Sample records for exploiting interfacial water

  1. Exploiting interfacial water properties for desalination and purification applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Hongwu; Varma, Sameer; Nyman, May Devan

    2008-09-01

    A molecular-scale interpretation of interfacial processes is often downplayed in the analysis of traditional water treatment methods. However, such an approach is critical for the development of enhanced performance in traditional desalination and water treatments. Water confined between surfaces, within channels, or in pores is ubiquitous in technology and nature. Its physical and chemical properties in such environments are unpredictably different from bulk water. As a result, advances in water desalination and purification methods may be accomplished through an improved analysis of water behavior in these challenging environments using state-of-the-art microscopy, spectroscopy, experimental, and computational methods.

  2. Beyond the hydrophobic effect: Critical function of water at biological phase boundaries--A hypothesis.

    PubMed

    Damodaran, Srinivasan

    2015-07-01

    Many life-sustaining processes in living cells occur at the membrane-water interface. The pertinent questions that need to be asked are what is the evolutionary reason for biology to choose the membrane-water interface as the site for performing and/or controlling crucial biological reactions and what is the key physical principle that is singular to the membrane-water interface that biology exploits for regulating metabolic processes in cells? In this review, a hypothesis is developed, which espouses that cells control activities of membrane-bound enzymes and receptor activated processes via manipulating the thermodynamic activity of water at the membrane-water interfacial region. In support of this hypothesis, first we establish that the surface pressure of a lipid monolayer is a direct measure of a reduction in the thermodynamic activity of interfacial water. Second, we show that the surface pressure-dependent activation/inactivation of interfacial enzymes is fundamentally related to their dependence on interfacial water activity. We extend this argument to infer that cells might manipulate activities of membrane-associated biological processes via manipulating the activity of interfacial water via localized compression or expansion of the interface. In this paper, we critically analyze literature data on mechano-activation of large pore ion channels in Escherichia coli spheroplasts and G-proteins in reconstituted lipid vesicles, and show that these pressure-induced activation processes are fundamentally and quantitatively related to changes in the thermodynamic state of interfacial water, caused by mechanical stretching of the bilayer. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Water at Biological Phase Boundaries: Its Role in Interfacial Activation of Enzymes and Metabolic Pathways.

    PubMed

    Damodaran, Srinivasan

    2015-01-01

    Many life-sustaining activities in living cells occur at the membrane-water interface. The pertinent questions that we need to ask are, what are the evolutionary reasons in biology for choosing the membrane-water interface as the site for performing and/or controlling crucial biological reactions, and what is the key physical principle that is very singular to the membrane-water interface that biology exploits for regulating metabolic processes in cells? In this chapter, a hypothesis is developed, which espouses that cells control activities of membrane-bound enzymes through manipulation of the thermodynamic activity of water in the lipid-water interfacial region. The hypothesis is based on the fact that the surface pressure of a lipid monolayer is a direct measure of the thermodynamic activity of water at the lipid-water interface. Accordingly, the surface pressure-dependent activation or inactivation of interfacial enzymes is directly related to changes in the thermodynamic activity of interfacial water. Extension of this argument suggests that cells may manipulate conformations (and activities) of membrane-bound enzymes by manipulating the (re)activity of interfacial water at various locations in the membrane by localized compression or expansion of the interface. In this respect, cells may use the membrane-bound hormone receptors, lipid phase transition, and local variations in membrane lipid composition as effectors of local compression and/or expansion of membrane, and thereby local water activity. Several experimental data in the literature will be reexamined in the light of this hypothesis.

  4. Interfacial adsorption and surfactant release characteristics of magnetically functionalized halloysite nanotubes for responsive emulsions.

    PubMed

    Owoseni, Olasehinde; Nyankson, Emmanuel; Zhang, Yueheng; Adams, Daniel J; He, Jibao; Spinu, Leonard; McPherson, Gary L; Bose, Arijit; Gupta, Ram B; John, Vijay T

    2016-02-01

    Magnetically responsive oil-in-water emulsions are effectively stabilized by a halloysite nanotube supported superparamagnetic iron oxide nanoparticle system. The attachment of the magnetically functionalized halloysite nanotubes at the oil-water interface imparts magnetic responsiveness to the emulsion and provides a steric barrier to droplet coalescence leading to emulsions that are stabilized for extended periods. Interfacial structure characterization by cryogenic scanning electron microscopy reveals that the nanotubes attach at the oil-water interface in a side on-orientation. The tubular structure of the nanotubes is exploited for the encapsulation and release of surfactant species that are typical of oil spill dispersants such as dioctyl sulfosuccinate sodium salt and polyoxyethylene (20) sorbitan monooleate. The magnetically responsive halloysite nanotubes anchor to the oil-water interface stabilizing the interface and releasing the surfactants resulting in reduction in the oil-water interfacial tension. The synergistic adsorption of the nanotubes and the released surfactants at the oil-water interface results in oil emulsification into very small droplets (less than 20μm). The synergy of the unique nanotubular morphology and interfacial activity of halloysite with the magnetic properties of iron oxide nanoparticles has potential applications in oil spill dispersion, magnetic mobilization and detection using magnetic fields. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Elucidating the influence of polymorph-dependent interfacial solvent structuring at chitin surfaces.

    PubMed

    Brown, Aaron H; Walsh, Tiffany R

    2016-10-20

    Interfacial solvent structuring is thought to be influential in mediating the adsorption of biomolecules at aqueous materials interfaces. However, despite the enormous potential for exploitation of aqueous chitin interfaces in industrial, medical and drug-delivery applications, little is known at the molecular-level about such interfacial solvent structuring for chitin. Here we use molecular simulation to predict the structure of the [100] and [010] interfaces of α-chitin and β-chitin dihydrate in contact with liquid water and saline solution. We find the α-chitin [100] interface supports lateral high-density regions in the first water layer at the interface, which are also present, but not as pronounced, for β-chitin. The lateral structuring of interfacial ions at the saline/chitin interface is also more pronounced for α-chitin compared with β-chitin. Our findings provide a foundation for the systematic design of biomolecules with selective binding affinity for different chitin polymorphs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Adsorption and conformations of lysozyme and α-lactalbumin at a water-octane interface

    NASA Astrophysics Data System (ADS)

    Cheung, David L.

    2017-11-01

    As proteins contain both hydrophobic and hydrophilic amino acids, they will readily adsorb onto interfaces between water and hydrophobic fluids such as oil. This adsorption normally causes changes in the protein structure, which can result in loss of protein function and irreversible adsorption, leading to the formation of protein interfacial films. While this can be advantageous in some applications (e.g., food technology), in most cases it limits our ability to exploit protein functionality at interfaces. To understand and control protein interfacial adsorption and function, it is necessary to understand the microscopic conformation of proteins at liquid interfaces. In this paper, molecular dynamics simulations are used to investigate the adsorption and conformation of two similar proteins, lysozyme and α-lactalbumin, at a water-octane interface. While they both adsorb onto the interface, α-lactalbumin does so in a specific orientation, mediated by two amphipathic helices, while lysozyme adsorbs in a non-specific manner. Using replica exchange simulations, both proteins are found to possess a number of distinct interfacial conformations, with compact states similar to the solution conformation being most common for both proteins. Decomposing the different contributions to the protein energy at oil-water interfaces suggests that conformational change for α-lactalbumin, unlike lysozyme, is driven by favourable protein-oil interactions. Revealing these differences between the factors that govern the conformational change at interfaces in otherwise similar proteins can give insight into the control of protein interfacial adsorption, aggregation, and function.

  7. Three-Dimensional Visualization of Interfacial Phenomena Using Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Shieh, Ian C.

    Surfactants play an integral role in numerous functions ranging from stabilizing the emulsion in a favorite salad dressing to organizing the cellular components that make life possible. We are interested in lung surfactant, which is a mixture of lipids and proteins essential for normal respiration because it modulates the surface tension of the air-liquid interface of the thin fluid lining in the lungs. Through this surface tension modulation, lung surfactant ensures effortless lung expansion and prevents lung collapse during exhalation, thereby effecting proper oxygenation of the bloodstream. The function of lung surfactant, as well as numerous interfacial lipid systems, is not solely dictated by the behavior of materials confined to the two-dimensional interface. Rather, the distributions of materials in the liquid subphase also greatly influence the performance of interfacial films of lung surfactant. Therefore, to better understand the behavior of lung surfactant and other interfacial lipid systems, we require a three-dimensional characterization technique. In this dissertation, we have developed a novel confocal microscopy methodology for investigating the interfacial phenomena of surfactants at the air-liquid interface of a Langmuir trough. Confocal microscopy provides the excellent combination of in situ, fast, three-dimensional visualization of multiple components of the lung surfactant system that other characterization techniques lack. We detail the solutions to the numerous challenges encountered when imaging a dynamic air-liquid interface with a high-resolution technique like confocal microscopy. We then use confocal microscopy to elucidate the distinct mechanisms by which a polyelectrolyte (chitosan) and nonadsorbing polymer (polyethylene glycol) restore the function of lung surfactant under inhibitory conditions mimicking the effects of lung trauma. Beyond this physiological model, we also investigate several one- and two-component interfacial films of the various lipid constituents of lung surfactant. Confocal microscopy allows us to use a water-soluble, cationic fluorophore that partitions into the disordered phases of lipid monolayers. By exploiting the properties of this water-soluble fluorophore, we investigate both the phase behavior and electrostatics of the interfacial lipid systems. Overall, we believe the work presented in this dissertation provides the building blocks for establishing confocal microscopy as a ubiquitous characterization technique in the interfacial and surface sciences.

  8. Liquid—liquid interface-mediated Au—ZnO composite membrane using ‘thiol-ene’ click chemistry

    NASA Astrophysics Data System (ADS)

    Ali, Mohammed; Ghosh, Sujit Kumar

    2015-07-01

    A nanoparticle-decorated composite membrane has been devised at the water/CCl4 interface based on the self-assembly of ligand-stabilized gold and zinc oxide nanoparticles, exploiting the ‘thiol-ene’ click chemistry between the thiol groups of 11-mercaptoundecanoic acid-stabilized ZnO nanoparticles and the ene functionality of cinnamic acid attached to gold nanoparticles. The interfacial assembly of ultrasmall particles leads to a multilayer film that exhibits charge-dependent permeability of amino acid molecules across the membrane.

  9. A New Route to Liposil Formation by an Interfacial Sol-Gel Process Confined by Lipid Bilayer.

    PubMed

    Shen, Shukun; Yang, Lu; Lu, Yaxing; Chen, Jian-Gang; Song, Shaofei; Hu, Daodao; Parikh, Atul

    2015-11-18

    We report a new and simple approach to prepare a class of silica-reinforced liposomes with hybrid core-shell nanostructures. The amphiphilic natural structure of lipids was exploited to sequester hydrophobic molecules, namely precursor TEOS and pyrene, in the hydrophobic midplane of liposomal bilayer assemblies in the aqueous phase. Subsequent interfacial hydrolysis of TEOS at the bilayer/water interface and ensuing condensation within the hydrophobic interstices of the lipid bilayer drives silica formation in situ, producing a novel class of silica-lipid hybrid liposils. Structural characterization by scanning- and transmission electron microscopy confirm that the liposils so generated preserve closed topologies and size-monodipersity of the parent lecithin liposomes, and DSC-TGA and XRD measurements provide evidence for the silica coating. Monitoring fluorescence measurements using embedded pyrene yield detailed information on microenvironment changes, which occur during sol-gel process and shed light on the structural evolution during silica formation. We envisage that liposils formed by this simple, new approach, exploiting the hydrophobic core of the lipid bilayer to spatially localize silica-forming precursors enables preparation of stable liposils exhibiting capacity for cargo encapsulation, bicompatibility, and fluorescence monitoring, more generally opening a window for construction of stable, functional hybrid materials.

  10. Interfacial behavior of alkaline protease at the air-water and oil-water interfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Li, Yanyan; Wang, Jing; Zhang, Yue

    2018-03-01

    The interfacial behavior of alkaline protease at the air-water and n-hexane-water interfaces was investigated using interfacial tension, dilatational rheology and dynamic light scattering. Additionally, different adsorption models which are Langmuir, Frumkin, Reorientation-A and Reorientation-R were used to fitting the data of equilibrium interfacial tension for further understanding the interfacial behavior of alkaline protease. Data fitting of the equilibrium interfacial tension was achieved by IsoFit software. The results show that the molecules arrangement of the alkaline protease at the n-hexane-water interface is more tightly than at the air-water interface. The data were further analyzed to indicate that the hydrophobic chains of alkaline protease penetrate into oil phase deeper than the air phase. Also data indicate that the electrostatic interactions and hydrophobic interactions at the n-hexane-water interface are stronger than at the air-water interface within molecules of the alkaline protease. Based on comprehensive analysis of the adsorption kinetics and interfacial rheological properties, interfacial structures mechanism of alkaline protease at n-hexane-water and air-water interfaces was proposed.

  11. Microfluidic Assessment of Frying Oil Degradation

    PubMed Central

    Liu, Mei; Xie, Shaorong; Ge, Ji; Xu, Zhensong; Wu, Zhizheng; Ru, Changhai; Luo, Jun; Sun, Yu

    2016-01-01

    Monitoring the quality of frying oil is important for the health of consumers. This paper reports a microfluidic technique for rapidly quantifying the degradation of frying oil. The microfluidic device generates monodispersed water-in-oil droplets and exploits viscosity and interfacial tension changes of frying oil samples over their frying/degradation process. The measured parameters were correlated to the total polar material percentage that is widely used in the food industry. The results reveal that the steady-state length of droplets can be used for unambiguously assessing frying oil quality degradation. PMID:27312884

  12. What Can Interfacial Water Molecules Tell Us About Solute Structure?

    NASA Astrophysics Data System (ADS)

    Willard, Adam

    The molecular structure of bulk liquid water reflects a molecular tendency to engage in tetrahedrally coordinated hydrogen bonding. At a solute interface waters preferred three-dimensional hydrogen bonding network must conform to a locally anisotropy interfacial environment. Interfacial water molecules adopt configurations that balance water-solute and water-water interactions. The arrangements of interfacial water molecules, therefore encode information about the effective solute-water interactions. This solute-specific information is difficult to extract, however, because interfacial structure also reflects waters collective response to an anisotropic hydrogen bonding environment. Here I present a methodology for characterizing the molecular-level structure of liquid water interface from simulation data. This method can be used to explore waters static and/or dynamic response to a wide range of chemically and topologically heterogeneous solutes such as proteins.

  13. Water's Interfacial Hydrogen Bonding Structure Reveals the Effective Strength of Surface-Water Interactions.

    PubMed

    Shin, Sucheol; Willard, Adam P

    2018-06-05

    We combine all-atom molecular dynamics simulations with a mean field model of interfacial hydrogen bonding to analyze the effect of surface-water interactions on the structural and energetic properties of the liquid water interface. We show that the molecular structure of water at a weakly interacting ( i.e., hydrophobic) surface is resistant to change unless the strength of surface-water interactions are above a certain threshold. We find that below this threshold water's interfacial structure is homogeneous and insensitive to the details of the disordered surface, however, above this threshold water's interfacial structure is heterogeneous. Despite this heterogeneity, we demonstrate that the equilibrium distribution of molecular orientations can be used to quantify the energetic component of the surface-water interactions that contribute specifically to modifying the interfacial hydrogen bonding network. We identify this specific energetic component as a new measure of hydrophilicity, which we refer to as the intrinsic hydropathy.

  14. Experimental observation of standing interfacial waves induced by surface waves in muddy water

    NASA Astrophysics Data System (ADS)

    Maxeiner, Eric; Dalrymple, Robert A.

    2011-09-01

    A striking feature has been observed in a laboratory wave tank with a thin layer of clear water overlying a layer of mud. A piston-type wave maker is used to generate long monochromatic surface waves in a tank with a layer of kaolinite clay at the bottom. The wave action on the mud causes the clay particles to rise from the bottom into the water column, forming a lutocline. As the lutocline approaches the water surface, a set of standing interfacial waves form on the lutocline. The interfacial wave directions are oriented nearly orthogonal to the surface wave direction. The interfacial waves, which sometimes cover the entire length and width of the tank, are also temporally subharmonic as the phase of the interfacial wave alternates with each passing surface wave crest. These interfacial waves are the result of a resonant three-wave interaction involving the surface wave train and the two interfacial wave trains. The interfacial waves are only present when the lutocline is about 3 cm of the water surface and they can be sufficiently nonlinear as to exhibit superharmonics and a breaking-type of instability.

  15. Interfacial Water-Transport Effects in Proton-Exchange Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kienitz, Brian; Yamada, Haruhiko; Nonoyama, Nobuaki

    2009-11-19

    It is well known that the proton-exchange membrane is perhaps the most critical component of a polymer-electrolyte fuel cell. Typical membranes, such as Nafion(R), require hydration to conduct efficiently and are instrumental in cell water management. Recently, evidence has been shown that these membranes might have different interfacial morphology and transport properties than in the bulk. In this paper, experimental data combined with theoretical simulations will be presented that explore the existence and impact of interfacial resistance on water transport for Nafion(R) 21x membranes. A mass-transfer coefficient for the interfacial resistance is calculated from experimental data using different permeation cells.more » This coefficient is shown to depend exponentially on relative humidity or water activity. The interfacial resistance does not seem to exist for liquid/membrane or membrane/membrane interfaces. The effect of the interfacial resistance is to flatten the water-content profiles within the membrane during operation. Under typical operating conditions, the resistance is on par with the water-transport resistance of the bulk membrane. Thus, the interfacial resistance can be dominant especially in thin, dry membranes and can affect overall fuel-cell performance.« less

  16. Effect of demulsifier partitioning on the destabilization of water-in-oil emulsions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Y.H.; Wasan, D.T.

    1996-04-01

    The factors affecting the demulsification and interfacial behavior of water-in-oil emulsions in the presence of oil-soluble demulsifiers were investigated. Using both model water-in-oil and water-in-crude oil emulsion systems with demulsifiers with different chemical structures, the effects of demulsifier partitioning on the interfacial and film rheological properties were studied. The experimental results were compared and related with the demulsifier performance. There is a one-to-one correlation between the performance of demulsifier and the interfacial activity of the partitioned demulsifier; the partitioned demulsifier components exhibit an increase in static and dynamic interfacial activity, low dynamic interfacial and film tension, and a low filmmore » dilational modulus with a high adsorption rate - low interfacial tension gradient (Marangoni-Gibbs stabilizing effect) and have excellent demulsification performance.« less

  17. Atomistic and Coarse-Grained Modeling of the Adsorption of Graphene Nanoflakes at the Oil-Water Interface.

    PubMed

    Ardham, Vikram Reddy; Leroy, Frédéric

    2018-03-01

    The high interfacial tension between two immiscible liquids can provide the necessary driving force for the self-assembly of nanoparticles at the interface. Particularly, the interface between water and oily liquids (hydrocarbon chains) has been exploited to prepare networks of highly interconnected graphene sheets of only a few layers thickness, which are well suited for industrial applications. Studying such complex systems through particle-based simulations could greatly enhance the understanding of the various driving forces in action and could possibly give more control over the self-assembly process. However, the interaction potentials used in particle-based simulations are typically derived by reproducing bulk properties and are therefore not suitable for describing systems dominated by interfaces. To address this issue, we introduce a methodology to derive solid-liquid interaction potentials that yield an accurate representation of the balance between interfacial interactions at atomistic and coarse-grained resolutions. Our approach is validated through its ability to lead to the adsorption of graphene nanoflakes at the interface between water and n-hexane. The development of accurate coarse-grained potentials that our approach enables will allow us to perform large-scale simulations to study the assembly of graphene nanoparticles at the interface between immiscible liquids. Our methodology is illustrated through a simulation of many graphene nanoflakes adsorbing at the interface.

  18. Water at surfaces with tunable surface chemistries

    NASA Astrophysics Data System (ADS)

    Sanders, Stephanie E.; Vanselous, Heather; Petersen, Poul B.

    2018-03-01

    Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.

  19. Surface force and vibrational spectroscopic analyses of interfacial water molecules in the vicinity of methoxy-tri(ethylene glycol)-terminated monolayers: mechanisms underlying the effect of lateral packing density on bioinertness.

    PubMed

    Sekine, Taito; Asatyas, Syifa; Sato, Chikako; Morita, Shigeaki; Tanaka, Masaru; Hayashi, Tomohiro

    Unequivocal dependence of bioinertness of self-assembled monolayers of methoxy-tri(ethylene glycol)-terminated alkanethiol (EG3-OMe SAMs) on their packing density has been a mystery for more than two decades. We tackled this long-standing question by performing surface force and surface-enhanced infrared absorption (SEIRA) spectroscopic measurements. Our surface force measurements revealed a physical barrier of interfacial water in the vicinity of the Au-supported EG3-OMe SAM (low packing density), whereas the Ag-supported one (high packing density) did not possess such interfacial water. In addition, the results of SEIRA measurements clearly exhibited that hydrogen bonding states of the interfacial water differ depending on the substrates. We also characterized the bioinertness of these SAMs by protein adsorption tests and adhesion assays of platelet and human umbilical vein endothelial cells. The hydrogen bonding states of the interfacial water and water-induced interaction clearly correlated with the bioinertness of the SAMs, suggesting that the interfacial water plays an important role determining the interaction of the SAMs with biomolecules and cells.

  20. Using Grand Canonical Monte Carlo Simulations to Understand the Role of Interfacial Fluctuations on Solvation at the Water-Vapor Interface.

    PubMed

    Rane, Kaustubh; van der Vegt, Nico F A

    2016-09-15

    The present work investigates the effect of interfacial fluctuations (predominantly capillary wave-like fluctuations) on the solvation free energy (Δμ) of a monatomic solute at the water-vapor interface. We introduce a grand-canonical-ensemble-based simulation approach that quantifies the contribution of interfacial fluctuations to Δμ. This approach is used to understand how the above contribution depends on the strength of dispersive and electrostatic solute-water interactions at the temperature of 400 K. At this temperature, we observe that interfacial fluctuations do play a role in the variation of Δμ with the strength of the electrostatic solute-water interaction. We also use grand canonical simulations to further investigate how interfacial fluctuations affect the propensity of the solute toward the water-vapor interface. To this end, we track a quantity called the interface potential (surface excess free energy) with the number of water molecules. With increasing number of water molecules, the liquid-vapor interface moves across a solute, which is kept at a fixed position in the simulation. Hence, the dependence of the interface potential on the number of waters models the process of moving the solute through the water-vapor interface. We analyze the change of the interface potential with the number of water molecules to explain that solute-induced changes in the interfacial fluctuations, like the pinning of capillary-wave-like undulations, do not play any role in the propensity of solutes toward water-vapor interfaces. The above analysis also shows that the dampening of interfacial fluctuations accompanies the adsorption of any solute at the liquid-vapor interface, irrespective of the chemical nature of the solute and solvent. However, such a correlation does not imply that dampening of fluctuations causes adsorption.

  1. USING MOLECULAR PROBES TO STUDY INTERFACIAL REDOX REACTION AT FE-BEARING SMECTITES

    EPA Science Inventory

    The interfacial electron transfer of clay-water systems has a wide range of significance in geochemical and biogeochernical environments. However the mechanism of interfacial electron transport is poorly understood. The electron transfer mechanism at the solid-water interfaces of...

  2. Molecular dynamics studies of interfacial water at the alumina surface.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argyris, Dr. Dimitrios; Ho, Thomas; Cole, David

    2011-01-01

    Interfacial water properties at the alumina surface were investigated via all-atom equilibrium molecular dynamics simulations at ambient temperature. Al-terminated and OH-terminated alumina surfaces were considered to assess the structural and dynamic behavior of the first few hydration layers in contact with the substrates. Density profiles suggest water layering up to {approx}10 {angstrom} from the solid substrate. Planar density distribution data indicate that water molecules in the first interfacial layer are organized in well-defined patterns dictated by the atomic terminations of the alumina surface. Interfacial water exhibits preferential orientation and delayed dynamics compared to bulk water. Water exhibits bulk-like behavior atmore » distances greater than {approx}10 {angstrom} from the substrate. The formation of an extended hydrogen bond network within the first few hydration layers illustrates the significance of water?water interactions on the structural properties at the interface.« less

  3. Effect of ionic strength on the interfacial viscoelasticity and stability of silk fibroin at the oil/water interface.

    PubMed

    Tang, Xiaoxiao; Qiao, Xiuying; Miller, Reinhard; Sun, Kang

    2016-12-01

    The amphiphilic character and surface activity endows silk fibroin with the ability to reside at fluid interfaces and effectively stabilize emulsions. However, the influence of relevant factors and their actual effect on the interfacial viscoelasticity and stability of silk fibroin at the oil/water interface has received less attention. In the present study, the effect of ionic strength on the interfacial viscoelasticity, emulsification effectiveness and stability of silk fibroin at the oil/water interface was investigated in detail. A higher ion concentration facilitates greater adsorption, stronger molecular interaction and faster structure reorganization of silk fibroin at the oil/water interface, thus causing quicker interfacial saturation adsorption, greater interfacial strength and lower interfacial structural fracture on large deformation. However, the presence of concentrated ions screens the charges in silk fibroin molecules and the zeta potential decreases as a result of electrostatic screening and ion-binding effects, which may result in emulsion droplet coalescence and a decrease in emulsion stability. The positively-charged ions significantly affect the interfacial elasticity and stability of silk fibroin layers at the oil/water interface as a result of the strong electrostatic interactions between counter-ions and the negatively-charged groups of silk fibroin. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Effects of carbon fiber surface characteristics on interfacial bonding of epoxy resin composite subjected to hygrothermal treatments

    NASA Astrophysics Data System (ADS)

    Li, Min; Liu, Hongxin; Gu, Yizhuo; Li, Yanxia; Zhang, Zuoguang

    2014-01-01

    The changes of interfacial bonding of three types of carbon fibers/epoxy resin composite as well as their corresponding desized carbon fiber composites subjecting to hygrothermal conditions were investigated by means of single fiber fragmentation test. The interfacial fracture energy was obtained to evaluate the interfacial bonding before and after boiling water aging. The surface characteristics of the studied carbon fiber were characterized using X-ray photoelectron spectroscopy. The effects of activated carbon atoms and silicon element at carbon fiber surface on the interfacial hygrothermal resistance were further discussed. The results show that the three carbon fiber composites with the same resin matrix possess different hygrothermal resistances of interface and the interfacial fracture energy after water aging can not recovery to the level of raw dry sample (irreversible changes) for the carbon fiber composites containing silicon. Furthermore, the activated carbon atoms have little impact on the interfacial hygrothermal resistance. The irreversible variations of interfacial bonding and the differences among different carbon fiber composites are attributed to the silicon element on the carbon fiber bodies, which might result in hydrolyzation in boiling water treatment and degrade interfacial hygrothermal resistance.

  5. Chemical demulsification of petroleum emulsions using oil-soluable demulsifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krawczyk, M.A.; Wasan, D.T.; Shetty, C.S.

    1991-02-01

    This paper investigates the factors affecting the coalescence and interfacial behavior of water- in-crude-oil emulsions in the presence of oil-soluble demulsifiers. The emulsion-breaking characteristics and interfacial properties of East Texas Crude and a model system were compared. The variation of interfacial tension with demulsifier concentration for the model system was ascertained by measuring the interfacial tensions between the oil and water phase. Interfacial activity, adsorption kinetics, and partitioning were shown to be the most important parameters governing demulsifier performance. A conceptual model of drop-drop coalescence process in demulsification was presented which indicates that the interfacial activity of the demulsifier mustmore » be high enough to suppress the interfacial tension gradient. This accelerates the rate of film drainage, thus promoting coalescence.« less

  6. Magneto-ionic control of interfacial magnetism

    NASA Astrophysics Data System (ADS)

    Bauer, Uwe; Yao, Lide; Tan, Aik Jun; Agrawal, Parnika; Emori, Satoru; Tuller, Harry L.; van Dijken, Sebastiaan; Beach, Geoffrey S. D.

    2015-02-01

    In metal/oxide heterostructures, rich chemical, electronic, magnetic and mechanical properties can emerge from interfacial chemistry and structure. The possibility to dynamically control interface characteristics with an electric field paves the way towards voltage control of these properties in solid-state devices. Here, we show that electrical switching of the interfacial oxidation state allows for voltage control of magnetic properties to an extent never before achieved through conventional magneto-electric coupling mechanisms. We directly observe in situ voltage-driven O2- migration in a Co/metal-oxide bilayer, which we use to toggle the interfacial magnetic anisotropy energy by >0.75 erg cm-2 at just 2 V. We exploit the thermally activated nature of ion migration to markedly increase the switching efficiency and to demonstrate reversible patterning of magnetic properties through local activation of ionic migration. These results suggest a path towards voltage-programmable materials based on solid-state switching of interface oxygen chemistry.

  7. The Role of Water in Mediating Interfacial Adhesion and Shear Strength in Graphene Oxide.

    PubMed

    Soler-Crespo, Rafael A; Gao, Wei; Mao, Lily; Nguyen, Hoang T; Roenbeck, Michael R; Paci, Jeffrey T; Huang, Jiaxing; Nguyen, SonBinh T; Espinosa, Horacio D

    2018-06-12

    Graphene oxide (GO), whose highly tunable surface chemistry enables the formation of strong interfacial hydrogen-bond networks, has garnered increasing interest in the design of devices that operate in the presence of water. For instance, previous studies have suggested that controlling GO's surface chemistry leads to enhancements in interfacial shear strength, allowing engineers to manage deformation pathways and control failure mechanisms. However, these previous reports have not explored the role of ambient humidity and only offer extensive chemical modifications to GO's surface as the main pathway to control GO's interfacial properties. Herein, through atomic force microscopy experiments on GO-GO interfaces, the adhesion energy and interfacial shear strength of GO were measured as a function of ambient humidity. Experimental evidence shows that adhesion energy and interfacial shear strength can be improved by a factor of 2-3 when GO is exposed to moderate (∼30% water weight) water content. Furthermore, complementary molecular dynamics simulations uncovered the mechanisms by which these nanomaterial interfaces achieve their properties. They reveal that the strengthening mechanism arises from the formation of strongly interacting hydrogen-bond networks, driven by the chemistry of the GO basal plane and intercalated water molecules between two GO surfaces. In summary, the methodology and findings here reported provide pathways to simultaneously optimize GO's interfacial and in-plane mechanical properties, by tailoring the chemistry of GO and accounting for water content, in engineering applications such as sensors, filtration membranes, wearable electronics, and structural materials.

  8. Effect of Concentration on the Interfacial and Bulk Structure of Ionic Liquids in Aqueous Solution.

    PubMed

    Cheng, H-W; Weiss, H; Stock, P; Chen, Y-J; Reinecke, C R; Dienemann, J-N; Mezger, M; Valtiner, M

    2018-02-27

    Bio and aqueous applications of ionic liquids (IL) such as catalysis in micelles formed in aqueous IL solutions or extraction of chemicals from biologic materials rely on surface-active and self-assembly properties of ILs. Here, we discuss qualitative relations of the interfacial and bulk structuring of a water-soluble surface-active IL ([C 8 MIm][Cl]) on chemically controlled surfaces over a wide range of water concentrations using both force probe and X-ray scattering experiments. Our data indicate that IL structuring evolves from surfactant-like surface adsorption at low IL concentrations, to micellar bulk structure adsorption above the critical micelle concentration, to planar bilayer formation in ILs with <1 wt % of water and at high charging of the surface. Interfacial structuring is controlled by mesoscopic bulk structuring at high water concentrations. Surface chemistry and surface charges decisively steer interfacial ordering of ions if the water concentration is low and/or the surface charge is high. We also demonstrate that controlling the interfacial forces by using self-assembled monolayer chemistry allows tuning of interfacial structures. Both the ratio of the head group size to the hydrophobic tail volume as well as the surface charging trigger the bulk structure and offer a tool for predicting interfacial structures. Based on the applied techniques and analyses, a qualitative prediction of molecular layering of ILs in aqueous systems is possible.

  9. DETERMINING EFFECTIVE INTERFACIAL TENSION AND PREDICTING FINGER SPACING FOR DNAPL PENETRATION INTO WATER-SATURATED POROUS MEDIA. (R826157)

    EPA Science Inventory

    The difficulty in determining the effective interfacial tension limits the prediction of the wavelength of fingering of immiscible fluids in porous media. A method to estimate the effective interfacial tension using fractal concepts was presented by Chang et al. [Water Resour. Re...

  10. High Interfacial Barriers at Narrow Carbon Nanotube-Water Interfaces.

    PubMed

    Varanasi, Srinivasa Rao; Subramanian, Yashonath; Bhatia, Suresh K

    2018-06-26

    Water displays anomalous fast diffusion in narrow carbon nanotubes (CNTs), a behavior that has been reproduced in both experimental and simulation studies. However, little is reported on the effect of bulk water-CNT interfaces, which is critical to exploiting the fast transport of water across narrow carbon nanotubes in actual applications. Using molecular dynamics simulations, we investigate here the effect of such interfaces on the transport of water across arm-chair CNTs of different diameters. Our results demonstrate that diffusion of water is significantly retarded in narrow CNTs due to bulk regions near the pore entrance. The slowdown of dynamics can be attributed to the presence of large energy barriers at bulk water-CNT interfaces. The presence of such intense barriers at the bulk-CNT interface arises due to the entropy contrast between the bulk and confined regions, with water molecules undergoing high translational and rotational entropy gain on entering from the bulk to the CNT interior. The intensity of such energy barriers decreases with increase in CNT diameter. These results are very important for emerging technological applications of CNTs and other nanoscale materials, such as in nanofluidics, water purification, nanofiltration, and desalination, as well as for biological transport processes.

  11. Strong cooperative effect of oppositely charged surfactant mixtures on their adsorption and packing at the air-water interface and interfacial water structure.

    PubMed

    Nguyen, Khoi T; Nguyen, Tuan D; Nguyen, Anh V

    2014-06-24

    Remarkable adsorption enhancement and packing of dilute mixtures of water-soluble oppositely-charged surfactants, sodium dodecyl sulfate (SDS) and dodecyl amine hydrochloride (DAH), at the air-water interface were observed by using sum frequency generation spectroscopy and tensiometry. The interfacial water structure was also observed to be significantly influenced by the SDS-DAH mixtures, differently from the synergy of the single surfactants. Most strikingly, the obtained spectroscopic evidence suggests that the interfacial hydrophobic alkyl chains of the binary mixtures assemble differently from those of single surfactants. This study highlights the significance of the cooperative interaction between the headgroups of oppositely charged binary surfactant systems and subsequently provides some insightful observations about the molecular structure of the air-aqueous interfacial water molecules and, more importantly, about the packing nature of the surfactant hydrophobic chains of dilute SDS-DAH mixtures of concentration below 1% of the CMC.

  12. Fine-Tuning Nanoparticle Packing at Water-Oil Interfaces Using Ionic Strength.

    PubMed

    Chai, Yu; Lukito, Alysia; Jiang, Yufeng; Ashby, Paul D; Russell, Thomas P

    2017-10-11

    Nanoparticle-surfactants (NPSs) assembled at water-oil interfaces can significantly lower the interfacial tension and can be used to stabilize liquids. Knowing the formation and assembly and actively tuning the packing of these NPSs is of significant fundamental interest for the interfacial behavior of nanoparticles and of interest for water purification, drug encapsulation, enhanced oil recovery, and innovative energy transduction applications. Here, we demonstrate by means of interfacial tension measurements the high ionic strength helps the adsorption of NPSs to the water-oil interface leading to a denser packing of NPSs at the interface. With the reduction of interfacial area, the phase transitions from a "gas"-like to "liquid" to "solid" states of NPSs in two dimensions are observed. Finally, we provide the first in situ real-space imaging of NPSs at the water-oil interface by atomic force microcopy.

  13. Intermolecular network analysis of the liquid and vapor interfaces of pentane and water: microsolvation does not trend with interfacial properties.

    PubMed

    Ghadar, Yasaman; Clark, Aurora E

    2014-06-28

    Liquid:vapor and liquid:liquid interfaces exhibit complex organizational structure and dynamics at the molecular level. In the case of water and organic solvents, the hydrophobicity of the organic, its conformational flexibility, and compressibility, all influence interfacial properties. This work compares the interfacial tension, width, molecular conformations and orientations at the vapor and aqueous liquid interfaces of two solvents, n-pentane and neopentane, whose varying molecular shapes can lead to significantly different interfacial behavior. Particular emphasis has been dedicated toward understanding how the hydrogen bond network of water responds to the pentane relative to the vapor interface and the sensitivity of the network to the individual pentane isomer and system temperature. Interfacial microsolvation of the immiscible solvents has been examined using graph theoretical methods that quantify the structure and dynamics of microsolvated species (both H2O in C5H12 and C5H12 in H2O). At room temperature, interfacial water at the pentane phase boundary is found to have markedly different organization and dynamics than at the vapor interface (as indicated by the hydrogen bond distributions and hydrogen bond persistence in solution). While the mesoscale interfacial properties (e.g. interfacial tension) are sensitive to the specific pentane isomer, the distribution and persistence of microsolvated species at the interface is nearly identical for both systems, irrespective of temperature (between 273 K and 298 K). This has important implications for understanding how properties defined by the interfacial organization are related to the underlying solvation reactions that drive formation of the phase boundary.

  14. Release of surfactant cargo from interfacially-active halloysite clay nanotubes for oil spill remediation.

    PubMed

    Owoseni, Olasehinde; Nyankson, Emmanuel; Zhang, Yueheng; Adams, Samantha J; He, Jibao; McPherson, Gary L; Bose, Arijit; Gupta, Ram B; John, Vijay T

    2014-11-18

    Naturally occurring halloysite clay nanotubes are effective in stabilizing oil-in-water emulsions and can serve as interfacially-active vehicles for delivering oil spill treating agents. Halloysite nanotubes adsorb at the oil-water interface and stabilize oil-in-water emulsions that are stable for months. Cryo-scanning electron microscopy (Cryo-SEM) imaging of the oil-in-water emulsions shows that these nanotubes assemble in a side-on orientation at the oil-water interface and form networks on the interface through end-to-end linkages. For application in the treatment of marine oil spills, halloysite nanotubes were successfully loaded with surfactants and utilized as an interfacially-active vehicle for the delivery of surfactant cargo. The adsorption of surfactant molecules at the interface serves to lower the interfacial tension while the adsorption of particles provides a steric barrier to drop coalescence. Pendant drop tensiometry was used to characterize the dynamic reduction in interfacial tension resulting from the release of dioctyl sulfosuccinate sodium salt (DOSS) from halloysite nanotubes. At appropriate surfactant compositions and loadings in halloysite nanotubes, the crude oil-saline water interfacial tension is effectively lowered to levels appropriate for the dispersion of oil. This work indicates a novel concept of integrating particle stabilization of emulsions together with the release of chemical surfactants from the particles for the development of an alternative, cheaper, and environmentally-benign technology for oil spill remediation.

  15. Structure from Dynamics: Vibrational Dynamics of Interfacial Water as a Probe of Aqueous Heterogeneity

    PubMed Central

    2018-01-01

    The structural heterogeneity of water at various interfaces can be revealed by time-resolved sum-frequency generation spectroscopy. The vibrational dynamics of the O–H stretch vibration of interfacial water can reflect structural variations. Specifically, the vibrational lifetime is typically found to increase with increasing frequency of the O–H stretch vibration, which can report on the hydrogen-bonding heterogeneity of water. We compare and contrast vibrational dynamics of water in contact with various surfaces, including vapor, biomolecules, and solid interfaces. The results reveal that variations in the vibrational lifetime with vibrational frequency are very typical, and can frequently be accounted for by the bulk-like heterogeneous response of interfacial water. Specific interfaces exist, however, for which the behavior is less straightforward. These insights into the heterogeneity of interfacial water thus obtained contribute to a better understanding of complex phenomena taking place at aqueous interfaces, such as photocatalytic reactions and protein folding. PMID:29490138

  16. The hydration structure at yttria-stabilized cubic zirconia (110)-water interface with sub-Ångström resolution

    DOE PAGES

    Hou, Binyang; Kim, Seunghyun; Kim, Taeho; ...

    2016-06-15

    The interfacial hydration structure of yttria-stabilized cubic zirconia (110) surface in contact with water was determined with ~0.5 Å resolution by high-resolution X-ray reflectivity measurement. The terminal layer shows a reduced electron density compared to the following substrate lattice layers, which indicates there are additional defects generated by metal depletion as well as intrinsic oxygen vacancies, both of which are apparently filled by water species. Above this top surface layer, two additional adsorbed layers are observed forming a characteristic interfacial hydration structure. The first adsorbed layer shows abnormally high density as pure water and likely includes metal species, whereas themore » second layer consists of pure water. The observed interfacial hydration structure seems responsible for local equilibration of the defective surface in water and eventually regulating the long-term degradation processes. As a result, the multitude of water interactions with the zirconia surface results in the complex but highly ordered interfacial structure constituting the reaction front.« less

  17. Subcritical Water Induced Complexation of Soy Protein and Rutin: Improved Interfacial Properties and Emulsion Stability.

    PubMed

    Chen, Xiao-Wei; Wang, Jin-Mei; Yang, Xiao-Quan; Qi, Jun-Ru; Hou, Jun-Jie

    2016-09-01

    Rutin is a common dietary flavonoid with important antioxidant and pharmacological activities. However, its application in the food industry is limited mainly because of its poor water solubility. The subcritical water (SW) treatment provides an efficient technique to solubilize and achieve the enrichment of rutin in soy protein isolate (SPI) by inducing their complexation. The physicochemical, interfacial, and emulsifying properties of the complex were investigated and compared to the mixtures. SW treatment had much enhanced rutin-combined capacity of SPI than that of conventional method, ascribing to the well-contacted for higher water solubility of rutin with stronger collision-induced hydrophobic interactions. Compared to the mixtures of rutin with proteins, the complex exhibited an excellent surface activity and improved the physical and oxidative stability of its stabilized emulsions. This improving effect could be attributed to the targeted accumulation of rutin at the oil-water interface accompanied by the adsorption of SPI resulting in the thicker interfacial layer, as evidenced by higher interfacial protein and rutin concentrations. This study provides a novel strategy for the design and enrichment of nanovehicle providing water-insoluble hydrophobic polyphenols for interfacial delivery in food emulsified systems. © 2016 Institute of Food Technologists®

  18. Role of oxygen functional groups for structure and dynamics of interfacial water on low rank coal surface: a molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    You, Xiaofang; Wei, Hengbin; Zhu, Xianchang; Lyu, Xianjun; Li, Lin

    2018-07-01

    Molecular dynamics simulations were employed to study the effects of oxygen functional groups for structure and dynamics properties of interfacial water molecules on the subbituminous coal surface. Because of complex composition and structure, the graphite surface modified by hydroxyl, carboxyl and carbonyl groups was used to represent the surface model of subbituminous coal according to XPS results, and the composing proportion for hydroxyl, carbonyl and carboxyl is 25:3:5. The hydration energy with -386.28 kJ/mol means that the adsorption process between water and coal surface is spontaneous. Density profiles for oxygen atoms and hydrogen atoms indicate that the coal surface properties affect the structural and dynamic characteristics of the interfacial water molecules. The interfacial water exhibits much more ordering than bulk water. The results of radial distribution functions, mean square displacement and local self-diffusion coefficient for water molecule related to three oxygen moieties confirmed that the water molecules prefer to absorb with carboxylic groups, and adsorption of water molecules at the hydroxyl and carbonyl is similar.

  19. Ordered water structure at hydrophobic graphite interfaces observed by 4D, ultrafast electron crystallography

    PubMed Central

    Yang, Ding-Shyue; Zewail, Ahmed H.

    2009-01-01

    Interfacial water has unique properties in various functions. Here, using 4-dimensional (4D), ultrafast electron crystallography with atomic-scale spatial and temporal resolution, we report study of structure and dynamics of interfacial water assembly on a hydrophobic surface. Structurally, vertically stacked bilayers on highly oriented pyrolytic graphite surface were determined to be ordered, contrary to the expectation that the strong hydrogen bonding of water on hydrophobic surfaces would dominate with suppressed interfacial order. Because of its terrace morphology, graphite plays the role of a template. The dynamics is also surprising. After the excitation of graphite by an ultrafast infrared pulse, the interfacial ice structure undergoes nonequilibrium “phase transformation” identified in the hydrogen-bond network through the observation of structural isosbestic point. We provide the time scales involved, the nature of ice-graphite structural dynamics, and relevance to properties related to confined water. PMID:19246378

  20. DROPWISE CONDENSATION ON MICRO- AND NANOSTRUCTURED SURFACES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enright, R; Miljkovic, N; Alvarado, JL

    In this review we cover recent developments in the area of surface-enhanced dropwise condensation against the background of earlier work. The development of fabrication techniques to create surface structures at the micro-and nanoscale using both bottom-up and top-down approaches has led to increased study of complex interfacial phenomena. In the heat transfer community, researchers have been extensively exploring the use of advanced surface structuring techniques to enhance phase-change heat transfer processes. In particular, the field of vapor-to-liquid condensation and especially that of water condensation has experienced a renaissance due to the promise of further optimizing this process at the micro-andmore » nanoscale by exploiting advances in surface engineering developed over the last several decades.« less

  1. Interfacial thermodynamics of water and six other liquid solvents.

    PubMed

    Pascal, Tod A; Goddard, William A

    2014-06-05

    We examine the thermodynamics of the liquid-vapor interface by direct calculation of the surface entropy, enthalpy, and free energy from extensive molecular dynamics simulations using the two-phase thermodynamics (2PT) method. Results for water, acetonitrile, cyclohexane, dimethyl sulfoxide, hexanol, N-methyl acetamide, and toluene are presented. We validate our approach by predicting the interfacial surface tensions (IFT--excess surface free energy per unit area) in excellent agreement with the mechanical calculations using Kirkwood-Buff theory. Additionally, we evaluate the temperature dependence of the IFT of water as described by the TIP4P/2005, SPC/Ew, TIP3P, and mW classical water models. We find that the TIP4P/2005 and SPC/Ew water models do a reasonable job of describing the interfacial thermodynamics; however, the TIP3P and mW are quite poor. We find that the underprediction of the experimental IFT at 298 K by these water models results from understructured surface molecules whose binding energies are too weak. Finally, we performed depth profiles of the interfacial thermodynamics which revealed long tails that extend far into what would be considered bulk from standard Gibbs theory. In fact, we find a nonmonotonic interfacial free energy profile for water, a unique feature that could have important consequences for the absorption of ions and other small molecules.

  2. The Gas-Absorption/Chemical-Reaction Method for Measuring Air-Water Interfacial Area in Natural Porous Media

    NASA Astrophysics Data System (ADS)

    Lyu, Ying; Brusseau, Mark L.; El Ouni, Asma; Araujo, Juliana B.; Su, Xiaosi

    2017-11-01

    The gas-absorption/chemical-reaction (GACR) method used in chemical engineering to quantify gas-liquid interfacial area in reactor systems is adapted for the first time to measure the effective air-water interfacial area of natural porous media. Experiments were conducted with the GACR method, and two standard methods (X-ray microtomographic imaging and interfacial partitioning tracer tests) for comparison, using model glass beads and a natural sand. The results of a series of experiments conducted under identical conditions demonstrated that the GACR method exhibited excellent repeatability for measurement of interfacial area (Aia). Coefficients of variation for Aia were 3.5% for the glass beads and 11% for the sand. Extrapolated maximum interfacial areas (Am) obtained with the GACR method were statistically identical to independent measures of the specific solid surface areas of the media. For example, the Am for the glass beads is 29 (±1) cm-1, compared to 32 (±3), 30 (±2), and 31 (±2) cm-1 determined from geometric calculation, N2/BET measurement, and microtomographic measurement, respectively. This indicates that the method produced accurate measures of interfacial area. Interfacial areas determined with the GACR method were similar to those obtained with the standard methods. For example, Aias of 47 and 44 cm-1 were measured with the GACR and XMT methods, respectively, for the sand at a water saturation of 0.57. The results of the study indicate that the GACR method is a viable alternative for measuring air-water interfacial areas. The method is relatively quick, inexpensive, and requires no specialized instrumentation compared to the standard methods.

  3. Measuring air-water interfacial area for soils using the mass balance surfactant-tracer method.

    PubMed

    Araujo, Juliana B; Mainhagu, Jon; Brusseau, Mark L

    2015-09-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Hydrogen bonded structure, polarity, molecular motion and frequency fluctuations at liquid-vapor interface of a water-methanol mixture: an ab initio molecular dynamics study.

    PubMed

    Choudhuri, Jyoti Roy; Chandra, Amalendu

    2014-10-07

    We have performed ab initio molecular dynamics simulations of a liquid-vapor interfacial system consisting of a mixture of water and methanol molecules. Detailed results are obtained for the structural and dynamical properties of the bulk and interfacial regions of the mixture. Among structural properties, we have looked at the inhomogeneous density profiles of water and methanol molecules, hydrogen bond distributions and also the orientational profiles of bulk and interfacial molecules. The methanol molecules are found to have a higher propensity to be at the interface than water molecules. It is found that the interfacial molecules show preference for specific orientations so as to form water-methanol hydrogen bonds at the interface with the hydrophobic methyl group pointing towards the vapor side. It is also found that for both types of molecules, the dipole moment decreases at the interface. It is also found that the local electric field of water influences the dipole moment of methanol molecules. Among the dynamical properties, we have calculated the diffusion, orientational relaxation, hydrogen bond dynamics, and vibrational frequency fluctuations in bulk and interfacial regions. It is found that the diffusion and orientation relaxation of the interfacial molecules are faster than those of the bulk. However, the hydrogen bond lifetimes are longer at the interface which can be correlated with the time scales found from the decay of frequency time correlations. The slower hydrogen bond dynamics for the interfacial molecules with respect to bulk can be attributed to diminished cooperative effects at the interface due to reduced density and number of hydrogen bonds.

  5. Detection of magnetic dipolar coupling of water molecules at the nanoscale using quantum magnetometry

    NASA Astrophysics Data System (ADS)

    Yang, Zhiping; Shi, Fazhan; Wang, Pengfei; Raatz, Nicole; Li, Rui; Qin, Xi; Meijer, Jan; Duan, Changkui; Ju, Chenyong; Kong, Xi; Du, Jiangfeng

    2018-05-01

    It is a crucial issue to study interactions among water molecules and hydrophobic interfacial water at the nanoscale. Here we succeed in measuring the nuclear magnetic resonance spectrum of a diamond-water interfacial ice with a detection volume of about 2.2 ×10-22 L. More importantly, the magnetic dipolar coupling between the two protons of a water molecule is resolved by measuring the signal contributed from about 7000 water molecules at the nanoscale. The resolved intramolecule magnetic dipolar interactions are about 15 and 33 kHz with spectral resolution of 5 kHz. This work provides a platform for hydrophobic interfacial water study under ambient conditions, with further applications in more general nanoscale structural analysis.

  6. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet.

    PubMed

    Rana, Malay Kumar; Chandra, Amalendu

    2013-05-28

    The behavior of water near a graphene sheet is investigated by means of ab initio and classical molecular dynamics simulations. The wetting of the graphene sheet by ab initio water and the relation of such behavior to the strength of classical dispersion interaction between surface atoms and water are explored. The first principles simulations reveal a layered solvation structure around the graphene sheet with a significant water density in the interfacial region implying no drying or cavitation effect. It is found that the ab initio results of water density at interfaces can be reproduced reasonably well by classical simulations with a tuned dispersion potential between the surface and water molecules. Calculations of vibrational power spectrum from ab initio simulations reveal a shift of the intramolecular stretch modes to higher frequencies for interfacial water molecules when compared with those of the second solvation later or bulk-like water due to the presence of free OH modes near the graphene sheet. Also, a weakening of the water-water hydrogen bonds in the vicinity of the graphene surface is found in our ab initio simulations as reflected in the shift of intermolecular vibrational modes to lower frequencies for interfacial water molecules. The first principles calculations also reveal that the residence and orientational dynamics of interfacial water are somewhat slower than those of the second layer or bulk-like molecules. However, the lateral diffusion and hydrogen bond relaxation of interfacial water molecules are found to occur at a somewhat faster rate than that of the bulk-like water molecules. The classical molecular dynamics simulations with tuned Lennard-Jones surface-water interaction are found to produce dynamical results that are qualitatively similar to those of ab initio molecular dynamics simulations.

  7. Liquid Sulfur Impregnation of Microporous Carbon Accelerated by Nanoscale Interfacial Effects

    DOE PAGES

    Pascal, Tod A.; Villaluenga, Irune; Wujcik, Kevin H.; ...

    2017-03-14

    Impregnation of porous carbon matrices with liquid sulfur has been exploited to fabricate composite cathodes for lithium-sulfur batteries, aimed at confining soluble sulfur species near conducting carbon to prevent both loss of active material into the electrolyte and parasitic reactions at the lithium metal anode. Here, through extensive computer simulations, we uncover the strongly favorable interfacial free energy between liquid sulfur and graphitic surfaces that underlies this phenomenon. Previously unexplored curvature-dependent enhancements are shown to favor the filling of smaller pores first and effect a quasi-liquid sulfur phase in microporous domains (diameters <2 nm) that persists ~30° below the expectedmore » freezing point. Evidence of interfacial sulfur on carbon is shown to be a 0.3 eV red shift in the simulated and measured interfacial X-ray absorption spectra. Our results elucidate the critical morphology and thermodynamic properties necessary for future cathode design and highlight the importance of molecular-scale details in defining emergent properties of functional nanoscale interfaces.« less

  8. Liquid Sulfur Impregnation of Microporous Carbon Accelerated by Nanoscale Interfacial Effects.

    PubMed

    Pascal, Tod A; Villaluenga, Irune; Wujcik, Kevin H; Devaux, Didier; Jiang, Xi; Wang, Dunyang Rita; Balsara, Nitash; Prendergast, David

    2017-04-12

    Impregnation of porous carbon matrices with liquid sulfur has been exploited to fabricate composite cathodes for lithium-sulfur batteries, aimed at confining soluble sulfur species near conducting carbon to prevent both loss of active material into the electrolyte and parasitic reactions at the lithium metal anode. Here, through extensive computer simulations, we uncover the strongly favorable interfacial free energy between liquid sulfur and graphitic surfaces that underlies this phenomenon. Previously unexplored curvature-dependent enhancements are shown to favor the filling of smaller pores first and effect a quasi-liquid sulfur phase in microporous domains (diameters <2 nm) that persists ∼30° below the expected freezing point. Evidence of interfacial sulfur on carbon is shown to be a 0.3 eV red shift in the simulated and measured interfacial X-ray absorption spectra. Our results elucidate the critical morphology and thermodynamic properties necessary for future cathode design and highlight the importance of molecular-scale details in defining emergent properties of functional nanoscale interfaces.

  9. Environmental Applications of Interfacial Materials with Special Wettability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhangxin; Elimelech, Menachem; Lin, Shihong

    Interfacial materials with special wettability have become a burgeoning research area in materials science in the past decade. The unique surface properties of materials and interfaces generated by biomimetic approaches can be leveraged to develop effective solutions to challenging environmental problems. This critical review presents the concept, mechanisms, and fabrication techniques of interfacial materials with special wettability, and assesses the environmental applications of these materials for oil-water separation, membrane-based water purification and desalination, biofouling control, high performance vapor condensation, and atmospheric water collection. We also highlight the most promising properties of interfacial materials with special wettability that enable innovative environmentalmore » applications and discuss the practical challenges for large-scale implementation of these novel materials.« less

  10. Environmental Applications of Interfacial Materials with Special Wettability

    DOE PAGES

    Wang, Zhangxin; Elimelech, Menachem; Lin, Shihong

    2016-02-01

    Interfacial materials with special wettability have become a burgeoning research area in materials science in the past decade. The unique surface properties of materials and interfaces generated by biomimetic approaches can be leveraged to develop effective solutions to challenging environmental problems. This critical review presents the concept, mechanisms, and fabrication techniques of interfacial materials with special wettability, and assesses the environmental applications of these materials for oil-water separation, membrane-based water purification and desalination, biofouling control, high performance vapor condensation, and atmospheric water collection. We also highlight the most promising properties of interfacial materials with special wettability that enable innovative environmentalmore » applications and discuss the practical challenges for large-scale implementation of these novel materials.« less

  11. Application of nanoindentation testing to study of the interfacial transition zone in steel fiber reinforced mortar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xiaohui; Jacobsen, Stefan; He Jianying

    2009-08-15

    The characteristics of the profiles of elastic modulus and hardness of the steel fiber-matrix and fiber-matrix-aggregate interfacial zones in steel fiber reinforced mortars have been investigated by using nanoindentation and Scanning Electron Microscopy (SEM), where two sets of parameters, i.e. water/binder ratio and content of silica fume were considered. Different interfacial bond conditions in the interfacial transition zones (ITZ) are discussed. For sample without silica fume, efficient interfacial bonds across the steel fiber-matrix and fiber-matrix-aggregate interfaces are shown in low water/binder ratio mortar; while in high water/binder ratio mortar, due to the discontinuous bleeding voids underneath the fiber, the fiber-matrixmore » bond is not very good. On the other hand, for sample with silica fume, the addition of 10% silica fume leads to no distinct presence of weak ITZ in the steel fiber-matrix interface; but the effect of the silica fume on the steel fiber-matrix-aggregate interfacial zone is not obvious due to voids in the vicinity of steel fiber.« less

  12. Electrostatic Properties of Aqueous Salt Solution Interfaces: A Comparison of Polarizable and Non-Polarizable Ion Models

    PubMed Central

    Warren, G. Lee; Patel, Sandeep

    2014-01-01

    The effects of ion force field polarizability on the interfacial electrostatic properties of ~1 M aqueous solutions of NaCl, CsCl and NaI are investigated using molecular dynamics simulations employing both non-polarizable and Drude-polarizable ion sets. Differences in computed depth-dependent orientational distributions, “permanent” and induced dipole and quadrupole moment profiles, and interfacial potentials are obtained for both ion sets to further elucidate how ion polarizability affects interfacial electrostatic properties among the various salts relative to pure water. We observe that the orientations and induced dipoles of water molecules are more strongly perturbed in the presence of polarizable ions via a stronger ionic double layer effect arising from greater charge separation. Both anions and cations exhibit enhanced induced dipole moments and strong z alignment in the vicinity of the Gibbs dividing surface (GDS) with the magnitude of the anion induced dipoles being nearly an order of magnitude larger than those of the cations and directed into the vapor phase. Depth-dependent profiles for the trace and zz components of the water molecular quadrupole moment tensors reveal 40% larger quadrupole moments in the bulk phase relative to the vapor mimicking a similar observed 40% increase in the average water dipole moment. Across the GDS, the water molecular quadrupole moments increase non-monotonically (in contrast to the water dipoles) and exhibit a locally reduced contribution just below the surface due to both orientational and polarization effects. Computed interfacial potentials for the non-polarizable salts yield values 20 to 60 mV more positive than pure water and increase by an additional 30 to 100 mV when ion polarizability is included. A rigorous decomposition of the total interfacial potential into ion monopole, water and ion dipole, and water quadrupole components reveals that a very strong, positive ion monopole contribution is offset by negative contributions from all other potential sources. Water quadrupole components modulated by the water density contribute significantly to the observed interfacial potential increments and almost entirely explain observed differences in the interfacial potentials for the two chloride salts. By lumping all remaining non-quadrupole interfacial potential contributions into a single “effective” dipole potential, we observe that the ratio of quadrupole to “effective” dipole contributions range from 2:1 in CsCl to 1:1.5 in NaI suggesting that both contributions are comparably important in determining the interfacial potential increments. We also find that oscillations in the quadrupole potential in the double layer region are opposite in sign and partially cancel those of the “effective” dipole potential. PMID:18712908

  13. CuSO4/H2O2-Triggered Polydopamine/Poly(sulfobetaine methacrylate) Coatings for Antifouling Membrane Surfaces.

    PubMed

    Zhang, Chao; Li, Hao-Nan; Du, Yong; Ma, Meng-Qi; Xu, Zhi-Kang

    2017-02-07

    Mussel-inspired polydopamine (PDA) coatings have been broadly exploited for constructing functional membrane surfaces. One-step codeposition of PDA with antifouling polymers, especially zwitterionic polymers, has been regarded as a promising strategy for fabricating antifouling membrane surfaces. However, one challenge is that the codeposition is usually a slow process over 10 h or even several days. Herein, we report that CuSO 4 /H 2 O 2 is able to notably accelerate the codeposition process of PDA with poly(sulfobetaine methacrylate) (PSBMA). In our case, PSBMA is facilely anchored to the polypropylene microporous membrane (PPMM) surfaces within 1 h with the assistance of PDA because of its strong interfacial adhesion. The PDA/PSBMA-coated PPMMs show excellent surface hydrophilicity, high water permeation flux (7506 ± 528 L/m 2 ·h at 0.1 MPa), and an outstanding antifouling property. Moreover, the antifouling property is maintained after the membranes are treated with acid and alkali solutions as well as organic solvents. To recap, it provides a facile, universal, and time-saving strategy for exploiting high-efficiency and durable antifouling membrane surfaces.

  14. Nucleation processes of nanobubbles at a solid/water interface

    NASA Astrophysics Data System (ADS)

    Fang, Chung-Kai; Ko, Hsien-Chen; Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh

    2016-04-01

    Experimental investigations of hydrophobic/water interfaces often return controversial results, possibly due to the unknown role of gas accumulation at the interfaces. Here, during advanced atomic force microscopy of the initial evolution of gas-containing structures at a highly ordered pyrolytic graphite/water interface, a fluid phase first appeared as a circular wetting layer ~0.3 nm in thickness and was later transformed into a cap-shaped nanostructure (an interfacial nanobubble). Two-dimensional ordered domains were nucleated and grew over time outside or at the perimeter of the fluid regions, eventually confining growth of the fluid regions to the vertical direction. We determined that interfacial nanobubbles and fluid layers have very similar mechanical properties, suggesting low interfacial tension with water and a liquid-like nature, explaining their high stability and their roles in boundary slip and bubble nucleation. These ordered domains may be the interfacial hydrophilic gas hydrates and/or the long-sought chemical surface heterogeneities responsible for contact line pinning and contact angle hysteresis. The gradual nucleation and growth of hydrophilic ordered domains renders the original homogeneous hydrophobic/water interface more heterogeneous over time, which would have great consequence for interfacial properties that affect diverse phenomena, including interactions in water, chemical reactions, and the self-assembly and function of biological molecules.

  15. Mechanical properties of protein adsorption layers at the air/water and oil/water interface: a comparison in light of the thermodynamical stability of proteins.

    PubMed

    Mitropoulos, Varvara; Mütze, Annekathrin; Fischer, Peter

    2014-04-01

    Over the last decades numerous studies on the interfacial rheological response of protein adsorption layers have been published. The comparison of these studies and the retrieval of a common parameter to compare protein interfacial activity are hampered by the fact that different boundary conditions (e.g. physico-chemical, instrumental, interfacial) were used. In the present work we review previous studies and attempt a unifying approach for the comparison between bulk protein properties and their adsorption films. Among many common food grade proteins we chose bovine serum albumin, β-lactoglobulin and lysozyme for their difference in thermodynamic stability and studied their adsorption at the air/water and limonene/water interface. In order to achieve this we have i) systematically analyzed protein adsorption kinetics in terms of surface pressure rise using a drop profile analysis tensiometer and ii) we addressed the interfacial layer properties under shear stress using an interfacial shear rheometer under the same experimental conditions. We could show that thermodynamically less stable proteins adsorb generally faster and yield films with higher shear rheological properties at air/water interface. The same proteins showed an analog behavior when adsorbing at the limonene/water interface but at slower rates. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. An Nmr Study of Supercooled Water Under Nanoconfinement by Hydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Ling, Yan-Chun

    The main focus of this dissertation is studying the properties of bulk water, confined water, and interfacial water. The thermodynamics, dynamics and state of water are investigated by DSC and 1H NMR methods. Hydrophobic slit-shaped pores with tunable pore size from 0.5 nm to 1.6 nm are applied as confinement media in our experiments. By confining water in nanopores, we are able to cool the water lower than its homogeneous nucleation temperature 235 K at ambient pressure and access the "no man's land". Both experimental and simulation results show water has heterogeneity property, with two "phases", one is high-density liquid (HDL) "phase" which has dense-packing structure, the other is low-density liquid (LDL) "phase" which has more tetrahedral structure. At room temperature, HDL and LDL two "phases" can coexist in millisecond time scale and 10 nanometer length scale. The room temperature water structure is dominated by HDL structure. By decreasing the temperature, HDL could convert to LDL gradually. At 200 K, LDL dominates the liquid state of water. It is of importance to emphasis, for water confined in nanopores there is no crystallization above 200 K. A dynamic crossover at 225 K in the liquid state is observed in our hydrophobic system, similar to that observed in hydrophilic system. This proves such dynamic crossover is not induced by crystallization or surface effect, but originally from the intrinsic properties of water. At 190 K, we find a second change of rotational correlation time, which resembles the glassification process of supercooled confined water, suggesting a higher rotational glass transition temperature for bulk water. In the lower temperature range 145 K water. In the lower temperature range 145 K < T < 165 K, the interfacial water induced glass transition is observed. At sufficient low temperature, confinement plays an important role for the induced glass transition. We also study the properties of interfacial water by confining water in smaller hydrophobic pores. It shows the interfacial water remains liquid state at 140 K. There is an Arrhenius to Arrhenius dynamic crossover at 170 K due to the rotational motion slowing down. Comparing to bulk water, interfacial water has fast rotation but effectively immobile. Our studies thus provide a complete picture for the rather controversial supercooled region and also differentiate the properties of bulk water, confined water and interfacial water using different techniques.

  17. Understanding the liquid-liquid (water-hexane) interface

    NASA Astrophysics Data System (ADS)

    Murad, Sohail; Puri, Ishwar K.

    2017-10-01

    Nonequilibrium molecular dynamics simulations are employed to investigate the interfacial thermal resistance of nanoscale hexane-water interfaces subject to an applied heat flux. Our studies show that these liquid-liquid interfaces exhibit behavior significantly dissimilar to that of solid-liquid and solid-vapor interfaces. Notably, the thermal resistance of a hexane-water interface is contingent on the interfacial temperature gradient alone with negligible dependence on the mean interfacial temperature, while the solid-liquid dependent strongly on the interfacial temperature. Application of a heat flux also increases the interface thickness significantly as compared to an equilibrium isothermal interface. Since liquid-liquid interfaces have been proposed for diverse applications, e.g., sensors for wastewater treatment and for extraction of toxic ions from water, they can be designed to be wider by applying a heat flux. This may allow the interface to be used for other applications not possible currently because of the very limited thickness of the interface in isothermal systems.

  18. Liquid interfacial water and brines in the upper surface of Mars

    NASA Astrophysics Data System (ADS)

    Moehlmann, Diedrich

    2013-04-01

    Liquid interfacial water and brines in the upper surface of Mars Diedrich T.F. Möhlmann DLR Institut für Planetenforschung, Rutherfordstr. 2, D - 12489 Berlin, Germany dirk.moehlmann@dlr.de Interfacial water films and numerous brines are known to remain liquid at temperatures far below 0° C. The physical processes behind are described in some detail. Deliquescence, i.e. the liquefaction of hygroscopic salts at the threshold of a specific "Deliquescence Relative Humidity", is shown to be that process, which on present Mars supports the formation of stable interfacial water and bulk liquids in form of temporary brines on and in a salty upper surface of present Mars in a diurnally temporary and repetitive process. Temperature and relative humidity are the governing conditions for deliquescence (and the counterpart "efflorescence") to evolve. The current thermo-dynamical conditions on Mars support these processes to evolve on present Mars. The deliquescence-driven presence of liquid brines in the soil of the upper surface of Mars can expected to be followed by physical and chemical processes like "surface cementation", down-slope flows, and physical and chemical weathering processes. A remarkable and possibly also biologically relevant evolution towards internally interfacial water bearing structures of dendritic capillaries is related to their freezing - thawing driven formation. The internal walls of these network-pores or -tubes can be covered by films of interfacial water, providing that way possibly habitable crack-systems in soil and rock. These evolutionary processes of networks, driven by their tip-growth, can expected to be ongoing also at present.

  19. Adsorption of PFOA at the Air-Water Interface during Transport in Unsaturated Porous Media.

    PubMed

    Lyu, Ying; Brusseau, Mark L; Chen, Wei; Yan, Ni; Fu, Xiaori; Lin, Xueyu

    2018-06-26

    Miscible-displacement experiments are conducted with perfluorooctanoic acid (PFOA) to determine the contribution of adsorption at the air-water interface to retention during transport in water-unsaturated porous media. Column experiments were conducted with two sands of different diameter at different PFOA input concentrations, water saturations, and pore-water velocities to evaluate the impact of system variables on retardation. The breakthrough curves for unsaturated conditions exhibited greater retardation than those obtained for saturated conditions, demonstrating the significant impact of air-water interfacial adsorption on PFOA retention. Retardation was greater for lower water saturations and smaller grain diameter, consistent with the impact of system conditions on the magnitude of air-water interfacial area in porous media. Retardation was greater for lower input concentrations of PFOA for a given water saturation, consistent with the nonlinear nature of surfactant fluid-fluid interfacial adsorption. Retardation factors predicted using independently determined parameter values compared very well to the measured values. The results showed that adsorption at the air-water interface is a significant source of retention for PFOA, contributing approximately 50-75% of total retention, for the test systems. The significant magnitude of air-water interfacial adsorption measured in this work has ramifications for accurate determination of PFAS migration potential in vadose zones.

  20. Modeling micelle formation and interfacial properties with iSAFT classical density functional theory

    NASA Astrophysics Data System (ADS)

    Wang, Le; Haghmoradi, Amin; Liu, Jinlu; Xi, Shun; Hirasaki, George J.; Miller, Clarence A.; Chapman, Walter G.

    2017-03-01

    Surfactants reduce the interfacial tension between phases, making them an important additive in a number of industrial and commercial applications from enhanced oil recovery to personal care products (e.g., shampoo and detergents). To help obtain a better understanding of the dependence of surfactant properties on molecular structure, a classical density functional theory, also known as interfacial statistical associating fluid theory, has been applied to study the effects of surfactant architecture on micelle formation and interfacial properties for model nonionic surfactant/water/oil systems. In this approach, hydrogen bonding is explicitly included. To minimize the free energy, the system minimizes interactions between hydrophobic components and hydrophilic components with water molecules hydrating the surfactant head group. The theory predicts micellar structure, effects of surfactant architecture on critical micelle concentration, aggregation number, and interfacial tension isotherm of surfactant/water systems in qualitative agreement with experimental data. Furthermore, this model is applied to study swollen micelles and reverse swollen micelles that are necessary to understand the formation of a middle-phase microemulsion.

  1. Natural Deposition Strategy for Interfacial, Self-Assembled, Large-Scale, Densely Packed, Monolayer Film with Ligand-Exchanged Gold Nanorods for In Situ Surface-Enhanced Raman Scattering Drug Detection.

    PubMed

    Mao, Mei; Zhou, Binbin; Tang, Xianghu; Chen, Cheng; Ge, Meihong; Li, Pan; Huang, Xingjiu; Yang, Liangbao; Liu, Jinhuai

    2018-03-15

    Liquid interfacial self-assembly of metal nanoparticles holds great promise for its various applications, such as in tunable optical devices, plasmonics, sensors, and catalysis. However, the construction of large-area, ordered, anisotropic, nanoparticle monolayers and the acquisition of self-assembled interface films are still significant challenges. Herein, a rapid, validated method to fabricate large-scale, close-packed nanomaterials at the cyclohexane/water interface, in which hydrophilic cetyltrimethylammonium bromide coated nanoparticles and gold nanorods (AuNRs) self-assemble into densely packed 2D arrays by regulating the surface ligand and suitable inducer, is reported. Decorating AuNRs with polyvinylpyrrolidone not only extensively decreases the charge of AuNRs, but also diminishes repulsive forces. More importantly, a general, facile, novel technique to transfer an interfacial monolayer through a designed in situ reaction cell linked to a microfluidic chip is revealed. The self-assembled nanofilm can then automatically settle on the substrate and be directly detected in the reaction cell in situ by means of a portable Raman spectrometer. Moreover, a close-packed monolayer of self-assembled AuNRs provides massive, efficient hotspots to create great surface-enhanced Raman scattering (SERS) enhancement, which provides high sensitivity and reproducibility as the SERS-active substrate. Furthermore, this strategy was exploited to detect drug molecules in human urine for cyclohexane-extracted targets acting as the oil phase to form an oil/water interface. A portable Raman spectrometer was employed to detect methamphetamine down to 100 ppb levels in human urine, exhibiting excellent practicability. As a universal platform, handy tool, and fast pretreatment method with a good capability for drug detection in biological systems, this technique shows great promise for rapid, credible, and on-spot drug detection. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Cooperative Effects of Zwitterionic-Ionic Surfactant Mixtures on the Interfacial Water Structure Revealed by Sum Frequency Generation Vibrational Spectroscopy.

    PubMed

    Pan, Xuecong; Yang, Fangyuan; Chen, Shunli; Zhu, Xuefeng; Wang, Chuanyi

    2018-05-08

    Cooperative effects of a series of equimolar binary zwitterionic-ionic surfactant mixtures on the interfacial water structure at the air-water interfaces have been studied by sum frequency generation vibrational spectroscopy (SFG-VS). For zwitterionic surfactant palmityl sulfobetaine (SNC 16 ), anionic surfactant sodium hexadecyl sulfate (SHS), and cationic surfactant cetyltrimethylammonium bromide (CTAB) with the same length of alkyl chain, significantly enhanced ordering of interfacial water molecules was observed for the zwitterionic-anionic surfactant mixtures SNC 16 -SHS, indicating that SNC 16 interacts more strongly with SHS than with CTAB because of the strong headgroup-headgroup electrostatic attraction for SNC 16 -SHS. Meanwhile, the SFG amplitude ratio of methyl and methylene symmetric stretching modes was used to verify the stronger interaction between SNC 16 and SHS. The conformational order indicator increased from 0.64 for SNC 16 to 7.17 for SNC 16 -SHS but only 0.94 for SNC 16 -CTAB. In addition, another anionic surfactant sodium dodecyl sulfate (SDS) was introduced to study the influence of chain-chain interaction. Decreased SFG amplitude of interfacial water molecules for SNC 16 -SDS was observed. Therefore, both the headgroup-headgroup electrostatic interaction and chain-chain van der Waals attractive interaction of the surfactants play an important role in enhancing the ordering of interfacial water molecules. The results provided experimental and theoretical bases for practical applications of the surfactants.

  3. Monitoring the interfacial electric field in pure and doped SrTiO3 surfaces by means of phase-resolved optical second harmonic generation

    NASA Astrophysics Data System (ADS)

    Rubano, Andrea; Mou, Sen; Paparo, Domenico

    2018-05-01

    Oxides and new functional materials such as oxide-based hetero-structures are very good candidates to achieve the goal of the next generation electronics. One of the main features that rules the electronic behavior of these compounds is the interfacial electric field which confines the charge carriers to a quasi-two-dimensional space region. The sign of the confined charge clearly depends on the electric field direction, which is however a very elusive quantity, as most techniques can only detect its absolute value. Even more valuable would be to access the sign of the interfacial electric field directly during the sample growth, being thus able to optimize the growth conditions directly looking at the feature of interest. For this aim, solid and reliable sensors are needed for monitoring the thin films while grown. Recently optical second harmonic generation has been proposed by us as a tool for non-invasive, non-destructive, real-time, in-situ imaging of oxide epitaxial film growth. The spatial resolution of this technique has been exploited to obtain real-time images of the sample under investigation. Here we propose to exploit another very important physical property of the second harmonic wave: its phase, which is directly coupled with the electric field direction, as shown by our measurements.

  4. pH-induced inversion of water-in-oil emulsions to oil-in-water high internal phase emulsions (HIPEs) using core cross-linked star (CCS) polymer as interfacial stabilizer.

    PubMed

    Chen, Qijing; Deng, Xiaoyong; An, Zesheng

    2014-06-01

    A pH-responsive core cross-linked star (CCS) polymer containing poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) arms was used as an interfacial stabilizer for emulsions containing toluene (80 v%) and water (20 v%). In the pH range of 12.1-9.3, ordinary water-in-oil emulsions were formed. Intermediate multiple emulsions of oil-in-water-in-oil and water-in-oil-in-water were formed at pH 8.6 and 7.5, respectively. Further lowering the pH resulted in the formation of gelled high internal phase emulsions of oil-in-water type in the pH range of 6.4-0.6. The emulsion behavior was correlated with interfacial tension, conductivity and configuration of the CCS polymer at different pH. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Phase-Transfer Energetics of Small-Molecule Alcohols Across the Water-Hexane Interface: Molecular Dynamics Simulation Using Charge Equilibration Models

    PubMed Central

    Bauer, Brad A.; Zhong, Yang; Meninger, David J.; Davis, Joseph E.; Patel, Sandeep

    2010-01-01

    We study the water-hexane interface using molecular dynamics (MD) and polarizable charge equilibration (CHEQ) force fields. Bulk densities for TIP4P-FQ water and hexane, 1.0086±0.0002 g/cm3 and 0.6378±0.0001 g/cm3, demonstrate excellent agreement with experiment. Interfacial width and interfacial tension are consistent with previously reported values. The in-plane component of the dielectric permittivity (ε∥) for water is shown to decrease from 81.7±0.04 to unity, transitioning longitudinally from bulk water to bulk hexane. ε∥ for hexane reaches a maximum in the interface, but this term represents only a small contribution to the total dielectric constant (as expected for a non-polar species). Structurally, net orientations of the molecules arise in the interfacial region such that hexane lies slightly parallel to the interface and water reorients to maximize hydrogen bonding. Interfacial potentials due to contributions of the water and hexane are calculated to be -567.9±0.13mV and 198.7±0.01mV, respectively, giving rise to a total potential in agreement with the range of values reported from previous simulations of similar systems. Potentials of mean force (PMF) calculated for methanol, ethanol, and 1-propanol for the transfer from water to hexane indicate an interfacial free energy minimum, corresponding to the amphiphilic nature of the molecules. The magnitudes of transfer free energies were further characterized from the solvation free energies of alcohols in water and hexane using thermodynamic integration. This analysis shows that solvation free energies for alcohols in hexane are 0.2-0.3 kcal/mol too unfavorable, whereas solvation of alcohols in water is approximately 1 kcal/mol too favorable. For the pure hexane-water interfacial simulations, we observe a monotonic decrease of the water dipole moment to near-vacuum values. This suggests that the electrostatic component of the desolvation free energy is not as severe for polarizable models than for fixed-charge force fields. The implications of such behavior pertain to the modeling of polar and charged solutes in lipidic environments. PMID:21414823

  6. A Physicochemical Study of the Effects of Acidity on the Distribution and Antioxidant Efficiency of Trolox in Olive Oil-in-Water Emulsions.

