Sample records for exploration rover program

  1. Mars Mission Surface Operation Simulation Testing of Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Bugga, R.; Whitcanack, L. D.; Chin, K. B.; Davies, E. D.; Surampudi, S.

    2003-01-01

    The objectives of this program are to 1) Assess viability of using lithium-ion technology for future NASA applications, with emphasis upon Mars landers and rovers which will operate on the planetary surface; 2) Support the JPL 2003 Mars Exploration Rover program to assist in the delivery and testing of a 8 AHr Lithium-Ion battery (Lithion/Yardney) which will power the rover; 3) Demonstrate applicability of using lithium-ion technologyfor future Mars applications: Mars 09 Science Laboratory (Smart Lander) and Future Mars Surface Operations (General). Mission simulation testing was carried out for cells and batteries on the Mars Surveyor 2001 Lander and the 2003 Mars Exploration Rover.

  2. Immersive visualization for navigation and control of the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Hartman, Frank R.; Cooper, Brian; Maxwell, Scott; Wright, John; Yen, Jeng

    2004-01-01

    The Rover Sequencing and Visualization Program (RSVP) is a suite of tools for sequencing of planetary rovers, which are subject to significant light time delay and thus are unsuitable for teleoperation.

  3. Students, Teachers, and Scientists Partner to Explore Mars

    NASA Astrophysics Data System (ADS)

    Bowman, C. D.; Bebak, M.; Curtis, K.; Daniel, C.; Grigsby, B.; Herman, T.; Haynes, E.; Lineberger, D. H.; Pieruccini, S.; Ransom, S.; Reedy, K.; Spencer, C.; Steege, A.

    2003-12-01

    The Mars Exploration Rovers began their journey to the red planet in the summer of 2003 and, in early 2004, will begin an unprecedented level of scientific exploration on Mars, attracting the attention of scientists and the public worldwide. In an effort to engage students and teachers in this exciting endeavor, NASA's Mars Public Engagement Office, partnering with the Athena Science Investigation, coordinates a student-scientist research partnership program called the Athena Student Interns Program. The Athena Student Interns Program \\(ASIP\\) began in early 1999 as the LAPIS program, a pilot hands-on educational effort associated with the FIDO prototype Mars rover field tests \\(Arvidson, 2000\\). In ASIP, small groups of students and teachers selected through a national application process are paired with mentors from the mission's Athena Science Team to carry out an aspect of the mission. To prepare for actual operations during the landed rover mission, the students and teachers participate in one of the Science Team's Operational Readiness Tests \\(ORTs\\) at JPL using a prototype rover in a simulated Mars environment \\(Crisp, et al., in press. See also http://mars.jpl.nasa.gov/mer/fido/\\). Once the rovers have landed, each ASIP group will spend one week at JPL in mission operations, working as part of their mentor's own team to help manage and interpret data coming from Mars. To reach other teachers and students, each group gives school and community presentations, contributes to publications such as web articles and conference abstracts, and participates in NASA webcasts and webchats. Partnering with other groups and organizations, such as NASA's Solar System Ambassadors and the Housing and Urban Development Neighborhood Networks helps reach an even broader audience. ASIP is evaluated through the use of empowerment evaluation, a technique that actively involves participants in program assessment \\(Fetterman and Bowman, 2002\\). With the knowledge they gain through the ASIP program and their participation in the empowerment evaluation, ASIP members will help refine the current program and provide a model for student-scientist research partnerships associated with future space missions to Mars and beyond. Arvidson, R.E., et al. \\(2000\\) Students participate in Mars Sample Return Rover field tests. Eos, 81(11). Crisp, J.A., et al. \\(in press\\) The Mars Exploration Rover Mission. J. Geophys. Research-Planets. Fetterman, D. and C.D. Bowman. \\(2002\\) Experiential Education and Empowerment Evaluation: Mars Rover Educational Program Case Example. J. Experiential Education, 25(2).

  4. United States planetary rover status: 1989

    NASA Technical Reports Server (NTRS)

    Pivirotto, Donna L. S.; Dias, William C.

    1990-01-01

    A spectrum of concepts for planetary rovers and rover missions, is covered. Rovers studied range from tiny micro rovers to large and highly automated vehicles capable of traveling hundreds of kilometers and performing complex tasks. Rover concepts are addressed both for the Moon and Mars, including a Lunar/Mars common rover capable of supporting either program with relatively small modifications. Mission requirements considered include both Science and Human Exploration. Studies include a range of autonomy in rovers, from interactive teleoperated systems to those requiring and onboard System Executive making very high level decisions. Both high and low technology rover options are addressed. Subsystems are described for a representative selection of these rovers, including: Mobility, Sample Acquisition, Science, Vehicle Control, Thermal Control, Local Navigation, Computation and Communications. System descriptions of rover concepts include diagrams, technology levels, system characteristics, and performance measurement in terms of distance covered, samples collected, and area surveyed for specific representative missions. Rover development schedules and costs are addressed for Lunar and Mars exploration initiatives.

  5. Using RSVP for analyzing state and previous activities for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Cooper, Brian K.; Hartman, Frank; Maxwell, Scott; Wright, John; Yen, Jeng

    2004-01-01

    Current developments in immersive environments for mission planning include several tools which make up a system for performing and rehearsing missions. This system, known as the Rover Sequencing and Visualization Program (RSVP), includes tools for planning long range sorties for highly autonomous rovers, tools for planning operations with robotic arms, and advanced tools for visualizing telemetry from remote spacecraft and landers. One of the keys to successful planning of rover activities is knowing what the rover has accomplished to date and understanding the current rover state. RSVP builds on the lessons learned and the heritage of the Mars Pathfinder mission This paper will discuss the tools and methodologies present in the RSVP suite for examining rover state, reviewing previous activities, visually comparing telemetered results to rehearsed results, and reviewing science and engineering imagery. In addition we will present how this tool suite was used on the Mars Exploration Rovers (MER) project to explore the surface of Mars.

  6. Science Activity Planner for the MER Mission

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Crockett, Thomas M.; Fox, Jason M.; Joswig, Joseph C.; Powell, Mark W.; Shams, Khawaja S.; Torres, Recaredo J.; Wallick, Michael N.; Mittman, David S.

    2008-01-01

    The Maestro Science Activity Planner is a computer program that assists human users in planning operations of the Mars Explorer Rover (MER) mission and visualizing scientific data returned from the MER rovers. Relative to its predecessors, this program is more powerful and easier to use. This program is built on the Java Eclipse open-source platform around a Web-browser-based user-interface paradigm to provide an intuitive user interface to Mars rovers and landers. This program affords a combination of advanced display and simulation capabilities. For example, a map view of terrain can be generated from images acquired by the High Resolution Imaging Science Explorer instrument aboard the Mars Reconnaissance Orbiter spacecraft and overlaid with images from a navigation camera (more precisely, a stereoscopic pair of cameras) aboard a rover, and an interactive, annotated rover traverse path can be incorporated into the overlay. It is also possible to construct an overhead perspective mosaic image of terrain from navigation-camera images. This program can be adapted to similar use on other outer-space missions and is potentially adaptable to numerous terrestrial applications involving analysis of data, operations of robots, and planning of such operations for acquisition of scientific data.

  7. KSC-03pd0516

    NASA Image and Video Library

    2003-02-19

    KENNEDY SPACE CENTER, FLA. - At NASA's Family & Community Mars Exploration Day, held in Cape Canaveral, Fla., James Garvin, lead scientist for the Mars Exploration Program, talks to students about the Mars Exploration Rover. Garvin is standing next to a replica of the Rover. The event informed students and the general public about Florida's key role as NASA's "Gateway to Mars" and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.

  8. KSC-03PD-0516

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - At NASA's Family & Community Mars Exploration Day, held in Cape Canaveral, Fla., James Garvin, lead scientist for the Mars Exploration Program, talks to students about the Mars Exploration Rover. Garvin is standing next to a replica of the Rover. The event informed students and the general public about Florida's key role as NASA's 'Gateway to Mars' and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.

