysics Data System (ADS)

    Rodsuk, Sikarin; Ritsuar, Suphattarachai; Wattanakul, Karnthidaporn

    2012-09-01

    The use of disulfides and the application of mechanical force in rubber devulcanization have been reported in the literatures. In this work, the devulcanization of thermoplastic vulcanizate (TPVs) which is polypropylene/ethylene propylene diene rubber blend, is conducted in a Brabender batch mixer using diphenyl disulfide as the devulcanizing agent. Considering the complexity of the compound, the effect of devulcanizing agent concentration, temperature and time were investigated to obtain the optimum condition. The extent of devulcanization of thermoplastic vulcanizate was studied by determination the volume fraction of dried rubber after swelling and crosslink density. The result show that the crosslink density of devulcanized TPVs decreased to 60.33% and 68.24% for 1 phr and 5 phr, respectively, and significantly decreased to 68.94% by adding 10 phr of diphenyl disulfide at 190°C. Moreover, the percent devulcanization of TPVs increased from 68.24% to 72.12% with increased in the reaction temperature up to 230 °C.

  1. Disulfide isomers of alpha-neurotoxins from King cobra (Ophiophagus hannah) venom.

    PubMed

    Lin, S R; Chang, L S; Chang, C C

    1999-01-08

    Two novel alpha-neurotoxins, Oh-6A and Oh-6B, isolated from the king cobra (Ophiophagus hannah) venom, consist of 70 amino acid residues with 10 cysteine residues and share the same amino acid sequences as determined by Edman degradation on the peptide fragments generated from the proteolytic hydrolysates. Their sequences share 46-53% homology with Oh-4, Oh-5, Toxin a, and Toxin b from the same venom. The finding that Oh-6A and Oh-6B had different retention times in the reversed-phase column suggested that the two toxin molecules should not have the same conformation. Selective reduction on the disulfide bond, Cys26--Cys30, at the tip of their loop II structures resulted in the production of the partially reduced derivatives eluted at the same position. Under redox conditions, the partially reduced Oh-6A and 6B exclusively converted into native Oh-6A as evidenced by HPLC analyses. This suggests that Oh-6A and Oh-6B are disulfide isomers which probably arise from cis-trans isomerization of the Cys26--Cys30 disulfide bond. Alternatively, the two toxins exhibited binding activity toward nAChR and lethal toxicity equally. It reflects that the diversity around the extra loop at the loop II structure does not exert a significant effect on the manifestation of the neurotoxicity of Oh-6A and Oh-6B.

  2. Protein disulfide isomerase secretion following vascular injury initiates a regulatory pathway for thrombus formation

    PubMed Central

    Bowley, Sheryl R.; Fang, Chao; Merrill-Skoloff, Glenn; Furie, Barbara C.; Furie, Bruce

    2017-01-01

    Protein disulfide isomerase (PDI), secreted by platelets and endothelial cells on vascular injury, is required for thrombus formation. Using PDI variants that form mixed disulfide complexes with their substrates, we identify by kinetic trapping multiple substrate proteins, including vitronectin. Plasma vitronectin does not bind to αvβ3 or αIIbβ3 integrins on endothelial cells and platelets. The released PDI reduces disulfide bonds on plasma vitronectin, enabling vitronectin to bind to αVβ3 and αIIbβ3. In vivo studies of thrombus generation in mice demonstrate that vitronectin rapidly accumulates on the endothelium and the platelet thrombus following injury. This process requires PDI activity and promotes platelet accumulation and fibrin generation. We hypothesize that under physiologic conditions in the absence of secreted PDI, thrombus formation is suppressed and maintains a quiescent, patent vasculature. The release of PDI during vascular injury may serve as a regulatory switch that allows activation of proteins, among them vitronectin, critical for thrombus formation. PMID:28218242

  3. The disulfide relay of the intermembrane space of mitochondria: an oxygen-sensing system?

    PubMed

    Bihlmaier, Karl; Mesecke, Nikola; Kloeppel, Christine; Herrmann, Johannes M

    2008-12-01

    The intermembrane space of mitochondria contains many proteins that lack classical mitochondrial targeting sequences. Instead, these proteins often show characteristic patterns of cysteine residues that are critical for their accumulation in the organelle. Import of these proteins is catalyzed by two essential components, Mia40 and Erv1. Mia40 is a protein in the intermembrane space that directly binds newly imported proteins via disulfide bonds. By reorganization of these bonds, intramolecular disulfide bonds are formed in the imported proteins, which are thereby released from Mia40 into the intermembrane space. Because folded proteins are unable to traverse the import pore of the outer membrane, this leads to a permanent location of these proteins within the mitochondria. During this reaction, Mia40 becomes reduced and needs to be re-oxidized to regain its activity. Oxidation of Mia40 is carried out by Erv1, a conserved flavine adenine dinucleotide (FAD)-binding sulfhydryl oxidase. Erv1 directly interacts with Mia40 and shuttles electrons from reduced Mia40 to oxidized cytochrome c, from whence they flow through cytochrome oxidase to molecular oxygen. The connection of the disulfide relay with the respiratory chain not only significantly increases the efficiency of the oxidase activity, but also prevents the formation of potentially deleterious hydrogen peroxide. The oxidative activity of Erv1 strongly depends on the oxygen concentration in mitochondria. Erv1, therefore, may function as a molecular switch that adapts mitochondrial activities to the oxygen levels in the cell.

  4. Electron capture by the thiyl radical and disulfide bond: ligand effects on the reduction potential.

    PubMed

    Roos, Goedele; De Proft, Frank; Geerlings, Paul

    2013-04-15

    The effect of non-polar and polar ligands and of monovalent cations on the one-electron reduction potential of the thiyl radical and the disulfide bond was evaluated. The reduction potentials E° for the CH3S(.)-nL/CH3S(-)-nL and CH3SSCH3-L/CH3SSCH3(.-)-L redox couples were calculated at the B3LYP, M06-2X and MP2 levels of theory, with n=1, 2 and L=CH4, C2H4, H2O, CH3OH, NH3, CH3COOH, CH3CONH2, NH4(+), Na(+), K(+) and Li(+). Non-polar ligands decrease the E° value of the thiyl radical and disulfide bond, while neutral polar ligands favour electron uptake. Charged polar ligands and cations favour electron capture by the thiyl radical while disfavouring electron uptake by the disulfide bond. Thus, the same type of ligand can have a different effect on E° depending on the redox couple. Therefore, properties of an isolated ligand cannot uniquely determine E°. The ligand effects on E° are discussed in terms of the vertical electron affinity and reorganization energy, as well as molecular orbital theory. For a given redox couple, the ligand type influences the nature of the anion formed upon electron capture and the corresponding reorganization process towards the reduced geometry.

  5. Depletion of bovine pituitary prolactin by cysteamine involves a thiol:disulfide mechanism

    SciTech Connect

    Lorenson, M.Y.; Jacobs, L.S.

    1984-10-01

    Cysteamine (2-aminoethanethiol (CySH)) reduces measurable PRL concentrations in vivo and in vitro. Since secretion is also inhibited, CySH may block conversion from a poorly assayable hormone storage form(s) to readily assayable, releasable PRL. This would represent a previously unrecognized mechanism for secretory regulation. We undertook the present study to identify the sites involved in the loss of measurable PRL (depletion) induced by cysteamine. The disulfide cystamine was ineffective on secretory granules unless combined with reduced glutathione, indicating the generation of the active CySH-thiol form. Pretreatment of granules with thiol-blocking agents resulted in dose-dependent enhancement of CySH inhibition, achieving nearly complete inhibition with 5 mM iodoacetamide. In contrast, pretreatment with reduced glutathione or dithiothreitol, respectively, impaired or abolished the CySH effect. These data suggest that the mechanism by which CySH causes PRL depletion is mediated by granule disulfides and the -SH of CySH. The regulation of thiol:disulfide equilibria appears to be an important determinant of the detectability of PRL storage forms and of their secretion.

  6. Chitosan films with improved tensile strength and toughness from N-acetyl-cysteine mediated disulfide bonds.

    PubMed

    Miles, Kevin Barrett; Ball, Rebecca Lee; Matthew, Howard William Trevor

    2016-03-30

    To improve the mechanical properties of chitosan (Ct) materials without the use of cytotoxic crosslinkers, disulfide cross-linkable Ct was synthesized by grafting N-acetyl-cysteine (NAC) to Ct using carbodiimide chemistry. Cast films of NAC-Ct conjugates were prepared with degrees of substitution (DS) of 0%, 6%, 15%, and 20%, and the disulfide bond formation was induced by increasing the reaction media pH to 11. The tensile strength, breaking strain, elastic moduli and toughness of disulfide cross-linked polymers were analyzed by monotonic tensile testing of hydrated NAC-Ct films. Crystallinity was determined via XRD. Results demonstrated that NAC incorporation and crosslinking in chitosan produced tougher polymer films with 4-fold higher tensile strength (10 MPa) and 6-fold greater elongation (365%), but reduced crystallinity, compared to unmodified chitosan. The resilience of NAC-Ct films was evaluated by cyclic testing, and results demonstrate that increasing NAC content produced a more resilient material that dissipated less energy when deformed. These improved mechanical properties broaden chitosan's applicability towards the construction of mechanically robust implantable scaffolds for tissue regeneration.

  7. Biocompatible thermoresponsive PEGMA nanoparticles crosslinked with cleavable disulfide-based crosslinker for dual drug release.

    PubMed

    Ulasan, Mehmet; Yavuz, Emine; Bagriacik, Emin Umit; Cengeloglu, Yunus; Yavuz, Mustafa Selman

    2015-01-01

    Smart materials have been attracting much attention because of their stimuli responsive nature. We have synthesized biocompatible thermoresponsive crosslinked poly(ethylene glycol) methyl ether methacrylate (PEGMA)-co-vinyl pyrrolidone nanoparticles (PEGMA NPs) using disulfide-based crosslinker by surfactant-free emulsion polymerization method. Particle characterization studies were carried out by dynamic light scattering, and scanning electron microscopy. Polymerization kinetics, effect of crosslinker and initiator concentrations on both average hydrodynamic diameter and polydispersity index were investigated. Hydrodynamic diameters of thermoresponsive PEGMA NPs were decreased from 210 nm to 90 nm upon heating over the lowest critical solution temperature (LCST). Disulfide crosslinked PEGMA NPs were demonstrated as a dual delivery system. Rhodamine B, a model of small-sized drug molecule, and poly(ethylene glycol) (PEG)-alizarin yellow, a model of large drug molecule, were loaded into PEGMA NPs where LCST of these NPs was tuned to 37°C, the body temperature. The rhodamine B was released from PEGMA NPs upon heating to 39°C. Then, PEG-alizarin content was released by subsequent degradation of nanoparticles using dithiothreitol (DTT), which reduces disulfide bonds to thiols. Furthermore, cytotoxicity studies of PEGMA NPs were carried out in 3T3 cells, which resulted in no toxic effect on the cells.

  8. Ion Mobility-Mass Spectrometry as a Tool for the Structural Characterization of Peptides Bearing Intramolecular Disulfide Bond(s)

    NASA Astrophysics Data System (ADS)

    Massonnet, Philippe; Haler, Jean R. N.; Upert, Gregory; Degueldre, Michel; Morsa, Denis; Smargiasso, Nicolas; Mourier, Gilles; Gilles, Nicolas; Quinton, Loïc; De Pauw, Edwin

    2016-10-01

    Disulfide bonds are post-translationnal modifications that can be crucial for the stability and the biological activities of natural peptides. Considering the importance of these disulfide bond-containing peptides, the development of new techniques in order to characterize these modifications is of great interest. For this purpose, collision cross cections (CCS) of a large data set of 118 peptides (displaying various sequences) bearing zero, one, two, or three disulfide bond(s) have been measured in this study at different charge states using ion mobility-mass spectrometry. From an experimental point of view, CCS differences (ΔCCS) between peptides bearing various numbers of disulfide bonds and peptides having no disulfide bonds have been calculated. The ΔCCS calculations have also been applied to peptides bearing two disulfide bonds but different cysteine connectivities (Cys1-Cys2/Cys3-Cys4; Cys1-Cys3/Cys2-Cys4; Cys1-Cys4/Cys2-Cys3). The effect of the replacement of a proton by a potassium adduct on a peptidic structure has also been investigated.

  9. Characterization of Sviceucin from Streptomyces Provides Insight into Enzyme Exchangeability and Disulfide Bond Formation in Lasso Peptides.