    PubMed

    Galan, Anna; Losada-Barreiro, Sonia; Bravo-Díaz, Carlos

    2016-01-18

    The efficiency of antioxidants to inhibit the oxidation of lipid-based emulsions depends on several factors including their nature and their concentration at the reaction site. Here, we have analyzed the effects of acidity and of surfactant concentration on the distribution and efficiency of the vitamin E analog Trolox (TR) in stripped olive oil-in-water emulsions stabilized with Tween 20. The distribution was assessed in the intact emulsions by employing a kinetic method that exploits the reaction between the hydrophobic 4-hexadecylbenzenediazonium ions and TR. Kinetic results are interpreted on the grounds of the pseudophase model. The effects of TR on the oxidative stability of the emulsion were determined at different pH values by monitoring the formation of conjugated dienes over time. The results show that the efficiency of TR increases upon increasing pH even though its concentration in the interfacial region decreases. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molinero, Valeria; Kay, Bruce D.

    This Special Topic on the Chemical Physics of Interfacial and Confined Water contains a collection of original research papers that showcase recent theoretical and experimental advances in the field. These papers provide a timely discussion of fundamental aspects of interfacial and confined water that are important in both natural environments and engineered applications.

  8. Anomalously low dielectric constant of confined water.

    PubMed

    Fumagalli, L; Esfandiar, A; Fabregas, R; Hu, S; Ares, P; Janardanan, A; Yang, Q; Radha, B; Taniguchi, T; Watanabe, K; Gomila, G; Novoselov, K S; Geim, A K

    2018-06-22

    The dielectric constant ε of interfacial water has been predicted to be smaller than that of bulk water (ε ≈ 80) because the rotational freedom of water dipoles is expected to decrease near surfaces, yet experimental evidence is lacking. We report local capacitance measurements for water confined between two atomically flat walls separated by various distances down to 1 nanometer. Our experiments reveal the presence of an interfacial layer with vanishingly small polarization such that its out-of-plane ε is only ~2. The electrically dead layer is found to be two to three molecules thick. These results provide much-needed feedback for theories describing water-mediated surface interactions and the behavior of interfacial water, and show a way to investigate the dielectric properties of other fluids and solids under extreme confinement. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. The effects of wettability and trapping on relationships between interfacial area, capillary pressure and saturation in porous media: A pore-scale network modeling approach

    NASA Astrophysics Data System (ADS)

    Raeesi, Behrooz; Piri, Mohammad

    2009-10-01

    SummaryWe use a three-dimensional mixed-wet random pore-scale network model to investigate the impact of wettability and trapping on the relationship between interfacial area, capillary pressure and saturation in two-phase drainage and imbibition processes. The model is a three-dimensional network of interconnected pores and throats of various geometrical shapes. It allows multiple phases to be present in each capillary element in wetting and spreading layers, as well as occupying the center of the pore space. Two different random networks that represent the pore space in Berea and a Saudi Arabia reservoir sandstone are used in this study. We allow the wettability of the rock surfaces contacted by oil to alter after primary drainage. The model takes into account both contact angle and trapping hystereses. We model primary oil drainage and water flooding for mixed-wet conditions, and secondary oil injection for a water-wet system. The total interfacial area for pores and throats are calculated when the system is at capillary equilibrium. They include contributions from the arc menisci (AMs) between the bulk and corner fluids, and from the main terminal menisci (MTMs) between different bulk fluids. We investigate hysteresis in these relationships by performing water injection into systems of varying wettability and initial water saturation. We show that trapping and contact angle hystereses significantly affect the interfacial area. In a strongly water-wet system, a sharp increase is observed at the beginning of water flood, which shifts the area to a higher level than primary drainage. As we change the wettability of the system from strongly water-wet to strongly oil-wet, the trapped oil saturation decreases significantly. Starting water flood from intermediate water saturations, greater than the irreducible water saturation, can also affect the non-wetting phase entrapment, resulting in different interfacial area behaviors. This can increase the interfacial area significantly in oil-wet systems. A qualitative comparison of our results with the experimental data available in literature for glass beads shows, with some expected differences, an encouraging agreement. Also, our results agree well with those generated by the previously developed models.

  10. Effect of demulsifiers on interfacial properties governing crude oil demulsification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, S.; Kushnick, A.P.

    1988-05-01

    Crude oil is almost always produced as persistent water-in-oil emulsions which must be resolved into two separate phases before the crude can be accepted for pipelining. The water droplets are sterically stabilized by the asphaltene and resin fractions of the crude oil. These are condensed aromatic rings containing saturated carbon chains and napthenic rings as substituents, along with a distribution of heteroatoms and metals. They are capable of crosslinking at the water drop-oil interface. Chemical demulsifiers are most commonly used to separate the emulsions into water and oil phases. The demulsifiers are moderate (2,000-50,000) molecular weight polydisperse mostly nonionic blockmore » copolymers with hydrophilic and hydrophobic segments. An example (Figure 1) of the most commonly used demulsifier is the oxyalkylated alkyl phenol formaldehyde resin. The alkyl group can be butyl, amyl, or nonyl and the interfacial activity is controlled by the relative amounts of ethylene oxide (EO) and propylene oxide (PO) attached to the polar end. The purpose of this paper is to illustrate how various parameters such as interfacial tension, interfacial shear viscosity, dynamic interfacial tension gradient, dilational elasticity and demulsifier clustering affect the demulsification effectiveness. To this end, the authors have studied both crude oil as well as asphaltene stabilized ''model' water-in-oil emulsions. In this paper, some of the results of the authors' study are presented.« less

  11. Permafrost and Subsurface Ice in the Solar System

    NASA Technical Reports Server (NTRS)

    Anderson, D. M.

    1985-01-01

    The properties and behavior of planetary permafrost are discussed with reference to the ability of such surfaces to sustain loads characteristics of spacecraft landing and planetary bases. In most occurrences, water ice is in close proximity to, or in contact with, finely divided silicate mineral matter. When ice contacts silicate mineral surfaces, a liquid-like, transition zone is created. Its thickness ranges from several hundred Angstron units at temperatures near 0 degrees C to about three Angstrom units at -150 degrees C. When soluble substances are present, the resulting brine enlarges the interfacial zone. When clays are involved, although the interfacial zone may be small, its extent is large. The unfrozen, interfacial water may amount to 100% or more weight at a temperature of -5 degrees C. The presence of this interfacial unfrozen water acts to confer plasticity to permafrost, enabling it to exhibit creep at all imposed levels of stress. Nucleation processes and load-bearing capacity are examined.

  12. Surface tension dominates insect flight on fluid interfaces.

    PubMed

    Mukundarajan, Haripriya; Bardon, Thibaut C; Kim, Dong Hyun; Prakash, Manu

    2016-03-01

    Flight on the 2D air-water interface, with body weight supported by surface tension, is a unique locomotion strategy well adapted for the environmental niche on the surface of water. Although previously described in aquatic insects like stoneflies, the biomechanics of interfacial flight has never been analysed. Here, we report interfacial flight as an adapted behaviour in waterlily beetles (Galerucella nymphaeae) which are also dexterous airborne fliers. We present the first quantitative biomechanical model of interfacial flight in insects, uncovering an intricate interplay of capillary, aerodynamic and neuromuscular forces. We show that waterlily beetles use their tarsal claws to attach themselves to the interface, via a fluid contact line pinned at the claw. We investigate the kinematics of interfacial flight trajectories using high-speed imaging and construct a mathematical model describing the flight dynamics. Our results show that non-linear surface tension forces make interfacial flight energetically expensive compared with airborne flight at the relatively high speeds characteristic of waterlily beetles, and cause chaotic dynamics to arise naturally in these regimes. We identify the crucial roles of capillary-gravity wave drag and oscillatory surface tension forces which dominate interfacial flight, showing that the air-water interface presents a radically modified force landscape for flapping wing flight compared with air. © 2016. Published by The Company of Biologists Ltd.

  13. Surface tension dominates insect flight on fluid interfaces

    PubMed Central

    Mukundarajan, Haripriya; Bardon, Thibaut C.; Kim, Dong Hyun; Prakash, Manu

    2016-01-01

    ABSTRACT Flight on the 2D air–water interface, with body weight supported by surface tension, is a unique locomotion strategy well adapted for the environmental niche on the surface of water. Although previously described in aquatic insects like stoneflies, the biomechanics of interfacial flight has never been analysed. Here, we report interfacial flight as an adapted behaviour in waterlily beetles (Galerucella nymphaeae) which are also dexterous airborne fliers. We present the first quantitative biomechanical model of interfacial flight in insects, uncovering an intricate interplay of capillary, aerodynamic and neuromuscular forces. We show that waterlily beetles use their tarsal claws to attach themselves to the interface, via a fluid contact line pinned at the claw. We investigate the kinematics of interfacial flight trajectories using high-speed imaging and construct a mathematical model describing the flight dynamics. Our results show that non-linear surface tension forces make interfacial flight energetically expensive compared with airborne flight at the relatively high speeds characteristic of waterlily beetles, and cause chaotic dynamics to arise naturally in these regimes. We identify the crucial roles of capillary–gravity wave drag and oscillatory surface tension forces which dominate interfacial flight, showing that the air–water interface presents a radically modified force landscape for flapping wing flight compared with air. PMID:26936640

  14. On the Hofmeister effect: fluctuations at the protein-water interface and the surface tension.

    PubMed

    Bogár, Ferenc; Bartha, Ferenc; Násztor, Zoltán; Fábián, László; Leitgeb, Balázs; Dér, András

    2014-07-24

    We performed molecular dynamics simulations on the tryptophane-cage miniprotein using a nonpolarizable force field, in order to model the effect of concentrated water solutions of neutral salts on protein conformation, which is a manifestation of Hofmeister effects. From the equilibrium values and the fluctuations of the solvent accessible surface area of the miniprotein, the salt-induced changes of the mean value of protein-water interfacial tension were determined. At 300 K, the chaotropic ClO4(-) and NO3(-) decreased the interfacial tension according to their position in the Hofmeister series (by approximately 5 and 2.7 mN/m, respectively), while the kosmotropic F(-) increased it (by 1 mN/m). These values were compared to those obtained from the Gibbs equation using the excess surface adsorption calculated from the probability distribution of the water molecules and ions around the miniprotein, and the two sets were found to be very close to each other. Our results present a direct evidence for the central role of interfacial tension and fluctuations at the protein-water interface in Hofmeister phenomena, and provide a computational method for the determination of the protein-water interfacial tension, establishing a link between the phenomenological and microscopic description of protein-water interfaces.

  15. The interfacial-organized monolayer water film (MWF) induced ``two-step'' aggregation of nanographene: both in stacking and sliding assembly pathways

    NASA Astrophysics Data System (ADS)

    Lv, Wenping; Wu, Ren'an

    2013-03-01

    A computational investigation was carried out to understand the aggregation of nanoscale graphene with two typical pathways of stacking assembly and sliding assembly in water. The interfacial-organized monolayer water film (MWF) induced ``two-step'' aggregation of nanographene in both stacking and sliding assembly pathways was reported for the first time. By means of potential mean forces (PMFs) calculation, no energy barrier was observed during the sliding assembly of two graphene nanosheets, while the PMF profiles could be impacted by the contact forms of nanographene and the MWF within the interplate of two graphene nanosheets. To explore the potential physical basis of the ``hindering role'' of self-organized interfacial water, the dynamical and structural properties as well as the status of hydrogen bonds (H-bonds) for interfacial water were investigated. We found that the compact, ordered structure and abundant H-bonds of the MWF could be taken as the fundamental aspects of the ``hindering role'' of interfacial water for the hydrophobic assembly of nanographene. These findings are displaying a potential to further understand the hydrophobic assembly which mostly dominate the behaviors of nanomaterials, proteins etc. in aqueous solutions.A computational investigation was carried out to understand the aggregation of nanoscale graphene with two typical pathways of stacking assembly and sliding assembly in water. The interfacial-organized monolayer water film (MWF) induced ``two-step'' aggregation of nanographene in both stacking and sliding assembly pathways was reported for the first time. By means of potential mean forces (PMFs) calculation, no energy barrier was observed during the sliding assembly of two graphene nanosheets, while the PMF profiles could be impacted by the contact forms of nanographene and the MWF within the interplate of two graphene nanosheets. To explore the potential physical basis of the ``hindering role'' of self-organized interfacial water, the dynamical and structural properties as well as the status of hydrogen bonds (H-bonds) for interfacial water were investigated. We found that the compact, ordered structure and abundant H-bonds of the MWF could be taken as the fundamental aspects of the ``hindering role'' of interfacial water for the hydrophobic assembly of nanographene. These findings are displaying a potential to further understand the hydrophobic assembly which mostly dominate the behaviors of nanomaterials, proteins etc. in aqueous solutions. Electronic supplementary information (ESI) available: The evolution of interaction energy for two graphene nanosheets assembly in stacking (a) and sliding (b) pathway was plotted in Fig. S1. The time evolution of three dimension distance for stacking assembly of two graphene nanosheets with the edge-edge orientation of 45° was plotted in Fig. S2. The initial orientations of graphene nanosheets in three simulations (edge-edge distance in x-direction (dx) was 0.3 nm, but in z-direction (dz) was 0.0 nm, 0.4 nm and 0.7 nm, respectively) were shown in Fig. S3. The snapshots of the evolution of hydration shells during the sliding assembly of nanographene were shown in Fig. S4, with the separation of two graphene nanosheets in z-direction is (a) 0 nm and (b) 0.7 nm, respectively. The process of two graphene nanosheets assembly in stacking pathway was shown in Movie S1 as video. The process of two graphene nanosheets (with a separation of 0.7 nm in normal direction) assembly in sliding pathway was shown in Movie S2 as video. The dynamical evolution of interfacial water during the sliding assembly of nanographene was shown in Movie S3 as video. The process of extruding the monolayer water film (MWF) out of the interplate of two graphene nanosheets was shown in Movie S4 as video. Movie S5 displays that the graphene-water-graphene sandwiched structure was successfully maintained during a 10 ns MD simulation. See DOI: 10.1039/c3nr33447c

  16. Interfacial behavior of confined mesogens at smectic-C*-water boundary.

    PubMed

    Chandran, Achu; Khanna, P K; Haranath, D; Biradar, Ashok M

    2018-02-01

    In this paper, we have investigated the behavior of mesogens at smectic-C*-water interface confined in a liquid crystal (LC) cell with interfacial geometry. Polarized optical microscopy was used to probe the appearance of various smectic-C* domain patterns at water interface owing to the reorientation of mesogens. The undulated stripe domains observed at the air interface of smectic-C* meniscus vanished as the water entered into the smectic layers and focal conical domain patterns appeared at smectic-C*-water boundary. A spatially variable electro-optical switching of LC molecules was also observed outside the electrode area of the interfacial cell. The electrode region at the interface, as well as on the water side, was damaged upon application of an electric field of magnitude more than 150 kV/m. The change in dielectric parameters of mesogens was extensively studied at interface after evaporating the water. These studies give fundamental insights into smectic-C*-water interface and also will be helpful in fabricating better LC devices for electro-optical and sensing applications.

  17. Interfacial behavior of confined mesogens at smectic-C*-water boundary

    NASA Astrophysics Data System (ADS)

    Chandran, Achu; Khanna, P. K.; Haranath, D.; Biradar, Ashok M.

    2018-02-01

    In this paper, we have investigated the behavior of mesogens at smectic-C*-water interface confined in a liquid crystal (LC) cell with interfacial geometry. Polarized optical microscopy was used to probe the appearance of various smectic-C* domain patterns at water interface owing to the reorientation of mesogens. The undulated stripe domains observed at the air interface of smectic-C* meniscus vanished as the water entered into the smectic layers and focal conical domain patterns appeared at smectic-C*-water boundary. A spatially variable electro-optical switching of LC molecules was also observed outside the electrode area of the interfacial cell. The electrode region at the interface, as well as on the water side, was damaged upon application of an electric field of magnitude more than 150 kV/m. The change in dielectric parameters of mesogens was extensively studied at interface after evaporating the water. These studies give fundamental insights into smectic-C*-water interface and also will be helpful in fabricating better LC devices for electro-optical and sensing applications.

  18. A comparison of corn fiber gum, hydrophobically modified starch, gum arabic and soybean soluble polysaccharide: interfacial dynamics, viscoelastic response at oil/water interfaces and emulsion stabilization mechanisms

    USDA-ARS?s Scientific Manuscript database

    The interfacial rheology of polysaccharide adsorption layers of corn fiber gum (CFG), octenyl succinate anhydride-modified starch (OSA-s), gum arabic (GA) and soybean soluble polysaccharides (SSPS) at the oil/water interface and their emulsifying properties in oil-in-water (O/W) emulsions were compa...

  19. Water flattens graphene wrinkles: laser shock wrapping of graphene onto substrate-supported crystalline plasmonic nanoparticle arrays

    PubMed Central

    Hu, Yaowu; Lee, Seunghyun; Kumar, Prashant; Nian, Qiong; Wang, Wenqi; Irudayaraj, Joseph; Cheng, Gary J.

    2018-01-01

    Hot electron injection into an exceptionally high mobility material can be realized in graphene-plasmonic nanoantenna hybrid nanosystems, which can be exploited for several front-edge applications including photovoltaics, plasmonic waveguiding and molecular sensing at trace level. Wrinkling instabilities of graphene on these plasmonic nanostructures, however, would cause reactive oxygen or sulfur species diffuse and react with the materials, decrease charge transfer rate and block intense hot-spots. No ex-situ graphene wrapping technique has been explored so far to control these wrinkles. Here, we present a method to generate seamless integration by using water as a flyer to transfer the laser shock pressure to wrap graphene onto plasmonic nanocrystals. This technique decrease the interfacial gap between graphene and the covered substrate-supported plasmonic nanoparticle arrays, by exploiting a shock pressure generated by laser ablation of graphite and water impermeability nature of graphene. Graphene wrapping of chemically synthesized crystalline gold nanospheres, nanorods and bipyramids with different field confinement capabilities are investigated. A combined experimental and computational method, including SEM and AFM morphological investigation, molecular dynamics simulation, and Raman spectroscopy characterization, is used to demonstrate the effectiveness of this technique. Graphene covered gold bipyramid exhibits the best result among the hybrid nanosystems studied. We have shown that the hybrid system fabricated by laser shock can be used for enhanced molecular sensing. The technique developed has the characteristics of tight integration, chemical/thermal stability, instantaneous, scale and room temperature processing capability, and can be further extended to integrate other 2D material with various 0-3D nanomaterials. PMID:26394237

  20. Assembly of acid-functionalized single-walled carbon nanotubes at oil/water interfaces.

    PubMed

    Feng, Tao; Hoagland, David A; Russell, Thomas P

    2014-02-04

    The efficient segregation of water-soluble, acid-functionalized, single-walled carbon nanotubes (SWCNTs) at the oil/water interface was induced by dissolving low-molecular-weight amine-terminated polystyrene (PS-NH2) in the oil phase. Salt-bridge interactions between carboxylic acid groups of SWCNTs and amine groups of PS drove the assembly of SWCNTs at the interface, monitored by pendant drop tensiometry and laser scanning confocal microscopy. The impact of PS end-group functionality, PS and SWCNT concentrations, and the degree of SWCNT acid modification on the interfacial activity was assessed, and a sharp drop in interfacial tension was observed above a critical SWCNT concentration. Interfacial tensions were low enough to support stable oil/water emulsions. Further experiments, including potentiometric titrations and the replacement of SWCNTs by other carboxyl-containing species, demonstrated that the interfacial tension drop reflects the loss of SWCNT charge as the pH falls near/below the intrinsic carboxyl dissociation constant; species lacking multivalent carboxylic acid groups are inactive. The trapped SWCNTs appear to be neither ordered nor oriented.

  1. Search for the source of an apparent interfacial resistance to mass transfer of CnEm surfactants to the water/oil interface.

    PubMed

    Huston, Kyle J; Kiemen, Ashley; Larson, Ronald G

    2018-06-12

    Experiments have shown that relaxation of oil/water interfacial tension by adsorption of alkyl ethoxylate surfactants from water onto an oil droplet is delayed relative to diffusion-controlled adsorption. We examine possible causes of this delay, and we show that several are implausible. We find that re-dissolution of the surfactant in the oil droplet cannot explain the apparent interfacial resistance at short times, because the interface will preferentially fill before any such re-dissolution occurs. We also perform umbrella sampling with molecular dynamics simulation and do not find any evidence of a free energy barrier or low-diffusivity zone near the interface. Nor do we find evidence from simulation that pre-micellar aggregation slows diffusion enough to cause the observed resistance to interfacial adsorption. We are therefore unable to pinpoint the cause of the resistance, but we suggest that "dead time" associated with the experimental method could be responsible - specifically a local depletion of surfactant by the ejected droplet when creating the fresh interface between the oil and water.

  2. Interfacial free energy governs single polystyrene chain collapse in water and aqueous solutions.

    PubMed

    Li, Isaac T S; Walker, Gilbert C

    2010-05-12

    The hydrophobic interaction is significantly responsible for driving protein folding and self-assembly. To understand it, the thermodynamics, the role of water structure, the dewetting process surrounding hydrophobes, and related aspects have undergone extensive investigations. Here, we examine the hypothesis that polymer-solvent interfacial free energy is adequate to describe the energetics of the collapse of a hydrophobic homopolymer chain at fixed temperature, which serves as a much simplified model for studying the hydrophobic collapse of a protein. This implies that changes in polymer-solvent interfacial free energy should be directly proportional to the force to extend a collapsed polymer into a bad solvent. To test this hypothesis, we undertook single-molecule force spectroscopy on a collapsed, single, polystyrene chain in water-ethanol and water-salt mixtures where we measured the monomer solvation free energy from an ensemble average conformations. Different proportions within the binary mixture were used to create solvents with different interfacial free energies with polystyrene. In these mixed solvents, we observed a linear correlation between the interfacial free energy and the force required to extend the chain into solution, which is a direct measure of the solvation free energy per monomer on a single chain at room temperature. A simple analytical model compares favorably with the experimental results. This knowledge supports a common assumption that explicit water solvent may not be necessary for cases whose primary concerns are hydrophobic interactions and hydrophobic hydration.

  3. Real Space Imaging of Nanoparticle Assembly at Liquid-Liquid Interfaces with Nanoscale Resolution.

    PubMed

    Costa, Luca; Li-Destri, Giovanni; Thomson, Neil H; Konovalov, Oleg; Pontoni, Diego

    2016-09-14

    Bottom up self-assembly of functional materials at liquid-liquid interfaces has recently emerged as method to design and produce novel two-dimensional (2D) nanostructured membranes and devices with tailored properties. Liquid-liquid interfaces can be seen as a "factory floor" for nanoparticle (NP) self-assembly, because NPs are driven there by a reduction of interfacial energy. Such 2D assembly can be characterized by reciprocal space techniques, namely X-ray and neutron scattering or reflectivity. These techniques have drawbacks, however, as the structural information is averaged over the finite size of the radiation beam and nonperiodic isolated assemblies in 3D or defects may not be easily detected. Real-space in situ imaging methods are more appropriate in this context, but they often suffer from limited resolution and underperform or fail when applied to challenging liquid-liquid interfaces. Here, we study the surfactant-induced assembly of SiO2 nanoparticle monolayers at a water-oil interface using in situ atomic force microscopy (AFM) achieving nanoscale resolved imaging capabilities. Hitherto, AFM imaging has been restricted to solid-liquid interfaces because applications to liquid interfaces have been hindered by their softness and intrinsic dynamics, requiring accurate sample preparation methods and nonconventional AFM operational schemes. Comparing both AFM and grazing incidence X-ray small angle scattering data, we unambiguously demonstrate correlation between real and reciprocal space structure determination showing that the average interfacial NP density is found to vary with surfactant concentration. Additionally, the interaction between the tip and the interface can be exploited to locally determine the acting interfacial interactions. This work opens up the way to studying complex nanostructure formation and phase behavior in a range of liquid-liquid and complex liquid interfaces.

  4. Interfacial Charge Transfer States in Condensed Phase Systems

    NASA Astrophysics Data System (ADS)

    Vandewal, Koen

    2016-05-01

    Intermolecular charge transfer (CT) states at the interface between electron-donating (D) and electron-accepting (A) materials in organic thin films are characterized by absorption and emission bands within the optical gap of the interfacing materials. CT states efficiently generate charge carriers for some D-A combinations, and others show high fluorescence quantum efficiencies. These properties are exploited in organic solar cells, photodetectors, and light-emitting diodes. This review summarizes experimental and theoretical work on the electronic structure and interfacial energy landscape at condensed matter D-A interfaces. Recent findings on photogeneration and recombination of free charge carriers via CT states are discussed, and relations between CT state properties and optoelectronic device parameters are clarified.

  5. Supramolecular Differentiation for Construction of Anisotropic Fullerene Nanostructures by Time-Programmed Control of Interfacial Growth.

    PubMed

    Bairi, Partha; Minami, Kosuke; Hill, Jonathan P; Nakanishi, Waka; Shrestha, Lok Kumar; Liu, Chao; Harano, Koji; Nakamura, Eiichi; Ariga, Katsuhiko

    2016-09-27

    Supramolecular assembly can be used to construct a wide variety of ordered structures by exploiting the cumulative effects of multiple noncovalent interactions. However, the construction of anisotropic nanostructures remains subject to some limitations. Here, we demonstrate the preparation of anisotropic fullerene-based nanostructures by supramolecular differentiation, which is the programmed control of multiple assembly strategies. We have carefully combined interfacial assembly and local phase separation phenomena. Two fullerene derivatives, PhH and C12H, were together formed into self-assembled anisotropic nanostructures by using this approach. This technique is applicable for the construction of anisotropic nanostructures without requiring complex molecular design or complicated methodology.

  6. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces. II. Two-dimensional spectra.

    PubMed

    Roy, S; Gruenbaum, S M; Skinner, J L

    2014-12-14

    The structural stability and function of biomolecules is strongly influenced by the dynamics and hydrogen bonding of interfacial water. Understanding and characterizing the dynamics of these water molecules require a surface-sensitive technique such as two-dimensional vibrational sum-frequency generation (2DSFG) spectroscopy. We have combined theoretical 2DSFG calculations with molecular dynamics simulations in order to investigate the dynamics of water near different lipid and surfactant monolayer surfaces. We show that 2DSFG can distinguish the dynamics of interfacial water as a function of the lipid charge and headgroup chemistry. The dynamics of water is slow compared to the bulk near water-zwitterionic and water-anionic interfaces due to conformational constraints on interfacial water imposed by strong phosphate-water hydrogen bonding. The dynamics of water is somewhat faster near water-cationic lipid interfaces as no such constraint is present. Using hydrogen bonding and rotational correlation functions, we characterize the dynamics of water as a function of the distance from the interface between water and zwitterionic lipids. We find that there is a transition from bulk-like to interface-like dynamics approximately 7 Å away from a zwitterionic phosphatidylcholine monolayer surface.

  7. Solid-liquid interfacial free energy of ice Ih, ice Ic, and ice 0 within a mono-atomic model of water via the capillary wave method.

    PubMed

    Ambler, Michael; Vorselaars, Bart; Allen, Michael P; Quigley, David

    2017-02-21

    We apply the capillary wave method, based on measurements of fluctuations in a ribbon-like interfacial geometry, to determine the solid-liquid interfacial free energy for both polytypes of ice I and the recently proposed ice 0 within a mono-atomic model of water. We discuss various choices for the molecular order parameter, which distinguishes solid from liquid, and demonstrate the influence of this choice on the interfacial stiffness. We quantify the influence of discretisation error when sampling the interfacial profile and the limits on accuracy imposed by the assumption of quasi one-dimensional geometry. The interfacial free energies of the two ice I polytypes are indistinguishable to within achievable statistical error and the small ambiguity which arises from the choice of order parameter. In the case of ice 0, we find that the large surface unit cell for low index interfaces constrains the width of the interfacial ribbon such that the accuracy of results is reduced. Nevertheless, we establish that the interfacial free energy of ice 0 at its melting temperature is similar to that of ice I under the same conditions. The rationality of a core-shell model for the nucleation of ice I within ice 0 is questioned within the context of our results.

  8. Structural inhomogeneity of interfacial water at lipid monolayers revealed by surface-specific vibrational pump-probe spectroscopy.

    PubMed

    Bonn, Mischa; Bakker, Huib J; Ghosh, Avishek; Yamamoto, Susumu; Sovago, Maria; Campen, R Kramer

    2010-10-27

    We report vibrational lifetime measurements of the OH stretch vibration of interfacial water in contact with lipid monolayers, using time-resolved vibrational sum frequency (VSF) spectroscopy. The dynamics of water in contact with four different lipids are reported and are characterized by vibrational relaxation rates measured at 3200, 3300, 3400, and 3500 cm(-1). We observe that the water molecules with an OH frequency ranging from 3300 to 3500 cm(-1) all show vibrational relaxation with a time constant of T(1) = 180 ± 35 fs, similar to what is found for bulk water. Water molecules with OH groups near 3200 cm(-1) show distinctly faster relaxation dynamics, with T(1) < 80 fs. We successfully model the data by describing the interfacial water containing two distinct subensembles in which spectral diffusion is, respectively, rapid (3300-3500 cm(-1)) and absent (3200 cm(-1)). We discuss the potential biological implications of the presence of the strongly hydrogen-bonded, rapidly relaxing water molecules at 3200 cm(-1) that are decoupled from the bulk water system.

  9. Interfacial engineering of microstructured materials

    NASA Astrophysics Data System (ADS)

    Poda, Aimee

    The tribological behavior of octadecyltrichlorosilane self assembled monolayers (OTS-SAMs) has been successfully exploited to reduce energy losses and to produce adequate adhesion barrier properties on many MEMS surfaces. Unfortunately, performance discrepancies are reported in the literature between films produced on smooth surfaces as compared to typical MEMS surfaces maintaining topographical roughness. Rational explanations in terms of reproducibility issues, production considerations, and the scale of measurement technique have been introduced to account for some of the variation. The tribological phenomena at the micro-scale are complicated by the fact that rather than inertial effects, the forces associated with the surface become dominant factors influencing the mechanical behavior of contacting components. In MEMS, real mechanical contacts typically consist of a few nanometer scale asperities. Furthermore, various surface topographies exist for MEMS device fabrication and their corresponding asperity profiles can vary drastically based on the production process. This dissertation presents research focusing on the influence of topographical asperities on OTS film properties of relevance for efficient tribological improvement. A fundamental approach has been taken to carefully examine the factors that contribute to high quality film formation, specifically formation temperature and the role of interfacial water layer associated with the sample surface. As evidenced on smooth surfaces, the characteristics for successful tribological performance of OTS films are strongly dependent on the lateral packing density and molecular orientation of the monolayer. Limited information is available on how monolayers associate on topographical asperities and whether these topographical asperities influence the interfacial reactivity of MEMS surfaces. A silica film produced from a low temperature, vapor-phase hydrolysis of tetrachlorosilane with a tunable topography is introduced and leveraged as a novel investigative platform for advanced analytical investigations often restricted to use on smooth surfaces. This tunable surface allows intellectual insight into the nature of surface properties associated with silica surfaces, the uptake of interfacial water and the subsequent influence of surface morphology on OTS film formation. FTIR analysis was utilized for an examination of interfacial properties on both smooth Si(100) surfaces and on the tunable MVD topography in combination with an investigation of OTS film formation mechanism. A dilute etchant technique is developed to provide topographic contrast for AFM imaging to allow direct examination of film packing characteristics in relation to surface asperities. A relationship between monolayer adsorption characteristics and topographical asperities with observed variations in monolayer order resultant from surface roughness has been elucidated. Results show that the packing structure of OTS monolayers is dependent on the local asperity curvature which is qualitatively different from that observed on flat surfaces. In addition, a difference in surface reactivity is observed as a result of different surface topographies with thicker silica layers maintaining a thicker interfacial water layer resulting in a higher coverage of OTS monolayers at similar reaction times and conditions. This work shows changes in surface reactivity as a consequence of different morphological surface characteristics and preparation procedures. Additional research is presented on a new class of SAM, namely octadecylphoshonic acid and its monolayer formation mechanism and properties are compared to conventional OTS monolayers. This monolayer is translated to investigative probes based on Aluminum oxide specifically tailored for a tribological comparison across multi-scale friction regimes.

  10. Thermodynamic analysis of effects of contact angle on interfacial interactions and its implications for membrane fouling control.

    PubMed

    Chen, Jianrong; Shen, Liguo; Zhang, Meijia; Hong, Huachang; He, Yiming; Liao, Bao-Qiang; Lin, Hongjun

    2016-02-01

    Concept of hydrophobicity always fails to accurately assess the interfacial interaction and membrane fouling, which calls for reliable parameters for this purpose. In this study, effects of contact angle on interfacial interactions related to membrane fouling were investigated based on thermodynamic analysis. It was found that, total interaction energy between sludge foulants and membrane monotonically decreases and increases with water and glycerol contact angle, respectively, indicating that these two parameters can be reliable indicators predicting total interaction energy and membrane fouling. Membrane roughness decreases interaction strength for over 20 times, and effects of membrane roughness on membrane fouling should consider water and glycerol contact angle on membrane. It was revealed existence of a critical water and glycerol contact angle for a given membrane bioreactor. Meanwhile, diiodomethane contact angle has minor effect on the total interaction, and cannot be regarded as an effective indicator assessing interfacial interactions and membrane fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Maillard Conjugation of Sodium Alginate to Whey Protein for Enhanced Resistance to Surfactant-Induced Competitive Displacement from Air-Water Interfaces.

    PubMed

    Cai, Bingqing; Saito, Anna; Ikeda, Shinya

    2018-01-24

    Whey protein adsorbed to an interface forms a viscoelastic interfacial film but is displaced competitively from the interface by a small-molecule surfactant added afterward. The present study evaluated the impact of the covalent conjugation of high- or low-molecular-weight sodium alginate (HA or LA) to whey protein isolate (WPI) via the Maillard reaction on the ability of whey protein to resist surfactant-induced competitive displacement from the air-water interface. Surfactant added after the pre-adsorption of conjugate to the interface increased surface pressure. At a given surface pressure, the WPI-LA conjugate showed a significantly higher interfacial area coverage and lower interfacial film thickness compared to those of the WPI-HA conjugate or unconjugated WPI. The addition of LA to the aqueous phase had little effect on the interfacial area and thickness of pre-adsorbed WPI. These results suggest the importance of the molecular weight of the polysaccharide moiety in determining interfacial properties of whey protein-alginate conjugates.

  12. Interfacial assignment of branched-alkyl benzene sulfonates: A molecular simulation

    NASA Astrophysics Data System (ADS)

    Liu, Zi-Yu; Wei, Ning; Wang, Ce; Zhou, He; Zhang, Lei; Liao, Qi; Zhang, Lu

    2015-11-01

    A molecular dynamics simulation was conducted to analyze orientations of sodium branched-alkyl benzene sulfonates molecules at nonane/water interface, which is helpful to design optimal surfactant structures to achieve ultralow interfacial tension (IFT). Through the two dimensional density profiles, monolayer collapses are found when surfactant concentration continues to increase. Thus the precise scope of monolayer is certain and orientation can be analyzed. Based on the simulated results, we verdict the interfacial assignment of branched-alkyl benzene sulfonates at the oil-water interface, and discuss the effect of hydrophobic tail structure on surfactant assignment. Bigger hydrophobic size can slow the change rate of surfactant occupied area as steric hindrance, and surfactant meta hydrophobic tails have a stronger tendency to stretch to the oil phase below the collapsed concentration. Furthermore, an interfacial model with reference to collapse, increasing steric hindrance and charge repulsive force between interfacial surfactant molecules, responsible for effecting of surfactant concentration and structure has been supposed.

  13. Experimental evidence of a liquid-liquid transition in interfacial water

    NASA Astrophysics Data System (ADS)

    Zanotti, J.-M.; Bellissent-Funel, M.-C.; Chen, S.-H.

    2005-07-01

    At ambient pressure, bulk liquid water shows an anomalous increase of thermodynamic quantities and apparent divergences of dynamic properties on approaching a temperature Ts of 228 K. At normal pressure, supercooled water spontaneously freezes below the homogeneous nucleation temperature, TH = 235 K. Upon heating, the two forms of Amorphous Solid Water (ASW), LDA (Low Density Amorphous Ice) and HDA (High Density Amorphous Ice), crystallise above TX = 150 K. As a consequence, up to now no experiment has been able to explore the properties of liquid water in this very interesting temperature range between 150 and 235 K. We present nanosecond-time-scale measurements of local rotational and translational dynamics of interfacial, non-crystalline, water from 77 to 280 K. These experimental dynamic results are combined with calorimetric and diffraction data to show that after exhibiting a glass transition at 165 K, interfacial water experiences a first-order liquid-liquid transition at 240 K from a low-density to a high-density liquid. This is the first direct evidence of the existence of a liquid-liquid transition involving water.

  14. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets.

    PubMed

    Li, Hui; Zeng, Xiao Cheng

    2012-03-27

    Born-Oppenheim quantum molecular dynamics (QMD) simulations are performed to investigate wetting, diffusive, and interfacial properties of water nanodroplets in contact with a graphene sheet or a monolayer boron-nitride (BN) sheet. Contact angles of the water nanodroplets on the two sheets are computed for the first time using QMD simulations. Structural and dynamic properties of the water droplets near the graphene or BN sheet are also studied to gain insights into the interfacial interaction between the water droplet and the substrate. QMD simulation results are compared with those from previous classic MD simulations and with the experimental measurements. The QMD simulations show that the graphene sheet yields a contact angle of 87°, while the monolayer BN sheet gives rise to a contact angle of 86°. Hence, like graphene, the monolayer BN sheet is also weakly hydrophobic, even though the BN bonds entail a large local dipole moment. QMD simulations also show that the interfacial water can induce net positive charges on the contacting surface of the graphene and monolayer BN sheets, and such charge induction may affect electronic structure of the contacting graphene in view that graphene is a semimetal. Contact angles of nanodroplets of water in a supercooled state on the graphene are also computed. It is found that under the supercooled condition, water nanodroplets exhibit an appreciably larger contact angle than under the ambient condition. © 2012 American Chemical Society

  15. Tunneling magnetoresistance and electroresistance in Fe/PbTiO{sub 3}/Fe multiferroic tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Jian-Qing, E-mail: djqkust@sina.com

    We perform first-principles electronic structure and spin-dependent transport calculations for a Fe/PbTiO{sub 3}/Fe multiferroic tunnel junction with asymmetric TiO{sub 2}- and PbO-terminated interfaces. We demonstrate that the interfacial electronic reconstruction driven by the in situ screening of ferroelectric polarization, in conjunction with the intricate complex band structure of barrier, play a decisive role in controlling the spin-dependent tunneling. Reversal of ferroelectric polarization results in a transition from insulating to half-metal-like conducting state for the interfacial Pb 6p{sub z} orbitals, which acts as an atomic-scale spin-valve by releasing the tunneling current in antiparallel magnetization configuration as the ferroelectric polarization pointing tomore » the PbO-terminated interface. This effect produces large change in tunneling conductance. Our results open an attractive avenue in designing multiferroic tunnel junctions with excellent performance by exploiting the interfacial electronic reconstruction originated from the in situ screening of ferroelectric polarization.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pascal, Tod A.; Villaluenga, Irune; Wujcik, Kevin H.

    Impregnation of porous carbon matrices with liquid sulfur has been exploited to fabricate composite cathodes for lithium-sulfur batteries, aimed at confining soluble sulfur species near conducting carbon to prevent both loss of active material into the electrolyte and parasitic reactions at the lithium metal anode. Here, through extensive computer simulations, we uncover the strongly favorable interfacial free energy between liquid sulfur and graphitic surfaces that underlies this phenomenon. Previously unexplored curvature-dependent enhancements are shown to favor the filling of smaller pores first and effect a quasi-liquid sulfur phase in microporous domains (diameters <2 nm) that persists ~30° below the expectedmore » freezing point. Evidence of interfacial sulfur on carbon is shown to be a 0.3 eV red shift in the simulated and measured interfacial X-ray absorption spectra. Our results elucidate the critical morphology and thermodynamic properties necessary for future cathode design and highlight the importance of molecular-scale details in defining emergent properties of functional nanoscale interfaces.« less

  17. The interfacial character of antibody paratopes: analysis of antibody-antigen structures.

    PubMed

    Nguyen, Minh N; Pradhan, Mohan R; Verma, Chandra; Zhong, Pingyu

    2017-10-01

    In this study, computational methods are applied to investigate the general properties of antigen engaging residues of a paratope from a non-redundant dataset of 403 antibody-antigen complexes to dissect the contribution of hydrogen bonds, hydrophobic, van der Waals contacts and ionic interactions, as well as role of water molecules in the antigen-antibody interface. Consistent with previous reports using smaller datasets, we found that Tyr, Trp, Ser, Asn, Asp, Thr, Arg, Gly, His contribute substantially to the interactions between antibody and antigen. Furthermore, antibody-antigen interactions can be mediated by interfacial waters. However, there is no reported comprehensive analysis for a large number of structured waters that engage in higher ordered structures at the antibody-antigen interface. From our dataset, we have found the presence of interfacial waters in 242 complexes. We present evidence that suggests a compelling role of these interfacial waters in interactions of antibodies with a range of antigens differing in shape complementarity. Finally, we carry out 296 835 pairwise 3D structure comparisons of 771 structures of contact residues of antibodies with their interfacial water molecules from our dataset using CLICK method. A heuristic clustering algorithm is used to obtain unique structural similarities, and found to separate into 368 different clusters. These clusters are used to identify structural motifs of contact residues of antibodies for epitope binding. This clustering database of contact residues is freely accessible at http://mspc.bii.a-star.edu.sg/minhn/pclick.html. minhn@bii.a-star.edu.sg, chandra@bii.a-star.edu.sg or zhong_pingyu@immunol.a-star.edu.sg. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  18. Interfacial behaviour of sodium stearoyllactylate (SSL) as an oil-in-water pickering emulsion stabiliser.

    PubMed

    Kurukji, D; Pichot, R; Spyropoulos, F; Norton, I T

    2013-11-01

    The ability of a food ingredient, sodium stearoyllactylate (SSL), to stabilise oil-in-water (O/W) emulsions against coalescence was investigated, and closely linked to its capacity to act as a Pickering stabiliser. Results showed that emulsion stability could be achieved with a relatively low SSL concentration (≥0.1 wt%), and cryogenic-scanning electron microscopy (cryo-SEM) visualisation of emulsion structure revealed the presence of colloidal SSL aggregates adsorbed at the oil-water interface. Surface properties of SSL could be modified by altering the size of these aggregates in water; a faster decrease in surface tension was observed when SSL dispersions were subjected to high pressure homogenisation (HPH). The rate of SSL adsorption at the sunflower oil-water interface also increased after HPH, and a higher interfacial tension (IFT) was observed with increasing SSL concentration. Differential scanning calorimetry (DSC) enabled a comparison of the thermal behaviour of SSL in aqueous dispersions with SSL-stabilised O/W emulsions. SSL melting enthalpy depended on emulsion interfacial area and the corresponding DSC data was used to determine the amount of SSL adsorbed at the oil-water interface. An idealised theoretical interfacial coverage calculation based on Pickering emulsion theory was in general agreement with the mass of SSL adsorbed as predicted by DSC. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  19. The principle of minimal episteric distortion of the water matrix and its steering role in protein folding

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel

    2013-08-01

    A significant episteric ("around a solid") distortion of the hydrogen-bond structure of water is promoted by solutes with nanoscale surface detail and physico-chemical complexity, such as soluble natural proteins. These structural distortions defy analysis because the discrete nature of the solvent at the interface is not upheld by the continuous laws of electrostatics. This work derives and validates an electrostatic equation that governs the episteric distortions of the hydrogen-bond matrix. The equation correlates distortions from bulk-like structural patterns with anomalous polarization components that do not align with the electrostatic field of the solute. The result implies that the interfacial energy stored in the orthogonal polarization correlates with the distortion of the water hydrogen-bond network. The result is validated vis-à-vis experimental data on protein interfacial thermodynamics and is interpreted in terms of the interaction energy between the electrostatic field of the solute and the dipole moment induced by the anomalous polarization of interfacial water. Finally, we consider solutes capable of changing their interface through conformational transitions and introduce a principle of minimal episteric distortion (MED) of the water matrix. We assess the importance of the MED principle in the context of protein folding, concluding that the native fold may be identified topologically with the conformation that minimizes the interfacial tension or disruption of the water matrix.

  20. Interfacial enhancement of carbon fiber composites by growing TiO2 nanowires onto amine-based functionalized carbon fiber surface in supercritical water

    NASA Astrophysics Data System (ADS)

    Ma, Lichun; Li, Nan; Wu, Guangshun; Song, Guojun; Li, Xiaoru; Han, Ping; Wang, Gang; Huang, Yudong

    2018-03-01

    A novel amine-based functionalization method was developed to improve the interfacial adhesion between TiO2 NWs and CFs in supercritical water. The microstructure, morphology and mechanical properties of CFs were investigated. It was found that introducing hexamethylenetetramine (HMTA) dendrimers and branched polyethyleneimine (PEI) on CF could increase significantly the adhesion strength between CF and TiO2 NWs and their interfacial shear strength with epoxy resin, and the order is CF-PEI-TiO2 NWs > CF-HMTA-TiO2 NWs > CF-COOH-TiO2 NWs > CF-TiO2 NW. Meanwhile, the reinforcing mechanisms and interfacial failure modes have also been discussed. We believe that these effective methods may provide theoretical foundation for the preparation of high performance composite materials.

  1. Tuning Transpiration by Interfacial Solar Absorber-Leaf Engineering.

    PubMed

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining; Wang, Zhenlin; Zhu, Jia

    2018-02-01

    Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber-water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber-leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber-leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle.

  2. Surface-bubble-modulated liquid chromatography: a new approach for manipulation of chromatographic retention and investigation of solute distribution at water/hydrophobic interfaces.

    PubMed

    Nakamura, Keisuke; Nakamura, Hiroki; Saito, Shingo; Shibukawa, Masami

    2015-01-20

    In this paper, we present a new chromatographic method termed surface-bubble-modulated liquid chromatography (SBMLC), that has a hybrid separation medium incorporated with surface nanobubbles. Nanobubbles or nanoscale gas phases can be fixed at the interface between water and a hydrophobic material by delivering water into a dry column packed with a nanoporous material. The incorporation of a gas phase at the hydrophobic surface leads to the formation of the hybrid separation system consisting of the gas phase, hydrophobic moieties, and the water/hydrophobic interface or the interfacial water. One can change the volume of the gas phase by pressure applied to the column, which in turn alters the area of water/hydrophobic interface or the volume of the interfacial water, while the amount of the hydrophobic moiety remains constant. Therefore, this strategy provides a novel technique not only for manipulating the separation selectivity by pressure but also for elucidating the mechanism of accumulation or retention of solute compounds in aqueous solutions by a hydrophobic material. We evaluate the contributions of the interfacial water at the surface of an octadecyl bonded silica and the bonded layer itself to the retention of various solute compounds in aqueous solutions on the column packed with the material by SBMLC. The results show that the interfacial water formed at the hydrophobic surface has a key role in retention even though its volume is rather small. The manipulation of the separation selectivity of SBMLC for some organic compounds by pressure is demonstrated.

  3. Biomimetic Interfacial Electron-Induced Electrochemiluminesence.

    PubMed

    Pu, Guiqiang; Zhang, Dongxu; Mao, Xiang; Zhang, Zhen; Wang, Huan; Ning, Xingming; Lu, Xiaoquan

    2018-04-17

    We provide here, for the first time, a new interfacial electron-induced electrochemiluminescence (IEIECL) system, realizing bionic construction of bioluminescence (BL) by exploiting electrochemiluminescence (ECL) and ITIES (the interface between two immiscible electrolyte solutions). Significantly, the superiority of the IEIECL system is embodied with the solution of the two bottlenecks encountered in the conventional ECL innovation: that are (a) the applications of hydrophobic luminophores in more commonly used aqueous solution are inhibited tremendously due to the poor inherent solubility and the instability of radicals and (b) the analytes, insoluble in water, are hard to be discovered in an aqueous system because of too little content. More productive IEIECL radiation, analogous to BL, originates from the triplet excited state porphyrin in comparison to the homogeneous ECL. The mechanism of IEIECL, as well as the interaction mechanism between IEIECL and charge transfer (comprising electron transfer (ET), ion transfer (IT), and facilitated ion transfer (FIT)) at the ITIES, are explored in detail. Finally, we emphasize the actual application potential of the IEIECL system with the detection of cytochrome c (Cyt c); it is a key biomolecule in the electron transport chain in the process of biological oxidation and is also an intermediate species in apoptosis. Potentially, the IEIECL system permits ones to explore the lifetime and diffusion path of free radicals, as well as imparting a possibility for the construction of a bionic sensor.

  4. Phase equilibria and thermodynamic modeling of ethane and propane hydrates in porous silica gels.

    PubMed

    Seo, Yongwon; Lee, Seungmin; Cha, Inuk; Lee, Ju Dong; Lee, Huen

    2009-04-23

    In the present study, we examined the active role of porous silica gels when used as natural gas storage and transportation media. We adopted the dispersed water in silica gel pores to substantially enhance active surface for contacting and encaging gas molecules. We measured the three-phase hydrate (H)-water-rich liquid (L(W))-vapor (V) equilibria of C(2)H(6) and C(3)H(8) hydrates in 6.0, 15.0, 30.0, and 100.0 nm silica gel pores to investigate the effect of geometrical constraints on gas hydrate phase equilibria. At specified temperatures, the hydrate stability region is shifted to a higher pressure region depending on pore size when compared with those of bulk hydrates. Through application of the Gibbs-Thomson relationship to the experimental data, we determined the values for the C(2)H(6) hydrate-water and C(3)H(8) hydrate-water interfacial tensions to be 39 +/- 2 and 45 +/- 1 mJ/m(2), respectively. By using these values, the calculation values were in good agreement with the experimental ones. The overall results given in this study could also be quite useful in various fields, such as exploitation of natural gas hydrate in marine sediments and sequestration of carbon dioxide into the deep ocean.

  5. Template-based protein-protein docking exploiting pairwise interfacial residue restraints.

    PubMed

    Xue, Li C; Rodrigues, João P G L M; Dobbs, Drena; Honavar, Vasant; Bonvin, Alexandre M J J

    2017-05-01

    Although many advanced and sophisticated ab initio approaches for modeling protein-protein complexes have been proposed in past decades, template-based modeling (TBM) remains the most accurate and widely used approach, given a reliable template is available. However, there are many different ways to exploit template information in the modeling process. Here, we systematically evaluate and benchmark a TBM method that uses conserved interfacial residue pairs as docking distance restraints [referred to as alpha carbon-alpha carbon (CA-CA)-guided docking]. We compare it with two other template-based protein-protein modeling approaches, including a conserved non-pairwise interfacial residue restrained docking approach [referred to as the ambiguous interaction restraint (AIR)-guided docking] and a simple superposition-based modeling approach. Our results show that, for most cases, the CA-CA-guided docking method outperforms both superposition with refinement and the AIR-guided docking method. We emphasize the superiority of the CA-CA-guided docking on cases with medium to large conformational changes, and interactions mediated through loops, tails or disordered regions. Our results also underscore the importance of a proper refinement of superimposition models to reduce steric clashes. In summary, we provide a benchmarked TBM protocol that uses conserved pairwise interface distance as restraints in generating realistic 3D protein-protein interaction models, when reliable templates are available. The described CA-CA-guided docking protocol is based on the HADDOCK platform, which allows users to incorporate additional prior knowledge of the target system to further improve the quality of the resulting models. © The Author 2016. Published by Oxford University Press.

  6. Effect of a surface tension gradient on the slip flow along a superhydrophobic air-water interface

    NASA Astrophysics Data System (ADS)

    Song, Dong; Song, Baowei; Hu, Haibao; Du, Xiaosong; Du, Peng; Choi, Chang-Hwan; Rothstein, Jonathan P.

    2018-03-01

    Superhydrophobic surfaces have been shown to produce significant drag reduction in both laminar and turbulent flows by introducing an apparent slip velocity along an air-water interface trapped within the surface roughness. In the experiments presented within this study, we demonstrate the existence of a surface tension gradient associated with the resultant Marangoni flow along an air-water interface that causes the slip velocity and slip length to be significantly reduced. In this study, the slip velocity along a millimeter-sized air-water interface was investigated experimentally. This large-scale air-water interface facilitated a detailed investigation of the interfacial velocity profiles as the flow rate, interfacial curvature, and interface geometry were varied. For the air-water interfaces supported above continuous grooves (concentric rings within a torsional shear flow) where no surface tension gradient exists, a slip velocity as high as 30% of the bulk velocity was observed. However, for the air-water interfaces supported above discontinuous grooves (rectangular channels in a Poiseuille flow), the presence of a surface tension gradient reduced the slip velocity and in some cases resulted in an interfacial velocity that was opposite to the main flow direction. The curvature of the air-water interface in the spanwise direction was found to dictate the details of the interfacial flow profile with reverse flow in the center of the interface for concave surfaces and along the outside of the interface for convex surfaces. The deflection of the air-water interface was also found to greatly affect the magnitude of the slip. Numerical simulations imposed with a relatively small surface tension gradient along the air-water interface were able to predict both the reduced slip velocity and back flow along the air-water interface.

  7. Adsorption at the biocompatible α-pinene-water interface and emulsifying properties of two eco-friendly surfactants.

    PubMed

    Trujillo-Cayado, Luis Alfonso; Ramírez, Pablo; Alfaro, María Carmen; Ruíz, Manuela; Muñoz, José

    2014-10-01

    In this contribution, we provide an accurate characterization at the α-pinene/water interface of two commercial polyoxytheylene glycerol ester surfactants which differ in the number of ethylene oxide (EO) groups, comprising a systematic analysis of interfacial pressure isotherms, dynamic curves, interfacial rheology and emulsifying properties. Polyoxyethylene glycerol esters derived from cocoa oil are non-ionic surfactants obtained from a renewable source which fulfill the environmental and toxicological requirements to be used as eco-friendly emulsifying agents. α-Pinene is a renewable biosolvent completely insoluble in water, which could find numerous applications. Interfacial rheology and equilibrium interfacial pressure data fitted a rigorous reorientation model that assumes that the surfactant molecules, when adsorbed at the interface, can acquire two orientations. The surfactant with the highest number of EO groups (Levenol C201) turned out to be more surface active at the α-pinene/water interface. In addition, the surfactant with the lowest number of EO groups (Levenol H&B) is solubilized into the adjacent oil phase. Slightly concentrated α-pinene emulsions were obtained using both surfactants. Nevertheless, more stable α-pinene emulsions with smaller droplet sizes and lower polidispersity were obtained when Levenol C201 was used as emulsifier instead of Levenol H&B. The systematic characterization presented in this work provides important new findings on the interfacial and emulsifying properties of polyoxytheylene glycerol ester surfactants, which can be applied in the rational development of new biocompatible products. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Hydrophobic interaction and charge accumulation at the diamond-electrolyte interface.

    PubMed

    Dankerl, M; Lippert, A; Birner, S; Stützel, E U; Stutzmann, M; Garrido, J A

    2011-05-13

    The hydrophobic interaction of surfaces with water is a well-known phenomenon, but experimental evidence of its influence on biosensor devices has been lacking. In this work we investigate diamond field-effect devices, reporting on Hall effect experiments and complementary simulations of the interfacial potential at the hydrogen-terminated diamond/aqueous electrolyte interface. The interfacial capacitance, derived from the gate-dependent Hall carrier concentration, can be modeled only when considering the hydrophobic nature of this surface and its influence on the structure of interfacial water. Our work demonstrates how profoundly the performance of potentiometric biosensor devices can be affected by their surfaces' hydrophobicity.

  9. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces.

    PubMed

    Roy, S; Gruenbaum, S M; Skinner, J L

    2014-11-14

    Understanding the structure of water near cell membranes is crucial for characterizing water-mediated events such as molecular transport. To obtain structural information of water near a membrane, it is useful to have a surface-selective technique that can probe only interfacial water molecules. One such technique is vibrational sum-frequency generation (VSFG) spectroscopy. As model systems for studying membrane headgroup/water interactions, in this paper we consider lipid and surfactant monolayers on water. We adopt a theoretical approach combining molecular dynamics simulations and phase-sensitive VSFG to investigate water structure near these interfaces. Our simulated spectra are in qualitative agreement with experiments and reveal orientational ordering of interfacial water molecules near cationic, anionic, and zwitterionic interfaces. OH bonds of water molecules point toward an anionic interface leading to a positive VSFG peak, whereas the water hydrogen atoms point away from a cationic interface leading to a negative VSFG peak. Coexistence of these two interfacial water species is observed near interfaces between water and mixtures of cationic and anionic lipids, as indicated by the presence of both negative and positive peaks in their VSFG spectra. In the case of a zwitterionic interface, OH orientation is toward the interface on the average, resulting in a positive VSFG peak.

  10. Interfacial mixing in as-deposited Si/Ni/Si layers analyzed by x-ray and polarized neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Debarati; Basu, Saibal; Singh, Surendra; Roy, Sumalay; Dev, Bhupendra Nath

    2012-12-01

    Interdiffusion occurring across the interfaces in a Si/Ni/Si layered system during deposition at room temperature was probed using x-ray reflectivity (XRR) and polarized neutron reflectivity (PNR). Exploiting the complementarity of these techniques, both structural and magnetic characterization with nanometer depth resolution could be achieved. Suitable model fitting of the reflectivity profiles identified the formation of Ni-Si mixed alloy layers at the Si/Ni and Ni/Si interfaces. The physical parameters of the layered structure, including quantitative assessment of the stoichiometry of interfacial alloys, were obtained from the analyses of XRR and PNR patterns. In addition, PNR provided magnetic moment density profile as a function of depth in the stratified medium.

  11. Effects of the conjugation of whey proteins with gellan polysaccharides on surfactant-induced competitive displacement from the air-water interface.

    PubMed

    Cai, B; Ikeda, S

    2016-08-01

    Whey proteins can be used to stabilize foams and emulsions against coalescence because of their ability to form viscoelastic films at the interface that resist film rupture on collision between colloidal particles. However, whey proteins are competitively displaced from the interface if small-molecule surfactants are added, leading to destabilization of the entire system. This is because surfactants are more effective in molecular packing at the interface, and they lower interfacial tension to a greater degree than whey proteins do, but their interfacial films are poor in viscoelasticity. We hypothesized that whey proteins would become more resistant to surfactant-induced competitive displacement if they were conjugated with network-forming polysaccharides. The protein moiety of the conjugate would be expected to enable its adsorption to the interface, and the polysaccharide moiety would be expected to form self-assembled networks, strengthening the interfacial film as a whole. In this study, whey proteins were conjugated with gellan polysaccharides using the Maillard reaction. Atomic force microscopy images of interfacial films formed by the whey protein-gellan conjugate at the air-water interface and transferred onto mica sheets using the Langmuir-Blodgett method revealed that gellan did form self-assembled networks at the interface and that interfacial films also contained a large number of unconjugated whey protein molecules. Following the addition of a small-molecule surfactant (Tween 20) to the sub-phase, surface pressure increased, indicating spontaneous adsorption of surfactants to the interface. Atomic force microscopy images showed decreases in interfacial area coverage by whey proteins as surface pressure increased. At a given surface pressure, the interfacial area coverage by whey protein-gellan conjugates was greater than coverage by unconjugated whey proteins, confirming that whey proteins became more resistant to surfactant-induced displacement after conjugation with gellan. Furthermore, gellan molecules added to the sub-phase after the formation of a monolayer of whey proteins at the air-water interface did not adsorb to the interfacial protein film. These results provide a molecular basis for designing interfacial structures to enhance the stability of colloidal systems. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Metal-Organic Framework-Stabilized CO2/Water Interfacial Route for Photocatalytic CO2 Conversion.

    PubMed

    Luo, Tian; Zhang, Jianling; Li, Wei; He, Zhenhong; Sun, Xiaofu; Shi, Jinbiao; Shao, Dan; Zhang, Bingxing; Tan, Xiuniang; Han, Buxing

    2017-11-29

    Here, we propose a CO 2 /water interfacial route for photocatalytic CO 2 conversion by utilizing a metal-organic framework (MOF) as both an emulsifier and a catalyst. The CO 2 reduction occurring at the CO 2 /water interface produces formate with remarkably enhanced efficiency as compared with that in conventional solvent. The route is efficient, facile, adjustable, and environmentally benign, which is applicable for the CO 2 transformation photocatalyzed by different kinds of MOFs.

  13. Molecular dynamics investigation on adsorption layer of alcohols at the air/brine interface.

    PubMed

    Nguyen, Cuong V; Phan, Chi M; Ang, Ha M; Nakahara, Hiromichi; Shibata, Osamu; Moroi, Yoshikiyo

    2015-01-01

    Alcohols are a significant group of surfactants which have been employed extensively in industry to improve the interfacial effects. Recently, the change in surface potential (ΔV) of two isomeric hexanols, methyl isobutyl carbinol (MIBC) and 1-hexanol, was investigated by using an ionizing (241)Am electrode. It clearly showed the opposite effects between MIBC and 1-hexanol in the interfacial zone: one enhanced the presence of cations, whereas the other enhanced the presence of anions. This study employs molecular dynamics simulation to provide new insights into the interactions between alcohol molecules and ions as well as water at the molecular level. The results qualitatively agreed with the experimental data and verified the significance of MIBC branching structure on the molecular arrangement within the interfacial zone. The results also highlighted the role of the second water layer on the interfacial properties.

  14. First-Principles Prediction of Liquid/Liquid Interfacial Tension.

    PubMed

    Andersson, M P; Bennetzen, M V; Klamt, A; Stipp, S L S

    2014-08-12

    The interfacial tension between two liquids is the free energy per unit surface area required to create that interface. Interfacial tension is a determining factor for two-phase liquid behavior in a wide variety of systems ranging from water flooding in oil recovery processes and remediation of groundwater aquifers contaminated by chlorinated solvents to drug delivery and a host of industrial processes. Here, we present a model for predicting interfacial tension from first principles using density functional theory calculations. Our model requires no experimental input and is applicable to liquid/liquid systems of arbitrary compositions. The consistency of the predictions with experimental data is significant for binary, ternary, and multicomponent water/organic compound systems, which offers confidence in using the model to predict behavior where no data exists. The method is fast and can be used as a screening technique as well as to extend experimental data into conditions where measurements are technically too difficult, time consuming, or impossible.

  15. Effect of cross-linking of interfacial sodium caseinate by natural processing on the oxidative stability of oil-in-water (o/w) emulsions.

    PubMed

    Phoon, Pui Yeu; Paul, Lake N; Burgner, John W; San Martin-Gonzalez, M Fernanda; Narsimhan, Ganesan

    2014-04-02

    This study investigated how enzymatic cross-linking of interfacial sodium caseinate and emulsification, via high-pressure homogenization, influenced the intrinsic oxidative stability of 4% (w/v) menhaden oil-in-water emulsions stabilized by 1% (w/v) caseinate at pH 7. Oil oxidation was monitored by the ferric thiocyanate perioxide value assay. Higher homogenization pressure resulted in improved intrinsic emulsion oxidative stability, which is attributed to increased interfacial cross-linking as indicated by higher weighted average sedimentation coefficients of interfacial protein species (from 11.2 S for 0 kpsi/0.1 MPa to 18 S for 20 kpsi/137.9 MPa). Moderate dosage of transglutaminase at 0.5-1.0 U/mL emulsion enhanced intrinsic emulsion oxidative stability further, despite a contradictory reduction in the antioxidant property of cross-linked caseinate as tested by the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. This implied the prominent role of cross-linked interfacial caseinate as a physical barrier for oxygen transfer, hence its efficacy in retarding oil oxidation.

  16. Surface adsorption behaviour of milk whey protein and pectin mixtures under conditions of air-water interface saturation.

    PubMed

    Perez, Adrián A; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Rubiolo, Amelia C; Santiago, Liliana G

    2011-07-01

    Milk whey proteins (MWP) and pectins (Ps) are biopolymer ingredients commonly used in the manufacture of colloidal food products. Therefore, knowledge of the interfacial characteristics of these biopolymers and their mixtures is very important for the design of food dispersion formulations (foams and/or emulsions). In this paper, we examine the adsorption and surface dilatational behaviour of MWP/Ps systems under conditions in which biopolymers can saturate the air-water interface on their own. Experiments were performed at constant temperature (20 °C), pH 7 and ionic strength 0.05 M. Two MWP samples, β-lactoglobulin (β-LG) and whey protein concentrate (WPC), and two Ps samples, low-methoxyl pectin (LMP) and high-methoxyl pectin (HMP) were evaluated. The contribution of biopolymers (MWP and Ps) to the interfacial properties of mixed systems was evaluated on the basis of their individual surface molecular characteristics. Biopolymer bulk concentration capable of saturating the air-water interface was estimated from surface pressure isotherms. Under conditions of interfacial saturation, dynamic adsorption behaviour (surface pressure and dilatational rheological characteristics) of MWP/Ps systems was discussed from a kinetic point of view, in terms of molecular diffusion, penetration and configurational rearrangement at the air-water interface. The main adsorption mechanism in MWP/LMP mixtures might be the MWP interfacial segregation due to the thermodynamic incompatibility between MWP and LMP (synergistic mechanism); while the interfacial adsorption in MWP/HMP mixtures could be characterized by a competitive mechanism between MWP and HMP at the air-water interface (antagonistic mechanism). The magnitude of these phenomena could be closely related to differences in molecular composition and/or aggregation state of MWP (β-LG and WPC). Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Wettability of supercritical carbon dioxide/water/quartz systems: simultaneous measurement of contact angle and interfacial tension at reservoir conditions.

    PubMed

    Saraji, Soheil; Goual, Lamia; Piri, Mohammad; Plancher, Henry

    2013-06-11

    Injection of carbon dioxide in deep saline aquifers is considered as a method of carbon sequestration. The efficiency of this process is dependent on the fluid-fluid and rock-fluid interactions inside the porous media. For instance, the final storage capacity and total amount of capillary-trapped CO2 inside an aquifer are affected by the interfacial tension between the fluids and the contact angle between the fluids and the rock mineral surface. A thorough study of these parameters and their variations with temperature and pressure will provide a better understanding of the carbon sequestration process and thus improve predictions of the sequestration efficiency. In this study, the controversial concept of wettability alteration of quartz surfaces in the presence of supercritical carbon dioxide (sc-CO2) was investigated. A novel apparatus for measuring interfacial tension and contact angle at high temperatures and pressures based on Axisymmetric Drop Shape Analysis with no-Apex (ADSA-NA) method was developed and validated with a simple system. Densities, interfacial tensions, and dynamic contact angles of CO2/water/quartz systems were determined for a wide range of pressures and temperatures relevant to geological sequestration of CO2 in the subcritical and supercritical states. Image analysis was performed with ADSA-NA method that allows the determination of both interfacial tensions and contact angles with high accuracy. The results show that supercritical CO2 alters the wettability of quartz surface toward less water-wet conditions compared to subcritical CO2. Also we observed an increase in the water advancing contact angles with increasing temperature indicating less water-wet quartz surfaces at higher temperatures.

  18. Liquid-Vapor Interfacial Properties of Aqueous Solutions of Guanidinium and Methyl Guanidinium Chloride: Influence of Molecular Orientation on Interface Fluctuations

    PubMed Central

    Ou, Shuching; Cui, Di; Patel, Sandeep

    2014-01-01

    The guanidinium cation (C(NH2)3+) is a highly stable cation in aqueous solution due to its efficient solvation by water molecules and resonance stabilization of the charge. Its salts increase the solubility of nonpolar molecules (”salting-in”) and decrease the ordering of water. It is one of the strongest denaturants used in biophysical studies of protein folding. We investigate the behavior of guanidinium and its derivative, methyl guanidinium (an amino acid analogue) at the air-water surface, using atomistic molecular dynamics (MD) simulations and calculation of potentials of mean force. Methyl guanidinium cation is less excluded from the air-water surface than guanidinium cation, but both cations show orientational dependence of surface affinity. Parallel orientations of the guanidinium ring (relative to the Gibbs dividing surface) show pronounced free energy minima in the interfacial region, while ring orientations perpendicular to the GDS exhibit no discernible surface stability. Calculations of surface fluctuations demonstrate that near the air-water surface, the parallel-oriented cations generate significantly greater interfacial fluctuations compared to other orientations, which induces more long-ranged perturbations and solvent density redistribution. Our results suggest a strong correlation with induced interfacial fluctuations and ion surface stability. These results have implications for interpreting molecular-level, mechanistic action of this osmolyte’s interaction with hydrophobic interfaces as they impact protein denaturation (solubilization). PMID:23937431

  19. Humidity-dependent compression-induced glass transition of the air–water interfacial Langmuir films of poly(D,L-lactic acid- ran-glycolic acid) (PLGA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyun Chang; Lee, Hoyoung; Jung, Hyunjung

    2015-08-26

    Constant rate compression isotherms of the air–water interfacial Langmuir films of poly(D,L-lactic acid- ran-glycolic acid) (PLGA)show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air–water interface, using combined experimental techniques including themore » Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods.« less

  20. Molecular dynamics simulation of water at mineral surfaces: Structure, dynamics, energetics and hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Kalinichev, A. G.; Wang, J.; Kirkpatrick, R.

    2006-05-01

    Fundamental molecular-level understanding of the properties of aqueous mineral interfaces is of great importance for many geochemical and environmental systems. Interaction between water and mineral surfaces substantially affects the properties of both phases, including the reactivity and functionality of the substrate surface, and the structure, dynamics, and energetics of the near surface aqueous phase. Experimental studies of interfacial water structure and dynamics using surface-sensitive techniques such as sum-frequency vibrational spectroscopy or X-ray and neutron reflectivity are not always possible for many practically important substrates, and their results often require interpretation concerning the atomistic mechanisms responsible for the observed behavior. Molecular computer simulations can provide new insight into the underlying molecular- level relationships between the inorganic substrate structure and composition and the structure, ordering, and dynamics of interfacial water. We have performed a series of molecular dynamics (MD) computer simulations of aqueous interfaces with several silicates (quartz, muscovite, and talc) and hydroxides (brucite, portlandite, gibbsite, Ca/Al and Mg/Al double hydroxides) to quantify the effects of the substrate mineral structure and composition on the structural, transport, and thermodynamic properties of water on these mineral surfaces. Due to the prevalent effects of the development of well-interconnected H-bonding networks across the mineral- water interfaces, all the hydroxide surfaces (including a fully hydroxylated quartz surface) show very similar H2O density profiles perpendicular to the interface. However, the predominant orientations of the interfacial H2O molecules and their detailed 2-dimensional near-surface structure and dynamics parallel to the interface are quite different reflecting the differences in the substrate structural charge distribution and the density and orientations of the surface OH groups. The H2O density profiles and other structural and dynamic characteristics of water at the two siloxane surfaces are very different from each other and from the hydroxide surfaces, since the muscovite surface is negatively charged and hydrophilic, while the talc surface is electrostatically neutral and hydrophobic. In general, at hydrophilic neutral surfaces both donating and accepting H-bonds from the H2O molecules are contributing to the development of the interfacial H-bond network, whereas at hydrophilic but charged surfaces only accepting or donating H-bonds with H2O molecules are possible. At the hydrophobic talc surface H-bonds among H2O molecules dominate the interfacial H-bond network and the water-surface interactions are very weak. The first water layer at all substrates is well ordered parallel to the surface, reflecting substrate crystal structures and indicating the reduced translational and orientational mobility of interfacial H2O molecules. At longer time scale (~100ps) their dynamics can be decomposed into a slow, virtually frozen, regime due to the substrate- bound H2O and a faster regime of almost free water reflecting the dynamics far from the surface. At shorter times (>10ps) the two dynamical regimes are superimposed. The much higher ordering of interfacial water (compared to bulk liquid) can not be adequately described as simply "ice-like". To some extent, it rather resembles the behavior of supercooled water.

  1. Tuning Transpiration by Interfacial Solar Absorber‐Leaf Engineering

    PubMed Central

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining

    2017-01-01

    Abstract Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber–water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber–leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber‐leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle. PMID:29619300

  2. Advances in the treatment of explicit water molecules in docking and binding free energy calculations.

    PubMed

    Hu, Xiao; Maffucci, Irene; Contini, Alessandro

    2018-05-13

    The inclusion of direct effects mediated by water during the ligand-receptor recognition is a hot-topic of modern computational chemistry applied to drug discovery and development. Docking or virtual screening with explicit hydration is still debatable, despite the successful cases that have been presented in the last years. Indeed, how to select the water molecules that will be included in the docking process or how the included waters should be treated remain open questions. In this review, we will discuss some of the most recent methods that can be used in computational drug discovery and drug development when the effect of a single water, or of a small network of interacting waters, needs to be explicitly considered. Here, we analyse software to aid the selection, or to predict the position, of water molecules that are going to be explicitly considered in later docking studies. We also present software and protocols able to efficiently treat flexible water molecules during docking, including examples of applications. Finally, we discuss methods based on molecular dynamics simulations that can be used to integrate docking studies or to reliably and efficiently compute binding energies of ligands in presence of interfacial or bridging water molecules. Software applications aiding the design of new drugs that exploit water molecules, either as displaceable residues or as bridges to the receptor, are constantly being developed. Although further validation is needed, workflows that explicitly consider water will probably become a standard for computational drug discovery soon. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Interfacial area transport of steam-water two-phase flow in a vertical annulus at elevated pressures

    NASA Astrophysics Data System (ADS)

    Ozar, Basar

    Analysis of accident scenarios in nuclear reactors are done by using codes such as TRACE and RELAP5. Large oscillations in the core void fraction are observed in calculations of advanced passive light water reactors (ALWRs), especially during the low pressure long-term cooling phase. These oscillations are attributed to be numerical in nature and served to limit the accuracy as well as the credibility of the calculations. One of the root causes of these unphysical oscillations is determined to be flow regime transitions caused by the usage of static flow regime maps. The interfacial area transport equation was proposed earlier in order to address these issues. Previous research successfully developed the foundation of the interfacial area transport equation and the experimental techniques needed for the measurement of interfacial area, bubble diameters and velocities. In the past, an extensive database has been then generated for adiabatic air-water conditions in vertical upward and downward bubbly-churn turbulent flows in pipes. Using this database, mechanistic models for the creation (bubble breakup) and destruction (bubble coalescence) of interfacial area have been developed for the bubblyslug flow regime transition. However, none of these studies investigated the effect of phase change. To address this need, a heated annular test section was designed and constructed. The design relied on a three level scaling approach: geometric scaling; hydrodynamic scaling; thermal scaling. The test section consisted of a heated and unheated section in order to study the sub-cooled boiling and bulk condensation/flashing and evaporation phenomena, respectively. Steam-water two-phase flow tests were conducted under sub-cooled boiling conditions in the heated section and with sub-cooled/super-heated bulk liquid in the unheated section. The modeling of interfacial area transport equation with phase change effects was introduced and discussed. Constitutive relations, which took phase change effects into account, for interfacial area transport equation were proposed and implemented. Effects of these constitutive relations on the prediction capability of the transport equation were discussed.

  4. Surfactant Effect on Hydrate Crystallization at the Oil-Water Interface.

    PubMed

    Dann, Kevin; Rosenfeld, Liat

    2018-05-29

    Gas hydrates pose economic and environmental risks to the oil and gas industry when plug formation occurs in pipelines. A novel approach was applied to understand cyclopentane clathrate hydrate formation in the presence of nonionic surfactant to achieve hydrate inhibition at low percent weight compared to thermodynamic inhibitors. The hydrate-inhibiting performance of low (CMC) concentrations of Span 20, Span 80, Pluronic L31, and Tween 65 at 2 °C on a manually nucleated 2 μL droplet showed a morphological shift in crystallization from planar shell growth to conical growth. Monitoring the internal pressure of the water droplet undergoing hydrate crystallization provides information on the change in interfacial tension during the crystallization process. The results of this study will provide information on the surfactant effect on hydrate crystallization and inhibition. At low surfactant concentrations (below CMC), a planar hydrate crystal was formed. Decreasing interfacial tension was observed, which can be related to the shrinking area of the water-cyclopentane interface. At high surfactant concentration, the crystal morphology was shifted to conical. Interfacial tension measurements reveal oscillations of the interfacial tension during the crystallization process. The oscillations of the interfacial tension result from the fact that once the crystal has reached a critical size a portion of the cone breaks free from the droplet surface, which results in a sudden increase in the available surface for the surfactant molecules. Hence, a temporary increase in the interfacial tension can be observed. The oscillatory behavior of the interfacial tension is a result of the growth and release of the hydrate cones from the surface of the droplet. We have found that the most efficient surfactant in hydrate inhibition would be the one with HLB closest to 10 (equal hydrophilic-hydrophobic parts). In this way, the surfactant molecules will stay at the interface as they observe equal affinities for both the oil and water phases. Surfactant molecules that have the strongest affinity to the interface will be able to inhibit the growth of the crystal as they will force the cones to break and will not allow them to grow.

  5. The effect of bioadhesive on the interfacial compatibility and pervaporation performance of composite membranes by MD and GCMC simulation.

    PubMed

    Wang, Baohe; Nie, Yan; Ma, Jing

    2018-03-01

    Combing molecular dynamics (MD) and Grand Canonical Monte Carlo (GCMC) simulation, the effect of bioadhesive transition layer on the interfacial compatibility of the pervaporation composite membranes, and the pervaporation performance toward penetrant molecules were investigated. In our previous experimental study, the structural stability and permeability selectivity of the composite membranes were considerably enhanced by the introduction of bioadhesive carbopol (CP). In the present study, the interfacial compatibility and the interfacial energies between the chitosan (CS) separation layer, CP transition layer and the support layer were investigated, respectively. The mobility of polymer chains, free volume in bulk and interface regions were evaluated by the mean-square displacement (MSD) and free volume voids (FFV) analysis. The diffusion and sorption behavior of water/ethanol molecules in bulk and interface regions were characterized. The simulation results of membrane structure have good consistency, indicating that the introduction of CP transition layer improved the interfacial compatibility and interaction between the separation layer and the support layer. Comparing the bulk region of the separation layer, the mobility and free volume of the polymer chain in the interface region decreased and thus reduced the swelling of CS active layer, revealing the increased diffusion selectivity toward the permeated water and ethanol molecules. The strong hydrogen bonds interaction between the COOH of the CP transition layer and water molecules increased the adsorption of water molecules in the interface region. The simulation results were quite consistent with the experimental results. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Role of mixed boundaries on flow in open capillary channels with curved air-water interfaces.

    PubMed

    Zheng, Wenjuan; Wang, Lian-Ping; Or, Dani; Lazouskaya, Volha; Jin, Yan

    2012-09-04

    Flow in unsaturated porous media or in engineered microfluidic systems is dominated by capillary and viscous forces. Consequently, flow regimes may differ markedly from conventional flows, reflecting strong interfacial influences on small bodies of flowing liquids. In this work, we visualized liquid transport patterns in open capillary channels with a range of opening sizes from 0.6 to 5.0 mm using laser scanning confocal microscopy combined with fluorescent latex particles (1.0 μm) as tracers at a mean velocity of ∼0.50 mm s(-1). The observed velocity profiles indicate limited mobility at the air-water interface. The application of the Stokes equation with mixed boundary conditions (i.e., no slip on the channel walls and partial slip or shear stress at the air-water interface) clearly illustrates the increasing importance of interfacial shear stress with decreasing channel size. Interfacial shear stress emerges from the velocity gradient from the adjoining no-slip walls to the center where flow is trapped in a region in which capillary forces dominate. In addition, the increased contribution of capillary forces (relative to viscous forces) to flow on the microscale leads to increased interfacial curvature, which, together with interfacial shear stress, affects the velocity distribution and flow pattern (e.g., reverse flow in the contact line region). We found that partial slip, rather than the commonly used stress-free condition, provided a more accurate description of the boundary condition at the confined air-water interface, reflecting the key role that surface/interface effects play in controlling flow behavior on the nanoscale and microscale.