  9. Update on Rover Sequencing and Visualization Program

    NASA Technical Reports Server (NTRS)

    Cooper, Brian; Hartman, Frank; Maxwell, Scott; Yen, Jeng; Wright, John; Balacuit, Carlos

    2005-01-01

    The Rover Sequencing and Visualization Program (RSVP) has been updated. RSVP was reported in Rover Sequencing and Visualization Program (NPO-30845), NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 38. To recapitulate: The Rover Sequencing and Visualization Program (RSVP) is the software tool to be used in the Mars Exploration Rover (MER) mission for planning rover operations and generating command sequences for accomplishing those operations. RSVP combines three-dimensional (3D) visualization for immersive exploration of the operations area, stereoscopic image display for high-resolution examination of the downlinked imagery, and a sophisticated command-sequence editing tool for analysis and completion of the sequences. RSVP is linked with actual flight code modules for operations rehearsal to provide feedback on the expected behavior of the rover prior to committing to a particular sequence. Playback tools allow for review of both rehearsed rover behavior and downlinked results of actual rover operations. These can be displayed simultaneously for comparison of rehearsed and actual activities for verification. The primary inputs to RSVP are downlink data products from the Operations Storage Server (OSS) and activity plans generated by the science team. The activity plans are high-level goals for the next day s activities. The downlink data products include imagery, terrain models, and telemetered engineering data on rover activities and state. The Rover Sequence Editor (RoSE) component of RSVP performs activity expansion to command sequences, command creation and editing with setting of command parameters, and viewing and management of rover resources. The HyperDrive component of RSVP performs 2D and 3D visualization of the rover s environment, graphical and animated review of rover predicted and telemetered state, and creation and editing of command sequences related to mobility and Instrument Deployment Device (robotic arm) operations. Additionally, RoSE and HyperDrive together evaluate command sequences for potential violations of flight and safety rules. The products of RSVP include command sequences for uplink that are stored in the Distributed Object Manager (DOM) and predicted rover state histories stored in the OSS for comparison and validation of downlinked telemetry. The majority of components comprising RSVP utilize the MER command and activity dictionaries to automatically customize the system for MER activities.

  10. Integrated optimization of planetary rover layout and exploration routes

    NASA Astrophysics Data System (ADS)

    Lee, Dongoo; Ahn, Jaemyung

    2018-01-01

    This article introduces an optimization framework for the integrated design of a planetary surface rover and its exploration route that is applicable to the initial phase of a planetary exploration campaign composed of multiple surface missions. The scientific capability and the mobility of a rover are modelled as functions of the science weight fraction, a key parameter characterizing the rover. The proposed problem is formulated as a mixed-integer nonlinear program that maximizes the sum of profits obtained through a planetary surface exploration mission by simultaneously determining the science weight fraction of the rover, the sites to visit and their visiting sequences under resource consumption constraints imposed on each route and collectively on a mission. A solution procedure for the proposed problem composed of two loops (the outer loop and the inner loop) is developed. The results of test cases demonstrating the effectiveness of the proposed framework are presented.

  11. An Analog Rover Exploration Mission for Education and Outreach

    NASA Astrophysics Data System (ADS)

    Moores, John; Campbell, Charissa L.; Smith, Christina L.; Cooper, Brittney A.

    2017-10-01

    This abstract describes an analog rover exploration mission designed as an outreach program for high school and undergraduate students. This program is used to teach them about basic mission control operations, how to manage a rover as if it were on another planetary body, and employing the rover remotely to complete mission objectives. One iteration of this program has been completed and another is underway. In both trials, participants were shown the different operation processes involved in a real-life mission. Modifications were made to these processes to decrease complexity and better simulate a mission control environment in a short time period (three 20-minute-long mission “days”). In the first run of the program, participants selected a landing site, what instruments would be on the rover - subject to cost, size, and weight limitations - and were randomly assigned one of six different mission operations roles, each with specific responsibilities. For example, a Science Planner/Integrator (SPI) would plan science activities whilst a Rover Engineer (RE) would keep on top of rover constraints. Planning consisted of a series of four meetings to develop and verify the current plan, pre-plan the next day's activities and uplink the activities to the “rover” (a human colleague). Participants were required to attend certain meetings depending upon their assigned role. To conclude the mission, students viewed the site to understand any differences between remote viewing and reality in relation to the rover. Another mission is currently in progress with revisions from the earlier run to improve the experience. This includes broader roles and meetings and pre-selecting the landing site and rover. The new roles are: Mission Lead, Rover Engineer and Science Planner. The SPI role was previously popular so most of the students were placed in this category. The meetings were reduced to three but extended in length. We are also planning to integrate this program into the Ontario Science Center (OSC) to educate and fascinate people of all ages.

  12. Centralized Planning for Multiple Exploratory Robots

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Rabideau, Gregg; Chien, Steve; Barrett, Anthony

    2005-01-01

    A computer program automatically generates plans for a group of robotic vehicles (rovers) engaged in geological exploration of terrain. The program rapidly generates multiple command sequences that can be executed simultaneously by the rovers. Starting from a set of high-level goals, the program creates a sequence of commands for each rover while respecting hardware constraints and limitations on resources of each rover and of hardware (e.g., a radio communication terminal) shared by all the rovers. First, a separate model of each rover is loaded into a centralized planning subprogram. The centralized planning software uses the models of the rovers plus an iterative repair algorithm to resolve conflicts posed by demands for resources and by constraints associated with the all the rovers and the shared hardware. During repair, heuristics are used to make planning decisions that will result in solutions that will be better and will be found faster than would otherwise be possible. In particular, techniques from prior solutions of the multiple-traveling- salesmen problem are used as heuristics to generate plans in which the paths taken by the rovers to assigned scientific targets are shorter than they would otherwise be.

  13. Prospecting Rovers for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Graham, Jerry B.; Vaughn, Jason A.; Farmer, Jeffery T.

    2007-01-01

    A study of lunar rover options for exploring the permanently shadowed regions of the lunar environment is presented. The potential for nearly continuous solar illumination coupled with the potential for water ice, focus exploration planner's attention on the polar regions of the moon. These regions feature craters that scientists have reason to believe may contain water ice. Water ice can be easily converted to fuel cell reactants, breathing oxygen, potable water, and rocket propellant. For these reasons, the NASA Robotic Lunar Exploration Program (RLEP) sponsored a study of potential prospecting rover concepts as one part of the RLEP-2 Pre-Phase A. Numerous vehicle configurations and power, thermal, and communication options are investigated. Rover options in the 400kg to 530kg class are developed which are capable of either confirming the presence of water ice at the poles, or conclusively demonstrating its absence.

  14. Mars Rover Missions and Science Education: A Decade of Education and Public Outreach Using the Mars Exploration Rover Mission at the New Mexico Museum of Natural History and Science

    NASA Astrophysics Data System (ADS)

    Aubele, J. C.; Crumpler, L. S.

    2014-07-01

    New Mexico Museum of Natural History & Science exhibits and educational programming related to the MER mission reached over two million museum visitors through exhibits and over 15,000 participants in targeted educational programs.

  15. Ambler - An autonomous rover for planetary exploration

    NASA Technical Reports Server (NTRS)

    Bares, John; Hebert, Martial; Kanade, Takeo; Krotkov, Eric; Mitchell, Tom

    1989-01-01

    The authors are building a prototype legged rover, called the Ambler (loosely an acronym for autonomous mobile exploration robot) and testing it on full-scale, rugged terrain of the sort that might be encountered on the Martian surface. They present an overview of their research program, focusing on locomotion, perception, planning, and control. They summarize some of the most important goals and requirements of a rover design and describe how locomotion, perception, and planning systems can satisfy these requirements. Since the program is relatively young (one year old at the time of writing) they identify issues and approaches and describe work in progress rather than report results. It is expected that many of the technologies developed will be applicable to other planetary bodies and to terrestrial concerns such as hazardous waste assessment and remediation, ocean floor exploration, and mining.

  16. KSC-03pd1232

    NASA Image and Video Library

    2003-04-24

    KENNEDY SPACE CENTER, FLA. - Jim Lloyd, with the Mars Exploration Rover program, holds a computer chip with about 35,000 laser-engraved signatures of visitors to the Jet Propulsion Laboratory. The chip will be placed on the second rover to be launched to Mars (MER-1/MER-B); the first rover already has one. The signatures include those of senators, artists, and John Glenn. The identical Mars rovers are scheduled to launch June 5 and June 25 from Cape Canaveral Air Force Station.