    PubMed

    Li, Yanyan; Ducasse, Rémi; Zirah, Séverine; Blond, Alain; Goulard, Christophe; Lescop, Ewen; Giraud, Caroline; Hartke, Axel; Guittet, Eric; Pernodet, Jean-Luc; Rebuffat, Sylvie

    2015-11-20

    Lasso peptides are bacterial ribosomally synthesized and post-translationally modified peptides. They have sparked increasing interest in peptide-based drug development because of their compact, interlocked structure, which offers superior stability and protein-binding capacity. Disulfide bond-containing lasso peptides are rare and exhibit highly sought-after activities. In an effort to expand the repertoire of such molecules, we heterologously expressed, in Streptomyces coelicolor, the gene cluster encoding sviceucin, a type I lasso peptide with two disulfide bridges originating from Streptomyces sviceus, which allowed it to be fully characterized. Sviceucin and its reduced forms were characterized by mass spectrometry and peptidase digestion. The three-dimensional structure of sviceucin was determined using NMR. Sviceucin displayed antimicrobial activity selectively against Gram-positive bacteria and inhibition of fsr quorum sensing in Enterococcus faecalis. This study adds sviceucin to the type I lasso peptide family as a new representative. Moreover, new clusters encoding disulfide-bond containing lasso peptides from Actinobacteria were identified by genome mining. Genetic and functional analyses revealed that the formation of disulfide bonds in sviceucin does not require a pathway-encoded thiol-disulfide oxidoreductase. Most importantly, we demonstrated the functional exchangeability of the sviceucin and microcin J25 (a non-disulfide-bridged lasso peptide) macrolactam synthetases in vitro, highlighting the potential of hybrid lasso synthetases in lasso peptide engineering.

  10. Global disulfide bond profiling for crude snake venom using dimethyl labeling coupled with mass spectrometry and RADAR algorithm.

    PubMed

    Huang, Sheng Yu; Chen, Sung Fang; Chen, Chun Hao; Huang, Hsuan Wei; Wu, Wen Guey; Sung, Wang Chou

    2014-09-02

    Snake venom consists of toxin proteins with multiple disulfide linkages to generate unique structures and biological functions. Determination of these cysteine connections usually requires the purification of each protein followed by structural analysis. In this study, dimethyl labeling coupled with LC-MS/MS and RADAR algorithm was developed to identify the disulfide bonds in crude snake venom. Without any protein separation, the disulfide linkages of several cytotoxins and PLA2 could be solved, including more than 20 disulfide bonds. The results show that this method is capable of analyzing protein mixture. In addition, the approach was also used to compare native cytotoxin 3 (CTX III) and its scrambled isomer, another category of protein mixture, for unknown disulfide bonds. Two disulfide-linked peptides were observed in the native CTX III, and 10 in its scrambled form, X-CTX III. This is the first study that reports a platform for the global cysteine connection analysis on a protein mixture. The proposed method is simple and automatic, offering an efficient tool for structural and functional studies of venom proteins.

  11. Reduction of the secretory response to Escherichia coli heat-stable enterotoxin by thiol and disulfide compounds. [Mice

    SciTech Connect

    Greenberg, R.N.; Dunn, J.A.; Guerrant, R.L.

    1983-07-01

    We examined the effects of disulfide and thiol compounds on Escherichia coli heat-stable enterotoxin (ST) and cyclic GMP-induced secretion. Both cystamine and cystine (disulfide compounds) reduced the secretory responses to submaximal doses of ST in suckling mice (at 0.5 mumol per mouse) and reduced ST activation of guanylate cyclase (by 33 to 73% at 1 mM). In higher doses, cystamine completely eradicated a maximally effective ST dose as well. In addition, the sulfhydryl (thiol) compounds cysteamine, cysteine, and acetylcysteine strikingly reduced the secretory response and the guanylate cyclase response to ST. Neither the disulfide nor the thiol compounds tested reduced cyclic GMP-induced secretion. These studies suggest that disulfide and thiol compounds both block ST-induced secretion before its activation of guanylate cyclase. Taken with the work of others, these findings suggest that disulfide compounds may alter the oxidation reduction state of a cell or act directly on the guanylate cyclase enzyme, whereas thiol compounds may inactivate ST itself by breaking its disulfide bridges, or it may alter guanylate cyclase activation by ST. Both families of compounds deserve further consideration among potential antisecretory agents for application in the control of ST-induced diarrhea.

  12. Proteolysis approach without chemical modification for a simple and rapid analysis of disulfide bonds using thermostable protease-immobilized microreactors.

    PubMed

    Yamaguchi, Hiroshi; Miyazaki, Masaya; Maeda, Hideaki

    2010-08-01

    Disulfide bonds in proteins are important not only for the conformational stability of the protein but also for the regulation of oxidation-reduction in signal transduction. The conventional method for the assignment of disulfide bond by chemical cleavage and/or proteolysis is a time-consuming multi-step procedure. In this study, we report a simple and rapid analysis of disulfide bond from protein digests that were prepared by the thermostable protease-immobilized microreactors. The feasibility and performance of this approach were evaluated by digesting lysozyme and BSA at several temperatures. The proteins which stabilize their conformations by disulfide bonds were thermally denatured during proteolysis and were efficiently digested by the immobilized protease but not by free protease. The digests were directly analyzed by ESI-TOF MS without any purification or concentration step. All four disulfide bonds on lysozyme and 10 of 17 on BSA were assigned from the digests by the trypsin-immobilized microreactor at 50 degrees C. The procedure for proteolysis and the assignment were achieved within 2 h without any reduction and alkylation procedure. From the present results, the proteolysis approach by the thermostable protease-immobilized microreactor provides a strategy for the high-throughput analysis of disulfide bond in proteomics.

  13. Overexpression of the rhodanese PspE, a single cysteine-containing protein, restores disulfide bond formation to an Escherichia coli strain lacking DsbA

    PubMed Central

    Chng, Shu-Sin; Dutton, Rachel J.; Denoncin, Katleen; Vertommen, Didier; Collet, Jean-Francois; Kadokura, Hiroshi; Beckwith, Jonathan

    2012-01-01

    Summary Escherichia coli uses the DsbA/DsbB system for introducing disulfide bonds into proteins in the cell envelope. Deleting either dsbA or dsbB or both reduces disulfide bond formation but does not entirely eliminate it. Whether such background disulfide bond forming activity is enzyme-catalyzed is not known. To identify possible cellular factors that might contribute to the background activity, we studied the effects of overexpressing endogenous proteins on disulfide bond formation in the periplasm. We find that overexpressing PspE, a periplasmic rhodanese, partially restores substantial disulfide bond formation to a dsbA strain. This activity depends on DsbC, the bacterial disulfide bond isomerase, but not on DsbB. We show that overexpressed PspE is oxidized to the sulfenic acid form and reacts with substrate proteins to form mixed disulfide adducts. DsbC either prevents the formation of these mixed disulfides or resolves these adducts subsequently. In the process, DsbC itself gets oxidized and proceeds to catalyze disulfide bond formation. Although this PspE/DsbC system is not responsible for the background disulfide bond forming activity, we suggest that it might be utilized in other organisms lacking the DsbA/DsbB system. PMID:22809289

  14. Medical Assistants

    MedlinePlus

    ... medical assistants often fill out insurance forms or code patients’ medical information. They often answer telephones and ... charts and diagnoses. They may be required to code a patient’s medical records for billing purposes. Detail ...

  15. Early Warning and Prediction of Interest Attacks and Exploits

    DTIC Science & Technology

    2005-09-01

    EARLY WARNING AND PREDICTION OF INTERNET ATTACKS AND EXPLOITS THESIS Brian P. Zeitz... EARLY WARNING AND PREDICTION OF INTERNET ATTACKS AND EXPLOITS THESIS Presented to the Faculty Department of Electrical and Computer...RELEASE; DISTRIBUTION UNLIMITED iv AFIT/GIA/ENG/05-06 EARLY WARNING AND PREDICTION OF INTERNET ATTACKS AND EXPLOITS

  16. Hydrogen peroxide removal and glutathione mixed disulfide formation during metabolic inhibition in mesencephalic cultures.

    PubMed

    Ehrhart, J; Zeevalk, G D

    2001-06-01

    Compromised mitochondrial energy metabolism and oxidative stress have been associated with the pathophysiology of Parkinson's disease. Our previous experiments exemplified the importance of GSH in the protection of neurons exposed to malonate, a reversible inhibitor of mitochondrial succinate dehydrogenase/complex II. This study further defines the role of oxidative stress during energy inhibition and begins to unravel the mechanisms by which GSH and other antioxidants may contribute to cell survival. Treatment of mesencephalic cultures with 10 microM buthionine sulfoximine for 24 h depleted total GSH by 60%, whereas 3 h exposure to 5 mM 3-amino-1,2,4-triazole irreversibly inactivated catalase activity by 90%. Treatment of GSH-depleted cells with malonate (40 mM) for 6, 12 or 24 h both potentiated and accelerated the time course of malonate toxicity, however, inhibition of catalase had no effect. In contrast, concomitant treatment with buthionine sulfoximine plus 3-amino-1,2,4-triazole in the presence of malonate significantly potentiated toxicity over that observed with malonate plus either inhibitor alone. Consistent with these findings, GSH depletion enhanced malonate-induced reactive oxygen species generation prior to the onset of toxicity. These findings demonstrate that early generation of reactive oxygen species during mitochondrial inhibition contributes to cell damage and that GSH serves as a first line of defense in its removal. Pre-treatment of cultures with 400 microM ascorbate protected completely against malonate toxicity (50 mM, 12 h), whereas treatment with 1 mM Trolox provided partial protection. Protein-GSH mixed disulfide formation during oxidative stress has been suggested to either protect vulnerable protein thiols or conversely to contribute to toxicity. Malonate exposure (50 mM) for 12 h resulted in a modest increase in mixed disulfide formation. However, exposure to the protective combination of ascorbate plus malonate increased membrane

  17. Microwave assisted chemical vapor infiltration

    SciTech Connect

    Devlin, D.J.; Currier, R.P.; Barbero, R.S.; Espinoza, B.F.; Elliott, N.

    1991-12-31

    A microwave assisted process for production of continuous fiber reinforced ceramic matrix composites is described. A simple apparatus combining a chemical vapor infiltration reactor with a conventional 700 W multimode oven is described. Microwave induced inverted thermal gradients are exploited with the ultimate goal of reducing processing times on complex shapes. Thermal gradients in stacks of SiC (Nicalon) cloths have been measured using optical thermometry. Initial results on the ``inside out`` deposition of SiC via decomposition of methyltrichlorosilane in hydrogen are presented. Several key processing issues are identified and discussed. 5 refs.

  18. Explosives Detection: Exploitation of the Physical Signatures

    NASA Astrophysics Data System (ADS)

    Atkinson, David

    2010-10-01

    Explosives based terrorism is an ongoing threat that is evolving with respect to implementation, configuration and materials used. There are a variety of devices designed to detect explosive devices, however, each technology has limitations and operational constraints. A full understanding of the signatures available for detection coupled with the array of detection choices can be used to develop a conceptual model of an explosives screening operation. Physics based sensors provide a robust approach to explosives detection, typically through the identification of anomalies, and are currently used for screening in airports around the world. The next generation of detectors for explosives detection will need to be more sensitive and selective, as well as integrate seamlessly with devices focused on chemical signatures. An appreciation for the details of the physical signature exploitation in cluttered environments with time, space, and privacy constraints is necessary for effective explosives screening of people, luggage, cargo, and vehicles.

  19. Digital video steganalysis exploiting collusion sensitivity

    NASA Astrophysics Data System (ADS)

    Budhia, Udit; Kundur, Deepa

    2004-09-01

    In this paper we present an effective steganalyis technique for digital video sequences based on the collusion attack. Steganalysis is the process of detecting with a high probability and low complexity the presence of covert data in multimedia. Existing algorithms for steganalysis target detecting covert information in still images. When applied directly to video sequences these approaches are suboptimal. In this paper, we present a method that overcomes this limitation by using redundant information present in the temporal domain to detect covert messages in the form of Gaussian watermarks. Our gains are achieved by exploiting the collusion attack that has recently been studied in the field of digital video watermarking, and more sophisticated pattern recognition tools. Applications of our scheme include cybersecurity and cyberforensics.

  20. Exploiting epigenetic vulnerabilities for cancer therapeutics.

    PubMed

    Mair, Barbara; Kubicek, Stefan; Nijman, Sebastian M B

    2014-03-01

    Epigenetic deregulation is a hallmark of cancer, and there has been increasing interest in therapeutics that target chromatin-modifying enzymes and other epigenetic regulators. The rationale for applying epigenetic drugs to treat cancer is twofold. First, epigenetic changes are reversible, and drugs could therefore be used to restore the normal (healthy) epigenetic landscape. However, it is unclear whether drugs can faithfully restore the precancerous epigenetic state. Second, chromatin regulators are often mutated in cancer, making them attractive drug targets. However, in most instances it is unknown whether cancer cells are addicted to these mutated chromatin proteins, or whether their mutation merely results in epigenetic instability conducive to the selection of secondary aberrations. An alternative incentive for targeting chromatin regulators is the exploitation of cancer-specific vulnerabilities, including synthetic lethality, caused by epigenetic deregulation. We review evidence for the hypothesis that mechanisms other than oncogene addiction are a basis for the application of epigenetic drugs, and propose future research directions.