  7. Structured Ionomer Thin Films at Water Interface: Molecular Dynamics Simulation Insight

    DOE PAGES

    Aryal, Dipak; Agrawal, Anupriya; Perahia, Dvora; ...

    2017-08-23

    Controlling the structure and dynamics of thin films of ionizable polymers at water interfaces is critical to their many applications. As the chemical diversity within one polymer is increased, controlling the structure and dynamics of the polymer, which is a key to their use, becomes a challenge. Here molecular dynamics simulations (MD) are used to obtain molecular insight into the structure and dynamics of thin films of one such macromolecule at the interface with water. The polymer consists of an ABCBA topology with randomly sulfonated polystyrene (C), tethered symmetrically to flexible poly(ethylene- r-propylene) blocks (B), and end-capped by a poly(more » t-butylstyrene) block (A). The compositions of the interfacial and bulk regions of thin films of the ABCBA polymers are followed as a function of exposure time to water. We find that interfacial rearrangements take place where buried ionic segments migrate toward the water interface. The hydrophobic blocks collapse and rearrange to minimize their exposure to water. In conclusion, the water that initially drives interfacial reengagements breaks the ionic clusters within the film, forming a dynamic hydrophilic internal network within the hydrophobic segments.« less

  8. Some Exploitation Properties of Wood Plastic Hybrid Composites Based on Polypropylene and Plywood Production Waste

    NASA Astrophysics Data System (ADS)

    Kajaks, Janis; Kalnins, Karlis; Uzulis, Sandris; Matvejs, Juris

    2015-12-01

    During the last 20-30 years many researchers have paid attention to the studies of properties of thewood polymer composites (WPC). A lot of works are closely related to investigations of exploitation properties of wood fibres or wood flour containing polyolefine composites [1, 2]. The most useful from wide selection of polyolefines are polypropylenes, but timber industry waste materials comprising lignocellulose fibres are often used as reinforcement of WPC [3-12]. Plywood industry is not an exception - part of waste materials (by-products) are used for heat energy, i.e. burned. In this work we have approbated reinforcing of polypropylene (PP) with one of the plywood industry by-products, such as birch plywood sawdust (PSWD),which containswood fibre fractions with different length [13]. The main fraction (50%) includes fibres with length l = 0.5 - 1 mm. Our previous study [13] has confirmed that PSWD is a promising filler for PP reinforcing. Addition of PSWD up to 40-50 wt.% has increased WPC tensile and flexural modulus, but decreased deformation ability of PP matrix, impact strength, water resistance and fluidity of composite melts. It was shown [13] that modification of the composites with interfacial modifier - coupling agent maleated polypropylene (MAPP content up to 5-7 wt.%) considerably improved all the abovementioned properties. SEM investigations also confirmed positive action of coupling agent on strengthening of adhesion interaction between components wood and PP matrix. Another way how to make better properties of the WPC is to form hybridcomposites [1, 14-24]. Very popular WPC modifiers are nanoparticle additions like organonanoclays, which increase WPC physical-mechanical properties - microhardness, water resistance and diminish barrier properties and combustibility [1, 2, 14-17, 19, 20]. The goal of this study was to investigate organonanoclays influence on plywood production industry by-product birch plywood sawdust (PSWD) containing polypropylenewood hybrid composites (WPHC) physical-mechanical and other exploitation properties.

  9. Self-healing gold mirrors and filters at liquid-liquid interfaces

    NASA Astrophysics Data System (ADS)

    Smirnov, Evgeny; Peljo, Pekka; Scanlon, Micheál D.; Gumy, Frederic; Girault, Hubert H.

    2016-03-01

    The optical and morphological properties of lustrous metal self-healing liquid-like nanofilms were systematically studied for different applications (e.g., optical mirrors or filters). These nanofilms were formed by a one-step self-assembly methodology of gold nanoparticles (AuNPs) at immiscible water-oil interfaces, previously reported by our group. We investigated a host of experimental variables and herein report their influence on the optical properties of nanofilms: AuNP mean diameter, interfacial AuNP surface coverage, nature of the organic solvent, and nature of the lipophilic organic molecule that caps the AuNPs in the interfacial nanofilm. To probe the interfacial gold nanofilms we used in situ (UV-vis-NIR spectroscopy and optical microscopy) as well as ex situ (SEM and TEM of interfacial gold nanofilms transferred to silicon substrates) techniques. The interfacial AuNP surface coverage strongly influenced the morphology of the interfacial nanofilms, and in turn their maximum reflectance and absorbance. We observed three distinct morphological regimes; (i) smooth 2D monolayers of ``floating islands'' of AuNPs at low surface coverages, (ii) a mixed 2D/3D regime with the beginnings of 3D nanostructures consisting of small piles of adsorbed AuNPs even under sub-full-monolayer conditions and, finally, (iii) a 3D regime characterised by the 2D full-monolayer being covered in significant piles of adsorbed AuNPs. A maximal value of reflectance reached 58% in comparison with a solid gold mirror, when 38 nm mean diameter AuNPs were used at a water-nitrobenzene interface. Meanwhile, interfacial gold nanofilms prepared with 12 nm mean diameter AuNPs exhibited the highest extinction intensities at ca. 690 nm and absorbance around 90% of the incident light, making them an attractive candidate for filtering applications. Furthermore, the interparticle spacing, and resulting interparticle plasmon coupling derived optical properties, varied significantly on replacing tetrathiafulvalene with neocuproine as the AuNP capping ligand in the nanofilm. These interfacial nanofilms formed with neocuproine and 38 nm mean diameter AuNPs, at monolayer surface coverages and above, were black due to aggregation and broadband absorbance.The optical and morphological properties of lustrous metal self-healing liquid-like nanofilms were systematically studied for different applications (e.g., optical mirrors or filters). These nanofilms were formed by a one-step self-assembly methodology of gold nanoparticles (AuNPs) at immiscible water-oil interfaces, previously reported by our group. We investigated a host of experimental variables and herein report their influence on the optical properties of nanofilms: AuNP mean diameter, interfacial AuNP surface coverage, nature of the organic solvent, and nature of the lipophilic organic molecule that caps the AuNPs in the interfacial nanofilm. To probe the interfacial gold nanofilms we used in situ (UV-vis-NIR spectroscopy and optical microscopy) as well as ex situ (SEM and TEM of interfacial gold nanofilms transferred to silicon substrates) techniques. The interfacial AuNP surface coverage strongly influenced the morphology of the interfacial nanofilms, and in turn their maximum reflectance and absorbance. We observed three distinct morphological regimes; (i) smooth 2D monolayers of ``floating islands'' of AuNPs at low surface coverages, (ii) a mixed 2D/3D regime with the beginnings of 3D nanostructures consisting of small piles of adsorbed AuNPs even under sub-full-monolayer conditions and, finally, (iii) a 3D regime characterised by the 2D full-monolayer being covered in significant piles of adsorbed AuNPs. A maximal value of reflectance reached 58% in comparison with a solid gold mirror, when 38 nm mean diameter AuNPs were used at a water-nitrobenzene interface. Meanwhile, interfacial gold nanofilms prepared with 12 nm mean diameter AuNPs exhibited the highest extinction intensities at ca. 690 nm and absorbance around 90% of the incident light, making them an attractive candidate for filtering applications. Furthermore, the interparticle spacing, and resulting interparticle plasmon coupling derived optical properties, varied significantly on replacing tetrathiafulvalene with neocuproine as the AuNP capping ligand in the nanofilm. These interfacial nanofilms formed with neocuproine and 38 nm mean diameter AuNPs, at monolayer surface coverages and above, were black due to aggregation and broadband absorbance. Electronic supplementary information (ESI) available: Interfacial tension measurements for various water-organic solvent systems, step-by-step optical microscopy and SEM characterization of the obtained film, optical photographs of all tested solvents and molecules, and influence of the interfacial tension on optical responses of AuNPs assemblies. See DOI: 10.1039/c6nr00371k

  10. Fullerene C60: Surface Energy and Interfacial Interactions in Aqueous Systems

    EPA Science Inventory

    The underlying mechanisms of fullerene−fullerene, fullerene−water, and fullerene−soil surface interactions in aqueous systems are not well understood. To advance our understanding of these interfacial interactions, the surface properties of Buckminsterfullerene (C60) and quartz s...

  11. Effect of interfacial composition on uptake of curcumin-piperine mixtures in oil in water emulsions by Caco-2 cells.

    PubMed

    Gülseren, İbrahim; Guri, Anilda; Corredig, Milena

    2014-06-01

    Encapsulation in lipid particles is often proposed as a solution to improve curcumin bioavailability. This bioactive molecule has low water solubility and rapidly degrades during digestion. In the present study, the uptake of curcumin from oil in water emulsions, prepared with two different emulsifiers, Tween 20 and Poloxamer 407, was investigated to determine the effect of interfacial composition on absorption. Piperine was added to the curcumin to limit the degradation of curcumin because it is known to inhibit β-glucuronidase activity. The emulsions were administered to Caco-2 cell cultures, which is used as a model for intestinal uptake, and the recovery of curcumin was measured. The curcumin uptake was significantly affected by the type of interface, and the extent of curcumin uptake improved significantly by piperine addition only in the case of oil-in-water emulsions stabilized by Poloxamer 407. This work provides further evidence of the importance of interfacial composition on the delivery of bioactives.

  12. Dynamic Stabilization of Metal Oxide–Water Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBriarty, Martin E.; von Rudorff, Guido Falk; Stubbs, Joanne E.

    2017-02-08

    The interaction of water with metal oxide surfaces plays a crucial role in the catalytic and geochemical behavior of metal oxides. In a vast majority of studies, the interfacial structure is assumed to arise from a relatively static lowest energy configuration of atoms, even at room temperature. Using hematite (α-Fe2O3) as a model oxide, we show through a direct comparison of in situ synchrotron X-ray scattering with density functional theory-based molecular dynamics simulations that the structure of the (1102) termination is dynamically stabilized by picosecond water exchange. Simulations show frequent exchanges between terminal aquo groups and adsorbed water in locationsmore » and with partial residence times consistent with experimentally determined atomic sites and fractional occupancies. Frequent water exchange occurs even for an ultrathin adsorbed water film persisting on the surface under a dry atmosphere. The resulting time-averaged interfacial structure consists of a ridged lateral arrangement of adsorbed water molecules hydrogen bonded to terminal aquo groups. Surface pKa prediction based on bond valence analysis suggests that water exchange will influence the proton-transfer reactions underlying the acid/base reactivity at the interface. Our findings provide important new insights for understanding complex interfacial chemical processes at metal oxide–water interfaces.« less

  13. Interface control of bulk ferroelectric polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, P; Luo, Weidong; Yi, D.

    2012-01-01

    The control of material interfaces at the atomic level has led to no- vel interfacial properties and functionalities. In particular, the study of polar discontinuities at interfaces between complex oxides lies at the frontier of modern condensed matter research. Here we em- ploy a combination of experimental measurements and theoretical calculations to demonstrate the control of a bulk property, namely ferroelectric polarization, of a heteroepitaxial bilayer by precise atomic-scale interface engineering. More specifically, the control is achieved by exploiting the interfacial valence mismatch to influence the electrostatic potential step across the interface, which manifests itself as the biased-voltage in ferroelectricmore » hysteresis loops and determines the ferroelectric state. A broad study of diverse systems comprising different ferroelectrics and conducting perovskite un- derlayers extends the generality of this phenomenon.« less

  14. Measurements of Submicron Particle Adsorption and Particle Film Elasticity at Oil-Water Interfaces.

    PubMed

    Manga, Mohamed S; Hunter, Timothy N; Cayre, Olivier J; York, David W; Reichert, Matthew D; Anna, Shelly L; Walker, Lynn M; Williams, Richard A; Biggs, Simon R

    2016-05-03

    The influence of particle adsorption on liquid/liquid interfacial tension is not well understood, and much previous research has suggested conflicting behaviors. In this paper we investigate the surface activity and adsorption kinetics of charge stabilized and pH-responsive polymer stabilized colloids at oil/water interfaces using two tensiometry techniques: (i) pendant drop and (ii) microtensiometer. We found, using both techniques, that charge stabilized particles had little or no influence on the (dynamic) interfacial tension, although dense silica particles affected the "apparent" measured tension in the pendent drop, due to gravity driven elongation of the droplet profile. Nevertheless, this apparent change additionally allowed the study of adsorption kinetics, which was related qualitatively between particle systems by estimated diffusion coefficients. Significant and real interfacial tension responses were measured using ∼53 nm core-shell latex particles with a pH-responsive polymer stabilizer of poly(methyl methacrylate)-b-poly(2-(dimethylamino)ethyl methacrylate) (pMMA-b-pDMAEMA) diblock copolymer. At pH 2, where the polymer is strongly charged, behavior was similar to that of the bare charge-stabilized particles, showing little change in the interfacial tension. At pH 10, where the polymer is discharged and poorly soluble in water, a significant decrease in the measured interfacial tension commensurate with strong adsorption at the oil-water interface was seen, which was similar in magnitude to the surface activity of the free polymer. These results were both confirmed through droplet profile and microtensiometry experiments. Dilational elasticity measurements were also performed by oscillation of the droplet; again, changes in interfacial tension with droplet oscillation were only seen with the responsive particles at pH 10. Frequency sweeps were performed to ascertain the dilational elasticity modulus, with measured values being significantly higher than previously reported for nanoparticle and surfactant systems, and similar in magnitude to protein stabilized droplets.

  15. Role of Interfacial Water Molecules in Proline-rich Ligand Recognition by the Src Homology 3 Domain of Abl*

    PubMed Central

    Palencia, Andres; Camara-Artigas, Ana; Pisabarro, M. Teresa; Martinez, Jose C.; Luque, Irene

    2010-01-01

    The interaction of Abl-Src homology 3 domain (SH3) with the high affinity peptide p41 is the most notable example of the inconsistency existing between the currently accepted description of SH3 complexes and their binding thermodynamic signature. We had previously hypothesized that the presence of interfacial water molecules is partially responsible for this thermodynamic behavior. We present here a thermodynamic, structural, and molecular dynamics simulation study of the interaction of p41 with Abl-SH3 and a set of mutants designed to alter the water-mediated interaction network. Our results provide a detailed description of the dynamic properties of the interfacial water molecules and a molecular interpretation of the thermodynamic effects elicited by the mutations in terms of the modulation of the water-mediated hydrogen bond network. In the light of these results, a new dual binding mechanism is proposed that provides a better description of proline-rich ligand recognition by Abl-SH3 and that has important implications for rational design. PMID:19906645

  16. Role of interfacial water molecules in proline-rich ligand recognition by the Src homology 3 domain of Abl.

    PubMed

    Palencia, Andres; Camara-Artigas, Ana; Pisabarro, M Teresa; Martinez, Jose C; Luque, Irene

    2010-01-22

    The interaction of Abl-Src homology 3 domain (SH3) with the high affinity peptide p41 is the most notable example of the inconsistency existing between the currently accepted description of SH3 complexes and their binding thermodynamic signature. We had previously hypothesized that the presence of interfacial water molecules is partially responsible for this thermodynamic behavior. We present here a thermodynamic, structural, and molecular dynamics simulation study of the interaction of p41 with Abl-SH3 and a set of mutants designed to alter the water-mediated interaction network. Our results provide a detailed description of the dynamic properties of the interfacial water molecules and a molecular interpretation of the thermodynamic effects elicited by the mutations in terms of the modulation of the water-mediated hydrogen bond network. In the light of these results, a new dual binding mechanism is proposed that provides a better description of proline-rich ligand recognition by Abl-SH3 and that has important implications for rational design.

  17. Spatially-resolved magnetic resonance study of the dissolution interface between soaps and water

    NASA Astrophysics Data System (ADS)

    Ciampi, E.; Goerke, U.; McDonald, P. J.; Chambers, J. G.; Newling, B.

    2002-06-01

    The developing interfacial region between a soap bar and water has been studied using a suite of spatially resolved NMR techniques. Stray field imaging (STRAFI) allowed the dynamics of water ingress into a shop-bought, commercial soap to be followed. A simplistic analysis of the data shows the ingress to be a Fickian process (∝t1/2) in the first 4 h. The T2 contrast employed in the STRAFI method is not sufficient to resolve detail of the mesophase formation at the interface. However, double quantum filtered 2H spectroscopy at different positions in the interfacial region allowed water concentration (and mesophase distribution) to be mapped over the first 120 h of dissolution. A simple model shows good agreement with the water concentration data. In the isotropic soap solution above the interfacial region, J-cyclic cross polarization was used to selectively interrogate the CH2 1H of the soap alkyl chains and, in combination with a pulsed field gradient measurement of self-diffusion, suggests a micellar solution in which the hydrodynamic radius of the micelles is ~5nm.

  18. A correlation between secondary structure and rheological properties of low-density lipoproteins at air/water interfaces.

    PubMed

    Khattari, Ziad

    2017-09-01

    The secondary structure of apolipoprotein B-100 is studied within the bulk phase and at the air/water interface. In these "in viro" experiments, infrared reflection absorption spectroscopy (IRRAS) study was performed at the air/water interface while circular dichroism (CD) was conducted in the bulk phase. In the bulk phase, the conformational structure containing a significant amount of β-structure, whereas varying amount of α-helix, unordered structures, and β-sheet were observed at the air/water interface depending on the low-density lipoprotein (LDL) film interfacial pressure. The present IRRAS results demonstrate the importance of interfacial pressure-induced structural conformations on the apoB-100. A correlation between the secondary structure of the apoB-100 protein and the monomolecular film elasticity at the air/water interface was also established. The orientation of apoB-100 with respect to the LDL film-normal was found to depend on the interfacial pressure exhibited by the monomolecular film. These results may shed light on LDL's pivotal role in the progression of atherosclerotic coronary artery disease as demonstrated previously by clinical trials.

  19. Probing the temperature-dependent changes of the interfacial hydration and viscosity of Tween20 : cholesterol (1 : 1) niosome membrane using fisetin as a fluorescent molecular probe.

    PubMed

    Mishra, Jhili; Swain, Jitendriya; Mishra, Ashok Kumar

    2018-05-16

    A detailed photophysical study of fisetin in a Tween20 : cholesterol (1 : 1) niosome membrane has been carried out. Fisetin is found to partition well into the Tween20 : cholesterol (1 : 1) niosome membrane at low temperature (Kp = 2.7 × 104 M-1 at 10 °C). Cetylpyridinium chloride quenching study confirms the location of fisetin molecules in the interfacial domain of Tween20 : cholesterol (1 : 1) niosome membrane. The emission from the prototropic forms of fisetin (neutral form, excited state anion, ground state anion and phototautomer form) is found to sensitively reflect the local heterogeneities in Tween20 : cholesterol (1 : 1) niosome membrane. The shift in anionic emission maximum with variation in temperature shows the sensitivity of fisetin towards water accessibility at the interfacial domain of Tween20 : cholesterol (1 : 1) niosome membrane. Zeta potential value confirms that there is no role of surface charge in the multiple prototropism of fisetin in Tween20 : cholesterol (1 : 1) niosome membrane. The microviscosity changes with temperature, as reflected in fluorescence anisotropy values of fisetin phototautomeric species FT*, give information about the temperature-induced changes in the motional resistance offered by the interfacial domain of the niosomal membrane to small molecules. A temperature-dependent fluorescence lifetime study confirms the distribution of FT* in the two different sites of niosomal interfacial domain, i.e. water-deficient inner site and water-accessible outer site. This heterogeneity in distribution of FT* is further confirmed through time-resolved fluorescence anisotropy decay resulting in two different rotational time constants (faster component of ∼1.04 ns originates from water-accessible outer site and slower component of ∼16.50 ns originates from water-deficient inner site). The interfacial location of fisetin in Tween20 : cholesterol (1 : 1) niosome membrane has an important implication with regards to antioxidant activity as confirmed from a DPPH radical scavenging study.

  20. String-like collective motion and diffusion in the interfacial region of ice

    NASA Astrophysics Data System (ADS)

    Wang, Xinyi; Tong, Xuhang; Zhang, Hao; Douglas, Jack F.

    2017-11-01

    We investigate collective molecular motion and the self-diffusion coefficient Ds of water molecules in the mobile interfacial layer of the secondary prismatic plane (11 2 ¯ 0 ) of hexagonal ice by molecular dynamics simulation based on the TIP4P/2005 water potential and a metrology of collective motion drawn from the field of glass-forming liquids. The width ξ of the mobile interfacial layer varies from a monolayer to a few nm as the temperature is increased towards the melting temperature Tm, in accordance with recent simulations and many experimental studies, although different experimental methods have differed in their precise estimates of the thickness of this layer. We also find that the dynamics within this mobile interfacial ice layer is "dynamically heterogeneous" in a fashion that has many features in common with glass-forming liquids and the interfacial dynamics of crystalline Ni over the same reduced temperature range, 2/3 < T/Tm < 1. In addition to exhibiting non-Gaussian diffusive transport, decoupling between mass diffusion and the structural relaxation time, and stretched exponential relaxation, we find string-like collective molecular exchange motion in the interfacial zone within the ice interfacial layer and colored noise fluctuations in the mean square molecular atomic displacement 〈u2〉 after a "caging time" of 1 ps, i.e., the Debye-Waller factor. However, while the heterogeneous dynamics of ice is clearly similar in many ways to molecular and colloidal glass-forming materials, we find distinct trends between the diffusion coefficient activation energy Ea for diffusion Ds and the interfacial width ξ from the scale of collective string-like motion L than those found in glass-forming liquids.

  1. Possibility of H2O2 decomposition in thin liquid films on Mars

    NASA Astrophysics Data System (ADS)

    Kereszturi, Akos; Gobi, Sandor

    2014-11-01

    In this work the pathways and possibilities of H2O2 decomposition on Mars in microscopic liquid interfacial water were analyzed by kinetic calculations. Thermal and photochemical driven decomposition, just like processes catalyzed by various metal oxides, is too slow compared to the annual duration while such microscopic liquid layers exist on Mars today, to produce substantial decomposition. The most effective analyzed process is catalyzed by Fe ions, which could decompose H2O2 under pH<4.5 with a half life of 1-2 days. This process might be important during volcanically influenced periods when sulfur release produces acidic pH, and rotational axis tilt change driven climatic changes also influence the volatile circulation and spatial occurrence just like the duration of thin liquid layer. Under current conditions, using the value of 200 K as the temperature in interfacial water (at the southern hemisphere), and applying Phoenix lander's wet chemistry laboratory results, the pH is not favorable for Fe mobility and this kind of decomposition. Despite current conditions (especially pH) being unfavorable for H2O2 decomposition, microscopic scale interfacial liquid water still might support the process. By the reaction called heterogeneous catalysis, without acidic pH and mobile Fe, but with minerals surfaces containing Fe decomposition of H2O2 with half life of 20 days can happen. This duration is still longer but not several orders than the existence of springtime interfacial liquid water on Mars today. This estimation is relevant for activation energy controlled reaction rates. The other main parameter that may influence the reaction rate is the diffusion speed. Although the available tests and theoretical calculations do not provide firm values for the diffusion speed in such a “2-dimensional” environment, using relevant estimations this parameter in the interfacial liquid layer is smaller than in bulk water. But the 20 days' duration mentioned above is still relevant, as the activation energy driven reaction rate is the main limiting factor in the decomposition and not the diffusion speed. The duration of dozen(s) days is still longer but not with orders of magnitude than the expected duration for the existence of springtime interfacial liquid water on Mars today. The results suggest such decomposition may happen today, however, because of our limited knowledge on chemical processes in thin interfacial liquid layers, this possibility waits for confirmation - and also points to the importance of conducting laboratory tests to validate the possible process. Although some tests were already realized for diffusion in an almost 2-dimensional liquid, the same is not true for activation energy, where only the value from the “normal” measurements was applied. Even if H2O2 decomposition is too slow today, the analysis of such a process is important, as under volcanic influence more effective decomposition might take place in thin interfacial liquids close to the climate of today if released sulfur produces pH<4.5. Large quantity and widespread occurrence of bulk liquid phase are not expected in the Amazonian period, but interfacial liquid water probably appeared regularly, and its locations, especially during volcanically active periods, might make certain sites than others more interesting for astrobiology with the lower concentration of oxidizing H2O2.

  2. Growth Kinetics and Mechanics of Hydrate Films by Interfacial Rheology.

    PubMed

    Leopércio, Bruna C; de Souza Mendes, Paulo R; Fuller, Gerald G

    2016-05-03

    A new approach to study and understand the kinetics and mechanical properties of hydrates by interfacial rheology is presented. This is made possible using a "double wall ring" interfacial rheology cell that has been designed to provide the necessary temperature control. Cyclopentane and water are used to form hydrates, and this model system forms these structures at ambient pressures. Different temperature and water/hydrocarbon contact protocols are explored. Of particular interest is the importance of first contacting the hydrocarbon against ice crystals in order to initiate hydrate formation. Indeed, this is found to be the case, even though the hydrates may be created at temperatures above the melting point of ice. Once hydrates completely populate the hydrocarbon/water interface, strain sweeps of the interfacial elastic and viscous moduli are conducted to interrogate the mechanical response and fragility of the hydrate films. The dependence on temperature, Tf, by the kinetics of formation and the mechanical properties is reported, and the cyclopentane hydrate dissociation temperature was found to be between 6 and 7 °C. The formation time (measured from the moment when cyclopentane first contacts ice crystals) as well as the elastic modulus and the yield strain increase as Tf increases.

  3. Synergistic performance of lecithin and glycerol monostearate in oil/water emulsions.

    PubMed

    Moran-Valero, María I; Ruiz-Henestrosa, Víctor M Pizones; Pilosof, Ana M R

    2017-03-01

    The effects of the combination of two low-molecular weight emulsifiers (lecithin and glycerol-monostearate (GMS)) on the stability, the dynamic interfacial properties and rheology of emulsions have been studied. Different lecithin/GMS ratios were tested in order to assess their impact in the formation and stabilization of oil in water emulsions. The combination of the two surfactants showed a synergistic behaviour, mainly when combined at the same ratio. The dynamic film properties and ζ-potential showed that lecithin dominated the surface of oil droplets, providing stability to the emulsions against flocculation and coalescence, while allowing the formation of small oil droplets. At long times of adsorption, all of the mixtures showed similar interfacial activity. However, higher values of interfacial pressure at the initial times were reached when lecithin and GMS were at the same ratio. Interfacial viscoelasticity and viscosity of mixed films were also similar to that of lecithin alone. On the other hand, emulsions viscosity was dominated by GMS. The synergistic performance of lecithin-GMS blends as stabilizers of oil/water emulsions is attributed to their interaction both in the bulk and at the interface. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. POISON SPIDER FIELD CHEMICAL FLOOD PROJECT, WYOMING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas Arnell; Malcolm Pitts; Jie Qi

    2004-11-01

    A reservoir engineering and geologic study concluded that approximate 7,852,000 bbls of target oil exits in Poison Spider. Field pore volume, OOIP, and initial oil saturation are defined. Potential injection water has a total dissolved solids content of 1,275 mg/L with no measurable divalent cations. If the Lakota water consistently has no measurable cations, the injection water does not require softening to dissolve alkali. Produced water total dissolved solids were 2,835 mg/L and less than 20 mg/L hardness as the sum of divalent cations. Produced water requires softening to dissolve chemicals. Softened produced water was used to dissolve chemicals inmore » these evaluations. Crude oil API gravity varies across the field from 19.7 to 22.2 degrees with a dead oil viscosity of 95 to 280 cp at 75 F. Interfacial tension reductions of up to 21,025 fold (0.001 dyne/cm) were developed with fifteen alkaline-surfactant combinations at some alkali concentration. An additional three alkaline-surfactant combinations reduced the interfacial tension greater than 5,000 fold. NaOH generally produced the lowest interfacial tension values. Interfacial tension values of less than 0.021 dyne/cm were maintained when the solutions were diluted with produced water to about 60%. Na{sub 2}CO{sub 3} when mixed with surfactants did not reduce interfacial tension values to levels at which incremental oil can be expected. NaOH without surfactant interfacial tension reduction is at a level where some additional oil might be recovered. Most of the alkaline-surfactant-polymer solutions producing ultra low interfacial tension gave type II- phase behavior. Only two solutions produced type III phase behavior. Produced water dilution resulted in maintenance of phase type for a number of solutions at produced water dilutions exceeding 80% dilution. The average loss of phase type occurred at 80% dilution. Linear corefloods were performed to determine relative permeability end points, chemical-rock compatibility, polymer injectivity, dynamic chemical retention by rock, and recommended injected polymer concentration. Average initial oil saturation was 0.796 Vp. Produced water injection recovered 53% OOIP leaving an average residual oil saturation of 0.375 Vp. Poison Spider rock was strongly water-wet with a mobility ratio for produced water displacing the 280 cp crude oil of 8.6. Core was not sensitive to either alkali or surfactant injection. Injectivity increased 60 to 80% with alkali plus surfactant injection. Low and medium molecular weight polyacrylamide polymers (Flopaam 3330S and Flopaam 3430S) dissolved in either an alkaline-surfactant solution or softened produced water injected and flowed through Poison Spider rock. Recommended injected polyacrylamide concentration is 2,100 mg/L for both polymers for a unit mobility ratio. Radial corefloods were performed to evaluate oil recovery efficiency of different chemical solutions. Waterflood oil recovery averaged 46.4 OOIP and alkaline-surfactant-polymer flood oil recovery averaged an additional 18.1% OIP for a total of 64.6% OOIP. Oil cut change due to injection of a 1.5 wt% Na{sub 2}CO{sub 3} plus 0.05 wt% Petrostep B-100 plus 0.05 wt% Stepantan AS1216 plus 2100 mg/L Flopaam 3430S was from 2% to a peak of 23.5%. Additional study might determine the impact on oil recovery of a lower polymer concentration. An alkaline-surfactant-polymer flood field implementation outline report was written.« less

  5. Partitioning and interfacial tracers for differentiating NAPL entrapment configuration: column-scale investigation.

    PubMed

    Dai, D; Barranco, F T; Illangasekare, T H

    2001-12-15

    Research on the use of partitioning and interfacial tracers has led to the development of techniques for estimating subsurface NAPL amount and NAPL-water interfacial area. Although these techniques have been utilized with some success at field sites, current application is limited largely to NAPL at residual saturation, such as for the case of post-remediation settings where mobile NAPL has been removed through product recovery. The goal of this study was to fundamentally evaluate partitioning and interfacial tracer behavior in controlled column-scale test cells for a range of entrapment configurations varying in NAPL saturation, with the results serving as a determinant of technique efficacy (and design protocol) for use with complexly distributed NAPLs, possibly at high saturation, in heterogeneous aquifers. Representative end members of the range of entrapment configurations observed under conditions of natural heterogeneity (an occurrence with residual NAPL saturation [discontinuous blobs] and an occurrence with high NAPL saturation [continuous free-phase LNAPL lens]) were evaluated. Study results indicated accurate prediction (using measured tracer retardation and equilibrium-based computational techniques) of NAPL amount and NAPL-water interfacial area for the case of residual NAPL saturation. For the high-saturation LNAPL lens, results indicated that NAPL-water interfacial area, but not NAPL amount (underpredicted by 35%), can be reasonably determined using conventional computation techniques. Underprediction of NAPL amount lead to an erroneous prediction of NAPL distribution, as indicated by the NAPL morphology index. In light of these results, careful consideration should be given to technique design and critical assumptions before applying equilibrium-based partitioning tracer methodology to settings where NAPLs are complexly entrapped, such as in naturally heterogeneous subsurface formations.

  6. Development of One-Group and Two-Group Interfacial Area Transport Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishii, M.; Kim, S.

    A dynamic approach employing the interfacial area transport equation is presented to replace the static flow regime dependent correlations for the interfacial area concentration. The current study derives the transport equations for the bubble number, volume, and interfacial area concentration. Accounting for the substantial differences in the transport phenomena of various sizes of bubbles, both one-group and two-group interfacial area transport equations are developed along with the necessary constitutive relations. The framework for the complicated source and sink terms in the two-group transport equation is also presented by identifying the major intragroup and intergroup bubble interaction mechanisms. In view ofmore » evaluating the theoretical model, the one-group interfacial area transport equation is benchmarked based on the available data obtained in a wide range of air-water bubbly flow in round tubes of various diameters. In general, the results show good agreement within the measurement error of {+-}10%.« less

  7. Characterization of the hydrogen-bond network of water around sucrose and trehalose: H-O-H bending analysis

    NASA Astrophysics Data System (ADS)

    Shiraga, Keiichiro; Adachi, Aya; Ogawa, Yuichi

    2017-06-01

    The bioprotective properties of disaccharides have been linked to destructuring effect on the hydrogen-bond structure of the interfacial water around the disaccharide solute, but its detailed mechanisms are yet to be provided. In this study, we characterized the destructuring effect based on the complex dielectric constants of interfacial water around sucrose and trehalose in the H-O-H bending region. Our analysis showed that the destructuring effect around disaccharides involves substantial disordering of the hydrogen-bond structure and formation of strong disaccharide-water hydrogen-bond. Such a destructuring effect caused by disaccharides is totally distinct from what happens with temperature increases of neat water.

  8. Influence of Cholesterol on the Dynamics of Hydration in Phospholipid Bilayers.

    PubMed

    Elola, M Dolores; Rodriguez, Javier

    2018-06-07

    We investigate the dynamics of interfacial waters in dipalmitoylphosphatidylcholine (DPPC) bilayers upon the addition of cholesterol, by molecular dynamics simulations. Our data reveal that the inclusion of cholesterol modifies the membrane aqueous interfacial dynamics: waters diffuse faster, their rotational decay time is shorter, and the DPPC/water hydrogen bond dynamics relaxes faster than in the pure DPPC membrane. The observed acceleration of the translational water dynamics agrees with recent experimental results, in which, by means of NMR techniques, an increment of the surface water diffusivity is measured upon the addition of cholesterol. A microscopic analysis of the lipid/water hydrogen bond network at the interfacial region suggests that the mechanism underlying the observed water mobility enhancement is given by the rupture of a fraction of interlipid water bridge hydrogen bonds connecting two different DPPC molecules, concomitant to the formation of new lipid/solvent bonds, whose dynamics is faster than that of the former. The consideration of a simple two-state model for the decay of the hydrogen bond correlation function yielded excellent results, obtaining two well-separated characteristic time scales: a slow one (∼250 ps) associated with bonds linking two DPPC molecules, and a fast one (∼15 ps), related to DPPC/solvent bonds.

  9. Enhanced interfacial properties of carbon fiber composites via aryl diazonium reaction “on water”

    NASA Astrophysics Data System (ADS)

    Wang, Yuwei; Meng, Linghui; Fan, Liquan; Ma, Lichun; Qi, Meiwei; Yu, Jiali; Huang, Yudong

    2014-10-01

    Polyacrylonitrile-based carbon fibers were functionalized with phenyl amine group via aryl diazonium reaction "on water" to improve their interfacial bonding with resin matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy were employed to characterize ordered degree, functional groups, chemical states and morphology of carbon fiber surface, respectively. The results showed that phenyl amine groups were grafted on the fiber surface successfully. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 73%, while the tensile strength was down very slightly. Hence aryl diazonium reaction "on water" could be a facile green platform to functionalize carbon fibers for many interesting applications.

  10. Reduction of benzene and naphthalene mass transfer from crude oils by aging-induced interfacial films.

    PubMed

    Ghoshal, Subhasis; Pasion, Catherine; Alshafie, Mohammed

    2004-04-01

    Semi-rigid films or skins form at the interface of crude oil and water as a result of the accumulation of asphaltene and resin fractions when the water-immiscible crude oil is contacted with water for a period of time or "aged". The time varying patterns of area-independent mass transfer coefficients of two compounds, benzene and naphthalene, for dissolution from crude oil and gasoline were determined. Aqueous concentrations of the compounds were measured in the eluent from flow-through reactors, where a nondispersed oil phase and constant oil-water interfacial area were maintained. For Brent Blend crude oil and for gasoline amended with asphaltenes and resins, a rapid decrease in both benzene and naphthalene mass transfer coefficients over the first few days of aging was observed. The mass transfer coefficients of the two target solutes were reduced by up to 80% over 35 d although the equilibrium partition coefficients were unchanged. Aging of gasoline, which has negligible amounts of asphaltene and resin, did not result in a change in the solute mass transfer coefficients. The study demonstrates that formation of crude oil-water interfacial films comprised of asphaltenes and resins contribute to time-dependent decreases in rates of release of environmentally relevant solutes from crude oils and may contribute to the persistence of such solutes at crude oil-contaminated sites. It is estimated that the interfacial film has an extremely low film mass transfer coefficient in the range of 10(-6) cm/min.

  11. Modeling pH-Responsive Adsorption of Polyelectrolytes at Oil-Water Interfaces

    NASA Astrophysics Data System (ADS)

    Qin, Shiyi; Yong, Xin

    We use dissipative particle dynamics (DPD) to discover the interfacial adsorption of pH-responsive polyelectrolytes in oil-water binary systems under different pH values. The electrostatic interactions between charged beads and the dielectric discontinuity across the interface are modeled by exploiting a modified Particle-Particle-Particle-Mesh (PPPM) method, which uses an iterative method to solve the Poisson equation on a uniform grid. We first model the adsorption behavior of a single linear polyelectrolyte from the aqueous phase. The Henderson-Hasselbalch equation describes the relation between pH and the degree of ionization of the modeled polyelectrolytes. Through changing the degree of ionization, we explore the influence of pH on the adsorption behavior and show that the electrostatic interactions significantly modulate the adsorption. Time evolutions of the position and conformation of the polyelectrolytes and the variation in the oil-water surface tension will be measured to characterize the adsorption behavior. Furthermore, we model the pH-dependent adsorption behavior of polyelectrolytes with more complicated structures, namely, branched polyelectrolytes with hydrophobic backbones and hydrophilic side chains. We also find that the addition of salts in the medium and the lengths of the backbone and ionized side chain affect the adsorption. This research supported by the American Chemical Society Petroleum Research Fund (Award 56884-DNI9).

  12. Interfacial thiol-ene photoclick reactions for forming multilayer hydrogels.

    PubMed

    Shih, Han; Fraser, Andrew K; Lin, Chien-Chi

    2013-03-13

    Interfacial visible light-mediated thiol-ene photoclick reactions were developed for preparing step-growth hydrogels with multilayer structures. The effect of a noncleavage type photoinitiator eosin-Y on visible-light-mediated thiol-ene photopolymerization was first characterized using in situ photorheometry, gel fraction, and equilibrium swelling ratio. Next, spectrophotometric properties of eosin-Y in the presence of various relevant macromer species were evaluated using ultraviolet-visible light (UV-vis) spectrometry. It was determined that eosin-Y was able to reinitiate the thiol-ene photoclick reaction, even after light exposure. Because of its small molecular weight, most eosin-Y molecules readily leached out from the hydrogels. The diffusion of residual eosin-Y from preformed hydrogels was exploited for fabricating multilayer step-growth hydrogels. Interfacial hydrogel coating was formed via the same visible-light-mediated gelation mechanism without adding fresh initiator. The thickness of the thiol-ene gel coating could be easily controlled by adjusting visible light exposure time, eosin-Y concentration initially loaded in the core gel, or macromer concentration in the coating solution. The major benefits of this interfacial thiol-ene coating system include its simplicity and cytocompatibility. The formation of thiol-ene hydrogels and coatings neither requires nor generates any cytotoxic components. This new gelation chemistry may have great utilities in controlled release of multiple sensitive growth factors and encapsulation of multiple cell types for tissue regeneration.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Ilia N.; Simpson, John T.

    A method of preparing a network comprises disposing a solution comprising particulate materials in a solvent onto a superhydrophobic surface comprising a plurality of superhydrophobic features and interfacial areas between the superhydrophobic features. The plurality of superhydrophobic features has a water contact angle of at least about 150.degree.. The method of preparing the network also comprises removing the solvent from the solution of the particulate materials, and forming a network of the particulate materials in the interfacial areas, the particulate materials receding to the interfacial areas as the solvent is removed.

  14. Ice-like water supports hydration forces and eases sliding friction

    PubMed Central

    Dhopatkar, Nishad; Defante, Adrian P.; Dhinojwala, Ali

    2016-01-01

    The nature of interfacial water is critical in several natural processes, including the aggregation of lipids into the bilayer, protein folding, lubrication of synovial joints, and underwater gecko adhesion. The nanometer-thin water layer trapped between two surfaces has been identified to have properties that are very different from those of bulk water, but the molecular cause of such discrepancy is often undetermined. Using surface-sensitive sum frequency generation (SFG) spectroscopy, we discover a strongly coordinated water layer confined between two charged surfaces, formed by the adsorption of a cationic surfactant on the hydrophobic surfaces. By varying the adsorbed surfactant coverage and hence the surface charge density, we observe a progressively evolving water structure that minimizes the sliding friction only beyond the surfactant concentration needed for monolayer formation. At complete surfactant coverage, the strongly coordinated confined water results in hydration forces, sustains confinement and sliding pressures, and reduces dynamic friction. Observing SFG signals requires breakdown in centrosymmetry, and the SFG signal from two oppositely oriented surfactant monolayers cancels out due to symmetry. Surprisingly, we observe the SFG signal for the water confined between the two charged surfactant monolayers, suggesting that this interfacial water layer is noncentrosymmetric. The structure of molecules under confinement and its macroscopic manifestation on adhesion and friction have significance in many complicated interfacial processes prevalent in biology, chemistry, and engineering. PMID:27574706

  15. Effect of demulsifiers on interfacial properties governing crude oil demulsification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, S.; Kushnick, A.P.

    1987-01-01

    The purpose of this paper is to illustrate how various parameters such as interfacial tension, interfacial shear viscosity, dynamic interfacial tension gradient, dilational elasticity and demulsifier clustering affect the demulsification effectiveness. The authors believe such an understanding is needed for developing more effective demulsifiers. At small thicknesses, an interfacial oil film can rupture if a continuous hydrophilic pathway exists between the droplets. Such a pathway can be provided by a demulsifier by forming water swollen reverse micelle-like clusters. They believe the differences in the effectiveness between P1 and P2 at low concentrations may be related to this phenomenon. The authorsmore » found that with both P1 and P2, the crude oil-brine interfacial shear viscosity is less than 0.1 surface poise. The interfacial dilational measurements also do not reveal any significant differences in their dynamic tension properties. But the interfacial tension vs. concentration curves show significant differences. The leveling of interfacial tension implies formation of clusters. The data indicate that the demulsifier P1 will form such clusters in the crude oil at a lower concentration than P2. Thus, other parameters being equal, the demulsifier P1 will be more efficient at a lower concentration than P2 for this crude oil emulsion.« less

  16. The electrostatic interaction between interfacial colloidal particles

    NASA Astrophysics Data System (ADS)

    Hurd, A. J.

    1985-11-01

    The electrostatic interaction between charged, colloidal particles trapped at an air-water interface is considered using linearised Poisson-Boltzmann results for point particles. In addition to the expected screened-Coulomb contribution, which decays exponentially, an algebraic dipole-dipole interaction occurs that may account for long-range interactions in interfacial colloidal systems.

  17. Transglutaminase-treated conjugation of sodium caseinate and corn fiber gum hydrolysate: Interfacial and dilatational properties

    USDA-ARS?s Scientific Manuscript database

    The effects of thermochemical hydrolysis of corn fiber gum (CFG) and conjugation of the resulting oligomers with sodium caseinate in presence of transglutaminase was studied. The dynamic interfacial tension at the oil-water interface was studied and the molecular characteristics were determined by h...

  18. Hydrophobic Light-to-Heat Conversion Membranes with Self-Healing Ability for Interfacial Solar Heating.

    PubMed

    Zhang, Lianbin; Tang, Bo; Wu, Jinbo; Li, Renyuan; Wang, Peng

    2015-09-02

    Self-healing hydrophobic light-to-heat conversion membranes for interfacial solar heating are fabricated by deposition of light-to-heat conversion material of polypyrrole onto a porous stainless-steel mesh, followed by hydrophobic fluoroalkylsilane modification. The mesh-based membranes spontaneously stay at the water-air interface, collect and convert solar light into heat, and locally heat only the water surface for enhanced evaporation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Suppressing interfacial water signals to assist the peak assignment of the N⁺-H stretching mode in sum frequency generation vibrational spectroscopy.

    PubMed

    Nguyen, Khoi Tan; Nguyen, Anh V

    2015-11-21

    Amines are one of the common functional groups of interest due to their abundant presence in natural proteins, surfactants and other chemicals. However, their accurate spectral assignment of vibrational modes, critical to interpreting SFG signals for characterizing various bio-interfaces such as protein-membrane interaction and surfactant adsorption, still remains elusive. Herein we present a systematic study to identify and justify the correct peak assignment of the N(+)-H stretching mode at the air-water interface. We used three special surfactants: hexadecylamine (a primary amine without counterions), dodecylamine hydrochloride (a primary amine with counterions) and hexadecyltrimethylammonium bromide as a control (the N(+)-H stretching mode is absent in this quarternary amine). We suppressed the SFG interfacial water signals using saturated NaCl solutions. Our designed experiments resolved the current controversy and concluded that the 3080 cm(-1) peak is from the N(+)-H vibrations, while the 3330 cm(-1) peak is not due to ammonium species but rather originates from the interfacial water vibrational modes or the backbone amide modes.

  20. Molecular dynamics study of rhodamine 6G diffusion at n-decane-water interfaces.

    PubMed

    Popov, Piotr; Steinkerchner, Leo; Mann, Elizabeth K

    2015-05-01

    Two-dimensional diffusion of a rhodamine 6G fluorescent tracer molecule at the n-decane-water interface was studied with all-atom molecular dynamics simulations. In agreement with experimental data, we find increased mobility of the tracer at the n-decane-water interfaces in comparison to its mobility in bulk water. Orientational ordering of water and n-decane molecules near the interface is observed, and may change the interfacial viscosity as suggested to explain the experimental data. However, the restricted rotational motion of the rhodamine molecule at the interface suggests that the Saffman-Delbrück model may be a more appropriate approximation of rhodamine diffusion at n-decane-water interfaces, and, without any decrease in interfacial viscosity, suggests faster diffusion consistent with both experimental and simulation values.

  1. Oil-water interfaces with surfactants: A systematic approach to determine coarse-grained model parameters

    NASA Astrophysics Data System (ADS)

    Vu, Tuan V.; Papavassiliou, Dimitrios V.

    2018-05-01

    In order to investigate the interfacial region between oil and water with the presence of surfactants using coarse-grained computations, both the interaction between different components of the system and the number of surfactant molecules present at the interface play an important role. However, in many prior studies, the amount of surfactants used was chosen rather arbitrarily. In this work, a systematic approach to develop coarse-grained models for anionic surfactants (such as sodium dodecyl sulfate) and nonionic surfactants (such as octaethylene glycol monododecyl ether) in oil-water interfaces is presented. The key is to place the theoretically calculated number of surfactant molecules on the interface at the critical micelle concentration. Based on this approach, the molecular description of surfactants and the effects of various interaction parameters on the interfacial tension are investigated. The results indicate that the interfacial tension is affected mostly by the head-water and tail-oil interaction. Even though the procedure presented herein is used with dissipative particle dynamics models, it can be applied for other coarse-grained methods to obtain the appropriate set of parameters (or force fields) to describe the surfactant behavior on the oil-water interface.

  2. The Initial Comparison Study of Sodium Lignosulfonate, Sodium Dodecyl Benzene Sulfonate, and Sodium p-Toluene Sulfonate Surfactant for Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Khoirul Anas, Argo; Iman Prakoso, Nurcahyo; Sasvita, Dilla

    2018-04-01

    Surfactant (surface active agent) exhibit numerous interesting properties that enable their use as additional component in mobilising of residual oil from capillary pore after secondary recovery process using gas injection and water flooding. In this study, Sodium Lignosulfonate (SLS) surfactant was successfully synthesized by applying batch method using lignin from oil palm empty fruit bunches as precursor. Furthermore, its performance in reducing interfacial tension of crude oil and formation water colloidal system was compared with commercial available surfactant including Sodium Dodecyl Benzene Sulfonate (SDBS) and Sodium p-Toluene Sulfonate (SpTS). The synthesized SLS surfactant was characterized by using Fourier Transform Infrared (FTIR) spectroscopy. Meanwhile, its performance in reducing interfacial tension of crude oil and formation water colloidal system was analyzed by using compatibility test, phase behaviour analysis, and interfacial tension (IFT) measurement. The compatibility test shows that SLS, SDBS, and SpTS surfactants were compatible with formation water. In addition, the phase behaviour analysis shows that SLS surfactant was better than SpTS surfactant, while SDBS surfactant generates the highest performance proved by the best microemulsion formation resulted by SDBS. Furthermore, the optimum concentration of SLS, SDBS, and SpTS surfactants in reducing the interfacial tension of crude oil and formation water was 1.0%. The IFT measurement indicates that the performance of SLS with the value of 1.67 mN/m was also better than SpTS surfactant with the value of 3.59 mN/m. Meanwhile, SDBS surfactant shows the best performance with the IFT value of 0.47 mN/m.

  3. Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery.

    PubMed

    Zhao, Jin; Wen, Dongsheng

    2017-08-27

    For enhanced oil recovery (EOR) applications, the oil/water flow characteristics during the flooding process was numerically investigated with the volume-of-fluid method at the pore scale. A two-dimensional pore throat-body connecting structure was established, and four scenarios were simulated in this paper. For oil-saturated pores, the wettability effect on the flooding process was studied; for oil-unsaturated pores, three effects were modelled to investigate the oil/water phase flow behaviors, namely the wettability effect, the interfacial tension (IFT) effect, and the combined wettability/IFT effect. The results show that oil saturated pores with the water-wet state can lead to 25-40% more oil recovery than with the oil-wet state, and the remaining oil mainly stays in the near wall region of the pore bodies for oil-wet saturated pores. For oil-unsaturated pores, the wettability effects on the flooding process can help oil to detach from the pore walls. By decreasing the oil/water interfacial tension and altering the wettability from oil-wet to water-wet state, the remaining oil recovery rate can be enhanced successfully. The wettability-IFT combined effect shows better EOR potential compared with decreasing the interfacial tension alone under the oil-wet condition. The simulation results in this work are consistent with previous experimental and molecular dynamics simulation conclusions. The combination effect of the IFT reducation and wettability alteration can become an important recovery mechanism in future studies for nanoparticles, surfactant, and nanoparticle-surfactant hybrid flooding process.

  4. Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery

    PubMed Central

    Zhao, Jin

    2017-01-01

    For enhanced oil recovery (EOR) applications, the oil/water flow characteristics during the flooding process was numerically investigated with the volume-of-fluid method at the pore scale. A two-dimensional pore throat-body connecting structure was established, and four scenarios were simulated in this paper. For oil-saturated pores, the wettability effect on the flooding process was studied; for oil-unsaturated pores, three effects were modelled to investigate the oil/water phase flow behaviors, namely the wettability effect, the interfacial tension (IFT) effect, and the combined wettability/IFT effect. The results show that oil saturated pores with the water-wet state can lead to 25–40% more oil recovery than with the oil-wet state, and the remaining oil mainly stays in the near wall region of the pore bodies for oil-wet saturated pores. For oil-unsaturated pores, the wettability effects on the flooding process can help oil to detach from the pore walls. By decreasing the oil/water interfacial tension and altering the wettability from oil-wet to water-wet state, the remaining oil recovery rate can be enhanced successfully. The wettability-IFT combined effect shows better EOR potential compared with decreasing the interfacial tension alone under the oil-wet condition. The simulation results in this work are consistent with previous experimental and molecular dynamics simulation conclusions. The combination effect of the IFT reducation and wettability alteration can become an important recovery mechanism in future studies for nanoparticles, surfactant, and nanoparticle–surfactant hybrid flooding process. PMID:29308190

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, Pooja; Ali, Sk. M., E-mail: musharaf@barc.gov.in

    Water in nanotube exhibits remarkably different properties from the bulk phase, which can be exploited in various nanoconfinement based technologies. The properties of water within nanotube can be further tuned by varying the nanotube electrostatics and functionalization of nanotube ends. Here, therefore, we investigate the effect of quantum partial charges and carbon nanotube (CNT) termination in terms of associated entropic forces. An attempt has been made to correlate the entropic forces with various dynamical and structural properties. The simulated structural features are consistent with general theoretical aspects, in which the interfacial water molecules at H terminated CNT are found tomore » be distributed in a different way as compared to other CNTs. The rotational entropy components for different cases of CNTs are well corroborated by the decay time of hydrogen bond (HB) correlation functions. A part of this event has been explained in terms of orientation of water molecules in the chain, i.e., the change in direction of dipole moment of water molecules in the chain and it has been revealed that the HBs of CNT confined water molecules show long preserving correlation if their rotations inside CNT are restricted. Furthermore, the translational entropy components are rationally integrated with the differing degree of translational constraints, added by the CNTs. To the best of our information, perhaps this is the first study where the thermodynamic effects introduced by H-termination and induced dipole of CNT have been investigated. Additionally, we present a bridge relation between “translational diffusivity and configurational entropy” for water transport from bulk phase to inside CNTs.« less

  6. Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse.

    PubMed

    El Achaby, Mounir; El Miri, Nassima; Aboulkas, Adil; Zahouily, Mohamed; Bilal, Essaid; Barakat, Abdellatif; Solhy, Abderrahim

    2017-03-01

    Novel synthesis strategy of eco-friendly bio-nanocomposite films have been exploited using cellulose nanocrystals (CNC) and polyvinyl alcohol/carboxymethyl cellulose (PVA/CMC) blend matrix as a potential in food packaging application. The CNC were extracted from sugarcane bagasse using sulfuric acid hydrolysis, and they were successfully characterized regarding their morphology, size, crystallinity and thermal stability. Thereafter, PVA/CMC-CNC bio-nanocomposite films, at various CNC contents (0.5-10wt%), were fabricated by the solvent casting method, and their properties were investigated. It was found that the addition of 5wt% CNC within a PVA/CMC increased the tensile modulus and strength by 141% and 83% respectively, and the water vapor permeability was reduced by 87%. Additionally, the bio-nanocomposites maintained the same transparency level of the PVA/CMC blend film (transmittance of ∼90% in the visible region), suggesting that the CNC were dispersed at the nanoscale. In these bio-nanocomposites, the adhesion properties and the large number of functional groups that are present in the CNC's surface and the macromolecular chains of the PVA/CMC blend are exploited to improve the interfacial interactions between the CNC and the blend. Consequently, these eco-friendly structured bio-nanocomposites with superior properties are expected to be useful in food packaging applications. Copyright © 2016. Published by Elsevier B.V.

  7. The cellular environment of cancerous human tissue. Interfacial and dangling water as a "hydration fingerprint".

    PubMed

    Abramczyk, Halina; Brozek-Pluska, Beata; Krzesniak, Marta; Kopec, Monika; Morawiec-Sztandera, Alina

    2014-08-14

    Despite a large number of publications, the role of water in the cellular environment of biological tissue has not been clarified. Characterizing the biological interface is a key challenge in understanding the interactions of water in the tissue. Although we often assume that the properties of the bulk water can be translated to the crowded biological environment, this approach must be considerably revised when considering the biological interface. To our knowledge, few studies have directly monitored the interactions and accumulation of water in the restricted environments of the biological tissue upon realistic crowding conditions. The present study focuses on a molecular picture of water molecules at the biological interface, or specifically, water molecules adjacent to the hydrophobic and hydrophilic surfaces of normal and cancerous tissues. We recorded and analyzed the IR and Raman spectra of the νs(OH) stretching modes of water at the biological interfaces of the human breast and neck tissues. The results revealed dramatic changes in the water content in the tissue and are potentially relevant to both the fundamental problems of interfacial water modeling and the molecular diagnostics of cancer as a 'hydration fingerprint'. Herein, we will discuss the origin of the vibrational substructures observed for the νs(OH) stretching modes of water, showing that the interfacial water interacting via H-bond with other water molecules and biomolecules at the biological surface and free OH vibration of the dangling water are sensitive indicators of the pathology between the normal (noncancerous) and cancerous tissue and cancer types. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Interfacial profiles in fluid/liquid systems: a description based on the storing of elastic energy.

    PubMed

    Castellanos-Suárez, Aly J; Toro-Mendoza, Jhoan; García-Sucre, Máximo

    2011-06-01

    An analytical expression for the interfacial energy is found by solving a Poisson equation and assuming a Boltzmann distribution of volume elements forming the fluid/liquid system. Interfacial phenomena are treated as a result of the response of a liquid when it makes contact with other fluid phase, in order to reach thermal and mechanical equilibrium. This model gives a quantitative description of the interface, obtaining values for its molar, force and energy density profiles. Also, our model allows the determination of the proportion of the fluids present in the interfacial zone, the values of interfacial tension and thickness. In the case of water+n-alkanes systems, the tensions are in agreement with the behavior shown by the experimental data. Finally, the values for interfacial thickness predicted from molar density profiles are lower than the range of influence of the elastic energy and elastic field. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. The role of the hydrophobic phase in the unique rheological properties of saponin adsorption layers.

    PubMed

    Golemanov, Konstantin; Tcholakova, Slavka; Denkov, Nikolai; Pelan, Eddie; Stoyanov, Simeon D

    2014-09-28

    Saponins are a diverse class of natural, plant derived surfactants, with peculiar molecular structure consisting of a hydrophobic scaffold and one or several hydrophilic oligosaccharide chains. Saponins have strong surface activity and are used as natural emulsifiers and foaming agents in food and beverage, pharmaceutical, ore processing, and other industries. Many saponins form adsorption layers at the air-water interface with extremely high surface elasticity and viscosity. The molecular origin of the observed unique interfacial visco-elasticity of saponin adsorption layers is of great interest from both scientific and application viewpoints. In the current study we demonstrate that the hydrophobic phase in contact with water has a very strong effect on the interfacial properties of saponins and that the interfacial elasticity and viscosity of the saponin adsorption layers decrease in the order: air > hexadecane ≫ tricaprylin. The molecular mechanisms behind these trends are analyzed and discussed in the context of the general structure of the surfactant adsorption layers at various nonpolar phase-water interfaces.

  10. Water-Soluble Polymeric Interfacial Material for Planar Perovskite Solar Cells.

    PubMed

    Zheng, Lingling; Ma, Yingzhuang; Xiao, Lixin; Zhang, Fengyan; Wang, Yuanhao; Yang, Hongxing

    2017-04-26

    Interfacial materials play a critical role in photoelectric conversion properties as well as the anomalous hysteresis phenomenon of the perovskite solar cells (PSCs). In this article, a water-soluble polythiophene PTEBS was employed as a cathode interfacial material for PSCs. Efficient energy level aligning and improved film morphology were obtained due to an ultrathin coating of PTEBS. Better ohmic contact between the perovskite layer and the cathode also benefits the charge transport and extraction of the device. Moreover, less charge accumulation at the interface weakens the polarization of the perovskite resulting in a relatively quick response of the modified device. The ITO/PTEBS/CH 3 NH 3 PbI 3 /spiro-MeOTAD/Au cells by an all low-temperature process achieved power conversion efficiencies of up to 15.4% without apparent hysteresis effect. Consequently, the utilization of this water-soluble polythiophene is a practical approach for the fabrication of highly efficient, large-area, and low-cost PSCs and compatible with low-temperature solution process, roll-to-roll manufacture, and flexible application.

  11. Interfacial Fracture Toughness of Adhesive Resin Cement-Lithium-Disilicate/Resin-Composite Blocks.

    PubMed

    Mesmar, Samer; Ruse, N Dorin

    2017-09-15

    Resin composite blocks (RCB) are advocated as alternative to ceramic blocks (CB). Prior to use, adherence to these materials should characterized. This study aimed to test the null hypothesis (H 0 ) that material and surface treatment combinations do not influence interfacial fracture toughness (K IC ) of a self-cured adhesive resin cement [RelyX Ultimate (RXU)] to RCB or CB, under nonaged and aged conditions. Two RCB, Lava Ultimate (LU) and Enamic (EN), and one CB, IPS e.max Press (EMP) were used. Half-size [(6 × 6 × 6 × 6 mm)] specimens were prepared for EMP (n = 30), EN (n = 30), and LU (n = 60). RCB specimens were prepared by wet cutting/grinding, while CB specimens were pressed. Surfaces of EMP and EN were preconditioned with hydrofluoric acid (5%); surfaces of LU were sandblasted with either 27 μm alumina (LUS) or 30 μm silica-modified alumina Rocatec soft (LUR). All specimens were bonded with Scotchbond Universal adhesive and RXU. Additionally, twenty (4 × 4 × 4 × 8 mm) RXU specimens were prepared. All specimens were stored in water at 37°C and tested after 1 and 60 days. Interfacial K IC was determined with the notchless triangular prism specimen K IC test. Results were analyzed with two-way ANOVA and Scheffé multiple means comparisons (α = 0.05). Preconditioned and selected fractured surfaces were characterized with scanning electron microscopy. At 24 hours, LUS-RXU and LUR-RXU had significantly higher interfacial K IC than EN-RXU and EMP-RXU and were not different from K IC of RXU. Aging lead to a significant decrease in K IC of RXU and interfacial K IC of LUS-RXU, LUR-RXU, and EMP-RXU; interfacial K IC of EN-RXU was not affected. Based on the results, H 0 was rejected. Under the conditions of this study, at 24 hours, interfacial K IC of LUS-RXU and LUR-RXU was superior to EMP-RXU and EN-RXU. Aging in water at 37°C did not affect interfacial K IC of EN-RXU but adversely affected K IC of RXU and the other interfacial K IC . The results suggest that RXU and its adherence to LU and EMP deteriorates upon exposure to water at 37°C. In making clinical decisions related to material selection, practitioners should consider in vitro results. © 2017 by the American College of Prosthodontists.

  12. On the enrichment of hydrophobic organic compounds in fog droplets

    NASA Astrophysics Data System (ADS)

    Valsaraj, K. T.; Thoma, G. J.; Reible, D. D.; Thibodeaux, L. J.

    The unusual degree of enrichment of hydrophobic organics in fogwater droplets reported by several investigators can be interpreted as a result of (a) the effects of temperature correction on the reported enrichment factors, (b) the effects of colloidal organic matter (both filterable and non-filterable) in fog water and (c) the effects of the large air-water interfacial adsorption of neutral hydrophobic organics on the tiny fog droplets. The enrichment factor was directly correlated to the hydrophobicity (or the activity coefficient in water) of the compounds, as indicated by their octanol-water partition constants. Compounds with large octanol-water partition coefficients (high activity coefficients in water) showed the largest enrichment. Available experimental data on the adsorption of hydrophobic compounds at the air-water interface and on colloidal organic carbon were used to show that the large specific air-water interfacial areas of fog droplets contribute significantly to the enrichment factor.

  13. Interfacial rheology of asphaltenes at oil-water interfaces and interpretation of the equation of state.

    PubMed

    Rane, Jayant P; Pauchard, Vincent; Couzis, Alexander; Banerjee, Sanjoy

    2013-04-16

    In an earlier study, oil-water interfacial tension was measured by the pendant drop technique for a range of oil-phase asphaltene concentrations and viscosities. The interfacial tension was found to be related to the relative surface coverage during droplet expansion. The relationship was independent of aging time and bulk asphaltenes concentration, suggesting that cross-linking did not occur at the interface and that only asphaltene monomers were adsorbed. The present study extends this work to measurements of interfacial rheology with the same fluids. Dilatation moduli have been measured using the pulsating droplet technique at different frequencies, different concentrations (below and above CNAC), and different aging times. Care was taken to apply the technique in conditions where viscous and inertial effects are small. The elastic modulus increases with frequency and then plateaus to an asymptotic value. The asymptotic or instantaneous elasticity has been plotted against the interfacial tension, indicating the existence of a unique relationship, between them, independent of adsorption conditions. The relationship between interfacial tension and surface coverage is analyzed with a Langmuir equation of state. The equation of state also enabled the prediction of the observed relationship between the instantaneous elasticity and interfacial tension. The fit by a simple Langmuir equation of state (EOS) suggests minimal effects of aging and of nanoaggregates or gel formation at the interface. Only one parameter is involved in the fit, which is the surface excess coverage Γ∞ = 3.2 molecules/nm(2) (31.25 Å(2)/molecule). This value appears to agree with flat-on adsorption of monomeric asphaltene structures consisting of aromatic cores composed of an average of six fused rings and supports the hypothesis that nanoaggregates do not adsorb on the interface. The observed interfacial effects of the adsorbed asphaltenes, correlated by the Langmuir EOS, are consistent with the asphaltene aggregation behavior in the bulk fluid expected from the Yen-Mullins model.

  14. Interface-Assisted Synthesis of 2D Materials: Trend and Challenges.

    PubMed

    Dong, Renhao; Zhang, Tao; Feng, Xinliang

    2018-06-18

    The discovery of graphene one decade ago has triggered enormous interest in developing two-dimensional materials (2DMs)-that is 2D allotropes of various elements or compounds (consisting of two or more covalently bonded elements) or molecular frameworks with periodic structures. At present, various synthesis strategies have been exploited to produce 2DMs, such as top-down exfoliation and bottom-up chemical vapor deposition and solution synthesis methods. In this review article, we will highlight the interfacial roles toward the controlled synthesis of inorganic and organic 2DMs with varied structural features. We will summarize the state-of-the-art progress on interfacial synthesis strategies and address their advancements in the structural, morphological, and crystalline control by the direction of the arrangement of the molecules or precursors at a confined 2D space. First, we will provide an overview of the interfaces and introduce their advantages and uniqueness for the synthesis of 2DMs, followed by a brief classification of inorganic and organic 2DMs achieved by interfacial synthesis. Next, the currently developed interfacial synthesis strategies combined with representative inorganic and organic 2DMs are summarized, including the description of method details, the corresponding structural features, and the insights into the advantages and limitations of the synthesis methods, along with some recommendable characterization methods for understanding the interfacial assembly of the precursors and crystal growth of 2DMs. After that, we will discuss several classes of emerging organic 2DMs with particular emphasis on the structural control by the interfacial synthesis strategies. Note that, inorganic 2DMs will not be categorized separately due to the fact that a number of review articles have covered the synthesis, structure, processing, and applications. Finally, the challenges and perspectives are provided regarding the future development of interface-assisted synthesis of 2DMs with diverse structural and functional control.

  15. Interfacial Water at Protein Surfaces: Wide-Line NMR and DSC Characterization of Hydration in Ubiquitin Solutions

    PubMed Central

    Tompa, Kálmán; Bánki, Péter; Bokor, Mónika; Kamasa, Pawel; Lasanda, György; Tompa, Péter

    2009-01-01

    Wide-line 1H-NMR and differential scanning calorimetry measurements were done in aqueous solutions and on lyophilized samples of human ubiquitin between −70°C and +45°C. The measured properties (size, thermal evolution, and wide-line NMR spectra) of the protein-water interfacial region are substantially different in the double-distilled and buffered-water solutions of ubiquitin. The characteristic transition in water mobility is identified as the melting of the nonfreezing/hydrate water. The amount of water in the low-temperature mobile fraction is 0.4 g/g protein for the pure water solution. The amount of mobile water is higher and its temperature dependence more pronounced for the buffered solution. The specific heat of the nonfreezing/hydrate water was evaluated using combined differential scanning calorimetry and NMR data. Considering the interfacial region as an independent phase, the values obtained are 5.0–5.8 J·g−1·K−1, and the magnitudes are higher than that of pure/bulk water (4.2 J·g−1·K−1). This unexpected discrepancy can only be resolved in principle by assuming that hydrate water is in tight H-bond coupling with the protein matrix. The specific heat for the system composed of the protein molecule and its hydration water is 2.3 J·g−1·K−1. It could be concluded that the protein ubiquitin and its hydrate layer behave as a highly interconnected single phase in a thermodynamic sense. PMID:19348762

  16. In situ creation of reactive polymer nanoparticles and resulting polymer layers formed at the interfaces of liquid crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kang, Shin-Woong; Kundu, Sudarshan; Park, Heung-Shik; Oh, Keun Chan; Lyu, Jae Jin

    2017-02-01

    We report the in situ creation of reactive polymer nanoparticles and resulting polymer networks formed at the interfaces of liquid crystals. It is known that polymerization-induced phase separation proceeds in two distinct regimes depending on the concentration of monomer. For a high monomer concentration, phase separation occurs mainly through the spinodal decomposition process, consequently resulting in interpenetrating polymer networks. For a dilute system, however, the phase separation mainly proceeds and completes in the binodal decomposition regime. The system resembles the aggregation process of colloidal particle. In this case, the reaction kinetics is limited by the reaction between in situ created polymer aggregates and hence the network morphologies are greatly influenced by the diffusion of reactive polymer particles. The thin polymer layers localized at the surface of substrate are inevitably observed and can be comprehended by the interfacial adsorption and further cross-linking reaction of reactive polymer aggregates at the interface. This process provides a direct perception on understanding polymer stabilized liquid crystals accomplished by the interfacial polymer layer. The detailed study has been performed for an extremely dilute condition (below 0.5 wt%) by employing systematic experimental approaches. Creation and growth of polymer nanoparticles have been measured by particle size analyzer. The interfacial localization of polymer aggregates and resulting interfacial layer formation with a tens of nanometer scale have been exploited at various interfaces such as liquid-solid, liquid-liquid, and liquid-gas interfaces. The resulting interfacial layers have been characterized by using fuorescent confocal microscope and field emission scanning electron microscope. The detailed processes of the polymer stabilized vertically aligned liquid crystals will be discussed in support of the reported study.

  17. Comparison of the interfacial energy and pre-exponential factor calculated from the induction time and metastable zone width data based on classical nucleation theory

    NASA Astrophysics Data System (ADS)

    Shiau, Lie-Ding

    2016-09-01

    The pre-exponential factor and interfacial energy obtained from the metastable zone width (MSZW) data using the integral method proposed by Shiau and Lu [1] are compared in this study with those obtained from the induction time data using the conventional method (ti ∝J-1) for three crystallization systems, including potassium sulfate in water in a 200 mL vessel, borax decahydrate in water in a 100 mL vessel and butyl paraben in ethanol in a 5 mL tube. The results indicate that the pre-exponential factor and interfacial energy calculated from the induction time data based on classical nucleation theory are consistent with those calculated from the MSZW data using the same detection technique for the studied systems.

  18. The importance of experimental design on measurement of dynamic interfacial tension and interfacial rheology in diffusion-limited surfactant systems

    DOE PAGES

    Reichert, Matthew D.; Alvarez, Nicolas J.; Brooks, Carlton F.; ...

    2014-09-24

    Pendant bubble and drop devices are invaluable tools in understanding surfactant behavior at fluid–fluid interfaces. The simple instrumentation and analysis are used widely to determine adsorption isotherms, transport parameters, and interfacial rheology. However, much of the analysis performed is developed for planar interfaces. Moreover, the application of a planar analysis to drops and bubbles (curved interfaces) can lead to erroneous and unphysical results. We revisit this analysis for a well-studied surfactant system at air–water interfaces over a wide range of curvatures as applied to both expansion/contraction experiments and interfacial elasticity measurements. The impact of curvature and transport on measured propertiesmore » is quantified and compared to other scaling relationships in the literature. Our results provide tools to design interfacial experiments for accurate determination of isotherm, transport and elastic properties.« less

  19. Origin of the sphere-to-rod transition in cationic micelles with aromatic counterions: specific ion hydration in the interfacial region matters.

    PubMed

    Geng, Yan; Romsted, Laurence S; Froehner, Sandro; Zanette, Dino; Magid, Linda J; Cuccovia, Iolanda M; Chaimovich, Hernan

    2005-01-18

    Sphere-to-rod transitions of cetyltrimethylammonium (CTA+) micelles with dichlorobenzoate counterions are remarkably substituent dependent. Simultaneous estimates of the interfacial molarities of H2O, MeOH, and Cl- and 2,6- and 3,5-dichlorobenzoate (2,6OBz and 3,5OBz) counterions were obtained by the chemical trapping method in mixed micelles of CTACl/CTA3,5OBz and CTACl/CTA2,6OBz without added salt. Increasing the CTA3,5OBz mole fraction produces a marked concurrent increase in interfacial 3,5OBz- and a decrease in interfacial H2O concentrations through the sphere-to-rod transition. No abrupt concentration changes are observed with increasing CTA2,6OBz mole fraction. Counterion-specific changes in the interfacial water concentration may be a major contributor to the delicate balance of forces governing micellar morphology.

  20. Interfacial activity of acid functionalized single-walled carbon nanotubes (SWCNTs) at the fluid-fluid interface

    NASA Astrophysics Data System (ADS)

    Feng, Tao; Russell, Thomas; Hoagland, David

    2013-03-01

    Interfacial assembly of acid-functionalized single-walled carbon nanotubes at the oil/water interface is achieved by the addition of low molecular weight (MW) amino-terminated polystyrene in the oil phase. The surface activity of carboxylated SWCNTs is strongly influenced by the end-group chemistry and molecular weight of the polystyrene component, the concentrations of this component and the SWCNTs, along with the degree of functionalization of the SWCNTs. The prerequisites for interfacial trapping are amino termini on chains with MW less than 5K and 6 hours or longer incubation of pristine SWCNTs to achieve their carboxylation. Plummets in interfacial tension resembling those for surfactants were observed at critical bulk concentrations of both SWCNTs and PS-NH2. In dried droplets, SWCNTs densely packed with associated PS-NH2 form a bird nest-like interfacial structure, with the SWCNTs preferentially oriented perpendicular to the original interface. Advisor

  1. Propelling a water drop with the vapor-mediated Marangoni effect

    NASA Astrophysics Data System (ADS)

    Kim, Seungho; Kim, Ho-Young

    2013-11-01

    We show that a water drop on solid surfaces can be propelled just by placing a volatile alcohol drop nearby. It is found to be because the water-air interface near the alcohol drop mixes with alcohol vapor, thereby locally lowering the surface tension. The surface-tension-gradient induces the motion of the water drop, enabling the trajectory control of water drops through the motion of remote alcohol drops. This vapor-mediated Marangoni effect also gives rise to other interesting interfacial flow phenomena, such as nucleation of holes on a water film and ballooning of a water drop hanging from a syringe needle with the approach of an alcohol drop. We visualize such interfacial dynamics with a high-speed camera and rationalize their salient features by scaling analysis. This work was supported by the National Research Foundation of Korea (grant no. 2012-008023).

  2. Resolving Discrepancies in the Measurements of the Interfacial Tension for the CO2 + H2O Mixture by Computer Simulation.

    PubMed

    Müller, Erich A; Mejía, Andrés

    2014-04-03

    Literature values regarding the pressure dependence of the interfacial tension of the system of carbon dioxide (CO2) + water (H2O) show an unexplained divergence and scatter at the transition between low-pressure gas-liquid equilibrium and the high-pressure liquid-liquid equilibrium. We employ the Statistical Associating Fluid Theory (SAFT) and canonical molecular dynamics simulations based on the corresponding coarse grained force field to map out the phase diagram of the mixture and the interfacial tension for this system. We showcase how at ambient temperatures a triple point (gas-liquid-liquid) is expected and detail the implications that the appearance of the third phase has on the interfacial tensions of the system.

  3. Interfacial liquid water on Mars and its potential role in formation of hill and dune gullies

    NASA Astrophysics Data System (ADS)

    Kossacki, Konrad J.; Markiewicz, Wojciech J.

    2010-11-01

    Gullies are among the most intriguing structures identified on the surface of Mars. Most common are gullies located on the slopes of craters which are probably formed by liquid water transported by shallow aquifers (Heldmann, J.L., Carlsson, E., Johansson, H., Mellon, M.T., Toon, O.B. [2007]. Icarus 188, 324-344). Two particular types of gullies are found on slopes of isolated hills and dunes. The hill-slope gullies are located mostly at 50°S, which is at the high end of latitudes of bulk of the gullies found so far. The dune gullies are found in several locations up to 65°S (Reiss, D., Jaumann, R., Kereszturi, A., Sik, A., Neukum, G. [2007]. Lunar Planet. Sci. XXXVIII. Abstract 1993), but the best known are those in Russel crater at 54°S. The hill and dune gullies are longer than others making the aquifers explanation for their formation unlikely (Balme, M., Mangold, N., Baratoux, D., Costard, F., Gosselin, M., Masson, P., Pnet, P., Neukum, G. [2006]. J. Geophys. Res. 111. doi:10.1029/2005JE002607). Recently it has been noted that thin liquid films of interfacial water can play a role in rheological processes on the surface of Mars (Moehlmann, D. [2008]. Icarus 195, 131-139. Kereszturi, A., Moehlmann, D., Berczi, Sz., Ganti, T., Kuti, A., Sik, A., Horvath, A. [2009]. Icarus 201, 492-503.). Here we try to answer the question whether interfacial liquid water may occur on Mars in quantities large enough to play a role in formation of gullies. To verify this hypothesis we have calculated thermal models for hills and dunes of various steepness, orientation and physical properties. We find that within a range of average expected values of parameters it is not possible to have more than a few monolayers of liquid water at depths greater than a centimeter. To create subsurface interfacial water film significantly thicker and hence to produce conditions for the slope instability, parameters have to be chosen to have their extreme realistic values or an additional source of surface heating is needed. One possibility for additional heating is a change of atmospheric conditions due to a local dust storm. We conclude that if interfacial water is responsible for the formation of the hill-slope gullies, our results may explain why the hill gullies are rare.

  4. Autonomous self-healing structural composites with bio-inspired design

    PubMed Central

    D’Elia, Eleonora; Eslava, Salvador; Miranda, Miriam; Georgiou, Theoni K.; Saiz, Eduardo

    2016-01-01

    Strong and tough natural composites such as bone, silk or nacre are often built from stiff blocks bound together using thin interfacial soft layers that can also provide sacrificial bonds for self-repair. Here we show that it is possible exploit this design in order to create self-healing structural composites by using thin supramolecular polymer interfaces between ceramic blocks. We have built model brick-and-mortar structures with ceramic contents above 95 vol% that exhibit strengths of the order of MPa (three orders of magnitude higher than the interfacial polymer) and fracture energies that are two orders of magnitude higher than those of the glass bricks. More importantly, these properties can be fully recovered after fracture without using external stimuli or delivering healing agents. This approach demonstrates a very promising route towards the design of strong, ideal self-healing materials able to self-repair repeatedly without degradation or external stimuli. PMID:27146382

  5. Autonomous self-healing structural composites with bio-inspired design.

    PubMed

    D'Elia, Eleonora; Eslava, Salvador; Miranda, Miriam; Georgiou, Theoni K; Saiz, Eduardo

    2016-05-05

    Strong and tough natural composites such as bone, silk or nacre are often built from stiff blocks bound together using thin interfacial soft layers that can also provide sacrificial bonds for self-repair. Here we show that it is possible exploit this design in order to create self-healing structural composites by using thin supramolecular polymer interfaces between ceramic blocks. We have built model brick-and-mortar structures with ceramic contents above 95 vol% that exhibit strengths of the order of MPa (three orders of magnitude higher than the interfacial polymer) and fracture energies that are two orders of magnitude higher than those of the glass bricks. More importantly, these properties can be fully recovered after fracture without using external stimuli or delivering healing agents. This approach demonstrates a very promising route towards the design of strong, ideal self-healing materials able to self-repair repeatedly without degradation or external stimuli.