  17. KSC-03pd1235

    NASA Image and Video Library

    2003-04-24

    KENNEDY SPACE CENTER, FLA. - Jim Lloyd, with the Mars Exploration Rover (MER) program, places on MER-1 a computer chip with about 35,000 laser-engraved signatures of visitors to the rovers at the Jet Propulsion Laboratory. The signatures include those of senators, artists, and John Glenn. The identical Mars rovers are scheduled to launch June 5 and June 25 from Cape Canaveral Air Force Station.

  18. Software for Displaying Data from Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Powell, Mark; Backers, Paul; Norris, Jeffrey; Vona, Marsette; Steinke, Robert

    2003-01-01

    Science Activity Planner (SAP) DownlinkBrowser is a computer program that assists in the visualization of processed telemetric data [principally images, image cubes (that is, multispectral images), and spectra] that have been transmitted to Earth from exploratory robotic vehicles (rovers) on remote planets. It is undergoing adaptation to (1) the Field Integrated Design and Operations (FIDO) rover (a prototype Mars-exploration rover operated on Earth as a test bed) and (2) the Mars Exploration Rover (MER) mission. This program has evolved from its predecessor - the Web Interface for Telescience (WITS) software - and surpasses WITS in the processing, organization, and plotting of data. SAP DownlinkBrowser creates Extensible Markup Language (XML) files that organize data files, on the basis of content, into a sortable, searchable product database, without the overhead of a relational database. The data-display components of SAP DownlinkBrowser (descriptively named ImageView, 3DView, OrbitalView, PanoramaView, ImageCubeView, and SpectrumView) are designed to run in a memory footprint of at least 256MB on computers that utilize the Windows, Linux, and Solaris operating systems.

  19. High Gain Antenna Gimbal for the 2003-2004 Mars Exploration Rover Program

    NASA Technical Reports Server (NTRS)

    Sokol, Jeff; Krishnan, Satish; Ayari, Laoucet

    2004-01-01

    The High Gain Antenna Assemblies built for the 2003-2004 Mars Exploration Rover (MER) missions provide the primary communication link for the Rovers once they arrive on Mars. The High Gain Antenna Gimbal (HGAG) portion of the assembly is a two-axis gimbal that provides the structural support, pointing, and tracking for the High Gain Antenna (HGA). The MER mission requirements provided some unique design challenges for the HGAG. This paper describes all the major subsystems of the HGAG that were developed to meet these challenges, and the requirements that drove their design.

  20. Lunar rover technology demonstrations with Dante and Ratler

    NASA Technical Reports Server (NTRS)

    Krotkov, Eric; Bares, John; Katragadda, Lalitesh; Simmons, Reid; Whittaker, Red

    1994-01-01

    Carnegie Mellon University has undertaken a research, development, and demonstration program to enable a robotic lunar mission. The two-year mission scenario is to traverse 1,000 kilometers, revisiting the historic sites of Apollo 11, Surveyor 5, Ranger 8, Apollo 17, and Lunokhod 2, and to return continuous live video amounting to more than 11 terabytes of data. Our vision blends autonomously safeguarded user driving with autonomous operation augmented with rich visual feedback, in order to enable facile interaction and exploration. The resulting experience is intended to attract mass participation and evoke strong public interest in lunar exploration. The encompassing program that forwards this work is the Lunar Rover Initiative (LRI). Two concrete technology demonstration projects currently advancing the Lunar Rover Initiative are: (1) The Dante/Mt. Spurr project, which, at the time of this writing, is sending the walking robot Dante to explore the Mt. Spurr volcano, in rough terrain that is a realistic planetary analogue. This project will generate insights into robot system robustness in harsh environments, and into remote operation by novices; and (2) The Lunar Rover Demonstration project, which is developing and evaluating key technologies for navigation, teleoperation, and user interfaces in terrestrial demonstrations. The project timetable calls for a number of terrestrial traverses incorporating teleoperation and autonomy including natural terrain this year, 10 km in 1995. and 100 km in 1996. This paper will discuss the goals of the Lunar Rover Initiative and then focus on the present state of the Dante/Mt. Spurr and Lunar Rover Demonstration projects.

  1. KSC-03pd1234

    NASA Image and Video Library

    2003-04-24

    KENNEDY SPACE CENTER, FLA. - Jim Lloyd, with the Mars Exploration Rover (MER) program, points to the place on MER-1 where he will place a computer chip with about 35,000 laser-engraved signatures of visitors to the rovers at the Jet Propulsion Laboratory. The signatures include those of senators, artists, and John Glenn. The identical Mars rovers are scheduled to launch June 5 and June 25 from Cape Canaveral Air Force Station.

  2. Testing Planetary Rovers: Technologies, Perspectives, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Thomas, Hans; Lau, Sonie (Technical Monitor)

    1998-01-01

    Rovers are a vital component of NASA's strategy for manned and unmanned exploration of space. For the past five years, the Intelligent Mechanisms Group at the NASA Ames Research Center has conducted a vigorous program of field testing of rovers from both technology and science team productivity perspective. In this talk, I will give an overview of the the last two years of the test program, focusing on tests conducted in the Painted Desert of Arizona, the Atacama desert in Chile, and on IMG participation in the Mars Pathfinder mission. An overview of autonomy, manipulation, and user interface technologies developed in response to these missions will be presented, and lesson's learned in these missions and their impact on future flight missions will be presented. I will close with some perspectives on how the testing program has affected current rover systems.

  3. KSC-03pd1231

    NASA Image and Video Library

    2003-04-24

    KENNEDY SPACE CENTER, FLA. - Tom Shain, the MER ATLO logistics manager, holds a computer chip with about 35,000 laser-engraved signatures of visitors to the Mars Exploration Rovers at the Jet Propulsion Laboratory. He and Jim Lloyd, also with the program, will place the chip on the second rover to be launched to Mars (MER-1/MER-B); the first rover already has one. The signatures include those of senators, artists, and John Glenn. The identical Mars rovers are scheduled to launch June 5 and June 25 from Cape Canaveral Air Force Station.

  4. Rover and Telerobotics Technology Program

    NASA Technical Reports Server (NTRS)

    Weisbin, Charles R.

    1998-01-01

    The Jet Propulsion Laboratory's (JPL's) Rover and Telerobotics Technology Program, sponsored by the National Aeronautics and Space Administration (NASA), responds to opportunities presented by NASA space missions and systems, and seeds commerical applications of the emerging robotics technology. The scope of the JPL Rover and Telerobotics Technology Program comprises three major segments of activity: NASA robotic systems for planetary exploration, robotic technology and terrestrial spin-offs, and technology for non-NASA sponsors. Significant technical achievements have been reached in each of these areas, including complete telerobotic system prototypes that have built and tested in realistic scenarios relevant to prospective users. In addition, the program has conducted complementary basic research and created innovative technology and terrestrial applications, as well as enabled a variety of commercial spin-offs.

  5. What Time is it on Mars?

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image of the martian sundial onboard the Mars Exploration Rover Spirit was processed by students in the Red Rover Goes to Mars program to impose hour markings on the face of the dial. The position of the shadow of the sundial's post within the markings indicates the time of day and the season, which in this image is 12:17 p.m. local solar time, late summer. A team of 16 students from 12 countries were selected by the Planetary Society to participate in this program. This image was taken on Mars by the rover's panoramic camera.

  6. Robot Sequencing and Visualization Program (RSVP)

    NASA Technical Reports Server (NTRS)

    Cooper, Brian K.; Maxwell,Scott A.; Hartman, Frank R.; Wright, John R.; Yen, Jeng; Toole, Nicholas T.; Gorjian, Zareh; Morrison, Jack C

    2013-01-01

    The Robot Sequencing and Visualization Program (RSVP) is being used in the Mars Science Laboratory (MSL) mission for downlink data visualization and command sequence generation. RSVP reads and writes downlink data products from the operations data server (ODS) and writes uplink data products to the ODS. The primary users of RSVP are members of the Rover Planner team (part of the Integrated Planning and Execution Team (IPE)), who use it to perform traversability/articulation analyses, take activity plan input from the Science and Mission Planning teams, and create a set of rover sequences to be sent to the rover every sol. The primary inputs to RSVP are downlink data products and activity plans in the ODS database. The primary outputs are command sequences to be placed in the ODS for further processing prior to uplink to each rover. RSVP is composed of two main subsystems. The first, called the Robot Sequence Editor (RoSE), understands the MSL activity and command dictionaries and takes care of converting incoming activity level inputs into command sequences. The Rover Planners use the RoSE component of RSVP to put together command sequences and to view and manage command level resources like time, power, temperature, etc. (via a transparent realtime connection to SEQGEN). The second component of RSVP is called HyperDrive, a set of high-fidelity computer graphics displays of the Martian surface in 3D and in stereo. The Rover Planners can explore the environment around the rover, create commands related to motion of all kinds, and see the simulated result of those commands via its underlying tight coupling with flight navigation, motor, and arm software. This software is the evolutionary replacement for the Rover Sequencing and Visualization software used to create command sequences (and visualize the Martian surface) for the Mars Exploration Rover mission.