  1. Redressing China's strategy of water resource exploitation.

    PubMed

    Ran, Lishan; Lu, Xi Xi

    2013-03-01

    China, with the confrontation of water-related problems as an element of its long history, has been investing heavily in water engineering projects over the past few decades based on the assumption that these projects can solve its water problems. However, the anticipated benefits did not really occur, or at least not as large as expected. Instead, the results involved additional frustrations, such as biodiversity losses and human-induced disasters (i.e., landslides and earthquakes). Given its inherent shortcomings, the present engineering-dominated strategy for the management of water resources cannot help solve China's water problems and achieve its goal of low-carbon transformation. Therefore, the present strategy for water resources exploitation needs to be reevaluated and redressed. A policy change to achieve better management of Chinese rivers is urgently needed.

  2. Iron and Zinc Exploitation during Bacterial Pathogenesis

    PubMed Central

    Ma, Li; Terwilliger, Austen; Maresso, Anthony W.

    2016-01-01

    Ancient bacteria originated from metal-rich environments. Billions of years of evolution directed these tiny single cell creatures to exploit the versatile properties of metals in catalyzing chemical reactions and biological responses. The result is an entire metallome of proteins that use metal co-factors to facilitate key cellular process that range from the production of energy to the replication of DNA. Two key metals in this regard are iron and zinc, both abundant on Earth but not readily accessible in a human host. Instead, pathogenic bacteria must employ clever ways to acquire these metals. In this review we describe the many elegant ways these bacteria mine, regulate, and craft the use of two key metals (iron and zinc) to build a virulence arsenal that challenges even the most sophisticated immune response. PMID:26497057

  3. Are Youths' Feelings of Entitlement Always "Bad"?: Evidence for a Distinction between Exploitive and Non-Exploitive Dimensions of Entitlement

    ERIC Educational Resources Information Center

    Lessard, Jared; Greenberger, Ellen; Chen, Chuansheng; Farruggia, Susan

    2011-01-01

    Previous personality research (e.g., Campbell et al., 2004) has described the sense of entitlement as an unifactorial construct. In this study, we examined characteristics of two potential facets of entitlement: exploitive entitlement, characterized by exploitive interactions and expectations of special treatment, and non-exploitive entitlement,…

  4. L-Cysteine-assisted hydrothermal synthesis of nickel disulfide/graphene composite with enhanced electrochemical performance for reversible lithium storage

    NASA Astrophysics Data System (ADS)

    Chen, Qiannan; Chen, Weixiang; Ye, Jianbo; Wang, Zhen; Lee, Jim Yang

    2015-10-01

    NiS2/graphene composite is synthesized by a facile hydrothermal reaction between NiCl2 and L-cysteine in the presence of graphene oxide sheets. L-Cysteine serves as both the sulfur source for NiS2 and reductant for reduction of graphene oxide sheets. The reduced graphene oxides can be used as a platform for growth of NiS2 particles and restrain NiS2 from agglomerating during hydrothermal process. The results of characterizations show that the sphere-like NiS2 particles exhibit smaller sizes and are well dispersed on the surface of reduced graphene sheets. The electrochemical measurements demonstrate that the NiS2/graphene composite delivers a reversible capacity as high as 1200 mAh g-1 at a current density of 100 mA g-1 and enhanced high-rate capability of 740 mAh g-1 at a high current density of 1000 mA g-1. After 1000 cycles, the NiS2/graphene still preserves the reversible capacity about 810 mAh g-1 at a current density of 500 mA g-1, indicating its excellent cyclic stability.

  5. Piloting the older adult financial exploitation measure in adult safeguarding services.

    PubMed

    Phelan, A; Fealy, G; Downes, C

    2017-01-27

    Financial abuse is arguably the most complex form of elder abuse as it may occur remote to the older person and it is impacted by issues such as cultural values, perpetrator intent and family expectations. Financial abuse may not be recognised by either the older person or the perpetrator, thus, its prevention, early identification and amelioration are important. The (Irish) National Centre for the Protection of Older People undertook a study to determine the appropriateness of the Older Adult Financial Exploitation Measure for use by the national safeguarding older person services. Findings from a small pilot study involving 16 safeguarding staff's use of the Older Adult Financial Exploitation Measure with 52 community dwelling older people referred to their service demonstrate a higher suspicion of financial abuse as well as identifying multiple instances of possible financial exploitation in a single individual. Thus, the Older Adult Financial Exploitation Measure is considered appropriate to assist safeguarding personnel's assessment of older people related to a suspicion of financial abuse.

  6. Is carbonyl sulfide a precursor for carbon disulfide in vegetation and soil? Interconversion of carbonyl sulfide and carbon disulfide in fresh grain tissues in vitro.

    PubMed

    Ren, Y

    1999-05-01

    The interconversion of carbonyl sulfide (COS) and carbon disulfide (CS(2)) was studied in the roots and shoots of barley and chickpeas. Ratios of conversion gases, K, 40 h after the addition of COS or CS(2) are recorded. The proportion of COS converted to each of CS(2), CO, and H(2)S and the proportion of CS(2) converted to COS were greater in roots than in shoots. More COS was converted to CS(2) than CS(2) to COS in roots and shoots of barley and chickpeas. The amount of COS converted to H(2)S and CO was 8 times the amount converted to CS(2) in barley and 3-4 times the amount in chickpeas. Carbonyl sulfide may be a precursor for CS(2) in vegetation and soil, just as the reverse is true in the atmosphere. These two different results might form a cycle of COS and CS(2).

  7. Ion-Beam-Assisted Deposition of MoS2 and Other Low-Friction Films

    DTIC Science & Technology

    1992-09-11

    Naval Research Laboratory AD-A255 222 Dunon C 203MU32 tID~li ___ NR1JMR6176-02-nM3 Ion-Beam-Assisted Deposition of MoS2 and Other Low-Friction Films...unlimited.J 13. ABSTRACT (fxMmrn, 200 iw~tds Vacuum-deposited films of molybdenum disulfide ( MoS2 ) ame effective as solid lubricants. Ion-beam...optimized and the assist beamn ion flux was quantified and found to follow a power-law relationship with beam power. The beat way to produce MoS2 films was

  8. NORD's Patient Assistance Programs

    MedlinePlus

    ... provide medication, financial assistance with insurance premiums and co-pays, diagnostic testing assistance, and travel assistance for ... 7178 para asistencia. Acute Lymphocytic Leukemia | Accepting Applications Co-Pay Assistance Program Contact: 1-844-251-7425 ...

  9. Mission Exploitation Platform PROBA-V

    NASA Astrophysics Data System (ADS)

    Goor, Erwin

    2016-04-01

    VITO and partners developed an end-to-end solution to drastically improve the exploitation of the PROBA-V EO-data archive (http://proba-v.vgt.vito.be/), the past mission SPOT-VEGETATION and derived vegetation parameters by researchers, service providers and end-users. The analysis of time series of data (+1PB) is addressed, as well as the large scale on-demand processing of near real-time data. From November 2015 an operational Mission Exploitation Platform (MEP) PROBA-V, as an ESA pathfinder project, will be gradually deployed at the VITO data center with direct access to the complete data archive. Several applications will be released to the users, e.g. - A time series viewer, showing the evolution of PROBA-V bands and derived vegetation parameters for any area of interest. - Full-resolution viewing services for the complete data archive. - On-demand processing chains e.g. for the calculation of N-daily composites. - A Virtual Machine will be provided with access to the data archive and tools to work with this data, e.g. various toolboxes and support for R and Python. After an initial release in January 2016, a research platform will gradually be deployed allowing users to design, debug and test applications on the platform. From the MEP PROBA-V, access to Sentinel-2 and landsat data will be addressed as well, e.g. to support the Cal/Val activities of the users. Users can make use of powerful Web based tools and can self-manage virtual machines to perform their work on the infrastructure at VITO with access to the complete data archive. To realise this, private cloud technology (openStack) is used and a distributed processing environment is built based on Hadoop. The Hadoop ecosystem offers a lot of technologies (Spark, Yarn, Accumulo, etc.) which we integrate with several open-source components. The impact of this MEP on the user community will be high and will completely change the way of working with the data and hence open the large time series to a larger

  10. GOCE Exploitation for Moho Modeling and Applications

    NASA Astrophysics Data System (ADS)

    Sampierto, D.

    2011-07-01

    New ESA missions dedicated to the observation of the Earth from space, like the gravity-gradiometry mission GOCE and the radar altimetry mission CRYOSAT 2, foster research, among other subjects, also on inverse gravimetric problems and on the description of the nature and the geographical location of gravimetric signals. In this framework the GEMMA project (GOCE Exploitation for Moho Modeling and Applications), funded by the European Space Agency and Politecnico di Milano, aims at estimating the boundary between Earth's crust and mantle (the so called Mohorovičić discontinuity or Moho) from GOCE data in key regions of the world. In the project a solution based on a simple two layer model in spherical approximation is proposed. This inversion problem based on the linearization of the Newton's gravitational law around an approximate mean Moho surface will be solved by exploiting Wiener-Kolmogorov theory in the frequency domain where the depth of the Moho discontinuity will be treated as a random signal with a zero mean and its own covariance function. The algorithm can be applied in a numerically efficient way by using the Fast Fourier Transform. As for the gravity observations, we will consider grids of the anomalous gravitational potential and its second radial derivative at satellite altitude. In particular this will require first of all to elaborate GOCE data to obtain a local grid of the gravitational potential field and its second radial derivative and after that to separate the gravimetric signal due to the considered discontinuity from the gravitational effects of other geological structures present into the observations. The first problem can be solved by applying the so called space- wise approach to GOCE observations, while the second one can be achieved by considering a priori models and geophysical information by means of an appropriate Bayesan technique. Moreover other data such as ground gravity anomalies or seismic profiles can be combined, in an

  11. Exploiting fungal cell wall components in vaccines

    PubMed Central

    Levitz, Stuart M.; Huang, Haibin; Ostroff, Gary R.; Specht, Charles A.

    2014-01-01

    Innate recognition of fungi leads to strong adaptive immunity. Investigators are trying to exploit this observation in vaccine development by combining antigens with evolutionarily conserved fungal cell wall carbohydrates to induce protective responses. Best studied is β-1,3-glucan, a glycan that activates complement and is recognized by Dectin-1. Administration of antigens in association with β-1,3-glucan, either by direct conjugation or complexed in glucan particles, results in robust humoral and cellular immune responses. While the host has a host of mannose receptors, responses to fungal mannoproteins generally are amplified if cells are cooperatively stimulated with an additional danger signal such as a toll-like receptor agonist. Chitosan, a polycationic homopolymer of glucosamine manufactured by the deacetylation of chitin, is being studied as an adjuvant in DNA and protein-based vaccines. It appears particularly promising in mucosal vaccines. Finally, universal and organism-specific fungal vaccines have been formulated by conjugating fungal cell wall glycans to carrier proteins. A major challenge will be to advance these experimental findings so that at risk patients can be protected. PMID:25404118

  12. Exploiting intrinsic fluctuations to identify model parameters.

    PubMed

    Zimmer, Christoph; Sahle, Sven; Pahle, Jürgen

    2015-04-01

    Parameterisation of kinetic models plays a central role in computational systems biology. Besides the lack of experimental data of high enough quality, some of the biggest challenges here are identification issues. Model parameters can be structurally non-identifiable because of functional relationships. Noise in measured data is usually considered to be a nuisance for parameter estimation. However, it turns out that intrinsic fluctuations in particle numbers can make parameters identifiable that were previously non-identifiable. The authors present a method to identify model parameters that are structurally non-identifiable in a deterministic framework. The method takes time course recordings of biochemical systems in steady state or transient state as input. Often a functional relationship between parameters presents itself by a one-dimensional manifold in parameter space containing parameter sets of optimal goodness. Although the system's behaviour cannot be distinguished on this manifold in a deterministic framework it might be distinguishable in a stochastic modelling framework. Their method exploits this by using an objective function that includes a measure for fluctuations in particle numbers. They show on three example models, immigration-death, gene expression and Epo-EpoReceptor interaction, that this resolves the non-identifiability even in the case of measurement noise with known amplitude. The method is applied to partially observed recordings of biochemical systems with measurement noise. It is simple to implement and it is usually very fast to compute. This optimisation can be realised in a classical or Bayesian fashion.