  6. Autonomous self-healing structural composites with bio-inspired design

    NASA Astrophysics Data System (ADS)

    D'Elia, Eleonora; Eslava, Salvador; Miranda, Miriam; Georgiou, Theoni K.; Saiz, Eduardo

    2016-05-01

    Strong and tough natural composites such as bone, silk or nacre are often built from stiff blocks bound together using thin interfacial soft layers that can also provide sacrificial bonds for self-repair. Here we show that it is possible exploit this design in order to create self-healing structural composites by using thin supramolecular polymer interfaces between ceramic blocks. We have built model brick-and-mortar structures with ceramic contents above 95 vol% that exhibit strengths of the order of MPa (three orders of magnitude higher than the interfacial polymer) and fracture energies that are two orders of magnitude higher than those of the glass bricks. More importantly, these properties can be fully recovered after fracture without using external stimuli or delivering healing agents. This approach demonstrates a very promising route towards the design of strong, ideal self-healing materials able to self-repair repeatedly without degradation or external stimuli.

  7. Controlled assembly of jammed colloidal shells on fluid droplets.

    PubMed

    Subramaniam, Anand Bala; Abkarian, Manouk; Stone, Howard A

    2005-07-01

    Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional microcrystalline materials useful in fields as diverse as biomedicine, materials science, mineral flotation and food processing. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials used. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.

  8. Controlled assembly of jammed colloidal shells on fluid droplets

    NASA Astrophysics Data System (ADS)

    Subramaniam, Anand Bala; Abkarian, Manouk; Stone, Howard A.

    2005-07-01

    Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional microcrystalline materials useful in fields as diverse as biomedicine, materials science, mineral flotation and food processing. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials used. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.

  9. Porphyrins at interfaces

    NASA Astrophysics Data System (ADS)

    Auwärter, Willi; Écija, David; Klappenberger, Florian; Barth, Johannes V.

    2015-02-01

    Porphyrins and other tetrapyrrole macrocycles possess an impressive variety of functional properties that have been exploited in natural and artificial systems. Different metal centres incorporated within the tetradentate ligand are key for achieving and regulating vital processes, including reversible axial ligation of adducts, electron transfer, light-harvesting and catalytic transformations. Tailored substituents optimize their performance, dictating their arrangement in specific environments and mediating the assembly of molecular nanoarchitectures. Here we review the current understanding of these species at well-defined interfaces, disclosing exquisite insights into their structural and chemical properties, and also discussing methods by which to manipulate their intramolecular and organizational features. The distinct characteristics arising from the interfacial confinement offer intriguing prospects for molecular science and advanced materials. We assess the role of surface interactions with respect to electronic and physicochemical characteristics, and describe in situ metallation pathways, molecular magnetism, rotation and switching. The engineering of nanostructures, organized layers, interfacial hybrid and bio-inspired systems is also addressed.

  10. Gate-Induced Interfacial Superconductivity in 1T-SnSe2.

    PubMed

    Zeng, Junwen; Liu, Erfu; Fu, Yajun; Chen, Zhuoyu; Pan, Chen; Wang, Chenyu; Wang, Miao; Wang, Yaojia; Xu, Kang; Cai, Songhua; Yan, Xingxu; Wang, Yu; Liu, Xiaowei; Wang, Peng; Liang, Shi-Jun; Cui, Yi; Hwang, Harold Y; Yuan, Hongtao; Miao, Feng

    2018-02-14

    Layered metal chalcogenide materials provide a versatile platform to investigate emergent phenomena and two-dimensional (2D) superconductivity at/near the atomically thin limit. In particular, gate-induced interfacial superconductivity realized by the use of an electric-double-layer transistor (EDLT) has greatly extended the capability to electrically induce superconductivity in oxides, nitrides, and transition metal chalcogenides and enable one to explore new physics, such as the Ising pairing mechanism. Exploiting gate-induced superconductivity in various materials can provide us with additional platforms to understand emergent interfacial superconductivity. Here, we report the discovery of gate-induced 2D superconductivity in layered 1T-SnSe 2 , a typical member of the main-group metal dichalcogenide (MDC) family, using an EDLT gating geometry. A superconducting transition temperature T c ≈ 3.9 K was demonstrated at the EDL interface. The 2D nature of the superconductivity therein was further confirmed based on (1) a 2D Tinkham description of the angle-dependent upper critical field B c2 , (2) the existence of a quantum creep state as well as a large ratio of the coherence length to the thickness of superconductivity. Interestingly, the in-plane B c2 approaching zero temperature was found to be 2-3 times higher than the Pauli limit, which might be related to an electric field-modulated spin-orbit interaction. Such results provide a new perspective to expand the material matrix available for gate-induced 2D superconductivity and the fundamental understanding of interfacial superconductivity.

  11. Effects of protein conformational motions in the native form and non-uniform distribution of electrostatic interaction sites on interfacial water

    NASA Astrophysics Data System (ADS)

    Pal, Somedatta; Bandyopadhyay, Sanjoy

    2013-07-01

    Protein-water interactions and their influence on surrounding water is a long-standing problem. Despite its importance, the origin of differential water behavior at the protein surface is still elusive. We have performed molecular simulations of the protein barstar in aqueous medium. Efforts have been made to explore how the conformational motions of the protein segments in the native form and the heterogeneous electrostatic interactions with the polar and charged groups of the protein affect the interfacial water properties. The calculations reveal that reduced dimension of the hydration layer on freezing the protein's degrees of freedom does not modify the heterogeneous water distributions around the protein. However, turning off the protein-water electrostatic contribution leads to non-preferential near-uniform water arrangements at the surface. It is further shown that with protein-water electrostatic interactions turned on, the local structuring of water molecules around the segments are correlated with their degree of exposure to the solvent.

  12. Moisture effect on interfacial integrity of epoxy-bonded system: a hierarchical approach

    NASA Astrophysics Data System (ADS)

    Tam, Lik-ho; Lun Chow, Cheuk; Lau, Denvid

    2018-01-01

    The epoxy-bonded system has been widely used in various applications across different scale lengths. Prior investigations have indicated that the moisture-affected interfacial debonding is the major failure mode of such a system, but the fundamental mechanism remains unknown, such as the basis for the invasion of water molecules in the cross-linked epoxy and the epoxy-bonded interface. This prevents us from predicting the long-term performance of the epoxy-related applications under the effect of the moisture. Here, we use full atomistic models to investigate the response of the epoxy-bonded system towards the adhesion test, and provide a detailed analysis of the interfacial integrity under the moisture effect and the associated debonding mechanism. Molecular dynamics simulations show that water molecules affect the hierarchical structure of the epoxy-bonded system at the nanoscale by disrupting the film-substrate interaction and the molecular interaction within the epoxy, which leads to the detachment of the epoxy thin film, and the final interfacial debonding. The simulation results show good agreement with the experimental results of the epoxy-bonded system. Through identifying the relationship between the epoxy structure and the debonding mechanism at multiple scales, it is shown that the hierarchical structure of the epoxy-bonded system is crucial for the interfacial integrity. In particular, the available space of the epoxy-bonded system, which consists of various sizes ranging from the atomistic scale to the macroscale and is close to the interface facilitates the moisture accumulation, leading to a distinct interfacial debonding when compared to the dry scenario.

  13. The Excess Chemical Potential of Water at the Interface with a Protein from End Point Simulations.

    PubMed

    Zhang, Bin W; Cui, Di; Matubayasi, Nobuyuki; Levy, Ronald M

    2018-05-03

    We use end point simulations to estimate the excess chemical potential of water in the homogeneous liquid and at the interface with a protein in solution. When the pure liquid is taken as the reference, the excess chemical potential of interfacial water is the difference between the solvation free energy of a water molecule at the interface and in the bulk. Using the homogeneous liquid as an example, we show that the solvation free energy for growing a water molecule can be estimated by applying UWHAM to the simulation data generated from the initial and final states (i.e., "the end points") instead of multistate free energy perturbation simulations because of the possible overlaps of the configurations sampled at the end points. Then end point simulations are used to estimate the solvation free energy of water at the interface with a protein in solution. The estimate of the solvation free energy at the interface from two simulations at the end points agrees with the benchmark using 32 states within a 95% confidence interval for most interfacial locations. The ability to accurately estimate the excess chemical potential of water from end point simulations facilitates the statistical thermodynamic analysis of diverse interfacial phenomena. Our focus is on analyzing the excess chemical potential of water at protein receptor binding sites with the goal of using this information to assist in the design of tight binding ligands.

  14. Effect of Surface Hydration on Antifouling Properties of Mixed Charged Polymers.

    PubMed

    Leng, Chuan; Huang, Hao; Zhang, Kexin; Hung, Hsiang-Chieh; Xu, Yao; Li, Yaoxin; Jiang, Shaoyi; Chen, Zhan

    2018-05-07

    Interfacial water structure on a polymer surface in water (or surface hydration) is related to the antifouling activity of the polymer. Zwitterionic polymer materials exhibit excellent antifouling activity due to their strong surface hydration. It was proposed to replace zwitterionic polymers using mixed charged polymers because it is much easier to prepare mixed charged polymer samples with much lower costs. In this study, using sum frequency generation (SFG) vibrational spectroscopy, we investigated interfacial water structures on mixed charged polymer surfaces in water, and how such structures change while exposing to salt solutions and protein solutions. The 1:1 mixed charged polymer exhibits excellent antifouling property while other mixed charged polymers with different ratios of the positive/negative charges do not. It was found that on the 1:1 mixed charged polymer surface, SFG water signal is dominated by the contribution of the strongly hydrogen bonded water molecules, indicating strong hydration of the polymer surface. The responses of the 1:1 mixed charged polymer surface to salt solutions are similar to those of zwitterionic polymers. Interestingly, exposure to high concentrations of salt solutions leads to stronger hydration of the 1:1 mixed charged polymer surface after replacing the salt solution with water. Protein molecules do not substantially perturb the interfacial water structure on the 1:1 mixed charged polymer surface and do not adsorb to the surface, showing that this mixed charged polymer is an excellent antifouling material.

  15. The Significance of Interfacial Water Structure in Soluble Salt Flotation Systems.

    PubMed

    Hancer, M.; Celik, M. S.; Miller, J. D.

    2001-03-01

    Flotation of soluble salts with dodecyl amine hydrochloride (DAH) and sodium dodecyl sulfate (SDS) collectors has demonstrated that the interfacial water structure and hydration states of soluble salt surfaces together with the precipitation tendency of the corresponding collector salts are of considerable importance in explaining their flotation behavior. In particular, the high concentration of ions in these soluble salt brines and their hydration appear to modify the bulk and interfacial structure of water as revealed by contact angle measurements and this effect is shown to be an important feature in the flotation chemistry of soluble salt minerals including alkali halide and alkali oxyanion salts. Depending on characteristic chemical features (salt type), the salt can serve either as a structure maker, in which intermolecular hydrogen bonding between water molecules is facilitated, or as a structure breaker, in which intermolecular hydrogen bonding between water molecules is disrupted. For structure making salts the brine completely wets the salt surface and no contact angle can be measured. For structure breaking salts the brine does not completely wet the salt surface and a finite contact angle is measured. In this regard it has been found that soluble salt flotation either with the cationic DAH or anionic SDS collector is possible only if the salt is a structure breaker. Copyright 2001 Academic Press.

  16. Mechanically Enhanced Liquid Interfaces at Human Body Temperature Using Thermosensitive Methylated Nanocrystalline Cellulose.

    PubMed

    Scheuble, N; Geue, T; Kuster, S; Adamcik, J; Mezzenga, R; Windhab, E J; Fischer, P

    2016-02-09

    The mechanical performance of materials at oil/water interfaces after consumption is a key factor affecting hydrophobic drug release. In this study, we methylated the surface of nanocrystalline cellulose (NCC) by mercerization and dimethyl sulfate exposure to produce thermosensitive biopolymers. These methylated NCC (metNCC) were used to investigate interfacial thermogelation at air/water and medium-chain triglyceride (MCT)/water interfaces at body temperature. In contrast to bulk fluid dynamics, elastic layers were formed at room temperature, and elasticity increased significantly at body temperature, which was measured by interfacial shear and dilatational rheology in situ. This unique phenomenon depends on solvent quality, temperature, and polymer concentration at interfaces. Thus, by adjusting the degree of hydrophobicity of metNCC, the interfacial elasticity and thermogelation of the interfaces could be varied. In general, these new materials (metNCC) formed more brittle interfacial layers compared to commercial methylcellulose (MC A15). Thermogelation of methylcellulose promotes attractive intermolecular forces, which were reflected in a change in self-assembly of metNCC at the interface. As a consequence, layer thickness and density increased as a function of temperature. These effects were measured by atomic force microscopy (AFM) images of the displaced interface and confirmed by neutron reflection. The substantial structural and mechanical change of methylcellulose interfaces at body temperature represents a controllable encapsulation parameter allowing optimization of lipid-based drug formulations.

  17. Studying interfacial reactions of cholesterol sulfate in an unsaturated phosphatidylglycerol layer with ozone using field induced droplet ionization mass spectrometry.

    PubMed

    Ko, Jae Yoon; Choi, Sun Mi; Rhee, Young Min; Beauchamp, J L; Kim, Hugh I

    2012-01-01

    Field-induced droplet ionization (FIDI) is a recently developed ionization technique that can transfer ions from the surface of microliter droplets to the gas phase intact. The air-liquid interfacial reactions of cholesterol sulfate (CholSO(4)) in a 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) surfactant layer with ozone (O(3)) are investigated using field-induced droplet ionization mass spectrometry (FIDI-MS). Time-resolved studies of interfacial ozonolysis of CholSO(4) reveal that water plays an important role in forming oxygenated products. An epoxide derivative is observed as a major product of CholSO(4) oxidation in the FIDI-MS spectrum after exposure of the droplet to O(3) for 5 s. The abundance of the epoxide product then decreases with continued O(3) exposure as the finite number of water molecules at the air-liquid interface becomes exhausted. Competitive oxidation of CholSO(4) and POPG is observed when they are present together in a lipid surfactant layer at the air-liquid interface. Competitive reactions of CholSO(4) and POPG with O(3) suggest that CholSO(4) is present with POPG as a well-mixed interfacial layer. Compared with CholSO(4) and POPG alone, the overall ozonolysis rates of both CholSO(4) and POPG are reduced in a mixed layer, suggesting the double bonds of both molecules are shielded by additional hydrocarbons from one another. Molecular dynamics simulations of a monolayer comprising POPG and CholSO(4) correlate well with experimental observations and provide a detailed picture of the interactions between CholSO(4), lipids, and water molecules in the interfacial region. © American Society for Mass Spectrometry, 2011

  18. Mixed layers of sodium caseinate + dextran sulfate: influence of order of addition to oil-water interface.

    PubMed

    Jourdain, Laureline S; Schmitt, Christophe; Leser, Martin E; Murray, Brent S; Dickinson, Eric

    2009-09-01

    We report on the interfacial properties of electrostatic complexes of protein (sodium caseinate) with a highly sulfated polysaccharide (dextran sulfate). Two routes were investigated for preparation of adsorbed layers at the n-tetradecane-water interface at pH = 6. Bilayers were made by the layer-by-layer deposition technique whereby polysaccharide was added to a previously established protein-stabilized interface. Mixed layers were made by the conventional one-step method in which soluble protein-polysaccharide complexes were adsorbed directly at the interface. Protein + polysaccharide systems gave a slower decay of interfacial tension and stronger dilatational viscoelastic properties than the protein alone, but there was no significant difference in dilatational properties between mixed layers and bilayers. Conversely, shear rheology experiments exhibited significant differences between the two kinds of interfacial layers, with the mixed system giving much stronger interfacial films than the bilayer system, i.e., shear viscosities and moduli at least an order of magnitude higher. The film shear viscoelasticity was further enhanced by acidification of the biopolymer mixture to pH = 2 prior to interface formation. Taken together, these measurements provide insight into the origin of previously reported differences in stability properties of oil-in-water emulsions made by the bilayer and mixed layer approaches. Addition of a proteolytic enzyme (trypsin) to both types of interfaces led to a significant increase in the elastic modulus of the film, suggesting that the enzyme was adsorbed at the interface via complexation with dextran sulfate. Overall, this study has confirmed the potential of shear rheology as a highly sensitive probe of associative electrostatic interactions and interfacial structure in mixed biopolymer layers.

  19. Ion-specific effects under confinement: the role of interfacial water.

    PubMed

    Argyris, Dimitrios; Cole, David R; Striolo, Alberto

    2010-04-27

    All-atom molecular dynamics simulations were employed for the study of the structure and dynamics of aqueous electrolyte solutions within slit-shaped silica nanopores with a width of 10.67 A at ambient temperature. All simulations were conducted for 250 ns to capture the dynamics of ion adsorption and to obtain the equilibrium distribution of multiple ionic species (Na+, Cs+, and Cl(-)) within the pores. The results clearly support the existence of ion-specific effects under confinement, which can be explained by the properties of interfacial water. Cl(-) strongly adsorbs onto the silica surface. Although neither Na+ nor Cs+ is in contact with the solid surface, they show ion-specific behavior. The differences between the density distributions of cations within the pore are primarily due to size effects through their interaction with confined water molecules. The majority of Na+ ions appear within one water layer in close proximity to the silica surface, whereas Cs+ is excluded from well-defined water layers. As a consequence of this preferential distribution, we observe enhanced in-plane mobility for Cs+ ions, found near the center of the pore, compared to that for Na+ ions, closer to the solid substrate. These observations illustrate the key role of interfacial water in determining ion-specific effects under confinement and have practical importance in several fields, from geology to biology.

  20. Gold Nanoparticle Monolayers from Sequential Interfacial Ligand Exchange and Migration in a Three-Phase System

    PubMed Central

    Yang, Guang; Hallinan, Daniel T.

    2016-01-01

    Using a three-phase system, centimeter-scale monolayer gold nanoparticle (Au NP) films have been prepared that have long-range order and hydrophobic ligands. The system contains an interface between an aqueous phase containing Au NPs and an oil phase containing one of various types of amine ligands, and a water/air interface. As the Au NPs diffuse to the water/oil interface, ligand exchange takes place which temporarily traps them at the water/oil interface. The ligand-exchanged particles then spontaneously migrate to the air/water interface, where they self-assemble, forming a monolayer under certain conditions. The spontaneous formation of the NP film at the air/water interface was due to the minimization of the system Helmholtz free energy. However, the extent of surface functionalization was dictated by kinetics. This decouples interfacial ligand exchange from interfacial self-assembly, while maintaining the simplicity of a single system. The interparticle center-to-center distance was dictated by the amine ligand length. The Au NP monolayers exhibit tunable surface plasma resonance and excellent spatial homogeneity, which is useful for surface-enhanced Raman scattering. The “air/water/oil” self-assembly method developed here not only benefits the fundamental understanding of NP ligand conformations, but is also applicable to the manufacture of plasmonic nanoparticle devices with precisely designed optical properties. PMID:27762394

  1. Hydrated interfacial ions and electrons.

    PubMed

    Abel, Bernd

    2013-01-01

    Charged particles such as hydrated ions and transient hydrated electrons, the simplest anionic reducing agents in water, and the special hydronium and hydroxide ions at water interfaces play an important role in many fields of science, such as atmospheric chemistry, radiation chemistry, and biology, as well as biochemistry. This article focuses on these species near hydrophobic interfaces of water, such as the air or vacuum interface of water or water protein/membrane interfaces. Ions at interfaces as well as solvated electrons have been reviewed frequently during the past decade. Although all species have been known for some time with seemingly familiar features, recently the picture in all cases became increasingly diffuse rather than clearer. The current account gives a critical state-of-the art overview of what is known and what remains to be understood and investigated about hydrated interfacial ions and electrons.

  2. Experimental study on interfacial area transport in downward two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, Guanyi

    In view of the importance of two group interfacial area transport equations and lack of corresponding accurate downward flow database that can reveal two group interfacial area transport, a systematic database for adiabatic, air-water, vertically downward two-phase flow in a round pipe with inner diameter of 25.4 mm was collected to gain an insight of interfacial structure and provide benchmarking data for two-group interfacial area transport models. A four-sensor conductivity probe was used to measure the local two phase flow parameters and data was collected with data sampling frequency much higher than conventional data sampling frequency to ensure the accuracy. Axial development of local flow parameter profiles including void fraction, interfacial area concentration, and Sauter mean diameter were presented. Drastic inter-group transfer of void fraction and interfacial area was observed at bubbly to slug transition flow. And the wall peaked interfacial area concentration profiles were observed in churn-turbulent flow. The importance of local data about these phenomenon on flow structure prediction and interfacial area transport equation benchmark was analyzed. Bedsides, in order to investigate the effect of inlet conditions, all experiments were repeated after installing the flow straightening facility, and the results were briefly analyzed. In order to check the accuracy of current data, the experiment results were cross-checked with rotameter measurement as well as drift-flux model prediction, the averaged error is less than 15%. Current models for two-group interfacial area transport equation were evaluated using these data. The results show that two-group interfacial area transport equations with current models can predict most flow conditions with error less than 20%, except some bubbly to slug transition flow conditions and some churn-turbulent flow conditions. The disagreement between models and experiments could result from underestimate of inter-group void transfer.

  3. The interfacial structure of water droplets in a hydrophobic liquid

    NASA Astrophysics Data System (ADS)

    Smolentsev, Nikolay; Smit, Wilbert J.; Bakker, Huib J.; Roke, Sylvie

    2017-05-01

    Nanoscopic and microscopic water droplets and ice crystals embedded in liquid hydrophobic surroundings are key components of aerosols, rocks, oil fields and the human body. The chemical properties of such droplets critically depend on the interfacial structure of the water droplet. Here we report the surface structure of 200 nm-sized water droplets in mixtures of hydrophobic oils and surfactants as obtained from vibrational sum frequency scattering measurements. The interface of a water droplet shows significantly stronger hydrogen bonds than the air/water or hexane/water interface and previously reported planar liquid hydrophobic/water interfaces at room temperature. The observed spectral difference is similar to that of a planar air/water surface at a temperature that is ~50 K lower. Supercooling the droplets to 263 K does not change the surface structure. Below the homogeneous ice nucleation temperature, a single vibrational mode is present with a similar mean hydrogen-bond strength as for a planar ice/air interface.

  4. Hydration dynamics of a lipid membrane: Hydrogen bond networks and lipid-lipid associations

    NASA Astrophysics Data System (ADS)

    Srivastava, Abhinav; Debnath, Ananya

    2018-03-01

    Dynamics of hydration layers of a dimyristoylphosphatidylcholine (DMPC) bilayer are investigated using an all atom molecular dynamics simulation. Based upon the geometric criteria, continuously residing interface water molecules which form hydrogen bonds solely among themselves and then concertedly hydrogen bonded to carbonyl, phosphate, and glycerol head groups of DMPC are identified. The interface water hydrogen bonded to lipids shows slower relaxation rates for translational and rotational dynamics compared to that of the bulk water and is found to follow sub-diffusive and non-diffusive behaviors, respectively. The mean square displacements and the reorientational auto-correlation functions are slowest for the interfacial waters hydrogen bonded to the carbonyl oxygen since these are buried deep in the hydrophobic core among all interfacial water studied. The intermittent hydrogen bond auto-correlation functions are calculated, which allows breaking and reformations of the hydrogen bonds. The auto-correlation functions for interfacial hydrogen bonded networks develop humps during a transition from cage-like motion to eventual power law behavior of t-3/2. The asymptotic t-3/2 behavior indicates translational diffusion dictated dynamics during hydrogen bond breaking and formation irrespective of the nature of the chemical confinement. Employing reactive flux correlation analysis, the forward rate constant of hydrogen bond breaking and formation is calculated which is used to obtain Gibbs energy of activation of the hydrogen bond breaking. The relaxation rates of the networks buried in the hydrophobic core are slower than the networks near the lipid-water interface which is again slower than bulk due to the higher Gibbs energy of activation. Since hydrogen bond breakage follows a translational diffusion dictated mechanism, chemically confined hydrogen bond networks need an activation energy to diffuse through water depleted hydrophobic environments. Our calculations reveal that the slow relaxation rates of interfacial waters in the vicinity of lipids are originated from the chemical confinement of concerted hydrogen bond networks. The analysis suggests that the networks in the hydration layer of membranes dynamically facilitate the water mediated lipid-lipid associations which can provide insights on the thermodynamic stability of soft interfaces relevant to biological systems in the future.

  5. Quantitative analysis of liquid penetration kinetics and slaking of aggregates as related to solid-liquid interfacial properties

    NASA Astrophysics Data System (ADS)

    Goebel, Marc-O.; Woche, Susanne K.; Bachmann, Jörg

    2012-06-01

    SummaryAggregate stability is frequently shown to be enhanced by strong soil water repellency, however, there is limited systematic evidence on this effect for moderately (subcritically) water repellent soils. This study aimed to investigate the specific effects of interfacial properties on the liquid penetration kinetics in relation to the stability of subcritically water repellent aggregates (4-6.3 mm) from various arable and forest soils against breakdown by slaking. In contrast to many other studies, where aggregate stability was determined by wet sieving, we here assessed the stability by immersion of air-dry aggregates in water-ethanol solutions with surface tensions ranging from 30 to 70 mN m-1. This approach allowed a highly sensitive discrimination of different stability levels and the determination of breakdown kinetics also for less stable aggregates. Interfacial properties were characterized in terms of contact angle measured on crushed aggregates, θc, and calculated for intact aggregates, θi, based on infiltration measurements with water and ethanol. Aggregate stability turned out to be higher in forest soils compared to arable soils with topsoil aggregates generally found to be more stable than subsoil aggregates. For water repellent aggregates, characterized by contact angles >40° and low water infiltration rates (<0.2 mm3 s-0.5), the fraction of disrupted aggregates after 30 s of immersion was generally below 10%, whereas in case of the more wettable aggregates, characterized by contact angles <10° and higher infiltration rates (>0.25 mm3 s-0.5) more than 80% of the aggregates were disrupted. In accordance, we found a close relationship between aggregate stability and wettability with differences between θc and θi being generally small. In addition, aggregate stability turned out to be related to organic carbon content. However, correlation analysis revealed that both persistence of aggregate stability and kinetics of aggregate breakdown were more strongly affected by the contact angle, θc (r = 0.90 and r = -0.83, respectively) and θi (r = 0.89 and r = -0.76, respectively) than the organic carbon content (r = 0.62 and -0.52, respectively), suggesting that stability was primarily controlled by aggregate interfacial properties. Calculation of liquid penetrativity as a function of surface tension and contact angle clearly demonstrated the importance of both solid and liquid interfacial properties in determining the stability of subcritically water repellent aggregates against slaking.

  6. Vibrational Dynamics of Interfacial Water by Free Induction Decay Sum Frequency Generation (FID-SFG) at the Al2O3(1120)/H2O Interface.

    PubMed

    Boulesbaa, Abdelaziz; Borguet, Eric

    2014-02-06

    The dephasing dynamics of a vibrational coherence may reveal the interactions of chemical functional groups with their environment. To investigate this process at a surface, we employ free induction decay sum frequency generation (FID-SFG) to measure the time that it takes for free OH stretch oscillators at the charged (pH ≈ 13, KOH) interface of alumina/water (Al2O3/H2O) to lose their collective coherence. By employing noncollinear optical parametric amplification (NOPA) technology and nonlinear vibrational spectroscopy, we showed that the single free OH peak actually corresponds to two distinct oscillators oriented opposite to each other and measured the total dephasing time, T2, of the free OH stretch modes at the Al2O3/H2O interface with a sub-40 fs temporal resolution. Our results suggested that the free OH oscillators associated with interfacial water dephase on the time scale of 89.4 ± 6.9 fs, whereas the homogeneous dephasing of interfacial alumina hydroxyls is an order of magnitude slower.

  7. Charging and discharging of single colloidal particles at oil/water interfaces

    PubMed Central

    Gao, Peng; Xing, XiaoChen; Li, Ye; Ngai, To; Jin, Fan

    2014-01-01

    The physical behavior of solid colloids trapped at a fluid-fluid interface remains in itself an open fundamental issue. Here, we show that the gradients of surface tension can induce particles to jet towards the oil/water interface with velocities as high as ≈ 60 mm/s when particle suspensions come in contact with the interface. We hypothesize that rubbing between the particles and oil lead to the spontaneous accumulation of negative charges on the hemisphere of those interfacial particles that contact the oil phase by means of triboelectrification. The charging process is highly dependent on the sliding distances, and gives rise to long-ranged repulsions that protect interfacial particles from coagulating at the interface by the presence of electrolyte. These triboelectric charges, however, are compensated within several hours, which affect the stability of interfacial particles. Importantly, by charging different kinds of colloidal particles using various spreading solvents and dispersion methods, we have demonstrated that charging and discharging of single colloidal particles at oil/water interfaces impacts a broad range of dynamical behavior. PMID:24786477

  8. Spontaneous Self-Formation of 3D Plasmonic Optical Structures.

    PubMed

    Choi, Inhee; Shin, Yonghee; Song, Jihwan; Hong, SoonGweon; Park, Younggeun; Kim, Dongchoul; Kang, Taewook; Lee, Luke P

    2016-08-23

    Self-formation of colloidal oil droplets in water or water droplets in oil not only has been regarded as fascinating fundamental science but also has been utilized in an enormous number of applications in everyday life. However, the creation of three-dimensional (3D) architectures by a liquid droplet and an immiscible liquid interface has been less investigated than other applications. Here, we report interfacial energy-driven spontaneous self-formation of a 3D plasmonic optical structure at room temperature without an external force. Based on the densities and interfacial energies of two liquids, we simulated the spontaneous formation of a plasmonic optical structure when a water droplet containing metal ions meets an immiscible liquid polydimethylsiloxane (PDMS) interface. At the interface, the metal ions in the droplet are automatically reduced to form an interfacial plasmonic layer as the liquid PDMS cures. The self-formation of both an optical cavity and integrated plasmonic nanostructure significantly enhances the fluorescence by a magnitude of 1000. Our findings will have a huge impact on the development of various photonic and plasmonic materials as well as metamaterials and devices.

  9. Phase-referenced nonlinear spectroscopy of the α-quartz/water interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, Paul E.; Saslow, Sarah A.; Wang, Hong-fei

    2016-12-13

    Probing the polarization of water molecules at charged interfaces by second harmonic generation spectroscopy has been heretofore limited to isotropic materials. Here we report non-resonant nonlinear optical measurements at the interface of anisotropic z-cut α-quartz and water under conditions of dynamically changing ionic strength and bulk solution pH. We find that the product of the third-order susceptibility and the interfacial potential, χ (3) × Φ(0), is given by (χ1 (3)–iχ2 (3)) × Φ(0), and that the interference between this product and the second-order susceptibility of bulk quartz depends on the rotation angle of α-quartz around the z axis. Our experimentsmore » show that this newly identified term, iχ (3) × Φ(0), which is out of phase from the surface terms, is of bulk origin. Lastly, the possibility of internally phase referencing the interfacial response for the interfacial orientation analysis of species or materials in contact with α-quartz is discussed along with the implications for conditions of resonance enhancement.« less

  10. The Mineral–Collagen Interface in Bone

    PubMed Central

    2015-01-01

    The interface between collagen and the mineral reinforcement phase, carbonated hydroxyapatite (cAp), is essential for bone’s remarkable functionality as a biological composite material. The very small dimensions of the cAp phase and the disparate natures of the reinforcement and matrix are essential to the material’s performance but also complicate study of this interface. This article summarizes what is known about the cAp-collagen interface in bone and begins with descriptions of the matrix and reinforcement roles in composites, of the phases bounding the interface, of growth of cAp growing within the collagen matrix, and of the effect of intra- and extrafibrilar mineral on determinations of interfacial properties. Different observed interfacial interactions with cAp (collagen, water, non-collagenous proteins) are reviewed; experimental results on interface interactions during loading are reported as are their influence on macroscopic mechanical properties; conclusions of numerical modeling of interfacial interactions are also presented. The data suggest interfacial interlocking (bending of collagen molecules around cAp nanoplatelets) and water-mediated bonding between collagen and cAp are essential to load transfer. The review concludes with descriptions of areas where new research is needed to improve understanding of how the interface functions. PMID:25824581

  11. Dynamics of Surfactant Clustering at Interfaces and Its Influence on the Interfacial Tension: Atomistic Simulation of a Sodium Hexadecane-Benzene Sulfonate-Tetradecane-Water System.

    PubMed

    Paredes, Ricardo; Fariñas-Sánchez, Ana Isabel; Medina-Rodrı Guez, Bryan; Samaniego, Samantha; Aray, Yosslen; Álvarez, Luis Javier

    2018-03-06

    The process of equilibration of the tetradecane-water interface in the presence of sodium hexadecane-benzene sulfonate is studied using intensive atomistic molecular dynamics simulations. Starting as an initial point with all of the surfactants at the interface, it is obtained that the equilibration time of the interface (several microseconds) is orders of magnitude higher than previously reported simulated times. There is strong evidence that this slow equilibration process is due to the aggregation of surfactants molecules on the interface. To determine this fact, temporal evolution of interfacial tension and interfacial formation energy are studied and their temporal variations are correlated with cluster formation. To study cluster evolution, the mean cluster size and the probability that a molecule of surfactant chosen at random is free are obtained as a function of time. Cluster size distribution is estimated, and it is observed that some of the molecules remain free, whereas the rest agglomerate. Additionally, the temporal evolution of the interfacial thickness and the structure of the surfactant molecules on the interface are studied. It is observed how this structure depends on whether the molecules agglomerate or not.

  12. Arresting dissolution by interfacial rheology design

    PubMed Central

    Beltramo, Peter J.; Gupta, Manish; Alicke, Alexandra; Liascukiene, Irma; Gunes, Deniz Z.; Baroud, Charles N.

    2017-01-01

    A strategy to halt dissolution of particle-coated air bubbles in water based on interfacial rheology design is presented. Whereas previously a dense monolayer was believed to be required for such an “armored bubble” to resist dissolution, in fact engineering a 2D yield stress interface suffices to achieve such performance at submonolayer particle coverages. We use a suite of interfacial rheology techniques to characterize spherical and ellipsoidal particles at an air–water interface as a function of surface coverage. Bubbles with varying particle coverages are made and their resistance to dissolution evaluated using a microfluidic technique. Whereas a bare bubble only has a single pressure at which a given radius is stable, we find a range of pressures over which bubble dissolution is arrested for armored bubbles. The link between interfacial rheology and macroscopic dissolution of ∼ 100 μm bubbles coated with ∼ 1 μm particles is presented and discussed. The generic design rationale is confirmed by using nonspherical particles, which develop significant yield stress at even lower surface coverages. Hence, it can be applied to successfully inhibit Ostwald ripening in a multitude of foam and emulsion applications. PMID:28893993

  13. Experimental Investigation of the Self-Propelled Motion of a Sodium Oleate Tablet and Boat at an Oil-Water Interface.

    PubMed

    Watahiki, Yasuhito; Nomoto, Tomonori; Chiari, Luca; Toyota, Taro; Fujinami, Masanori

    2018-05-15

    The self-propelled behaviors of macroscopic inanimate objects at surfaces and interfaces are ubiquitous phenomena of fundamental interest in interface science. However, given the existence of a large variety of systems with their own inherent chemical properties, the kinematics of the self-propelled motion and the dynamics of the forces driving these systems often remain largely unknown. Here, we experimentally investigate the spontaneous motion of a sodium oleate tablet at a water-nitrobenzene interface, under nonequilibrium and global isothermal conditions, through measurements of the interfacial tension with the noninvasive, quasi-elastic laser scattering method. The sodium oleate tablet was self-propelled due to an imbalance in the interfacial tension induced by the inhomogeneous adsorption of oleate/oleic acid molecules. The kinetics of the self-propelled motion of a boat-shaped plastic sheet bearing sodium oleate tablets at a sodium oleate aqueous solution-nitrobenzene interface was also studied. The interfacial tension difference between the front and rear of the boat was quantitatively identified as the force pushing the boat forward, although the Marangoni flow due to the uneven distribution of the interfacial tension behind the boat tended to decelerate the motion.

  14. Effect of sucrose ester concentration on the interfacial characteristics and physical properties of sodium caseinate-stabilized oil-in-water emulsions.

    PubMed

    Zhao, Qiangzhong; Liu, Daolin; Long, Zhao; Yang, Bao; Fang, Min; Kuang, Wanmei; Zhao, Mouming

    2014-05-15

    The effect of sucrose ester (SE) concentration on interfacial tension and surface dilatational modulus of SE and sodium caseinate (NaCas)-SE solutions were investigated. The critical micelle concentration (CMC) of SE was presumed to be 0.05% by measuring interfacial tension of SE solution. The interfacial tension of NaCas-SE solution decreased with increased SE concentration. A sharp increase in surface dilatational modulus of NaCas solution was observed when 0.01% SE was added and a decline was occurred at higher SE level. The influence of SE concentration on droplet size and confocal micrograph, surface protein concentration, ζ-potential and rheological properties of oil-in-water (O/W) emulsions prepared with 1% NaCas was also examined. The results showed that addition of SE reduced droplet size and surface protein concentration of the O/W emulsions. The ζ-potential of the O/W emulsions increased initially and decreased afterward with increased SE concentration. All the O/W emulsions exhibited a shear-thinning behaviour and the data were well-fitted into the Herschel-Bulkley model. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The potential for lithoautotrophic life on Mars: application to shallow interfacial water environments.

    PubMed

    Jepsen, Steven M; Priscu, John C; Grimm, Robert E; Bullock, Mark A

    2007-04-01

    We developed a numerical model to assess the lithoautotrophic habitability of Mars based on metabolic energy, nutrients, water availability, and temperature. Available metabolic energy and nutrient sources were based on a laboratory-produced Mars-analog inorganic chemistry. For this specific reference chemistry, the most efficient lithoautotrophic microorganisms would use Fe(2+) as a primary metabolic electron donor and NO(3)(-) or gaseous O(2) as a terminal electron acceptor. In a closed model system, biomass production was limited by the electron donor Fe(2+) and metabolically required P, and typically amounted to approximately 800 pg of dry biomass/ml ( approximately 8,500 cells/ml). Continued growth requires propagation of microbes to new fecund environments, delivery of fresh pore fluid, or continued reaction with the host material. Within the shallow cryosphere--where oxygen can be accessed by microbes and microbes can be accessed by exploration-lithoautotrophs can function within as little as three monolayers of interfacial water formed either by adsorption from the atmosphere or in regions of ice stability where temperatures are within some tens of degrees of the ice melting point. For the selected reference host material (shergottite analog) and associated inorganic fluid chemistry, complete local reaction of the host material potentially yields a time-integrated biomass of approximately 0.1 mg of dry biomass/g of host material ( approximately 10(9) cells/g). Biomass could also be sustained where solutes can be delivered by advection (cryosuction) or diffusion in interfacial water; however, both of these processes are relatively inefficient. Lithoautotrophs in near-surface thin films of water, therefore, would optimize their metabolism by deriving energy and nutrients locally. Although the selected chemistry and associated model output indicate that lithoautotrophic microbial biomass could accrue within shallow interfacial water on Mars, it is likely that these organisms would spend long periods in maintenance or survival modes, with instantaneous biomass comparable to or less than that observed in extreme environments on Earth.

  16. Motility of catalytic nanoparticles through self-generated forces.

    PubMed

    Paxton, Walter F; Sen, Ayusman; Mallouk, Thomas E

    2005-11-04

    Small-scale synthetic motors capable of generating their own motive forces by exploiting the chemical free energy of their environment represent an important step in developing practical nanomachines. Catalytic particles are capable of generating concentration and other gradients that can be used to self-propel small objects. However, the autonomous movement of catalytic nanoparticles by self-generated forces is a relatively unexplored area in colloid and interfacial chemistry. This paper explores the potential of catalytically self-generated forces for propulsion of small objects through fluids.

  17. Dynamics of Water Associated with Lithium Ions Distributed in Polyethylene Oxide

    DOE PAGES

    Zhang, Zhe; Ohl, Michael; Diallo, Souleymane O.; ...

    2015-11-03

    We studied the dynamics of water in polyethylene oxide (PEO)/LiCl solution with quasielastic neutron scattering experiments and molecular dynamics (MD) simulations. Two different time scales of water diffusion representing interfacial water and bulk water dynamics have been identified. Furthermore, the measured diffusion coefficient of interfacial water remained 5–10 times smaller than that of bulk water, but both were slowed by approximately 50% in the presence of Li +. Detailed analysis of MD trajectories suggests that Li + is favorably found at the surface of the hydration layer, and the probability to find the caged Li + configuration formed by themore » PEO is lower than for the noncaged Li +-PEO configuration. In both configurations, however, the slowing down of water molecules is driven by reorienting water molecules and creating water-Li + hydration complexes. Moreover, performing the MD simulation with different ions (Na + and K +) revealed that smaller ionic radius of the ions is a key factor in disrupting the formation of PEO cages by allowing spaces for water molecules to come in between the ion and PEO.« less

  18. Dynamics of Water Associated with Lithium Ions Distributed in Polyethylene Oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Ohl, Michael; Diallo, Souleymane O.; Jalarvo, Niina H.; Hong, Kunlun; Han, Youngkyu; Smith, Gregory S.; Do, Changwoo

    2015-11-01

    The dynamics of water in polyethylene oxide (PEO)/LiCl solution has been studied with quasielastic neutron scattering experiments and molecular dynamics (MD) simulations. Two different time scales of water diffusion representing interfacial water and bulk water dynamics have been identified. The measured diffusion coefficient of interfacial water remained 5-10 times smaller than that of bulk water, but both were slowed by approximately 50% in the presence of Li+ . Detailed analysis of MD trajectories suggests that Li+ is favorably found at the surface of the hydration layer, and the probability to find the caged Li+ configuration formed by the PEO is lower than for the noncaged Li+-PEO configuration. In both configurations, however, the slowing down of water molecules is driven by reorienting water molecules and creating water-Li+ hydration complexes. Performing the MD simulation with different ions (Na+ and K+ ) revealed that smaller ionic radius of the ions is a key factor in disrupting the formation of PEO cages by allowing spaces for water molecules to come in between the ion and PEO.

  19. Dynamics of Water Associated with Lithium Ions Distributed in Polyethylene Oxide.

    PubMed

    Zhang, Zhe; Ohl, Michael; Diallo, Souleymane O; Jalarvo, Niina H; Hong, Kunlun; Han, Youngkyu; Smith, Gregory S; Do, Changwoo

    2015-11-06

    The dynamics of water in polyethylene oxide (PEO)/LiCl solution has been studied with quasielastic neutron scattering experiments and molecular dynamics (MD) simulations. Two different time scales of water diffusion representing interfacial water and bulk water dynamics have been identified. The measured diffusion coefficient of interfacial water remained 5-10 times smaller than that of bulk water, but both were slowed by approximately 50% in the presence of Li(+). Detailed analysis of MD trajectories suggests that Li(+) is favorably found at the surface of the hydration layer, and the probability to find the caged Li(+) configuration formed by the PEO is lower than for the noncaged Li(+)-PEO configuration. In both configurations, however, the slowing down of water molecules is driven by reorienting water molecules and creating water-Li(+) hydration complexes. Performing the MD simulation with different ions (Na(+) and K(+)) revealed that smaller ionic radius of the ions is a key factor in disrupting the formation of PEO cages by allowing spaces for water molecules to come in between the ion and PEO.

  20. Interfacial solvation thermodynamics

    NASA Astrophysics Data System (ADS)

    Ben-Amotz, Dor

    2016-10-01

    Previous studies have reached conflicting conclusions regarding the interplay of cavity formation, polarizability, desolvation, and surface capillary waves in driving the interfacial adsorptions of ions and molecules at air-water interfaces. Here we revisit these questions by combining exact potential distribution results with linear response theory and other physically motivated approximations. The results highlight both exact and approximate compensation relations pertaining to direct (solute-solvent) and indirect (solvent-solvent) contributions to adsorption thermodynamics, of relevance to solvation at air-water interfaces, as well as a broader class of processes linked to the mean force potential between ions, molecules, nanoparticles, proteins, and biological assemblies.

  1. Exploiting water versus tolerating drought: water-use strategies of trees in a secondary successional tropical dry forest

    Treesearch

    Fernando Pineda-García; Horacio Paz; Frederick C. Meinzer; Guillermo Angeles; Guillermo Goldstein

    2015-01-01

    In seasonal plant communities where water availability changes dramatically both between and within seasons, understanding the mechanisms that enable plants to exploit water pulses and to survive drought periods is crucial. By measuring rates of physiological processes, we examined the trade-off between water exploitation and drought tolerance among seedlings of trees...

  2. Insights into hydrogen bond dynamics at the interface of the charged monolayer-protected Au nanoparticle from molecular dynamics simulation.

    PubMed

    Li, Yunzhi; Yang, Zhen; Hu, Na; Zhou, Rongfei; Chen, Xiangshu

    2013-05-14

    The structure and dynamics properties of water molecules at the interface of the charged monolayer-protected Au nanoparticle (MPAN) have been investigated in detail by using classical molecular dynamics simulation. The simulation results demonstrated clearly that a well-defined hydration layer is formed at the interface of MPAN and a stable "ion wall" consisting of terminal NH3 (+) groups and Cl(-) counterions exists at the outmost region of self-assembled monolayer (SAM) where the translational and rotational motions of water molecules slow considerably down compared to those in the bulk owing to the presence of SAM and ion wall. Furthermore, we found that the translational motions of interfacial water molecules display a subdiffusive behavior while their rotational motions exhibit a nonexponential feature. The unique behavior of interfacial water molecules around the MPAN can be attributed to the interfacial hydrogen bond (HB) dynamics. By comparison, the lifetime of NH3 (+)-Cl(-) HBs was found to be the longest, favoring the stability of ion wall. Meanwhile, the lifetime of H2O-H2O HBs shows an obvious increase when the water molecules approach the Au core, suggesting the enhanced H2O-H2O HBs around the charged MPAN, which is contrary to the weaken H2O-H2O HBs around the neutral MPAN. Moreover, the HB lifetimes between water molecules and the ion wall (i.e., the Cl(-)-H2O and NH3 (+)-H2O HBs) are much longer than that of interfacial H2O-H2O HBs, which leads to the increasing rotational relaxation time and residence time of water molecules surrounding the ion wall. In addition, the corresponding binding energies for different HB types obtained from the precise density functional theory are in excellent accordance with above simulation results. The detailed HB dynamics studied in this work provides insights into the unique behavior of water molecules at the interface of charged self-assemblies of nanoparticles as well as proteins.

  3. Sum Frequency Generation Vibrational Spectroscopy Studies on ModelPeptide Adsorption at the Hydrophobic Solid-Water and HydrophilicSolid-Water Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    York, Roger L.

    2007-01-01

    Sum frequency generation (SFG) vibrational spectroscopy has been used to study the interfacial structure of several polypeptides and amino acids adsorbed to hydrophobic and hydrophilic surfaces under a variety of experimental conditions. Peptide sequence, peptide chain length, peptide hydrophobicity, peptide side-chain type, surface hydrophobicity, and solution ionic strength all affect an adsorbed peptide's interfacial structure. Herein, it is demonstrated that with the choice of simple, model peptides and amino acids, surface specific SFG vibrational spectroscopy can be a powerful tool to elucidate the interfacial structure of these adsorbates. Herein, four experiments are described. In one, a series of isosequential amphiphilicmore » peptides are synthesized and studied when adsorbed to both hydrophobic and hydrophilic surfaces. On hydrophobic surfaces of deuterated polystyrene, it was determined that the hydrophobic part of the peptide is ordered at the solid-liquid interface, while the hydrophilic part of the peptide appears to have a random orientation at this interface. On a hydrophilic surface of silica, it was determined that an ordered peptide was only observed if a peptide had stable secondary structure in solution. In another experiment, the interfacial structure of a model amphiphilic peptide was studied as a function of the ionic strength of the solution, a parameter that could change the peptide's secondary structure in solution. It was determined that on a hydrophobic surface, the peptide's interfacial structure was independent of its structure in solution. This was in contrast to the adsorbed structure on a hydrophilic surface, where the peptide's interfacial structure showed a strong dependence on its solution secondary structure. In a third experiment, the SFG spectra of lysine and proline amino acids on both hydrophobic and hydrophilic surfaces were obtained by using a different experimental geometry that increases the SFG signal. Upon comparison of these spectra to the SFG spectra of interfacial polylysine and polyproline it was determined that the interfacial structure of a peptide is strongly dependent on its chain length. Lastly, SFG spectroscopy has been extended to the Amide I vibrational mode of a peptide (which is sensitive to peptide secondary structure) by building a new optical parametric amplifier based on lithium thioindate. Evidence is presented that suggests that the interfacial secondary structure of a peptide can be perturbed by a surface.« less

  4. Interface-related attributes of the Maillard reaction-born glycoproteins.

    PubMed

    Karbasi, Mehri; Madadlou, Ashkan

    2017-01-19

    Interfacial behavior of proteins which is a chief parameter to their emulsifying and foaming properties can be tailored through the Maillard reaction. The reaction can increase protein solubility at isoelectric point and ought to be controlled for example by high pressure processing to suppress melanoidins formation. Branched and long saccharides bring considerable steric hindrance which is associated with their site of conjugation to proteins. Conjugation with high molecular weight polysaccharides (such as 440 kDa dextran) may indeed increase the thickness of globular proteins interfacial film up to approximately 25 nm. However, an overly long saccharide can shield protein charge and slow down the electrophoretic mobility of conjugate. Maillard conjugation may decrease the diffusion rate of proteins to interface, allowing further unfolding at interface. As well, it can increase desorption iteration of proteins from interface. In addition to tempering proteins adsorption to interface, Maillard conjugation influences the rheology of protein membranes. Oligosaccharides (especially at higher glycation degrees) decrease the elastic modulus and Huggins constant of protein film; whereas, monosaccharides yield a more elastic interface. Accordingly, glycation of random coil proteins has been exploited to stiffen the corresponding interfacial membrane. Partial hydrolysis of proteins accompanied with anti-solvent-triggered nanoparticulation either before or after conjugation is a feasible way to enhance their emulsifying activity.

  5. Interfacial metal and antibody recognition.

    PubMed

    Zhou, Tongqing; Hamer, Dean H; Hendrickson, Wayne A; Sattentau, Quentin J; Kwong, Peter D

    2005-10-11

    The unique ligation properties of metal ions are widely exploited by proteins, with approximately one-third of all proteins estimated to be metalloproteins. Although antibodies use various mechanisms for recognition, to our knowledge, none has ever been characterized that uses an interfacial metal. We previously described a family of CD4-reactive antibodies, the archetype being Q425. CD4:Q425 engagement does not interfere with CD4:HIV-1 gp120 envelope glycoprotein binding, but it blocks subsequent steps required for viral entry. Here, we use surface-plasmon resonance to show that Q425 requires calcium for recognition of CD4. Specifically, Q425 binding of calcium resulted in a 55,000-fold enhancement in affinity for CD4. X-ray crystallographic analyses of Q425 in the presence of Ca(2+), Ba(2+), or EDTA revealed an exposed metal-binding site, partially coordinated by five atoms contributed from four antibody complementarity-determining regions. The results suggest that Q425 recognition of CD4 involves direct ligation of antigen by the Q425-held calcium, with calcium binding each ligating atom of CD4 with approximately 1.5 kcal/mol of binding energy. This energetic contribution, which is greater than that from a typical protein atom, demonstrates how interfacial metal ligation can play a unique role in antigen recognition.

  6. Interfacial metal and antibody recognition

    PubMed Central

    Zhou, Tongqing; Hamer, Dean H.; Hendrickson, Wayne A.; Sattentau, Quentin J.; Kwong, Peter D.

    2005-01-01

    The unique ligation properties of metal ions are widely exploited by proteins, with approximately one-third of all proteins estimated to be metalloproteins. Although antibodies use various mechanisms for recognition, to our knowledge, none has ever been characterized that uses an interfacial metal. We previously described a family of CD4-reactive antibodies, the archetype being Q425. CD4:Q425 engagement does not interfere with CD4:HIV-1 gp120 envelope glycoprotein binding, but it blocks subsequent steps required for viral entry. Here, we use surface-plasmon resonance to show that Q425 requires calcium for recognition of CD4. Specifically, Q425 binding of calcium resulted in a 55,000-fold enhancement in affinity for CD4. X-ray crystallographic analyses of Q425 in the presence of Ca2+, Ba2+, or EDTA revealed an exposed metal-binding site, partially coordinated by five atoms contributed from four antibody complementarity-determining regions. The results suggest that Q425 recognition of CD4 involves direct ligation of antigen by the Q425-held calcium, with calcium binding each ligating atom of CD4 with ≈1.5 kcal/mol of binding energy. This energetic contribution, which is greater than that from a typical protein atom, demonstrates how interfacial metal ligation can play a unique role in antigen recognition. PMID:16195378

  7. The alteration of lipid bilayer dynamics by phloretin and 6-ketocholestanol.

    PubMed

    Przybylo, M; Procek, J; Hof, M; Langner, M

    2014-02-01

    Lipid bilayer properties are quantified with a variety of arbitrary selected parameters such as molecular packing and dynamics, electrostatic potentials or permeability. In the paper we determined the effect of phloretin and 6-ketocholestanol (dipole potential modifying agents) on the membrane hydration and efficiency of the trans-membrane water flow. The dynamics of water molecules within the lipid bilayer interface was evaluated using solvent relaxation method, whereas the osmotically induced trans-membrane water flux was estimated with the stopped-flow method using the liposome shrinkage kinetics. The presence of phloretin or 6-ketocholestanol resulted in a change of both, the interfacial hydration level and osmotically driven water fluxes. Specifically, the presence of 6-ketocholestanol reduced the amount and mobility of water in the membrane interface. It also slows the osmotically induced water flow. The interfacial hydration change caused by phloretin was much smaller and the effect on osmotically induced water flow was opposite to that of 6-ketocholestanol. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. The Role of Interfacial Water in Protein-Ligand Binding: Insights from the Indirect Solvent Mediated Potential of Mean Force.

    PubMed

    Cui, Di; Zhang, Bin W; Matubayasi, Nobuyuki; Levy, Ronald M

    2018-02-13

    Classical density functional theory (DFT) can be used to relate the thermodynamic properties of solutions to the indirect solvent mediated part of the solute-solvent potential of mean force (PMF). Standard, but powerful numerical methods can be used to estimate the solute-solvent PMF from which the indirect part can be extracted. In this work we show how knowledge of the direct and indirect parts of the solute-solvent PMF for water at the interface of a protein receptor can be used to gain insights about how to design tighter binding ligands. As we show, the indirect part of the solute-solvent PMF is equal to the sum of the 1-body (energy + entropy) terms in the inhomogeneous solvation theory (IST) expansion of the solvation free energy. To illustrate the effect of displacing interfacial water molecules with particular direct/indirect PMF signatures on the binding of ligands, we carry out simulations of protein binding with several pairs of congeneric ligands. We show that interfacial water locations that contribute favorably or unfavorably at the 1-body level (energy + entropy) to the solvation free energy of the solute can be targeted as part of the ligand design process. Water locations where the indirect PMF is larger in magnitude provide better targets for displacement when adding a functional group to a ligand core.

  9. On the Proper Calculation of Electrostatic Interactions in Solid-Supported Bilayer Systems

    DTIC Science & Technology

    2011-01-01

    the effects of im- plementing different electrostatic boundary conditions on the structural and electrostatic properties of a quartz/water/vacuum...interface and a similar quartz-supported hydrated lipid bilayer exposed to vacuum. Since these interfacial systems have a net polarization, implementing the...implemented electrostatic boundary condition removed these inconsistencies. This formulation is generally applicable to similar interfacial systems in bulk

  10. Structural definition of the BIL and DL: a new universal methodology to rationalize non-linear χ(2)(ω) SFG signals at charged interfaces, including χ(3)(ω) contributions.

    PubMed

    Pezzotti, Simone; Galimberti, Daria Ruth; Shen, Y Ron; Gaigeot, Marie-Pierre

    2018-02-14

    This work provides unambiguous definitions from theoretical simulations of the two interfacial regions named the BIL (binding interfacial layer) and DL (diffuse layer) at charged solid/water and air/water interfaces. The BIL and DL nomenclature follows the pioneering work of Wen et al. [Phys. Rev. Lett. 2016, 116, 016101]. Our definitions are based on the intrinsic structural properties of water only. Knowing the BIL and DL interfacial regions, one is then able to deconvolve the χ (2) (ω) non-linear SFG (sum frequency generation) response into χ(ω) and χ(ω) contributions, thus providing a detailed molecular interpretation of these signals and of the measured total SFG. We furthermore show that the χ(ω) spectrum arises from the χ (3) (ω) non-linear third order contribution of bulk liquid water, here calculated for several charged interfaces and shown to be universal. The χ(ω) contribution therefore has the same origin in terms of molecular normal modes at any charged interface. The molecular interpretation of χ(ω) is hence at the heart of the unambiguous molecular comprehension and interpretation of the measured total SFG signal at any charged interface.

  11. Effects of DMSO and glycerol additives on the property of polyamide reverse osmosis membrane.

    PubMed

    Wu, Fengjing; Liu, Xiaojuan; Au, Chaktong

    2016-10-01

    The polyamide reverse osmosis (RO) membranes were prepared through interfacial polymerization of m-phenylenediamine (MPD) and trimesoyl chloride (TMC). The use of dimethyl sulfoxide (DMSO) and glycerol as additives for the formation of thin-film composite (TFC) was investigated. We studied the effect of DMSO and glycerol addition on membrane property and RO performance. Microscopic morphology was examined by atomic force microscopy and scanning electron microscopy. The surface hydrophilicity was characterized on the basis of water contact angle and surface solid-liquid interfacial free energy (-ΔG SL ). Water flux and salt rejection ability of the membranes prepared with or without the additives were evaluated by cross-flow RO tests. The results reveal that the addition of DMSO and glycerol strongly influences the property of the TFC RO membrane. Compared to the MPD/TMC membrane fabricated without DMSO and glycerol, the MPD/TMC/DMSO/glycerol membrane has a rougher surface and is more hydrophilic, showing smaller water contact angle and larger -ΔG SL value. Without decrease in salt rejection ability, the MPD/TMC/DMSO/glycerol membrane shows water flux significantly larger than that of the MPD/TMC membrane. The unique property of the MPD/TMC/DMSO/glycerol membrane is attributed to the cooperative effect of DMSO and glycerol on membrane structure during the interfacial polymerization process.

  12. Porous structures of polymer films prepared by spin coating with mixed solvents under humid condition.

    PubMed

    Park, Min Soo; Joo, Wonchul; Kim, Jin Kon

    2006-05-09

    We investigate the effects of interfacial energy between water and solvent as well as polymer concentration on the formation of porous structures of polymer films prepared by spin coating of cellulose acetate butyrate (CAB) in mixed solvent of tetrahydrofuran (THF) and chloroform under humid condition. The interfacial energy between water and the solvent was gradually changed by the addition of chloroform to the solvent. At a high polymer concentration (0.15 g/cm3 in THF), porous structures were limited only at the top surfaces of CAB films, regardless of interfacial energies, due to the high viscosity of the solution. At a medium concentration (approximately 0.08 g/cm3 in THF), CAB film had relatively uniform pores at the top surface and very small pores inside the film because of the mixing of the water droplets with THF solution. When chloroform was added to THF, pores at the inner CAB film had a comparable size with those at the top surface because of the reduced degree of the mixing between the water droplets and the mixed solvent. A further decrease in polymer concentration (0.05 g/cm3 in THF) caused the final films to have a two-layer porous structure, and the size of pores at each layer was almost the same.

  13. Laboratory and numerical investigations of kinetic interface sensitive tracers transport for immiscible two-phase flow porous media systems

    NASA Astrophysics Data System (ADS)

    Tatomir, Alexandru Bogdan A. C.; Sauter, Martin

    2017-04-01

    A number of theoretical approaches estimating the interfacial area between two fluid phases are available (Schaffer et al.,2013). Kinetic interface sensitive (KIS) tracers are used to describe the evolution of fluid-fluid interfaces advancing in two phase porous media systems (Tatomir et al., 2015). Initially developed to offer answers about the supercritical (sc)CO2 plume movement and the efficiency of trapping in geological carbon storage reservoirs, KIS tracers are tested in dynamic controlled laboratory conditions. N-octane and water, analogue to a scCO2 - brine system, are used. The KIS tracer is dissolved in n-octane, which is injected as the non-wetting phase in a fully water saturated porous media column. The porous system is made up of spherical glass beads with sizes of 100-250 μm. Subsequently, the KIS tracer follows a hydrolysis reaction over the n-octane - water interface resulting in an acid and phenol which are both water soluble. The fluid-fluid interfacial area is described numerically with the help of constitutive-relationships derived from the Brooks-Corey model. The specific interfacial area is determined numerically from pore scale calculations, or from different literature sources making use of pore network model calculations (Joekar-Niasar et al., 2008). This research describes the design of the laboratory setup and compares the break-through curves obtained with the forward model and in the laboratory experiment. Furthermore, first results are shown in the attempt to validate the immiscible two phase flow reactive transport numerical model with dynamic laboratory column experiments. Keywords: Fluid-fluid interfacial area, KIS tracers, model validation, CCS, geological storage of CO2

  14. Interfacial Free Energy as the Key to the Pressure-Induced Deceleration of Ice Nucleation

    NASA Astrophysics Data System (ADS)

    Espinosa, Jorge R.; Zaragoza, Alberto; Rosales-Pelaez, Pablo; Navarro, Caridad; Valeriani, Chantal; Vega, Carlos; Sanz, Eduardo

    2016-09-01

    The avoidance of water freezing is the holy grail in the cryopreservation of biological samples, food, and organs. Fast cooling rates are used to beat ice nucleation and avoid cell damage. This strategy can be enhanced by applying high pressures to decrease the nucleation rate, but the physics behind this procedure has not been fully understood yet. We perform computer experiments to investigate ice nucleation at high pressures consisting in embedding ice seeds in supercooled water. We find that the slowing down of the nucleation rate is mainly due to an increase of the ice I -water interfacial free energy with pressure. Our work also clarifies the molecular mechanism of ice nucleation for a wide pressure range. This study is not only relevant to cryopreservation, but also to water amorphization and climate change modeling.

  15. Synthesis of colloidal metal nanocrystals in droplet reactors: the pros and cons of interfacial adsorption.

    PubMed

    Zhang, Lei; Wang, Yi; Tong, Limin; Xia, Younan

    2014-07-09

    Droplet reactors have received considerable attention in recent years as an alternative route to the synthesis and potentially high-volume production of colloidal metal nanocrystals. Interfacial adsorption will immediately become an important issue to address when one seeks to translate a nanocrystal synthesis from batch reactors to droplet reactors due to the involvement of higher surface-to-volume ratios for the droplets and the fact that nanocrystals tend to be concentrated at the water-oil interface. Here we report a systematic study to compare the pros and cons of interfacial adsorption of metal nanocrystals during their synthesis in droplet reactors. On the one hand, interfacial adsorption can be used to generate nanocrystals with asymmetric shapes or structures, including one-sixth-truncated Ag octahedra and Au-Ag nanocups. On the other hand, interfacial adsorption has to be mitigated to obtain nanocrystals with uniform sizes and controlled shapes. We confirmed that Triton X-100, a nonionic surfactant, could effectively alleviate interfacial adsorption while imposing no impact on the capping agent typically needed for a shape-controlled synthesis. With the introduction of a proper surfactant, droplet reactors offer an attractive platform for the continuous production of colloidal metal nanocrystals.

  16. Interfacial activity in alkaline flooding enhanced oil recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, M.K.

    1981-01-01

    The ionization of long-chained organic acids in the crude oil to form soaps was shown to be primarily responsible for the lowering of oil-water interfacial tension at alkaline pH. These active acids can be concentrated by silica gel chromatography into a minor polar fraction. An equilibrium chemical model was proposed based on 2 competing reactions: the ionization of acids to form active anions, and the formation of undissociated soap between acid anions and sodium ions. It correlates the interfacial activity with the interfacial concentration of active acid anions which is expressed in terms of the concentrations of the chemical speciesmore » in the system. The model successfully predicts the observed oil-alkaline solution interfacial phenomenon, including its dependence on pH, alkali and salt concentrations, type of acid present and type of soap formed. Flooding at different alkali concentrations to activate different acid species present in the crude was shown to give better recovery than flooding at a single high alkali concentration. Treating the crude oil with a dilute solution of mineral acids liberates additional free active acids and yields better interfacial activity during subsequent alkali contact.« less

  17. Insights into the role of protein molecule size and structure on interfacial properties using designed sequences

    PubMed Central

    Dwyer, Mirjana Dimitrijev; He, Lizhong; James, Michael; Nelson, Andrew; Middelberg, Anton P. J.

    2013-01-01

    Mixtures of a large, structured protein with a smaller, unstructured component are inherently complex and hard to characterize at interfaces, leading to difficulties in understanding their interfacial behaviours and, therefore, formulation optimization. Here, we investigated interfacial properties of such a mixed system. Simplicity was achieved using designed sequences in which chemical differences had been eliminated to isolate the effect of molecular size and structure, namely a short unstructured peptide (DAMP1) and its longer structured protein concatamer (DAMP4). Interfacial tension measurements suggested that the size and bulk structuring of the larger molecule led to much slower adsorption kinetics. Neutron reflectometry at equilibrium revealed that both molecules adsorbed as a monolayer to the air–water interface (indicating unfolding of DAMP4 to give a chain of four connected DAMP1 molecules), with a concentration ratio equal to that in the bulk. This suggests the overall free energy of adsorption is equal despite differences in size and bulk structure. At small interfacial extensional strains, only molecule packing influenced the stress response. At larger strains, the effect of size became apparent, with DAMP4 registering a higher stress response and interfacial elasticity. When both components were present at the interface, most stress-dissipating movement was achieved by DAMP1. This work thus provides insights into the role of proteins' molecular size and structure on their interfacial properties, and the designed sequences introduced here can serve as effective tools for interfacial studies of proteins and polymers. PMID:23303222

  18. Interfacial spreading effects on one-dimensional organic liquid imbibition in water-wetted porous media

    NASA Astrophysics Data System (ADS)

    McBride, J. F.; Simmons, C. S.; Cary, J. W.

    1992-10-01

    The spreading coefficient, Csp, determines whether an organic immiscible liquid, OIL, will form a lens ( Csp < 0) or will spread spontaneously ( Csp > 0) on a water surface. An OIL that forms a lens does not perfectly wet the water surface and therefore has a contact angle greater than 0°. The one-dimensional rate at which an OIL spreads spontaneously on a water surface is proportional to the square root of Csp. Of the OIL's that pose a contaminant threat to the subsurface, the majority has a non-zero Csp. To test the influence of such interfacial spreading phenomena on OIL infiltration in a pristine vadose zone, upward OIL and water imbibition infiltration experiments were performed in glass-bead columns, moistened with water, by using OIL's with different Csp. An analytical model for saturated liquid front rise was used to inversely estimate the effective capillary pressure head at the front and the average liquid conductivity. A nonspreading OIL ( Csp ≪ 0) exhibited a reduced capillary pressure head in the water-wetted glass beads. A spontaneously spreading OIL ( Csp ≫0) manifested an enhanced capillary pressure head. Reduced capillary pressure head was associated with an increase in average conductivity, and enhanced capillary pressure head was associated with a decrease in average conductivity when compared to the average water conductivity during water imbibition. The employed experimental method and mathematical analysis of dynamic flow, subject to interfacial spreading phenomena, are practical for quantifying parameters for use in sharp-front OIL infiltration models, but more research is needed to determine how to incorporate the spreading coefficient in numerical multiphase flow models.

  19. A physically constrained classical description of the homogeneous nucleation of ice in water.

    PubMed

    Koop, Thomas; Murray, Benjamin J

    2016-12-07

    Liquid water can persist in a supercooled state to below 238 K in the Earth's atmosphere, a temperature range where homogeneous nucleation becomes increasingly probable. However, the rate of homogeneous ice nucleation in supercooled water is poorly constrained, in part, because supercooled water eludes experimental scrutiny in the region of the homogeneous nucleation regime where it can exist only fleetingly. Here we present a new parameterization of the rate of homogeneous ice nucleation based on classical nucleation theory. In our approach, we constrain the key terms in classical theory, i.e., the diffusion activation energy and the ice-liquid interfacial energy, with physically consistent parameterizations of the pertinent quantities. The diffusion activation energy is related to the translational self-diffusion coefficient of water for which we assess a range of descriptions and conclude that the most physically consistent fit is provided by a power law. The other key term is the interfacial energy between the ice embryo and supercooled water whose temperature dependence we constrain using the Turnbull correlation, which relates the interfacial energy to the difference in enthalpy between the solid and liquid phases. The only adjustable parameter in our model is the absolute value of the interfacial energy at one reference temperature. That value is determined by fitting this classical model to a selection of laboratory homogeneous ice nucleation data sets between 233.6 K and 238.5 K. On extrapolation to temperatures below 233 K, into a range not accessible to standard techniques, we predict that the homogeneous nucleation rate peaks between about 227 and 231 K at a maximum nucleation rate many orders of magnitude lower than previous parameterizations suggest. This extrapolation to temperatures below 233 K is consistent with the most recent measurement of the ice nucleation rate in micrometer-sized droplets at temperatures of 227-232 K on very short time scales using an X-ray laser technique. In summary, we present a new physically constrained parameterization for homogeneous ice nucleation which is consistent with the latest literature nucleation data and our physical understanding of the properties of supercooled water.

  20. Mechanism of vibrational energy dissipation of free OH groups at the air-water interface.

    PubMed

    Hsieh, Cho-Shuen; Campen, R Kramer; Okuno, Masanari; Backus, Ellen H G; Nagata, Yuki; Bonn, Mischa

    2013-11-19

    Interfaces of liquid water play a critical role in a wide variety of processes that occur in biology, a variety of technologies, and the environment. Many macroscopic observations clarify that the properties of liquid water interfaces significantly differ from those of the bulk liquid. In addition to interfacial molecular structure, knowledge of the rates and mechanisms of the relaxation of excess vibrational energy is indispensable to fully understand physical and chemical processes of water and aqueous solutions, such as chemical reaction rates and pathways, proton transfer, and hydrogen bond dynamics. Here we elucidate the rate and mechanism of vibrational energy dissipation of water molecules at the air-water interface using femtosecond two-color IR-pump/vibrational sum-frequency probe spectroscopy. Vibrational relaxation of nonhydrogen-bonded OH groups occurs at a subpicosecond timescale in a manner fundamentally different from hydrogen-bonded OH groups in bulk, through two competing mechanisms: intramolecular energy transfer and ultrafast reorientational motion that leads to free OH groups becoming hydrogen bonded. Both pathways effectively lead to the transfer of the excited vibrational modes from free to hydrogen-bonded OH groups, from which relaxation readily occurs. Of the overall relaxation rate of interfacial free OH groups at the air-H2O interface, two-thirds are accounted for by intramolecular energy transfer, whereas the remaining one-third is dominated by the reorientational motion. These findings not only shed light on vibrational energy dynamics of interfacial water, but also contribute to our understanding of the impact of structural and vibrational dynamics on the vibrational sum-frequency line shapes of aqueous interfaces.

  1. Surface velocity divergence model of air/water interfacial gas transfer in open-channel flows

    NASA Astrophysics Data System (ADS)

    Sanjou, M.; Nezu, I.; Okamoto, T.

    2017-04-01

    Air/water interfacial gas transfer through a free surface plays a significant role in preserving and restoring water quality in creeks and rivers. However, direct measurements of the gas transfer velocity and reaeration coefficient are still difficult, and therefore a reliable prediction model needs to be developed. Varying systematically the bulk-mean velocity and water depth, laboratory flume experiments were conducted and we measured surface velocities and dissolved oxygen (DO) concentrations in open-channel flows to reveal the relationship between DO transfer velocity and surface divergence (SD). Horizontal particle image velocimetry measurements provide the time-variations of surface velocity divergence. Positive and negative regions of surface velocity divergence are transferred downstream in time, as occurs in boil phenomenon on natural river free-surfaces. The result implies that interfacial gas transfer is related to bottom-situated turbulence motion and vertical mass transfer. The original SD model focuses mainly on small-scale viscous motion, and this model strongly depends on the water depth. Therefore, we modify the SD model theoretically to accommodate the effects of the water depth on gas transfer, introducing a non-dimensional parameter that includes contributions of depth-scale large-vortex motion, such as secondary currents, to surface renewal events related to DO transport. The modified SD model proved effective and reasonable without any dependence on the bulk mean velocity and water depth, and has a larger coefficient of determination than the original SD model. Furthermore, modeling of friction velocity with the Reynolds number improves the practicality of a new formula that is expected to be used in studies of natural rivers.

  2. Mechanism of vibrational energy dissipation of free OH groups at the air–water interface

    PubMed Central

    Hsieh, Cho-Shuen; Campen, R. Kramer; Okuno, Masanari; Backus, Ellen H. G.; Nagata, Yuki; Bonn, Mischa

    2013-01-01

    Interfaces of liquid water play a critical role in a wide variety of processes that occur in biology, a variety of technologies, and the environment. Many macroscopic observations clarify that the properties of liquid water interfaces significantly differ from those of the bulk liquid. In addition to interfacial molecular structure, knowledge of the rates and mechanisms of the relaxation of excess vibrational energy is indispensable to fully understand physical and chemical processes of water and aqueous solutions, such as chemical reaction rates and pathways, proton transfer, and hydrogen bond dynamics. Here we elucidate the rate and mechanism of vibrational energy dissipation of water molecules at the air–water interface using femtosecond two-color IR-pump/vibrational sum-frequency probe spectroscopy. Vibrational relaxation of nonhydrogen-bonded OH groups occurs at a subpicosecond timescale in a manner fundamentally different from hydrogen-bonded OH groups in bulk, through two competing mechanisms: intramolecular energy transfer and ultrafast reorientational motion that leads to free OH groups becoming hydrogen bonded. Both pathways effectively lead to the transfer of the excited vibrational modes from free to hydrogen-bonded OH groups, from which relaxation readily occurs. Of the overall relaxation rate of interfacial free OH groups at the air–H2O interface, two-thirds are accounted for by intramolecular energy transfer, whereas the remaining one-third is dominated by the reorientational motion. These findings not only shed light on vibrational energy dynamics of interfacial water, but also contribute to our understanding of the impact of structural and vibrational dynamics on the vibrational sum-frequency line shapes of aqueous interfaces. PMID:24191016

  3. Polyamide microcapsules containing jojoba oil prepared by inter-facial polymerization.

    PubMed

    Persico, P; Carfagna, C; Danicher, L; Frere, Y

    2005-08-01

    Jojoba oil containing polyamide microcapsules having diameter of approximately 5 microm were prepared by inter-facial polycondensation by direct method (oil-in-water). Qualitative effects of both the formulation and the process parameters on microcapsules characteristics were investigated by SEM observations. Morphological analysis showed the dependence of the external membrane compactness on the chemical nature of the water-soluble polyamine and the oil-soluble acid polychloride: 1,6-hexamethylenediamine (HMDA) and terephthaloyl dichloride (TDC) were found to favour the production of smooth and dense surfaces. The use of ultrasonic irradiations during the dispersion step to get a further reduction of microcapsules size was also evaluated.

  4. Stabilization of model beverage cloud emulsions using protein-polysaccharide electrostatic complexes formed at the oil-water interface.

    PubMed

    Harnsilawat, Thepkunya; Pongsawatmanit, Rungnaphar; McClements, David J

    2006-07-26

    The potential of utilizing interfacial complexes, formed through the electrostatic interactions of proteins and polysaccharides at oil-water interfaces, to stabilize model beverage cloud emulsions has been examined. These interfacial complexes were formed by mixing charged polysaccharides with oil-in-water emulsions containing oppositely charged protein-coated oil droplets. Model beverage emulsions were prepared that consisted of 0.1 wt % corn oil droplets coated by beta-lactoglobulin (beta-Lg), beta-Lg/alginate, beta-Lg/iota-carrageenan, or beta-Lg/gum arabic interfacial layers (pH 3 or 4). Stable emulsions were formed when the polysaccharide concentration was sufficient to saturate the protein-coated droplets. The emulsions were subjected to variations in pH (from 3 to 7), ionic strength (from 0 to 250 mM NaCl), and thermal processing (from 30 or 90 degrees C), and the influence on their stability was determined. The emulsions containing alginate and carrageenan had the best stability to ionic strength and thermal processing. This study shows that the controlled formation of protein-polysaccharide complexes at droplet surfaces may be used to produce stable beverage emulsions, which may have important implications for industrial applications.

  5. Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy

    PubMed Central

    Chen, Zhan

    2010-01-01

    This paper reviews recent progress in the studies of buried polymer interfaces using sum frequency generation (SFG) vibrational spectroscopy. Both buried solid/liquid and solid/solid interfaces involving polymeric materials are discussed. SFG studies of polymer/water interfaces show that different polymers exhibit varied surface restructuring behavior in water, indicating the importance of probing polymer/water interfaces in situ. SFG has also been applied to the investigation of interfaces between polymers and other liquids. It has been found that molecular interactions at such polymer/liquid interfaces dictate interfacial polymer structures. The molecular structures of silane molecules, which are widely used as adhesion promoters, have been investigated using SFG at buried polymer/silane and polymer/polymer interfaces, providing molecular-level understanding of polymer adhesion promotion. The molecular structures of polymer/solid interfaces have been examined using SFG with several different experimental geometries. These results have provided molecular-level information about polymer friction, adhesion, interfacial chemical reactions, interfacial electronic properties, and the structure of layer-by-layer deposited polymers. Such research has demonstrated that SFG is a powerful tool to probe buried interfaces involving polymeric materials, which are difficult to study by conventional surface sensitive analytical techniques. PMID:21113334

  6. Interfacial interaction track of amorphous solid dispersions established by water-soluble polymer and indometacin.

    PubMed

    Li, Jing; Fan, Na; Wang, Xin; Li, Chang; Sun, Mengchi; Wang, Jian; Fu, Qiang; He, Zhonggui

    2017-08-30

    The present work studied interfacial interactions of amorphous solid dispersions matrix of indometacin (IMC) that established using PVP K30 (PVP) and PEG 6000 (PEG) by focusing on their interaction forces and wetting process. Infrared spectroscopy (IR), raman spectroscopy, X-ray photoelectron spectra and contact angle instrument were used throughout the study. Hydrogen bond energy formed between PEG and IMC were stronger than that of PVP and IMC evidenced by molecular modeling measurement. The blue shift of raman spectroscopy confirmed that hydrogen bonding forces were formed between IMC and two polymers. The contact angle study can be used as an easy method to determine the dissolution mechanism of amorphous solid dispersions through fitting the profile of contact angle of water on a series of tablets. It is believed that the track of interfacial interactions will certainly become powerful tools to for designing and evaluating amorphous solid dispersions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Floating rGO-based black membranes for solar driven sterilization.