  7. NASA Planetary Rover Program

    NASA Technical Reports Server (NTRS)

    Lavery, David; Bedard, Roger J., Jr.

    1991-01-01

    The NASA Planetary Rover Project was initiated in 1989. The emphasis of the work to date has been on development of autonomous navigation technology within the context of a high mobility wheeled vehicle at the JPL and an innovative legged locomotion concept at Carnegie Mellon University. The status and accomplishments of these two efforts are discussed. First, however, background information is given on the three rover types required for the Space Exploration Initiative (SEI) whose objective is a manned mission to Mars.

  8. Environmental Test Program for the Mars Exploration Rover Project

    NASA Technical Reports Server (NTRS)

    Fisher, Terry C.; VanVelzer, Paul L.

    2004-01-01

    On June 10 and July 7, 2003 the National Aeronautics and Space Administration (NASA) launched two spacecraft from Cape Canaveral, Florida for a six (6) months flight to the Red Planet, Mars. The two Mars Exploration Rover spacecraft landed safely on the planet in January 2004. Prior to the successful launch, both of the spacecraft were involved in a comprehensive test campaign that included development, qualification, and protoflight test programs. Testing was performed to simulate the environments associated with launch, inter-planetary cruise, landing on the planet and Mars surface operations. Unique test requirements included operating the spacecraft while the chamber pressure was controlled to simulate the decent to the planet from deep space, high impact landing loads and rover operations on the surface of the planet at 8 Torr and -130 C. This paper will present an overview of the test program that included vibration, pyro-shock, landing loads, acoustic noise, thermal vacuum and solar simulation testing at the Jet Propulsion Laboratory (JPL) Environmental Test Laboratory facilities in Pasadena, California.

  9. Mars rover local navigation and hazard avoidance

    NASA Technical Reports Server (NTRS)

    Wilcox, B. H.; Gennery, D. B.; Mishkin, A. H.

    1989-01-01

    A Mars rover sample return mission has been proposed for the late 1990's. Due to the long speed-of-light delays between earth and Mars, some autonomy on the rover is highly desirable. JPL has been conducting research in two possible modes of rover operation, Computer-Aided Remote Driving and Semiautonomous Navigation. A recently-completed research program used a half-scale testbed vehicle to explore several of the concepts in semiautonomous navigation. A new, full-scale vehicle with all computational and power resources on-board will be used in the coming year to demonstrate relatively fast semiautonomous navigation. The computational and power requirements for Mars rover local navigation and hazard avoidance are discussed.

  10. Mars Rover Local Navigation And Hazard Avoidance

    NASA Astrophysics Data System (ADS)

    Wilcox, B. H.; Gennery, D. B.; Mishkin, A. H.

    1989-03-01

    A Mars rover sample return mission has been proposed for the late 1990's. Due to the long speed-of-light delays between Earth and Mars, some autonomy on the rover is highly desirable. JPL has been conducting research in two possible modes of rover operation, Computer-Aided Remote Driving and Semiautonomous Navigation. A recently-completed research program used a half-scale testbed vehicle to explore several of the concepts in semiautonomous navigation. A new, full-scale vehicle with all computational and power resources on-board will be used in the coming year to demonstrate relatively fast semiautonomous navigation. The computational and power requirements for Mars rover local navigation and hazard avoidance are discussed.

  11. Rover Sequencing and Visualization Program

    NASA Technical Reports Server (NTRS)

    Cooper, Brian; Hartman, Frank; Maxwell, Scott; Yen, Jeng; Wright, John; Balacuit, Carlos

    2005-01-01

    The Rover Sequencing and Visualization Program (RSVP) is the software tool for use in the Mars Exploration Rover (MER) mission for planning rover operations and generating command sequences for accomplishing those operations. RSVP combines three-dimensional (3D) visualization for immersive exploration of the operations area, stereoscopic image display for high-resolution examination of the downlinked imagery, and a sophisticated command-sequence editing tool for analysis and completion of the sequences. RSVP is linked with actual flight-code modules for operations rehearsal to provide feedback on the expected behavior of the rover prior to committing to a particular sequence. Playback tools allow for review of both rehearsed rover behavior and downlinked results of actual rover operations. These can be displayed simultaneously for comparison of rehearsed and actual activities for verification. The primary inputs to RSVP are downlink data products from the Operations Storage Server (OSS) and activity plans generated by the science team. The activity plans are high-level goals for the next day s activities. The downlink data products include imagery, terrain models, and telemetered engineering data on rover activities and state. The Rover Sequence Editor (RoSE) component of RSVP performs activity expansion to command sequences, command creation and editing with setting of command parameters, and viewing and management of rover resources. The HyperDrive component of RSVP performs 2D and 3D visualization of the rover s environment, graphical and animated review of rover-predicted and telemetered state, and creation and editing of command sequences related to mobility and Instrument Deployment Device (IDD) operations. Additionally, RoSE and HyperDrive together evaluate command sequences for potential violations of flight and safety rules. The products of RSVP include command sequences for uplink that are stored in the Distributed Object Manager (DOM) and predicted rover state histories stored in the OSS for comparison and validation of downlinked telemetry. The majority of components comprising RSVP utilize the MER command and activity dictionaries to automatically customize the system for MER activities. Thus, RSVP, being highly data driven, may be tailored to other missions with minimal effort. In addition, RSVP uses a distributed, message-passing architecture to allow multitasking, and collaborative visualization and sequence development by scattered team members.

  12. Development of "Remotely Operated Vehicles for Education and Research" (ROVERs)

    NASA Astrophysics Data System (ADS)

    Gaines, J. E.; Bland, G.; Bydlowski, D.

    2017-12-01

    The University of South Florida is a team member for the AREN project which develops educational technologies for data acquisition. "Remotely Operated Vehicles for Education and Research" (ROVERs) are floatable data acquisition systems used for Earth science measurements. The USF partnership was productive in the first year, resulting in new autonomous ROVER platforms being developed and used during a 5 week STEM summer camp by middle school youth. ROVERs were outfitted with GPS and temperature sensors and programmed to move forward, backwards, and to turn autonomously using the National Instruments myRIO embedded system. GLOBE protocols were used to collect data. The outreach program's structure lended itself to accomplishing an essential development effort for the AREN project towards the use of the ROVER platform in informal educational settings. A primary objective of the partnership is curriculum development to integrate GLOBE protocols and NASA technology and hardware/ROVER development wher new ROVER platforms are explored. The USF partnership resulted in two design prototypes for ROVERs, both of which can be created from recyclable materials for flotation and either 3D printed or laser cut components. In addition, both use the National Instruments myRIO for autonomous control. We will present two prototypes designed for use during the USF outreach program, the structure of the program, and details on the fabrication of prototype Z during the program by middle school students. Considering the 5-year objective of the AREN project is to "develop approaches, learning plans, and specific tools that can be affordably implemented nationwide (globally)", the USF partnership is key as it contributes to each part of the objective in a unique and impactful way.

  13. Mars pathfinder Rover egress deployable ramp assembly

    NASA Technical Reports Server (NTRS)

    Spence, Brian R.; Sword, Lee F.

    1996-01-01

    The Mars Pathfinder Program is a NASA Discovery Mission, led by the Jet Propulsion Laboratory, to launch and place a small planetary Rover for exploration on the Martian surface. To enable safe and successful egress of the Rover vehicle from the spacecraft, a pair of flight-qualified, deployable ramp assemblies have been developed. This paper focuses on the unique, lightweight deployable ramp assemblies. A brief mission overview and key design requirements are discussed. Design and development activities leading to qualification and flight systems are presented.