  13. The Spanish network for Gaia Science Exploitation

    NASA Astrophysics Data System (ADS)

    Figueras, F.; Jordi, C.; Luri, X.; Torra, J.; REG Executive Committee Team; Gaia UB team

    2017-03-01

    The ''Red Española de Explotación Científica de Gaia'' (REG) continues to intensify its activities facing the imminent publication of the first and second Gaia data releases (14 September, 2016 and Q4-2017, respectively). The network, supported by the MINECO under contract Acciones de dinamizaci ´on, Redes de Excelencia (2016-2017), has as major priority the task to coordinate and support the collective activities developed by its more than 150 members. At present, REG plays a prominent role in the preparation of the Spanish community for the use of the Gaia data archive (a task lead by the Spanish team), in the work to exploit the Gaia-ESO survey collected during the last four years and in supporting the preparation of the science case and survey plan for WEAVE, the new multi-object spectrograph for the WHT at Canary Islands (commissioning, 2018). These activities are described together with the schedule of future national and international science meetings and the outreach activities being organized for the first and second Data Releases

  14. Understanding Online Child Sexual Exploitation Offenses.

    PubMed

    Ly, Thanh; Murphy, Lisa; Fedoroff, J Paul

    2016-08-01

    In the past three decades, there has been an exponential increase in the worldwide availability of Internet access and devices that are able to access online materials. This literature review investigated whether increased accessibility of Internet child pornography (CP) increases the risk of in-person child sexual exploitation. The current review found little to no evidence that availability of the Internet has increased the worldwide incidence or prevalence of in-person child sexual abuse. In fact, during the time period in which the Internet has flourished, international crime statistics have shown a steady decrease of in-person child sexual abuse. The only exception to this trend is an increase in Internet child pornography or luring offenses (e.g., Stats Can, 2014), which involves child abuse by definition. This article reviews the impact of the Internet on child sexual abuse. It also reviews the characteristics of online CP offenders. Treatment of these offenders and prevention of such offenses is also discussed.

  15. Exploiting core knowledge for visual object recognition.

    PubMed

    Schurgin, Mark W; Flombaum, Jonathan I

    2017-03-01

    Humans recognize thousands of objects, and with relative tolerance to variable retinal inputs. The acquisition of this ability is not fully understood, and it remains an area in which artificial systems have yet to surpass people. We sought to investigate the memory process that supports object recognition. Specifically, we investigated the association of inputs that co-occur over short periods of time. We tested the hypothesis that human perception exploits expectations about object kinematics to limit the scope of association to inputs that are likely to have the same token as a source. In several experiments we exposed participants to images of objects, and we then tested recognition sensitivity. Using motion, we manipulated whether successive encounters with an image took place through kinematics that implied the same or a different token as the source of those encounters. Images were injected with noise, or shown at varying orientations, and we included 2 manipulations of motion kinematics. Across all experiments, memory performance was better for images that had been previously encountered with kinematics that implied a single token. A model-based analysis similarly showed greater memory strength when images were shown via kinematics that implied a single token. These results suggest that constraints from physics are built into the mechanisms that support memory about objects. Such constraints-often characterized as 'Core Knowledge'-are known to support perception and cognition broadly, even in young infants. But they have never been considered as a mechanism for memory with respect to recognition. (PsycINFO Database Record

  16. Exploiting protein intrinsic flexibility in drug design.

    PubMed

    Lukman, Suryani; Verma, Chandra S; Fuentes, Gloria

    2014-01-01

    Molecular recognition in biological systems relies on the existence of specific attractive interactions between two partner molecules. Structure-based drug design seeks to identify and optimize such interactions between ligands and their protein targets. The approach followed in medicinal chemistry follows a combination of careful analysis of structural data together with experimental and/or theoretical studies on the system. This chapter focuses on the fact that a protein is not fully characterized by a single structure, but by an ensemble of states, some of them represent "hidden conformations" with cryptic binding sites. We highlight case studies where both experimental and computational methods have been used to mutually drive each other in an attempt to improve the success of the drug design approaches.Advances in both experimental techniques and computational methods have greatly improved our physico-chemical understanding of the functional mechanisms in biomolecules and opened a debate about the interplay between molecular structure and biomolecular function. The beautiful static pictures of protein structures may have led to neglecting the intrinsic protein flexibility, however we are entering a new era where more sophisticated methods are used to exploit this ability of macromolecules, and this will definitely lead to the inclusion of the notion in the pharmaceutical field of drug design.

  17. Relationship between exploitation, oscillation, MSY and extinction.

    PubMed

    Ghosh, Bapan; Kar, T K; Legovic, T

    2014-10-01

    We give answers to two important problems arising in current fisheries: (i) how maximum sustainable yield (MSY) policy is influenced by the initial population level, and (ii) how harvesting, oscillation and MSY are related to each other in prey-predator systems. To examine the impact of initial population on exploitation, we analyze a single species model with strong Allee effect. It is found that even when the MSY exists, the dynamic solution may not converge to the equilibrium stock if the initial population level is higher but near the critical threshold level. In a prey-predator system with Allee effect in the prey species, the initial population does not have such important impact neither on MSY nor on maximum sustainable total yield (MSTY). However, harvesting the top predator may cause extinction of all species if odd number of trophic levels exist in the ecosystem. With regard to the second problem, we study two prey-predator models and establish that increasing harvesting effort either on prey, predator or both prey and predator destroys previously existing oscillation. Moreover, equilibrium stock both at MSY and MSTY level is stable. We also discuss the validity of found results to other prey-predator systems.

  18. Accelerating Large Data Analysis By Exploiting Regularities

    NASA Technical Reports Server (NTRS)

    Moran, Patrick J.; Ellsworth, David

    2003-01-01

    We present techniques for discovering and exploiting regularity in large curvilinear data sets. The data can be based on a single mesh or a mesh composed of multiple submeshes (also known as zones). Multi-zone data are typical to Computational Fluid Dynamics (CFD) simulations. Regularities include axis-aligned rectilinear and cylindrical meshes as well as cases where one zone is equivalent to a rigid-body transformation of another. Our algorithms can also discover rigid-body motion of meshes in time-series data. Next, we describe a data model where we can utilize the results from the discovery process in order to accelerate large data visualizations. Where possible, we replace general curvilinear zones with rectilinear or cylindrical zones. In rigid-body motion cases we replace a time-series of meshes with a transformed mesh object where a reference mesh is dynamically transformed based on a given time value in order to satisfy geometry requests, on demand. The data model enables us to make these substitutions and dynamic transformations transparently with respect to the visualization algorithms. We present results with large data sets where we combine our mesh replacement and transformation techniques with out-of-core paging in order to achieve significant speed-ups in analysis.

  19. Exploiting spatial descriptions in visual scene analysis.

    PubMed

    Ziegler, Leon; Johannsen, Katrin; Swadzba, Agnes; De Ruiter, Jan P; Wachsmuth, Sven

    2012-08-01

    The reliable automatic visual recognition of indoor scenes with complex object constellations using only sensor data is a nontrivial problem. In order to improve the construction of an accurate semantic 3D model of an indoor scene, we exploit human-produced verbal descriptions of the relative location of pairs of objects. This requires the ability to deal with different spatial reference frames (RF) that humans use interchangeably. In German, both the intrinsic and relative RF are used frequently, which often leads to ambiguities in referential communication. We assume that there are certain regularities that help in specific contexts. In a first experiment, we investigated how speakers of German describe spatial relationships between different pieces of furniture. This gave us important information about the distribution of the RFs used for furniture-predicate combinations, and by implication also about the preferred spatial predicate. The results of this experiment are compiled into a computational model that extracts partial orderings of spatial arrangements between furniture items from verbal descriptions. In the implemented system, the visual scene is initially scanned by a 3D camera system. From the 3D point cloud, we extract point clusters that suggest the presence of certain furniture objects. We then integrate the partial orderings extracted from the verbal utterances incrementally and cumulatively with the estimated probabilities about the identity and location of objects in the scene, and also estimate the probable orientation of the objects. This allows the system to significantly improve both the accuracy and richness of its visual scene representation.

  20. Exploiting interspecific olfactory communication to monitor predators.

    PubMed

    Garvey, Patrick M; Glen, Alistair S; Clout, Mick N; Wyse, Sarah V; Nichols, Margaret; Pech, Roger P

    2017-03-01

    Olfaction is the primary sense of many mammals and subordinate predators use this sense to detect dominant species, thereby reducing the risk of an encounter and facilitating coexistence. Chemical signals can act as repellents or attractants and may therefore have applications for wildlife management. We devised a field experiment to investigate whether dominant predator (ferret Mustela furo) body odor would alter the behavior of three common mesopredators: stoats (Mustela erminea), hedgehogs (Erinaceus europaeus), and ship rats (Rattus rattus). We predicted that apex predator odor would lead to increased detections, and our results support this hypothesis as predator kairomones (interspecific olfactory messages that benefit the receiver) provoked "eavesdropping" behavior by mesopredators. Stoats exhibited the most pronounced responses, with kairomones significantly increasing the number of observations and the time spent at a site, so that their occupancy estimates changed from rare to widespread. Behavioral responses to predator odors can therefore be exploited for conservation and this avenue of research has not yet been extensively explored. A long-life lure derived from apex predator kairomones could have practical value, especially when there are plentiful resources that reduce the efficiency of food-based lures. Our results have application for pest management in New Zealand and the technique of using kairomones to monitor predators could have applications for conservation efforts worldwide.

  1. Haploids in flowering plants: origins and exploitation.

    PubMed

    Dunwell, Jim M

    2010-05-01

    The first haploid angiosperm, a dwarf form of cotton with half the normal chromosome complement, was discovered in 1920, and in the ninety years since then such plants have been identified in many other species. They can occur either spontaneously or can be induced by modified pollination methods in vivo, or by in vitro culture of immature male or female gametophytes. Haploids represent an immediate, one-stage route to homozygous diploids and thence to F(1) hybrid production. The commercial exploitation of heterosis in such F(1) hybrids leads to the development of hybrid seed companies and subsequently to the GM revolution in agriculture. This review describes the range of techniques available for the isolation or induction of haploids and discusses their value in a range of areas, from fundamental research on mutant isolation and transformation, through to applied aspects of quantitative genetics and plant breeding. It will also focus on how molecular methods have been used recently to explore some of the underlying aspects of this fascinating developmental phenomenon.

  2. The Pediocin PA-1 Accessory Protein Ensures Correct Disulfide Bond Formation in the Antimicrobial Peptide Pediocin PA-1.

    PubMed

    Oppegård, Camilla; Fimland, Gunnar; Anonsen, Jan Haug; Nissen-Meyer, Jon

    2015-05-19

    Peptides, in contrast to proteins, are generally not large enough to form stable and well-defined three-dimensional structures. However, peptides are still able to form correct disulfide bonds. Using pediocin-like bacteriocins, we have examined how this may be achieved. Some pediocin-like bacteriocins, such as pediocin PA-1 and sakacin P[N24C+44C], have four cysteines. There are three possible ways by which the four cysteines may combine to form two disulfide bonds, and the three variants are expected to be produced in approximately equal amounts if their formation is random. Pediocin PA-1 and sakacin P[N24C+44C] with correct disulfide bonds were the main products when they were secreted by the pediocin PA-1 ABC transporter and accessory protein, but when they were secreted by the corresponding secretion machinery for sakacin A, a pediocin-like bacteriocin with one disulfide bond (two cysteines), peptides with all three possible disulfide bonds were produced in approximately equal amounts. All five cysteines in the pediocin PA-1 ABC transporter and the two cysteines (that form a CxxC motif) in the accessory protein were individually replaced with serines to examine their involvement in disulfide bond formation in pediocin PA-1. The Cys86Ser mutation in the accessory protein caused a 2-fold decrease in the amount of pediocin PA-1 with correct disulfide bonds, while the Cys83Ser mutation nearly abolished the production of pediocin PA-1 and resulted in the production of all three disufide bond variants in equal amounts. The Cys19Ser mutation in the ABC transporter completely abolished secretion of pediocin PA-1, suggesting that Cys19 is in the proteolytic active site and involved in cleaving the prebacteriocin. Replacing the other four cysteines in the ABC transporter with serines caused a slight reduction in the overall amount of secreted pediocin PA-1, but the relative amount with the correct disulfide bonds remained large. These results indicate that the pediocin

  3. Competing Discourses about Youth Sexual Exploitation in Canadian News Media

    PubMed Central

    Saewyc, Elizabeth M.; Miller, Bonnie B.; Rivers, Robert; Matthews, Jennifer; Hilario, Carla; Hirakata, Pam

    2015-01-01

    Media holds the power to create, maintain, or break down stigmatizing attitudes, which affect policies, funding, and services. To understand how Canadian news media depicts the commercial sexual exploitation of children and youth, we examined 835 Canadian newspaper articles from 1989–2008 using a mixed methods critical discourse analysis approach, comparing representations to existing research about sexually exploited youth. Despite research evidence that equal rates of boys and girls experience exploitation, Canadian news media depicted exploited youth predominantly as heterosexual girls, and described them alternately as victims or workers in a trade, often both in the same story. News media mentioned exploiters far less often than victims, and portrayed them almost exclusively as male, most often called ‘customers’ or ‘consumers,’ and occasionally ‘predators’; in contrast, research has documented the majority of sexually exploited boys report female exploiters. Few news stories over the past two decades portrayed the diversity of victims, perpetrators, and venues of exploitation reported in research. The focus on victims but not exploiters helps perpetuate stereotypes of sexual exploitation as business or a ‘victimless crime,’ maintains the status quo, and blurs responsibility for protecting youth under the UN Convention on the Rights of the Child. Health care providers and researchers can be advocates for accuracy in media coverage about sexual exploitation; news reporters and editors should focus on exploiters more than victims, draw on existing research evidence to avoid perpetuating stereotypes, and use accurate terms, such as commercial sexual exploitation, rather than terms related to business or trade. PMID:26793015