    PubMed

    Zhang, Yao; Zhao, Dengwu; Yu, Fan; Yang, Chao; Lou, Jinwei; Liu, Yanming; Chen, Yingying; Wang, Zhongyong; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2017-12-14

    This paper presents a new steam sterilization approach that uses a solar-driven evaporation system at the water/air interface. Compared to the conventional solar autoclave, this new steam sterilization approach via interfacial evaporation requires no complex system design to bear high steam pressure. In such a system, a reduced graphene oxide/polytetrafluoroethylene composite membrane floating at the water/air interface serves as a light-to-heat conversion medium to harvest and convert incident solar light into localized heat. Such localized heat raises the temperature of the membrane substantially and helps generate steam with a temperature higher than 120 °C. A sterilization device that takes advantage of the interfacial solar-driven evaporation system was built and its successful sterilization capability was demonstrated through both chemical and biological sterilization tests. The interfacial evaporation-based solar driven sterilization approach offers a potential low cost solution to meet the need for sterilization in undeveloped areas that lack electrical power but have ample solar radiation.

  8. Properties of Interfacial Tribo-Films

    DTIC Science & Technology

    1993-06-01

    cf these rods is such as to have the center of gravity of or the attraction of water into the re-entrant peripheral gap the whole sample as close as...difference between the fluid dynamics, acoustic effects in stringed musical static and the kinetic friction coefficients increases with instruments...interfacial fluid molecules to static minimize oscillations, the center of gravity of the sample friction have been explored and, in this regard, adsorbed

  9. Assessment of resin-dentin interfacial morphology of two ethanol-based universal adhesives: A scanning electron microscopy study

    PubMed Central

    Awad, Mohamed Moustafa

    2017-01-01

    Objective: The objective of this study was to assess the resin-dentin interfacial morphology created by two universal adhesives using scanning electron microscopy (SEM). Materials and Methods: The occlusal surfaces of ten (n = 5) molars were reduced to expose a flat surface of dentin. Two universal adhesives, Scotchbond Universal Adhesive and Tetric N-Bond Universal, were independently applied to air-dried dentin. Light-cured resin-based composite restorative materials were used to incrementally build a composite “buildup.” The specimen was sectioned mesiodistally to expose the resin-dentin interface. The inner surfaces of the specimens were polished. Samples were immersed in hydrochloric acid and then rinsed using distilled water. This was followed by immersion of the samples in 1% sodium hypochlorite solution. Then, samples were thoroughly rinsing with distilled water. Dehydration of samples was performed using ascending concentration of ethyl alcohol. Prepared samples were observed SEM at magnifications ×1500 and x4000. Results: Both universal adhesives could penetrate dentin-forming well-defined resin tags, lateral branches as well as a uniform hybrid layer. Conclusions: Two tested universal adhesives applied in self-etch mode can infiltrate into dentin-producing high-quality interfacial morphology. Similar interfacial morphology may be due to the similarity in composition and application mode. PMID:28729794

  10. Implications of surfactant-induced flow for miscible-displacement estimation of air-water interfacial areas in unsaturated porous media.

    PubMed

    Costanza-Robinson, Molly S; Zheng, Zheng; Henry, Eric J; Estabrook, Benjamin D; Littlefield, Malcolm H

    2012-10-16

    Surfactant miscible-displacement experiments represent a conventional means of estimating air-water interfacial area (A(I)) in unsaturated porous media. However, changes in surface tension during the experiment can potentially induce unsaturated flow, thereby altering interfacial areas and violating several fundamental method assumptions, including that of steady-state flow. In this work, the magnitude of surfactant-induced flow was quantified by monitoring moisture content and perturbations to effluent flow rate during miscible-displacement experiments conducted using a range of surfactant concentrations. For systems initially at 83% moisture saturation (S(W)), decreases of 18-43% S(W) occurred following surfactant introduction, with the magnitude and rate of drainage inversely related to the surface tension of the surfactant solution. Drainage induced by 0.1 mM sodium dodecyl benzene sulfonate, commonly used for A(I) estimation, resulted in effluent flow rate increases of up to 27% above steady-state conditions and is estimated to more than double the interfacial area over the course of the experiment. Depending on the surfactant concentration and the moisture content used to describe the system, A(I) estimates varied more than 3-fold. The magnitude of surfactant-induced flow is considerably larger than previously recognized and casts doubt on the reliability of A(I) estimation by surfactant miscible-displacement.

  11. Foaming and adsorption behavior of bovine and camel proteins mixed layers at the air/water interface.

    PubMed

    Lajnaf, Roua; Picart-Palmade, Laetitia; Attia, Hamadi; Marchesseau, Sylvie; Ayadi, M A

    2017-03-01

    The aim of this work was to examine foaming and interfacial behavior of three milk protein mixtures, bovine α-lactalbumin-β-casein (M1), camel α-lactalbumin-β-casein (M2) and β-lactoglobulin-β-casein (M3), alone and in binary mixtures, at the air/water interface in order to better understand the foaming properties of bovine and camel milks. Different mixture ratios (100:0; 75:25; 50:50; 25:75; 0:100) were used during foaming tests and interfacial protein interactions were studied with a pendant drop tensiometer. Experimental results evidenced that the greatest foam was obtained with a higher β-casein amount in all camel and bovine mixtures. Good correlation was observed with the adsorption and the interfacial rheological properties of camel and bovine protein mixtures. The proteins adsorbed layers are mainly affected by the presence of β-casein molecules, which are probably the most abundant protein at interface and the most efficient in reducing the interfacial properties. In contrast of, the globular proteins, α-lactalbumin and β-lactoglobulin that are involved in the protein layer composition, but could not compact well at the interface to ensure foams creation and stabilization because of their rigid molecular structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Effect of Oxygen Inhibition Layer of Universal Adhesives on Enamel Bond Fatigue Durability and Interfacial Characteristics With Different Etching Modes.

    PubMed

    Ouchi, H; Tsujimoto, A; Nojiri, K; Hirai, K; Takamizawa, T; Barkmeier, W W; Latta, M A; Miyazaki, M

    The purpose of this study was to evaluate the effect of the oxygen inhibition layer of universal adhesive on enamel bond fatigue durability and interfacial characteristics with different etching modes. The three universal adhesives used were Scotchbond Universal Adhesive (3M ESPE, St Paul, MN, USA), Adhese Universal (Ivoclar Vivadent, Schaan, Lichtenstein), and G-Premio Bond (GC, Tokyo, Japan). The initial shear bond strength and shear fatigue strength to enamel was determined in the presence and absence of the oxygen inhibition layer, with and without phosphoric acid pre-etching. The water contact angle was also measured in all groups using the sessile drop method. The enamel bonding specimens with an oxygen inhibition layer showed significantly higher (p<0.05) initial shear bond strengths and shear fatigue strengths than those without, regardless of the adhesive type and etching mode. Moreover, the water contact angles on the specimens with an oxygen inhibition layer were significantly lower (p<0.05) than on those without, regardless of etching mode. The results of this study suggest that the oxygen inhibition layer of universal adhesives significantly increases the enamel bond fatigue durability and greatly changes interfacial characteristics, suggesting that the bond fatigue durability and interfacial characteristics of these adhesives strongly rely on its presence.

  13. Insight into Chemistry on Cloud/Aerosol Water Surfaces.

    PubMed

    Zhong, Jie; Kumar, Manoj; Francisco, Joseph S; Zeng, Xiao Cheng

    2018-05-15

    Cloud/aerosol water surfaces exert significant influence over atmospheric chemical processes. Atmospheric processes at the water surface are observed to follow mechanisms that are quite different from those in the gas phase. This Account summarizes our recent findings of new reaction pathways on the water surface. We have studied these surface reactions using Born-Oppenheimer molecular dynamics simulations. These studies provide useful information on the reaction time scale, the underlying mechanism of surface reactions, and the dynamic behavior of the product formed on the aqueous surface. According to these studies, the aerosol water surfaces confine the atmospheric species into a specific orientation depending on the hydrophilicity of atmospheric species or the hydrogen-bonding interactions between atmospheric species and interfacial water. As a result, atmospheric species are activated toward a particular reaction on the aerosol water surface. For example, the simplest Criegee intermediate (CH 2 OO) exhibits high reactivity toward the interfacial water and hydrogen sulfide, with the reaction times being a few picoseconds, 2-3 orders of magnitude faster than that in the gas phase. The presence of interfacial water molecules induces proton-transfer-based stepwise pathways for these reactions, which are not possible in the gas phase. The strong hydrophobicity of methyl substituents in larger Criegee intermediates (>C1), such as CH 3 CHOO and (CH 3 ) 2 COO, blocks the formation of the necessary prereaction complexes for the Criegee-water reaction to occur at the water droplet surface, which lowers their proton-transfer ability and hampers the reaction. The aerosol water surface provides a solvent medium for acids (e.g., HNO 3 and HCOOH) to participate in reactions via mechanisms that are different from those in the gas and bulk aqueous phases. For example, the anti-CH 3 CHOO-HNO 3 reaction in the gas phase follows a direct reaction between anti-CH 3 CHOO and HNO 3 , whereas on a water surface, the HNO 3 -mediated stepwise hydration of anti-CH 3 CHOO is dominantly observed. The high surface/volume ratio of interfacial water molecules at the aerosol water surface can significantly lower the energy barriers for the proton transfer reactions in the atmosphere. Such catalysis by the aerosol water surface is shown to cause the barrier-less formation of ammonium bisulfate from hydrated NH 3 and SO 3 molecules rather than from the reaction of H 2 SO 4 with NH 3 . Finally, an aerosol water droplet is a polar solvent, which would favorably interact with high polarity substrates. This can accelerate interconversion of different conformers (e.g., anti and syn) of atmospheric species, such as glyoxal, depending on their polarity. The results discussed here enable an improved understanding of atmospheric processes on the aerosol water surface.

  14. What Controls Thermo-osmosis? Molecular Simulations Show the Critical Role of Interfacial Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Fu, Li; Merabia, Samy; Joly, Laurent

    2017-11-01

    Thermo-osmotic and related thermophoretic phenomena can be found in many situations from biology to colloid science, but the underlying molecular mechanisms remain largely unexplored. Using molecular dynamics simulations, we measure the thermo-osmosis coefficient by both mechanocaloric and thermo-osmotic routes, for different solid-liquid interfacial energies. The simulations reveal, in particular, the crucial role of nanoscale interfacial hydrodynamics. For nonwetting surfaces, thermo-osmotic transport is largely amplified by hydrodynamic slip at the interface. For wetting surfaces, the position of the hydrodynamic shear plane plays a key role in determining the amplitude and sign of the thermo-osmosis coefficient. Finally, we measure a giant thermo-osmotic response of the water-graphene interface, which we relate to the very low interfacial friction displayed by this system. These results open new perspectives for the design of efficient functional interfaces for, e.g., waste-heat harvesting.

  15. What Controls Thermo-osmosis? Molecular Simulations Show the Critical Role of Interfacial Hydrodynamics.

    PubMed

    Fu, Li; Merabia, Samy; Joly, Laurent

    2017-11-24

    Thermo-osmotic and related thermophoretic phenomena can be found in many situations from biology to colloid science, but the underlying molecular mechanisms remain largely unexplored. Using molecular dynamics simulations, we measure the thermo-osmosis coefficient by both mechanocaloric and thermo-osmotic routes, for different solid-liquid interfacial energies. The simulations reveal, in particular, the crucial role of nanoscale interfacial hydrodynamics. For nonwetting surfaces, thermo-osmotic transport is largely amplified by hydrodynamic slip at the interface. For wetting surfaces, the position of the hydrodynamic shear plane plays a key role in determining the amplitude and sign of the thermo-osmosis coefficient. Finally, we measure a giant thermo-osmotic response of the water-graphene interface, which we relate to the very low interfacial friction displayed by this system. These results open new perspectives for the design of efficient functional interfaces for, e.g., waste-heat harvesting.

  16. Characteristics of the Martian atmosphere surface layer

    NASA Technical Reports Server (NTRS)

    Clow, G. D.; Haberle, R. M.

    1990-01-01

    Elements of various terrestrial boundary layer models are extended to Mars in order to estimate sensible heat, latent heat, and momentum fluxes within the Martian atmospheric surface ('constant flux') layer. The atmospheric surface layer consists of an interfacial sublayer immediately adjacent to the ground and an overlying fully turbulent surface sublayer where wind-shear production of turbulence dominates buoyancy production. Within the interfacial sublayer, sensible and latent heat are transported by non-steady molecular diffusion into small-scale eddies which intermittently burst through this zone. Both the thickness of the interfacial sublayer and the characteristics of the turbulent eddies penetrating through it depend on whether airflow is aerodynamically smooth or aerodynamically rough, as determined by the Roughness Reynold's number. Within the overlying surface sublayer, similarity theory can be used to express the mean vertical windspeed, temperature, and water vapor profiles in terms of a single parameter, the Monin-Obukhov stability parameter. To estimate the molecular viscosity and thermal conductivity of a CO2-H2O gas mixture under Martian conditions, parameterizations were developed using data from the TPRC Data Series and the first-order Chapman-Cowling expressions; the required collision integrals were approximated using the Lenard-Jones potential. Parameterizations for specific heat and binary diffusivity were also determined. The Brutsart model for sensible and latent heat transport within the interfacial sublayer for both aerodynamically smooth and rough airflow was experimentally tested under similar conditions, validating its application to Martian conditions. For the surface sublayer, the definition of the Monin-Obukhov length was modified to properly account for the buoyancy forces arising from water vapor gradients in the Martian atmospheric boundary layer. It was found that under most Martian conditions, the interfacial and surface sublayers offer roughly comparable resistance to sensible heat and water vapor transport and are thus both important in determining the associated fluxes.

  17. Bound Water at Protein-Protein Interfaces: Partners, Roles and Hydrophobic Bubbles as a Conserved Motif

    PubMed Central

    Ahmed, Mostafa H.; Spyrakis, Francesca; Cozzini, Pietro; Tripathi, Parijat K.; Mozzarelli, Andrea; Scarsdale, J. Neel; Safo, Martin A.; Kellogg, Glen E.

    2011-01-01

    Background There is a great interest in understanding and exploiting protein-protein associations as new routes for treating human disease. However, these associations are difficult to structurally characterize or model although the number of X-ray structures for protein-protein complexes is expanding. One feature of these complexes that has received little attention is the role of water molecules in the interfacial region. Methodology A data set of 4741 water molecules abstracted from 179 high-resolution (≤ 2.30 Å) X-ray crystal structures of protein-protein complexes was analyzed with a suite of modeling tools based on the HINT forcefield and hydrogen-bonding geometry. A metric termed Relevance was used to classify the general roles of the water molecules. Results The water molecules were found to be involved in: a) (bridging) interactions with both proteins (21%), b) favorable interactions with only one protein (53%), and c) no interactions with either protein (26%). This trend is shown to be independent of the crystallographic resolution. Interactions with residue backbones are consistent for all classes and account for 21.5% of all interactions. Interactions with polar residues are significantly more common for the first group and interactions with non-polar residues dominate the last group. Waters interacting with both proteins stabilize on average the proteins' interaction (−0.46 kcal mol−1), but the overall average contribution of a single water to the protein-protein interaction energy is unfavorable (+0.03 kcal mol−1). Analysis of the waters without favorable interactions with either protein suggests that this is a conserved phenomenon: 42% of these waters have SASA ≤ 10 Å2 and are thus largely buried, and 69% of these are within predominantly hydrophobic environments or “hydrophobic bubbles”. Such water molecules may have an important biological purpose in mediating protein-protein interactions. PMID:21961043

  18. Synthesis of ZnO nanoparticles for oil-water interfacial tension reduction in enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Soleimani, Hassan; Baig, Mirza Khurram; Yahya, Noorhana; Khodapanah, Leila; Sabet, Maziyar; Demiral, Birol M. R.; Burda, Marek

    2018-02-01

    Nanoparticles show potential use in applications associated with upstream oil and gas engineering to increase the performance of numerous methods such as wettability alteration, interfacial tension reduction, thermal conductivity and enhanced oil recovery operations. Surface tension optimization is an important parameter in enhanced oil recovery. Current work focuses on the new economical method of surface tension optimization of ZnO nanofluids for oil-water interfacial tension reduction in enhanced oil recovery. In this paper, zinc oxide (ZnO) nanocrystallites were prepared using the chemical route and explored for enhanced oil recovery (EOR). Adsorption of ZnO nanoparticles (NPs) on calcite (111) surface was investigated using the adsorption locator module of Materials Studio software. It was found that ZnO nanoparticles show maximum adsorption energy of - 253 kcal/mol. The adsorption of ZnO on the rock surface changes the wettability which results in capillary force reduction and consequently increasing EOR. The nanofluids have been prepared by varying the concentration of ZnO nanoparticles to find the optimum value for surface tension. The surface tension (ST) was calculated with different concentration of ZnO nanoparticles using the pendant drop method. The results show a maximum value of ST 35.57 mN/m at 0.3 wt% of ZnO NPs. It was found that the nanofluid with highest surface tension (0.3 wt%) resulted in higher recovery efficiency. The highest recovery factor of 11.82% at 0.3 wt% is due to the oil/water interfacial tension reduction and wettability alteration.

  19. Effect of Surface Oxidation on Interfacial Water Structure at a Pyrite (100) Surface as Studied by Molecular Dynamics Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Jiaqi; Miller, Jan D.; Dang, Liem X.

    2015-06-01

    In the first part of this paper, a Scanning Electron Microscopy and contact angle study of a pyrite surface (100) is reported describing the relationship between surface oxidation and the hydrophilic surface state. In addition to these experimental results, the following simulated surface states were examined using Molecular Dynamics Simulation (MDS): fresh unoxidized (100) surface; polysulfide at the (100) surface; elemental sulfur at the (100) surface. Crystal structures for the polysulfide and elemental sulfur at the (100) surface were simulated using Density Functional Theory (DFT) quantum chemical calculations. The well known oxidation mechanism which involves formation of a metal deficientmore » layer was also described with DFT. Our MDS results of the behavior of interfacial water at the fresh and oxidized pyrite (100) surfaces without/with the presence of ferric hydroxide include simulated contact angles, number density distribution for water, water dipole orientation, water residence time, and hydrogen-bonding considerations. The significance of the formation of ferric hydroxide islands in accounting for the corresponding hydrophilic surface state is revealed not only from experimental contact angle measurements but also from simulated contact angle measurements using MDS. The hydrophilic surface state developed at oxidized pyrite surfaces has been described by MDS, on which basis the surface state is explained based on interfacial water structure. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the DOE funded work performed by Liem X. Dang. Battelle operates the Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES.« less

  20. Interfacial coupling induced direct Z scheme water splitting in metal-free photocatalyst: C3N/g-C3N4 heterojunctions.

    PubMed

    Wang, Jiajun; Li, Xiaoting; You, Ya; Xintong, Yang; Wang, Ying; Li, Qunxiang

    2018-06-21

    Mimicking the natural photosynthesis in green plants, artificial Z-scheme photocatalysis enables more efficient utilization of solar energy for photocatalytic water splitting. Most currently designed g-C3N4-based Z-scheme heterojunctions are usually based on metal-containing semiconductor photocatalysts, thus exploiting metal-free photocatalysts for Z-scheme water splitting is of huge interest. Herein, we propose two metal-free C3N/g-C3N4 heterojunctions with the C3N monolayer covering g-C3N4 sheet (monolayer or bilayer) and systematically explore their electronic structures, charge distributions and photocatalytic properties by performing extensive hybrid density functional calculations. We clearly reveal that the relative strong built-in electric fields around their respective interface regions, caused by the charge transfer from C3N monolayer to g-C3N4 monolayer or bilayer, result in the bands bending, renders the transfer of photogenerated carriers in these two heterojunctions following the Z-scheme instead of the type-II pathway. Moreover, the photogenerated electrons and holes in these two C3N/g-C3N4 heterojunctions not only can be efficiently separated, but also have strong redox abilities for water oxidation and reduction. Compared with the isolated g-C3N4 sheets, the light absorption in visible to near-infrared region are significantly enhanced in these proposed heterojunctions. These theoretical findings suggest that these proposed metal-free C3N/g-C3N4 heterojunctions are promising direct Z-scheme photocatalysts for solar water splitting. © 2018 IOP Publishing Ltd.

  1. Proton Transfer Dynamics at the Membrane/Water Interface: Dependence on the Fixed and Mobile pH Buffers, on the Size and Form of Membrane Particles, and on the Interfacial Potential Barrier

    PubMed Central

    Cherepanov, Dmitry A.; Junge, Wolfgang; Mulkidjanian, Armen Y.

    2004-01-01

    Crossing the membrane/water interface is an indispensable step in the transmembrane proton transfer. Elsewhere we have shown that the low dielectric permittivity of the surface water gives rise to a potential barrier for ions, so that the surface pH can deviate from that in the bulk water at steady operation of proton pumps. Here we addressed the retardation in the pulsed proton transfer across the interface as observed when light-triggered membrane proton pumps ejected or captured protons. By solving the system of diffusion equations we analyzed how the proton relaxation depends on the concentration of mobile pH buffers, on the surface buffer capacity, on the form and size of membrane particles, and on the height of the potential barrier. The fit of experimental data on proton relaxation in chromatophore vesicles from phototropic bacteria and in bacteriorhodopsin-containing membranes yielded estimates for the interfacial potential barrier for H+/OH− ions of ∼120 meV. We analyzed published data on the acceleration of proton equilibration by anionic pH buffers and found that the height of the interfacial barrier correlated with their electric charge ranging from 90 to 120 meV for the singly charged species to >360 meV for the tetra-charged pyranine. PMID:14747306

  2. Adsorption of the natural protein surfactant Rsn-2 onto liquid interfaces.

    PubMed

    Brandani, Giovanni B; Vance, Steven J; Schor, Marieke; Cooper, Alan; Kennedy, Malcolm W; Smith, Brian O; MacPhee, Cait E; Cheung, David L

    2017-03-22

    To stabilize foams, droplets and films at liquid interfaces a range of protein biosurfactants have evolved in nature. Compared to synthetic surfactants, these combine surface activity with biocompatibility and low solution aggregation. One recently studied example is Rsn-2, a component of the foam nest of the frog Engystomops pustulosus, which has been predicted to undergo a clamshell-like opening transition at the air-water interface. Using atomistic molecular dynamics simulations and surface tension measurements we study the adsorption of Rsn-2 onto air-water and cyclohexane-water interfaces. The protein adsorbs readily at both interfaces, with adsorption mediated by the hydrophobic N-terminus. At the cyclohexane-water interface the clamshell opens, due to the favourable interaction between hydrophobic residues and cyclohexane molecules and the penetration of cyclohexane molecules into the protein core. Simulations of deletion mutants showed that removal of the N-terminus inhibits interfacial adsorption, which is consistent with the surface tension measurements. Deletion of the hydrophilic C-terminus also affects adsorption, suggesting that this plays a role in orienting the protein at the interface. The characterisation of the interfacial behaviour gives insight into the factors that control the interfacial adsorption of proteins, which may inform new applications of this and similar proteins in areas including drug delivery and food technology and may also be used in the design of synthetic molecules showing similar changes in conformation at interfaces.

  3. Modeling NAPL dissolution from pendular rings in idealized porous media

    NASA Astrophysics Data System (ADS)

    Huang, Junqi; Christ, John A.; Goltz, Mark N.; Demond, Avery H.

    2015-10-01

    The dissolution rate of nonaqueous phase liquid (NAPL) often governs the remediation time frame at subsurface hazardous waste sites. Most formulations for estimating this rate are empirical and assume that the NAPL is the nonwetting fluid. However, field evidence suggests that some waste sites might be organic wet. Thus, formulations that assume the NAPL is nonwetting may be inappropriate for estimating the rates of NAPL dissolution. An exact solution to the Young-Laplace equation, assuming NAPL resides as pendular rings around the contact points of porous media idealized as spherical particles in a hexagonal close packing arrangement, is presented in this work to provide a theoretical prediction for NAPL-water interfacial area. This analytic expression for interfacial area is then coupled with an exact solution to the advection-diffusion equation in a capillary tube assuming Hagen-Poiseuille flow to provide a theoretical means of calculating the mass transfer rate coefficient for dissolution at the NAPL-water interface in an organic-wet system. A comparison of the predictions from this theoretical model with predictions from empirically derived formulations from the literature for water-wet systems showed a consistent range of values for the mass transfer rate coefficient, despite the significant differences in model foundations (water wetting versus NAPL wetting, theoretical versus empirical). This finding implies that, under these system conditions, the important parameter is interfacial area, with a lesser role played by NAPL configuration.

  4. High-order Discontinuous Element-based Schemes for the Inviscid Shallow Water Equations: Spectral Multidomain Penalty and Discontinuous Galerkin Methods

    DTIC Science & Technology

    2011-07-19

    multidomain methods, Discontinuous Galerkin methods, interfacial treatment ∗ Jorge A. Escobar-Vargas, School of Civil and Environmental Engineering, Cornell...Click here to view linked References 1. Introduction Geophysical flows exhibit a complex structure and dynamics over a broad range of scales that...hyperbolic problems, where the interfacial patching was implemented with an upwind scheme based on a modified method of characteristics. This approach

  5. Molecular dynamics of the water liquid-vapor interface

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.; Pratt, L. R.; MacElroy, R. D. (Principal Investigator)

    1987-01-01

    The results of molecular dynamics calculations on the equilibrium interface between liquid water and its vapor at 325 K are presented. For the TIP4P model of water intermolecular pair potentials, the average surface dipole density points from the vapor to the liquid. The most common orientations of water molecules have the C2 nu molecular axis roughly parallel to the interface. The distributions are quite broad and therefore compatible with the intermolecular correlations characteristic of bulk liquid water. All near-neighbor pairs in the outermost interfacial layers are hydrogen bonded according to the common definition adopted here. The orientational preferences of water molecules near a free surface differ from those near rigidly planar walls which can be interpreted in terms of patterns found in hexagonal ice 1. The mean electric field in the interfacial region is parallel to the mean polarization which indicates that attention cannot be limited to dipolar charge distributions in macroscopic descriptions of the electrical properties of this interface. The value of the surface tension obtained is 132 +/- 46 dyn/cm, significantly different from the value for experimental water of 68 dyn/cm at 325 K.

  6. Vibrational sum-frequency generation spectroscopy of ionic liquid 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate at the air-water interface

    NASA Astrophysics Data System (ADS)

    Saha, Ankur; SenGupta, Sumana; Kumar, Awadhesh; Choudhury, Sipra; Naik, Prakash D.

    2016-08-01

    The structure and orientation of room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate [PF3(C2F5)3], commonly known as [bmim][fap], have been investigated at the air-[bmim][fap] and air-water interfaces, employing vibrational sum-frequency generation (VSFG) spectroscopy. The VSFG spectra in the CH stretch region suggest presence of the [bmim] cation at the interfaces. Studies reveal that the butyl chain protrudes out into air, and the imidazolium ring lies almost planar to the interface. The CH stretch intensities get enhanced at the air-water interface, mainly because of polar orientation of imidazolium cation induced by interfacial water molecules. The OH stretch intensities are also enhanced at the air-water interface due to polar orientation of interfacial water molecules induced by [bmim][fap]. The Brewster angle microscopy suggests self aggregation of [bmim][fap] in the presence of water, and the aggregation becomes extensive showing dense surface domains with time. However, the surface pressure is almost unaffected due to aggregation.

  7. Second-Order Vibrational Lineshapes from the Air/Water Interface.

    PubMed

    Ohno, Paul E; Wang, Hong-Fei; Paesani, Francesco; Skinner, James L; Geiger, Franz M

    2018-05-10

    We explore by means of modeling how absorptive-dispersive mixing between the second- and third-order terms modifies the imaginary χ total (2) responses from air/water interfaces under conditions of varying charge densities and ionic strength. To do so, we use published Im(χ (2) ) and χ (3) spectra of the neat air/water interface that were obtained either from computations or experiments. We find that the χ total (2) spectral lineshapes corresponding to experimentally measured spectra contain significant contributions from both interfacial χ (2) and bulk χ (3) terms at interfacial charge densities equivalent to less than 0.005% of a monolayer of water molecules, especially in the 3100 to 3300 cm -1 frequency region. Additionally, the role of short-range static dipole potentials is examined under conditions mimicking brine. Our results indicate that surface potentials, if indeed present at the air/water interface, manifest themselves spectroscopically in the tightly bonded H-bond network observable in the 3200 cm -1 frequency range.

  8. Infrared light-induced protein crystallization. Structuring of protein interfacial water and periodic self-assembly

    NASA Astrophysics Data System (ADS)

    Kowacz, Magdalena; Marchel, Mateusz; Juknaité, Lina; Esperança, José M. S. S.; Romão, Maria João; Carvalho, Ana Luísa; Rebelo, Luís Paulo N.

    2017-01-01

    We show that a physical trigger, a non-ionizing infrared (IR) radiation at wavelengths strongly absorbed by liquid water, can be used to induce and kinetically control protein (periodic) self-assembly in solution. This phenomenon is explained by considering the effect of IR light on the structuring of protein interfacial water. Our results indicate that the IR radiation can promote enhanced mutual correlations of water molecules in the protein hydration shell. We report on the radiation-induced increase in both the strength and cooperativeness of H-bonds. The presence of a structured dipolar hydration layer can lead to attractive interactions between like-charged biomacromolecules in solution (and crystal nucleation events). Furthermore, our study suggests that enveloping the protein within a layer of structured solvent (an effect enhanced by IR light) can prevent the protein non-specific aggregation favoring periodic self-assembly. Recognizing the ability to affect protein-water interactions by means of IR radiation may have important implications for biological and bio-inspired systems.

  9. Dynamics of emulsification and demulsification of water in crude oil emulsions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhardwaj, A.; Hartland, S.

    1994-05-01

    The effect of aging on the crude oil/water interface has been studied, and the slow buildup of natural surfactants present in the crude oil at the interface was observed. Interfacial tension data and microvideography were used to evaluate the buildup of surface concentration. The methodology adopted in this work permits the calculation of the actual surface excess of natural surfactants at the crude oil/water interface, without having to isolate them from the crude oil and without knowing their bulk molar concentration. The rate of adsorption of demulsifier at the interface was determined by measurement of the dynamic interfacial tension bymore » a microprocessor-controlled drop volume method apparatus. Temperature, concentration, and nature of the medium (crude oil or brine) were found to be very important parameters governing adsorption of demulsifier at the interface. Diffusion of the emulsifier to the oil/water interface was much slower when demulsifier was present in the oil phase than when it was present in the water phase.« less

  10. Rational Exploitation and Utilizing of Groundwater in Jiangsu Coastal Area

    NASA Astrophysics Data System (ADS)

    Kang, B.; Lin, X.

    2017-12-01

    Jiangsu coastal area is located in the southeast coast of China, where is a new industrial base and an important coastal and Land Resources Development Zone of China. In the areas with strong human exploitation activities, regional groundwater evolution is obviously affected by human activities. In order to solve the environmental geological problems caused by groundwater exploitation fundamentally, we must find out the forming conditions of regional groundwater hydrodynamic field, and the impact of human activities on groundwater hydrodynamic field evolution and hydrogeochemical evolition. Based on these results, scientific management and reasonable exploitation of the regional groundwater resources can be provided for the utilization. Taking the coastal area of Jiangsu as the research area, we investigate and analyze of the regional hydrogeological conditions. The numerical simulation model of groundwater flow was established according to the water power, chemical and isotopic methods, the conditions of water flow and the influence of hydrodynamic field on the water chemical field. We predict the evolution of regional groundwater dynamics under the influence of human activities and climate change and evaluate the influence of groundwater dynamic field evolution on the environmental geological problems caused by groundwater exploitation under various conditions. We get the following conclusions: Three groundwater exploitation optimal schemes were established. The groundwater salinization was taken as the primary control condition. The substitution model was proposed to model groundwater exploitation and water level changes by BP network method.Then genetic algorithm was used to solve the optimization solution. Three groundwater exploitation optimal schemes were submit to local water resource management. The first sheme was used to solve the groundwater salinization problem. The second sheme focused on dual water supply. The third sheme concerned on emergency water supppy. This is the first time environment problem taken as water management objectinve in this coastal area.

  11. Quantitatively identifying the roles of interfacial water and solid surface in governing peptide adsorption.

    PubMed

    Xu, Zhijun; Yang, Xiao; Wei, Qichao; Zhao, Weilong; Cui, Beiliang; Yang, Xiaoning; Sahai, Nita

    2018-06-11

    Understanding the molecular mechanism of protein adsorption on solids is critical to their applications in materials synthesis and tissue engineering. Though the water phase at the surface/water interface has been recognized as three types: free water in the bulk region, intermediate water phase and surface-bound water layers adjacent to the surface, the roles of the water and surface in determining the protein adsorption are not clearly identified, particularly at the quantitative level. Herein, we provide a methodology involving the combination of microsecond strengthen sampling simulation and force integration to quantitatively characterize the water-induced contribution and the peptide-surface interactions into the adsorption free energy. Using hydroxyapatite and graphene surfaces as examples, we demonstrate how the distinct interfacial features dominate the delicate force balance between these two thermodynamics parameters, leading to surface preference/resistance to peptide adsorption. Specifically, the water layer provides sustained repelling force against peptide adsorption, as indicated by a monotonic increase in the water-induced free energy profile, whereas the contribution to the free energy from the surface effect is thermodynamically favorable, thus acting as the dominant driving force for peptide adsorptions. More importantly, the revealed adsorption mechanism is critically dictated by the distribution of water phase at the solid/water interface, which plays a crucial role in establishing the force balance between the interactions of the peptide with the water layer and the surface. For the HAP surface, the charged peptide exhibits strong binding affinity to the surface, which is ascribed to the controlling contribution of peptide-surface interaction in the intermediate water phase and the surface-bound water layers are observed as the origin of bioresistance of solid surfaces towards the adsorption of charge-neutral peptides. The preferred peptide adsorption on the graphene, however, is dominated by the surface-induced component at the water layers adjacent to the surface. Our results further elucidate that the intermediate water phase significantly shortens the effective range of the surface dispersion force to guide the diffusion of the peptide to the interface, in sharp contrast to the observation in interfacial systems involving the strong water-surface interaction.

  12. Mechanisms of the anomalous Pockels effect in bulk water

    NASA Astrophysics Data System (ADS)

    Yukita, Shunpei; Suzuki, Yuto; Shiokawa, Naoyuki; Kobayashi, Takayoshi; Tokunaga, Eiji

    2018-04-01

    The "anomalous" Pockels effect is a phenomenon that a light beam passing between two electrodes in an aqueous electrolyte solution is deflected by an AC voltage applied between the electrodes: the deflection angle is proportional to the voltage such that the incident beam alternately changes its direction. This phenomenon, the Pockels effect in bulk water, apparently contradicts what is believed in nonlinear optics, i.e., macroscopic inversion symmetry should be broken for the second-order nonlinear optical effect to occur such as the first-order electro-optic effect, i.e., the Pockels effect. To clarify the underlying mechanism, the dependence of the effect on the electrode material is investigated to find that the Pockels coefficient with Pt electrodes is two orders of magnitude smaller than with indium tin oxide (ITO) electrodes. It is experimentally confirmed that the Pockels effect of interfacial water in the electric double layer (EDL) on these electrodes shows an electrode dependence similar to the effect in bulk water while the effects depend on the frequency of the AC voltage such that the interfacial signal decreases with frequency but the bulk signal increases with frequency up to 221 Hz. These experimental results lead to a conclusion that the beam deflection is caused by the refractive index gradient in the bulk water region, which is formed transiently by the Pockels effect of interfacial water in the EDL when an AC electric field is applied. The refractive index gradient is caused by the diffuse layer spreading into the bulk region to work as a breaking factor of inversion symmetry of bulk water due to its charge-biased ionic distribution. This mechanism does not contradict the principle of nonlinear optics.

  13. Seepage phenomena on Mars at subzero temperature

    NASA Astrophysics Data System (ADS)

    Kereszturi, Akos; Möhlmann, Diedrich; Berczi, Szaniszlo; Ganti, Tibor; Horvath, Andras; Kuti, Adrienn; Pocs, Tamas; Sik, Andras; Szathmary, Eors

    At the southern hemisphere of Mars seasonal slope structures emanating from Dark Dune Spots are visible on MGS MOC, and MRO HiRISE images. Based on their analysis two groups of streaks could be identified: diffuse and fan shaped ones forming in an earlier phase of local spring, probably by CO2 gas jets, and confined streaks forming only on steep slopes during a later seasonal phase. The dark color of the streaks may arise from the dark color of the dune grains where surface frost disappeared above them, or caused by the phase change of the water ice to liquid-like water, or even it may be influenced by the solutes of salts in the undercooled interfacial water The second group's morphology (meandering style, ponds at their end), morphometry, and related theoretical modelling suggest they may form by undercooled water that remains in liquid phase in a thin layer around solid grains. We analyzed sequence of images, temperature and topographic data of Russel (54S 12E), Richardson (72S 180E) and an unnamed crater (68S 2E) during southern spring. The dark streaks here show slow motion, with an average speed of meter/day, when the maximal daytime temperature is between 190 and 220 K. Based on thermophysical considerations a thin layer of interfacial water is inevitable on mineral surfaces under the present conditions of Mars. With 10 precipitable micrometer of atmospheric water vapor, liquid phase can be present down about 190 K. Under such conditions dark streaks may form by the movement of grains lubricatred by interfacial water. This possibility have various consequences on chemical, mechanical or even possible astrobiological processes on Mars. Acknowledgment: This work was supported by the ESA ECS-project No. 98004 and the Pro Renovanda Cultura Hungariae Foundation.

  14. Stabilization of Oil-Water Emulsions by Hydrophobic Bacteria

    PubMed Central

    Dorobantu, Loredana S.; Yeung, Anthony K. C.; Foght, Julia M.; Gray, Murray R.

    2004-01-01

    Formation of oil-water emulsions during bacterial growth on hydrocarbons is often attributed to biosurfactants. Here we report the ability of certain intact bacterial cells to stabilize oil-in-water and water-in-oil emulsions without changing the interfacial tension, by inhibition of droplet coalescence as observed in emulsion stabilization by solid particles like silica. PMID:15466587

  15. Measurement of the Surface Dilatational Viscosity of an Insoluble Surfactant Monolayer at the Air/Water Interface Using a Pendant Drop Apparatus

    NASA Technical Reports Server (NTRS)

    Lorenzo, Jose; Couzis, Alex; Maldarelli, Charles; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    When a fluid interface with surfactants is at rest, the interfacial stress is isotropic (as given by the equilibrium interfacial tension), and is described by the equation of state which relates the surface tension to the surfactant surface concentration. When surfactants are subjected to shear and dilatational flows, flow induced interaction of the surfactants; can create interfacial stresses apart from the equilibrium surface tension. The simplest relationship between surface strain rate and surface stress is the Boussinesq-Scriven constitutive equation completely characterized by three coefficients: equilibrium interfacial tension, surface shear viscosity, and surface dilatational viscosity Equilibrium interfacial tension and surface shear viscosity measurements are very well established. On the other hand, surface dilatational viscosity measurements are difficult because a flow which change the surface area also changes the surfactant surface concentration creating changes in the equilibrium interfacial tension that must be also taken into account. Surface dilatational viscosity measurements of existing techniques differ by five orders of magnitude and use spatially damped surface waves and rapidly expanding bubbles. In this presentation we introduce a new technique for measuring the surface dilatational viscosity by contracting an aqueous pendant drop attached to a needle tip and having and insoluble surfactant monolayer at the air-water interface. The isotropic total tension on the surface consists of the equilibrium surface tension and the tension due to the dilation. Compression rates are undertaken slow enough so that bulk hydrodynamic stresses are small compared to the surface tension force. Under these conditions we show that the total tension is uniform along the surface and that the Young-Laplace equation governs the drop shape with the equilibrium surface tension replaced by the constant surface isotropic stress. We illustrate this technique using DPPC as the insoluble surfacant monolayer and measured for it a surface dilatational viscosity in the LE phase that is 20 surface poise.

  16. Interfacial adhesion improvement in carbon fiber/carbon nanotube reinforced hybrid composites by the application of a reactive hybrid resin initiated by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Szebényi, G.; Faragó, D.; Lámfalusi, Cs.; Göbl, R.

    2018-04-01

    Interfacial adhesion is a key factor in composite materials. The effective co-working of the reinforcing materials and matrix is essential for the proper load transfer between them, and to achieve the desired reinforcing effect. In case of nanocomposites, especially carbon nanotube (CNT) reinforced nanocomposites the adhesion between the CNTs and the polymer matrix is poor. To improve the interfacial adhesion and exploit the reinforcing effect of these nanoparticles a two step curable epoxy (EP)/vinylester (VE) hybrid resin system was developed where the EP is cured using hardener in the first step, during the composite production, and in the second step the curing of the VE is initiated by gamma irradiation, which also activates the reinforcing materials and the cured matrix component. A total of six carbon fiber reinforced composite systems were compared with neat epoxy and EP/VE hybrid matrices with and without chemical initiator and MWCNT nano-reinforcement. The effect of gamma irradiation was investigated at four absorbed dose levels. According to our three point bending and interlaminar shear test results the adhesion has improved between all constituents of the composite system. It was demonstrated that gamma irradiation has beneficial effect on the static mechanical, especially interlaminar properties of both micro- and nanocomposites in terms of modulus, strength and interlaminar shear strength.

  17. Effect of the ordered interfacial water layer in protein complex formation: A nonlocal electrostatic approach

    NASA Astrophysics Data System (ADS)

    Rubinstein, A.; Sabirianov, R. F.; Mei, W. N.; Namavar, F.; Khoynezhad, A.

    2010-08-01

    Using a nonlocal electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an ordered interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.

  18. Effect of the ordered interfacial water layer in protein complex formation: A nonlocal electrostatic approach.

    PubMed

    Rubinstein, A; Sabirianov, R F; Mei, W N; Namavar, F; Khoynezhad, A

    2010-08-01

    Using a nonlocal electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an ordered interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.

  19. The two-phase flow IPTT method for measurement of nonwetting-wetting liquid interfacial areas at higher nonwetting saturations in natural porous media

    PubMed Central

    Zhong, Hua; Ouni, Asma El; Lin, Dan; Wang, Bingguo; Brusseau, Mark L

    2017-01-01

    Interfacial areas between nonwetting-wetting (NW-W) liquids in natural porous media were measured using a modified version of the interfacial partitioning tracer test (IPTT) method that employed simultaneous two-phase flow conditions, which allowed measurement at NW saturations higher than trapped residual saturation. Measurements were conducted over a range of saturations for a well-sorted quartz sand under three wetting scenarios of primary drainage (PD), secondary imbibition (SI), and secondary drainage (SD). Limited sets of experiments were also conducted for a model glass-bead medium and for a soil. The measured interfacial areas were compared to interfacial areas measured using the standard IPTT method for liquid-liquid systems, which employs residual NW saturations. In addition, the theoretical maximum interfacial areas estimated from the measured data are compared to specific solid surface areas measured with the N2/BET method and estimated based on geometrical calculations for smooth spheres. Interfacial areas increase linearly with decreasing water saturation over the range of saturations employed. The maximum interfacial areas determined for the glass beads, which have no surface roughness, are 32±4 and 36±5 cm−1 for PD and SI cycles, respectively. The values are similar to the geometric specific solid surface area (31±2 cm−1) and the N2/BET solid surface area (28±2 cm−1). The maximum interfacial areas are 274±38, 235±27, and 581±160 cm−1 for the sand for PD, SI, and SD cycles, respectively, and ~7625 cm−1 for the soil for PD and SI. The maximum interfacial areas for the sand and soil are significantly larger than the estimated smooth-sphere specific solid surface areas (107±8 cm−1 and 152±8 cm−1, respectively), but much smaller than the N2/BET solid surface area (1387±92 cm−1 and 55224 cm−1, respectively). The NW-W interfacial areas measured with the two-phase flow method compare well to values measured using the standard IPTT method. PMID:28959079

  20. Water at silica/liquid water interfaces investigated by DFT-MD simulations

    NASA Astrophysics Data System (ADS)

    Gaigeot, Marie-Pierre

    This talk is dedicated to probing the microscopic structural organization of water at silica/liquid water interfaces including electrolytes by first principles DFT-based molecular dynamics simulations (DFT-MD). We will present our very recent DFT-MD simulations of electrolytic (KCl, NaCl, NaI) silica/liquid water interfaces in order to unravel the intertwined structural properties of water and electrolytes at the crystalline quartz/liquid water and amorphous silica/liquid water interfaces. DFT-MD simulations provide direct knowledge of the structural organization of water and the H-Bond network formed between the water molecules within the different water layers above the silica surface. One can furthermore extract vibrational signatures of the water molecules within the interfacial layers from the DFT-MD simulations, especially non-linear SFG (Sum Frequency generation) signatures that are active at solid/liquid interfaces. The strength of the simulated spectra is that a detailed analysis of the signatures in terms of the water/water H-Bond networks formed within the interfacial water layers and in terms of the water/silica or water/electrolytes H-Bond networks can be given. Comparisons of SFG spectra between quartz/water/electrolytes and amorphous silica/water/electrolytes interfaces allow us to definitely conclude on how the structural arrangements of liquid water at these electrolytic interfaces modulate the final spectroscopic signatures. Invited speaker.

  1. Polyaniline - Carrageenan - Polyvinyl Alcohol Composite Material Synthesized Via Interfacial Polymerization, its Morphological Characteristics and Enhanced Solubility in Water

    NASA Astrophysics Data System (ADS)

    Montalbo, R. C. K.; Marquez, M. C.

    2017-09-01

    In recent years, conducting polyaniline (PAni) has been a popular interest of research in the field of conducting polymers due to its relatively low cost, ease of production, good conductivity, and environmental stability. Many studies however, have focused on improving its short-comings such as its limited processability and solubility in common solvents. In this study, PAni, soluble in water was produced via interfacial polymerization with chloroform as the organic solvent. Poly(vinyl alcohol) (PVA) and kappa(κ), iota(ι) and lambda(λ) - carrageenan (κCGN, ιCGN, λCGN) were added to the aqueous layer to stabilize PAni in the medium. FTIR and UV-Vis absorption spectra of the solutions as well as the fabricated film confirmed the existence of PAni emeraldine salt (PAni-ES). FTIR spectrum also confirmed the peaks corresponding to the interaction of PAni with the CGNs. Moreover, PVA-CGN played a very large role on the stability of the PAni nanofibers integrated on the PVA-CGN matrix. The morphologies of the products were further investigated using SEM and TEM. Polymer electrolyte for supercapacitor or an interfacial layer for organic solar cell is being targeted as potential application of the synthesized water soluble PAni.

  2. Non-steady state partitioning of dry cleaning surfactants between tetrachloroethylene (PCE) and water in porous media.

    PubMed

    Hoggan, James L; Bae, Keonbeom; Kibbey, Tohren C G

    2007-08-15

    Trapped organic solvents, in both the vadose zone and below the water table, are frequent sources of environmental contamination. A common source of organic solvent contamination is spills, leaks, and improper solvent disposal associated with dry cleaning processes. Dry cleaning solvents, such as tetrachloroethylene (PCE), are typically enhanced with the addition of surfactants to improve cleaning performance. The objective of this work was to examine the partitioning behavior of surfactants from PCE in contact with water. The relative rates of surfactants partitioning and PCE dissolution are important for modeling the behavior of waste PCE in the subsurface, in that they influence the interfacial tension of the PCE, and how (or if) interfacial tension changes over time in the subsurface. The work described here uses a flow-through system to examine simultaneous partitioning and PCE dissolution in a porous medium. Results indicate that both nonylphenol ethoxylate nonionic surfactants and a sulfosuccinate anionic surfactant partition out of residual PCE much more rapidly than the PCE dissolves, suggesting that in many cases interfacial tension changes caused by partitioning may influence infiltration and distribution of PCE in the subsurface. Non-steady-state partitioning is found to be well-described by a linear driving force model incorporating measured surfactant partition coefficients.

  3. Effect of Trimethylamine N-Oxide on Interfacial Electrostatics at Phospholipid Monolayer-Water Interfaces and Its Relevance to Cardiovascular Disease.

    PubMed

    Mondal, Jahur A

    2016-05-05

    Trimethylamine N-oxide (TMAO), a metabolite of choline containing dietary nutrients which are abundant in red meat, egg, and other animal foods, increases the risk of cardiovascular disease (e.g., atherosclerosis) by boosted accumulation of fatty deposits on artery wall. Hence, for the molecular level elucidation of the pathogenesis of atherosclerosis, it is important to understand the effect of TMAO at the endothelial cell membrane-blood interface (artery wall). Heterodyne-detected vibrational sum frequency generation (HD-VSFG) study of a zwitterionic phosphatidylcholine (PC) lipid monolayer-water interface (mimic of endothelial membrane-blood interface) shows that the interfacial water becomes increasingly H-up oriented in the presence of TMAO in the aqueous phase, revealing a dramatic change in the interfacial electrostatics. Examinations of charged lipid interfaces show that TMAO screens anionic phosphate less effectively than cationic choline, which confirms that TMAO increases the relative influence of the anionic phosphate by preferential screening of the cationic choline at the zwitterionic PC lipid interface where the phosphate and choline groups are simultaneously present. Together, it is conceivable that at an elevated TMAO level in serum would modify the electrostatics at the endothelial cell membrane-blood interface (artery wall), which may affect the influx/efflux of fatty deposits on artery wall, setting the stage for atherosclerosis.

  4. Polarizable continuum model associated with the self-consistent-reaction field for molecular adsorbates at the interface.

    PubMed

    Wang, Jing-Bo; Ma, Jian-Yi; Li, Xiang-Yuan

    2010-01-07

    In this work, a new procedure has been developed in order to realize the self-consistent-reaction field computation for interfacial molecules. Based on the extension of the dielectric polarizable continuum model, the quantum-continuum calculations for interfacial molecules have been carried out. This work presents an investigation into how the molecular structure influences the adsorbate-solvent interaction and consequently alters the orientation angle at the air/water interface. Taking both electrostatic and non-electrostatic energies into account, we investigate the orientation behavior of three interfacial molecules, 2,6-dimethyl-4-hydroxy-benzonitrile, 3,5-dimethyl-4-hydroxy-benzonitrile and p-cyanophenol, at the air/water interface. The results show that the hydrophilic hydroxyl groups in 2,6-dimethyl-4-hydroxy-benzonitrile and in p-cyanophenol point from the air to the water side, but the hydroxyl group in 3,5-dimethyl-4-hydroxy-benzonitrile takes the opposite direction. Our detailed analysis reveals that the opposite orientation of 3,5-dimethyl-4-hydroxy-benzonitrile results mainly from the cavitation energy. The different orientations of the hydrophilic hydroxyl group indicate the competition of electrostatic and cavitation energies. The theoretical prediction gives a satisfied explanation of the most recent sum frequency generation measurement for these molecules at the interface.

  5. Multiwalled Carbon Nanotubes at the Interface of Pickering Emulsions.

    PubMed

    Briggs, Nicholas M; Weston, Javen S; Li, Brian; Venkataramani, Deepika; Aichele, Clint P; Harwell, Jeffrey H; Crossley, Steven P

    2015-12-08

    Carbon nanotubes exhibit very unique properties in biphasic systems. Their interparticle attraction leads to reduced droplet coalescence rates and corresponding improvements in emulsion stability. Here we use covalent and noncovalent techniques to modify the hydrophilicity of multiwalled carbon nanotubes (MWCNTs) and study their resulting behavior at an oil-water interface. By using both paraffin wax/water and dodecane/water systems, the thickness of the layer of MWNTs at the interface and resulting emulsion stability are shown to vary significantly with the approach used to modify the MWNTs. Increased hydrophilicity of the MWNTs shifts the emulsions from water-in-oil to oil-in-water. The stability of the emulsion is found to correlate with the thickness of nanotubes populating the oil-water interface and relative strength of the carbon nanotube network. The addition of a surfactant decreases the thickness of nanotubes at the interface and enhances the overall interfacial area stabilized at the expense of increased droplet coalescence rates. To the best of our knowledge, this is the first time the interfacial thickness of modified carbon nanotubes has been quantified and correlated to emulsion stability.

  6. Specific effects of Ca2+ ions and molecular structure of β-lactoglobulin interfacial layers that drive macroscopic foam stability† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sm00636a Click here for additional data file.

    PubMed Central

    Schulze-Zachau, Felix; Nagel, Eva; Engelhardt, Kathrin; Stoyanov, Stefan; Gochev, Georgi; Khristov, Khr.; Mileva, Elena; Exerowa, Dotchi; Miller, Reinhard; Peukert, Wolfgang

    2016-01-01

    β-Lactoglobulin (BLG) adsorption layers at air–water interfaces were studied in situ with vibrational sum-frequency generation (SFG), tensiometry, surface dilatational rheology and ellipsometry as a function of bulk Ca2+ concentration. The relation between the interfacial molecular structure of adsorbed BLG and the interactions with the supporting electrolyte is additionally addressed on higher length scales along the foam hierarchy – from the ubiquitous air–water interface through thin foam films to macroscopic foam. For concentrations <1 mM, a strong decrease in SFG intensity from O–H stretching bands and a slight increase in layer thickness and surface pressure are observed. A further increase in Ca2+ concentrations above 1 mM causes an apparent change in the polarity of aromatic C–H stretching vibrations from interfacial BLG which we associate to a charge reversal at the interface. Foam film measurements show formation of common black films at Ca2+ concentrations above 1 mM due to considerable decrease of the stabilizing electrostatic disjoining pressure. These observations also correlate with a minimum in macroscopic foam stability. For concentrations >30 mM Ca2+, micrographs of foam films show clear signatures of aggregates which tend to increase the stability of foam films. Here, the interfacial layers have a higher surface dilatational elasticity. In fact, macroscopic foams formed from BLG dilutions with high Ca2+ concentrations where aggregates and interfacial layers with higher elasticity are found, showed the highest stability with much smaller bubble sizes. PMID:27337699

  7. Free energetics of carbon nanotube association in aqueous inorganic NaI salt solutions: Temperature effects using all-atom molecular dynamics simulations.

    PubMed

    Ou, Shu-Ching; Cui, Di; Wezowicz, Matthew; Taufer, Michela; Patel, Sandeep

    2015-06-15

    In this study, we examine the temperature dependence of free energetics of nanotube association using graphical processing unit-enabled all-atom molecular dynamics simulations (FEN ZI) with two (10,10) single-walled carbon nanotubes in 3 m NaI aqueous salt solution. Results suggest that the free energy, enthalpy and entropy changes for the association process are all reduced at the high temperature, in agreement with previous investigations using other hydrophobes. Via the decomposition of free energy into individual components, we found that solvent contribution (including water, anion, and cation contributions) is correlated with the spatial distribution of the corresponding species and is influenced distinctly by the temperature. We studied the spatial distribution and the structure of the solvent in different regions: intertube, intratube and the bulk solvent. By calculating the fluctuation of coarse-grained tube-solvent surfaces, we found that tube-water interfacial fluctuation exhibits the strongest temperature dependence. By taking ions to be a solvent-like medium in the absence of water, tube-anion interfacial fluctuation shows similar but weaker dependence on temperature, while tube-cation interfacial fluctuation shows no dependence in general. These characteristics are discussed via the malleability of their corresponding solvation shells relative to the nanotube surface. Hydrogen bonding profiles and tetrahedrality of water arrangement are also computed to compare the structure of solvent in the solvent bulk and intertube region. The hydrophobic confinement induces a relatively lower concentration environment in the intertube region, therefore causing different intertube solvent structures which depend on the tube separation. This study is relevant in the continuing discourse on hydrophobic interactions (as they impact generally a broad class of phenomena in biology, biochemistry, and materials science and soft condensed matter research), and interpretations of hydrophobicity in terms of alternative but parallel signatures such as interfacial fluctuations, dewetting transitions, and enhanced fluctuation probabilities at interfaces. © 2015 Wiley Periodicals, Inc.

  8. The balance of electric field and interfacial catalysis in promoting water dissociation in bipolar membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Zhifei; Zhu, Liang; Li, Yuguang C.

    Bipolar membranes maintain a steady pH in electrolytic cells through water autodissociation at the interface between their cation- and anion-exchange layers. We analyze the balance of electric field and catalysis in accelerating this reaction.

  9. The balance of electric field and interfacial catalysis in promoting water dissociation in bipolar membranes

    DOE PAGES

    Yan, Zhifei; Zhu, Liang; Li, Yuguang C.; ...

    2018-01-01

    Bipolar membranes maintain a steady pH in electrolytic cells through water autodissociation at the interface between their cation- and anion-exchange layers. We analyze the balance of electric field and catalysis in accelerating this reaction.

  10. AUTOMATED LONG-TERM REMOTE MONITORING OF SEDIMENT-WATER INTERFACIAL FLUX

    EPA Science Inventory

    Advective flux across the sediment-water interface is temporally and spatially heterogeneous in nature. For contaminated sediment sites, monitoring spatial as well as temporal variation of advective flux is of importance to proper risk management. This project was conducted to ...

  11. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging

    EPA Science Inventory

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  12. Evaporation of Liquid Droplet in Nano and Micro Scales from Statistical Rate Theory.

    PubMed

    Duan, Fei; He, Bin; Wei, Tao

    2015-04-01

    The statistical rate theory (SRT) is applied to predict the average evaporation flux of liquid droplet after the approach is validated in the sessile droplet experiments of the water and heavy water. The steady-state experiments show a temperature discontinuity at the evaporating interface. The average evaporation flux is evaluated by individually changing the measurement at a liquid-vapor interface, including the interfacial liquid temperature, the interfacial vapor temperature, the vapor-phase pressure, and the droplet size. The parameter study shows that a higher temperature jump would reduce the average evaporation flux. The average evaporation flux can significantly be influenced by the interfacial liquid temperature and the vapor-phase pressure. The variation can switch the evaporation into condensation. The evaporation flux is found to remain relative constant if the droplet is larger than a micro scale, while the smaller diameters in nano scale can produce a much higher evaporation flux. In addition, a smaller diameter of droplets with the same liquid volume has a larger surface area. It is suggested that the evaporation rate increases dramatically as the droplet shrinks into nano size.

  13. V-ONSET: Introducing turbulent multiphase flow facility focusing on Lagrangian interfacial transfer dynamics

    NASA Astrophysics Data System (ADS)

    Salibindla, Ashwanth; Masuk, Ashik Ullah Mohammad; Ni, Rui

    2017-11-01

    We have designed and constructed a new vertical water tunnel, V-ONSET, to investigate interfacial mass, momentum and energy transfer between two phases in a Lagrangian frame. This system features an independent control of mean flow and turbulence level. The mean flow opposes the rising/falling velocity of the second phase, ``suspending'' the particles and increasing tracking time in the view area. Strong turbulence is generated by shooting 88 digitally-controlled water jets into the test section. The second phase, either bubbles or oil droplets, can be introduced into the test section through a capillary island. In addition to this flow control system, V-ONSET comes with a 3D two-phase visualization system, consisting of high-speed cameras, two-colored LED system, and in-house Lagrangian particle tracking algorithm. This enables us to acquire the Lagrangian evolution of both phases and the interfacial transfer dynamics in between, paving the way for new closure models for two-phase simulations. Financial support for this project was provided by National Science Foundation under Grant Number: 1653389 and 1705246.

  14. Ice-surface adsorption enhanced colligative effect of antifreeze proteins in ice growth inhibition

    NASA Astrophysics Data System (ADS)

    Mao, Yougang; Ba, Yong

    2006-09-01

    This Communication describes a mechanism to explain antifreeze protein's function to inhibit the growth of ice crystals. We propose that the adsorption of antifreeze protein (AFP) molecules on an ice surface induces a dense AFP-water layer, which can significantly decrease the mole fraction of the interfacial water and, thus, lower the temperature for a seed ice crystal to grow in a super-cooled AFP solution. This mechanism can also explain the nearly unchanged melting point for the ice crystal due to the AFP's ice-surface adsorption. A mathematical model combining the Langmuir theory of adsorption and the colligative effect of thermodynamics has been proposed to find the equilibrium constants of the ice-surface adsorptions, and the interfacial concentrations of AFPs through fitting the theoretical curves to the experimental thermal hysteresis data. This model has been demonstrated by using the experimental data of serial size-mutated beetle Tenebrio molitor (Tm) AFPs. It was found that the AFP's ice-surface adsorptions could increase the interfacial AFP's concentrations by 3 to 4 orders compared with those in the bulk AFP solutions.

  15. Comparison of the adsorbed conformation of barley lipid transfer protein at the decane-water and vacuum-water interface: a molecular dynamics simulation.

    PubMed

    Euston, S R; Hughes, P; Naser, Md A; Westacott, R E

    2008-05-01

    Molecular dynamics simulation is used to model the adsorption of the barley lipid transfer protein (LTP) at the decane-water and vacuum-water interfaces. Adsorption at both surfaces is driven by displacement of water molecules from the interfacial region. LTP adsorbed at the decane surface exhibits significant changes in its tertiary structure, and penetrates a considerable distance into the decane phase. At the vacuum-water interface LTP shows small conformational changes away from its native structure and does not penetrate into the vacuum space. Modification of the conformational stability of LTP by reduction of its four disulphide bonds leads to an increase in conformational entropy of the molecules, which reduces the driving force for adsorption. Evidence for changes in the secondary structure are also observed for native LTP at the decane-water interface and reduced LTP at the vacuum-water interface. In particular, intermittent formation of short (six-residue) regions of beta-sheet is found in these two systems. Formation of interfacial beta-sheet in adsorbed proteins has been observed experimentally, notably in the globular milk protein beta-lactoglobulin and lysozyme.

  16. 2D-HB-Network at the air-water interface: A structural and dynamical characterization by means of ab initio and classical molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Pezzotti, Simone; Serva, Alessandra; Gaigeot, Marie-Pierre

    2018-05-01

    Following our previous work where the existence of a special 2-Dimensional H-Bond (2D-HB)-Network was revealed at the air-water interface [S. Pezzotti et al., J. Phys. Chem. Lett. 8, 3133 (2017)], we provide here a full structural and dynamical characterization of this specific arrangement by means of both Density Functional Theory based and Force Field based molecular dynamics simulations. We show in particular that water at the interface with air reconstructs to maximize H-Bonds formed between interfacial molecules, which leads to the formation of an extended and non-interrupted 2-Dimensional H-Bond structure involving on average ˜90% of water molecules at the interface. We also show that the existence of such an extended structure, composed of H-Bonds all oriented parallel to the surface, constrains the reorientional dynamics of water that is hence slower at the interface than in the bulk. The structure and dynamics of the 2D-HB-Network provide new elements to possibly rationalize several specific properties of the air-water interface, such as water surface tension, anisotropic reorientation of interfacial water under an external field, and proton hopping.

  17. Interfacial Properties of NTAIL, an Intrinsically Disordered Protein.

    PubMed

    Bénarouche, Anaïs; Habchi, Johnny; Cagna, Alain; Maniti, Ofelia; Girard-Egrot, Agnès; Cavalier, Jean-François; Longhi, Sonia; Carrière, Frédéric

    2017-12-19

    Intrinsically disordered proteins (IDPs) lack stable secondary and tertiary structure under physiological conditions in the absence of their biological partners and thus exist as dynamic ensembles of interconverting conformers, often highly soluble in water. However, in some cases, IDPs such as the ones involved in neurodegenerative diseases can form protein aggregates and their aggregation process may be triggered by the interaction with membranes. Although the interfacial behavior of globular proteins has been extensively studied, experimental data on IDPs at the air/water (A/W) and water/lipid interfaces are scarce. We studied here the intrinsically disordered C-terminal domain of the Hendra virus nucleoprotein (N TAIL ) and compared its interfacial properties to those of lysozyme that is taken as a model globular protein of similar molecular mass. Adsorption of N TAIL at the A/W interface was studied in the absence and presence of phospholipids using Langmuir films, polarization modulated-infrared reflection-absorption spectroscopy, and an automated drop tensiometer for interfacial tension and elastic modulus determination with oscillating bubbles. N TAIL showed a significant surface activity, with a higher adsorption capacity at the A/W interface and penetration into egg phosphatidylcholine monolayer compared to lysozyme. Whereas lysozyme remains folded upon compression of the protein layer at the A/W interface and shows a quasi-pure elastic behavior, N TAIL shows a much higher molecular area and forms a highly viscoelastic film with a high dilational modulus. To our knowledge, a new disorder-to-order transition is thus observed for the N TAIL protein that folds into an antiparallel β-sheet at the A/W interface and presents strong intermolecular interactions. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Metal-dielectric interactions

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1979-01-01

    Metal direlectric surface interactions and dielectric films on metal substrates were investigated. Since interfacial interaction depends so heavily on the nature of the surfaces, analytical surface tools such as Auger emission spectroscopy, X-ray photoelectron spectroscopy and field ion microscopy were used to assist in surface and interfacial characterization. The results indicate that with metals contacting certain glasses in the clean state interfacial, bonding produces fractures in the glasses while when a film such as water is present, fractures occur in the metal near the interface. Friction forces were used to measure the interfacial bond strengths. Studies with metals contacting polymers using field ion microscopy revealed that strong bonding forces could develop being between a metal and polymer surface with polymer transferring to the metal surface in various ways depending upon the forces applied to the surface in contact. With the deposition of refractory carbides, silicides and borides onto metal and alloy substrates the presence of oxides at the interface or active gases in the deposition plasma were shown to alter interfacial properties and chemistry. Auger ion depth profile analysis indicated the chemical composition at the interface and this could be related to the mechanical, friction, and wear behavior of the coating.

  19. One-group interfacial area transport in vertical air-water bubbly flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Q.; Kim, S.; Ishii, M.

    In the two-fluid model for two-phase flows, interfacial area concentration is one of the most important closure relations that should be obtained from careful mechanistic modeling. The objective of this study is to develop a one-group interfacial area transport equation together with the modeling of the source and sink terms due to bubble breakage and coalescence. For bubble coalescence, two mechanisms are considered to be dominant in vertical two-phase bubbly flow. These are the random collisions between bubbles due to turbulence in the flow field, and the wake entrainment process due to the relative motion of the bubbles in themore » wake region of a seeding bubble. For bubble breakup, the impact of turbulent eddies is considered. These phenomena are modeled individually, resulting in a one-group interfacial area concentration transport equation with certain parameters to be determined from experimental data. Compared to the measured axial distribution of the interfacial area concentration under various flow conditions, these parameters are obtained for the reduced one-group, one-dimensional transport equation. The results indicate that the proposed models for bubble breakup and coalescence are appropriate.« less

  20. What Governs Friction of Silicon Oxide in Humid Environment: Contact Area between Solids, Water Meniscus around the Contact, or Water Layer Structure?

    PubMed

    Chen, Lei; Xiao, Chen; Yu, Bingjun; Kim, Seong H; Qian, Linmao

    2017-09-26

    In order to understand the interfacial parameters governing the friction force (F t ) between silicon oxide surfaces in humid environment, the sliding speed (v) and relative humidity (RH) dependences of F t were measured for a silica sphere (1 μm radius) sliding on a silicon oxide (SiO x ) surface, using atomic force microscopy (AFM), and analyzed with a mathematical model describing interfacial contacts under a dynamic condition. Generally, F t decreases logarithmically with increasing v to a cutoff value below which its dependence on interfacial chemistry and sliding condition is relatively weak. Above the cutoff value, the logarithmic v dependence could be divided into two regimes: (i) when RH is lower than 50%, F t is a function of both v and RH; (ii) in contrast, at RH ≥ 50%, F t is a function of v only, but not RH. These complicated v and RH dependences were hypothesized to originate from the structure of the water layer adsorbed on the surface and the water meniscus around the annulus of the contact area. This hypothesis was tested by analyzing F t as a function of the water meniscus area (A m ) and volume (V m ) estimated from a thermally activated water-bridge formation model. Surprisingly, it was found that F t varies linearly with V m and correlates poorly with A m at RH < 50%; and then its V m dependence becomes weaker as RH increases above 50%. Comparing the friction data with the attenuated total reflection infrared (ATR-IR) spectroscopy analysis result of the adsorbed water layer, it appeared that the solidlike water layer structure formed on the silica surface plays a critical role in friction at RH < 50% and its contribution diminishes at RH ≥ 50%. These findings give a deeper insight into the role of water condensation in friction of the silicon oxide single asperity contact under ambient conditions.

  1. Trimethylamine N-oxide (TMAO) and tert-butyl alcohol (TBA) at hydrophobic interfaces: insights from molecular dynamics simulations.

    PubMed

    Fiore, Andrew; Venkateshwaran, Vasudevan; Garde, Shekhar

    2013-06-25

    TMAO, a potent osmolyte, and TBA, a denaturant, have similar molecular architecture but somewhat different chemistry. We employ extensive molecular dynamics simulations to quantify their behavior at vapor-water and octane-water interfaces. We show that interfacial structure-density and orientation-and their dependence on solution concentration are markedly different for the two molecules. TMAO molecules are moderately surface active and adopt orientations with their N-O vector approximately parallel to the aqueous interface. That is, not all methyl groups of TMAO at the interface point away from the water phase. In contrast, TBA molecules act as molecular amphiphiles, are highly surface active, and, at low concentrations, adopt orientations with their methyl groups pointing away and the C-O vector pointing directly into water. The behavior of TMAO at aqueous interfaces is only weakly dependent on its solution concentration, whereas that of TBA depends strongly on concentration. We show that this concentration dependence arises from their different hydrogen bonding capabilities-TMAO can only accept hydrogen bonds from water, whereas TBA can accept (donate) hydrogen bonds from (to) water or other TBA molecules. The ability to self-associate, particularly visible in TBA molecules in the interfacial layer, allows them to sample a broad range of orientations at higher concentrations. In light of the role of TMAO and TBA in biomolecular stability, our results provide a reference with which to compare their behavior near biological interfaces. Also, given the ubiquity of aqueous interfaces in biology, chemistry, and technology, our results may be useful in the design of interfacially active small molecules with the aim to control their orientations and interactions.

  2. Probing the Structure and Dynamics of Interfacial Water with Scanning Tunneling Microscopy and Spectroscopy.

    PubMed

    Guo, Jing; You, Sifan; Wang, Zhichang; Peng, Jinbo; Ma, Runze; Jiang, Ying

    2018-05-27

    Water/solid interfaces are ubiquitous and play a key role in many environmental, biophysical, and technological processes. Resolving the internal structure and probing the hydrogen-bond (H-bond) dynamics of the water molecules adsorbed on solid surfaces are fundamental issues of water science, which remains a great challenge owing to the light mass and small size of hydrogen. Scanning tunneling microscopy (STM) is a promising tool for attacking these problems, thanks to its capabilities of sub-Ångström spatial resolution, single-bond vibrational sensitivity, and atomic/molecular manipulation. The designed experimental system consists of a Cl-terminated tip and a sample fabricated by dosing water molecules in situ onto the Au(111)-supported NaCl(001) surfaces. The insulating NaCl films electronically decouple the water from the metal substrates, so the intrinsic frontier orbitals of water molecules are preserved. The Cl-tip facilitates the manipulation of the single water molecules, as well as gating the orbitals of water to the proximity of Fermi level (EF) via tip-water coupling. This paper outlines the detailed methods of submolecular resolution imaging, molecular/atomic manipulation, and single-bond vibrational spectroscopy of interfacial water. These studies open up a new route for investigating the H-bonded systems at the atomic scale.

  3. Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.

    1999-01-01

    Plasma-sprayed mullite (3Al2O3 central dot 2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon-based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface, Thus modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.

  4. Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.

    2000-01-01

    Plasma-sprayed mullite (3Al2O3.2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon -based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface. Thus the modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while a weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause a premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.

  5. Understanding the interfacial behavior of lysozyme on Au (111) surfaces with multiscale simulations

    NASA Astrophysics Data System (ADS)

    Samieegohar, Mohammadreza; Ma, Heng; Sha, Feng; Jahan Sajib, Md Symon; Guerrero-García, G. Iván; Wei, Tao

    2017-02-01

    The understanding of the adsorption and interfacial behavior of proteins is crucial to the development of novel biosensors and biomaterials. By using bottom-up atomistic multiscale simulations, we study here the adsorption of lysozyme on Au(111) surfaces in an aqueous environment. Atomistic simulations are used to calculate the inhomogeneous polarization of the gold surface, which is induced by the protein adsorption, and by the presence of an interfacial layer of water molecules and monovalent salts. The corresponding potential of mean force between the protein and the gold surface including polarization effects is used in Langevin Dynamics simulations to study the time dependent behavior of proteins at finite concentration. These simulations display a rapid adsorption and formation of a first-layer of proteins at the interface. Proteins are initially adsorbed directly on the gold surface due to the strong protein-surface attractive interaction. A subsequent interfacial weak aggregation of proteins leading to multilayer build-up is also observed at long times.

  6. Computer modelling of the surface tension of the gas-liquid and liquid-liquid interface.

    PubMed

    Ghoufi, Aziz; Malfreyt, Patrice; Tildesley, Dominic J

    2016-03-07

    This review presents the state of the art in molecular simulations of interfacial systems and of the calculation of the surface tension from the underlying intermolecular potential. We provide a short account of different methodological factors (size-effects, truncation procedures, long-range corrections and potential models) that can affect the results of the simulations. Accurate calculations are presented for the calculation of the surface tension as a function of the temperature, pressure and composition by considering the planar gas-liquid interface of a range of molecular fluids. In particular, we consider the challenging problems of reproducing the interfacial tension of salt solutions as a function of the salt molality; the simulations of spherical interfaces including the calculation of the sign and size of the Tolman length for a spherical droplet; the use of coarse-grained models in the calculation of the interfacial tension of liquid-liquid surfaces and the mesoscopic simulations of oil-water-surfactant interfacial systems.

  7. Beyond Hydrophobicity: Aqueous Interfaces, Interactions, and Reactions

    NASA Astrophysics Data System (ADS)

    Perkins, Russell James

    Many important chemical reactions from all branches of chemistry occur with water as a solvent. Furthermore, in environmental chemistry, biochemistry, and synthetic chemistry, key reactions occur in heterogeneous aqueous systems, where interfacial effects are particularly important. Despite the importance of aqueous environments and the tremendous amount of work done to study them, there are aspects that require further explanation and remain controversial. I have performed experimental studies to help elucidate the fundamental characteristics of aqueous systems, while examining specific phenomena across several fields. The genetic disorder phenylketonuria (PKU) can result in increased levels of the aromatic amino acid phenylalanine in human serum. Much of my work has focused on the driving forces behind partitioning of aromatic small molecules, including phenylalanine, into air-water or membrane-water interfacial regions, and the consequences of partitioning on interfacial properties. Drastically different behaviors for structurally similar aromatic molecules are observed, differences that cannot be explained by hydrophobic effects. These observations can be explained, however, through the development of a more detailed picture of interactions and partitioning, including the formation of interfacial aggregates. For phenylalanine, this partitioning appears to result in drastic changes in membrane morphology and permeability. This is a likely molecular-level cause for the damage associated with the disease state of PKU. Aqueous systems are further complicated by the reactivity of water. It often serves not only the role of a solvent, but also a reactant, a product, and/or a catalyst. I explore this reactivity using an organic molecule with relevance to environmental chemistry, zymonic acid. Zymonic acid forms spontaneously from pyruvic acid, an important atmospheric species. While zymonic acid exists as a single species in solid form when dissolved in DMSO, once in aqueous solution it quickly reacts with water and equilibrates with at least four other forms. I studied the details and kinetics of these equilibria via time-dependent NMR. Several surprising mechanistic details were uncovered, including a direct enol to geminal diol conversion and base-catalyzed lactone ring formation. The consequences of zymonic acid's behavior are investigated in the context of environmental and prebiotic chemistry.

  8. Dry-Surface Simulation Method for the Determination of the Work of Adhesion of Solid-Liquid Interfaces.

    PubMed

    Leroy, Frédéric; Müller-Plathe, Florian

    2015-08-04

    We introduce a methodology, referred to as the dry-surface method, to calculate the work of adhesion of heterogeneous solid-liquid interfaces by molecular simulation. This method employs a straightforward thermodynamic integration approach to calculate the work of adhesion as the reversible work to turn off the attractive part of the actual solid-liquid interaction potential. It is formulated in such a way that it may be used either to evaluate the ability of force fields to reproduce reference values of the work of adhesion or to optimize force-field parameters with reference values of the work of adhesion as target quantities. The methodology is tested in the case of water on a generic model of nonpolar substrates with the structure of gold. It is validated through a quantitative comparison to phantom-wall calculations and against a previous characterization of the thermodynamics of the gold-water interface. It is found that the work of adhesion of water on nonpolar substrates is a nonlinear function of the microscopic solid-liquid interaction energy parameter. We also comment on the ability of mean-field approaches to predict the work of adhesion of water on nonpolar substrates. In addition, we discuss in detail the information on the solid-liquid interfacial thermodynamics delivered by the phantom-wall approach. We show that phantom-wall calculations yield the solid-liquid interfacial tension relative to the solid surface tension rather than the absolute solid-liquid interfacial tension as previously believed.

  9. Spruce galactoglucomannans inhibit the lipid oxidation in rapeseed oil-in-water emulsions

    USDA-ARS?s Scientific Manuscript database

    Oil-in-water emulsions are functional and industrially valuable systems, whose large interfacial area makes them prone to deterioration, due in part to as the oxidation and oligomerization of polyunsaturated fatty acids. Spruce galactoglucomannans (GGM), wood biomacromolecules abundantly available f...

  10. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging (OKC, OK)

    EPA Science Inventory

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  11. The molecular origins of specificity in the assembly of a multienzyme complex.

    PubMed

    Frank, René A W; Pratap, J Venkatesh; Pei, Xue Y; Perham, Richard N; Luisi, Ben F

    2005-08-01

    The pyruvate dehydrogenase (PDH) multienzyme complex is central to oxidative metabolism. We present the first crystal structure of a complex between pyruvate decarboxylase (E1) and the peripheral subunit binding domain (PSBD) of the dihydrolipoyl acetyltransferase (E2). The interface is dominated by a "charge zipper" of networked salt bridges. Remarkably, the PSBD uses essentially the same zipper to alternately recognize the dihydrolipoyl dehydrogenase (E3) component of the PDH assembly. The PSBD achieves this dual recognition largely through the addition of a network of interfacial water molecules unique to the E1-PSBD complex. These structural comparisons illuminate our observations that the formation of this water-rich E1-E2 interface is largely enthalpy driven, whereas that of the E3-PSBD complex (from which water is excluded) is entropy driven. Interfacial water molecules thus diversify surface complementarity and contribute to avidity, enthalpically. Additionally, the E1-PSBD structure provides insight into the organization and active site coupling within the approximately 9 MDa PDH complex.

  12. Sedimentation and deformation of an aqueous sodium hydroxide drop in vegetable oil

    NASA Astrophysics Data System (ADS)

    White, Andrew; Hyacinthe, Hyaquino; Ward, Thomas

    2013-11-01

    The addition of water droplets in fuels is known to provide benefits such as decreased Nitrous Oxide NOx emissions. Unfortunately the shelf life of a water-fuel emulsion is limited by the sedimentation rate of the water droplets. It is well known that adding surfactants can significantly slow the sedimentation rate due to the introduction of Marangoni stresses. In the case of a vegetable oil fuel, adding sodium hydroxide (NaOH) to the water droplets will produce surfactants through saponification in the form of sodium-carboxylate salts. Pendant drops of aqueous NaOH solutions with pH between 11 and 13 will be suspended in several oils such as corn, olive, canola and soybean oil in order to measure the interfacial tension. The change in interfacial tension with time will be used to estimate the surfactant concentration and the saponification rate. Then individual drops will be placed in the oils to observe the settling velocity and drop deformation. NSF CBET.