  14. 2005 Earth-Mars Round Trip

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This paper presents, in viewgraph form, the 2005 Earth-Mars Round Trip. The contents include: 1) Lander; 2) Mars Sample Return Project; 3) Rover; 4) Rover Size Comparison; 5) Mars Ascent Vehicle; 6) Return Orbiter; 7) A New Mars Surveyor Program Architecture; 8) Definition Study Summary Result; 9) Mars Surveyor Proposed Architecture 2003, 2005 Opportunities; 10) Mars Micromissions Using Ariane 5; 11) Potential International Partnerships; 12) Proposed Integrated Architecture; and 13) Mars Exploration Program Report of the Architecture Team.

  15. The Use of Nanomaterials to Achieve NASA's Exploration Program Power Goals

    NASA Technical Reports Server (NTRS)

    Jeevarajan, J.

    2009-01-01

    This slide presentation reviews the power requirements for the space exploration and the lunar surface mobility programs. It includes information about the specifications for high energy batteries and the power requirements for lunar rovers, lunar outposts, lunar ascent module, and the lunar EVA suit.

  16. Ground-based real-time tracking and traverse recovery of China's first lunar rover

    NASA Astrophysics Data System (ADS)

    Zhou, Huan; Li, Haitao; Xu, Dezhen; Dong, Guangliang

    2016-02-01

    The Chang'E-3 unmanned lunar exploration mission forms an important stage in China's Lunar Exploration Program. China's first lunar rover "Yutu" is a sub-probe of the Chang'E-3 mission. Its main science objectives cover the investigations of the lunar soil and crust structure, explorations of mineral resources, and analyses of matter compositions. Some of these tasks require accurate real-time and continuous position tracking of the rover. To achieve these goals with the scale-limited Chinese observation network, this study proposed a ground-based real-time very long baseline interferometry phase referencing tracking method. We choose the Chang'E-3 lander as the phase reference source, and the accurate location of the rover is updated every 10 s using its radio-image sequences with the help of a priori information. The detailed movements of the Yutu rover have been captured with a sensitivity of several centimeters, and its traverse across the lunar surface during the first few days after its separation from the Chang'E-3 lander has been recovered. Comparisons and analysis show that the position tracking accuracy reaches a 1-m level.

  17. Student Participation in Rover Field Trials

    NASA Astrophysics Data System (ADS)

    Bowman, C. D.; Arvidson, R. E.; Nelson, S. V.; Sherman, D. M.; Squyres, S. W.

    2001-12-01

    The LAPIS program was developed in 1999 as part of the Athena Science Payload education and public outreach, funded by the JPL Mars Program Office. For the past three years, the Athena Science Team has been preparing for 2003 Mars Exploration Rover Mission operations using the JPL prototype Field Integrated Design and Operations (FIDO) rover in extended rover field trials. Students and teachers participating in LAPIS work with them each year to develop a complementary mission plan and implement an actual portion of the annual tests using FIDO and its instruments. LAPIS is designed to mirror an end-to-end mission: Small, geographically distributed groups of students form an integrated mission team, working together with Athena Science Team members and FIDO engineers to plan, implement, and archive a two-day test mission, controlling FIDO remotely over the Internet using the Web Interface for Telescience (WITS) and communicating with each other by email, the web, and teleconferences. The overarching goal of LAPIS is to get students excited about science and related fields. The program provides students with the opportunity to apply knowledge learned in school, such as geometry and geology, to a "real world" situation and to explore careers in science and engineering through continuous one-on-one interactions with teachers, Athena Science Team mentors, and FIDO engineers. A secondary goal is to help students develop improved communication skills and appreciation of teamwork, enhanced problem-solving skills, and increased self-confidence. The LAPIS program will provide a model for outreach associated with future FIDO field trials and the 2003 Mars mission operations. The base of participation will be broadened beyond the original four sites by taking advantage of the wide geographic distribution of Athena team member locations. This will provide greater numbers of students with the opportunity to actively engage in rover testing and to explore the possibilities of science, engineering, and technology.

  18. The Mars Astrobiology Explorer-Cacher (MAX-C): a potential rover mission for 2018. Final report of the Mars Mid-Range Rover Science Analysis Group (MRR-SAG) October 14, 2009.

    PubMed

    2010-03-01

    This report documents the work of the Mid-Range Rover Science Analysis Group (MRR-SAG), which was assigned to formulate a concept for a potential rover mission that could be launched to Mars in 2018. Based on programmatic and engineering considerations as of April 2009, our deliberations assumed that the potential mission would use the Mars Science Laboratory (MSL) sky-crane landing system and include a single solar-powered rover. The mission would also have a targeting accuracy of approximately 7 km (semimajor axis landing ellipse), a mobility range of at least 10 km, and a lifetime on the martian surface of at least 1 Earth year. An additional key consideration, given recently declining budgets and cost growth issues with MSL, is that the proposed rover must have lower cost and cost risk than those of MSL--this is an essential consideration for the Mars Exploration Program Analysis Group (MEPAG). The MRR-SAG was asked to formulate a mission concept that would address two general objectives: (1) conduct high priority in situ science and (2) make concrete steps toward the potential return of samples to Earth. The proposed means of achieving these two goals while balancing the trade-offs between them are described here in detail. We propose the name Mars Astrobiology Explorer-Cacher(MAX-C) to reflect the dual purpose of this potential 2018 rover mission.

  19. Student Interns Work on Mars

    NASA Technical Reports Server (NTRS)

    Bowman, C. D.; Bebak, M.; Bollen, D. M.; Curtis, K.; Daniel, C.; Grigsby, B.; Herman, T.; Haynes, E.; Lineberger, D. H.; Pieruccini, S.

    2004-01-01

    The exceptional imagery and data acquired by the Mars Exploration Rovers since their January 2004 landing have captured the attention of scientists, the public, and students and teachers worldwide. One aspect of particular interest lies with a group of high school teachers and students actively engaged in the Athena Student Interns Program. The Athena Student Interns Program (ASIP) is a joint effort between NASA s Mars Public Engagement Office and the Athena Science Investigation that began in early 1999 as a pilot student-scientist research partnership program associated with the FIDO prototype Mars rover field test . The program is designed to actively engage high school students and their teachers in Mars exploration and scientific inquiry. In ASIP, groups of students and teachers from around the country work with mentors from the mission s Athena Science Team to carry out an aspect of the mission.

  20. Lunar exploration rover program developments

    NASA Technical Reports Server (NTRS)

    Klarer, P. R.

    1994-01-01

    The Robotic All Terrain Lunar Exploration Rover (RATLER) design concept began at Sandia National Laboratories in late 1991 with a series of small, proof-of-principle, working scale models. The models proved the viability of the concept for high mobility through mechanical simplicity, and eventually received internal funding at Sandia National Laboratories for full scale, proof-of-concept prototype development. Whereas the proof-of-principle models demonstrated the mechanical design's capabilities for mobility, the full scale proof-of-concept design currently under development is intended to support field operations for experiments in telerobotics, autonomous robotic operations, telerobotic field geology, and advanced man-machine interface concepts. The development program's current status is described, including an outline of the program's work over the past year, recent accomplishments, and plans for follow-on development work.

  1. CE-4 Mission and Future Journey to Lunar

    NASA Astrophysics Data System (ADS)

    Zou, Yongliao; Wang, Qin; Liu, Xiaoqun

    2016-07-01

    Chang'E-4 mission, being undertaken by phase two of China Lunar Exploration Program, represents China's first attempt to explore farside of lunar surface. Its probe includes a lander, a rover and a telecommunication relay which is scheduled to launch in around 2018. The scientific objectives of CE-4 mission will be implemented to investigate the lunar regional geological characteristics of landing and roving area, and also will make the first radio-astronomy measurements from the most radio-quiet region of near-earth space. The rover will opreate for at least 3 months, the lander for half a year, and the relay for no less than 3 years. Its scinetific instruments includes Cameras, infrared imaging spectrometer, Penetrating Radar onboard the rover in which is the same as the paylads on board the CE-3 rover, and a Dust-analyzer, a Temperature-instrument and a Wide Band Low Frequency Digital Radio Astronomical Station will be installed on board the lander. Our scientific goals of the future lunar exploration will aim at the lunar geology, resources and surface environments. A series of exploraion missions such as robotic exploration and non-manned lunar scientific station is proposed in this paper.