  4. Atomically Thin-Layered Molybdenum Disulfide (MoS2) for Bulk-Heterojunction Solar Cells.

    PubMed

    Singh, Eric; Kim, Ki Seok; Yeom, Geun Young; Nalwa, Hari Singh

    2017-02-01

    Transition metal dichalcogenides (TMDs) are becoming significant because of their interesting semiconducting and photonic properties. In particular, TMDs such as molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2), tungsten disulfide (WS2), tungsten diselenide (WSe2), titanium disulfide (TiS2), tantalum sulfide (TaS2), and niobium selenide (NbSe2) are increasingly attracting attention for their applications in solar cell devices. In this review, we give a brief introduction to TMDs with a focus on MoS2; and thereafter, emphasize the role of atomically thin MoS2 layers in fabricating solar cell devices, including bulk-heterojunction, organic, and perovskites-based solar cells. Layered MoS2 has been used as the hole-transport layer (HTL), electron-transport layer (ETL), interfacial layer, and protective layer in fabricating heterojunction solar cells. The trilayer graphene/MoS2/n-Si solar cell devices exhibit a power-conversion efficiency of 11.1%. The effects of plasma and chemical doping on the photovoltaic performance of MoS2 solar cells have been analyzed. After doping and electrical gating, a power-conversion efficiency (PCE) of 9.03% has been observed for the MoS2/h-BN/GaAs heterostructure solar cells. The MoS2-containing perovskites-based solar cells show a PCE as high as 13.3%. The PCE of MoS2-based organic solar cells exceeds 8.40%. The stability of MoS2 solar cells measured under ambient conditions and light illumination has been discussed. The MoS2-based materials show a great potential for solar cell devices along with high PCE; however, in this connection, their long-term environmental stability is also of equal importance for commercial applications.

  5. Disulfide cross-linking influences symbiotic activities of nodule peptide NCR247

    PubMed Central

    Shabab, Mohammed; Arnold, Markus F. F.; Penterman, Jon; Wommack, Andrew J.; Bocker, Hartmut T.; Price, Paul A.; Griffitts, Joel S.; Nolan, Elizabeth M.; Walker, Graham C.

    2016-01-01

    Interactions of rhizobia with legumes establish the chronic intracellular infection that underlies symbiosis. Within nodules of inverted repeat-lacking clade (IRLC) legumes, rhizobia differentiate into nitrogen-fixing bacteroids. This terminal differentiation is driven by host nodule-specific cysteine-rich (NCR) peptides that orchestrate the adaptation of free-living bacteria into intracellular residents. Medicago truncatula encodes a family of >700 NCR peptides that have conserved cysteine motifs. NCR247 is a cationic peptide with four cysteines that can form two intramolecular disulfide bonds in the oxidized forms. This peptide affects Sinorhizobium meliloti transcription, translation, and cell division at low concentrations and is antimicrobial at higher concentrations. By preparing the three possible disulfide–cross-linked NCR247 regioisomers, the reduced peptide, and a variant lacking cysteines, we performed a systematic study of the effects of intramolecular disulfide cross-linking and cysteines on the activities of an NCR peptide. The relative activities of the five NCR247 variants differed strikingly among the various bioassays, suggesting that the NCR peptide-based language used by plants to control the development of their bacterial partners during symbiosis is even greater than previously recognized. These patterns indicate that certain NCR bioactivities require cysteines whereas others do not. The results also suggest that NCR247 may exert some of its effects within the cell envelope whereas other activities occur in the cytoplasm. BacA, a membrane protein that is critical for symbiosis, provides protection against all bactericidal forms of NCR247. Oxidative folding protects NCR247 from degradation by the symbiotically relevant metalloprotease HrrP (host range restriction peptidase), suggesting that disulfide bond formation may additionally stabilize NCR peptides during symbiosis. PMID:27551097

  6. An intersubunit disulfide bridge stabilizes the tetrameric nucleoside diphosphate kinase of Aquifex aeolicus.

    PubMed

    Boissier, Fanny; Georgescauld, Florian; Moynié, Lucile; Dupuy, Jean-William; Sarger, Claude; Podar, Mircea; Lascu, Ioan; Giraud, Marie-France; Dautant, Alain

    2012-06-01

    The nucleoside diphosphate kinase (Ndk) catalyzes the reversible transfer of the γ-phosphate from nucleoside triphosphate to nucleoside diphosphate. Ndks form hexamers or two types of tetramers made of the same building block, namely, the common dimer. The secondary interfaces of the Type I tetramer found in Myxococcus xanthus Ndk and of the Type II found in Escherichia coli Ndk involve the opposite sides of subunits. Up to now, the few available structures of Ndk from thermophiles were hexameric. Here, we determined the X-ray structures of four crystal forms of the Ndk from the hyperthermophilic bacterium Aquifex aeolicus (Aa-Ndk). Aa-Ndk displays numerous features of thermostable proteins and is made of the common dimer but it is a tetramer of Type I. Indeed, the insertion of three residues in a surface-exposed spiral loop, named the Kpn-loop, leads to the formation of a two-turn α-helix that prevents both hexamer and Type II tetramer assembly. Moreover, the side chain of the cysteine at position 133, which is not present in other Ndk sequences, adopts two alternate conformations. Through the secondary interface, each one forms a disulfide bridge with the equivalent Cys133 from the neighboring subunit. This disulfide bridge was progressively broken during X-ray data collection by radiation damage. Such crosslinks counterbalance the weakness of the common-dimer interface. A 40% decrease of the kinase activity at 60°C after reduction and alkylation of the protein corroborates the structural relevance of the disulfide bridge on the tetramer assembly and enzymatic function.

  7. Determination of disulfide array and subunit structure of taste-modifying protein, miraculin.

    PubMed

    Igeta, H; Tamura, Y; Nakaya, K; Nakamura, Y; Kurihara, Y

    1991-09-20

    The taste-modifying protein, miraculin (Theerasilp, S. et al. (1989) J. Biol. Chem. 264, 6655-6659) has seven cysteine residues in a molecule composed of 191 amino acid residues. The formation of three intrachain disulfide bridges at Cys-47-Cys-92, Cys-148-Cys-159 and Cys-152-Cys-155 and one interchain disulfide bridge at Cys-138 was determined by amino acid sequencing and composition analysis of cystine-containing peptides isolated by HPLC. The presence of an interchain disulfide bridge was also supported by the fact that the cystine peptide containing Cys-138 showed a negative color test for the free sulfhydryl group and a positive test after reduction with dithiothreitol. The molecular mass of non-reduced miraculin (43 kDa) in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was nearly twice the calculated molecular mass based on the amino acid sequence and the carbohydrate content of reduced miraculin (25 kDa). The molecular mass of native miraculin determined by low-angle laser light scattering was 90 kDa. Application of a crude extract of miraculin to a Sephadex G-75 column indicated that the taste-modifying activity appears at 52 kDa. It was concluded that native miraculin in pure form is a tetramer of the 25 kDa-peptide and native miraculin in crude state or denatured, non-reduced miraculin in pure form is a dimer of the peptide. Both tetramer miraculin and native dimer miraculin in crude state had the taste-modifying activity.

  8. Stability constraints and protein evolution: the role of chain length, composition and disulfide bonds.

    PubMed

    Bastolla, U; Demetrius, Lloyd

    2005-09-01

    Stability of the native state is an essential requirement in protein evolution and design. Here we investigated the interplay between chain length and stability constraints using a simple model of protein folding and a statistical study of the Protein Data Bank. We distinguish two types of stability of the native state: with respect to the unfolded state (unfolding stability) and with respect to misfolded configurations (misfolding stability). Several contributions to stability are evaluated and their correlations are disentangled through principal components analysis, with the following main results. (1) We show that longer proteins can fulfil more easily the requirements of unfolding and misfolding stability, because they have a higher number of native interactions per residue. Consistently, in longer proteins native interactions are weaker and they are less optimized with respect to non-native interactions. (2) Stability against misfolding is negatively correlated with the strength of native interactions, which is related to hydrophobicity. Hence there is a trade-off between unfolding and misfolding stability. This trade-off is influenced by protein length: less hydrophobic sequences are observed in very long proteins. (3) The number of disulfide bonds is positively correlated with the deficit of free energy stabilizing the native state. Chain length and the number of disulfide bonds per residue are negatively correlated in proteins with short chains and uncorrelated in proteins with long chains. (4) The number of salt bridges per residue and per native contact increases with chain length. We interpret these observations as an indication that the constraints imposed by unfolding stability are less demanding in long proteins and they are further reduced by the competing requirement for stability against misfolding. In particular, disulfide bonds appear to be positively selected in short proteins, whereas they evolve in an effectively neutral way in long proteins.

  9. Interactions of Methylene Blue with Human Disulfide Reductases and Their Orthologues from Plasmodium falciparum▿

    PubMed Central

    Buchholz, Kathrin; Schirmer, R. Heiner; Eubel, Jana K.; Akoachere, Monique B.; Dandekar, Thomas; Becker, Katja; Gromer, Stephan

    2008-01-01

    Methylene blue (MB) has experienced a renaissance mainly as a component of drug combinations against Plasmodium falciparum malaria. Here, we report biochemically relevant pharmacological data on MB such as rate constants for the uncatalyzed reaction of MB at pH 7.4 with cellular reductants like NAD(P)H (k = 4 M−1 s−1), thioredoxins (k = 8.5 to 26 M−1 s−1), dihydrolipoamide (k = 53 M−1 s−1), and slowly reacting glutathione. As the disulfide reductases are prominent targets of MB, optical tests for enzymes reducing MB at the expense of NAD(P)H under aerobic conditions were developed. The product leucomethylene blue (leucoMB) is auto-oxidized back to MB at pH 7 but can be stabilized by enzymes at pH 5.0, which makes this colorless compound an interesting drug candidate. MB was found to be an inhibitor and/or a redox-cycling substrate of mammalian and P. falciparum disulfide reductases, with the kcat values ranging from 0.03 s−1 to 10 s−1 at 25°C. Kinetic spectroscopy of mutagenized glutathione reductase indicates that MB reduction is conducted by enzyme-bound reduced flavin rather than by the active-site dithiol Cys58/Cys63. The enzyme-catalyzed reduction of MB and subsequent auto-oxidation of the product leucoMB mean that MB is a redox-cycling agent which produces H2O2 at the expense of O2 and of NAD(P)H in each cycle, turning the antioxidant disulfide reductases into pro-oxidant enzymes. This explains the terms subversive substrate or turncoat inhibitor for MB. The results are discussed in cell-pathological and clinical contexts. PMID:17967916

  10. Blastomyces Virulence Adhesin-1 Protein Binding to Glycosaminoglycans Is Enhanced by Protein Disulfide Isomerase

    PubMed Central

    Beaussart, Audrey; Brandhorst, Tristan

    2015-01-01

    ABSTRACT Blastomyces adhesin-1 (BAD-1) protein mediates the virulence of the yeast Blastomyces dermatitidis, in part by binding host lung tissue, the extracellular matrix, and cellular receptors via glycosaminoglycans (GAGs), such as heparan sulfate. The tandem repeats that make up over 90% of BAD-1 appear in their native state to be tightly folded into an inactive conformation, but recent work has shown that they become activated and adhesive upon reduction of a disulfide linkage. Here, atomic force microscopy (AFM) of a single BAD-1 molecule interacting with immobilized heparin revealed that binding is enhanced upon treatment with protein disulfide isomerase and dithiothreitol (PDI/DTT). PDI/DTT treatment of BAD-1 induced a plateau effect in atomic force signatures that was consistent with sequential rupture of tandem binding domains. Inhibition of PDI in murine macrophages blunted BAD-1 binding to heparin in vitro. Based on AFM, we found that a short Cardin-Weintraub sequence paired with a WxxWxxW sequence in the first, degenerate repeat at the N terminus of BAD-1 was sufficient to initiate heparin binding. Removal of half of the 41 BAD-1 tandem repeats led to weaker adhesion, illustrating their role in enhanced binding. Mass spectroscopy of the tandem repeat revealed that the PDI-induced interaction with heparin is characterized by ruptured disulfide bonds and that cysteine thiols remain reduced. Further binding studies showed direct involvement of thiols in heparin ligation. Thus, we propose that the N-terminal domain of BAD-1 governs the initial association with host GAGs and that proximity to GAG-associated host PDI catalyzes activation of additional binding motifs conserved within the tandem repeats, leading to enhanced avidity and availability of reduced thiols. PMID:26396244

  11. Molecular characterization and expression profiling of the protein disulfide isomerase gene family in Brachypodium distachyon L.