  13. Adsorption of phospholipids at oil/water interfaces during emulsification is controlled by stress relaxation and diffusion.

    PubMed

    Hildebrandt, Ellen; Nirschl, Hermann; Kok, Robbert Jan; Leneweit, Gero

    2018-05-16

    Adsorption of phosphatidylcholines at oil/water interfaces strongly deviates from spread monolayers at air/water surfaces. Understanding its nature and consequences could vastly improve applications in medical nanoemulsions and biotechnologies. Adsorption kinetics at interfaces of water with different oil phases were measured by profile analysis tensiometry. Adsorption kinetics for 2 different phospholipids, DPPC and POPC, as well as 2 organic phases, squalene and squalane, show that formation of interfacial monolayers is initially dominated by stress-relaxation in the first minutes. Diffusion only gradually contributes to a decrease in interfacial tension at later stages of time and higher film pressures. The results can be applied for the optimization of emulsification protocols using mechanical treatments. Emulsions using phospholipids with unsaturated fatty acids are dominated much more strongly by stress-relaxation and cover interfaces very fast compared to those with saturated fatty acids. In contrast, phospholipid layers consisting of saturated fatty acids converge faster towards the equilibrium than those with unsaturated fatty acids.

  14. Molecular dynamics study of structure and vibrational spectra at zwitterionoic lipid/aqueous KCl, NaCl, and CaCl2 solution interfaces

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Shirai, Shinnosuke; Okumura, Tomoaki; Morita, Akihiro

    2018-06-01

    Molecular dynamics (MD) simulations of KCl, NaCl, and CaCl2 solution/dipalmytoylphosphatidylcholine lipid interfaces were performed to analyze heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectra in relation to the interfacial water structure. The present MD simulation well reproduces the experimental spectra and elucidates a specific cation effect on the interfacial structure. The K+, Na+, and Ca2+ cation species penetrate in the lipid layer more than the anions in this order, due to the electrostatic interaction with negative polar groups of lipid, and the electric double layer between the cations and anions cancels the intrinsic orientation of water at the water/lipid interface. These mechanisms explain the HD-VSFG spectrum of the water/lipid interface and its spectral perturbation by adding the ions. The lipid monolayer reverses the order of surface preference of the cations at the solution/lipid interface from that at the solution/air interface.

  15. Tunable Manipulation of Mineral Carbonation Kinetics in Nanoscale Water Films via Citrate Additives.

    PubMed

    Miller, Quin R S; Schaef, Herbert T; Kaszuba, John P; Qiu, Lin; Bowden, Mark E; McGrail, Bernard P

    2018-06-06

    We explored the influence of a model organic ligand on mineral carbonation in nanoscale interfacial water films by conducting five time-resolved in situ X-ray diffraction (XRD) experiments at 50 °C. Forsterite was exposed to water-saturated supercritical carbon dioxide (90 bar) that had been equilibrated with 0-0.5 m citrate (C 6 H 5 O 7 -3 ) solutions. The experimental results demonstrated that greater concentrations of citrate in the nanoscale interfacial water film promoted the precipitation of magnesite (MgCO 3 ) relative to nesquehonite (MgCO 3 ·3H 2 O). At the highest concentrations tested, magnesite nucleation and growth were inhibited, lowering the carbonation rate constant from 9.1 × 10 -6 to 3.6 × 10 -6 s -1 . These impacts of citrate were due to partial dehydration of Mg 2+ (aq) and the adsorption of citrate onto nuclei and magnesite surfaces. This type of information may be used to predict and tailor subsurface mineralization rates and pathways.

  16. Nonequilibrium Interfacial Tension in Simple and Complex Fluids

    NASA Astrophysics Data System (ADS)

    Truzzolillo, Domenico; Mora, Serge; Dupas, Christelle; Cipelletti, Luca

    2016-10-01

    Interfacial tension between immiscible phases is a well-known phenomenon, which manifests itself in everyday life, from the shape of droplets and foam bubbles to the capillary rise of sap in plants or the locomotion of insects on a water surface. More than a century ago, Korteweg generalized this notion by arguing that stresses at the interface between two miscible fluids act transiently as an effective, nonequilibrium interfacial tension, before homogenization is eventually reached. In spite of its relevance in fields as diverse as geosciences, polymer physics, multiphase flows, and fluid removal, experiments and theoretical works on the interfacial tension of miscible systems are still scarce, and mostly restricted to molecular fluids. This leaves crucial questions unanswered, concerning the very existence of the effective interfacial tension, its stabilizing or destabilizing character, and its dependence on the fluid's composition and concentration gradients. We present an extensive set of measurements on miscible complex fluids that demonstrate the existence and the stabilizing character of the effective interfacial tension, unveil new regimes beyond Korteweg's predictions, and quantify its dependence on the nature of the fluids and the composition gradient at the interface. We introduce a simple yet general model that rationalizes nonequilibrium interfacial stresses to arbitrary mixtures, beyond Korteweg's small gradient regime, and show that the model captures remarkably well both our new measurements and literature data on molecular and polymer fluids. Finally, we briefly discuss the relevance of our model to a variety of interface-driven problems, from phase separation to fracture, which are not adequately captured by current approaches based on the assumption of small gradients.

  17. Effect of the ordered interfacial water layer in protein complex formation: a non-local electrostatic approach

    NASA Astrophysics Data System (ADS)

    Rubinstein, Alexander; Sabirianov, Renat

    2011-03-01

    Using a non-local electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an low-dielectric interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.

  18. Interfacial complexation in microfluidic droplets for single-step fabrication of microcapsule

    NASA Astrophysics Data System (ADS)

    Kaufman, Gilad; Nejati, Siamak; Sarfati, Raphael; Boltyanskiy, Rostislav; Williams, Danielle; Liu, Wei; Schloss, Ashley; Regan, Lynn; Yan, Elsa; Dufrense, Eric; Loewenberg, Michael; Osuji, Chinedum

    We present microfluidic interfacial complexation in emulsion droplets as a simple single-step approach for fabricating a large variety of stable monodisperse microcapsules with tailored mechanical properties, protein binding and controlled release behavior. We rely on electrostatic interactions and hydrogen bonding to direct the assembly of complementary species at oil-water droplet interfaces to form microcapsules with polyelectrolyte shells, composite polyelectrolyte-nanoparticle shells, and copolymer-nanofiber shells. Additionally, we demonstrate the formation of microcapsules by adsorption of an amphiphilic bacterial hydrophobin, BslA, at oil-in-water and water-in-oil droplets, and protein capture on these capsules using engineered variants of the hydrophobin. We discuss the composition dependence of mechanical properties, shell thickness and release behavior, and regimes of stability for microcapsule fabrication. Nanoparticle based microcapsules display an intriguing plastic deformation response which enables the formation of large aspect ratio asperities by pipette aspiration of the shell.

  19. Particle size and interfacial effects on heat transfer characteristics of water and {alpha}-SiC nanofluids.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timofeeva, E.; Smith, D. S.; Yu, W.

    2010-01-01

    The effect of average particle sizes on basic macroscopic properties and heat transfer performance of {alpha}-SiC/water nanofluids was investigated. The average particle sizes, calculated from the specific surface area of nanoparticles, were varied from 16 to 90 nm. Nanofluids with larger particles of the same material and volume concentration provide higher thermal conductivity and lower viscosity increases than those with smaller particles because of the smaller solid/liquid interfacial area of larger particles. It was also demonstrated that the viscosity of water-based nanofluids can be significantly decreased by pH of the suspension independently from the thermal conductivity. Heat transfer coefficients weremore » measured and compared to the performance of base fluids as well as to nanofluids reported in the literature. Criteria for evaluation of the heat transfer performance of nanofluids are discussed and optimum directions in nanofluid development are suggested.« less

  20. Protons migrate along interfacial water without significant contributions from jumps between ionizable groups on the membrane surface

    PubMed Central

    Springer, Andreas; Hagen, Volker; Cherepanov, Dmitry A.; Antonenko, Yuri N.; Pohl, Peter

    2011-01-01

    Proton diffusion along membrane surfaces is thought to be essential for many cellular processes such as energy transduction. Commonly, it is treated as a succession of jumps between membrane-anchored proton-binding sites. Our experiments provide evidence for an alternative model. We released membrane-bound caged protons by UV flashes and monitored their arrival at distant sites by fluorescence measurements. The kinetics of the arrival is probed as a function of distance for different membranes and for different water isotopes. We found that proton diffusion along the membrane is fast even in the absence of ionizable groups in the membrane, and it decreases strongly in D2O as compared to H2O. We conclude that the fast proton transport along the membrane is dominated by diffusion via interfacial water, and not via ionizable lipid moieties. PMID:21859952

  1. Water permeation through anion exchange membranes

    NASA Astrophysics Data System (ADS)

    Luo, Xiaoyan; Wright, Andrew; Weissbach, Thomas; Holdcroft, Steven

    2018-01-01

    An understanding of water permeation through solid polymer electrolyte (SPE) membranes is crucial to offset the unbalanced water activity within SPE fuel cells. We examine water permeation through an emerging class of anion exchange membranes, hexamethyl-p-terphenyl poly (dimethylbenzimidazolium) (HMT-PMBI), and compare it against series of membrane thickness for a commercial anion exchange membrane (AEM), Fumapem® FAA-3, and a series of proton exchange membranes, Nafion®. The HMT-PMBI membrane is found to possess higher water permeabilities than Fumapem® FAA-3 and comparable permeability than Nafion (H+). By measuring water permeation through membranes of different thicknesses, we are able to decouple, for the first time, internal and interfacial water permeation resistances through anion exchange membranes. Permeation resistances on liquid/membrane interface is found to be negligible compared to that for vapor/membrane for both series of AEMs. Correspondingly, the resistance of liquid water permeation is found to be one order of magnitude smaller compared to that of vapor water permeation. HMT-PMBI possesses larger effective internal water permeation coefficient than both Fumapem® FAA-3 and Nafion® membranes (60 and 18% larger, respectively). In contrast, the effective interfacial permeation coefficient of HMT-PMBI is found to be similar to Fumapem® (±5%) but smaller than Nafion®(H+) (by 14%).

  2. Controlling the Accumulation of Water at Oil-Solid Interfaces with Gradient Coating.

    PubMed

    Li, Yan; Yang, Qiaomu; Mei, Ran Andy; Cai, Meirong; Heng, Jerry Y Y; Yang, Zhongqiang

    2017-07-13

    In this work, we demonstrate a strategy to control the accumulation of water in the oil-solid interface using a gradient coating. Gradient chemistry on glass surface is created by vapor diffusion of organosilanes, leading to a range of contact angles from 110 to 20°. Hexadecane is placed on the gradient substrate as an oil layer, forming a "water/hexadecane/gradient solid substrate" sandwich structure. During incubation, water molecules spontaneously migrate through the micrometer-thick oil layer and result in the formation of micrometer-sized water droplets at the oil-solid interface. It turns out that water droplets at more hydrophobic regions tend to be closer to a regular spherical shape, which is attributed to their higher contact angle with the hydrophobic substrate. However, along the gradient from hydrophobic to hydrophilic, the water droplets gradually form more irregular shapes, as hydrophilic surfaces pin the edges of droplets to form a distorted morphology. It indicates that more hydrophilic surfaces containing more Si-OH groups lead to a higher electrostatic interaction with water and a higher growth rate of interfacial water droplets. This work provides further insights into the mechanism of spontaneous water accumulation at oil-solid interfaces and assists in the rational design for controlling such interfacial phenomenon.

  3. Intermolecular and interfacial forces: Elucidating molecular mechanisms using chemical force microscopy

    NASA Astrophysics Data System (ADS)

    Ashby, Paul David

    Investigation into the origin of forces dates to the early Greeks. Yet, only in recent decades have techniques for elucidating the molecular origin of forces been developed. Specifically, Chemical Force Microscopy uses the high precision and nanometer scale probe of Atomic Force Microscopy to measure molecular and interfacial interactions. This thesis presents the development of many novel Chemical Force Microscopy techniques for measuring equilibrium and time-dependant force profiles of molecular interactions, which led to a greater understanding of the origin of interfacial forces in solution. In chapter 2, Magnetic Feedback Chemical Force Microscopy stiffens the cantilever for measuring force profiles between self-assembled monolayer (SAM) surfaces. Hydroxyl and carboxyl terminated SAMs produce long-range interactions that extend one or three nanometers into the solvent, respectively. In chapter 3, an ultra low noise AFM is produced through multiple modifications to the optical deflection detection system and signal processing electronics. In chapter 4, Brownian Force Profile Reconstruction is developed for accurate measurement of steep attractive interactions. Molecular ordering is observed for OMCTS, 1-nonanol, and water near flat surfaces. The molecular ordering of the solvent produces structural or solvation forces, providing insight into the orientation and possible solidification of the confined solvent. Seven molecular layers of OMCTS are observed but the oil remains fluid to the last layer. 1-nonanol strongly orders near the surface and becomes quasi-crystalline with four layers. Water is oriented by the surface and symmetry requires two layers of water (3.7 A) to be removed simultaneously. In chapter 5, electronic control of the cantilever Q (Q-control) is used to obtain the highest imaging sensitivity. In chapter 6, Energy Dissipation Chemical Force Microscopy is developed to investigate the time dependence and dissipative characteristics of SAM interfacial interactions in solution. Long-range adhesive forces for hydroxyl and carboxyl terminated SAM surfaces arise from solvent, not ionic, interactions. Exclusion of the solvent and contact between the SAM surfaces leads to rearrangement of the SAM headgroups. The isolation of the chemical and physical interfacial properties from the topography by Energy Dissipation Chemical Force Microscopy produces a new quantitative high-sensitivity imaging mode.

  4. Vapor-liquid interfacial reaction to fabricate superhydrophilic and underwater superoleophobic thiol-ene/silica hybrid decorated fabric for oil/water separation

    NASA Astrophysics Data System (ADS)

    Li, Hongqiang; Liang, Tao; Lai, Xuejun; Su, Xiaojing; Zhang, Lin; Zeng, Xingrong

    2018-01-01

    With oil spill accidents and oil industrial wastewater increasing, oil/water separation has attracted much attention in recent years. Herein, we report the fabrication of superhydrophilic and underwater superoleophobic thiol-ene/silica hybrid decorated fabrics for oil/water separation via vapor-liquid interfacial reaction. It is based on sol-gel reaction of tetraethyl orthosilicate (TEOS) to generate silica and thiol-ene reaction between poly(ethylene glycol) dimethacrylate (PEGDMA) and trimethylolpropane tris(3-mercaptopropionate) (TTMP) to form crosslinked hydrophilic polymer on polyester fabric under the catalysis of butylamine/ammonia vapor. The chemical structure of the surfaces on thiol-ene/silica hybrid decorated fabric was confirmed by FTIR and XPS, and obvious micro-nano morphology and roughness were observed with SEM and AFM. The water contact angle of the fabric attained 0° in 0.36 s, and the underwater oil contact angle reached up to 160°. Importantly, the fabric exhibited high separation efficiency at 99.5%, fast water flux above 71600 Lm-2h-1 and excellent recyclability in oil/water separation. Our findings open a new strategy to fabricate organic-inorganic hybrid superhydrophobic and underwater superoleophobic materials for oil/water separation.

  5. Experiment-scale molecular simulation study of liquid crystal thin films

    NASA Astrophysics Data System (ADS)

    Nguyen, Trung Dac; Carrillo, Jan-Michael Y.; Matheson, Michael A.; Brown, W. Michael

    2014-03-01

    Supercomputers have now reached a performance level adequate for studying thin films with molecular detail at the relevant scales. By exploiting the power of GPU accelerators on Titan, we have been able to perform simulations of characteristic liquid crystal films that provide remarkable qualitative agreement with experimental images. We have demonstrated that key features of spinodal instability can only be observed with sufficiently large system sizes, which were not accessible with previous simulation studies. Our study emphasizes the capability and significance of petascale simulations in providing molecular-level insights in thin film systems as well as other interfacial phenomena.

  6. Viewpoint 9--molecular structure of aqueous interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Wilson, M. A.

    1993-01-01

    In this review we summarize recent progress in our understanding of the structure of aqueous interfaces emerging from molecular level computer simulations. It is emphasized that the presence of the interface induces specific structural effects which, in turn, influence a wide variety of phenomena occurring near the phase boundaries. At the liquid-vapor interface, the most probable orientations of a water molecule is such that its dipole moment lies parallel to the interface, one O-H bond points toward the vapor and the other O-H bond is directed toward the liquid. The orientational distributions are broad and slightly asymmetric, resulting in an excess dipole moment pointing toward the liquid. These structural preferences persist at interfaces between water and nonpolar liquids, indicating that the interactions between the two liquids in contact are weak. It was found that liquid-liquid interfaces are locally sharp but broadened by capillary waves. One consequence of anisotropic orientations of interfacial water molecules is asymmetric interactions, with respect to the sign of the charge, of ions with the water surface. It was found that even very close to the surface ions retain their hydration shells. New features of aqueous interfaces have been revealed in studies of water-membrane and water-monolayer systems. In particular, water molecules are strongly oriented by the polar head groups of the amphiphilic phase, and they penetrate the hydrophilic head-group region, but not the hydrophobic core. At infinite dilution near interfaces, amphiphilic molecules exhibit behavior different from that in the gas phase or in bulk water. This result sheds new light on the nature of hydrophobic effect in the interfacial regions. The presence of interfaces was also shown to affect both equilibrium and dynamic components of rates of chemical reactions. Applications of continuum models to interfacial problems have been, so far, unsuccessful. This, again, underscores the importance of molecular-level information about interfaces.

  7. The effect of oxygen-plasma treatment on Kevlar fibers and the properties of Kevlar fibers/bismaleimide composites

    NASA Astrophysics Data System (ADS)

    Su, Min; Gu, Aijuan; Liang, Guozheng; Yuan, Li

    2011-02-01

    The effect of oxygen-plasma treatment for Kevlar fibers on the interfacial adhesion and typical macro-properties of Kevlar fiber/bismaleimide composites was intensively studied. It is found that oxygen-plasma treatment significantly affects the interfacial adhesion by changing the chemistry and morphology of the surfaces of the fibers, and thus leading to improved interlaminar shear strength, water resistance and dielectric properties of the composites. However, the improvement is closely related to the treatment power and time. The best condition for treating Kevlar fiber is 70 W for 5 min. Oxygen-plasma treatment provides an effective technique for overcoming the poor interfacial adhesion of Kevlar fiber based composites, and thus showing great potential in fabricating high performance copper clad laminates.

  8. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces.

    PubMed

    Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin

    2017-05-30

    For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ∼26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.

  9. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces

    NASA Astrophysics Data System (ADS)

    Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin

    2017-05-01

    For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ˜26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.

  10. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces

    PubMed Central

    Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin

    2017-01-01

    For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ∼26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad. PMID:28507143

  11. In situ SERS detection of emulsifiers at lipid interfaces using label-free amphiphilic gold nanoparticles.

    PubMed

    Li, Yue; Driver, Michael; Winuprasith, Thunnalin; Zheng, Jinkai; McClements, David Julian; He, Lili

    2014-10-21

    Herein, we fabricated amphiphilic gold nanoparticles (GNPs) that can self-assemble at oil-water interfaces. We applied those GNPs for in situ SERS detection of emulsifier molecules within the interfacial region of oil in water (O/W) emulsion systems.

  12. Key issues for determining the exploitable water resources in a Mediterranean river basin.

    PubMed

    Pedro-Monzonís, María; Ferrer, Javier; Solera, Abel; Estrela, Teodoro; Paredes-Arquiola, Javier

    2015-01-15

    One of the major difficulties in water planning is to determine the water availability in a water resource system in order to distribute water sustainably. In this paper, we analyze the key issues for determining the exploitable water resources as an indicator of water availability in a Mediterranean river basin. Historically, these territories are characterized by heavily regulated water resources and the extensive use of unconventional resources (desalination and wastewater reuse); hence, emulating the hydrological cycle is not enough. This analysis considers the Jucar River Basin as a case study. We have analyzed the different possible combinations between the streamflow time series, the length of the simulation period and the reliability criteria. As expected, the results show a wide dispersion, proving the great influence of the reliability criteria used for the quantification and localization of the exploitable water resources in the system. Therefore, it is considered risky to provide a single value to represent the water availability in the Jucar water resource system. In this sense, it is necessary that policymakers and stakeholders make a decision about the methodology used to determine the exploitable water resources in a river basin. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Biodegradation of artificial monolayers applied to water storages to reduce evaporative loss.

    PubMed

    Pittaway, P; Herzig, M; Stuckey, N; Larsen, K

    2015-01-01

    Repeat applications of an artificial monolayer to the interfacial boundary layer of large agricultural water storages during periods of high evaporative demand remains the most commercially feasible water conservation strategy. However, the interfacial boundary layer (or microlayer) is ecologically distinct from subsurface water, and repeat monolayer applications may adversely affect microlayer processes. In this study, the natural cleansing mechanisms operating within the microlayer were investigated to compare the biodegradability of two fatty alcohol (C16OH and C18OH) and one glycol ether (C18E1) monolayer compound. The C16OH and C18OH compounds were more susceptible to microbial degradation, but the C18E1 compound was most susceptible to indirect photodegradation. On clean water the surface pressure and evaporation reduction achieved with a compressed C18E1 monolayer was superior to the C18OH monolayer, but on brown water the surface pressure dropped rapidly. These results suggest artificial monolayers are readily degraded by the synergy between photo and microbial degradation. The residence time of C18OH and C18E1 monolayers on clear water is sufficient for cost-effective water conservation. However, the susceptibility of C18E1 to photodegradation indicates the application of this monolayer to brown water may not be cost-effective.

  14. Anchoring Energy Measurements at the Aqueous Phase/Liquid Crystal Interface with Cationic Surfactants Using Magnetic Fréedericksz Transition.

    PubMed

    Yesil, Fatma; Suwa, Masayori; Tsukahara, Satoshi

    2018-01-09

    We constructed the apparatus to observe the Fréedericksz transition of liquid crystal in contact with water. The Fréedericksz transition is a distortion of nematic liquid crystals (LCs) induced by external fields. In the present system, sweeping homogeneous magnetic field was applied to the sample, and the distortion of the LC was visualized with a polarized light microscope with the crossed Nichols configuration. The anchoring energy (W AQ/LC ) at the aqueous phase/LC interface was measured in the presence of surfactant from the threshold magnetic field of the Fréedericksz transition. We studied two cationic surfactants: dodecyltrimethylammonium bromide and tetradecyltrimethylammonium bromide. A nematic LC, 4-cyano-4'-pentylbiphenyl (5CB), was examined, which was confined in a copper grid on an octadecyltrichlorosilane-treated microscope glass plate. Measured W AQ/LC were reproducible and showed consistence with the reported region for the water/LC interface. Interfacial excess of surfactants was also measured by the pendant drop method, and the relationship between the obtained W AQ/LC and the interfacial excess was investigated. Experiments showed that an increase in the anchoring energy depends on the surfactant and its interfacial excess. The region of the interfacial coverage, at which W AQ/LC increases, varied with the chain length of the surfactant. The measurement of the anchoring energy will provide new fundamental information on aqueous phase/LC interface.

  15. Colloidal Particle Adsorption at Water-Water Interfaces with Ultralow Interfacial Tension

    NASA Astrophysics Data System (ADS)

    Keal, Louis; Colosqui, Carlos E.; Tromp, R. Hans; Monteux, Cécile

    2018-05-01

    Using fluorescence confocal microscopy we study the adsorption of single latex microparticles at a water-water interface between demixing aqueous solutions of polymers, generally known as a water-in-water emulsion. Similar microparticles at the interface between molecular liquids have exhibited an extremely slow relaxation preventing the observation of expected equilibrium states. This phenomenon has been attributed to "long-lived" metastable states caused by significant energy barriers Δ F ˜γ Ad≫kBT induced by high interfacial tension (γ ˜10-2 N /m ) and nanoscale surface defects with characteristic areas Ad≃10 - 30 nm2 . For the studied water-water interface with ultralow surface tension (γ ˜10-4 N /m ) we are able to characterize the entire adsorption process and observe equilibrium states prescribed by a single equilibrium contact angle independent of the particle size. Notably, we observe crossovers from fast initial dynamics to slower kinetic regimes analytically predicted for large surface defects (Ad≃500 nm2). Moreover, particle trajectories reveal a position-independent damping coefficient that is unexpected given the large viscosity contrast between phases. These observations are attributed to the remarkably diffuse nature of the water-water interface and the adsorption and entanglement of polymer chains in the semidilute solutions. This work offers some first insights on the adsorption dynamics or kinetics of microparticles at water-water interfaces in biocolloidal systems.

  16. Regio-selective lipase catalyzed hydrolysis of oxanorbornane-based sugar-like amphiphiles at air-water interface: A polarized FT-IRRAS study.

    PubMed

    Sarangi, Nirod Kumar; Ganesan, M; Muraleedharan, K M; Patnaik, Archita

    2017-04-01

    Interfacial hydrolysis of oxanorbornane-based amphiphile (Triol C16) by Candida rugosa lipase was investigated using real-time polarized Fourier transform-infrared reflection absorption spectroscopy (FT-IRRAS). The kinetics of hydrolysis was studied by analyzing the ester carbonyl ν(CO) stretching vibration band across the two dimensional (2D) array of molecules at the confined interface. In particular, we demonstrate Triol C16 to form Michaelis-Menten type complex, like that of lipid-substrate analogues, where the Triol C16 head group remained accessible to the catalytic triad of the lipase. The enzyme-induced selective cleavage of the ester bond was spectroscopically monitored by the disappearance of the intense ν(CO) resonance at 1736cm -1 . Consequently, the in situ spectroscopic measurements evidenced selective ester hydrolysis of Triol C16 yielding Tetrol C 2 OH and Palmitic acid, which remained predominantly in the undissociated form at the interface. The conformation sensitive amide I (majorly ν(CO)) and the interfacial water reorganization suggested 2D ordering of the enzyme molecules following which interfacial reactions were employed towards probing the enzyme kinetics at the air/water interface. The investigation demonstrated further the potential of IRRAS spectroscopy for real-time monitoring the hydrolytic product formation and selectivity at biomimetic interfaces. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Characterization of interfacial waves in horizontal core-annular flow

    NASA Astrophysics Data System (ADS)

    Tripathi, Sumit; Bhattacharya, Amitabh; Singh, Ramesh; Tabor, Rico F.

    2016-11-01

    In this work, we characterize interfacial waves in horizontal core annular flow (CAF) of fuel-oil and water. Experimental studies on CAF were performed in an acrylic pipe of 15.5mm internal diameter, and the time evolution of the oil-water interface shape was recorded with a high speed camera for a range of different flow-rates of oil (Qo) and water (Qw). The power spectrum of the interface shape shows a range of notable features. First, there is negligible energy in wavenumbers larger than 2 π / a , where a is the thickness of the annulus. Second, for high Qo /Qw , there is no single dominant wavelength, as the flow in the confined annulus does not allow formation of a preferred mode. Third, for lower Qo /Qw , a dominant mode arises at a wavenumber of 2 π / a . We also observe that the power spectrum of the interface shape depends weakly on Qw, and strongly on Qo, perhaps because the net shear rate in the annulus appears to depend weakly on Qw as well. We also attempt to build a general empirical model for CAF by relating the interfacial stress (calculated via the mean pressure gradient) to the flow rate in the annulus, the annular thickness and the core velocity. Authors are thankful to Orica Mining Services (Australia) for the financial support.

  18. Milk whey proteins and xanthan gum interactions in solution and at the air-water interface: a rheokinetic study.

    PubMed

    Perez, Adrián A; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Rubiolo, Amelia C; Santiago, Liliana G

    2010-11-01

    In this contribution, we present experimental information about the effect of xanthan gum (XG) on the adsorption behaviour of two milk whey protein samples (MWP), beta-lactoglobulin (beta-LG) and whey protein concentrate (WPC), at the air-water interface. The MWP concentration studied corresponded to the protein bulk concentration which is able to saturate the air-water interface (1.0 wt%). Temperature, pH and ionic strength of aqueous systems were kept constant at 20 degrees C, pH 7 and 0.05 M, respectively, while the XG bulk concentration varied in the range 0.00-0.25 wt%. Biopolymer interactions in solution were analyzed by extrinsic fluorescence spectroscopy using 1-anilino-8-naphtalene sulphonic acid (ANS) as a protein fluorescence probe. Interfacial biopolymer interactions were evaluated by dynamic tensiometry and surface dilatational rheology. Adsorption behaviour was discussed from a rheokinetic point of view in terms of molecular diffusion, penetration and conformational rearrangement of adsorbed protein residues at the air-water interface. Differences in the interaction magnitude, both in solution and at the interface vicinity, and in the adsorption rheokinetic parameters were observed in MWP/XG mixed systems depending on the protein type (beta-LG or WPC) and biopolymer relative concentration. beta-LG adsorption in XG presence could be promoted by mechanisms based on biopolymer segregative interactions and thermodynamic incompatibility in the interface vicinity, resulting in better surface and viscoelastic properties. The same mechanism could be responsible of WPC interfacial adsorption in the presence of XG. The interfacial functionality of WPC was improved by the synergistic interactions with XG, although WPC chemical complexity might complicate the elucidation of molecular events that govern adsorption dynamics of WPC/XG mixed systems at the air-water interface. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  19. Toward ab initio molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity-velocity correlation function.

    PubMed

    Ohto, Tatsuhiko; Usui, Kota; Hasegawa, Taisuke; Bonn, Mischa; Nagata, Yuki

    2015-09-28

    Interfacial water structures have been studied intensively by probing the O-H stretch mode of water molecules using sum-frequency generation (SFG) spectroscopy. This surface-specific technique is finding increasingly widespread use, and accordingly, computational approaches to calculate SFG spectra using molecular dynamics (MD) trajectories of interfacial water molecules have been developed and employed to correlate specific spectral signatures with distinct interfacial water structures. Such simulations typically require relatively long (several nanoseconds) MD trajectories to allow reliable calculation of the SFG response functions through the dipole moment-polarizability time correlation function. These long trajectories limit the use of computationally expensive MD techniques such as ab initio MD and centroid MD simulations. Here, we present an efficient algorithm determining the SFG response from the surface-specific velocity-velocity correlation function (ssVVCF). This ssVVCF formalism allows us to calculate SFG spectra using a MD trajectory of only ∼100 ps, resulting in the substantial reduction of the computational costs, by almost an order of magnitude. We demonstrate that the O-H stretch SFG spectra at the water-air interface calculated by using the ssVVCF formalism well reproduce those calculated by using the dipole moment-polarizability time correlation function. Furthermore, we applied this ssVVCF technique for computing the SFG spectra from the ab initio MD trajectories with various density functionals. We report that the SFG responses computed from both ab initio MD simulations and MD simulations with an ab initio based force field model do not show a positive feature in its imaginary component at 3100 cm(-1).

  20. Molecular dynamics analysis of the influence of Coulomb and van der Waals interactions on the work of adhesion at the solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Surblys, Donatas; Leroy, Frédéric; Yamaguchi, Yasutaka; Müller-Plathe, Florian

    2018-04-01

    We investigated the solid-liquid work of adhesion of water on a model silica surface by molecular dynamics simulations, where a methodology previously developed to determine the work of adhesion through thermodynamic integration was extended to a system with long-range electrostatic interactions between solid and liquid. In agreement with previous studies, the work of adhesion increased when the magnitude of the surface polarity was increased. On the other hand, we found that when comparing two systems with and without solid-liquid electrostatic interactions, which were set to have approximately the same total solid-liquid interfacial energy, former had a significantly smaller work of adhesion and a broader distribution in the interfacial energies, which has not been previously reported in detail. This was explained by the entropy contribution to the adhesion free energy; i.e., the former with a broader energy distribution had a larger interfacial entropy than the latter. While the entropy contribution to the work of adhesion has already been known, as a work of adhesion itself is free energy, these results indicate that, contrary to common belief, wetting behavior such as the contact angle is not only governed by the interfacial energy but also significantly affected by the interfacial entropy. Finally, a new interpretation of interfacial entropy in the context of solid-liquid energy variance was offered, from which a fast way to qualitatively estimate the work of adhesion was also presented.

  1. Effect of high pressure homogenization on the structure and the interfacial and emulsifying properties of β-lactoglobulin.

    PubMed

    Ali, Ali; Le Potier, Isabelle; Huang, Nicolas; Rosilio, Véronique; Cheron, Monique; Faivre, Vincent; Turbica, Isabelle; Agnely, Florence; Mekhloufi, Ghozlene

    2018-02-15

    The effect of high pressure homogenization (HPH) on the structure of β-lactoglobulin (β-lg) was studied by combining spectroscopic, chromatographic, and electrophoretic methods. The consequences of the resulting structure modifications on oil/water (O/W) interfacial properties were also assessed. Moderated HPH treatment (100 MPa/4 cycles) showed no significant modification of protein structure and interfacial properties. However, a harsher HPH treatment (300 MPa/5 cycles) induced structural transformation, mainly from β-sheets to random coils, wide loss in lipocalin core, and protein aggregation via intermolecular disulfide bridges. HPH-modified β-lg displayed higher surface hydrophobicity leading to a faster adsorption rate at the interface and an earlier formation of an elastic interfacial film at C β-lg  = 0.1 wt%. However, no modification of the interfacial properties was observed at C β-lg  = 1 wt%. At this protein concentration, the prior denaturation of β-lg by HPH did not modify the droplet size of nanoemulsions prepared with these β-lg solutions as the aqueous phases. A slightly increased creaming rate was however observed. The effects of HPH and heat denaturations appeared qualitatively similar, but with differences in their extent. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Interfacial Effects on the Band Edges of Functionalized Si Surfaces in Liquid Water

    DOE PAGES

    Pham, Tuan Anh; Lee, Donghwa; Schwegler, Eric; ...

    2014-11-17

    By combining ab initio molecular dynamics simulations and many-body perturbation theory calculations of electronic energy levels, we determined the band edge positions of functionalized Si(111) surfaces in the presence of liquid water, with respect to vacuum and to water redox potentials. We considered surface terminations commonly used for Si photoelectrodes in water splitting experiments. We found that, when exposed to water, the semiconductor band edges were shifted by approximately 0.5 eV in the case of hydrophobic surfaces, irrespective of the termination. The effect of the liquid on band edge positions of hydrophilic surfaces was much more significant and determined bymore » a complex combination of structural and electronic effects. These include structural rearrangements of the semiconductor surfaces in the presence of water, changes in the orientation of interfacial water molecules with respect to the bulk liquid, and charge transfer at the interfaces, between the solid and the liquid. Our results showed that the use of many-body perturbation theory is key to obtain results in agreement with experiments; they also showed that the use of simple computational schemes that neglect the detailed microscopic structure of the solid–liquid interface may lead to substantial errors in predicting the alignment between the solid band edges and water redox potentials.« less

  3. Dynamics in a Water Interfacial Boundary Layer Investigated with IR Polarization-Selective Pump-Probe Experiments.

    PubMed

    Yuan, Rongfeng; Yan, Chang; Nishida, Jun; Fayer, Michael D

    2017-05-04

    The dynamics of water molecules near the surfactant interface in large Aerosol-OT reverse micelles (RMs) (w 0 = 16-25) was investigated with IR polarization-selective pump-probe experiments using the SeCN - anion as a vibrational probe. Linear absorption spectra of RMs (w 0 = 25-2) can be decomposed into the weighted sum of the SeCN - spectra in bulk water and the spectrum of the SeCN - anion interacting with the interfacial sulfonate head groups (w 0 = 1). The spectra of the large RMs, w 0 ≥ 16, are overwhelmingly dominated by the bulk water component. Anisotropy decays (orientational relaxation) of the anion for w 0 ≥ 16 displayed bulk water relaxation (1.4 and 4.5 ps) plus an additional slow decay with a time constant of ∼13 ps. The amplitude of the slow decay was too large to be associated with SeCN - in contact with the interface on the basis of the linear spectrum decomposition. The results indicate that the observed slow components arise from SeCN - in a water boundary layer, in which water molecules are perturbed by the interface but are not directly associated with it. This layer is the transition between water in direct contact with the interface and bulk water in the large RM cores. In the boundary layer, the water dynamics is slow compared to that in bulk water.

  4. Reactive metal-oxide interfaces: A microscopic view

    NASA Astrophysics Data System (ADS)

    Picone, A.; Riva, M.; Brambilla, A.; Calloni, A.; Bussetti, G.; Finazzi, M.; Ciccacci, F.; Duò, L.

    2016-03-01

    Metal-oxide interfaces play a fundamental role in determining the functional properties of artificial layered heterostructures, which are at the root of present and future technological applications. Magnetic exchange and magnetoelectric coupling, spin filtering, metal passivation, catalytic activity of oxide-supported nano-particles are just few examples of physical and chemical processes arising at metal-oxide hybrid systems, readily exploited in working devices. These phenomena are strictly correlated with the chemical and structural characteristics of the metal-oxide interfacial region, making a thorough understanding of the atomistic mechanisms responsible of its formation a prerequisite in order to tailor the device properties. The steep compositional gradient established upon formation of metal-oxide heterostructures drives strong chemical interactions at the interface, making the metal-oxide boundary region a complex system to treat, both from an experimental and a theoretical point of view. However, once properly mastered, interfacial chemical interactions offer a further degree of freedom for tuning the material properties. The goal of the present review is to provide a summary of the latest achievements in the understanding of metal/oxide and oxide/metal layered systems characterized by reactive interfaces. The influence of the interface composition on the structural, electronic and magnetic properties will be highlighted. Particular emphasis will be devoted to the discussion of ultra-thin epitaxial oxides stabilized on highly oxidizable metals, which have been rarely exploited as oxide supports as compared to the much more widespread noble and quasi noble metallic substrates. In this frame, an extensive discussion is devoted to the microscopic characterization of interfaces between epitaxial metal oxides and the Fe(001) substrate, regarded from the one hand as a prototypical ferromagnetic material and from the other hand as a highly oxidizable metal.

  5. Structural analysis on mutation residues and interfacial water molecules for human TIM disease understanding

    PubMed Central

    2013-01-01

    Background Human triosephosphate isomerase (HsTIM) deficiency is a genetic disease caused often by the pathogenic mutation E104D. This mutation, located at the side of an abnormally large cluster of water in the inter-subunit interface, reduces the thermostability of the enzyme. Why and how these water molecules are directly related to the excessive thermolability of the mutant have not been investigated in structural biology. Results This work compares the structure of the E104D mutant with its wild type counterparts. It is found that the water topology in the dimer interface of HsTIM is atypical, having a "wet-core-dry-rim" distribution with 16 water molecules tightly packed in a small deep region surrounded by 22 residues including GLU104. These water molecules are co-conserved with their surrounding residues in non-archaeal TIMs (dimers) but not conserved across archaeal TIMs (tetramers), indicating their importance in preserving the overall quaternary structure. As the structural permutation induced by the mutation is not significant, we hypothesize that the excessive thermolability of the E104D mutant is attributed to the easy propagation of atoms' flexibility from the surface into the core via the large cluster of water. It is indeed found that the B factor increment in the wet region is higher than other regions, and, more importantly, the B factor increment in the wet region is maintained in the deeply buried core. Molecular dynamics simulations revealed that for the mutant structure at normal temperature, a clear increase of the root-mean-square deviation is observed for the wet region contacting with the large cluster of interfacial water. Such increase is not observed for other interfacial regions or the whole protein. This clearly suggests that, in the E104D mutant, the large water cluster is responsible for the subunit interface flexibility and overall thermolability, and it ultimately leads to the deficiency of this enzyme. Conclusions Our study reveals that a large cluster of water buried in protein interfaces is fragile and high-maintenance, closely related to the structure, function and evolution of the whole protein. PMID:24564410

  6. Effect of electrolytes on bubble coalescence in columns observed with visualization techniques.

    PubMed

    Aguilera, María Eugenia; Ojeda, Antonieta; Rondón, Carolina; López De Ramos, Aura

    2002-10-01

    Bubble coalescence and the effect of electrolytes on this phenomenon have been previously studied. This interfacial phenomenon has attracted attention for reactor design/operation and enhanced oil recovery. Predicting bubble coalescence may help prevent low yields in reactors and predict crude oil recovery. Because of the importance of bubble coalescence, the objectives of this work were to improve the accuracy of measuring the percentage of coalescing bubbles and to observe the interfacial gas-liquid behavior. An experimental setup was designed and constructed. Bubble interactions were monitored with a visualization setup. The percentage of air bubble coalescence was 100% in distilled water, about 50% in 0.1 M sodium chloride (NaCl) aqueous solution, and 0% in 0.145 M NaCl aqueous solution. A reduction of the contact gas-liquid area was observed in distillate water. The volume of the resulting bubble was the sum of the original bubble volumes. Repulsion of bubbles was observed in NaCl solutions exceeding 0.07 M. The percentage of bubble coalescence diminishes as the concentration of NaCl chloride increases. High-speed video recording is an accurate technique to measure the percentage of bubble coalescence, and represents an important advance in gas-liquid interfacial studies.

  7. Molecular-Scale Study of Aspartate Adsorption on Goethite and Competition with Phosphate.

    PubMed

    Yang, Yanli; Wang, Shengrui; Xu, Yisheng; Zheng, Binghui; Liu, Jingyang

    2016-03-15

    Knowledge of the interfacial interactions between aspartate and minerals, especially its competition with phosphate, is critical to understanding the fate and transport of amino acids in the environment. Adsorption reactions play important roles in the mobility, bioavailability, and degradation of aspartate and phosphate. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) measurements and density functional theory (DFT) calculations were used to investigate the interfacial structures and their relative contributions in single-adsorbate and competition systems. Our results suggest three dominant mechanisms for aspartate: bidentate inner-sphere coordination involving both α- and γ-COO(-), outer-sphere complexation via electrostatic attraction and H-bonding between aspartate NH2 and goethite surface hydroxyls. The interfacial aspartate is mainly governed by pH and is less sensitive to changes of ionic strength and aspartate concentration. The phosphate competition significantly reduces the adsorption capacity of aspartate on goethite. Whereas phosphate adsorption is less affected by the presence of aspartate, including the relative contributions of diprotonated monodentate, monoprotonated bidentate, and nonprotonated bidentate structures. The adsorption process facilitates the removal of bioavailable aspartate and phosphate from the soil solution as well as from the sediment pore water and the overlying water.

  8. Dramatic Enhancement of Graphene Oxide/Silk Nanocomposite Membranes: Increasing Toughness, Strength, and Young's modulus via Annealing of Interfacial Structures.

    PubMed

    Wang, Yaxian; Ma, Ruilong; Hu, Kesong; Kim, Sunghan; Fang, Guangqiang; Shao, Zhengzhong; Tsukruk, Vladimir V

    2016-09-21

    We demonstrate that stronger and more robust nacre-like laminated GO (graphene oxide)/SF (silk fibroin) nanocomposite membranes can be obtained by selectively tailoring the interfacial interactions between "bricks"-GO sheets and "mortar"-silk interlayers via controlled water vapor annealing. This facial annealing process relaxes the secondary structure of silk backbones confined between flexible GO sheets. The increased mobility leads to a significant increase in ultimate strength (by up to 41%), Young's modulus (up to 75%) and toughness (up to 45%). We suggest that local silk recrystallization is initiated in the proximity to GO surface by the hydrophobic surface regions serving as nucleation sites for β-sheet domains formation and followed by SF assembly into nanofibrils. Strong hydrophobic-hydrophobic interactions between GO layers with SF nanofibrils result in enhanced shear strength of layered packing. This work presented here not only gives a better understanding of SF and GO interfacial interactions, but also provides insight on how to enhance the mechanical properties for the nacre-mimic nanocomposites by focusing on adjusting the delicate interactions between heterogeneous "brick" and adaptive "mortar" components with water/temperature annealing routines.

  9. Flow-induced 2D protein crystallization: characterization of the coupled interfacial and bulk flows.

    PubMed

    Young, James E; Posada, David; Lopez, Juan M; Hirsa, Amir H

    2015-05-14

    Two-dimensional crystallization of the protein streptavidin, crystallizing below a biotinylated lipid film spread on a quiescent air-water interface is a well studied phenomenon. More recently, 2D crystallization induced by a shearing interfacial flow has been observed at film surface pressures significantly lower than those required in a quiescent system. Here, we quantify the interfacial and bulk flow associated with 2D protein crystallization through numerical modeling of the flow along with a Newtonian surface model. Experiments were conducted over a wide range of conditions resulting in a state diagram delineating the flow strength required to induce crystals for various surface pressures. Through measurements of the velocity profile at the air-water interface, we found that even in the cases where crystals are formed, the macroscopic flow at the interface is well described by the Newtonian model. However, the results show that even in the absence of any protein in the system, the viscous response of the biotinylated lipid film is complicated and strongly dependent on the strength of the flow. This observation suggests that the insoluble lipid film plays a key role in flow-induced 2D protein crystallization.

  10. Surface pressure affects B-hordein network formation at the air-water interface in relation to gastric digestibility.

    PubMed

    Yang, Jingqi; Huang, Jun; Zeng, Hongbo; Chen, Lingyun

    2015-11-01

    Protein interfacial network formation under mechanical pressure and its influence on degradation was investigated at molecular level using Langmuir-Blodgett B-hordein monolayer as a 2D model. Surface properties, such as surface pressure, dilatational and shear rheology and the surface pressure--area (π-A) isotherm, of B-hordein at air-water interface were analyzed by tensiometer, rheometer and a Langmuir-Blodgett trough respectively. B-Hordein conformation and orientation under different surface pressures were determined by polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS). The interfacial network morphology was observed by atomic force microscopy (AFM). B-Hordein could reduce the air-water surface tension rapidly to ∼ 45 mN/m and form a solid-like network with high rheological elasticity and compressibility at interface, which could be a result of interactions developed by intermolecular β-sheets. The results also revealed that B-hordein interfacial network switched from an expanded liquid phase to a solid-like film with increasing compression pressure. The orientation of B-hordein was parallel to the surface when in expended liquid phase, whereas upon compression, the hydrophobic repetitive region tilted away from water phase. When compressed to 30 mN/m, a strong elastic network was formed at the interface, and it was resistant to a harsh gastric-like environment of low pH and pepsin. This work generated fundamental knowledge, which suggested the potential to design B-hordein stabilized emulsions and encapsulations with controllable digestibility for small intestine targeted delivery of bioactive compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Langmuir-Blodgett Films of Supported Polyester Dendrimers

    PubMed Central

    Redón, Rocío; Carreón-Castro, M. Pilar; Mendoza-Martínez, F. J.

    2012-01-01

    Amphiphiles with a dendritic structure are attractive materials as they combine the features of dendrimers with the self-assembling properties and interfacial behavior of water-air affinities. We have synthesized three generations of polyester dendrimers and studied their interfacial properties on the Langmuir films. The behavior obtained was, as a rule, the lowest generation dendrimers behaving like traditional amphiphiles and the larger molecules presenting complicated isotherms. The Langmuir films of these compounds have been characterized by their surface pressure versus molecular area (π/A) and Brewster angle microscopy (BAM) observations. PMID:24052855

  12. Interfacial rheology of surface-active biopolymers: Acacia senegal gum versus hydrophobically modified starch.

    PubMed

    Erni, Philipp; Windhab, Erich J; Gunde, Rok; Graber, Muriel; Pfister, Bruno; Parker, Alan; Fischer, Peter

    2007-11-01

    Acacia gum is a hybrid polyelectrolyte containing both protein and polysaccharide subunits. We study the interfacial rheology of its adsorption layers at the oil/water interface and compare it with adsorbed layers of hydrophobically modified starch, which for economic and political reasons is often used as a substitute for Acacia gum in technological applications. Both the shear and the dilatational rheological responses of the interfaces are considered. In dilatational experiments, the viscoelastic response of the starch derivative is just slightly weaker than that for Acacia gum, whereas we found pronounced differences in shear flow: The interfaces covered with the plant gum flow like a rigid, solidlike material with large storage moduli and a linear viscoelastic regime limited to small shear deformations, above which we observe apparent yielding behavior. In contrast, the films formed by hydrophobically modified starch are predominantly viscous, and the shear moduli are only weakly dependent on the deformation. Concerning their most important technological use as emulsion stabilizers, the dynamic interfacial responses imply not only distinct interfacial dynamics but also different stabilizing mechanisms for these two biopolymers.

  13. Comparisons of the foaming and interfacial properties of whey protein isolate and egg white proteins.

    PubMed

    Davis, J P; Foegeding, E A

    2007-02-15

    Whipped foams (10%, w/v protein, pH 7.0) were prepared from commercially available samples of whey protein isolate (WPI) and egg white protein (EWP), and subsequently compared based on yield stress (tau(0)), overrun and drainage stability. Adsorption rates and interfacial rheological measurements at a model air/water interface were quantified via pendant drop tensiometry to better understand foaming differences among the ingredients. The highest tau(0) and resistance to drainage were observed for standard EWP, followed by EWP with added 0.1% (w/w) sodium lauryl sulfate, and then WPI. Addition of 25% (w/w) sucrose increased tau(0) and drainage resistance of the EWP-based ingredients, whereas it decreased tau(0) of WPI foams and minimally affected their drainage rates. These differing sugar effects were reflected in the interfacial rheological measurements, as sucrose addition increased the dilatational elasticity for both EWP-based ingredients, while decreasing this parameter for WPI. Previously observed relationships between tau(0) and interfacial rheology did not hold across the protein types; however, these measurements did effectively differentiate foaming behaviors within EWP-based ingredients and within WPI. Interfacial data was also collected for purified beta-lactoglobulin (beta-lg) and ovalbumin, the primary proteins of WPI and EWP, respectively. The addition of 25% (w/w) sucrose increased the dilatational elasticity for adsorbed layers of beta-lg, while minimally affecting the interfacial rheology of adsorbed ovalbumin, in contrast to the response of WPI and EWP ingredients. These experiments underscore the importance of utilizing the same materials for interfacial measurements as used for foaming experiments, if one is to properly infer interfacial information/mechanisms and relate this information to bulk foaming measurements. The effects of protein concentration and measurement time on interfacial rheology were also considered as they relate to bulk foam properties. This data should be of practical assistance to those designing aerated food products, as it has not been previously reported that sucrose addition improves the foaming characteristics of EWP-based ingredients while negatively affecting the foaming behavior of WPI, as these types of protein isolates are common to the food industry.

  14. Supramolecular Structures with Blood Plasma Proteins, Sugars and Nanosilica

    NASA Astrophysics Data System (ADS)

    Turov, V. V.; Gun'ko, V. M.; Galagan, N. P.; Rugal, A. A.; Barvinchenko, V. M.; Gorbyk, P. P.

    Supramolecular structures with blood plasma proteins (albumin, immunoglobulin and fibrinogen (HPF)), protein/water/silica and protein/water/ silica/sugar (glucose, fructose and saccharose) were studied by NMR, adsorption, IR and UV spectroscopy methods. Hydration parameters, amounts of weakly and strongly bound waters and interfacial energy (γ S) were determined over a wide range of component concentrations. The γ S(C protein,C silica) graphs were used to estimate the energy of protein-protein, protein-surface and particle-particle interactions. It was shown that interfacial energy of self-association (γ as) of protein molecules depends on a type of proteins. A large fraction of water bound to proteins can be displaced by sugars, and the effect of disaccharide (saccharose) was greater than that of monosugars. Changes in the structural parameters of cavities in HPF molecules and complexes with HPF/silica nanoparticles filled by bound water were analysed using NMR-cryoporometry showing that interaction of proteins with silica leads to a significant decrease in the amounts of water bound to both protein and silica surfaces. Bionanocomposites with BSA/nanosilica/sugar can be used to influence states of living cells and tissues after cryopreservation or other treatments. It was shown that interaction of proteins with silica leads to strong decrease in the volume of all types of internal cavities filled by water.

  15. Chemical reactions at aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Vecitis, Chad David

    2009-12-01

    Interfaces or phase boundaries are a unique chemical environment relative to individual gas, liquid, or solid phases. Interfacial reaction mechanisms and kinetics are often at variance with homogeneous chemistry due to mass transfer, molecular orientation, and catalytic effects. Aqueous interfaces are a common subject of environmental science and engineering research, and three environmentally relevant aqueous interfaces are investigated in this thesis: 1) fluorochemical sonochemistry (bubble-water), 2) aqueous aerosol ozonation (gas-water droplet), and 3) electrolytic hydrogen production and simultaneous organic oxidation (water-metal/semiconductor). Direct interfacial analysis under environmentally relevant conditions is difficult, since most surface-specific techniques require relatively `extreme' conditions. Thus, the experimental investigations here focus on the development of chemical reactors and analytical techniques for the completion of time/concentration-dependent measurements of reactants and their products. Kinetic modeling, estimations, and/or correlations were used to extract information on interfacially relevant processes. We found that interfacial chemistry was determined to be the rate-limiting step to a subsequent series of relatively fast homogeneous reactions, for example: 1) Pyrolytic cleavage of the ionic headgroup of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) adsorbed to cavitating bubble-water interfaces during sonolysis was the rate-determining step in transformation to their inorganic constituents carbon monoxide, carbon dioxide, and fluoride; 2) ozone oxidation of aqueous iodide to hypoiodous acid at the aerosol-gas interface is the rate-determining step in the oxidation of bromide and chloride to dihalogens; 3) Electrolytic oxidation of anodic titanol surface groups is rate-limiting for the overall oxidation of organics by the dichloride radical. We also found chemistry unique to the interface, for example: 1) Adsorption of dilute PFOS(aq) and PFOA(aq) to acoustically cavitating bubble interfaces was greater than equilibrium expectations due to high-velocity bubble radial oscillations; 2) Relative ozone oxidation kinetics of aqueous iodide, sulfite, and thiosulfate were at variance with previously reported bulk aqueous kinetics; 3) Organics that directly chelated with the anode surface were oxidized by direct electron transfer, resulting in immediate carbon dioxide production but slower overall oxidation kinetics. Chemical reactions at aqueous interfaces can be the rate-limiting step of a reaction network and often display novel mechanisms and kinetics as compared to homogeneous chemistry.

  16. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sujan, G.K., E-mail: sgkumer@gmail.com; Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my; Afifi, A.B.M., E-mail: amalina@um.edu.my

    2014-11-15

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticlemore » doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu{sub 6}Sn{sub 5} from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus, doping of flux with appropriate metallic nanoparticles can be successfully used to control the morphology and growth of intermetallic compound layers at the solder/substrate interface which is expected to lead to better reliability of electronic devices. - Highlights: • A novel nanodoped flux method has been developed to control the growth of IMCs. • Ni doped flux improves the wettability, but Co, Mo and Ti deteriorate it. • Ni and Co doped flux gives planer IMC morphology through in-situ alloying effect. • 0.1 wt.% Ni and Co addition into flux gives the lowest interfacial IMC thickness. • Mo and Ti doped flux does not have any influence at the interfacial reaction.« less

  17. Breaking of the Bancroft rule for multiple emulsions stabilized by a single stimulable polymer.

    PubMed

    Besnard, L; Protat, M; Malloggi, F; Daillant, J; Cousin, F; Pantoustier, N; Guenoun, P; Perrin, P

    2014-09-28

    We investigated emulsions of water and toluene stabilized by (co)polymers consisting of styrene (S) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) monomer units with different compositions and structures such as a PDMAEMA homopolymer, a P(S-co-DMAEMA) random copolymer and various PS-b-PDMAEMA and PS-b-(S-co-DMAEMA) block copolymers. The model system is used to study the fundamental conditions under which the different kinds of polymer-stabilized emulsions (direct oil in water, inverse water in oil and multiple emulsions) are stabilized or destabilized by pH change (at constant temperature). Polymer properties like chain conformation at the toluene-water interface as probed by SANS and neutron reflectivity at the liquid-liquid interface, the oil-water partitioning of the polymer chains (Bancroft's rule of thumb) as determined by UV spectroscopy and interfacial tensions measured by the rising and spinning drop techniques are determined. Overall, results evidence that the curvature sign, as defined by positive and negative values as the chain segments occupy preferentially the water and toluene sides of the interface respectively, reliably predicts the emulsion kind. In contrast, the Bancroft rule failed at foreseeing the emulsion type. In the region of near zero curvature the crossover from direct to inverse emulsions occurs through the formation of either unstable coexisting direct and inverse emulsions (i) or multiple emulsions (ii). The high compact adsorption of the chains at the interface as shown by low interfacial tension values does not allow to discriminate between both cases. However, the toluene-water partitioning of the polymeric emulsifier is still a key factor driving the formation of (i) or (ii) emulsions. Interestingly, the stabilization of the multiple emulsions can be tuned to a large extent as the toluene-water polymer partitioning can be adjusted using quite a large number of physico-chemical parameters linked to polymer architecture like diblock length ratio or polymer total molar mass, for example. Moreover, we show that monitoring the oil-water partitioning aspect of the emulsion system can also be used to lower the interfacial tension at low pH to values slightly higher than 0.01 mN m(-1), irrespective of the curvature sign.

  18. CH4 Hydrate Formation between Silica and Graphite Surfaces: Insights from Microsecond Molecular Dynamics Simulations.

    PubMed

    He, Zhongjin; Linga, Praveen; Jiang, Jianwen

    2017-10-31

    Microsecond simulations have been performed to investigate CH 4 hydrate formation from gas/water two-phase systems between silica and graphite surfaces, respectively. The hydrophilic silica and hydrophobic graphite surfaces exhibit substantially different effects on CH 4 hydrate formation. The graphite surface adsorbs CH 4 molecules to form a nanobubble with a flat or negative curvature, resulting in a low aqueous CH 4 concentration, and hydrate nucleation does not occur during 2.5 μs simulation. Moreover, an ordered interfacial water bilayer forms between the nanobubble and graphite surface thus preventing their direct contact. In contrast, the hydroxylated-silica surface prefers to be hydrated by water, with a cylindrical nanobubble formed in the solution, leading to a high aqueous CH 4 concentration and hydrate nucleation in the bulk region; during hydrate growth, the nanobubble is gradually covered by hydrate solid and separated from the water phase, hence slowing growth. The silanol groups on the silica surface can form strong hydrogen bonds with water, and hydrate cages need to match the arrangements of silanols to form more hydrogen bonds. At the end of the simulation, the hydrate solid is separated from the silica surface by liquid water, with only several cages forming hydrogen bonds with the silica surface, mainly due to the low CH 4 aqueous concentrations near the surface. To further explore hydrate formation between graphite surfaces, CH 4 /water homogeneous solution systems are also simulated. CH 4 molecules in the solution are adsorbed onto graphite and hydrate nucleation occurs in the bulk region. During hydrate growth, the adsorbed CH 4 molecules are gradually converted into hydrate solid. It is found that the hydrate-like ordering of interfacial water induced by graphite promotes the contact between hydrate solid and graphite. We reveal that the ability of silanol groups on silica to form strong hydrogen bonds to stabilize incipient hydrate solid, as well as the ability of graphite to adsorb CH 4 molecules and induce hydrate-like ordering of the interfacial water, are the key factors to affect CH 4 hydrate formation between silica and graphite surfaces.

  19. Estimation of interfacial area in a packed cross-flow cascade with distillation of ethanol-water, methanol-water, and hexane-heptane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velaga, A.

    1986-01-01

    Packed cross-flow internals consisting of four and ten stages including the samplers for liquid and vapor were fabricated to fit into the existing distillation column. Experiments were conducted using methanol-water, ethanol-water and hexane-heptane binary mixtures. The experimental data were collected for compositions of inlet and exist streams of cross-flow stages. The overall gas phase height transfer units (H/sub og/) were estimated using the experimental data. H/sub og/ values were compared to those of counter current conditions. The individual mass transfer coefficients in the liquid and vapor phases were estimated using the collected experimental data for degree of separation, flow ratesmore » and physical properties of the binary system used. The physical properties were estimated at an average temperature of the specific cross-flow stage. The mass transfer coefficients were evaluated using three different correlations proposed by Shulman. Onda and Hayashi respectively. The interfacial areas were estimated using the evaluated mass transfer coefficients and the experimental data at each stage of the column for different runs and compared.« less

  20. Dielectric analysis of the APG/n-butanol/cyclohexane/water nonionic microemulsions.

    PubMed

    He, K J; Zhao, K S; Chai, J L; Li, G Z

    2007-09-15

    The nonionic APG/n-butanol/cyclohexane/water microemulsions with different microstructure, which is induced by the variation of water contents, are investigated by the dielectric spectroscopy. An appropriate dielectric theory, Hanai theory and the corresponding analytical method are applied to obtain the internal properties of the constituent phases of microemulsions, such as the relative permittivity and conductivity of continuous and dispersed phases and the volume fraction of dispersed phase. Using these parameters, the distribution of n-butanol in constituent phases, which is of important in the study field of the microstructure of microemulsion, is obtained quantitatively. It is found that the n-butanol molecules not only distribute in the interfacial APG layer but also in the continuous and dispersed phases. In addition, the percolation threshold is interpreted by using the dynamic percolation model. The structural and dynamic information are obtained, for instance, the critical volume fraction of water when percolation occurs and the characteristic time for the rearrangement of clusters. These parameters are intimately related to the properties of microemulsions, especially the characteristics of the interfacial layer.

  1. Biocompatible Stimuli-Responsive W/O/W Multiple Emulsions Prepared by One-Step Mixing with a Single Diblock Copolymer Emulsifier.

    PubMed

    Protat, Marine; Bodin, Noémie; Gobeaux, Frédéric; Malloggi, Florent; Daillant, Jean; Pantoustier, Nadège; Guenoun, Patrick; Perrin, Patrick

    2016-09-22

    Multiple water-in-oil-in-water (W/O/W) emulsions are promising materials in designing carriers of hydrophilic molecules or drug delivery systems, provided stability issues are solved and biocompatible chemicals can be used. In this work, we designed a biocompatible amphiphilic copolymer, poly(dimethylsiloxane)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMS-b-PDMAEMA), that can stabilize emulsions made with various biocompatible oils. The hydrophilic/hydrophobic properties of the copolymer can be adjusted using both pH and ionic strength stimuli. Consequently, the making of O/W (oil in water), W/O (water in oil), and W/O/W emulsions can be achieved by sweeping the pH and ionic strength. Of importance, W/O/W emulsions are formulated over a large pH and ionic strength domain in a one-step emulsification process via transitional phase inversion and are stable for several months. Cryo-TEM and interfacial tension studies show that the formation of these W/O/W emulsions is likely to be correlated to the interfacial film curvature and microemulsion morphology.

  2. Lessons from (co-)evolution in the docking of proteins and peptides for CAPRI Rounds 28-35.

    PubMed

    Yu, Jinchao; Andreani, Jessica; Ochsenbein, Françoise; Guerois, Raphaël

    2017-03-01

    Computational protein-protein docking is of great importance for understanding protein interactions at the structural level. Critical assessment of prediction of interactions (CAPRI) experiments provide the protein docking community with a unique opportunity to blindly test methods based on real-life cases and help accelerate methodology development. For CAPRI Rounds 28-35, we used an automatic docking pipeline integrating the coarse-grained co-evolution-based potential InterEvScore. This score was developed to exploit the information contained in the multiple sequence alignments of binding partners and selectively recognize co-evolved interfaces. Together with Zdock/Frodock for rigid-body docking, SOAP-PP for atomic potential and Rosetta applications for structural refinement, this pipeline reached high performance on a majority of targets. For protein-peptide docking and interfacial water position predictions, we also explored different means of taking evolutionary information into account. Overall, our group ranked 1 st by correctly predicting 10 targets, composed of 1 High, 7 Medium and 2 Acceptable predictions. Excellent and Outstanding levels of accuracy were reached for each of the two water prediction targets, respectively. Altogether, in 15 out of 18 targets in total, evolutionary information, either through co-evolution or conservation analyses, could provide key constraints to guide modeling towards the most likely assemblies. These results open promising perspectives regarding the way evolutionary information can be valuable to improve docking prediction accuracy. Proteins 2017; 85:378-390. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Interfacial functionalization and engineering of nanoparticles

    NASA Astrophysics Data System (ADS)

    Song, Yang

    The intense research interest in nanoscience and nanotechnology is largely fueled by the unique properties of nanoscale materials. In this dissertation, the research efforts are focused on surface functionalization and interfacial engineering of functional nanoparticles in the preparation of patchy nanoparticles (e.g., Janus nanoparticles and Neapolitan nanoparticles) such that the nanoparticle structures and properties may be manipulated to an unprecedented level of sophistication. Experimentally, Janus nanoparticles were prepared by an interfacial engineering method where one hemisphere of the originally hydrophobic nanoparticles was replaced with hydrophilic ligands at the air|liquid or solid|liquid interface. The amphiphilic surface characters of the Janus nanoparticles were verified by contact angle measurements, as compared to those of the bulk-exchange counterparts where the two types of ligands were distributed rather homogeneously on the nanoparticle surface. In a further study, a mercapto derivative of diacetylene was used as the hydrophilic ligands to prepare Janus nanoparticles by using hydrophobic hexanethiolate-protected gold nanoparticles as the starting materials. Exposure to UV irradiation led to effective covalent cross-linking between the diacetylene moieties of neighboring ligands and hence marked enhancement of the structural integrity of the Janus nanoparticles, which was attributable to the impeded surface diffusion of the thiol ligands on the nanoparticle surface, as manifested in fluorescence measurements of aged nanoparticles. More complicated bimetallic AgAu Janus nanoparticles were prepared by interfacial galvanic exchange reactions of a Langmuir-Blodgett monolayer of 1-hexanethiolate-passivated silver nanoparticles on a glass slide with gold(I)-mercaptopropanediol complex in a water/ethanol solution. The resulting nanoparticles exhibited an asymmetrical distribution not only of the organic capping ligands on the nanoparticle surface but also of the metal elements in the nanoparticle cores, in contrast to the bulk-exchange counterparts where these distributions were homogeneous within the nanoparticles, as manifested in contact angle, UV--vis, XPS, and TEM measurements. More interestingly, the electrocatalytic performance of the Janus nanoparticles was markedly better than the bulk-exchange ones, suggesting that the segregated distribution of the polar ligands from the apolar ones might further facilitate charge transfer from Ag to Au in the nanoparticle cores, leading to additional improvement of the adsorption and reduction of oxygen. This interfacial protocol was then adopted to prepare trimetallic Ag AuPt Neapolitan nanoparticles by two sequential galvanic exchange reactions of 1-hexanethiolate-capped silver nanoparticles with gold(I)-thiomalic acid and platinum(II)-hexanethiolate complexes. As both reactions were confined to an interface, the Au and Pt elements were situated on two opposite poles of the original Ag nanoparticles, which was clearly manifested in elemental mapping of the nanoparticles, and consistent with the damping and red-shift of the nanoparticle surface plasmon resonance. As nanoscale analogs to conventional amphiphilic molecules, the resulting Janus nanoparticles were found to form oil-in-water micelle-like or water-in-oil reverse micelle-like superparticulate structures depending on the solvent media. These unique characteristics were exploited for the effective transfer of diverse guest nanoparticles between organic and water phase. The transfer of hydrophobic nanoparticles from organic to water media or water-soluble nanoparticles to the organic phase was evidenced by TEM, DLS, UV-Vis, and PL measurements. In particular, line scans based on EDS analysis showed that the vesicle-like structures consisted of multiple layers of the Janus nanoparticles, which encapsulated the guest nanoparticles in the cores. The results highlight the unique effectiveness of using Janus nanoparticles in the formation of functional nanocomposites. Part of the dissertation research was also devoted to graphene quantum dots (GQDs)-supported platinum (Pt/G) nanoparticles and their electrocatalytic activity in oxygen reduction reaction. These Pt/G nanocomposites were prepared by a hydrothermal procedure at controlled temperatures. Spectroscopic measurements based on FTIR, Raman and XPS confirmed the formation of various oxygenated structural defects on GQDs and the variation of their concentrations with the hydrothermal conditions. Interestingly, electrocatalytic activity of GQD/Pt composites exhibited a volcano-shaped variation with the GQD structural defects, with the best identified as the samples prepared at 160 °C for 6 h where the mass activity was found to meet the DOE target for 2015. This remarkable performance was accounted for by the deliberate manipulation of the adsorption of oxygen and reaction intermediates on platinum by the GQD structural defects through partial charge transfer. The strategy presented herein may offer a new paradigm in the design and engineering of nanoparticle catalysts for fuel cell electrochemistry. In addition, studies were also carried out to study intervalence charge transfer between ferrocenyl moieties bonded on carbon nanoparticle surfaces by diazonium reaction. Electrochemical studies exhibited two pairs of voltammetric waves with a difference of their formal potentials at about 78 mV, suggesting nanoparticle-mediated intraparticle charge delocalization at mixed valence as a result of the strong core-ligand covalent bonds and the conductive sp 2 carbon matrix of the graphitic cores. Consistent behaviors were observed in near-infrared measurements, indicating that the particles behaved analogously to a Class I/II mixed-valence compound.

  4. Alkyl Chain Length Dependent Structural and Orientational Transformations of Water at Alcohol-Water Interfaces and Its Relevance to Atmospheric Aerosols.

    PubMed

    Mondal, Jahur A; Namboodiri, V; Mathi, P; Singh, Ajay K

    2017-04-06

    Although the hydrophobic size of an amphiphile plays a key role in various chemical, biological, and atmospheric processes, its effect at macroscopic aqueous interfaces (e.g., air-water, oil-water, cell membrane-water, etc.), which are ubiquitous in nature, is not well understood. Here we report the hydrophobic alkyl chain length dependent structural and orientational transformations of water at alcohol (C n H 2n+1 OH, n = 1-12)-water interfaces using interface-selective heterodyne-detected vibrational sum frequency generation (HD-VSFG) and Raman multivariate curve resolution (Raman-MCR) spectroscopic techniques. The HD-VSFG results reveal that short-chain alcohols (C n H 2n+1 OH, n < 4, i.e., up to 1-propanol) do not affect the structure (H-bonding) and orientation of water at the air-water interface; the OH stretch band maximum appears at ∼3470 cm -1 , and the water H atoms are pointed toward the bulk water, that is, "H-down" oriented. In contrast, long-chain alcohols (C n H 2n+1 OH, n > 4, i.e., beyond 1-butanol) make the interfacial water more strongly H-bonded and reversely orientated; the OH stretch band maximum appears at ∼3200 cm -1 , and the H atoms are pointed away from the bulk water, that is, "H-up" oriented. Interestingly, for the alcohol of intermediate chain length (C n H 2n+1 OH, n = 4, i.e, 1-butanol), the interface is quite unstable even after hours of its formation and the time-averaged result is qualitatively similar to that of the long-chain alcohols, indicating a structural/orientational crossover of interfacial water at the 1-butanol-water interface. pH-dependent HD-VSFG measurements (with H 2 O as well as isotopically diluted water, HOD) suggest that the structural/orientational transformation of water at the long-chain alcohol-water interface is associated with the adsorption of OH - anion at the interface. Vibrational mapping of the water structure in the hydration shell of OH - anion (obtained by Raman-MCR spectroscopy of NaOH in HOD) clearly shows that the water becomes strongly H-bonded (OH stretch max. ≈ 3200 cm -1 ) while hydrating the OH - anion. Altogether, it is conceivable that alcohols of different hydrophobic chain lengths that are present in the troposphere will differently affect the interfacial electrostatics and associated chemical processes of aerosol droplets, which are critical for cloud formation, global radiation budget, and climate change.

  5. Nonmonotonic Elasticity of the Crude Oil-Brine Interface in Relation to Improved Oil Recovery.

    PubMed

    Chávez-Miyauchi, Tomás E; Firoozabadi, Abbas; Fuller, Gerald G

    2016-03-08

    Injection of optimized chemistry water in enhanced oil recovery (EOR) has gained much interest in the past few years. Crude oil-water interfaces can have a viscoelastic character affected by the adsorption of amphiphilic molecules. The brine concentration as well as surfactants may strongly affect the fluid-fluid interfacial viscoelasticity. In this work we investigate interfacial viscoelasticity of two different oils in terms of brine concentration and a nonionic surfactant. We correlate these measurements with oil recovery in a glass-etched flow microchannel. Interfacial viscoelasticity develops relatively fast in both oils, stabilizing at about 48 h. The interfaces are found to be more elastic than viscous. The interfacial elastic (G') and viscous (G″) moduli increase as the salt concentration decreases until a maximum in viscoelasticity is observed around 0.01 wt % of salt. Monovalent (Na(+)) and divalent (Mg(2+)) cations are used to investigate the effect of ion type; no difference is observed at low salinity. The introduction of a small amount of a surfactant (100 ppm) increases the elasticity of the crude oil-water interface at high salt concentration. Aqueous solutions that give the maximum interface viscoelasticity and high salinity brines are used to displace oil in a glass-etched "porous media" micromodel. Pressure fluctuations after breakthrough are observed in systems with high salt concentration while at low salt concentration there are no appreciable pressure fluctuations. Oil recovery increases by 5-10% in low salinity brines. By using a small amount of a nonionic surfactant with high salinity brine, oil recovery is enhanced 10% with no pressure fluctuations. Interface elasticity reduces the snap-off of the oil phase, leading to reduced pressure fluctuations. This study sheds light on significance of interface viscoelasticity in oil recovery by change in salt concentration and by addition of a small amount of a nonionic surfactant.

  6. Interactions of chitin nanocrystals with β-lactoglobulin at the oil-water interface, studied by drop shape tensiometry.

    PubMed

    Gülseren, Ibrahim; Corredig, Milena

    2013-11-01

    Particle stabilized emulsions have been gaining increasing attention in the past few years, because of their unique interfacial properties. However, interactions between food grade particles and other surfactants at the interface still need to be understood. In this research, the interfacial properties of chitin nanocrystals (ChN) were studied in the presence of a surface active milk protein, β-lactoglobulin (β-lg), often used to stabilize oil-in-water emulsions. ChN were prepared by acid hydrolysis of chitin. At low pH (pH 3), ChN and β-lg do not interact, as demonstrated by light scattering measurements, and both components carry positive charge. The properties of the interface were tested using drop shape tensiometry. Addition of ChN or β-lg to the aqueous phase reduced the interfacial tension, and β-lg adsorption was characterized with an increase in the interfacial elasticity. When β-lg was added to a solution containing 0.1% ChN, the film elasticity increased first and then decreased with increasing β-lg concentration. The mixed film elasticity was the highest at a combination of 0.1% ChN+0.01% β-lg, when both molecules were simultaneously added to the aqueous phase. On the other hand, when β-lg was added after ChN, the protein did not affect the properties of the interface, indicating that the ChN (0.1%) equilibrated film was stable and that protein-protein interactions, normally resulting in an increase in the film elasticity, did not occur. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Influence of compaction on the interfacial transition zone and the permeability of concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leemann, Andreas; Muench, Beat; Gasser, Philippe

    2006-08-15

    The interfacial transition zone (ITZ) is regarded as a key feature for the transport properties and the durability of concrete. In this study one self-compacting concrete (SCC) mixture and two conventionally vibrated concrete (CVC) mixtures are studied in order to determine the influence of compaction on the porosity of the ITZ. Additionally oxygen permeability and water conductivity were measured in vertical and horizontal direction. The quantitative analysis of images made with an optical microscope and an environmental scanning electron microscope shows a significantly increased porosity and width of the ITZ in CVC compared to SCC. At the same time oxygenmore » permeability and water conductivity of CVC are increased in comparison to SCC. Moreover, considerable differences in the porosity of the lower, lateral and upper ITZ are observed in both types of concrete. The anisotropic distribution of pores in the ITZ does not necessarily cause anisotropy in oxygen permeability and water conductivity though.« less

  8. Ice-nucleating bacteria control the order and dynamics of interfacial water

    DOE PAGES

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.; ...

    2016-04-22

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering onmore » the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. Finally, the freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy.« less

  9. Influence of interfacial and bulk properties of cellulose ethers on lipolysis of oil-in-water emulsions.

    PubMed

    Torcello-Gómez, Amelia; Foster, Timothy J

    2016-06-25

    Cellulose ethers are usually used as secondary emulsifiers. Different types of commercial hydroxypropylmethylcellulose (HPMC) have been used here as the main emulsifier of oil-in-water emulsions to probe their impact on the lipid digestibility under simulated intestinal conditions. The droplet size distribution and ζ-potential of the emulsions subjected to in-vitro lipolysis have been compared with that of control samples (non-digested). The lipolysis has been quantified over time by means of the pH-stat method. The displacement of HPMC from the oil-water interface by bile salts has been assessed by interfacial tension technique. Results show that HPMC delays the lipid digestion of emulsions regardless of the Mw and methoxyl content. The destabilisation of emulsions under intestinal conditions as well as the resistance of HPMC to be displaced from the emulsion interface by bile salts may contribute to this feature. This provides new insights into the mechanisms whereby dietary fibre reduces fat absorption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Molecular dynamics simulation of potentiometric sensor response: the effect of biomolecules, surface morphology and surface charge.

    PubMed

    Lowe, B M; Skylaris, C-K; Green, N G; Shibuta, Y; Sakata, T

    2018-05-10

    The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of this response caused by surface binding of biomolecules remains highly challenging. In this work, through the most extensive molecular dynamics simulation of the silica-water interfacial potential and electric field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline silica model due to increased sodium adsorption, in agreement with experiments showing improved sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be used as a complementary tool for potentiometric biosensor response prediction. Effects that are conventionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size effects, are explicitly modelled.

  11. Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation

    PubMed Central

    Digdaya, Ibadillah A.; Adhyaksa, Gede W. P.; Trześniewski, Bartek J.; Garnett, Erik C.; Smith, Wilson A.