  2. Developing Science Operations Concepts for the Future of Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Bleacher, J. E.; Rogers, A. D.; McAdam, A.; Evans, C. A.; Graff, T. G.; Garry, W. B.; Whelley,; Scheidt, S.; Carter, L.; hide

    2017-01-01

    Through fly-by, orbiter, rover, and even crewed missions, National Aeronautics and Space Administration (NASA) has been extremely successful in exploring planetary bodies throughout our Solar System. The focus on increasingly complex Mars orbiter and rover missions has helped us understand how Mars has evolved over time and whether life has ever existed on the red planet. However, large strategic knowledge gaps (SKGs) still exist in our understanding of the evolution of the Solar System (e.g. the Lunar Exploration Analysis Group, Small Bodies Analysis Group, and Mars Exploration Program Analysis Group). Sending humans to these bodies is a critical part of addressing these SKGs in order to transition to a new era of planetary exploration by 2050.

  3. Converting CSV Files to RKSML Files

    NASA Technical Reports Server (NTRS)

    Trebi-Ollennu, Ashitey; Liebersbach, Robert

    2009-01-01

    A computer program converts, into a format suitable for processing on Earth, files of downlinked telemetric data pertaining to the operation of the Instrument Deployment Device (IDD), which is a robot arm on either of the Mars Explorer Rovers (MERs). The raw downlinked data files are in comma-separated- value (CSV) format. The present program converts the files into Rover Kinematics State Markup Language (RKSML), which is an Extensible Markup Language (XML) format that facilitates representation of operations of the IDD and enables analysis of the operations by means of the Rover Sequencing Validation Program (RSVP), which is used to build sequences of commanded operations for the MERs. After conversion by means of the present program, the downlinked data can be processed by RSVP, enabling the MER downlink operations team to play back the actual IDD activity represented by the telemetric data against the planned IDD activity. Thus, the present program enhances the diagnosis of anomalies that manifest themselves as differences between actual and planned IDD activities.

  4. Robust Coordination for Large Sets of Simple Rovers

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Agogino, Adrian

    2006-01-01

    The ability to coordinate sets of rovers in an unknown environment is critical to the long-term success of many of NASA;s exploration missions. Such coordination policies must have the ability to adapt in unmodeled or partially modeled domains and must be robust against environmental noise and rover failures. In addition such coordination policies must accommodate a large number of rovers, without excessive and burdensome hand-tuning. In this paper we present a distributed coordination method that addresses these issues in the domain of controlling a set of simple rovers. The application of these methods allows reliable and efficient robotic exploration in dangerous, dynamic, and previously unexplored domains. Most control policies for space missions are directly programmed by engineers or created through the use of planning tools, and are appropriate for single rover missions or missions requiring the coordination of a small number of rovers. Such methods typically require significant amounts of domain knowledge, and are difficult to scale to large numbers of rovers. The method described in this article aims to address cases where a large number of rovers need to coordinate to solve a complex time dependent problem in a noisy environment. In this approach, each rover decomposes a global utility, representing the overall goal of the system, into rover-specific utilities that properly assign credit to the rover s actions. Each rover then has the responsibility to create a control policy that maximizes its own rover-specific utility. We show a method of creating rover-utilities that are "aligned" with the global utility, such that when the rovers maximize their own utility, they also maximize the global utility. In addition we show that our method creates rover-utilities that allow the rovers to create their control policies quickly and reliably. Our distributed learning method allows large sets rovers be used unmodeled domains, while providing robustness against rover failures and changing environments. In experimental simulations we show that our method scales well with large numbers of rovers in addition to being robust against noisy sensor inputs and noisy servo control. The results show that our method is able to scale to large numbers of rovers and achieves up to 400% performance improvement over standard machine learning methods.

  5. Rover concepts for lunar exploration

    NASA Technical Reports Server (NTRS)

    Connolly, John F.

    1993-01-01

    The paper describes the requirements and design concepts developed for the First Lunar Outpost (FLO) and the follow-on lunar missions by the Human Planet Surface Project Office at the Johnson Space Center, which include inputs from scientists, technologists, operators, personnel, astronauts, mission designers, and program managers. Particular attention is given to the requirements common to all rover concepts, the precursor robotic missions, the FLO scenario and capabilities, and the FLO evolution.

  6. Mars Pathfinder Rover-Lewis Research Center Technology Experiments Program

    NASA Technical Reports Server (NTRS)

    Stevenson, Steven M.

    1997-01-01

    An overview of NASA's Mars Pathfinder Program is given and the development and role of three technology experiments from NASA's Lewis Research Center and carried on the Mars Pathfinder rover is described. Two recent missions to Mars were developed and managed by the Jet Propulsion Laboratory, and launched late last year: Mars Global Surveyor in November 1996 and Mars Pathfinder in December 1996. Mars Global Surveyor is an orbiter which will survey the planet with a number of different instruments, and will arrive in September 1997, and Mars Pathfinder which consists of a lander and a small rover, landing on Mars July 4, 1997. These are the first two missions of the Mars Exploration Program consisting of a ten year series of small robotic martian probes to be launched every 26 months. The Pathfinder rover will perform a number of technology and operational experiments which will provide the engineering information necessary to design and operate more complex, scientifically oriented surface missions involving roving vehicles and other machinery operating in the martian environment. Because of its expertise in space power systems and technologies, space mechanisms and tribology, Lewis Research Center was asked by the Jet Propulsion Laboratory, which is heading the Mars Pathfinder Program, to contribute three experiments concerning the effects of the martian environment on surface solar power systems and the abrasive qualities of the Mars surface material. In addition, rover static charging was investigated and a static discharge system of several fine Tungsten points was developed and fixed to the rover. These experiments and current findings are described herein.

  7. Adams-Based Rover Terramechanics and Mobility Simulator - ARTEMIS

    NASA Technical Reports Server (NTRS)

    Trease, Brian P.; Lindeman, Randel A.; Arvidson, Raymond E.; Bennett, Keith; VanDyke, Lauren P.; Zhou, Feng; Iagnemma, Karl; Senatore, Carmine

    2013-01-01

    The Mars Exploration Rovers (MERs), Spirit and Opportunity, far exceeded their original drive distance expectations and have traveled, at the time of this reporting, a combined 29 kilometers across the surface of Mars. The Rover Sequencing and Visualization Program (RSVP), the current program used to plan drives for MERs, is only a kinematic simulator of rover movement. Therefore, rover response to various terrains and soil types cannot be modeled. Although sandbox experiments attempt to model rover-terrain interaction, these experiments are time-intensive and costly, and they cannot be used within the tactical timeline of rover driving. Imaging techniques and hazard avoidance features on MER help to prevent the rover from traveling over dangerous terrains, but mobility issues have shown that these methods are not always sufficient. ARTEMIS, a dynamic modeling tool for MER, allows planned drives to be simulated before commands are sent to the rover. The deformable soils component of this model allows rover-terrain interactions to be simulated to determine if a particular drive path would take the rover over terrain that would induce hazardous levels of slip or sink. When used in the rover drive planning process, dynamic modeling reduces the likelihood of future mobility issues because high-risk areas could be identified before drive commands are sent to the rover, and drives planned over these areas could be rerouted. The ARTEMIS software consists of several components. These include a preprocessor, Digital Elevation Models (DEMs), Adams rover model, wheel and soil parameter files, MSC Adams GUI (commercial), MSC Adams dynamics solver (commercial), terramechanics subroutines (FORTRAN), a contact detection engine, a soil modification engine, and output DEMs of deformed soil. The preprocessor is used to define the terrain (from a DEM) and define the soil parameters for the terrain file. The Adams rover model is placed in this terrain. Wheel and soil parameter files can be altered in the respective text files. The rover model and terrain are viewed in Adams View, the GUI for ARTEMIS. The Adams dynamics solver calls terramechanics subroutines in FORTRAN containing the Bekker-Wong equations.

  8. An Alternate Configuration of the Multi-Mission Space Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Howard, Robert L., Jr.

    2014-01-01

    The NASA Multi-Mission Space Exploration Vehicle (MMSEV) Team has developed an alternate configuration of the vehicle that can be used as a lunar lander. The MMSEV was originally conceived of during the Constellation program as the successor to the Apollo lunar rover as a pressurized rover for two-person, multiday excursions on the lunar surface. Following the cancellation of the Constellation program, the MMSEV has been reconfigured to serve as a free-flying scout vehicle for exploration of a Near Earth Asteroid and is also being assessed for use as a Habitable Airlock in a Cislunar microgravity spacecraft. The Alternate MMSEV (AMMSEV) variant of the MMSEV would serve as the transport vehicle for a four-person lunar crew, providing descent from an orbiting spacecraft or space station and ascent back to the spaceborne asset. This paper will provide a high level overview of the MMSEV and preliminary results from human-in-the-loop testing.