    PubMed

    Zhu, Chong; Luo, Nana; He, Miao; Chen, Guanxing; Zhu, Jiantang; Yin, Guangjun; Li, Xiaohui; Hu, Yingkao; Li, Jiarui; Yan, Yueming

    2014-01-01

    Protein disulfide isomerases (PDI) are involved in catalyzing protein disulfide bonding and isomerization in the endoplasmic reticulum and functions as a chaperone to inhibit the aggregation of misfolded proteins. Brachypodium distachyon is a widely used model plant for temperate grass species such as wheat and barley. In this work, we report the first molecular characterization, phylogenies, and expression profiles of PDI and PDI-like (PDIL) genes in B. distachyon in different tissues under various abiotic stresses. Eleven PDI and PDIL genes in the B. distachyon genome by in silico identification were evenly distributed across all five chromosomes. The plant PDI family has three conserved motifs that are involved in catalyzing protein disulfide bonding and isomerization, but a different exon/intron structural organization showed a high degree of structural differentiation. Two pairs of genes (BdPDIL4-1 and BdPDIL4-2; BdPDIL7-1 and BdPDIL7-2) contained segmental duplications, indicating each pair originated from one progenitor. Promoter analysis showed that Brachypodium PDI family members contained important cis-acting regulatory elements involved in seed storage protein synthesis and diverse stress response. All Brachypodium PDI genes investigated were ubiquitously expressed in different organs, but differentiation in expression levels among different genes and organs was clear. BdPDIL1-1 and BdPDIL5-1 were expressed abundantly in developing grains, suggesting that they have important roles in synthesis and accumulation of seed storage proteins. Diverse treatments (drought, salt, ABA, and H2O2) induced up- and down-regulated expression of Brachypodium PDI genes in seedling leaves. Interestingly, BdPDIL1-1 displayed significantly up-regulated expression following all abiotic stress treatments, indicating that it could be involved in multiple stress responses. Our results provide new insights into the structural and functional characteristics of the plant PDI gene

  12. Radically different thioredoxin domain arrangement of ERp46, an efficient disulfide bond introducer of the mammalian PDI family.

    PubMed

    Kojima, Rieko; Okumura, Masaki; Masui, Shoji; Kanemura, Shingo; Inoue, Michio; Saiki, Masatoshi; Yamaguchi, Hiroshi; Hikima, Takaaki; Suzuki, Mamoru; Akiyama, Shuji; Inaba, Kenji

    2014-03-04

    The mammalian endoplasmic reticulum (ER) contains a diverse oxidative protein folding network in which ERp46, a member of the protein disulfide isomerase (PDI) family, serves as an efficient disulfide bond introducer together with Peroxiredoxin-4 (Prx4). We revealed a radically different molecular architecture of ERp46, in which the N-terminal two thioredoxin (Trx) domains with positively charged patches near their peptide-binding site and the C-terminal Trx are linked by unusually long loops and arranged extendedly, forming an opened V-shape. Whereas PDI catalyzes native disulfide bond formation by the cooperative action of two mutually facing redox-active sites on folding intermediates bound to the central cleft, ERp46 Trx domains are separated, act independently, and engage in rapid but promiscuous disulfide bond formation during early oxidative protein folding. Thus, multiple PDI family members likely contribute to different stages of oxidative folding and work cooperatively to ensure the efficient production of multi-disulfide proteins in the ER.

  13. Stabilizing the integrin alpha M inserted domain in alternative conformations with a range of engineered disulfide bonds.

    PubMed

    Shimaoka, Motomu; Lu, Chafen; Salas, Azucena; Xiao, Tsan; Takagi, Junichi; Springer, Timothy A

    2002-12-24

    Conformational movement of the C-terminal alpha7 helix in the integrin inserted (I) domain, a major ligand-binding domain that adopts an alpha/beta Rossmann fold, has been proposed to allosterically regulate ligand-binding activity. Disulfide bonds were engineered here to reversibly lock the position of the alpha7 helix in one of two alternative conformations seen in crystal structures, termed open and closed. Our results show that pairs of residues with Cbeta atoms farther apart than optimal for disulfide bond stereochemistry can be successfully replaced by cysteine, suggesting that backbone movement accommodates disulfide formation. We also find more success with substituting partially exposed than buried residues. Disulfides stabilizing the open conformation resulted in constitutively active alphaMbeta2 heterodimers and isolated alphaM inserted domains, which were reverted to an inactive form by dithiothreitol reduction. By contrast, a disulfide stabilizing the closed conformation resulted in inactive alphaMbeta2 that was resistant to activation but became activatable after dithiothreitol treatment.

  14. Genetic Selection for Enhanced Folding In Vivo Targets the Cys14-Cys38 Disulfide Bond in Bovine Pancreatic Trypsin Inhibitor

    PubMed Central

    Foit, Linda; Mueller-Schickert, Antje; Mamathambika, Bharath S.; Gleiter, Stefan; Klaska, Caitlyn L.; Ren, Guoping

    2011-01-01

    Abstract The periplasm provides a strongly oxidizing environment; however, periplasmic expression of proteins with disulfide bonds is often inefficient. Here, we used two different tripartite fusion systems to perform in vivo selections for mutants of the model protein bovine pancreatic trypsin inhibitor (BPTI) with the aim of enhancing its expression in Escherichia coli. This trypsin inhibitor contains three disulfides that contribute to its extreme stability and protease resistance. The mutants we isolated for increased expression appear to act by eliminating or destabilizing the Cys14-Cys38 disulfide in BPTI. In doing so, they are expected to reduce or eliminate kinetic traps that exist within the well characterized in vitro folding pathway of BPTI. These results suggest that elimination or destabilization of a disulfide bond whose formation is problematic in vitro can enhance in vivo protein folding. The use of these in vivo selections may prove a valuable way to identify and eliminate disulfides and other rate-limiting steps in the folding of proteins, including those proteins whose in vitro folding pathways are unknown. Antioxid. Redox Signal. 14, 973–984. PMID:21110786

  15. A disulfide bond in the TIM23 complex is crucial for voltage gating and mitochondrial protein import

    PubMed Central

    Peleh, Valentina; Martinez-Caballero, Sonia; Sommer, Frederik; van der Laan, Martin; Schroda, Michael

    2016-01-01

    Tim17 is a central, membrane-embedded subunit of the mitochondrial protein import machinery. In this study, we show that Tim17 contains a pair of highly conserved cysteine residues that form a structural disulfide bond exposed to the intermembrane space (IMS). This disulfide bond is critical for efficient protein translocation through the TIM23 complex and for dynamic gating of its preprotein-conducting channel. The disulfide bond in Tim17 is formed during insertion of the protein into the inner membrane. Whereas the import of Tim17 depends on the binding to the IMS protein Mia40, the oxidoreductase activity of Mia40 is surprisingly dispensable for Tim17 oxidation. Our observations suggest that Tim17 can be directly oxidized by the sulfhydryl oxidase Erv1. Thus, import and oxidation of Tim17 are mediated by the mitochondrial disulfide relay, though the mechanism by which the disulfide bond in Tim17 is formed differs considerably from that of soluble IMS proteins. PMID:27502485

  16. Native disulfide bonds in plasma retinol-binding protein are not essential for all-trans-retinol-binding activity.

    PubMed

    Reznik, Gabriel O; Yu, Yong; Tarr, George E; Cantor, Charles R

    2003-01-01

    A human plasma retinol-binding protein (RBP) mutant, named RBP-S, has been designed and produced in which the six native cysteine residues, involved in the formation of three disulfide bonds, have been replaced with serine. A hexa-histidine tag was also added to the C-terminus of RBP for ease of purification. The removal of the disulfide bonds led to a decrease in the affinity of RBP for all trans-retinol. Data indicates all-trans-retinol binds RBP and RBP-S with Kd = 4 x 10(-8) M and 1 x 10(-7) M, respectively, at approximately 20 degrees C. RBP-S has reduced stability as compared to natural RBP below pH 8.0 and at room temperature. Circular dichroism in the far-UV shows that there is a relaxation of the RBP structure upon the removal of its disulfide bonds. Circular dichroism in the near-UV shows that in the absence of the disulfide bonds, the optical activity of RBP is higher in the 310-330 nm than in the 280-290 nm range. This work suggests that the three native disulfide bonds aid in the folding of RBP but are not essential to produce a soluble, active protein.

  17. A disulfide bond in the TIM23 complex is crucial for voltage gating and mitochondrial protein import.

    PubMed

    Ramesh, Ajay; Peleh, Valentina; Martinez-Caballero, Sonia; Wollweber, Florian; Sommer, Frederik; van der Laan, Martin; Schroda, Michael; Alexander, R Todd; Campo, María Luisa; Herrmann, Johannes M

    2016-08-15

    Tim17 is a central, membrane-embedded subunit of the mitochondrial protein import machinery. In this study, we show that Tim17 contains a pair of highly conserved cysteine residues that form a structural disulfide bond exposed to the intermembrane space (IMS). This disulfide bond is critical for efficient protein translocation through the TIM23 complex and for dynamic gating of its preprotein-conducting channel. The disulfide bond in Tim17 is formed during insertion of the protein into the inner membrane. Whereas the import of Tim17 depends on the binding to the IMS protein Mia40, the oxidoreductase activity of Mia40 is surprisingly dispensable for Tim17 oxidation. Our observations suggest that Tim17 can be directly oxidized by the sulfhydryl oxidase Erv1. Thus, import and oxidation of Tim17 are mediated by the mitochondrial disulfide relay, though the mechanism by which the disulfide bond in Tim17 is formed differs considerably from that of soluble IMS proteins.

  18. Protein disulfide isomerase acts as an injury response signal that enhances fibrin generation via tissue factor activation

    PubMed Central

    Reinhardt, Christoph; von Brühl, Marie-Luise; Manukyan, Davit; Grahl, Lenka; Lorenz, Michael; Altmann, Berid; Dlugai, Silke; Hess, Sonja; Konrad, Ildiko; Orschiedt, Lena; Mackman, Nigel; Ruddock, Lloyd; Massberg, Steffen; Engelmann, Bernd

    2008-01-01

    The activation of initiator protein tissue factor (TF) is likely to be a crucial step in the blood coagulation process, which leads to fibrin formation. The stimuli responsible for inducing TF activation are largely undefined. Here we show that the oxidoreductase protein disulfide isomerase (PDI) directly promotes TF-dependent fibrin production during thrombus formation in vivo. After endothelial denudation of mouse carotid arteries, PDI was released at the injury site from adherent platelets and disrupted vessel wall cells. Inhibition of PDI decreased TF-triggered fibrin formation in different in vivo murine models of thrombus formation, as determined by intravital fluorescence microscopy. PDI infusion increased — and, under conditions of decreased platelet adhesion, PDI inhibition reduced — fibrin generation at the injury site, indicating that PDI can directly initiate blood coagulation. In vitro, human platelet–secreted PDI contributed to the activation of cryptic TF on microvesicles (microparticles). Mass spectrometry analyses indicated that part of the extracellular cysteine 209 of TF was constitutively glutathionylated. Mixed disulfide formation contributed to maintaining TF in a state of low functionality. We propose that reduced PDI activates TF by isomerization of a mixed disulfide and a free thiol to an intramolecular disulfide. Our findings suggest that disulfide isomerases can act as injury response signals that trigger the activation of fibrin formation following vessel injury. PMID:18274674

  19. Improved thermal performance of Thermomyces lanuginosus GH11 xylanase by engineering of an N-terminal disulfide bridge.

    PubMed

    Wang, Yawei; Fu, Zheng; Huang, Huoqing; Zhang, Huashan; Yao, Bin; Xiong, Hairong; Turunen, Ossi

    2012-05-01

    In order to increase the stability of thermophilic Thermomyces lanuginosus GH11 xylanase, TLX, a disulfide bridge Q1C-Q24C was introduced into the N-terminal region of the enzyme. The apparent temperature optimum shifted upwards at pH 6.5 by about 10°C to 75°C. The resistance to thermal inactivation also increased by about 10°C. The melting temperature measured by CD spectroscopy increased from 66 to 74°C. Therefore the N-terminal disulfide bridge increased both kinetic and thermodynamic stability almost equally. At pH 8 and 70°C, the disulfide bridge increased the enzyme half-life 20-fold in the presence of substrate. In contrast to the situation in acidic-neutral pH, the substrate decreased the thermostability of xylanases in alkaline pH. The upper limit for the performance of the disulfide bridge mutant at pH 9 was 75°C. This study showed that N-terminal disulfide bridges can stabilize even thermostable family GH11 xylanases.