    2017-01-01

    Solar-assisted water splitting can potentially provide an efficient route for large-scale renewable energy conversion and storage. It is essential for such a system to provide a sufficiently high photocurrent and photovoltage to drive the water oxidation reaction. Here we demonstrate a photoanode that is capable of achieving a high photovoltage by engineering the interfacial energetics of metal–insulator–semiconductor junctions. We evaluate the importance of using two metals to decouple the functionalities for a Schottky contact and a highly efficient catalyst. We also illustrate the improvement of the photovoltage upon incidental oxidation of the metallic surface layer in KOH solution. Additionally, we analyse the role of the thin insulating layer to the pinning and depinning of Fermi level that is responsible to the resulting photovoltage. Finally, we report the advantage of using dual metal overlayers as a simple protection route for highly efficient metal–insulator–semiconductor photoanodes by showing over 200 h of operational stability. PMID:28660883

  12. Distinct Interfacial Fluorescence in Oil-in-Water Emulsions via Exciton Migration of Conjugated Polymers.

    PubMed

    Koo, Byungjin; Swager, Timothy M

    2017-09-01

    Commercial dyes are extensively utilized to stain specific phases for the visualization applications in emulsions and bioimaging. In general, dyes emit only one specific fluorescence signal and thus, in order to stain various phases and/or interfaces, one needs to incorporate multiple dyes and carefully consider their compatibility to avoid undesirable interactions with each other and with the components in the system. Herein, surfactant-type, perylene-endcapped fluorescent conjugated polymers that exhibit two different emissions are reported, which are cyan in water and red at oil-water interfaces. The interfacially distinct red emission results from enhanced exciton migration from the higher-bandgap polymer backbone to the lower-bandgap perylene endgroup. The confocal microscopy images exhibit the localized red emission exclusively from the circumference of oil droplets. This exciton migration and dual fluorescence of the polymers in different physical environments can provide a new concept of visualization methods in many amphiphilic colloidal systems and bioimaging. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Flotation mechanisms of molybdenite fines by neutral oils

    NASA Astrophysics Data System (ADS)

    Lin, Qing-quan; Gu, Guo-hua; Wang, Hui; Liu, You-cai; Fu, Jian-gang; Wang, Chong-qing

    2018-01-01

    The flotation mechanisms of molybdenite fines by neutral oils were investigated through microflotation test, turbidity measurements, infrared spectroscopy, and interfacial interaction calculations. The results of the flotation test show that at pH 2-11, the floatability of molybdenite fines in the presence of transformer oil is markedly better than that in the presence of kerosene and diesel oil. The addition of transformer oil, which enhances the floatability of molybdenite fines, promotes the aggregation of molybdenite particles. Fourier transform infrared measurements illustrate that physical interaction dominates the adsorption mechanism of neutral oil on molybdenite. Interfacial interaction calculations indicate that hydrophobic attraction is the crucial force that acts among the oil collector, water, and molybdenite. Strong hydrophobic attraction between the oily collector and water provides the strong dispersion capability of the collector in water. Furthermore, the dispersion capability of the collector, not the interaction strength between the oily collectors and molybdenite, has a highly significant role in the flotation system of molybdenite fines. Our findings provide insights into the mechanism of molybdenite flotation.

  14. Ice-nucleating bacteria control the order and dynamics of interfacial water

    PubMed Central

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.; Fischer, Sean A.; Pfaendtner, Jim; Backus, Ellen H. G.; Nagata, Yuki; Fröhlich-Nowoisky, Janine; Schmüser, Lars; Mauri, Sergio; Scheel, Jan F.; Knopf, Daniel A.; Pöschl, Ulrich; Bonn, Mischa; Weidner, Tobias

    2016-01-01

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering on the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice-active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. The freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy. PMID:27152346

  15. Interaction of a Model Peptide with a Water--Bilayer System

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Wilson, M. A.

    1994-01-01

    We discuss a molecular dynamics study of the alanine dipeptide at the interface between water and a glycerol-1-monooleate (GMO) bilayer. The dipeptide is interfacially active and incorporates into the bilayer without disrupting its structure. The interfacial region that is readily penetrated by the dipeptide spans the entire head group portion of the bilayer. The polar groups of the alanine dipeptide mostly remain well solvated by water and the oxygen atoms of GMO, and conformations of the dipeptide are characterized by (phi, psi) angles typical of alpha-helix and beta-sheet structures. When the molecule is deeper in the bilayer, the C(sub 7eq) state also becomes stable. The barrier to the isomerization reaction at the interface is lower than in bulk phases. After 7 ns of trajectories, the system is not fully equilibrated, due to slow collective motions involving GMO head groups. These result in decreased mobility and lower rates of isomerization of the dipeptide at the interface.

  16. Confined methane-water interfacial layers and thickness measurements using in situ Raman spectroscopy.

    PubMed

    Pinho, Bruno; Liu, Yukun; Rizkin, Benjamin; Hartman, Ryan L

    2017-11-07

    Gas-liquid interfaces broadly impact our planet, yet confined interfaces behave differently than unconfined ones. We report the role of tangential fluid motion in confined methane-water interfaces. The interfaces are created using microfluidics and investigated by in situ 1D, 2D and 3D Raman spectroscopy. The apparent CH 4 and H 2 O concentrations are reported for Reynolds numbers (Re), ranging from 0.17 to 8.55. Remarkably, the interfaces are comprised of distinct layers of thicknesses varying from 23 to 57 μm. We found that rarefaction, mixture, thin film, and shockwave layers together form the interfaces. The results indicate that the mixture layer thickness (δ) increases with Re (δ ∝ Re), and traditional transport theory for unconfined interfaces does not explain the confined interfaces. A comparison of our results with thin film theory of air-water interfaces (from mass transfer experiments in capillary microfluidics) supports that the hydrophobicity of CH 4 could decrease the strength of water-water interactions, resulting in larger interfacial thicknesses. Our findings help explain molecular transport in confined gas-liquid interfaces, which are common in a broad range of societal applications.

  17. Hydrated proton and hydroxide charge transfer at the liquid/vapor interface of water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soniat, Marielle; Rick, Steven W., E-mail: srick@uno.edu; Kumar, Revati

    2015-07-28

    The role of the solvated excess proton and hydroxide ions in interfacial properties is an interesting scientific question with applications in a variety of aqueous behaviors. The role that charge transfer (CT) plays in interfacial behavior is also an unsettled question. Quantum calculations are carried out on clusters of water with an excess proton or a missing proton (hydroxide) to determine their CT. The quantum results are applied to analysis of multi-state empirical valence bond trajectories. The polyatomic nature of the solvated excess proton and hydroxide ion results in directionally dependent CT, depending on whether a water molecule is amore » hydrogen bond donor or acceptor in relation to the ion. With polyatomic molecules, CT also depends on the intramolecular bond distances in addition to intermolecular distances. The hydrated proton and hydroxide affect water’s liquid/vapor interface in a manner similar to monatomic ions, in that they induce a hydrogen-bonding imbalance at the surface, which results in charged surface waters. This hydrogen bond imbalance, and thus the charged waters at the surface, persists until the ion is at least 10 Å away from the interface.« less

  18. Framework Nucleic Acids-Enabled Biosensor Development.

    PubMed

    Yang, Fan; Li, Qian; Wang, Lihua; Zhang, Guo-Jun; Fan, Chunhai

    2018-05-03

    Nucleic acids have been actively exploited to develop various exquisite nanostructures due to their unparalleled programmability. Especially, framework nucleic acids (FNAs) with tailorable functionality and precise addressability hold great promise for biomedical applications. In this review, we summarize recent progress of FNA-enabled biosensing in homogeneous solutions, on heterogeneous surfaces and inside cells. We describe the strategies to translate the structural order and rigidity of FNAs to interfacial engineering with high controllability, and approaches to realize multiplexing for highly parallel in-vitro detection. We also envision the marriage of the currently available FNA toolsets with other emerging technologies to develop a new generation of biosensors for precision diagnosis and bioimaging.

  19. Porphyrin-Based Nanostructures for Photocatalytic Applications

    PubMed Central

    Chen, Yingzhi; Li, Aoxiang; Huang, Zheng-Hong; Wang, Lu-Ning; Kang, Feiyu

    2016-01-01

    Well-defined organic nanostructures with controllable size and morphology are increasingly exploited in optoelectronic devices. As promising building blocks, porphyrins have demonstrated great potentials in visible-light photocatalytic applications, because of their electrical, optical and catalytic properties. From this perspective, we have summarized the recent significant advances on the design and photocatalytic applications of porphyrin-based nanostructures. The rational strategies, such as texture or crystal modification and interfacial heterostructuring, are described. The applications of the porphyrin-based nanostructures in photocatalytic pollutant degradation and hydrogen evolution are presented. Finally, the ongoing challenges and opportunities for the future development of porphyrin nanostructures in high-quality nanodevices are also proposed. PMID:28344308

  20. Is It Possible To Fabricate a Nanocomposite with Excellent Mechanical Property Using Unmodified Inorganic Nanoparticles Directly?

    PubMed

    Zhang, Chunhua; Xia, Liangjun; Lyu, Pei; Wang, Yun; Li, Chen; Xiao, Xingfang; Dai, Fangyin; Xu, Weilin; Liu, Xin; Deng, Bo

    2018-05-09

    Unmodified ZrO 2 nanoparticles (ZDNPs) are used for the enhancement of polyurethane (PU) films. Optimized strain and toughness of PU/ZDNP nanocomposite at 9.09 wt % ZDNPs are up to 2714.6%, and 280.8 MJ m -3 , respectively. The unique bimodal ZDNP aggregate size distribution which exploits both interfacial positively and negatively toughening mechanisms accounts mainly for the excellent mechanical property of PU/ZDNP nanocomposite. The dependence of different toughening mechanisms on three sizes of ZDNP aggregates is summarized. These findings provide a new avenue for the industrial production of nanocomposites at low cost without surface modification of inorganic nanoparticles.

  1. Molecular engineering of polymersome surface topology

    PubMed Central

    Ruiz-Pérez, Lorena; Messager, Lea; Gaitzsch, Jens; Joseph, Adrian; Sutto, Ludovico; Gervasio, Francesco Luigi; Battaglia, Giuseppe

    2016-01-01

    Biological systems exploit self-assembly to create complex structures whose arrangements are finely controlled from the molecular to mesoscopic level. We report an example of using fully synthetic systems that mimic two levels of self-assembly. We show the formation of vesicles using amphiphilic copolymers whose chemical nature is chosen to control both membrane formation and membrane-confined interactions. We report polymersomes with patterns that emerge by engineering interfacial tension within the polymersome surface. This allows the formation of domains whose topology is tailored by chemical synthesis, paving the avenue to complex supramolecular designs functionally similar to those found in viruses and trafficking vesicles. PMID:27152331

  2. The inhibition of methane hydrate formation by water alignment underneath surface adsorption of surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ngoc N.; Nguyen, Anh V.; Dang, Liem X.

    Sodium dodecyl sulfate (SDS) has been widely shown to strongly promote the formation of methane hydrate. Here we show that SDS displays an extraordinary inhibition effect on methane hydrate formation when the surfactant is used in sub-millimolar concentration (around 0.3 mM). We have also employed Sum Frequency Generation vibrational spectroscopy (SFG) and molecular dynamics simulation (MDS) to elucidate the molecular mechanism of this inhibition. The SFG and MDS results revealed a strong alignment of water molecules underneath surface adsorption of SDS in its sub-millimolar solution. Interestingly, both the alignment of water and the inhibition effect (in 0.3 mM SDS solution)more » went vanishing when an oppositely-charged surfactant (tetra-n-butylammonium bromide, TBAB) was suitably added to produce a mixed solution of 0.3 mM SDS and 3.6 mM TBAB. Combining structural and kinetic results, we pointed out that the alignment of water underneath surface adsorption of dodecyl sulfate (DS-) anions gave rise to the unexpected inhibition of methane hydration formation in sub-millimolar solution of SDS. The adoption of TBAB mitigated the SDS-induced electrostatic field at the solution’s surface and, therefore, weakened the alignment of interfacial water which, in turn, erased the inhibition effect. We discussed this finding using the concept of activation energy of the interfacial formation of gas hydrate. The main finding of this work is to reveal the interplay of interfacial water in governing gas hydrate formation which sheds light on a universal molecular-scale understanding of the influence of surfactants on gas hydrate formation. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less

  3. Energy Reduction Effect of the South-to-North Water Diversion Project in China.

    PubMed

    Zhao, Yong; Zhu, Yongnan; Lin, Zhaohui; Wang, Jianhua; He, Guohua; Li, Haihong; Li, Lei; Wang, Hao; Jiang, Shan; He, Fan; Zhai, Jiaqi; Wang, Lizhen; Wang, Qingming

    2017-11-21

    The North China Plain, with a population of approximately 150 million, is facing severe water scarcity. The over-exploitation of groundwater in the region, with accumulation amounts reaching more than 150 billion m 3 , causes a series of hydrological and geological problems together with the consumption of a significant amount of energy. Here, we highlight the energy and greenhouse gas-related environmental co-benefits of the South-to-North Water Diversion Project (SNWDP). Moreover, we evaluate the energy-saving effect of SNWDP on groundwater exploitation based on the groundwater-exploitation reduction program implemented by the Chinese government. Our results show that the transferred water will replace about 2.97 billion m 3 of exploited groundwater in the water reception area by 2020 and hence reduce energy consumption by 931 million kWh. Further, by 2030, 6.44 billion m 3 of groundwater, which accounts for 27% of the current groundwater withdrawal, will save approximately 7% of Beijing's current thermal power generation output.

  4. An interfacial mechanism for cloud droplet formation on organic aerosols

    DOE PAGES

    Ruehl, C. R.; Davies, J. F.; Wilson, K. R.

    2016-03-25

    Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depressionmore » by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation.« less

  5. An interfacial mechanism for cloud droplet formation on organic aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruehl, C. R.; Davies, J. F.; Wilson, K. R.

    Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depressionmore » by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation.« less

  6. Tuning Interfacial Properties and Processes by Controlling the Rheology and Structure of Poly( N-isopropylacrylamide) Particles at Air/Water Interfaces.

    PubMed

    Maestro, Armando; Jones, Daniel; Sánchez de Rojas Candela, Carmen; Guzman, Eduardo; Duits, Michel H G; Cicuta, Pietro

    2018-06-05

    By combining controlled experiments on single interfaces with measurements on solitary bubbles and liquid foams, we show that poly( N-isopropylacrylamide) (PNIPAM) microgels assembled at air/water interfaces exhibit a solid to liquid transition changing the temperature, and that this is associated with the change in the interfacial microstructure of the PNIPAM particles around their volume phase transition temperature. We show that the solid behaves as a soft 2D colloidal glass, and that the existence of this solid/liquid transition offers an ideal platform to tune the permeability of air bubbles covered by PNIPAM and to control macroscopic foam properties such as drainage, stability, and foamability. PNIPAM particles on fluid interfaces allow new tunable materials, for example foam structures with variable mechanical properties upon small temperature changes.

  7. An interfacial mechanism for cloud droplet formation on organic aerosols.

    PubMed

    Ruehl, Christopher R; Davies, James F; Wilson, Kevin R

    2016-03-25

    Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depression by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation. Copyright © 2016, American Association for the Advancement of Science.

  8. Spontaneous nano-gap formation in Ag film using NaCl sacrificial layer for Raman enhancement

    NASA Astrophysics Data System (ADS)

    Min, Kyungchan; Jeon, Wook Jin; Kim, Youngho; Choi, Jae-Young; Yu, Hak Ki

    2018-03-01

    We report the method of fabrication of nano-gaps (known as hot spots) in Ag thin film using a sodium chloride (NaCl) sacrificial layer for Raman enhancement. The Ag thin film (20-50 nm) on the NaCl sacrificial layer undergoes an interfacial reaction due to the AgCl formed at the interface during water molecule intercalation. The intercalated water molecules can dissolve the NaCl molecules at interfaces and form the ionic state of Na+ and Cl-, promoting the AgCl formation. The Ag atoms can migrate by the driving force of this interfacial reaction, resulting in the formation of nano-size gaps in the film. The surface-enhanced Raman scattering activity of Ag films with nano-size gaps has been investigated using Raman reporter molecules, Rhodamine 6G (R6G).

  9. Two-Layer Viscous Shallow-Water Equations and Conservation Laws

    NASA Astrophysics Data System (ADS)

    Kanayama, Hiroshi; Dan, Hiroshi

    In our previous papers, the two-layer viscous shallow-water equations were derived from the three-dimensional Navier-Stokes equations under the hydrostatic assumption. Also, it was noted that the combination of upper and lower equations in the two-layer model produces the classical one-layer equations if the density of each layer is the same. Then, the two-layer equations were approximated by a finite element method which followed our numerical scheme established for the one-layer model in 1978. Also, it was numerically demonstrated that the interfacial instability generated when the densities are the same can be eliminated by providing a sufficient density difference. In this paper, we newly show that conservation laws are still valid in the two-layer model. Also, we show results of a new physical experiment for the interfacial instability.

  10. Effects of physical and chemical aspects on membrane fouling and cleaning using interfacial free energy analysis in forward osmosis.

    PubMed

    Zhang, Wanzhu; Dong, Bingzhi

    2018-05-20

    Natural organic matter (NOM) in micro-polluted water purification using membranes is a critical issue to handle. Understanding the fouling mechanism in the forward osmosis (FO) process, particularly identifying the predominant factor that controls membrane fouling, could have significant effects on exerting the advantages of FO technique. Cellulose triacetate no-woven (CTA-NW) membrane is applied to experiments with a high removal efficiency (> 99%) for the model foulant. Tannic acid (TA) is used as a surrogate foulant for NOM in the membrane fouling process, thus enabling the analysis of the effects of physical and chemical aspects of water flux, retention, and adsorption. The membrane fouling behavior is affected mainly by the combined effects of the osmotic dragging force and the interaction of the pH in the working solution, foulants, and calcium ions, as demonstrated by the water flux loss and the changes of membrane retention and adsorption. The fouled CTA-NW membrane (in PRO mode) could be flux-recovered by > 85% through physical cleaning methods. The interfacial free energy analysis theory was used to analyze the membrane fouling behavior with calculating the interfacial cohesion and adhesion free energies. The cohesion free energy refers to the deposition of foulants (TA or TA combined with calcium ions) on a fouled membrane. In addition, the adhesion free energy could be used to evaluate the interaction between foulants and a clean membrane.

  11. Pore shape of honeycomb-patterned films: modulation and interfacial behavior.

    PubMed

    Wan, Ling-Shu; Ke, Bei-Bei; Zhang, Jing; Xu, Zhi-Kang

    2012-01-12

    The control of the pore size of honeycomb-patterned films has been more or less involved in most work on the topic of breath figures. Modulation of the pore shape was largely ignored, although it is important to applications in replica molding, filtration, particle assembly, and cell culture. This article reports a tunable pore shape for patterned films prepared from commercially available polystyrene (PS). We investigated the effects of solvents including tetrahydrofuran (THF) and chloroform (CF) and hydrophilic additives including poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA), poly(ethylene glycol) (PEG), and poly(N-vinyl pyrrolidone) (PVP). Water droplets on/in the polymer solutions were observed and analyzed for simulating the formation and stabilization of breath figures. Interfacial tensions of the studied systems were measured and considered as a main factor to modulate the pore shape. Results indicate that the pores gradually change from near-spherical to ellipsoidal with the increase of additive content when using CF as the solvent; however, only ellipsoidal pores are formed from the THF solution. It is demonstrated that the aggregation of the additives at the water/polymer solution interface is more efficient in the THF solution than that in the CF solution. This aggregation decreases the interfacial tension, stabilizes the condensed water droplets, and shapes the pores of the films. The results may facilitate our understanding of the dynamic breath figure process and provide a new pathway to prepare patterned films with different pore structures.

  12. Blocking Gastric Lipase Adsorption and Displacement Processes with Viscoelastic Biopolymer Adsorption Layers.

    PubMed

    Scheuble, Nathalie; Lussi, Micha; Geue, Thomas; Carrière, Frédéric; Fischer, Peter

    2016-10-10

    Delayed fat digestion might help to fight obesity. Fat digestion begins in the stomach by adsorption of gastric lipases to oil/water interfaces. In this study we show how biopolymer covered interfaces can act as a physical barrier for recombinant dog gastric lipase (rDGL) adsorption and thus gastric lipolysis. We used β-lactoglobulin (β-lg) and thermosensitive methylated nanocrystalline cellulose (metNCC) as model biopolymers to investigate the role of interfacial fluid dynamics and morphology for interfacial displacement processes by rDGL and polysorbate 20 (P20) under gastric conditions. Moreover, the influence of the combination of the flexible β-lg and the elastic metNCC was studied. The interfaces were investigated combining interfacial techniques, such as pendant drop, interfacial shear and dilatational rheology, and neutron reflectometry. Displacement of biopolymer layers depended mainly on the fluid dynamics and thickness of the layers, both of which were drastically increased by the thermal induced gelation of metNCC at body temperature. Soft, thin β-lg interfaces were almost fully displaced from the interface, whereas the composite β-lg-metNCC layer thermogelled to a thick interfacial layer incorporating β-lg as filler material and therefore resisted higher shear forces than a pure metNCC layer. Hence, with metNCC alone lipolysis by rDGL was inhibited, whereas the layer performance could be increased by the combination with β-lg.

  13. Exploring the specific features of interfacial enzymology based on lipase studies.

    PubMed

    Aloulou, Ahmed; Rodriguez, Jorge A; Fernandez, Sylvie; van Oosterhout, Dirk; Puccinelli, Delphine; Carrière, Frédéric

    2006-09-01

    Many enzymes are active at interfaces in the living world (such as in the signaling processes at the surface of cell membranes, digestion of dietary lipids, starch and cellulose degradation, etc.), but fundamental enzymology remains largely focused on the interactions between enzymes and soluble substrates. The biochemical and kinetic characterization of lipolytic enzymes has opened up new paths of research in the field of interfacial enzymology. Lipases are water-soluble enzymes hydrolyzing insoluble triglyceride substrates, and studies on these enzymes have led to the development of specific interfacial kinetic models. Structure-function studies on lipases have thrown light on the interfacial recognition sites present in the molecular structure of these enzymes, the conformational changes occurring in the presence of lipids and amphiphiles, and the stability of the enzymes present at interfaces. The pH-dependent activity, substrate specificity and inhibition of these enzymes can all result from both "classical" interactions between a substrate or inhibitor and the active site, as well as from the adsorption of the enzymes at the surface of aggregated substrate particles such as oil drops, lipid bilayers or monomolecular lipid films. The adsorption step can provide an alternative target for improving substrate specificity and developing specific enzyme inhibitors. Several data obtained with gastric lipase, classical pancreatic lipase, pancreatic lipase-related protein 2 and phosphatidylserine-specific phospholipase A1 were chosen here to illustrate these specific features of interfacial enzymology.

  14. How to Attain an Ultralow Interfacial Tension and a Three-Phase Behavior with a Surfactant Formulation for Enhanced Oil Recovery: A Review. Part 2. Performance Improvement Trends from Winsor's Premise to Currently Proposed Inter- and Intra-Molecular Mixtures.

    PubMed

    Salager, Jean-Louis; Forgiarini, Ana M; Márquez, Laura; Manchego, Lisbeth; Bullón, Johnny

    2013-01-01

    The minimum interfacial tension occurrence along a formulation scan at the so-called optimum formulation is discussed to be related to the interfacial curvature. The attained minimum tension is inversely proportional to the domain size of the bicontinuous microemulsion and to the interfacial layer rigidity, but no accurate prediction is available. The data from a very simple ternary system made of pure products accurately follows the correlation for optimum formulation, and exhibit a linear relationship between the performance index as the logarithm of the minimum tension at optimum, and the formulation variables. This relation is probably too simple when the number of variables is increased as in practical cases. The review of published data for more realistic systems proposed for enhanced oil recovery over the past 30 years indicates a general guidelines following Winsor's basic studies concerning the surfactant-oil-water interfacial interactions. It is well known that the major performance benefits are achieved by blending amphiphilic species at the interface as intermolecular or intramolecular mixtures, sometimes in extremely complex formulations. The complexity is such that a good knowledge of the possible trends and an experienced practical know-how to avoid trial and error are important for the practitioner in enhanced oil recovery.

  15. Interfacial tension measurement between CO2 and brines under high temperature and elevated pressure conditions

    NASA Astrophysics Data System (ADS)

    Li, X.; Boek, E. S.; Maitland, G. C.; Trusler, J. P. M.

    2012-04-01

    We have investigated the dependence of interfacial tension of (CO2 + brine) on temperature, pressure and salinity (including both salt type and molality) over the range of conditions applicable to CO2 storage in saline aquifers. The study covered a wide range of measurements of the interfacial tensions between carbon dioxide and (NaCl + KCl)(aq), CaCl2(aq), MgCl2(aq), Na2SO4(aq), KHCO3(aq), NaHCO3(aq) and two laboratory constructed brines with molality ranging from (0.3 to 5.0) mol·kg-1. The measurements were made at temperatures between (298 and 448) K at various pressures up to 50 MPa, using the pendant drop method in a high-pressure view cell filled with water-saturated CO2. The drop to be imaged was created by injecting brine from a high-pressure syringe pump into a capillary sealed through the top of the cell. The expanded uncertainties of the experimental state variables at 95 % confidence are +0.05 K in temperature and +70 kPa in pressure. For the interfacial tension, the overall expanded relative uncertainty at 95 % confidence was +1.6%. The experimental results show that interfacial tension for all the systems increases linearly with molality, indicating that relatively few measurements and simple interpolation procedures are adequate for describing this property accurately over wide ranges of conditions.

  16. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-05-01

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m-1 at a low dosage as 0.100 g L-1 of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants.

  17. Hemp-Fiber-Reinforced Unsaturated Polyester Composites: Optimization of Processing and Improvement of Interfacial Adhesion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qui, Renhui; Ren, Xiaofeng; Fifield, Leonard S.

    2011-02-25

    The processing variables for making hemp-fiber-reinforced unsaturated polyester (UPE) composites were optimized through orthogonal experiments. It was found that the usage of initiator, methyl ethyl ketone peroxide, had the most significant effect on the tensile strength of the composites. The treatment of hemp fibers with a combination of 1, 6-diisocyanatohexane (DIH) and 2-hydroxylethyl acrylate (HEA) significantly increased tensile strength, flexural modulus of rupture and flexural modulus of elasticity, and water resistance of the resulting hemp-UPE composites. FTIR spectra revealed that DIH and HEA were covalently bonded to hemp fibers. Scanning electronic microscopy graphs of the fractured hemp-UPE composites demonstrated thatmore » treatment of hemp fibers with a combination of DIH and HEA greatly improved the interfacial adhesion between hemp fibers and UPE. The mechanism of improving the interfacial adhesion is proposed.« less

  18. A Capillary Flow Dynamics-Based Sensing Modality for Direct Environmental Pathogen Monitoring.

    PubMed

    Klug, Katherine E; Reynolds, Kelly A; Yoon, Jeong-Yeol

    2018-04-20

    Toward ultra-simple and field-ready biosensors, we demonstrate a novel assay transducer mechanism based on interfacial property changes and capillary flow dynamics in antibody-conjugated submicron particle suspensions. Differential capillary flow is tunable, allowing pathogen quantification as a function of flow rate through a paper-based microfluidic device. Flow models based on interfacial and rheological properties indicate a significant relationship between the flow rate and the interfacial effects caused by target-particle aggregation. This mechanism is demonstrated for assays of Escherichia coli K12 in water samples and Zika virus (ZIKV) in blood serum. These assays achieved very low limits of detection compared with other demonstrated methods (1 log CFU/mL E. coli and 20 pg/mL ZIKV whole virus) with an operating time of 30 s, showing promise for environmental and health monitoring. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants

    PubMed Central

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-01-01

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m−1 at a low dosage as 0.100 g L−1 of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants. PMID:25944301

  20. The role of interfacial water layer in atmospherically relevant charge separation

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Indrani

    Charge separation at interfaces is important in various atmospheric processes, such as thunderstorms, lightning, and sand storms. It also plays a key role in several industrial processes, including ink-jet printing and electrostatic separation. Surprisingly, little is known about the underlying physics of these charging phenomena. Since thin films of water are ubiquitous, they may play a role in these charge separation processes. This talk will focus on the experimental investigation of the role of a water adlayer in interfacial charging, with relevance to meteorologically important phenomena, such as atmospheric charging due to wave actions on oceans and sand storms. An ocean wave generates thousands of bubbles, which upon bursting produce numerous large jet droplets and small film droplets that are charged. In the 1960s, Blanchard showed that the jet droplets are positively charged. However, the charge on the film droplets was not known. We designed an experiment to exclusively measure the charge on film droplets generated by bubble bursting on pure water and aqueous salt solution surfaces. We measured their charge to be negative and proposed a model where a slight excess of hydroxide ions in the interfacial water layer is responsible for generating these negatively charged droplets. The findings from this research led to a better understanding of the ionic disposition at the air-water interface. Sand particles in a wind-blown sand layer, or 'saltation' layer, become charged due to collisions, so much so, that it can cause lightning. Silica, being hydrophilic, is coated with a water layer even under low-humidity conditions. To investigate the importance of this water adlayer in charging the silica surfaces, we performed experiments to measure the charge on silica surfaces due to contact and collision processes. In case of contact charging, the maximum charge separation occurred at an optimum relative humidity. On the contrary, in collisional charging process, no humidity effect was observed. We proposed an ion transfer mechanism in case of contact charging. However, an electron transfer mechanism explained the collisional charging process. The effects of temperature, surface roughness, and chemical nature of surface were also studied for both contact and collisional charging processes.

  1. Orientation-dependent hydration structures at yttria-stabilized cubic zirconia surfaces

    DOE PAGES

    Hou, Binyang; Kim, Seunghyun; Kim, Taeho; ...

    2016-11-30

    Water interaction with surfaces is very important and plays key roles in many natural and technological processes. Because the experimental challenges that arise when studying the interaction water with specific crystalline surfaces, most studies on metal oxides have focused on powder samples, which averaged the interaction over different crystalline surfaces. As a result, studies on the crystal orientation-dependent interaction of water with metal oxides are rarely available in the literature. In this work, water adsorption at 8 mol % yttria-stabilized cubic single crystal zirconia (100) and (111) surfaces was studied in terms of interfacial hydration structures using high resolution X-raymore » reflectivity measurements. The interfacial electron density profiles derived from the structure factor analysis of the measured data show the existence of multiple layers of adsorbed water with additional peculiar metal adsorption near the oxide surfaces.Surface relaxation, depletion, and interaction between the adsorbed layers and bulk water are found to vary greatly between the two surfaces and are also different when compared to the previously studied (110) surface. The fractional ratio between chemisorbed and physisorbed water species were also quantitatively estimated, which turned out to vary dramatically from surface to surface. Finally, the result gives us a unique opportunity to reconsider the simplified 2:1 relation between chemisorption and physisorption, originally proposed by Morimoto et al. based on the adsorption isotherms of water on powder metal oxide samples.« less

  2. Squirt flow due to interfacial water films in hydrate bearing sediments

    NASA Astrophysics Data System (ADS)

    Sell, Kathleen; Quintal, Beatriz; Kersten, Michael; Saenger, Erik H.

    2018-05-01

    Sediments containing gas hydrate dispersed in the pore space are known to show a characteristic seismic anomaly which is a high attenuation along with increasing seismic velocities. Currently, this observation cannot be fully explained albeit squirt-flow type mechanisms on the microscale have been speculated to be the cause. Recent major findings from in situ experiments, using the gas in excess and water in excess formation method, and coupled with high-resolution synchrotron-based X-ray micro-tomography, have revealed the systematic presence of thin water films between the quartz grains and the encrusting hydrate. The data obtained from these experiments underwent an image processing procedure to quantify the thicknesses and geometries of the aforementioned interfacial water films. Overall, the water films vary from sub-micrometer to a few micrometers in thickness. In addition, some of the water films interconnect through water bridges. This geometrical analysis is used to propose a new conceptual squirt flow model for hydrate bearing sediments. A series of numerical simulations is performed considering variations of the proposed model to study seismic attenuation caused by such thin water films. Our results support previous speculation that squirt flow can explain high attenuation at seismic frequencies in hydrate bearing sediments, but based on a conceptual squirt flow model which is geometrically different than those previously considered.

  3. Influence of cluster–support interactions on reactivity of size-selected Nb xO y clusters

    DOE PAGES

    Nakayama, Miki; Xue, Meng; An, Wei; ...

    2015-04-17

    Size-selected niobium oxide nanoclusters (Nb 3O 5, Nb 3O 7, Nb 4O 7, and Nb 4O 10) were deposited at room temperature onto a Cu(111) surface and a thin film of Cu 2O on Cu(111), and their interfacial electronic interactions and reactivity toward water dissociation were examined. These clusters were specifically chosen to elucidate the effects of the oxidation state of the metal centers; Nb 3O 5 and Nb 4O 7 are the reduced counterparts of Nb 3O 7 and Nb 4O 10, respectively. From two-photon photoemission spectroscopy (2PPE) measurements, we found that the work function increases upon cluster adsorptionmore » in all cases, indicating a negative interfacial dipole moment with the positive end pointing into the surface. The amount of increase was greater for the clusters with more metal centers and higher oxidation state. Additional analysis with DFT calculations of the clusters on Cu(111) indicated that the reduced clusters donate electrons to the substrate, indicating that the intrinsic cluster dipole moment makes a larger contribution to the overall interfacial dipole moment than charge transfer. X-ray photoelectron spectroscopy (XPS) measurements showed that the Nb atoms of Nb 3O 7 and Nb 4O 10 are primarily Nb 5+ on Cu(111), while for the reduced Nb 3O 5 and Nb 4O 7 clusters, a mixture of oxidation states was observed on Cu(111). Temperature-programmed desorption (TPD) experiments with D 2O showed that water dissociation occurred on all systems except for the oxidized Nb 3O 7 and Nb 4O 10 clusters on the Cu 2O film. A comparison of our XPS and TPD results suggests that Nb 5+ cations associated with Nb=O terminal groups act as Lewis acid sites which are key for water binding and subsequent dissociation. TPD measurements of 2-propanol dehydration also show that the clusters active toward water dissociation are indeed acidic. DFT calculations of water dissociation on Nb 3O 7 support our TPD results, but the use of bulk Cu 2O(111) as a model for the Cu 2O film merits future scrutiny in terms of interfacial charge transfer. The combination of our experimental and theoretical results suggests that both Lewis acidity and metal reducibility are important for water dissociation.« less

  4. Contrasting suspended covers reveal the impact of an artificial monolayer on heat transfer processes at the interfacial boundary layer.

    PubMed

    Pittaway, P; Martínez-Alvarez, V; Hancock, N

    2015-01-01

    The highly variable performance of artificial monolayers in reducing evaporation from water storages has been attributed to wind speed and wave turbulence. Other factors operating at the interfacial boundary layer have seldom been considered. In this paper, two physical shade covers differing in porosity and reflectivity were suspended over 10 m diameter water tanks to attenuate wind and wave turbulence. The monolayer octadecanol was applied to one of the covered tanks, and micrometeorological conditions above and below the covers were monitored to characterise diurnal variation in the energy balance. A high downward (air-to-water) convective heat flux developed under the black cover during the day, whereas diurnal variation in the heat flux under the more reflective, wind-permeable white cover was much less. Hourly air and water temperature profiles under the covers over 3 days when forced convection was minimal (low wind speed) were selected for analysis. Monolayer application reduced temperature gain in surface water under a downward convective heat flux, and conversely reduced temperature loss under an upward convective heat flux. This 'dual property' may explain why repeat application of an artificial monolayer to retard evaporative loss (reducing latent heat loss) does not inevitably increase water temperature.

  5. Water-mediated ion-ion interactions are enhanced at the water vapor-liquid interface.

    PubMed

    Venkateshwaran, Vasudevan; Vembanur, Srivathsan; Garde, Shekhar

    2014-06-17

    There is overwhelming evidence that ions are present near the vapor-liquid interface of aqueous salt solutions. Charged groups can also be driven to interfaces by attaching them to hydrophobic moieties. Despite their importance in many self-assembly phenomena, how ion-ion interactions are affected by interfaces is not understood. We use molecular simulations to show that the effective forces between small ions change character dramatically near the water vapor-liquid interface. Specifically, the water-mediated attraction between oppositely charged ions is enhanced relative to that in bulk water. Further, the repulsion between like-charged ions is weaker than that expected from a continuum dielectric description and can even become attractive as the ions are drawn to the vapor side. We show that thermodynamics of ion association are governed by a delicate balance of ion hydration, interfacial tension, and restriction of capillary fluctuations at the interface, leading to nonintuitive phenomena, such as water-mediated like charge attraction. "Sticky" electrostatic interactions may have important consequences on biomolecular structure, assembly, and aggregation at soft liquid interfaces. We demonstrate this by studying an interfacially active model peptide that changes its structure from α-helical to a hairpin-turn-like one in response to charging of its ends.

  6. Water-mediated ion–ion interactions are enhanced at the water vapor–liquid interface

    PubMed Central

    Venkateshwaran, Vasudevan; Vembanur, Srivathsan; Garde, Shekhar

    2014-01-01

    There is overwhelming evidence that ions are present near the vapor–liquid interface of aqueous salt solutions. Charged groups can also be driven to interfaces by attaching them to hydrophobic moieties. Despite their importance in many self-assembly phenomena, how ion–ion interactions are affected by interfaces is not understood. We use molecular simulations to show that the effective forces between small ions change character dramatically near the water vapor–liquid interface. Specifically, the water-mediated attraction between oppositely charged ions is enhanced relative to that in bulk water. Further, the repulsion between like-charged ions is weaker than that expected from a continuum dielectric description and can even become attractive as the ions are drawn to the vapor side. We show that thermodynamics of ion association are governed by a delicate balance of ion hydration, interfacial tension, and restriction of capillary fluctuations at the interface, leading to nonintuitive phenomena, such as water-mediated like charge attraction. “Sticky” electrostatic interactions may have important consequences on biomolecular structure, assembly, and aggregation at soft liquid interfaces. We demonstrate this by studying an interfacially active model peptide that changes its structure from α-helical to a hairpin-turn–like one in response to charging of its ends. PMID:24889634

  7. Understanding the influence of capillary waves on solvation at the liquid-vapor interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rane, Kaustubh, E-mail: rane@csi.tu-darmstadt.de; Vegt, Nico F. A. van der

    2016-03-21

    This work investigates the question if surface capillary waves (CWs) affect interfacial solvation thermodynamic properties that determine the propensity of small molecules toward the liquid-vapor interface. We focus on (1) the evaluation of these properties from molecular simulations in a practical manner and (2) understanding them from the perspective of theories in solvation thermodynamics, especially solvent reorganization effects. Concerning the former objective, we propose a computational method that exploits the relationship between an external field acting on the liquid-vapor interface and the magnitude of CWs. The system considered contains the solvent, an externally applied field (f) and the solute moleculemore » fixed at a particular location. The magnitude of f is selected to induce changes in CWs. The difference between the solvation free energies computed in the presence and in the absence of f is then shown to quantify the contribution of CWs to interfacial solvation. We describe the implementation of this method in the canonical ensemble by using a Lennard-Jones solvent and a non-ionic solute. Results are shown for three types of solutes that differ in the nature of short-ranged repulsive (hard-core) interactions. Overall, we observe that CWs have a negligible or very small effect on the interfacial solvation free energy of a solute molecule fixed near the liquid-vapor interface for the above systems. We also explain how the effects of pinning or dampening of CWs caused by a fixed solute are effectively compensated and do not contribute to the solvation free energy.« less

  8. Effective NiMn Nanoparticles-Functionalized Carbon Felt as an Effective Anode for Direct Urea Fuel Cells.

    PubMed

    Barakat, Nasser A M; Alajami, Mohannad; Ghouri, Zafar Khan; Al-Meer, Saeed

    2018-05-16

    The internal resistances of fuel cells strongly affect the generated power. Basically, in the fuel cell, the anode can be prepared by deposition of a film from the functional electrocatalyst on a proper gas diffusion layer. Accordingly, an interfacial resistance for the electron transport is created between the two layers. Electrocatalyst-functionalized gas diffusion layer (GDL) can distinctly reduce the interfacial resistance between the catalyst layer and the GDL. In this study, NiMn nanoparticles-decorated carbon felt is introduced as functionalized GDL to be exploited as a ready-made anode in a direct urea fuel cell. The proposed treated GDL was prepared by calcination of nickel acetate/manganese acetate-loaded carbon felt under an argon atmosphere at 850 °C. The physiochemical characterizations confirmed complete reduction for the utilized precursors and deposition of pristine NiMn nanoparticles on the carbon felt fiber. In passive direct urea fuel cells, investigation the performance of the functionalized GDLs indicated that the composition of the metal nanoparticles has to be optimized as the GDL obtained from 40 wt % manganese acetate reveals the maximum generated power density; 36 mW/m² at room temperature and 0.5 M urea solution. Moreover, the electrochemical measurements proved that low urea solution concentration is preferred as utilizing 0.5 M solution resulted into generating higher power compared to 1.0 and 2.0 M solution. Overall, this study opens a new avenue toward functionalization of the GDL as a novel strategy to overcome the interfacial resistance between the electrocatalyst and the GDL.

  9. Effective NiMn Nanoparticles-Functionalized Carbon Felt as an Effective Anode for Direct Urea Fuel Cells

    PubMed Central

    Barakat, Nasser A. M.; Alajami, Mohannad; Ghouri, Zafar Khan; Al-Meer, Saeed

    2018-01-01

    The internal resistances of fuel cells strongly affect the generated power. Basically, in the fuel cell, the anode can be prepared by deposition of a film from the functional electrocatalyst on a proper gas diffusion layer. Accordingly, an interfacial resistance for the electron transport is created between the two layers. Electrocatalyst-functionalized gas diffusion layer (GDL) can distinctly reduce the interfacial resistance between the catalyst layer and the GDL. In this study, NiMn nanoparticles-decorated carbon felt is introduced as functionalized GDL to be exploited as a ready-made anode in a direct urea fuel cell. The proposed treated GDL was prepared by calcination of nickel acetate/manganese acetate-loaded carbon felt under an argon atmosphere at 850 °C. The physiochemical characterizations confirmed complete reduction for the utilized precursors and deposition of pristine NiMn nanoparticles on the carbon felt fiber. In passive direct urea fuel cells, investigation the performance of the functionalized GDLs indicated that the composition of the metal nanoparticles has to be optimized as the GDL obtained from 40 wt % manganese acetate reveals the maximum generated power density; 36 mW/m2 at room temperature and 0.5 M urea solution. Moreover, the electrochemical measurements proved that low urea solution concentration is preferred as utilizing 0.5 M solution resulted into generating higher power compared to 1.0 and 2.0 M solution. Overall, this study opens a new avenue toward functionalization of the GDL as a novel strategy to overcome the interfacial resistance between the electrocatalyst and the GDL. PMID:29772710

  10. Structural Interpretation of the Large Slowdown of Water Dynamics at Stacked Phospholipid Membranes for Decreasing Hydration Level: All-Atom Molecular Dynamics

    DOE PAGES

    Calero, Carles; Stanley, H.; Franzese, Giancarlo

    2016-04-27

    Hydration water determines the stability and function of phospholipid membranes as well as the interaction of membranes with other molecules. Experiments and simulations have shown that water dynamics slows down dramatically as the hydration decreases, suggesting that the interfacial water that dominates the average dynamics at low hydration is slower than water away from the membrane. Here, based on all-atom molecular dynamics simulations, we provide an interpretation of the slowdown of interfacial water in terms of the structure and dynamics of water–water and water–lipid hydrogen bonds (HBs). We calculate the rotational and translational slowdown of the dynamics of water confinedmore » in stacked phospholipid membranes at different levels of hydration, from completely hydrated to poorly hydrated membranes. For all hydrations, we analyze the distribution of HBs and find that water–lipids HBs last longer than water–water HBs and that at low hydration most of the water is in the interior of the membrane. We also show that water–water HBs become more persistent as the hydration is lowered. We attribute this effect (i) to HBs between water molecules that form, in turn, persistent HBs with lipids; (ii) to the hindering of the H-bonding switching between water molecules due to the lower water density at the interface; and (iii) to the higher probability of water–lipid HBs as the hydration decreases. Lastly, our interpretation of the large dynamic slowdown in water under dehydration is potentially relevant in understanding membrane biophysics at different hydration levels.« less

  11. Interfacial properties and coal cleaning in the LICADO process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, S.M.B.

    1986-01-01

    The LICADO LIquid CArbon DiOxide process is currently being investigated as a new technique for cleaning coal. It relies on the relative wettability of clean coal and mineral particles between liquid CO/sub 2/ and water so that when liquid CO/sub 2/ is dispersed into a coal-water slurry, it tends to form agglomerates with the clean coal particles and float them to the liquid CO/sub 2/ phase. The mineral particles, on the other hand, remain in the aqueous phase as refuse. Since the surface/interfacial properties of fine coal particles play such an important role in this coal cleaning operation, an understandingmore » of their behavior becomes indispensable. In order to understand the separation mechanisms involved in the LICADO process, it is necessary to study the interfacial interactions occurring in the CO/sub 2/-water-coal system. It is believed that a relationship between the process performance and the wetting characteristics of the coal/refuse particles can be established. Upper Freeport -200 mesh coal from Indiana County, PA with 23.5% ash content was selected for the experimental work. A specially designed high pressure experimental unit, equipped with necessary optical and photographic accessories, was constructed for this study. Contact angles were also measured on the coal surface under two different sample pretreatment conditions: water-first-wet and liquid CO/sub 2/-first-wet. The results infer that an optimum mixing is necessary to provide sufficient shear force to expose the clean coal particles to the CO/sub 2/ droplets. The coal maceral and mineral association on the coal particle surface was determined based on the reflective grey level distinction between the mineral and Litho-type of various coal components.« less

  12. In situ chemical stimulation of diatomite formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, B.W.

    1989-05-09

    A method is described of recovering hydrocarbon from a subsurface diatomite formation comprising the steps of: a. introducing an aqueous surface solution into the diatomite formation, the aqueous surface active solution comprising (i) a diatomite/oil/ water wettability improving agent, and (ii) an oil/water interfacial tension lowering agent; and b. producing oil from the diatomite formation.

  13. Incorporation of MoS2 nanosheets in CoSb3 matrix as an efficient novel strategy to enhance its thermoelectric performance

    NASA Astrophysics Data System (ADS)

    Yadav, Suchitra; Chaudhary, Sujeet; Pandya, Dinesh K.

    2018-03-01

    The nanocomposite approach is considered as an effective way to improve the thermoelectric properties of bulk materials and we have exploited it by simultaneous though independent tackling of the electron and phonon transports. In the present study, through the strategy of anchoring the CoSb3 nanoparticles on the 2-dimensional nanosheets of MoS2, we demonstrate a controlled interplay of the newly created CoSb3/MoS2 interfaces in nanocomposites of varying concentration of MoS2 via significant enhancement of the phonon scattering without deterioration of electron transport. A concurrent occurrence of low energy carrier filtering on account of the interfacial potential barrier helps in beneficial manipulation of grain to grain carrier transport. The dimensionless figure of merit ZT maximizes to 0.53 at 600 K for the CoSb3/MoS2 nanocomposite containing 3 wt% of MoS2, 4-fold increase over the pristine CoSb3 in the 300-600 K range. This study paves the way towards improvement of the thermoelectric performance of p-type CoSb3 using 2D MoS2 as an interfacial additive.

  14. Electrically active bioceramics: a review of interfacial responses.

    PubMed

    Baxter, F R; Bowen, C R; Turner, I G; Dent, A C E

    2010-06-01

    Electrical potentials in mechanically loaded bone have been implicated as signals in the bone remodeling cycle. Recently, interest has grown in exploiting this phenomenon to develop electrically active ceramics for implantation in hard tissue which may induce improved biological responses. Both polarized hydroxyapatite (HA), whose surface charge is not dependent on loading, and piezoelectric ceramics, which produce electrical potentials under stress, have been studied in order to determine the possible benefits of using electrically active bioceramics as implant materials. The polarization of HA has a positive influence on interfacial responses to the ceramic. In vivo studies of polarized HA have shown polarized samples to induce improvements in bone ingrowth. The majority of piezoelectric ceramics proposed for implant use contain barium titanate (BaTiO(3)). In vivo and in vitro investigations have indicated that such ceramics are biocompatible and, under appropriate mechanical loading, induce improved bone formation around implants. The mechanism by which electrical activity influences biological responses is yet to be clearly defined, but is likely to result from preferential adsorption of proteins and ions onto the polarized surface. Further investigation is warranted into the use of electrically active ceramics as the indications are that they have benefits over existing implant materials.

  15. Applied technology for mine waste water decontamination in the uranium ores extraction from Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bejenaru, C.; Filip, G.; Vacariu, V.T.

    1996-12-31

    The exploitation of uranium ores in Romania is carried out in underground mines. In all exploited uranium deposits, mine waste waters results and will still result after the closure of uranium ore extraction activity. The mine waters are radioactively contaminated with uranium and its decay products being a hazard both for underground waters as for the environment. This paper present the results of research work carried out by authors for uranium elimination from waste waters as the problems involved during the exploitation process of the existent equipment as its maintenance in good experimental conditions. The main waste water characteristics aremore » discussed: solids as suspension, uranium, radium, mineral salts, pH, etc. The moist suitable way to eliminate uranium from mine waste waters is the ion exchange process based on ion exchangers in fluidized bed. A flowsheet is given with main advantages resulted.« less

  16. β-lactoglobulin stabilized nanemulsions--Formulation and process factors affecting droplet size and nanoemulsion stability.

    PubMed

    Ali, Ali; Mekhloufi, Ghozlene; Huang, Nicolas; Agnely, Florence

    2016-03-16

    To avoid the toxicological concerns associated to synthetic surfactants, proteins might be an alternative for the stabilization of pharmaceutical nanoemulsions. The present study investigates the use of β-lactoglobulin (β-lg) to stabilize oil in water biocompatible nanoemulsions intended for a pharmaceutical use and prepared by high pressure homogenization (HPH). The effects of composition (nature and weight fraction of oil, β-lg concentration) and of process parameters (pressure and number of cycles) on the droplet size and on the stability of nanoemulsions were thoroughly assessed. The nanoemulsions prepared with β-lg at 1 wt% and with 5 wt% Miglyol 812 (the oil with the lowest viscosity) displayed a relatively small particle size (about 200 nm) and a low polydispersity when a homogenization pressure of 100 MPa was applied for 4 cycles. These nanoemulsions were the most stable formulations over 30 days at least. Emulsification efficiency of β-lg was reduced at higher homogenization pressures (200 MPa and 300 MPa). The effect of HPH process on the interfacial properties of β-lg was evaluated by drop shape analysis. This treatment had an effect neither on the interfacial tension nor on the interfacial dilatational rheology of β-lg at the Miglyol 812/water interface. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. On the thermodynamics of particle-stabilized emulsions: curvature effects and catastrophic phase inversion.

    PubMed

    Kralchevsky, P A; Ivanov, I B; Ananthapadmanabhan, K P; Lips, A

    2005-01-04

    The flexural properties of a particle adsorption monolayer are investigated theoretically. If the particles are not densely packed, the interfacial bending moment and the spontaneous curvature (due to the particles) are equal to zero. The situation changes if the particles are closely packed. Then the particle adsorption monolayer possesses a significant bending moment, and the interfacial energies of bending and dilatation become comparable. In this case, the bending energy can either stabilize or destabilize the Pickering emulsion, depending on whether the particle contact angle is smaller or greater than 90 degrees . Theoretical expressions are derived for the bending moment, for the curvature elastic modulus, and for the work of interfacial deformation and emulsification. The latter is dominated by the work for creation of a new oil-water interface and by the work for particle adsorption. The curvature effects give a contribution of second order, which is significant only for emulsification at 50:50 water/oil volume fractions. A thermodynamic criterion for the type of the formed emulsion is proposed. It predicts the existence of a catastrophic phase inversion in particle-stabilized emulsions, in agreement with the experimental observations. The derived theoretical expressions could find application for interpretation of experimental data on production and stability of Pickering emulsions.

  18. Predicting CO2-H2O Interfacial Tension Using COSMO-RS.

    PubMed

    Silvestri, A; Stipp, S L S; Andersson, M P

    2017-02-14

    Knowledge about the interaction between fluids and solids and the interfacial tension (IFT) that results is important for predicting behavior and properties in industrial systems and in nature, such as in rock formations before, during, and after CO 2 injection for long-term storage. Many authors have studied the effect of the environmental variables on the IFT in the CO 2 -H 2 O system. However, experimental measurements above CO 2 supercritical conditions are scarce and sometimes contradictory. Molecular modeling is a valuable tool for complementing experimental IFT determination, and it can help us interpret results and gain insight under conditions where experiments are difficult or impossible. Here, we report predictions for CO 2 -water interfacial tension performed using density functional theory (DFT) combined with the COSMO-RS implicit solvent model. We predicted the IFT dependence as a function of pressure (0-50 MPa), temperature (273-383 K), and salinity (0-5 M NaCl). The results agree well with literature data, within the estimated uncertainty for experiments and for molecular dynamics (MD) simulations, suggesting that the model can be used as a fast alternative to time-consuming computational approaches for predicting the CO 2 -water IFT over a range of pressures, temperatures, and salinities.

  19. Development of FRP composite structural biomaterials: ultimate strength of the fiber/matrix interfacial bond in in vivo simulated environments.

    PubMed

    Latour, R A; Black, J

    1992-05-01

    Fiber reinforced polymer (FRP) composites are being developed as alternatives to metals for structural orthopedic implant applications. FRP composite fracture behavior and environmental interactions are distinctly different from those which occur in metals. These differences must be accounted for in the design and evaluation of implant performance. Fiber/matrix interfacial bond strength in a FRP composite is known to strongly influence fracture behavior. The interfacial bond strength of four candidate fiber/matrix combinations (carbon fiber/polycarbonate, carbon fiber/polysulfone, polyaramid fiber/polycarbonate, polyaramid fiber/polysulfone) were investigated at 37 degrees C in dry and in vivo simulated (saline, exudate) environments. Ultimate bond strength was measured by a single fiber-microdroplet pull-out test. Dry bond strengths were significantly decreased following exposure to either saline or exudate with bond strength loss being approximately equal in both the saline and exudate. Bond strength loss is attributed to the diffusion of water and/or salt ions into the sample and their interaction with interfacial bonding. Because bond degradation is dependent upon diffusion, diffusional equilibrium must be obtained in composite test samples before the full effect of the test environment upon composite mechanical behavior can be determined.

  20. Air/sea DMS gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    NASA Astrophysics Data System (ADS)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-05-01

    Shipboard measurements of eddy covariance DMS air/sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air/sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near surface water side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air/sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  1. Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    NASA Astrophysics Data System (ADS)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-11-01

    Shipboard measurements of eddy covariance dimethylsulfide (DMS) air-sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air-sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air-sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  2. Processing and characterization of phase boundaries in ceramic and metallic materials

    NASA Astrophysics Data System (ADS)

    Zeng, Liang

    The goal of this dissertation work was to explore and describe advanced characterization of novel materials processing. These characterizations were carried out using scanning and transmission electron microscopy (SEM and TEM), and X-ray diffraction techniques. The materials studied included ceramics and metallic materials. The first part of this dissertation focuses on the processing, and the resulting interfacial microstructure of ceramics joined using spin-on interlayers. SEM, TEM, and indentation tests were used to investigate the interfacial microstructural and mechanical property evolution of polycrystalline zirconia bonded to glass ceramic MaCor(TM), and polycrystalline alumina to single crystal alumina. Interlayer assisted specimens were joined using a thin amorphous silica interlayer. This interlayer was produced by spin coating an organic based silica bond material precursor and curing at 200°C, followed by joining in a microwave cavity or conventional electric furnace. Experimental results indicate that in the joining of the zirconia and MaCor(TM) no significant interfacial microstructural and mechanical property differences developed between materials joined either with or without interlayers, due to the glassy nature of MaCor(TM). The bond interface was non-planar, as a result of the strong wetting of MaCor(TM) and silica and dissolution of the zirconia. However, without the aid of a silica interlayer, sapphire and 98% polycrystalline alumina failed to join under the experimental conditions under this study. A variety of interfacial morphologies have been observed, including amorphous regions, fine crystalline alumina, and intimate contact between the sapphire and polycrystalline alumina. In addition, the evolution of the joining process from the initial sputter-cure to the final joining state and joining mechanisms were characterized. The second part of this dissertation focused on the effects of working and heat treatment on microstructure, texture, phase boundary movement, and mechanical property evolution in Ti-6Al-4V wire. The as-received wire consisted of equilibrium a and metastable beta phases and had a moderately strong fiber texture with prism plane normals aligned with the wire axis. The wire was worked by extrusion, solution heat-treatment and water quenching, and aging. The extrusion process strengthened the as-received texture. After solutionization and quenching, microstrucual observations showed the presence of many needlelike martensitic platelets in the prior beta phase regions. Texture analysis revealed that a secondary fiber with basal plane normals aligned with the wire axis emerged at the expense of the initial texture, indicating that highly preferred phase boundary motion (variant selection) occurred during the beta → alpha transformation. The strength of the variant selection consistently increased with solutionization temperature and time. In addition, the effects of dislocation type and density on variant selections were further investigated. This implies that strategic prior deformation and heat treatment can be exploited to design the resulting texture and microstructure and consequently optimize the properties of titanium products.

  3. Single-Molecule Interfacial Electron Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Wilson

    Interfacial electron transfer (ET) plays an important role in many chemical and biological processes. Specifically, interfacial ET in TiO 2-based systems is important to solar energy technology, catalysis, and environmental remediation technology. However, the microscopic mechanism of interfacial ET is not well understood with regard to atomic surface structure, molecular structure, bonding, orientation, and motion. In this project, we used two complementary methodologies; single-molecule fluorescence spectroscopy, and scanning-tunneling microscopy and spectroscopy (STM and STS) to address this scientific need. The goal of this project was to integrate these techniques and measure the molecular dependence of ET between adsorbed molecules andmore » TiO 2 semiconductor surfaces and the ET induced reactions such as the splitting of water. The scanning probe techniques, STM and STS, are capable of providing the highest spatial resolution but not easily time-resolved data. Single-molecule fluorescence spectroscopy is capable of good time resolution but requires further development to match the spatial resolution of the STM. The integrated approach involving Peter Lu at Bowling Green State University (BGSU) and Wilson Ho at the University of California, Irvine (UC Irvine) produced methods for time and spatially resolved chemical imaging of interfacial electron transfer dynamics and photocatalytic reactions. An integral aspect of the joint research was a significant exchange of graduate students to work at the two institutions. This project bridged complementary approaches to investigate a set of common problems by working with the same molecules on a variety of solid surfaces, but using appropriate techniques to probe under ambient (BGSU) and ultrahigh vacuum (UCI) conditions. The molecular level understanding of the fundamental interfacial electron transfer processes obtained in this joint project will be important for developing efficient light harvesting, solar energy conversion, and broadly applicable to problems in interface chemistry and surface physics.« less

  4. Modulating in vitro gastric digestion of emulsions using composite whey protein-cellulose nanocrystal interfaces.

    PubMed

    Sarkar, Anwesha; Zhang, Shuning; Murray, Brent; Russell, Jessica A; Boxal, Sally

    2017-10-01

    In this study, we designed emulsions with an oil-water interface consisting of a composite layer of whey protein isolate (WPI, 1wt%) and cellulose nanocrystals (CNCs) (1-3wt%). The hypothesis was that a secondary layer of CNCs at the WPI-stabilized oil-water interface could protect the interfacial protein layer against in vitro gastric digestion by pepsin at 37°C. A combination of transmission electron microscopy, ζ-potential measurements, interfacial shear viscosity measurements and theoretical surface coverage considerations suggested the presence of CNCs and WPI together at the O/W interface, owing to the electrostatic attraction between complementarily charged WPI and CNCs at pH 3. Microstructural analysis and droplet sizing revealed that the presence of CNCs increased the resistance of the interfacial protein film to rupture by pepsin, thus inhibiting droplet coalescence in the gastric phase, which occurs rapidly in an emulsion stabilized by WPI alone. It appeared that there was an optimum concentration of CNCs at the interface for such barrier effects. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) results further confirmed that the presence of 3wt% of CNCs reduced the rate and extent of proteolysis of protein at the interface. Besides, evidence of adsorption of CNCs to the protein-coated droplets to form more rigid layers, there is also the possibility that network formation by the CNCs in the bulk (continuous) phase reduced the kinetics of proteolysis. Nevertheless, structuring emulsions with mixed protein-particle layers could be an effective strategy to tune and control interfacial barrier properties during gastric passage of emulsions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Calculation of surface potentials at the silica–water interface using molecular dynamics: Challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Lowe, Benjamin M.; Skylaris, Chris-Kriton; Green, Nicolas G.; Shibuta, Yasushi; Sakata, Toshiya

    2018-04-01

    Continuum-based methods are important in calculating electrostatic properties of interfacial systems such as the electric field and surface potential but are incapable of providing sufficient insight into a range of fundamentally and technologically important phenomena which occur at atomistic length-scales. In this work a molecular dynamics methodology is presented for interfacial electric field and potential calculations. The silica–water interface was chosen as an example system, which is highly relevant for understanding the response of field-effect transistors sensors (FET sensors). Detailed validation work is presented, followed by the simulated surface charge/surface potential relationship. This showed good agreement with experiment at low surface charge density but at high surface charge density the results highlighted challenges presented by an atomistic definition of the surface potential. This methodology will be used to investigate the effect of surface morphology and biomolecule addition; both factors which are challenging using conventional continuum models.

  6. Showcasing electrode-electrolyte interfacial potential as a vital parameter in the hydrogen generation by metal oxides electrodes

    NASA Astrophysics Data System (ADS)

    Niveditha, C. V.; Nizamudeen, A. C.; Ramanarayanan, Rajita; Jabeen Fatima, M. J.; Swaminathan, Sindhu

    2018-03-01

    This investigation presents a new insight by experimentally demonstrating electrode-electrolyte interface potential that is flat band potential as a determinant in photoelectrochemical splitting of water. Two different metal oxides namely n type, nitrogen doped titania and p type copper oxides have been synthesized for the study. The flat band potential values of these oxide systems were obtained from Mott-Schottky analysis. The obtained flat band potential is used as a marker to fix the working potential in water splitting experiment. To obtain optimum photocurrent a potential more positive than flatband is applied to n-type N-TiO2 and vice-versa for p-type Cu2O. The findings are well supported by I-t curves derived from chronoamperometric measurements. Finally the mechanisms behind interfacial potential dynamics have been discussed in this work.

  7. Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: High performance at low concentration

    PubMed Central

    Luo, Dan; Wang, Feng; Zhu, Jingyi; Cao, Feng; Liu, Yuan; Li, Xiaogang; Willson, Richard C.; Yang, Zhaozhong; Chu, Ching-Wu; Ren, Zhifeng

    2016-01-01

    The current simple nanofluid flooding method for tertiary or enhanced oil recovery is inefficient, especially when used with low nanoparticle concentration. We have designed and produced a nanofluid of graphene-based amphiphilic nanosheets that is very effective at low concentration. Our nanosheets spontaneously approached the oil–water interface and reduced the interfacial tension in a saline environment (4 wt % NaCl and 1 wt % CaCl2), regardless of the solid surface wettability. A climbing film appeared and grew at moderate hydrodynamic condition to encapsulate the oil phase. With strong hydrodynamic power input, a solid-like interfacial film formed and was able to return to its original form even after being seriously disturbed. The film rapidly separated oil and water phases for slug-like oil displacement. The unique behavior of our nanosheet nanofluid tripled the best performance of conventional nanofluid flooding methods under similar conditions. PMID:27354529

  8. Electrical power generation by mechanically modulating electrical double layers.

    PubMed

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future.

  9. Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: High performance at low concentration.

    PubMed

    Luo, Dan; Wang, Feng; Zhu, Jingyi; Cao, Feng; Liu, Yuan; Li, Xiaogang; Willson, Richard C; Yang, Zhaozhong; Chu, Ching-Wu; Ren, Zhifeng

    2016-07-12

    The current simple nanofluid flooding method for tertiary or enhanced oil recovery is inefficient, especially when used with low nanoparticle concentration. We have designed and produced a nanofluid of graphene-based amphiphilic nanosheets that is very effective at low concentration. Our nanosheets spontaneously approached the oil-water interface and reduced the interfacial tension in a saline environment (4 wt % NaCl and 1 wt % CaCl2), regardless of the solid surface wettability. A climbing film appeared and grew at moderate hydrodynamic condition to encapsulate the oil phase. With strong hydrodynamic power input, a solid-like interfacial film formed and was able to return to its original form even after being seriously disturbed. The film rapidly separated oil and water phases for slug-like oil displacement. The unique behavior of our nanosheet nanofluid tripled the best performance of conventional nanofluid flooding methods under similar conditions.

  10. Highly-efficient capillary photoelectrochemical water splitting using cellulose nanofiber-templated TiO 2 photoanodes

    Treesearch

    Zhaodong Li; Chunhua Yao; Yanhao Yu; Zhiyong Cai; Xudong Wang

    2014-01-01

    Among current endeavors to explore renewable energy technologies, photoelectrochemical (PEC) water splitting holds great promise for conversion of solar energy to chemical energy. [ 1–4 ] Light absorption, charge separation, and appropriate interfacial redox reactions are three key aspects that lead to highly efficient solar energy conversion. [ 5–10 ] Therefore,...

  11. Molecular Grid Membranes

    DTIC Science & Technology

    2008-03-11

    D polymerization, interfacial chemistry, Langmuir Blodgett Josef Michl, Thomas Magnera University of Colorado - Boulder Office of Contracts and Grants...the air-water interface using Langmuir - Blodgett methods with a resulting polymer net whose MW weight exceeds 10,000 daltons and methods for assaying...at the air-water interface using Langmuir - Blodgett methods with a resulting polymer net whose MW exceeds 10,000 daltons. (a) Papers published in

  12. Understanding THz spectra of aqueous solutions: glycine in light and heavy water.

    PubMed

    Sun, Jian; Niehues, Gudrun; Forbert, Harald; Decka, Dominique; Schwaab, Gerhard; Marx, Dominik; Havenith, Martina

    2014-04-02

    THz spectroscopy of aqueous solutions has been established as of recently to be a valuable and complementary experimental tool to provide direct insights into the solute-solvent coupling due to hydrogen-bond dynamics involving interfacial water. Despite much experimental progress, understanding THz spectra in terms of molecular motions, akin to mid-infrared spectra, still remains elusive. Here, using the osmoprotectant glycine as a showcase, we demonstrate how this can be achieved by combining THz absorption spectroscopy and ab initio molecular dynamics. The experimental THz spectrum is characterized by broad yet clearly discernible peaks. Based on substantial extensions of available mode-specific decomposition schemes, the experimental spectrum can be reproduced by theory and assigned on an essentially quantitative level. This joint effort reveals an unexpectedly clear picture of the individual contributions of molecular motion to the THz absorption spectrum in terms of distinct modes stemming from intramolecular vibrations, rigid-body-like hindered rotational and translational motion, and specific couplings to interfacial water molecules. The assignment is confirmed by the peak shifts observed in the THz spectrum of deuterated glycine in heavy water, which allow us to separate the distinct modes experimentally.

  13. Structure of hydrophobic hydration of benzene and hexafluorobenzene from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allesch, M; Schwegler, E; Galli, G

    We report on the aqueous hydration of benzene and hexafluorobenzene, as obtained by carrying out extensive (>100 ps) first principles molecular dynamics simulations. Our results show that benzene and hexafluorobenzene do not behave as ordinary hydrophobic solutes, but rather present two distinct regions, one equatorial and the other axial, that exhibit different solvation properties. While in both cases the equatorial regions behave as typical hydrophobic solutes, the solvation properties of the axial regions depend strongly on the nature of the {pi}-water interaction. In particular, {pi}-hydrogen and {pi}-lone pair interactions are found to dominate in benzene and hexafluorobenzene, respectively, which leadsmore » to substantially different orientations of water near the two solutes. We present atomic and electronic structure results (in terms of Maximally Localized Wannier Functions) providing a microscopic description of benzene- and hexafluorobenzene-water interfaces, as well as a comparative study of the two solutes. Our results point at the importance of an accurate description of interfacial water in order to characterize hydration properties of apolar molecules, as these are strongly influenced by subtle charge rearrangements and dipole moment redistributions in interfacial regions.« less

  14. Probing nonlinear rheology layer-by-layer in interfacial hydration water.

    PubMed

    Kim, Bongsu; Kwon, Soyoung; Lee, Manhee; Kim, Q Hwan; An, Sangmin; Jhe, Wonho

    2015-12-22

    Viscoelastic fluids exhibit rheological nonlinearity at a high shear rate. Although typical nonlinear effects, shear thinning and shear thickening, have been usually understood by variation of intrinsic quantities such as viscosity, one still requires a better understanding of the microscopic origins, currently under debate, especially on the shear-thickening mechanism. We present accurate measurements of shear stress in the bound hydration water layer using noncontact dynamic force microscopy. We find shear thickening occurs above ∼ 10(6) s(-1) shear rate beyond 0.3-nm layer thickness, which is attributed to the nonviscous, elasticity-associated fluidic instability via fluctuation correlation. Such a nonlinear fluidic transition is observed due to the long relaxation time (∼ 10(-6) s) of water available in the nanoconfined hydration layer, which indicates the onset of elastic turbulence at nanoscale, elucidating the interplay between relaxation and shear motion, which also indicates the onset of elastic turbulence at nanoscale above a universal shear velocity of ∼ 1 mm/s. This extensive layer-by-layer control paves the way for fundamental studies of nonlinear nanorheology and nanoscale hydrodynamics, as well as provides novel insights on viscoelastic dynamics of interfacial water.

  15. Structural and dielectric properties of thin ZrO2 films on silicon grown by atomic layer deposition from cyclopentadienyl precursor

    NASA Astrophysics Data System (ADS)

    Niinistö, J.; Putkonen, M.; Niinistö, L.; Kukli, K.; Ritala, M.; Leskelä, M.

    2004-01-01

    ZrO2 thin films with thicknesses below 20 nm were deposited by the atomic layer deposition process on Si(100) substrates at 350 °C. An organometallic precursor, Cp2Zr(CH3)2 (Cp=cyclopentadienyl, C5H5) was used as the zirconium source and water or ozone as oxygen source. The influence of oxygen source and substrate pretreatment on the dielectric properties of ZrO2 films was investigated. Structural characterization with high-resolution transmission electron microscopy was performed to films grown onto HF-etched or native oxide covered silicon. Strong inhibition of ZrO2 film growth was observed with the water process on HF-etched Si. Ozone process on HF-etched Si resulted in interfacial SiO2 formation between the dense and uniform film and the substrate while water process produced interfacial layer with intermixing of SiO2 and ZrO2. The effective permittivity of ZrO2 in Al/ZrO2/Si/Al capacitor structures was dependent on the ZrO2 layer thickness and oxygen source used. The interfacial layer formation increased the capacitance equivalent oxide thickness (CET). CET of 2.0 nm was achieved with 5.9 nm ZrO2 film deposited with the H2O process on HF-stripped Si. The ozone-processed films showed good dielectric properties such as low hysteresis and nearly ideal flatband voltage. The leakage current density was lower and breakdown field higher for the ozone-processed ZrO2 films.

  16. Rheological behavior on treated Malaysian crude oil

    NASA Astrophysics Data System (ADS)

    Chandran, Krittika; Sinnathambi, Chandra Mohan

    2016-11-01

    Crude oil is always produced with water. This association causes many problems during oil production, arising from the formation of emulsion. Emulsion is an undesirable substance that increases operational and capital cost in the pipeline and processing equipment. To overcome this issue, demulsifiers are formulated to break the emulsion, where they are able to separate the water-oil emulsions to their respective phases. The emulsifier's main function is to reduce the interfacial tension properties of the emulsion. For this research, both the EOR and natural water-in-oil emulsions were treated with low a concentration demulsifier. The main objective of this paper is to determine the dynamic viscosity and rheological properties of the treated EOR and natural emulsion. The dynamic viscosity was obtained using the Brook-field Digital Viscometer. The components that influence the emulsion's rheological properties are the temperature, shear rate and shear stress. The results obtained demonstrate that the viscosity of the treated crude decreases and portrays the Non-Newtonian shear thinning "pseudo-plastic" behavior. Besides that, to determine the interfacial film of the treated crude, the spinning drop tensiometer was used. With the addition of demulsifier, the thinning rate of the oil film accelerates whereby there is a linear decrease in the interfacial tension with an increase in time. Therefore, from the results, it can be observed that the rheology study plays a significant role in the demulsification test. Furthermore, both the rheology approaches showed that time, temperature, shear rate and shear stress have a great impact on the viscosity behavior as well as the IFT.

  17. Free energy barriers for escape of water molecules from protein hydration layer.

    PubMed

    Roy, Susmita; Bagchi, Biman

    2012-03-08

    Free energy barriers separating interfacial water molecules from the hydration layer at the surface of a protein to the bulk are obtained by using the umbrella sampling method of free energy calculation. We consider hydration layer of chicken villin head piece (HP-36) which has been studied extensively by molecular dynamics simulations. The free energy calculations reveal a strong sensitivity to the secondary structure. In particular, we find a region near the junction of first and second helix that contains a cluster of water molecules which are slow in motion, characterized by long residence times (of the order of 100 ps or more) and separated by a large free energy barrier from the bulk water. However, these "slow" water molecules constitute only about 5-10% of the total number of hydration layer water molecules. Nevertheless, they play an important role in stabilizing the protein conformation. Water molecules near the third helix (which is the important helix for biological function) are enthalpically least stable and exhibit the fastest dynamics. Interestingly, barrier height distributions of interfacial water are quite broad for water surrounding all the three helices (and the three coils), with the smallest barriers found for those near the helix-3. For the quasi-bound water molecules near the first and second helices, we use well-known Kramers' theory to estimate the residence time from the free energy surface, by estimating the friction along the reaction coordinate from the diffusion coefficient by using Einstein relation. The agreement found is satisfactory. We discuss the possible biological function of these slow, quasi-bound (but transient) water molecules on the surface.

  18. Groundwater intensive exploitation and mining in Gran Canaria and Tenerife, Canary Islands, Spain: Hydrogeological, environmental, economic and social aspects.

    PubMed

    Custodio, Emilio; Cabrera, María Del Carmen; Poncela, Roberto; Puga, Luis-Olavo; Skupien, Elzbieta; Del Villar, Alberto

    2016-07-01

    Intensive exploitation and continuous consumption of groundwater reserves (groundwater mining) have been real facts for decades in arid and semiarid areas. A summary of experience in the hydrogeological, economic, social and ethical consequences of groundwater intensive and mining exploitation in Gran Canaria and Tenerife Islands, in the Canarian Archipelago, is presented. Groundwater abstraction is less than recharge, but a significant outflow of groundwater to the sea cannot be avoided, especially in Tenerife, due to its younger volcanic coastal formations. Consequently, the intensive aquifer groundwater development by means of wells and water galleries (tunnels) has produced a groundwater reserve depletion of about 2km(3). Should current groundwater abstraction cease, the recovery time to close-to-natural conditions is from decades to one century, except in the mid and high elevations of Tenerife, where this recovery is not possible as aquifer formations will remain permanently drained by the numerous long water galleries. The socio-economic circumstances are complex due to a long standing history of water resources exploitation, successive social changes on each island, and well-established groundwater water trading, with complex relationships that affect water governance and the resulting ethical concerns. Gran Canaria and Tenerife are in an advanced groundwater exploitation stage and have a large water demand. They are good examples that allow drawing guidelines to evaluate groundwater development on other small high islands. After presenting the hydrogeological background, the socio-economic results are discussed to derive general knowledge to guide on water governance. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Exploiting water versus tolerating drought: water-use strategies of trees in a secondary successional tropical dry forest.

    PubMed

    Pineda-García, Fernando; Paz, Horacio; Meinzer, Frederick C; Angeles, Guillermo

    2016-02-01

    In seasonal plant communities where water availability changes dramatically both between and within seasons, understanding the mechanisms that enable plants to exploit water pulses and to survive drought periods is crucial. By measuring rates of physiological processes, we examined the trade-off between water exploitation and drought tolerance among seedlings of trees of a tropical dry forest, and identified biophysical traits most closely associated with plant water-use strategies. We also explored whether early and late secondary successional species occupy different portions of trade-off axes. As predicted, species that maintained carbon capture, hydraulic function and leaf area at higher plant water deficits during drought had low photosynthetic rates, xylem hydraulic conductivity and growth rate under non-limiting water supply. Drought tolerance was associated with more dense leaf, stem and root tissues, whereas rapid resource acquisition was associated with greater stem water storage, larger vessel diameter and larger leaf area per mass invested. We offer evidence that the water exploitation versus drought tolerance trade-off drives species differentiation in the ability of tropical dry forest trees to deal with alternating water-drought pulses. However, we detected no evidence of strong functional differentiation between early and late successional species along the proposed trade-off axes, suggesting that the environmental gradient of water availability across secondary successional habitats in the dry tropics does not filter out physiological strategies of water use among species, at least at the seedling stage. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Impact of interfacial resistance switching on thermoelectric effect of Nb-doped SrTiO3 single crystalline

    NASA Astrophysics Data System (ADS)

    Zhang, Peijian; Meng, Yang; Liu, Ziyu; Li, Dong; Su, Tao; Meng, Qingyu; Mao, Qi; Pan, Xinyu; Chen, Dongmin; Zhao, Hongwu

    2012-03-01

    The thermoelectric properties of the bistable resistance states in Nb doped SrTiO3 single crystal have been investigated. The Seebeck coefficients for both low and high resistance states change linearly with temperature. The three-terminals contrast measurement demonstrates that a large fraction of the voltage drop is applied at the tiny volume near the bottom interface between the electrode and the oxide bulk. Therefore, the metallic oxide bulk plays a dominant role in the temperature dependence of Seebeck coefficients. The thermoelectric properties of new resistance switching (RS) devices with minimized non-RS volume could be exploited for the RS mechanism and novel applications.

  1. Direct Contact Heat Exchange Interfacial Phenomena for Liquid Metal Reactors: Part II - Void Fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdulla, S.; Liu, X.; Anderson, M.H.

    One concept being considered for steam generation in innovative nuclear reactor applications, involves water coming into direct contact with a circulating molten metal. The vigorous agitation of the two fluids, the direct liquid-liquid contact and the consequent large interfacial area can give rise to large heat transfer coefficients and rapid steam generation. For an optimum design of such direct contact heat exchange and vaporization systems, detailed knowledge is necessary of the various flow regimes, interfacial transport phenomena, heat transfer and operational stability. In order to investigate the interfacial transport phenomena, heat transfer and operational stability of direct liquid-liquid contact, amore » series of experiments are being performed in a 1-d test facility at Argonne National Laboratory and a 2-d experimental facility at UW-Madison. Each of the experimental facilities primarily consist of a liquid-metal melt chamber, heated test section (10 cm diameter tube for 1-d facility and 10 cm 50 cm rectangle for 2-d facility), water injection system and steam suppression tank. This paper is part II which, primarily addresses results and analysis of a set of preliminary experiments and void fraction measurements conducted in the 2-d facility at UW-Madison, part I deals with the heat transfer in the 1-d test facility at Argonne National Laboratory. A real-time high energy X-ray imaging system was developed and utilized to visualize the multiphase flow and measure line-average local void fractions, time-dependent void fraction distribution as well as estimates of the vapor bubble sizes and velocities. These measurements allowed us to determine the volumetric heat transfer coefficient and gain insight into the local heat transfer mechanisms. In this study, the images were captured at frame rates of 100 fps with spatial resolution of about 7 mm with a full-field view of a 15 cm square and five different positions along the test section height. The full-field average void fraction increases rapidly to about 15% in these preliminary tests, with the apparent boiling length of less than 20 cm. The volumetric heat transfer coefficient between the liquid metal and water are compared to the CRIEPI data, the only prior data for direct contact heat exchange for these liquid metal/water systems. (authors)« less

  2. Mechanism of saline groundwater migration under the influence of deep groundwater exploitation in the North China Plain

    NASA Astrophysics Data System (ADS)

    Han, D.; Cao, G.; Currell, M. J.