  9. Space Art "Wheel of Optimism"

    NASA Image and Video Library

    2006-12-14

    Artist EV Day visited the Jet Propulsion Laboratory to learn about the Mars Exploration Rovers. She so intrigued the Mars scientists that she was given a sample rover wheel to work with in creating a piece of art titled "Wheel of Optimism" for NASA. Day took the wheel and created a Martian world within it complete with organic plantlife, rocks and a Martian landscape in the background. Day poetically grapples with the age old question of whether life on Mars exists or whether it is just an figment of our science fiction imaginations. Rover Tire, mixed media, 9-1/4 (diameter)x8 (depth). 2006. Copyrighted: For more information contact Curator, NASA Art Program.

  10. Sundial Lands on Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Two views of a sundial called the MarsDial can be seen in this image taken on Mars by the Mars Exploration Rover Spirit's panoramic camera. These calibration instruments, positioned on the solar panels of both Spirit and the Mars Exploration Rover Opportunity, are tools for both scientists and educators. Scientists use the sundial to adjust the rovers' panoramic cameras, while students participating in NASA's Red Rover Goes to Mars program will monitor the dial to track time on Mars. Students worldwide will also have the opportunity to build their own Earth sundial and compare it to that on Mars.

    The left image was captured near martian noon when the Sun was very high in the sky. The right image was acquired later in the afternoon when the Sun was lower in sky, casting longer shadows. The colored blocks in the corners of the sundial are used to fine-tune the panoramic camera's sense of color. Shadows cast on the sundial help scientists adjust the brightness of images.

    The sundial is embellished with artwork from children, and displays the word Mars in 17 different languages.

  11. Intelligent Rover Execution for Detecting Life in the Atacama Desert

    NASA Technical Reports Server (NTRS)

    Baskaran, Vijayakumar; Muscettola, Nicola; Rijsman, David; Plaunt, Chris; Fry, Chuck

    2006-01-01

    On-board supervisory execution is crucial for the deployment of more capable and autonomous remote explorers. Planetary science is considering robotic explorers operating for long periods of time without ground supervision while interacting with a changing and often hostile environment. Effective and robust operations require on-board supervisory control with a high level of awareness of the principles of functioning of the environment and of the numerous internal subsystems that need to be coordinated. We describe an on-board rover executive that was deployed on a rover as past of the "Limits of Life in the Atacama Desert (LITA)" field campaign sponsored by the NASA ASTEP program. The executive was built using the Intelligent Distributed Execution Architecture (IDEA), an execution framework that uses model-based and plan-based supervisory control of its fundamental computational paradigm. We present the results of the third field experiment conducted in the Atacama desert (Chile) in August - October 2005.

  12. CIS-lunar space infrastructure lunar technologies: Executive summary

    NASA Technical Reports Server (NTRS)

    Faller, W.; Hoehn, A.; Johnson, S.; Moos, P.; Wiltberger, N.

    1989-01-01

    Technologies necessary for the creation of a cis-Lunar infrastructure, namely: (1) automation and robotics; (2) life support systems; (3) fluid management; (4) propulsion; and (5) rotating technologies, are explored. The technological focal point is on the development of automated and robotic systems for the implementation of a Lunar Oasis produced by Automation and Robotics (LOAR). Under direction from the NASA Office of Exploration, automation and robotics were extensively utilized as an initiating stage in the return to the Moon. A pair of autonomous rovers, modular in design and built from interchangeable and specialized components, is proposed. Utilizing a buddy system, these rovers will be able to support each other and to enhance their individual capabilities. One rover primarily explores and maps while the second rover tests the feasibility of various materials-processing techniques. The automated missions emphasize availability and potential uses of Lunar resources, and the deployment and operations of the LOAR program. An experimental bio-volume is put into place as the precursor to a Lunar environmentally controlled life support system. The bio-volume will determine the reproduction, growth and production characteristics of various life forms housed on the Lunar surface. Physicochemical regenerative technologies and stored resources will be used to buffer biological disturbances of the bio-volume environment. The in situ Lunar resources will be both tested and used within this bio-volume. Second phase development on the Lunar surface calls for manned operations. Repairs and re-configuration of the initial framework will ensue. An autonomously-initiated manned Lunar oasis can become an essential component of the United States space program.

  13. Telecommunications for Mars Rovers and Robotic Mission

    NASA Technical Reports Server (NTRS)

    Horne, W. D.; Hastrup, R.; Cesarone, R.

    1997-01-01

    The Mars exploration program of NASA and the international community will evolve from an early emphasis on orbital remote sensing toward in-situ science activity on, or just above, the Martian surface.

  14. Telecommunications for Mars Rovers and Robotic Missions

    NASA Technical Reports Server (NTRS)

    Horne, W. D.; Hastrup, R.; Cesarone, R.

    1997-01-01

    The Mars exploration program of NASA and the international community will evolve from an early emphasis on orbital remote sensing toward in situ science activity on, or just above, the Martian surface.

  15. Conducting Planetary Field Geology on EVA: Lessons from the 2010 DRATS Geologist Crewmembers

    NASA Technical Reports Server (NTRS)

    Young, Kelsey E.; Bleacher, J. E.; Hurtado, J. M., Jr.; Rice, J.; Garry, W. B.; Eppler, D.

    2011-01-01

    In order to prepare for the next phase of planetary surface exploration, the Desert Research and Technology Studies (DRATS) field program seeks to test the next generation of technology needed to explore other surfaces. The 2010 DRATS 14-day field campaign focused on the simultaneous operation of two habitatable rovers, or Space Exploration Vehicles (SEVs). Each rover was crewed by one astronaut/commander and one geologist, with a change in crews on day seven of the mission. This shift change allowed for eight crew members to test the DRATS technology and operational protocols [1,2]. The insights presented in this abstract represent the crew s thoughts on lessons learned from this field season, as well as potential future testing concepts.

  16. The backshell for the Mars Exploration Rover 1 (MER-1) is moved toward the rover (foreground, left). The backshell is a protective cover for the rover. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-10

    The backshell for the Mars Exploration Rover 1 (MER-1) is moved toward the rover (foreground, left). The backshell is a protective cover for the rover. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  17. Space radiation protection: Human support thrust exploration technology program

    NASA Technical Reports Server (NTRS)

    Conway, Edmund J.

    1991-01-01

    Viewgraphs on space radiation protection are presented. For crew and practical missions, exploration requires effective, low-mass shielding and accurate estimates of space radiation exposure for lunar and Mars habitat shielding, manned space transfer vehicle, and strategies for minimizing exposure during extravehicular activity (EVA) and rover operations.

  18. Mars: 2010 - 2020

    NASA Technical Reports Server (NTRS)

    Li, Fuk K.

    2006-01-01

    This slide presentation reviews the Mars Exploration program for the current decade and beyond. The potential items for procurements for the Mars Science Laboratory (MSL) are discussed, as well as future technology investments to enable to continued development of exploration of Mars by rovers and orbiters that are planned and envisioned for future missions.

  19. EXPLORING MARS WITH SOLAR-POWERED ROVERS

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2006-01-01

    The Mars Exploration Rover (MER) project landed two solar-powered rovers, "Spirit" and "Opportunity," on the surface of Mars in January of 2003. This talk reviews the history of solar-powered missions to Mars and looks at the science mission of the MER rovers, focusing on the solar energy and array performance.

  20. Cislunar space infrastructure: Lunar technologies

    NASA Technical Reports Server (NTRS)

    Faller, W.; Hoehn, A.; Johnson, S.; Moos, P.; Wiltberger, N.