  20. Characterization of an alternative low energy fold for bovine α-lactalbumin formed by disulfide bond shuffling.

    PubMed

    Lewney, Sarah; Smith, Lorna J

    2012-03-01

    Bovine α-lactalbumin (αLA) forms a misfolded disulfide bond shuffled isomer, X-αLA. This X-αLA isomer contains two native disulfide bridges (Cys 6-Cys 120 and Cys 28-Cys 111) and two non-native disulfide bridges (Cys 61-Cys 73 and Cys 77-Cys 91). MD simulations have been used to characterize the X-αLA isomer and its formation via disulfide bond shuffling and to compare it with the native fold of αLA. In the simulations of the X-αLA isomer the structure of the α-domain of native αLA is largely retained in agreement with experimental data. However, there are significant rearrangements in the β-domain, including the loss of the native β-sheet and calcium binding site. Interestingly, the energies of X-αLA and native αLA in simulations in the absence of calcium are closely similar. Thus, the X-αLA isomer represents a different low energy fold for the protein. Calcium binding to native αLA is shown to help preserve the structure of the β-domain of the protein limiting possibilities for disulfide bond shuffling. Hence, binding calcium plays an important role in both maintaining the native structure of αLA and providing a mechanism for distinguishing between folded and misfolded species.

  1. Antagonistic effect of disulfide-rich peptide aptamers selected by cDNA display on interleukin-6-dependent cell proliferation

    SciTech Connect

    Nemoto, Naoto; Tsutsui, Chihiro; Yamaguchi, Junichi; Ueno, Shingo; Machida, Masayuki; Kobayashi, Toshikatsu; Sakai, Takafumi

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Disulfide-rich peptide aptamer inhibits IL-6-dependent cell proliferation. Black-Right-Pointing-Pointer Disulfide bond of peptide aptamer is essential for its affinity to IL-6R. Black-Right-Pointing-Pointer Inhibitory effect of peptide depends on number and pattern of its disulfide bonds. -- Abstract: Several engineered protein scaffolds have been developed recently to circumvent particular disadvantages of antibodies such as their large size and complex composition, low stability, and high production costs. We previously identified peptide aptamers containing one or two disulfide-bonds as an alternative ligand to the interleukin-6 receptor (IL-6R). Peptide aptamers (32 amino acids in length) were screened from a random peptide library by in vitro peptide selection using the evolutionary molecular engineering method 'cDNA display'. In this report, the antagonistic activity of the peptide aptamers were examined by an in vitro competition enzyme-linked immunosorbent assay (ELISA) and an IL-6-dependent cell proliferation assay. The results revealed that a disulfide-rich peptide aptamer inhibited IL-6-dependent cell proliferation with similar efficacy to an anti-IL-6R monoclonal antibody.

  2. CD44 Binding to Hyaluronic Acid Is Redox Regulated by a Labile Disulfide Bond in the Hyaluronic Acid Binding Site

    PubMed Central

    Kellett-Clarke, Helena; Stegmann, Monika; Barclay, A. Neil; Metcalfe, Clive

    2015-01-01

    CD44 is the primary leukocyte cell surface receptor for hyaluronic acid (HA), a component of the extracellular matrix. Enzymatic post translational cleavage of labile disulfide bonds is a mechanism by which proteins are structurally regulated by imparting an allosteric change and altering activity. We have identified one such disulfide bond in CD44 formed by Cys77 and Cys97 that stabilises the HA binding groove. This bond is labile on the surface of leukocytes treated with chemical and enzymatic reducing agents. Analysis of CD44 crystal structures reveal the disulfide bond to be solvent accessible and in the–LH hook configuration characteristic of labile disulfide bonds. Kinetic trapping and binding experiments on CD44-Fc chimeric proteins show the bond is preferentially reduced over the other disulfide bonds in CD44 and reduction inhibits the CD44-HA interaction. Furthermore cells transfected with CD44 no longer adhere to HA coated surfaces after pre-treatment with reducing agents. The implications of CD44 redox regulation are discussed in the context of immune function, disease and therapeutic strategies. PMID:26379032

  3. A vibrational spectroscopic assignment of the disulfide bridges in recombinant bovine growth hormone and growth hormone analogs

    NASA Astrophysics Data System (ADS)

    Thamann, Thomas J.

    1999-07-01

    Disulfide stretching vibrations for bovine growth hormone (bGH) occur in a vibrational envelope centered at 540 cm -1 which spans 480-580 cm -1. A multitude of vibrational bands present in this envelope, that are not related to disulfide stretching, emphasize the need for model compounds when assigning S-S stretching modes. Raman spectroscopic data for bGH analogs, in which one or both of the two disulfide bridges have been selectively cleaved, have been used to characterize the S-S stretching envelope for the two cystine links in bGH. The Raman data for the r-bGH analogs indicate that the number of disulfide bonds present in r-bGH is determined, not by the observance of the presence or absence of a single spectral peak, but by the relative intensity of vibrational envelope from 520-560 cm -1. Cleavage of disulfide bridges in bGH results in a general decrease in vibrational spectral intensity in the 520-560 cm -1 range. This decrease in intensity is proportional to the number of cystine links severed.

  4. Structure-activity relationships of the intramolecular disulfide bonds in coprisin, a defensin from the dung beetle

    PubMed Central

    Lee, Daeun; Choi, Hyemin; Kim, Ha Hyung; Kim, Ho; Hwang, Jae Sam; Lee, Dong Gun; Kim, Jae Il

    2014-01-01

    Defensins, which are small cationic molecules produced by organisms as part of their innate immune response, share a common structural scaffold that is stabilized by three disulfide bridges. Coprisin is a 43-amino acid defensin-like peptide from Copris tripartitus. Here, we report the intramolecular disulfide connectivity of cysteine-rich coprisin, and show that it is the same as in other insect defensins. The disulfide bond pairings of coprisin were determined by combining the enzymatic cleavage and mass analysis. We found that the loss of any single disulfide bond in coprisin eliminated all antibacterial, but not antifungal, activity. Circular dichroism (CD) analysis showed that two disulfide bonds, Cys20-Cys39 and Cys24-Cys41, stabilize coprisin’s α-helical region. Moreover, a BLAST search against UniProtKB database revealed that coprisin’s α-helical region is highly homologous to those of other insect defensins. [BMB Reports 2014; 47(11): 625-630] PMID:24393527

  5. Redox-coupled structural changes of the catalytic a' domain of protein disulfide isomerase.

    PubMed

    Inagaki, Koya; Satoh, Tadashi; Yagi-Utsumi, Maho; Le Gulluche, Anne-Charlotte; Anzai, Takahiro; Uekusa, Yoshinori; Kamiya, Yukiko; Kato, Koichi

    2015-09-14

    Protein disulfide isomerase functions as a folding catalyst in the endoplasmic reticulum. Its b' and a' domains provide substrate-binding sites and undergo a redox-dependent domain rearrangement coupled to an open-closed structural change. Here we determined the first solution structure of the a' domain in its oxidized form and thereby demonstrate that oxidation of the a' domain induces significant conformational changes not only in the vicinity of the active site but also in the distal b'-interfacial segment. Based on these findings, we propose that this conformational transition triggers the domain segregation coupled with the exposure of the hydrophobic surface.

  6. Redox-dependent domain rearrangement of protein disulfide isomerase from a thermophilic fungus.

    PubMed

    Nakasako, Masayoshi; Maeno, Aya; Kurimoto, Eiji; Harada, Takushi; Yamaguchi, Yoshiki; Oka, Toshihiko; Takayama, Yuki; Iwata, Aya; Kato, Koichi

    2010-08-17

    Protein disulfide isomerase (PDI) acts as folding catalyst and molecular chaperone for disulfide-containing proteins through the formation, breakage, and rearrangement of disulfide bonds. PDI has a modular structure comprising four thioredoxin domains, a, b, b', and a', followed by a short segment, c. The a and a' domains have an active site cysteine pair for the thiol-disulfide exchange reaction, which alters PDI between the reduced and oxidized forms, and the b' domain provides a primary binding site for substrate proteins. Although the structures and functions of PDI have studied, it is still argued whether the overall conformation of PDI depends on the redox state of the active site cysteine pair. Here, we report redox-dependent conformational and solvation changes of PDI from a thermophilic fungus elucidated by small-angle X-ray scattering (SAXS) analysis. The redox state and secondary structures of PDI were also characterized by nuclear magnetic resonance and circular dichroic spectroscopy, respectively. The oxidized form of PDI showed SAXS differences from the reduced form, and the low-resolution molecular models restored from the SAXS profiles differed between the two forms regarding the positions of the a'-c region relative to the a-b-b' region. The normal mode analysis of the crystal structure of yeast PDI revealed that the inherent motions of the a-b-b' and a'-c regions expose the substrate binding surface of the b' domain. The apparent molecular weight of the oxidized form estimated from SAXS was 1.1 times larger than that of the reduced form, whereas the radius of gyration (ca. 33 A) was nearly independent of the redox state. These results suggest that the conformation of PDI is controlled by the redox state of the active site cysteine residues in the a and a' domains and that the conformational alternation accompanies solvation changes in the active site cleft formed by the a, b, b', and a' domains. On the basis of the results presented here, we

  7. The electronic and optical properties of Tungsten Disulfide under high pressure

    NASA Astrophysics Data System (ADS)

    Shang, Jimin; Chen, Peng; Zhang, Lamei; Zhai, Fengxiao; Cheng, Xuerui

    2016-05-01

    Using first principles calculations, we have investigated the pressure effects on the electronic and optical properties of Tungsten Disulfide. The results show that the lattice out plane is more sensitive to the pressure than that in plane. In addition, the conduction band maximum drops down and the valence band minimum shifts up with respect to the Fermi level, respectively. Semiconductor to metal transition occurs at a critical pressure (∼36 GPa). Moreover, the dielectric function also has an obviously red shift, and the optical absorption can be improved accordingly. Our study supplies a route to optimize the performance of WS2 devices.

  8. A Facile and Efficient Approach for the Production of Reversible Disulfide Cross-linked Micelles.

    PubMed

    Li, Yuanpei; Bharadwaj, Gaurav; Lee, Joyce S

    2016-12-23

    Nanomedicine is an emerging form of therapy that harnesses the unique properties of particles that are nanometers in scale for biomedical application. Improving drug delivery to maximize therapeutic outcomes and to reduce drug-associated side effects are some of the cornerstones of present-day nanomedicine. Nanoparticles in particular have found a wide application in cancer treatment. Nanoparticles that offer a high degree of flexibility in design, application, and production based on the tumor microenvironment are projected to be more effective with rapid translation into clinical practice. The polymeric micellar nano-carrier is a popular choice for drug delivery applications. In this article, we describe a simple and effective protocol for synthesizing drug-loaded, disulfide cross-linked micelles based on the self-assembly of a well-defined amphiphilic linear-dendritic copolymer (telodendrimer, TD). TD is composed of polyethylene glycol (PEG) as the hydrophilic segment and a thiolated cholic acid cluster as the core-forming hydrophobic moiety attached stepwise to an amine-terminated PEG using solution-based peptide chemistry. Chemotherapy drugs, such as paclitaxel (PTX), can be loaded using a standard solvent evaporation method. The O2-mediated oxidation was previously utilized to form intra-micellar disulfide cross-links from free thiol groups on the TDs. However, the reaction was slow and not feasible for large-scale production. Recently, an H2O2-mediated oxidation method was explored as a more feasible and efficient approach, and it was 96 times faster than the previously reported method. Using this approach, 50 g of PTX-loaded, disulfide cross-linked nanoparticles have been successfully produced with narrow particle size distribution and high drug loading efficiency. The stability of the resulting micelle solution is analyzed using disrupting conditions such as co-incubation with a detergent, sodium dodecyl sulfate, with or without a reducing agent. The drug

  9. Coupling of disulfide bond and distal histidine dissociation in human ferrous cytoglobin regulates ligand binding.

    PubMed

    Beckerson, Penny; Reeder, Brandon J; Wilson, Michael T

    2015-02-13

    Earlier kinetics studies on cytoglobin did not assign functional properties to specific structural forms. Here, we used defined monomeric and dimeric forms and cysteine mutants to show that an intramolecular disulfide bond (C38-C83) alters the dissociation rate constant of the intrinsic histidine (H81) (∼1000 fold), thus controlling binding of extrinsic ligands. Through time-resolved spectra we have unequivocally assigned CO binding to hexa- and penta-coordinate forms and have made direct measurement of histidine rebinding following photolysis. We present a model that describes how the cysteine redox state of the monomer controls histidine dissociation rate constants and hence extrinsic ligand binding.

  10. Localization of the labile disulfide bond between SU and TM of the murine leukemia virus envelope protein complex to a highly conserved CWLC motif in SU that resembles the active-site sequence of thiol-disulfide exchange enzymes.