    2016-12-01

    Understanding the mechanism of salt water transport in response to the exploitation of deep freshwater has long been one of the major regional environmental hydrogeological problems and scientific challenges in the North China Plain. It is also the key to a correct understanding of the sources of deep groundwater pumpage. This study will look at the Hengshui - Cangzhou region as a region with typical vertical salt water distribution, and high levels of groundwater exploitation, integrating a variety of techniques in geology, hydrogeology, geophysics, hydrodynamics, and hydrochemistry - stable isotopes. Information about the problem will be determined using multiple lines of evidence, including field surveys of drilling and water sampling, as well as laboratory experiments and physical and numerical simulations. The project will characterize and depict the migration characteristics of salt water bodies and their relationship with the geological structure and deep ground water resources. The work will reveal the freshwater-saltwater interface shape; determine the mode and mechanism of hydrodynamic transport and salt transport; estimate the vertical migration time of salt water in a thick aquitard; and develop accurate hydrogeological conceptual models. This work will utilize groundwater variable density flow- solute transport numerical models to simulate the water and salt transport processes in vertical one-dimensional (typical bore) and two-dimensional (typical cross-section) space. Both inversion of the downward movement of saltwater caused by groundwater exploitation through history, and examining future saltwater migration trends under groundwater exploitation scenarios will be conducted, to quantitatively evaluate the impact of salt water migration to the deep groundwater body in the North China Plain. The research results will provide a scientific basis for the sustainable utilization of deep groundwater resources in this area.

  3. Efficient Solar-Thermal Energy Harvest Driven by Interfacial Plasmonic Heating-Assisted Evaporation.

    PubMed

    Chang, Chao; Yang, Chao; Liu, Yanming; Tao, Peng; Song, Chengyi; Shang, Wen; Wu, Jianbo; Deng, Tao

    2016-09-07

    The plasmonic heating effect of noble nanoparticles has recently received tremendous attention for various important applications. Herein, we report the utilization of interfacial plasmonic heating-assisted evaporation for efficient and facile solar-thermal energy harvest. An airlaid paper-supported gold nanoparticle thin film was placed at the thermal energy conversion region within a sealed chamber to convert solar energy into thermal energy. The generated thermal energy instantly vaporizes the water underneath into hot vapors that quickly diffuse to the thermal energy release region of the chamber to condense into liquids and release the collected thermal energy. The condensed water automatically flows back to the thermal energy conversion region under the capillary force from the hydrophilic copper mesh. Such an approach simultaneously realizes efficient solar-to-thermal energy conversion and rapid transportation of converted thermal energy to target application terminals. Compared to conventional external photothermal conversion design, the solar-thermal harvesting device driven by the internal plasmonic heating effect has reduced the overall thermal resistance by more than 50% and has demonstrated more than 25% improvement of solar water heating efficiency.

  4. A functional relation for field-scale nonaqueous phase liquid dissolution developed using a pore network model

    USGS Publications Warehouse

    Dillard, L.A.; Essaid, H.I.; Blunt, M.J.

    2001-01-01

    A pore network model with cubic chambers and rectangular tubes was used to estimate the nonaqueous phase liquid (NAPL) dissolution rate coefficient, Kdissai, and NAPL/water total specific interfacial area, ai. Kdissai was computed as a function of modified Peclet number (Pe???) for various NAPL saturations (SN) and ai during drainage and imbibition and during dissolution without displacement. The largest contributor to ai was the interfacial area in the water-filled corners of chambers and tubes containing NAPL. When Kdissai was divided by ai, the resulting curves of dissolution coefficient, Kdiss versus Pe??? suggested that an approximate value of Kdiss could be obtained as a weak function of hysteresis or SN. Spatially and temporally variable maps of Kdissai calculated using the network model were used in field-scale simulations of NAPL dissolution. These simulations were compared to simulations using a constant value of Kdissai and the empirical correlation of Powers et al. [Water Resour. Res. 30(2) (1994b) 321]. Overall, a methodology was developed for incorporating pore-scale processes into field-scale prediction of NAPL dissolution. Copyright ?? 2001 .

  5. Formation of lactoferrin/sodium caseinate complexes and their adsorption behaviour at the air/water interface.

    PubMed

    Li, Quanyang; Zhao, Zhengtao

    2017-10-01

    This research investigated the complexation behaviour between lactoferrin (Lf) and sodium caseinate (NaCas) before and after heat treatment. The results showed that heating facilitated their interaction and different complexes were formed at different Lf/NaCas ratios. The presence of low concentrations of NaCas resulted in the rapid precipitation of Lf, while no precipitation was observed at the NaCas concentrations higher than Lf/NaCas ratio of 2:1. The formed complexes at the ratio of 2:1 have an average diameter of 194±9.0nm and they exhibited a great capacity in lowering the air/water interfacial tension. Further increase of NaCas concentration to ratios of 1:1 and 1:2 resulted in the formation of smaller complexes with average diameters of 60±2.5nm. The complexes formed at these two ratios showed similar adsorption behaviour at the air/water interface and they exhibited lower capacity in decreasing the interfacial tension than the ratio of 2:1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Interfacial nanobubbles produced by long-time preserved cold water

    NASA Astrophysics Data System (ADS)

    Zhou, Li-Min; Wang, Shuo; Qiu, Jie; Wang, Lei; Wang, Xing-Ya; Li, Bin; Zhang, Li-Juan; Hu, Jun

    2017-09-01

    Not Available Project supported by the Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, the Open Research Project of the Large Scientific Facility of the Chinese Academy of Sciences, the National Natural Science Foundation of China (Grant Nos. 11079050, 11290165, 11305252, 11575281, and U1532260), the National Key Basic Research Program of China (Grant Nos. 2012CB825705 and 2013CB932801), the National Natural Science Foundation for Outstanding Young Scientists, China (Grant No. 11225527), the Shanghai Academic Leadership Program, China (Grant No. 13XD1404400), and the Program of the Chinese Academy of Sciences (Grant Nos. KJCX2-EW-W09 and QYZDJ-SSW-SLH019)

  7. Characterizing the interaction of groundwater and surface water in the karst aquifer of Fangshan, Beijing (China)

    NASA Astrophysics Data System (ADS)

    Chu, Haibo; Wei, Jiahua; Wang, Rong; Xin, Baodong

    2017-03-01

    Correct understanding of groundwater/surface-water (GW-SW) interaction in karst systems is of greatest importance for managing the water resources. A typical karst region, Fangshan in northern China, was selected as a case study. Groundwater levels and hydrochemistry analyses, together with isotope data based on hydrogeological field investigations, were used to assess the GW-SW interaction. Chemistry data reveal that water type and the concentration of cations in the groundwater are consistent with those of the surface water. Stable isotope ratios of all samples are close to the local meteoric water line, and the 3H concentrations of surface water and groundwater samples are close to that of rainfall, so isotopes also confirm that karst groundwater is recharged by rainfall. Cross-correlation analysis reveals that rainfall leads to a rise in groundwater level with a lag time of 2 months and groundwater exploitation leads to a fall within 1 month. Spectral analysis also reveals that groundwater level, groundwater exploitation and rainfall have significantly similar response periods, indicating their possible inter-relationship. Furthermore, a multiple nonlinear regression model indicates that groundwater level can be negatively correlated with groundwater exploitation, and positively correlated with rainfall. The overall results revealed that groundwater level has a close correlation with groundwater exploitation and rainfall, and they are indicative of a close hydraulic connection and interaction between surface water and groundwater in this karst system.

  8. Surface thermodynamics of planar, cylindrical, and spherical vapour-liquid interfaces of water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Gabriel V.; Müller, Erich A.; Jackson, George

    2015-03-21

    The test-area (TA) perturbation approach has been gaining popularity as a methodology for the direct computation of the interfacial tension in molecular simulation. Though originally implemented for planar interfaces, the TA approach has also been used to analyze the interfacial properties of curved liquid interfaces. Here, we provide an interpretation of the TA method taking the view that it corresponds to the change in free energy under a transformation of the spatial metric for an affine distortion. By expressing the change in configurational energy of a molecular configuration as a Taylor expansion in the distortion parameter, compact relations are derivedmore » for the interfacial tension and its energetic and entropic components for three different geometries: planar, cylindrical, and spherical fluid interfaces. While the tensions of the planar and cylindrical geometries are characterized by first-order changes in the energy, that of the spherical interface depends on second-order contributions. We show that a greater statistical uncertainty is to be expected when calculating the thermodynamic properties of a spherical interface than for the planar and cylindrical cases, and the evaluation of the separate entropic and energetic contributions poses a greater computational challenge than the tension itself. The methodology is employed to determine the vapour-liquid interfacial tension of TIP4P/2005 water at 293 K by molecular dynamics simulation for planar, cylindrical, and spherical geometries. A weak peak in the curvature dependence of the tension is observed in the case of cylindrical threads of condensed liquid at a radius of about 8 Å, below which the tension is found to decrease again. In the case of spherical drops, a marked decrease in the tension from the planar limit is found for radii below ∼ 15 Å; there is no indication of a maximum in the tension with increasing curvature. The vapour-liquid interfacial tension tends towards the planar limit for large system sizes for both the cylindrical and spherical cases. Estimates of the entropic and energetic contributions are also evaluated for the planar and cylindrical geometries and their magnitudes are in line with the expectations of our simple analysis.« less

  9. Breakdown of the Debye polarization ansatz at protein-water interfaces

    NASA Astrophysics Data System (ADS)

    Fernández Stigliano, Ariel

    2013-06-01

    The topographical and physico-chemical complexity of protein-water interfaces scales down to the sub-nanoscale range. At this level of confinement, we demonstrate that the dielectric structure of interfacial water entails a breakdown of the Debye ansatz that postulates the alignment of polarization with the protein electrostatic field. The tendencies to promote anomalous polarization are determined for each residue type and a particular kind of structural defect is shown to provide the predominant causal context.

  10. Maximally resolved anharmonic OH vibrational spectrum of the water/ZnO(101 \\xAF 0) interface from a high-dimensional neural network potential

    NASA Astrophysics Data System (ADS)

    Quaranta, Vanessa; Hellström, Matti; Behler, Jörg; Kullgren, Jolla; Mitev, Pavlin D.; Hermansson, Kersti

    2018-06-01

    Unraveling the atomistic details of solid/liquid interfaces, e.g., by means of vibrational spectroscopy, is of vital importance in numerous applications, from electrochemistry to heterogeneous catalysis. Water-oxide interfaces represent a formidable challenge because a large variety of molecular and dissociated water species are present at the surface. Here, we present a comprehensive theoretical analysis of the anharmonic OH stretching vibrations at the water/ZnO(101 ¯ 0) interface as a prototypical case. Molecular dynamics simulations employing a reactive high-dimensional neural network potential based on density functional theory calculations have been used to sample the interfacial structures. In the second step, one-dimensional potential energy curves have been generated for a large number of configurations to solve the nuclear Schrödinger equation. We find that (i) the ZnO surface gives rise to OH frequency shifts up to a distance of about 4 Å from the surface; (ii) the spectrum contains a number of overlapping signals arising from different chemical species, with the frequencies decreasing in the order ν(adsorbed hydroxide) > ν(non-adsorbed water) > ν(surface hydroxide) > ν(adsorbed water); (iii) stretching frequencies are strongly influenced by the hydrogen bond pattern of these interfacial species. Finally, we have been able to identify substantial correlations between the stretching frequencies and hydrogen bond lengths for all species.

  11. Intensive exploitation of a karst aquifer leads to Cryptosporidium water supply contamination.

    PubMed

    Khaldi, S; Ratajczak, M; Gargala, G; Fournier, M; Berthe, T; Favennec, L; Dupont, J P

    2011-04-01

    Groundwater from karst aquifers is an important source of drinking water worldwide. Outbreaks of cryptosporidiosis linked to surface water and treated public water are regularly reported. Cryptosporidium oocysts are resistant to conventional drinking water disinfectants and are a major concern for the water industry. Here, we examined conditions associated with oocyst transport along a karstic hydrosystem, and the impact of intensive exploitation on Cryptosporidium oocyst contamination of the water supply. We studied a well-characterized karstic hydrosystem composed of a sinkhole, a spring and a wellbore. Thirty-six surface water and groundwater samples were analyzed for suspended particulate matter, turbidity, electrical conductivity, and Cryptosporidium and Giardia (oo)cyst concentrations. (Oo)cysts were identified and counted by means of solid-phase cytometry (ChemScan RDI(®)), a highly sensitive method. Cryptosporidium oocysts were detected in 78% of both surface water and groundwater samples, while Giardia cysts were found in respectively 22% and 8% of surface water and groundwater samples. Mean Cryptosporidium oocyst concentrations were 29, 13 and 4/100 L at the sinkhole, spring and wellbore, respectively. Cryptosporidium oocysts were transported from the sinkhole to the spring and the wellbore, with respective release rates of 45% and 14%, suggesting that oocysts are subject to storage and remobilization in karst conduits. Principal components analysis showed that Cryptosporidium oocyst concentrations depended on variations in hydrological forcing factors. All water samples collected during intensive exploitation contained oocysts. Control of Cryptosporidium oocyst contamination during intensive exploitation is therefore necessary to ensure drinking water quality. Copyright © 2011. Published by Elsevier Ltd.

  12. Controlling Emergent Ferromagnetism at Complex Oxide Interfaces

    NASA Astrophysics Data System (ADS)

    Grutter, Alexander

    The emergence of complex magnetic ground states at ABO3 perovskite heterostructure interfaces is among the most promising routes towards highly tunable nanoscale materials for spintronic device applications. Despite recent progress, isolating and controlling the underlying mechanisms behind these emergent properties remains a highly challenging materials physics problems. In particular, generating and tuning ferromagnetism localized at the interface of two non-ferromagnetic materials is of fundamental and technological interest. An ideal model system in which to study such effects is the CaRuO3/CaMnO3 interface, where the constituent materials are paramagnetic and antiferromagnetic in the bulk, respectively. Due to small fractional charge transfer to the CaMnO3 (0.07 e-/Mn) from the CaRuO3, the interfacial Mn ions are in a canted antiferromagnetic state. The delicate balance between antiferromagnetic superexchange and ferromagnetic double exchange results in a magnetic ground state which is extremely sensitive to perturbations. We exploit this sensitivity to achieve control of the magnetic interface, tipping the balance between ferromagnetic and antiferromagnetic interactions through octahedral connectivity modification. Such connectivity effects are typically tightly confined to interfaces, but by targeting a purely interfacial emergent magnetic system, we achieve drastic alterations to the magnetic ground state. These results demonstrate the extreme sensitivity of the magnetic state to the magnitude of the charge transfer, suggesting the potential for direct electric field control. We achieve such electric field control through direct back gating of a CaRuO3/CaMnO3 bilayer. Thus, the CaRuO3/CaMnO3 system provides new insight into how charge transfer, interfacial symmetry, and electric fields may be used to control ferromagnetism at the atomic scale.

  13. Imaging fluorescence-correlation spectroscopy for measuring fast surface diffusion at liquid/solid interfaces.

    PubMed

    Cooper, Justin T; Harris, Joel M

    2014-08-05

    The development of techniques to probe interfacial molecular transport is important for understanding and optimizing surface-based analytical methods including surface-enhanced spectroscopies, biological assays, and chemical separations. Single-molecule-fluorescence imaging and tracking has been used to measure lateral diffusion rates of fluorescent molecules at surfaces, but the technique is limited to the study of slower diffusion, where molecules must remain relatively stationary during acquisition of an image in order to build up sufficient intensity in a spot to detect and localize the molecule. Although faster time resolution can be achieved by fluorescence-correlation spectroscopy (FCS), where intensity fluctuations in a small spot are related to the motions of molecules on the surface, long-lived adsorption events arising from surface inhomogeneity can overwhelm the correlation measurement and mask the surface diffusion of the moving population. Here, we exploit a combination of these two techniques, imaging-FCS, for measurement of fast interfacial transport at a model chromatographic surface. This is accomplished by rapid imaging of the surface using an electron-multiplied-charged-coupled-device (CCD) camera, while limiting the acquisition to a small area on the camera to allow fast framing rates. The total intensity from the sampled region is autocorrelated to determine surface diffusion rates of molecules with millisecond time resolution. The technique allows electronic control over the acquisition region, which can be used to avoid strong adsorption sites and thus minimize their contribution to the measured autocorrelation decay and to vary the acquisition area to resolve surface diffusion from adsorption and desorption kinetics. As proof of concept, imaging-FCS was used to measure surface diffusion rates, interfacial populations, and adsorption-desorption rates of 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine (DiI) on planar C18- and C1-modified surfaces.

  14. Corrosion protection properties and interfacial adhesion mechanism of an epoxy/polyamide coating applied on the steel surface decorated with cerium oxide nanofilm: Complementary experimental, molecular dynamics (MD) and first principle quantum mechanics (QM) simulation methods

    NASA Astrophysics Data System (ADS)

    Bahlakeh, Ghasem; Ramezanzadeh, Bahram; Saeb, Mohammad Reza; Terryn, Herman; Ghaffari, Mehdi

    2017-10-01

    The effect of cerium oxide treatment on the corrosion protection properties and interfacial interaction of steel/epoxy was studied by electrochemical impedance spectroscopy, (EIS) classical molecular dynamics (MD) and first principle quantum mechanics (QM) simulation methods X-ray photoelectron spectroscopy (XPS) was used to verify the chemical composition of the Ce film deposited on the steel. To probe the role of the curing agent in epoxy adsorption, computations were compared for an epoxy, aminoamide and aminoamide modified epoxy. Moreover, to study the influence of water on interfacial interactions the MD simulations were executed for poly (aminoamide)-cured epoxy resin in contact with the different crystallographic cerium dioxide (ceria, CeO2) surfaces including (100), (110), and (111) in the presence of water molecules. It was found that aminoamide-cured epoxy material was strongly adhered to all types of CeO2 substrates, so that binding to ceria surfaces followed the decreasing order CeO2 (111) > CeO2 (100) > CeO2 (110) in both dry and wet environments. Calculation of interaction energies noticed an enhanced adhesion to metal surface due to aminoamide curing of epoxy resin; where facets (100) and (111) revealed electrostatic and Lewis acid-base interactions, while an additional hydrogen bonding interaction was identified for CeO2 (110). Overall, MD simulations suggested decrement of adhesion to CeO2 in wet environment compared to dry conditions. Additionally, contact angle, pull-off test, cathodic delamination and salt spray analyses were used to confirm the simulation results. The experimental results in line with modeling results revealed that Ce layer deposited on steel enhanced substrate surface free energy, work of adhesion, and interfacial adhesion strength of the epoxy coating. Furthermore, decrement of adhesion of epoxy to CeO2 in presence of water was affirmed by experimental results. EIS results revealed remarkable enhancement of the corrosion resistance of epoxy coating applied on the steel specimens treated by cerium oxide.

  15. Mechanical and interfacial properties of poly(vinyl chloride) based composites reinforced by cassava stillage residue with different surface treatments

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjuan; Gan, Tao; Li, Qian; Su, Jianmei; Lin, Ye; Wei, Yongzuo; Huang, Zuqiang; Yang, Mei

    2014-09-01

    Cassava stillage residue (CSR), a kind of agro-industrial plant fiber, was modified by coupling agent (CA), mechanical activation (MA), and MA-assisted CA (MACA) surface treatments, respectively. The untreated and different surface treated CSRs were used to prepare plant fibers/polymer composites (PFPC) with poly(vinyl chloride) (PVC) as polymer matrix, and the properties of these CSR/PVC composites were compared. Surface treated CSR/PVC composites possessed better mechanical properties, water resistance and dimensional stability compared with the untreated CSR/PVC composite, attributing to the improvement of interfacial properties between CSR and PVC matrix. MACA-treated CSR was the best reinforcement among four types of CSRs (untreated, MA-treated, CA-treated, and MACA-treated CSRs) because MACA treatment led to the significant improvement of dispersion, interfacial adhesion and compatibility between CSR and PVC. MACA treatment could be considered as an effective and green method for enhancing reinforcement efficiency of plant fibers and the properties of PFPC.

  16. The foaming properties of camel and bovine whey: The impact of pH and heat treatment.

    PubMed

    Lajnaf, Roua; Picart-Palmade, Laetitia; Cases, Eliane; Attia, Hamadi; Marchesseau, Sylvie; Ayadi, M A

    2018-02-01

    The effect of heat treatment (70°C or 90°C for 30min) on the foaming and interfacial properties of acid and sweet whey obtained from bovine and camel fresh milk was examined. The maximum foamability and foam stability were observed for acid whey when compared to sweet whey for both milks, with higher values for the camel whey. This behavior for acid whey was explained by the proximity of the pI of whey protein (4.9-5.2), where proteins were found to carry the lowest negative charge as confirmed by the zeta potential measurements. Interfacial properties of acid camel whey and acid bovine whey were preserved at air water interface even after a heat treatment at 90°C. These results confirmed the pronounced foaming and interfacial properties of acid camel whey, even if acid and sweet bovine whey exhibited the highest viscoelastic modulus after heating. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. ELECTRON TRANSFER MECHANISM AT THE SOLID-LIQUID INTERFACE OF PHYLLOSILICATES

    EPA Science Inventory

    Interfacial electron transfer processes on clay minerals have significant impact in natural environments and geochemical systems. Nitrobenzene was used as molecular probes to study the electron transfer mechanism at the solid-water interfaces of Fe-containing phyllosicates. For...

  18. Improvement of interfacial interactions using natural polyphenol-inspired tannic acid-coated nanoclay enhancement of soy protein isolate biofilms

    NASA Astrophysics Data System (ADS)

    Wang, Zhong; Kang, Haijiao; Zhang, Wei; Zhang, Shifeng; Li, Jianzhang

    2017-04-01

    In this study, a novel and economic surface modification technique for montmorillonite (MMT) nanosheets, a biocompatible coupling cross-linking agent, was developed on an attempt at improving the interfacial adhesion with soy protein isolate (SPI) matrix. Inspired by natural polyphenol, the "green dip-coating" method using tannic acid (TA) to surface-modify MMT (TA@MMT). SPI nanocomposite films modified with MMT or TA@MMT, as well as the control ones, were prepared via the casting method. The TA layer was successfully coated on the MMT surface through the (FeIII) ions coordination chemistry and the synthetic samples were characterized by the Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The compatibility and interfacial interactions between modified MMT and SPI matrix were greatly enhanced by the TA-FeIII coating on the MMT surface. The mechanical properties, water resistance, and thermal stability of the resultant biofilm were increased accordingly. Compared with that of the unmodified SPI film, the tensile strength of the nanocomposite films modified by the green dip-coating was increased by 113.3%. These SPI-based nanocomposite films showed the favorable potential in terms of food packing applications due to their efficient barriers to water vapor and UV and/or visible light.

  19. Pseudopotential Computations for Metal/Alumina Interfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Wenqing

    2003-03-01

    Metal/alumina interfaces are found, for example, in electronic devices, as thermal barrier coatings in gas turbines, and in coatings to inhibit corrosion and wear. Of particular importance to their performance is their adhesion. Ultrasoft pseudopotentials combined with plane wave methods and density-functional theory have been employed to compute the properties of these relatively complex interfaces, including effects of impurity segregation. Interfacial stoichiometry and impurity content affect interfacial properties importantly. Thermodynamic links between our first principles results and metallurgical variables such as oxygen activity and oxygen partial pressure are established. This allows for a comparison between theoretical predictions and experimental measurements. Good agreement is obtained for predicted interfacial variables such as atomic structure and adhesive bond strengths on comparison with results of sessile drop, fracture, and other experiments on interfaces of Ni, Cu, Al, and Ag with alumina [1-3], including effects of water and sulfur interfacial impurities. Understanding of the nature of the adhesive bonding at the atomic level is obtained by the pseudopotential first principles approach. [1] W.Zhang, and J.R.Smith, and A.G.Evans, Acta Mater., 50,3803(2002). [2] W.Zhang, and J.R.Smith, Phys. Rev. Lett. 85, 3225(2000). [3] W.Zhang, and J.R.Smith, Phys. Rev. B61, 16883(2000).

  20. Mixed system of Eudragit s-100 with a designed amphipathic peptide: control of interfacial elasticity by solution composition.

    PubMed

    Dexter, Annette F; Malcolm, Andrew S; Zeng, Biyun; Kennedy, Debora; Middelberg, Anton P J

    2008-04-01

    We report an interfacially active system based on an informational peptide surfactant mixed with an oppositely charged polyelectrolyte. The 21-residue cationic peptide, AM1, has previously been shown to respond reversibly to pH and metal ions at fluid interfaces, forming elastic films that can be rapidly switched to collapse foams or emulsions on demand. Here we report the reversible association of AM1 with the methacrylate-based anionic polymer Eudragit S-100. The strength of the association, in bulk aqueous solution, is modulated by added metal ions and by ionic strength. Addition of zinc ions to the peptide-polymer system promotes complex formation and phase separation, while addition of a chelating agent reverses the association. The addition of salt weakens peptide-polymer interactions in the presence or absence of zinc. At the air-water interface, Eudragit S-100 forms an elastic mixed film with AM1 in the absence of metal, under conditions where the peptide alone does not show interfacial elasticity. When zinc is present, the elasticity of the mixed film is increased, but the rate of interfacial adsorption slows due to formation of peptide-polymer complexes in bulk solution. An understanding of these interactions can be used to identify favorable foam-forming conditions in the mixed system.

  1. Molecular dynamics simulations study of nano bubble attachment at hydrophobic surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Jiaqi; Dang, Liem X.; Miller, Jan D.

    Bubble attachment phenomena are examined using Molecular Dynamics Simulations (MDS) for the first time. The simulation involves a nitrogen nano bubble containing 906 nitrogen molecules in a water phase with 74,000 water molecules at molybdenite surfaces. During a simulation period of 1 ns, film rupture and displacement occurs. The attached nanobubble at the hydrophobic molybdenite face surface results in a contact angle of about 90º. This spontaneous attachment is due to a “water exclusion zone” at the molybdenite face surface and can be explained by a van der Waals (vdW) attractive force, as discussed in the literature. In contrast, themore » film is stable at the hydrophilic quartz (001) surface and the bubble does not attach. Contact angles determined from MD simulations are reported, and these results agree well with experimental and MDS sessile drop results. In this way, film stability and bubble attachment are described with respect to interfacial water structure for surfaces of different polarity. Interfacial water molecules at the hydrophobic molybdenite face surface have relatively weak interactions with the surface when compared to the hydrophilic quartz (001) surface, as revealed by the presence of a 3 Å “water exclusion zone” at the molybdenite/water interface. The molybdenite armchair-edge and zigzag-edge surfaces show a comparably slow process for film rupture and displacement when compared to the molybdenite face surface, which is consistent with their relatively weak hydrophobic character.« less

  2. Vibrational spectroscopy of water at interfaces

    PubMed Central

    Skinner, J. L.; Pieniazek, P. A.; Gruenbaum, S. M.

    2011-01-01

    Conspectus Recent experimental advances in vibrational spectroscopy, such as ultrafast pulses and heterodyne detection, have made it possible to probe the structure and dynamics of bulk and interfacial water in unprecedented detail. We consider three aqueous interfaces: the water liquid/vapor interface, the interface between water and the surfactant headgroups of reverse micelles, and the interface between water and the lipid headgroups of aligned multi-bilayers. In the first case, sum-frequency spectroscopy is used to probe the interface, while in the second and third cases, the confined water pools are sufficiently small that techniques of bulk spectroscopy such as FTIR, pump-probe, 2DIR, etc. can be used to probe the interfacial water. In this review, we discuss our attempts to model these three systems and interpret the existing experiments. In particular, for the water liquid/vapor interface we find that three-body interactions are essential for reproducing the experimental sum-frequency spectrum, and presumably for the structure of the interface as well. The observed spectrum is interpreted as arising from overlapping and cancelling positive and negative contributions from molecules in different hydrogen-bonding environments. For the reverse micelles, our theoretical models confirm that the experimentally observed blue shift of the water OD stretch (for dilute HOD in H2O) arises from weaker hydrogen bonding to sulfonate oxygens. We interpret the observed slow-down in water rotational dynamics as arising from curvature-induced frustration. For the water confined between lipid bilayers, our theoretical models confirm that the experimentally observed red shift of the water OD stretch arises from stronger hydrogen bonding to phosphate oxygens. We develop a model for heterogeneous vibrational lifetime distributions, and implement the model to calculate isotropic and anisotropic pump-probe decays, and compare with experiment. PMID:22032305

  3. Excess chemical potential of small solutes across water--membrane and water--hexane interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Wilson, M. A.

    1996-01-01

    The excess chemical potentials of five small, structurally related solutes, CH4, CH3F, CH2F2, CHF3, and CF4, across the water-glycerol 1-monooleate bilayer and water-hexane interfaces were calculated at 300, 310, and 340 K using the particle insertion method. The excess chemical potentials of nonpolar molecules (CH4 and CF4) decrease monotonically or nearly monotonically from water to a nonpolar phase. In contrast, for molecules that possess permanent dipole moments (CH3F, CH2F, and CHF3), the excess chemical potentials exhibit an interfacial minimum that arises from superposition of two monotonically and oppositely changing contributions: electrostatic and nonelectrostatic. The nonelectrostatic term, dominated by the reversible work of creating a cavity that accommodates the solute, decreases, whereas the electrostatic term increases across the interface from water to the membrane interior. In water, the dependence of this term on the dipole moment is accurately described by second order perturbation theory. To achieve the same accuracy at the interface, third order terms must also be included. In the interfacial region, the molecular structure of the solvent influences both the excess chemical potential and solute orientations. The excess chemical potential across the interface increases with temperature, but this effect is rather small. Our analysis indicates that a broad range of small, moderately polar molecules should be surface active at the water-membrane and water-oil interfaces. The biological and medical significance of this result, especially in relation to the mechanism of anesthetic action, is discussed.

  4. Aqueous turbulence structure immediately adjacent to the air - water interface and interfacial gas exchange

    NASA Astrophysics Data System (ADS)

    Wang, Binbin

    Air-sea interaction and the interfacial exchange of gas across the air-water interface are of great importance in coupled atmospheric-oceanic environmental systems. Aqueous turbulence structure immediately adjacent to the air-water interface is the combined result of wind, surface waves, currents and other environmental forces and plays a key role in energy budgets, gas fluxes and hence the global climate system. However, the quantification of turbulence structure sufficiently close to the air-water interface is extremely difficult. The physical relationship between interfacial gas exchange and near surface turbulence remains insufficiently investigated. This dissertation aims to measure turbulence in situ in a complex environmental forcing system on Lake Michigan and to reveal the relationship between turbulent statistics and the CO2 flux across the air-water interface. The major objective of this dissertation is to investigate the physical control of the interfacial gas exchange and to provide a universal parameterization of gas transfer velocity from environmental factors, as well as to propose a mechanistic model for the global CO2 flux that can be applied in three dimensional climate-ocean models. Firstly, this dissertation presents an advanced measurement instrument, an in situ free floating Particle Image Velocimetry (FPIV) system, designed and developed to investigate the small scale turbulence structure immediately below the air-water interface. Description of hardware components, design of the system, measurement theory, data analysis procedure and estimation of measurement error were provided. Secondly, with the FPIV system, statistics of small scale turbulence immediately below the air-water interface were investigated under a variety of environmental conditions. One dimensional wave-number spectrum and structure function sufficiently close to the water surface were examined. The vertical profiles of turbulent dissipation rate were intensively studied. Comparison between the turbulence structures measured during the wind wave initiation period and those obtained during the growing period was presented. Significant wave effects on near surface turbulence were found. A universal scaling law was proposed to parameterize turbulent dissipation rate immediately below the air-water interface with friction velocity, significant wave height and wave age. Finally, the gas transfer velocity was measured with a floating chamber (FC) system, along with simultaneously FPIV measurements. Turbulent dissipation rate both at the interface and at a short distance away from the interface (~ 10 cm) were analyzed and used to examine the small scale eddy model. The model coefficient was found to be dependent on the level of turbulence, instead of being a constant. An empirical relationship between the model coefficient and turbulent dissipation rate was provided, which improved the accuracy of the gas transfer velocity estimation by more than 100% for data acquired. Other data from the literature also supported this empirical relation. Furthermore, the relationship between model coefficient and turbulent Reynolds number was also investigated. In addition to physical control of gas exchange, the disturbance on near surface hydrodynamics by the FC was also discussed. Turbulent dissipation rates are enhanced at the short distance away from the interface, while the surface dissipation rates do not change significantly.

  5. Polyamide membranes with nanoscale Turing structures for water purification

    NASA Astrophysics Data System (ADS)

    Tan, Zhe; Chen, Shengfu; Peng, Xinsheng; Zhang, Lin; Gao, Congjie

    2018-05-01

    The emergence of Turing structures is of fundamental importance, and designing these structures and developing their applications have practical effects in chemistry and biology. We use a facile route based on interfacial polymerization to generate Turing-type polyamide membranes for water purification. Manipulation of shapes by control of reaction conditions enabled the creation of membranes with bubble or tube structures. These membranes exhibit excellent water-salt separation performance that surpasses the upper-bound line of traditional desalination membranes. Furthermore, we show the existence of high water permeability sites in the Turing structures, where water transport through the membranes is enhanced.

  6. Phase transitions and dynamics of bulk and interfacial water.

    PubMed

    Franzese, G; Hernando-Martínez, A; Kumar, P; Mazza, M G; Stokely, K; Strekalova, E G; de los Santos, F; Stanley, H E

    2010-07-21

    New experiments on water at the surface of proteins at very low temperature display intriguing dynamic behaviors. The extreme conditions of these experiments make it difficult to explore the wide range of thermodynamic state points needed to offer a suitable interpretation. Detailed simulations suffer from the same problem, where equilibration times at low temperature become extremely long. We show how Monte Carlo simulations and mean field calculations using a tractable model of water help interpret the experimental results. Here we summarize the results for bulk water and investigate the thermodynamic and dynamic properties of supercooled water at an interface.

  7. Concentrations of anesthetics across the water-membrane interface; the Meyer-Overton hypothesis revisited

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Wilson, M. A.; New, M. H.; Chipot, C.

    1998-01-01

    The free energies of transferring a variety of anesthetic and nonanesthetic compounds across water-oil and water-membrane interfaces were obtained using computer simulations. Anesthetics exhibit greatly enhanced concentrations at these interfaces, compared to nonanesthetics. The substitution of the interfacial solubilites of the anesthetics for their bulk lipid solubilities in the Meyer-Overton relation, was found to give a better correlation, indicating that the potency of an anesthetic is directly proportional to its solubility at the interface.

  8. How faceted liquid droplets grow tails: from surface topology to active motion

    NASA Astrophysics Data System (ADS)

    Sloutskin, Eli

    Among all possible shapes of a volume V, a sphere has the smallest surface area A. Therefore, liquid droplets are spherical, minimizing their interfacial energy γA for a given interfacial tension γ > 0 . This talk will demonstrate that liquid oil (alkane) droplets in water, stabilized by a common surfactant can be temperature-tuned to adopt icosahedral and other faceted shapes, above the bulk melting temperature of the oil. Although emulsions have been studied for centuries no faceted liquid droplets have ever been reported. The formation of an icosahedral shape is attributed to the interplay between γ and the elastic properties of the interfacial monomolecular layer, which crystallizes here 10-15K above bulk melting, leaving the droplet's bulk liquid. The icosahedral symmetry is dictated by twelve five-fold topological defects, forming within the hexagonally-packed interfacial crystalline monolayer. Moreover, we demonstrate that upon further cooling this `interfacial freezing' effect makes γ transiently switch its sign, leading to a spontaneous splitting of droplets and an active growth of their surface area, reminiscent of the classical spontaneous emulsification, yet driven by completely different physics. The observed phenomena allow deeper insights to be gained into the fundamentals of molecular elasticity and open new vitas for a wide range of novel nanotechnological applications, from self-assembly of complex shapes to new delivery strategies in bio-medicine. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research and to the Kahn Foundation for the purchase of equipment.

  9. How do glycerol and dimethyl sulphoxide affect local tetrahedral structure of water around a nonpolar solute at low temperature? Importance of preferential interaction.

    PubMed

    Daschakraborty, Snehasis

    2018-04-07

    Glycerol and dimethyl sulphoxide (DMSO) have vital roles in cryoprotection of living cells, tissues, etc. The above action has been directly linked with disruption of hydrogen (H-) bond structure and dynamics of water by these cosolvents at bulk region and around various complex units, such as peptide, amino acid, protein, and lipid membrane. However, the disruption of the local structure of the water solvent around a purely hydrophobic solute is still not studied extensively. The latter is also important in the context of stabilization of protein from cold denaturation. Through all-atom molecular dynamics simulation, we have investigated the comparative effect of glycerol and DMSO on the orientational order of water around a nonpolar solute at -5 °C. A steady reduction of the tetrahedral order of water is observed at bulk (>10 Å distance from the solute) and solute interface (<5.5 Å distance from the solute) with increasing the cosolvent concentration. Contrasting roles of glycerol and DMSO have been evidenced. While DMSO affects the H-bond structure of the interfacial water more than that of the bulk water, glycerol affects the water structure almost uniformly at all regions around the solute. Furthermore, while glycerol helps to retain water molecules at the interface, DMSO significantly reduces the water content in that region. We have put forward a plausible mechanism for these contrasting roles of these cosolvents. The solute-cosolvent hydrophobic-interaction-induced orientational alignment of an interfacial cosolvent molecule determines whether the involvement of the cosolvent molecules in H-bonding with solvent water in the interface is akin to the bulk region or not.

  10. How do glycerol and dimethyl sulphoxide affect local tetrahedral structure of water around a nonpolar solute at low temperature? Importance of preferential interaction

    NASA Astrophysics Data System (ADS)

    Daschakraborty, Snehasis

    2018-04-01

    Glycerol and dimethyl sulphoxide (DMSO) have vital roles in cryoprotection of living cells, tissues, etc. The above action has been directly linked with disruption of hydrogen (H-) bond structure and dynamics of water by these cosolvents at bulk region and around various complex units, such as peptide, amino acid, protein, and lipid membrane. However, the disruption of the local structure of the water solvent around a purely hydrophobic solute is still not studied extensively. The latter is also important in the context of stabilization of protein from cold denaturation. Through all-atom molecular dynamics simulation, we have investigated the comparative effect of glycerol and DMSO on the orientational order of water around a nonpolar solute at -5 °C. A steady reduction of the tetrahedral order of water is observed at bulk (>10 Å distance from the solute) and solute interface (<5.5 Å distance from the solute) with increasing the cosolvent concentration. Contrasting roles of glycerol and DMSO have been evidenced. While DMSO affects the H-bond structure of the interfacial water more than that of the bulk water, glycerol affects the water structure almost uniformly at all regions around the solute. Furthermore, while glycerol helps to retain water molecules at the interface, DMSO significantly reduces the water content in that region. We have put forward a plausible mechanism for these contrasting roles of these cosolvents. The solute-cosolvent hydrophobic-interaction-induced orientational alignment of an interfacial cosolvent molecule determines whether the involvement of the cosolvent molecules in H-bonding with solvent water in the interface is akin to the bulk region or not.

  11. Definition of Free O-H Groups of Water at the Air-Water Interface.

    PubMed

    Tang, Fujie; Ohto, Tatsuhiko; Hasegawa, Taisuke; Xie, Wen Jun; Xu, Limei; Bonn, Mischa; Nagata, Yuki

    2018-01-09

    Free O-H groups of water are often found at the water-hydrophobic medium interface, e.g. for water contact with hydrophobic protein residues, or at the water-air interface. In surface-specific vibrational spectroscopic studies using sum-frequency generation (SFG) spectroscopy, free O-H groups are experimentally well characterized in the O-H stretch region by a sharp 3700 cm -1 peak. Although these free O-H groups are often defined as the O-H groups which are not hydrogen-bonded to other water molecules, a direct correlation between such non-hydrogen-bonded O-H groups and the 3700 cm -1 SFG response has been lacking. Our data show that commonly used hydrogen bond definitions do not adequately capture the free O-H groups contributing to the 3700 cm -1 peak. We thus formulate a new definition for capturing the subensemble of the surface free O-H groups using the intermolecular distance and the angle formed by the water dimer, through the comparison of the ∼3700 cm -1 SFG response and the responses from the selected free O-H groups at the HOD-air interface. Using these optimized free O-H group definitions, we infer the fraction of interfacial water molecules with free O-H groups of 28%, a vibrational lifetime of the free O-H groups of 1.3 ps, and the angle formed by the free O-H groups and the surface normal of 67° at the water-air interface. We expect that this improved free O-H group definition can be helpful in exploring the structure and dynamics of the interfacial water.

  12. Dielectric collapse at the LaAlO 3/SrTiO 3 (001) heterointerface under applied electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minohara, M.; Hikita, Y.; Bell, C.

    The fascinating interfacial transport properties at the LaAlO 3/SrTiO 3 heterointerface have led to intense investigations of this oxide system. Exploiting the large dielectric constant of SrTiO 3 at low temperatures, tunability in the interfacial conductivity over a wide range has been demonstrated using a back-gate device geometry. In order to understand the effect of back-gating, it is crucial to assess the interface band structure and its evolution with external bias. In this study, we report measurements of the gate-bias dependent interface band alignment, especially the confining potential profile, at the conducting LaAlO 3/SrTiO 3 (001) heterointerface using soft andmore » hard x-ray photoemission spectroscopy in conjunction with detailed model simulations. Depth-profiling analysis incorporating the electric field dependent dielectric constant in SrTiO 3 reveals that a significant potential drop on the SrTiO 3 side of the interface occurs within ~2 nm of the interface under negative gate-bias. These results demonstrate gate control of the collapse of the dielectric permittivity at the interface, and explain the dramatic loss of electron mobility with back-gate depletion.« less

  13. Dielectric collapse at the LaAlO 3/SrTiO 3 (001) heterointerface under applied electric field

    DOE PAGES

    Minohara, M.; Hikita, Y.; Bell, C.; ...

    2017-08-25

    The fascinating interfacial transport properties at the LaAlO 3/SrTiO 3 heterointerface have led to intense investigations of this oxide system. Exploiting the large dielectric constant of SrTiO 3 at low temperatures, tunability in the interfacial conductivity over a wide range has been demonstrated using a back-gate device geometry. In order to understand the effect of back-gating, it is crucial to assess the interface band structure and its evolution with external bias. In this study, we report measurements of the gate-bias dependent interface band alignment, especially the confining potential profile, at the conducting LaAlO 3/SrTiO 3 (001) heterointerface using soft andmore » hard x-ray photoemission spectroscopy in conjunction with detailed model simulations. Depth-profiling analysis incorporating the electric field dependent dielectric constant in SrTiO 3 reveals that a significant potential drop on the SrTiO 3 side of the interface occurs within ~2 nm of the interface under negative gate-bias. These results demonstrate gate control of the collapse of the dielectric permittivity at the interface, and explain the dramatic loss of electron mobility with back-gate depletion.« less

  14. Molecular simulation of thermodynamic and transport properties for the H{sub 2}O+NaCl system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orozco, Gustavo A.; Jiang, Hao; Panagiotopoulos, Athanassios Z., E-mail: azp@princeton.edu

    Molecular dynamics and Monte Carlo simulations have been carried out to obtain thermodynamic and transport properties of the binary mixture H{sub 2}O+NaCl at temperatures from T = 298 to 473 K. In particular, vapor pressures, liquid densities, viscosities, and vapor-liquid interfacial tensions have been obtained as functions of pressure and salt concentration. Several previously proposed fixed-point-charge models that include either Lennard-Jones (LJ) 12-6 or exponential-6 (Exp6) functional forms to describe non-Coulombic interactions were studied. In particular, for water we used the SPC and SPC/E (LJ) models in their rigid forms, a semiflexible version of the SPC/E (LJ) model, and themore » Errington-Panagiotopoulos Exp6 model; for NaCl, we used the Smith-Dang and Joung-Cheatham (LJ) parameterizations as well as the Tosi-Fumi (Exp6) model. While none of the model combinations are able to reproduce simultaneously all target properties, vapor pressures are well represented using the SPC plus Joung-Cheathem model combination, and all LJ models do well for the liquid density, with the semiflexible SPC/E plus Joung-Cheatham combination being the most accurate. For viscosities, the combination of rigid SPC/E plus Smith-Dang is the best alternative. For interfacial tensions, the combination of the semiflexible SPC/E plus Smith-Dang or Joung-Cheatham gives the best results. Inclusion of water flexibility improves the mixture densities and interfacial tensions, at the cost of larger deviations for the vapor pressures and viscosities. The Exp6 water plus Tosi-Fumi salt model combination was found to perform poorly for most of the properties of interest, in particular being unable to describe the experimental trend for the vapor pressure as a function of salt concentration.« less

  15. Relating the variation of secondary structure of gelatin at fish oil-water interface to adsorption kinetics, dynamic interfacial tension and emulsion stability.

    PubMed

    Liu, Huihua; Wang, Bo; Barrow, Colin J; Adhikari, Benu

    2014-01-15

    The objectives of this study were to quantify the relationship between secondary structure of gelatin and its adsorption at the fish-oil/water interface and to quantify the implication of the adsorption on the dynamic interfacial tension (DST) and emulsion stability. The surface hydrophobicity of the gelatin solutions decreased when the pH increased from 4.0 to 6.0, while opposite tend was observed in the viscosity of the solution. The DST values decreased as the pH increased from 4.0 to 6.0, indicating that higher positive charges (measured trough zeta potential) in the gelatin solution tended to result in higher DST values. The adsorption kinetics of the gelatin solution was examined through the calculated diffusion coefficients (Deff). The addition of acid promoted the random coil and β-turn structures at the expense of α-helical structure. The addition of NaOH decreased the β-turn and increased the α-helix and random coil. The decrease in the random coil and triple helix structures in the gelatin solution resulted into increased Deff values. The highest diffusion coefficients, the highest emulsion stability and the lowest amount of random coil and triple helix structures were observed at pH=4.8. The lowest amount of random coil and triple helix structures in the interfacial protein layer correlated with the highest stability of the emulsion (highest ESI value). The lower amount of random coil and triple helix structures allowed higher coverage of the oil-water interface by relatively highly ordered secondary structure of gelatin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Study of Fluorinated Quantum Dots-Protein Interactions at the Oil/Water Interface by Interfacial Surface Tension Changes.

    PubMed

    Carrillo-Carrión, Carolina; Gallego, Marta; Parak, Wolfgang J; Carril, Mónica

    2018-05-08

    Understanding the interaction of nanoparticles with proteins and how this interaction modifies the nanoparticles’ surface is crucial before their use for biomedical applications. Since fluorinated materials are emerging as potential imaging probes and delivery vehicles, their interaction with proteins of biological interest must be studied in order to be able to predict their performance in real scenarios. It is known that fluorinated planar surfaces may repel the unspecific adsorption of proteins but little is known regarding the same process on fluorinated nanoparticles due to the scarce examples in the literature. In this context, the aim of this work is to propose a simple and fast methodology to study fluorinated nanoparticle-protein interactions based on interfacial surface tension (IFT) measurements. This technique is particularly interesting for fluorinated nanoparticles due to their increased hydrophobicity. Our study is based on the determination of IFT variations due to the interaction of quantum dots of ca. 5 nm inorganic core/shell diameter coated with fluorinated ligands (QD_F) with several proteins at the oil/water interface. Based on the results, we conclude that the presence of QD_F do not disrupt protein spontaneous film formation at the oil/water interface. Even if at very low concentrations of proteins the film formation in the presence of QD_F shows a slower rate, the final interfacial tension reached is similar to that obtained in the absence of QD_F. The differential behaviour of the studied proteins (bovine serum albumin, fibrinogen and apotransferrin) has been discussed on the basis of the adsorption affinity of each protein towards DCM/water interface and their different sizes. Additionally, it has been clearly demonstrated that the proposed methodology can serve as a complementary technique to other reported direct and indirect methods for the evaluation of nanoparticle-protein interactions at low protein concentrations.

  17. Inclusion Complexes Behavior at the Air-Water Interface. Molecular Dynamic Simulation Study.

    NASA Astrophysics Data System (ADS)

    Gargallo, L.; Vargas, D.; Sandoval, C.; Saavedra, M.; Becerra, N.; Leiva, A.; Radić, D.

    2008-08-01

    The interfacial properties of the inclusion complexes (ICs), obtained from the threading of α-cyclodextrin (α-CD) onto poly(ethylene-oxide)(PEO), poly(ɛ-caprolactone)(PEC) and poly(tetrahydrofuran)(PTHF) and their precursor homopolymers (PHPoly), were studied at the air-water interface. The free surface energy was determined by wettability measurements. The experimental behavior of these systems was described by an atomistic molecular dynamics simulation (MDS).

  18. The mechanisms of filter feeding on oil droplets: Theoretical considerations.

    PubMed

    Mehrabian, Sasan; Letendre, Francis; Cameron, Christopher B

    2018-04-01

    Filter feeding animals capture food particles and oil droplets from the fluid environment using cilia or appendages composed of arrays of fibers. Here we review the theoretical models that have provided a foundation for observations on the efficiency of particle capture. We then provide the mathematical theoretical framework to characterize the efficient filtration of oil droplets. In the aquatic and marine environments oil droplets are released from the decay of organisms or as hydrocarbons. Droplet size and flow velocity, oil-to-water viscosity ratio, oil-water interfacial tension, oil and water density difference, and the surface wettability, or surface texture, of the filter fiber are the key parameters for oil droplet capture. Following capture, capillary force maintains the droplet at its location due to the oil-water interfacial tension. If the oil-coated fiber is subject to any external force such as viscous or gravitational forces, it may deform and separate from the fiber and re-enter the fluid stream. We show oil droplet capture in Daphnia and the barnacle Balanus glandula, and outline some of the ecological unknowns regarding oil capture in the oceans. Awareness of these mechanisms and their interrelationships will provide a foundation for investigations into the efficiency of various modes of filter feeding on oil droplets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Design and Synthesis of Self-Assembled Monolayers on Mesoporous Supports (SAMMS): The Importance of Ligand Posture in Functional Nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fryxell, Glen E.; Mattigod, Shas V.; Lin, Yuehe

    2007-07-01

    Water, and water quality, are issues of critical importance to the future of humankind. The Earth’s water supplies have been contaminated by a wide variety of industrial, military and natural sources. The need exists for an efficient separation technology to remove heavy metal and radionuclide contamination from water. Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to build high efficiency environmental sorbents. These nanoporous ceramics condense a huge amount of surface area into a very small volume. These mesoporous architectures can be subsequently functionalized through molecular self-assembly. These functional mesoporous materials offer significant capabilities in termsmore » of removal of heavy metals and radionuclides from a variety of liquid media, including groundwater, contaminated oils and contaminated chemical weapons. They are highly efficient sorbents, whose rigid, open pore structure allows for rapid, efficient sorption kinetics. Their interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometallate anions and radionuclides. This manuscript provides a review of the design, synthesis and performance of the sorbent materials. The role that ligand posture plays in the chemistry of these interfacial ligand fields is discussed.« less

  20. A relationship between three-dimensional surface hydration structures and force distribution measured by atomic force microscopy.

    PubMed

    Miyazawa, Keisuke; Kobayashi, Naritaka; Watkins, Matthew; Shluger, Alexander L; Amano, Ken-ichi; Fukuma, Takeshi

    2016-04-07

    Hydration plays important roles in various solid-liquid interfacial phenomena. Very recently, three-dimensional scanning force microscopy (3D-SFM) has been proposed as a tool to visualise solvated surfaces and their hydration structures with lateral and vertical (sub) molecular resolution. However, the relationship between the 3D force map obtained and the equilibrium water density, ρ(r), distribution above the surface remains an open question. Here, we investigate this relationship at an interface of an inorganic mineral, fluorite, and water. The force maps measured in pure water are directly compared to force maps generated using the solvent tip approximation (STA) model and from explicit molecular dynamics simulations. The results show that the simulated STA force map describes the major features of the experimentally obtained force image. The agreement between the STA data and the experiment establishes the correspondence between the water density used as an input to the STA model and the experimental hydration structure and thus provides a tool to bridge the experimental force data and atomistic solvation structures. Further applications of this method should improve the accuracy and reliability of both interpretation of 3D-SFM force maps and atomistic simulations in a wide range of solid-liquid interfacial phenomena.

  1. Adsorption and Retardation of PFASs in Soil

    NASA Astrophysics Data System (ADS)

    Chen, W.; Yan, N.; Fu, X.; Carroll, K. C.; Holguin, F. O. O.; Brusseau, M. L.

    2017-12-01

    Per- and poly-fluorinated alkyl substances (PFASs) are emerging contaminants of concern that are present in the subsurface at numerous military and industrial facilities. Knowledge of the retention behavior of these compounds in the subsurface environment is critical for effective risk characterization and remediation. The objective of this research is to investigate the role of adsorption at the air-water interface on PFAS retention in vadose-zone systems. Surface tensions were measured for select PFAS to determine interfacial adsorption coefficients. Column experiments were conducted to characterize retardation and transport under saturated and unsaturated flow conditions. The impact of soil properties and groundwater constituents on surface tension, solid-phase adsorption, and interfacial adsorption was investigated.

  2. Modification of thin-film polyamide membrane with multi-walled carbon nanotubes by interfacial polymerization

    NASA Astrophysics Data System (ADS)

    Al-Hobaib, Abdullah S.; Al-Sheetan, Kh. M.; Shaik, Mohammed Rafi; Al-Suhybani, M. S.

    2017-12-01

    Polyamide thin-film composite (TFC) was fabricated on polysulfone (PS-20) base by interfacial polymerization of aqueous m-phenylenediamine (MPD) solution and 1,3,5-benzenetricarbonyl trichloride (TMC) in hexane organic solution. Multi-wall carbon nanotubes (MWCNT) were carboxylated by heating MWCNT powder in a mixture of HNO3 and H2SO4 (1:3 v/v) at 70 °C under constant sonication for different periods. Polyamide nanocomposites were prepared by incorporating MWCNT and the carboxylated MWCNT (MWCNT-COOH) at different concentrations (0.001-0.009 wt%). The developed composites were analyzed by Fourier transform infrared spectroscopy-attenuated total reflection, scanning electron microscopy, transmission electron microscopy, contact angle measurement, determination of salt rejection and water permeate flux capabilities. The surface morphological studies displayed that the amalgamation of MWCNT considerably changed the surface properties of modified membranes. The surface hydrophilicity was increased as observed in the enhancement in water flux and pure water permeance, due to the presence of hydrophilic nanotubes. Salt rejection was obtained between 94 and 99% and varied water flux values for TFC-reference membrane, pristine-MWCNT in MPD, pristine-MWCNT in TMC and MWCNT-COOH in MPD were 20.5, 38, 40 and 43 L/m2h. The water flux and salt rejection performances revealed that the MWCNT-COOH membrane was superior membrane as compared to the other prepared membranes.

  3. SERS and DFT study of water on metal cathodes of silver, gold and platinum nanoparticles.

    PubMed

    Li, Jian-Feng; Huang, Yi-Fan; Duan, Sai; Pang, Ran; Wu, De-Yin; Ren, Bin; Xu, Xin; Tian, Zhong-Qun

    2010-03-14

    The observed surface-enhanced Raman scattering (SERS) spectra of water adsorbed on metal film electrodes of silver, gold, and platinum nanoparticles were used to infer interfacial water structures on the basis of the change of the electrochemical vibrational Stark tuning rates and the relative Raman intensity of the stretching and bending modes. To explain the increase of the relative Raman intensity ratio of the bending and stretching vibrations at the very negative potential region, density functional theory calculations provide the conceptual model. The specific enhancement effect for the bending mode was closely associated with the water adsorption structure in a hydrogen bonded configuration through its H-end binding to surface sites with large polarizability due to strong cathodic polarization. The present results allow us to propose that interfacial water molecules exist on these metal cathodes with different hydrogen bonding interactions, i.e., the HO-HH-Pt dihydrogen bond for platinum and the HO-HAg(Au) for silver and gold. This dihydrogen bonding configuration on platinum is further supported from observation of the Pt-H stretching band. Furthermore, the influences of the pH effect on SERS intensity and vibrational Stark effect on the gold electrode indicate that the O-H stretching SERS signals are enhanced in the alkaline solutions because of the hydrated hydroxide surface species adsorbed on the gold cathode.

  4. Mechanically triggered solute uptake in soft contact lenses.

    PubMed

    Tavazzi, Silvia; Ferraro, Lorenzo; Fagnola, Matteo; Cozza, Federica; Farris, Stefano; Bonetti, Simone; Simonutti, Roberto; Borghesi, Alessandro

    2015-06-01

    Molecular arrangement plays a role in the diffusion of water and solutes across soft contact lenses. In particular, the uptake of solutes in hydrated contact lenses can occur as long as free water is available for diffusion. In this work, we investigated the effect of mechanical vibrations of low frequency (200 Hz) on the solute uptake. Hyaluronan, a polysaccharide of ophthalmic use, was taken as example of solute of interest. For a specific water-hydrated hydrogel material, differential scanning calorimetry experiments showed that a large fraction of the hydration water accounted for loosely-bound water, both before and after one week of daily-wear of the lenses. The size (of the order of magnitude of few hundreds of nanometers) of hyaluronan in aqueous solution was found to be less than the size of the pores of the lens observed by scanning electron microscopy. However, solute uptake in already-hydrated lenses was negligible by simple immersion, while a significant increase occurred under mechanical vibrations of 200 Hz, thus providing experimental evidence of mechanically triggered enhanced solute uptake, which is attributed to the release of interfacial loosely-bound water. Also other materials were taken into consideration. However, the effectiveness of mechanical vibrations for hyaluronan uptake is restricted to lenses containing interfacial loosely-bound water. Indeed, loosely-bound water is expected to be bound to the polymer with bonding energies of the order of magnitude of 10-100 J/g, which are compatible with the energy input supplied by the vibrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Effects of anthropogenic groundwater exploitation on land surface processes: A case study of the Haihe River Basin, northern China

    NASA Astrophysics Data System (ADS)

    Zou, Jing; Xie, Zhenghui; Zhan, Chesheng; Qin, Peihua; Sun, Qin; Jia, Binghao; Xia, Jun

    2015-05-01

    In this study, we incorporated a groundwater exploitation scheme into the land surface model CLM3.5 to investigate the effects of the anthropogenic exploitation of groundwater on land surface processes in a river basin. Simulations of the Haihe River Basin in northern China were conducted for the years 1965-2000 using the model. A control simulation without exploitation and three exploitation simulations with different water demands derived from socioeconomic data related to the Basin were conducted. The results showed that groundwater exploitation for human activities resulted in increased wetting and cooling effects at the land surface and reduced groundwater storage. A lowering of the groundwater table, increased upper soil moisture, reduced 2 m air temperature, and enhanced latent heat flux were detected by the end of the simulated period, and the changes at the land surface were related linearly to the water demands. To determine the possible responses of the land surface processes in extreme cases (i.e., in which the exploitation process either continued or ceased), additional hypothetical simulations for the coming 200 years with constant climate forcing were conducted, regardless of changes in climate. The simulations revealed that the local groundwater storage on the plains could not contend with high-intensity exploitation for long if the exploitation process continues at the current rate. Changes attributable to groundwater exploitation reached extreme values and then weakened within decades with the depletion of groundwater resources and the exploitation process will therefore cease. However, if exploitation is stopped completely to allow groundwater to recover, drying and warming effects, such as increased temperature, reduced soil moisture, and reduced total runoff, would occur in the Basin within the early decades of the simulation period. The effects of exploitation will then gradually disappear, and the variables will approach the natural state and stabilize at different rates. Simulations were also conducted for cases in which exploitation either continues or ceases using future climate scenario outputs from a general circulation model. The resulting trends were almost the same as those of the simulations with constant climate forcing, despite differences in the climate data input. Therefore, a balance between slow groundwater restoration and rapid human development of the land must be achieved to maintain a sustainable water resource.

  6. Production of superheated steam from vapor-dominated geothermal reservoirs

    USGS Publications Warehouse

    Truesdell, A.H.; White, D.E.

    1973-01-01

    Vapor-dominated geothermal systems such as Larderello, Italy, The Geysers, California, and Matsukawa, Japan yield dry or superheated steam when exploited. Models for these systems are examined along with production data and the thermodynamic properties of water, steam and rock. It is concluded that these systems initially consist of a water and steam filled reservoir, a water-saturated cap rock, and a water or brine-saturated deep reservoir below a water table. Most liquid water in all parts of the system is relatively immobilized in small pores and crevices; steam dominates the large fractures and voids of the reservoir and is the continuous, pressure-controlling phase. With production, the pressure is lowered and the liquid water boils, causing massive transfer of heat from the rock and its eventual drying. Passage of steam through already dried rock produces superheating. After an initial vaporization of liquid water in the reservoir, the decrease in pressure produces increased boiling below the deep water table. With heavy exploitation, boiling extends deeper into hotter rock and the temperature of the steam increases. This model explains most features of the published production behavior of these systems and can be used to guide exploitation policies. ?? 1973.

  7. Synergy of licorice extract and pea protein hydrolysate for oxidative stability of soybean oil-in-water emulsions.

    PubMed

    Zhang, Xin; Xiong, Youling L; Chen, Jie; Zhou, Lirong

    2014-08-13

    Previously developed radical-scavenging pea protein hydrolysates (PPHs) prepared with Flavourzyme (Fla-PPH) and Protamex (Pro-PPH) were used as cosurfactants with Tween 20 to produce soybean oil-in-water (O/W) emulsions, and the suppression of lipid oxidation was investigated. Both PPHs significantly retarded oxidation (P < 0.05) of the emulsions when stored at 37 °C for 14 days. Electron microscopy revealed an interfacial peptidyl membrane around oil droplets, which afforded steric restrictions to oxidation initiators. When licorice extract (LE) was also used in emulsion preparation, a remarkable synergistic oxidation inhibition was observed with both PPHs. LE adsorbed onto oil droplets either directly or through associating with PPH to produce a thick and compact interfacial membrane enabling the defense against oxygen species. Liquiritin apioside, neolicuroside, glabrene, and 18β-glycyrrhetic acid were the predominant phenolic derivatives partitioning at the interface and most likely the major contributors to the notable synergistic antioxidant activity when coupled with PPHs.

  8. Redox chemistry at liquid/liquid interfaces

    NASA Technical Reports Server (NTRS)

    Volkov, A. G.; Deamer, D. W.

    1997-01-01

    The interface between two immiscible liquids with immobilized photosynthetic pigments can serve as the simplest model of a biological membrane convenient for the investigation of photoprocesses accompanied by spatial separation of charges. As it follows from thermodynamics, if the resolvation energies of substrates and products are very different, the interface between two immiscible liquids may act as a catalyst. Theoretical aspects of charge transfer reactions at oil/water interfaces are discussed. Conditions under which the free energy of activation of the interfacial reaction of electron transfer decreases are established. The activation energy of electron transfer depends on the charges of the reactants and dielectric permittivity of the non-aqueous phase. This can be useful when choosing a pair of immiscible solvents to decrease the activation energy of the reaction in question or to inhibit an undesired process. Experimental interfacial catalytic systems are discussed. Amphiphilic molecules such as chlorophyll or porphyrins were studied as catalysts of electron transfer reactions at the oil/water interface.

  9. Newtonian to non-Newtonian flow transition in lung surfactants

    NASA Astrophysics Data System (ADS)

    Sadoughi, Amir; Hirsa, Amir; Lopez, Juan

    2010-11-01

    The lining of normal lungs is covered by surfactants, because otherwise the surface tension of the aqueous layer would be too large to allow breathing. A lack of functioning surfactants can lead to respiratory distress syndrome, a potentially fatal condition in both premature infants and adults, and a major cause of death in the US and world-wide. We use a home-built Brewster angle microscope on an optically accessible deep channel viscometer to simultaneously observe the mesoscale structures of DPPC, the primary constituent of lung surfactant, on water surface and measure the interfacial velocity field. The measured interfacial velocity is compared to Navier-Stokes computations with the Boussinesq-Scriven surface model. Results show that DPPC monolayer behaves i) purely elastically at low surface pressures on water, ii) viscoelastically at modest surface pressures, exhibiting non-zero surface shear viscosity that is independent of the shear rate and flow inertia, and iii) at surface pressures approaching film collapse, DPPC loses its fluid characteristics, and a Newtonian surface model no longer captures its hydrodynamics.

  10. Patchy Particles of Block Copolymers from Interface-Engineered Emulsions

    NASA Astrophysics Data System (ADS)

    Ku, Kang Hee; Kim, Yongjoo; Yi, Gi-Ra; Jung, Yeon Sik; Kim, Bumjoon

    A simple method for creating soft patchy particles with a variety of three-dimensional shapes has been developed through the evaporation-induced assembly of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer (BCP) in an oil-in-water emulsion. Depending on the particle volume, a series of patchy particles in the shapes of snowmen, dumbbells, triangles, tetrahedra, and raspberry can be prepared, which are then precisely tuned by modulating the interfacial interaction at the particle/water interface using a mixture of two different surfactants. Moreover, for a given interfacial interaction, the stretching penalty of the BCPs in the patchy particles can be systematically controlled by adding P4VP homopolymers, which decreases the number of patches of soft particles from multiple patches to a single patch but increases the size of the patch. Calculations based on the strong segregation theory supported the experimental observation of various soft patchy particles and identified the underlying principles of their formation with tunable 3D structures.

  11. Films of Bacteria at Interfaces (FBI): Remodeling of Fluid Interfaces by Pseudomonas aeruginosa.

    PubMed

    Niepa, Tagbo H R; Vaccari, Liana; Leheny, Robert L; Goulian, Mark; Lee, Daeyeon; Stebe, Kathleen J

    2017-12-19

    Bacteria at fluid interfaces endure physical and chemical stresses unique to these highly asymmetric environments. The responses of Pseudomonas aeruginosa PAO1 and PA14 to a hexadecane-water interface are compared. PAO1 cells form elastic films of bacteria, excreted polysaccharides and proteins, whereas PA14 cells move actively without forming an elastic film. Studies of PAO1 mutants show that, unlike solid-supported biofilms, elastic interfacial film formation occurs in the absence of flagella, pili, or certain polysaccharides. Highly induced genes identified in transcriptional profiling include those for putative enzymes and a carbohydrate metabolism enzyme, alkB2; this latter gene is not upregulated in PA14 cells. Notably, PAO1 mutants lacking the alkB2 gene fail to form an elastic layer. Rather, they form an active film like that formed by PA14. These findings demonstrate that genetic expression is altered by interfacial confinement, and suggest that the ability to metabolize alkanes may play a role in elastic film formation at oil-water interfaces.

  12. Effect of thermal behavior of β-lactoglobulin on the oxidative stability of menhaden oil-in-water emulsions.

    PubMed

    Phoon, Pui Yeu; Narsimhan, Ganesan; San Martin-Gonzalez, Maria Fernanda

    2013-02-27

    This study reports how emulsion oxidative stability was affected by the interfacial structure of β-lactoglobulin due to different heat treatments. Four percent (v/v) menhaden oil-in-water emulsions, stabilized by 1% (w/v) β-lactoglobulin at pH 7, were prepared by homogenization under different thermal conditions. Oxidative stability was monitored by the ferric thiocyanate peroxide value assay. Higher oxidative stability was attained by β-lactoglobulin in the molten globule state than in the native or denatured state. From atomic force microscopy of β-lactoglobulin adsorbed onto highly ordered pyrolytic graphite in buffer, native β-lactoglobulin formed a relatively smooth interfacial layer of 1.2 GPa in Young's modulus, whereas additional aggregates of similar stiffness were found when β-lactoglobulin was preheated to the molten globule state. For denatured β-lactoglobulin, although aggregates were also observed, they were larger and softer (Young's modulus = 0.45 GPa), suggesting increased porosity and thus an offset in the advantage of increased layer coverage on oxidative stability.

  13. Halide Ions Effects on Surface Excess of Long Chain Ionic Liquids Water Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenjie; Sung, Woongmo; Ao, Mingqi

    2013-10-07

    The interfacial structure and composition of water solutions with alkylimidazolium ionic liquids varying in their halide anions ([C12mim][X], X = Cl and I) were investigated by X-ray near-total-reflection fluorescence spectroscopy and X-ray reflectivity measurements. We demonstrate that X-ray fluorescence and reflectivity techniques provide a more direct measurement of surface adsorption. Furthermore, we show that for [C12mim][Cl] and [C12mim][I] solutions with mixed inorganic salts (NaI, NaCl), I– ions replace Cl– above the critical micelle concentration (CMC) of [C12mim][Cl] at much lower concentrations of NaI, whereas NaCl concentrations a hundred times higher than the CMC of [C12mim][I] only partially replace the I–more » at the interface. Our surface-sensitive X-ray diffraction and spectroscopy provide two independent tools to directly determine the surface adsorption of ionic surfactants and the interfacial composition of the surface films.« less

  14. Equilibration of a polycation - anionic surfactant mixture at the water/vapor interface.

    PubMed

    Akanno, Andrew; Guzmán, Eduardo; Fernández-Peña, Laura; Llamas, Sara; Ortega, Francisco; Rubio, Ramon Gonzalez

    2018-06-01

    The adsorption of concentrated poly(diallyldimethylammonium chloride) (PDADMAC) - sodium lauryl ether sulfate (SLES) mixtures at the water / vapor interface has been studied by different surface tension techniques and dilational visco-elasticity measurements. This work tries to shed light on the way in which the formation of polyelectrolyte - surfactant complexes in the bulk affects to the interfacial properties of mixtures formed by a polycation and an oppositely charged surfactant. The results are discussed in terms of a two-step adsorption-equilibration of PDADMAC - SLES complexes at the interface, with the initial stages involving the diffusion of kinetically trapped aggregates formed in the bulk to the interface followed by the dissociation and spreading of such aggregates at the interface. This latter process becomes the main contribution to the surface tension decrease. This work helps on the understanding of the most fundamental bases of the physico-chemical behavior of concentrated polyelectrolyte - surfactant mixtures which present complex bulk and interfacial interactions with interest in both basic and applied sciences.

  15. Potential-specific structure at the hematite-electrolyte interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBriarty, Martin E.; Stubbs, Joanne; Eng, Peter

    The atomic-scale structure of interfaces between metal oxides and aqueous electrolytes controls their catalytic, geochemical, and corrosion behavior. Measurements that probe these interfaces in situ provide important details of ion and solvent arrangements, but atomically precise structural models do not exist for common oxide-electrolyte interfaces far from equilibrium. Using a novel cell, we measured the structure of the hematite (a-Fe 2O 3) (110more » $$\\bar{2}$$)-electrolyte interface under controlled electrochemical bias using synchrotron crystal truncation rod X ray scattering. At increasingly cathodic potentials, charge-compensating protonation of surface oxygen groups increases the coverage of specifically bound water while adjacent water layers displace outwardly and became disordered. Returning to open circuit potential leaves the surface in a persistent metastable protonation state. The flux of current and ions at applied potential is thus regulated by a unique interfacial electrolyte environment, suggesting that electrical double layer models should be adapted to the dynamically changing interfacial structure far from equilibrium.« less

  16. Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model

    PubMed Central

    Bauer, Brad A.; Patel, Sandeep

    2009-01-01

    We present an extension of the TIP4P-QDP model, TIP4P-QDP-LJ, that is designed to couple changes in repulsive and dispersive nonbond interactions to changes in polarizability. Polarizability is intimately related to the dispersion component of classical force field models of interactions, and we explore the effect of incorporating this connection explicitly on properties along the liquid-vapor coexistence curve of pure water. Parametrized to reproduce condensed-phase liquid water properties at 298 K, the TIP4P-QDP-LJ model predicts density, enthalpy of vaporization, self-diffusion constant, and the dielectric constant at ambient conditions to about the same accuracy as TIP4P-QDP but shows remarkable improvement in reproducing the liquid-vapor coexistence curve. TIP4P-QDP-LJ predicts critical constants of Tc=623 K, ρc=0.351 g∕cm3, and Pc=250.9 atm, which are in good agreement with experimental values of Tc=647.1 K, ρc=0.322 g∕cm3, and Pc=218 atm, respectively. Applying a scaling factor correction (obtained by fitting the experimental vapor-liquid equilibrium data to the law of rectilinear diameters using a three-term Wegner expansion) the model predicts critical constants (Tc=631 K and ρc=0.308 g∕cm3). Dependence of enthalpy of vaporization, self-diffusion constant, surface tension, and dielectric constant on temperature are shown to reproduce experimental trends. We also explore the interfacial potential drop across the liquid-vapor interface for the temperatures studied. The interfacial potential demonstrates little temperature dependence at lower temperatures (300–450 K) and significantly enhanced (exponential) dependence at elevated temperatures. Terms arising from the decomposition of the interfacial potential into dipole and quadrupole contributions are shown to monotonically approach zero as the temperature approaches the critical temperature. Results of this study suggest that self-consistently treating the coupling of phase-dependent polarizability with dispersion interactions in classical water force fields may be an important effect for the extension of polarizable water force fields to reproduce properties along the liquid-vapor coexistence envelope as well as near critical conditions. More importantly, the present study demonstrates the rather remarkable transferability of a water model parametrized to a single state point to other thermodynamic states. Further studies are recommended. PMID:19725623

  17. Humidity-dependent compression-induced glass transition of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA).

    PubMed

    Kim, Hyun Chang; Lee, Hoyoung; Jung, Hyunjung; Choi, Yun Hwa; Meron, Mati; Lin, Binhua; Bang, Joona; Won, You-Yeon

    2015-07-28

    Constant rate compression isotherms of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA) show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not fully understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air-water interface, using combined experimental techniques including the Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods. We observed that the mechanical and structural responses of the Langmuir PLGA films are significantly dependent on the rate of film compression; the glass transition was induced in the PLGA film only at fast compression rates. Surprisingly, we found that this deformation rate dependence is also dependent on the humidity of the environment. With water acting as a plasticizer for the PLGA material, the diffusion of water molecules through the PLGA film seems to be the key factor in the determination of the glass transformation properties and thus the mechanical response of the PLGA film against lateral compression. Based on our combined results, we hypothesize the following mechanism for the compression-induced glass transformation of the Langmuir PLGA film; (1) initially, a humidified/non-glassy PLGA film is formed in the full surface-coverage region (where the surface pressure shows a plateau) during compression; (2) further compression leads to the collapse of the PLGA chains and the formation of new surfaces on the air side of the film, and this newly formed top layer of the PLGA film is transiently glassy in character because the water evaporation rate in the top surface region is momentarily faster than the humidification rate (due to the initial roughness of the newly formed surface); (3) after some time, the top layer itself becomes humidified through diffusion of water from the subphase, and thus it becomes non-glassy, leading to the relaxation of the applied compressive stress.

  18. Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model.

    PubMed

    Bauer, Brad A; Patel, Sandeep

    2009-08-28

    We present an extension of the TIP4P-QDP model, TIP4P-QDP-LJ, that is designed to couple changes in repulsive and dispersive nonbond interactions to changes in polarizability. Polarizability is intimately related to the dispersion component of classical force field models of interactions, and we explore the effect of incorporating this connection explicitly on properties along the liquid-vapor coexistence curve of pure water. Parametrized to reproduce condensed-phase liquid water properties at 298 K, the TIP4P-QDP-LJ model predicts density, enthalpy of vaporization, self-diffusion constant, and the dielectric constant at ambient conditions to about the same accuracy as TIP4P-QDP but shows remarkable improvement in reproducing the liquid-vapor coexistence curve. TIP4P-QDP-LJ predicts critical constants of T(c)=623 K, rho(c)=0.351 g/cm(3), and P(c)=250.9 atm, which are in good agreement with experimental values of T(c)=647.1 K, rho(c)=0.322 g/cm(3), and P(c)=218 atm, respectively. Applying a scaling factor correction (obtained by fitting the experimental vapor-liquid equilibrium data to the law of rectilinear diameters using a three-term Wegner expansion) the model predicts critical constants (T(c)=631 K and rho(c)=0.308 g/cm(3)). Dependence of enthalpy of vaporization, self-diffusion constant, surface tension, and dielectric constant on temperature are shown to reproduce experimental trends. We also explore the interfacial potential drop across the liquid-vapor interface for the temperatures studied. The interfacial potential demonstrates little temperature dependence at lower temperatures (300-450 K) and significantly enhanced (exponential) dependence at elevated temperatures. Terms arising from the decomposition of the interfacial potential into dipole and quadrupole contributions are shown to monotonically approach zero as the temperature approaches the critical temperature. Results of this study suggest that self-consistently treating the coupling of phase-dependent polarizability with dispersion interactions in classical water force fields may be an important effect for the extension of polarizable water force fields to reproduce properties along the liquid-vapor coexistence envelope as well as near critical conditions. More importantly, the present study demonstrates the rather remarkable transferability of a water model parametrized to a single state point to other thermodynamic states. Further studies are recommended.

  19. A simulation study of homogeneous ice nucleation in supercooled salty water

    NASA Astrophysics Data System (ADS)

    Soria, Guiomar D.; Espinosa, Jorge R.; Ramirez, Jorge; Valeriani, Chantal; Vega, Carlos; Sanz, Eduardo

    2018-06-01

    We use computer simulations to investigate the effect of salt on homogeneous ice nucleation. The melting point of the employed solution model was obtained both by direct coexistence simulations and by thermodynamic integration from previous calculations of the water chemical potential. Using a seeding approach, in which we simulate ice seeds embedded in a supercooled aqueous solution, we compute the nucleation rate as a function of temperature for a 1.85 NaCl mol per water kilogram solution at 1 bar. To improve the accuracy and reliability of our calculations, we combine seeding with the direct computation of the ice-solution interfacial free energy at coexistence using the Mold Integration method. We compare the results with previous simulation work on pure water to understand the effect caused by the solute. The model captures the experimental trend that the nucleation rate at a given supercooling decreases when adding salt. Despite the fact that the thermodynamic driving force for ice nucleation is higher for salty water for a given supercooling, the nucleation rate slows down with salt due to a significant increase of the ice-fluid interfacial free energy. The salty water model predicts an ice nucleation rate that is in good agreement with experimental measurements, bringing confidence in the predictive ability of the model. We expect that the combination of state-of-the-art simulation methods here employed to study ice nucleation from solution will be of much use in forthcoming numerical investigations of crystallization in mixtures.

  20. A simulation study of homogeneous ice nucleation in supercooled salty water.

    PubMed

    Soria, Guiomar D; Espinosa, Jorge R; Ramirez, Jorge; Valeriani, Chantal; Vega, Carlos; Sanz, Eduardo

    2018-06-14

    We use computer simulations to investigate the effect of salt on homogeneous ice nucleation. The melting point of the employed solution model was obtained both by direct coexistence simulations and by thermodynamic integration from previous calculations of the water chemical potential. Using a seeding approach, in which we simulate ice seeds embedded in a supercooled aqueous solution, we compute the nucleation rate as a function of temperature for a 1.85 NaCl mol per water kilogram solution at 1 bar. To improve the accuracy and reliability of our calculations, we combine seeding with the direct computation of the ice-solution interfacial free energy at coexistence using the Mold Integration method. We compare the results with previous simulation work on pure water to understand the effect caused by the solute. The model captures the experimental trend that the nucleation rate at a given supercooling decreases when adding salt. Despite the fact that the thermodynamic driving force for ice nucleation is higher for salty water for a given supercooling, the nucleation rate slows down with salt due to a significant increase of the ice-fluid interfacial free energy. The salty water model predicts an ice nucleation rate that is in good agreement with experimental measurements, bringing confidence in the predictive ability of the model. We expect that the combination of state-of-the-art simulation methods here employed to study ice nucleation from solution will be of much use in forthcoming numerical investigations of crystallization in mixtures.

Top