    PubMed Central

    Pinter, A; Kopelman, R; Li, Z; Kayman, S C; Sanders, D A

    1997-01-01

    Previous studies have indicated that the surface (SU) and transmembrane (TM) subunits of the envelope protein (Env) of murine leukemia viruses (MuLVs) are joined by a labile disulfide bond that can be stabilized by treatment of virions with thiol-specific reagents. In the present study this observation was extended to the Envs of additional classes of MuLV, and the cysteines of SU involved in this linkage were mapped by proteolytic fragmentation analyses to the CWLC sequence present at the beginning of the C-terminal domain of SU. This sequence is highly conserved across a broad range of distantly related retroviruses and resembles the CXXC motif present at the active site of thiol-disulfide exchange enzymes. A model is proposed in which rearrangements of the SU-TM intersubunit disulfide linkage, mediated by the CWLC sequence, play roles in the assembly and function of the Env complex. PMID:9311907

  11. Against Permitted Exploitation in Developing World Research Agreements.

    PubMed

    Wenner, Danielle M

    2016-04-01

    This paper examines the moral force of exploitation in developing world research agreements. Taking for granted that some clinical research which is conducted in the developing world but funded by developed world sponsors is exploitative, it asks whether a third party would be morally justified in enforcing limits on research agreements in order to ensure more fair and less exploitative outcomes. This question is particularly relevant when such exploitative transactions are entered into voluntarily by all relevant parties, and both research sponsors and host communities benefit from the resulting agreements. I show that defenders of the claim that exploitation ought to be permitted rely on a mischaracterization of certain forms of interference as unjustly paternalistic and two dubious empirical assumptions about the results of regulation. The view I put forward is that by evaluating a system of constraints on international research agreements, rather than individual transaction-level interference, we can better assess the alternatives to permitting exploitative research agreements.

  12. Exploiting Untapped Information Resources in Earth Science

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Fox, P. A.; Kempler, S.; Maskey, M.

    2015-12-01

    One of the continuing challenges in any Earth science investigation is the amount of time and effort required for data preparation before analysis can begin. Current Earth science data and information systems have their own shortcomings. For example, the current data search systems are designed with the assumption that researchers find data primarily by metadata searches on instrument or geophysical keywords, assuming that users have sufficient knowledge of the domain vocabulary to be able to effectively utilize the search catalogs. These systems lack support for new or interdisciplinary researchers who may be unfamiliar with the domain vocabulary or the breadth of relevant data available. There is clearly a need to innovate and evolve current data and information systems in order to improve data discovery and exploration capabilities to substantially reduce the data preparation time and effort. We assert that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for other purposes. The challenge for any organization is to recognize, identify and effectively utilize the dark data stores in their institutional repositories to better serve their stakeholders. NASA Earth science metadata catalogs contain dark resources consisting of structured information, free form descriptions of data and pre-generated images. With the addition of emerging semantic technologies, such catalogs can be fully utilized beyond their original design intent of supporting current search functionality. In this presentation, we will describe our approach of exploiting these information resources to provide novel data discovery and exploration pathways to science and education communities

  13. Exploitation of Parallelism in Climate Models

    SciTech Connect

    Baer, F.; Tribbia, J.J.; Williamson, D.L.

    1999-03-01

    The US Department of Energy (DOE), through its CHAMMP initiative, hopes to develop the capability to make meaningful regional climate forecasts on time scales exceeding a decade, such capability to be based on numerical prediction type models. We propose research to contribute to each of the specific items enumerated in the CHAMMP announcement (Notice 91-3); i.e., to consider theoretical limits to prediction of climate and climate change on appropriate time scales, to develop new mathematical techniques to utilize massively parallel processors (MPP), to actually utilize MPPs as a research tool, and to develop improved representations of some processes essential to climate prediction. In particular, our goals are to: (1) Reconfigure the prediction equations such that the time iteration process can be compressed by use of MMP architecture, and to develop appropriate algorithms. (2) Develop local subgrid scale models which can provide time and space dependent parameterization for a state- of-the-art climate model to minimize the scale resolution necessary for a climate model, and to utilize MPP capability to simultaneously integrate those subgrid models and their statistics. (3) Capitalize on the MPP architecture to study the inherent ensemble nature of the climate problem. By careful choice of initial states, many realizations of the climate system can be determined concurrently and more realistic assessments of the climate prediction can be made in a realistic time frame. To explore these initiatives, we will exploit all available computing technology, and in particular MPP machines. We anticipate that significant improvements in modeling of climate on the decadal and longer time scales for regional space scales will result from our efforts.

  14. The central nervous system effects of carbon disulfide in male albino rats utilizing the tritiated 2-deoxyglucose method

    SciTech Connect

    Wells, W.E. III.

    1989-01-01

    The methodology employed was the autoradiographic 2-deoxyglucose method. Due to the coupling between functional activity and energy metabolism, these autoradiographs can be likened to a stain for functional activity under varying physiological and pathological states. Exposure regimes consisted of intraperitoneal injections of: (1) 400 milligrams of carbon disulfide per kilogram body weight five days per week for eight weeks; (2) 600 milligrams of carbon disulfide per kilogram body weight for five consecutive days; (3) 800 milligrams of carbon disulfide per kilogram body weight for only a single injection. Qualitative and quantitative analyses of the autoradiograms were employed. Appropriate statistical techniques were then be used to test for significant differences in the optical densities of structures between experimental and control radiographs. The results indicate a significant effect across all levels of analyses for the eight week group and the five day group for the auditory and olfactory central pathways.

  15. Beyond Fair Benefits: Reconsidering Exploitation Arguments Against Organ Markets.

    PubMed

    Koplin, Julian J

    2017-02-04

    One common objection to establishing regulated live donor organ markets is that such markets would be exploitative. Perhaps surprisingly, exploitation arguments against organ markets have been widely rejected in the philosophical literature on the subject. It is often argued that concerns about exploitation should be addressed by increasing the price paid to organ sellers, not by banning the trade outright. I argue that this analysis rests on a particular conception of exploitation (which I refer to as 'fair benefits' exploitation), and outline two additional ways that the charge of exploitation can be understood (which I discuss in terms of 'fair process' exploitation and complicity in injustice). I argue that while increasing payments to organ sellers may mitigate or eliminate fair benefits exploitation, such measures will not necessarily address fair process exploitation or complicity in injustice. I further argue that each of these three forms of wrongdoing is relevant to the ethics of paid living organ donation, as well as the design of public policy more generally.

  16. Soluble expression of disulfide bond containing proteins FGF15 and FGF19 in the cytoplasm of Escherichia coli.

    PubMed

    Kong, Bo; Guo, Grace L

    2014-01-01

    Fibroblast growth factor 19 (FGF19) is the human ortholog of mouse FGF15, and both proteins function as an endocrine signal to regulate various liver functions. FGF15/FGF19 protein contains two disulfide bonds. It is unfavorable to form disulfide bonds in Escherichia coli (E. coli) cytoplasm because of the bacterial cytoplasmic reducing environment. Modification of the cytoplasmic reducing environment and/or co-expression of protein chaperones are common strategies to express disulfide bond containing proteins in E. coli. In the current study, we report a method to produce soluble FGF15/FGF19 protein in cytoplasm of E. coli. Several commercial available strains with the disruption of thiol-redox pathways, and/or co-expression of redoxase or refolding chaperones were used to develop this novel method for expression of FGF15/FGF19 in E. coli. Mutation of the thiol-disulfide bond reducing pathway in E. coli or N-terminal fusion of thioredox (TRX) alone is not enough to support disulfide bond formation in FGF15/19 proteins. However, TRX fusion protein improved FGF19 solubility in strains of thiol-redox system mutants. In addition, DsbC co-expressed in thiol-redox system mutants alone improved and further enhanced FGF19 solubility with combination of TRX fusion tag. The soluble FGF19 proteins were easily purified through Ni-NTA affinity chromatography and anion exchange chromatography, and the purified protein maintained its biological activities, confirmed by suppressing hepatic Cyp7a1 gene transcription in mice and by activating ERK1/2 signaling pathway in HepG2 cells. In contrast, soluble FGF15 protein in cytoplasm remained very low using these strategies. In summary, we have successfully developed a method to express functional FGF19 protein in prokaryotic cells, and this strategy may be adapted for the expression of other disulfide-containing proteins.

  17. Non-equilibrium thermodynamics of thiol/disulfide redox systems: A perspective on redox systems biology

    PubMed Central

    Kemp, Melissa; Go, Young-Mi; Jones, Dean P.

    2008-01-01

    Understanding the dynamics of redox elements in biologic systems remains a major challenge for redox signaling and oxidative stress research. Central redox elements include evolutionarily conserved subsets of cysteines and methionines of proteins which function as sulfur switches and labile reactive oxygen species (ROS) and reactive nitrogen species (RNS) which function in redox signaling. The sulfur switches depend upon redox environments in which rates of oxidation are balanced with rates of reduction through the thioredoxins, glutathione/glutathione disulfide and cysteine/cystine redox couples. These central couples, which we term redox control nodes, are maintained at stable but non-equilibrium steady states, are largely independently regulated in different subcellular compartments and are quasi-independent from each other within compartments. Disruption of the redox control nodes can differentially affect sulfur switches, thereby creating a diversity of oxidative stress responses. Systems biology provides approaches to address the complexity of these responses. In the present review, we summarize thiol/disulfide pathway, redox potential and rate information as a basis for kinetic modeling of sulfur switches. The summary identifies gaps in knowledge especially related to redox communication between compartments, definition of redox pathways and discrimination between types of sulfur switches. A formulation for kinetic modeling of GSH/GSSG redox control indicates that systems biology could encourage novel therapeutic approaches to protect against oxidative stress by identifying specific redox-sensitive sites which could be targeted for intervention. PMID:18155672

  18. Effect of Doping on Hydrogen Evolution Reaction of Vanadium Disulfide Monolayer.

    PubMed

    Qu, Yuanju; Pan, Hui; Kwok, Chi Tat; Wang, Zisheng

    2015-12-01

    As cheap and abundant materials, transitional metal dichalcogenide monolayers have attracted increasing interests for their application as catalysts in hydrogen production. In this work, the hydrogen evolution reduction of doped vanadium disulfide monolayers is investigated based on first-principles calculations. We find that the doping elements and concentration affect strongly the catalytic ability of the monolayer. We show that Ti-doping can efficiently reduce the Gibbs free energy of hydrogen adsorption in a wide range of hydrogen coverage. The catalytic ability of the monolayer at high hydrogen coverage can be improved by low Ti-density doping, while that at low hydrogen coverage is enhanced by moderate Ti-density doping. We further show that it is much easier to substitute the Ti atom to the V atom in the vanadium disulfide (VS2) monolayer than other transitional metal atoms considered here due to its lowest and negative formation energy. It is expected that the Ti-doped VS2 monolayer may be applicable in water electrolysis with improved efficiency.

  19. Rattusin structure reveals a novel defensin scaffold formed by intermolecular disulfide exchanges

    PubMed Central

    Min, Hye Jung; Yun, Hyosuk; Ji, Sehyeon; Rajasekaran, Ganesan; Kim, Jae Il; Kim, Jeong-Sun; Shin, Song Yub; Lee, Chul Won

    2017-01-01

    Defensin peptides are essential for innate immunity in humans and other living systems, as they provide protection against infectious pathogens and regulate the immune response. Here, we report the solution structure of rattusin (RTSN), an α-defensin-related peptide, which revealed a novel C2-symmetric disulfide-linked dimeric structure. RTSN was synthesized by solid-phase peptide synthesis (SPPS) and refolded by air oxidation in vitro. Dimerization of the refolded RTSN (r-RTSN) resulted from five intermolecular disulfide (SS) bond exchanges formed by ten cysteines within two protomer chains. The SS bond pairings of r-RTSN were determined by mass analysis of peptide fragments cleaved by trypsin digestion. In addition to mass analysis, nuclear magnetic resonance (NMR) experiments for a C15S mutant and r-RTSN confirmed that the intermolecular SS bond structure of r-RTSN showed an I-V’, II-IV’, III-III’, IV-II’, V-I’ arrangement. The overall structure of r-RTSN exhibited a cylindrical array, similar to that of β-sandwich folds, with a highly basic surface. Furthermore, fluorescence spectroscopy results suggest that r-RTSN exerts bactericidal activity by damaging membrane integrity. Collectively, these results provide a novel structural scaffold for designing highly potent peptide-based antibiotics suitable for use under various physiological conditions. PMID:28345637

  20. Polymeric redox-responsive delivery systems bearing ammonium salts cross-linked via disulfides

    PubMed Central

    2013-01-01

    Summary A redox-responsive polycationic system was synthesized via copolymerization of N,N-diethylacrylamide (DEAAm) and 2-(dimethylamino)ethyl methacrylate (DMAEMA). N,N’-bis(4-chlorobutanoyl)cystamine was used as disulfide-containing cross-linker to form networks by the quaternization of tertiary amine groups. The insoluble cationic hydrogels become soluble by reduction of disulfide to mercaptanes by use of dithiothreitol (DTT), tris(2-carboxyethyl)phosphine (TCEP) or cysteamine, respectively. The soluble polymeric system can be cross-linked again by using oxygen or hydrogen peroxide under basic conditions. The redox-responsive polymer networks can be used for molecular inclusion and controlled release. As an example, phenolphthalein, methylene blue and reactive orange 16 were included into the network. After treatment with DTT a release of the dye could be recognized. Physical properties of the cross-linked materials, e.g., glass transition temperature (T g), swelling behavior and cloud points (T c) were investigated. Redox-responsive behavior was further analyzed by rheological measurements. PMID:24062825