    1989-01-01

    Continuing its emphasis on the creation of a cisluar infrastructure as an appropriate and cost-effective method of space exploration and development, the University of Colorado explores the technologies necessary for the creation of such an infrastructure, namely (1) automation and robotics; (2) life support systems; (3) fluid management; (4) propulsion; and (5) rotating technologes. The technological focal point is on the development of automated and robotic systems for the implementation of a Lunar Oasis produced by automation and robotics (LOARS). Under direction from the NASA Office of Exploration, automation and robotics have been extensively utilized as an initiating stage in the return to the Moon. A pair of autonomous rovers, modular in design and built from interchangeable and specialized components, is proposed. Utilizing a 'buddy system', these rovers will be able to support each other and to enhance their individual capabilities. One rover primarily explores and maps while the second rover tests the feasibility of various materials-processing techniques. The automated missions emphasize availability and potential uses of lunar resources and the deployment and operations of the LOAR program. An experimental bio-volume is put into place as the precursor to a Lunar Environmentally Controlled Life Support System. The bio-volume will determine the reproduction, growth and production characteristics of various life forms housed on the lunar surface. Physiochemical regenerative technologies and stored resources will be used to buffer biological disturbances of the bio-volume environment. The in situ lunar resources will be both tested and used within this bio-volume. Second phase development on the lunar surface calls for manned operations. Repairs and reconfiguration of the initial framework will ensue. An autonomously initiated, manned Lunar Oasis can become an essential component of the United States space program. The Lunar Oasis will provide support to science, technology, and commerce. It will enable more cost-effective space exploration to the planets and beyond.

  1. Rover 2 Moved to Workstand

    NASA Technical Reports Server (NTRS)

    2003-01-01

    January 28, 2003

    The Mars Exploration Rover -2 is moved to a workstand in the Payload Hazardous Servicing Facility. Set to launch in 2003, the Mars. Exploration Rover Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, 2003, and the second rover a window opening June 25, 2003.

  2. Integrating the Teaching of Space Science, Planetary Exploration And Robotics In Elementary And Middle School with Mars Rover Models

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Ramsey, J.; Smith, H.; Boyko, B. S.; Peck, S.; Arcenaux, W. H.

    2005-05-01

    The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. This paper describes a program designed to help provide some excitement and relevance. It is based on the task of developing a mobile robot or "Rover" to explore the surface of Mars. There are two components to the program, a curriculum unit and a contest. The curriculum unit is structured as a 6-week planetary science unit for elementary school (grades 3-5). It can also be used as a curriculum unit, enrichment program or extracurricular activity in grades 6-8 by increasing the expected level of scientific sophistication in the mission design. The second component is a citywide competition to select the most outstanding models that is held annually at a local college or University. Primary (Grades 3-5) and middle school (Grades 6-8) students interested in science and engineering will design and build of a model of a Mars Rover to carry out a specific science mission on the surface of Mars. The students will build the models as part of a 6-week Fall semester classroom-learning or homework project on Mars. The students will be given design criteria for a rover, and be required to do basic research on Mars that will determine the operational objectives and structural features of their rover. This module may be used as part of a class studying general science, earth science, solar system astronomy or robotics or as a multi-disciplinary unit for a gifted and talented program. A written report on the science objectives and design features of the Rover is required. The program includes specific learning objectives in research skills, language arts (reading scientific literature, preparing a verbal presentation and writing a report), mathematics, science and engineering.The model will be mostly a mock-up, constructed at a minimal cost (estimated cost of less than 10-25) of mostly found objects and simple art supplies.

  3. Developing Tools and Technologies to Meet MSR Planetary Protection Requirements

    NASA Technical Reports Server (NTRS)

    Lin, Ying

    2013-01-01

    This paper describes the tools and technologies that need to be developed for a Caching Rover mission in order to meet the overall Planetary Protection requirements for future Mars Sample Return (MSR) campaign. This is the result of an eight-month study sponsored by the Mars Exploration Program Office. The goal of this study is to provide a future MSR project with a focused technology development plan for achieving the necessary planetary protection and sample integrity capabilities for a Mars Caching Rover mission.

  4. Pancam Imaging of the Mars Exploration Rover Landing Sites in Gusev Crater and Meridiani Planum

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Squyres, S. W.; Arvidson, R. E.; Arneson, H. M.; Bass, D.; Cabrol, N.; Calvin, W.; Farmer, J.; Farrand, W. H.

    2004-01-01

    The Mars Exploration Rovers carry four Panoramic Camera (Pancam) instruments (two per rover) that have obtained high resolution multispectral and stereoscopic images for studies of the geology, mineralogy, and surface and atmospheric physical properties at both rover landing sites. The Pancams are also providing significant mission support measurements for the rovers, including Sun-finding for rover navigation, hazard identification and digital terrain modeling to help guide long-term rover traverse decisions, high resolution imaging to help guide the selection of in situ sampling targets, and acquisition of education and public outreach imaging products.

  5. Task Adaptive Walking Robots for Mars Surface Exploration

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry; Hickey, Gregory; Kennedy, Brett; Aghazarian, Hrand

    2000-01-01

    There are exciting opportunities for robot science that lie beyond the reach of current manipulators, rovers, balloons, penetrators, etc. Examples include mobile explorations of the densely cratered Mars highlands, of asteroids, and of moons. These sites are believed to be rich in geologic history and mineralogical detail, but are difficult to robotically access and sample. The surface terrains are rough and changeable, with variable porosity and dust layering; and the small bodies present further challenges of low-temperature, micro-gravity environments. Even the more benign areas of Mars are highly variegated in character (>VL2 rock densities), presenting significant risk to conventional rovers. The development of compact walking robots would have applications to the current mission set for Mars surface exploration, as well as enabling future Mars Outpost missions, asteroid rendezvous missions for the Solar System Exploration Program (SSE) and the mechanical assembly/inspection of large space platforms for the Human Exploration and Development of Spaces (HEDS).

  6. KSC-03pd1832

    NASA Image and Video Library

    2003-06-06

    KENNEDY SPACE CENTER, FLA. - A science briefing on the Mars Exploration Rover (MER) missions is held for the media at Kennedy Space Center. From left, the participants are Donald Savage, NASA Public Information Officer; Dr. Ed Weiler, Associate Administrator for Space Science, NASA Headquarters; Dr. Jim Garvin, Mars lead scientist, NASA Headquarters; Dr. Cathy Weitz, MER program scientist, NASA Headquarters; Dr. Joy Crisp, MER project scientist, Jet Propulsion Laboratory; and Dr. Steve Squyres, Mer principal investigator, Cornell Univeristy, Ithaca, N.Y. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  7. Mars Science Laboratory (MSL) : the US 2009 Mars rover mission

    NASA Technical Reports Server (NTRS)

    Palluconi, Frank; Tampari, Leslie; Steltzner, Adam; Umland, Jeff

    2003-01-01

    The Mars Science Laboratory mission is the 2009 United States Mars Exploration Program rover mission. The MSL Project expects to complete its pre-Phase A definition activity this fiscal year (FY2003), investigations in mid-March 2004, launch in 2009, arrive at Mars in 2010 during Northern hemisphere summer and then complete a full 687 day Mars year of surface exploration. MSL will assess the potential for habitability (past and present) of a carefully selected landing region on Mars by exploring for the chemical building blocks of life, and seeking to understand quantitatively the chemical and physical environment with which these components have interacted over the geologic history of the planet. Thus, MSL will advance substantially our understanding of the history of Mars and potentially, its capacity to sustain life.

  8. Applied design methodology for lunar rover elastic wheel

    NASA Astrophysics Data System (ADS)

    Cardile, Diego; Viola, Nicole; Chiesa, Sergio; Rougier, Alessandro

    2012-12-01

    In recent years an increasing interest in the Moon surface operations has been experienced. In the future robotic and manned missions of Moon surface exploration will be fundamental in order to lay the groundwork for more ambitious space exploration programs. Surface mobility systems will be the key elements to ensure an efficient and safe Moon exploration. Future lunar rovers are likely to be heavier and able to travel longer distances than the previously developed Moon rover systems. The Lunar Roving Vehicle (LRV) is the only manned rover, which has so far been launched and used on the Moon surface. Its mobility system included flexible wheels that cannot be scaled to the heavier and longer range vehicles. Thus the previously developed wheels are likely not to be suitable for the new larger vehicles. Taking all these considerations into account, on the basis of the system requirements and assumptions, several wheel concepts have been discussed and evaluated through a trade-off analysis. Semi-empirical equations have been utilized to predict the wheel geometrical characteristics, as well as to estimate the motion resistances and the ability of the system to generate thrust. A numerical model has also been implemented, in order to define more into the details the whole wheel design, in terms of wheel geometry and physical properties. As a result of the trade-off analysis, the ellipse wheel concept has shown the best behavior in terms of stiffness, mass budget and dynamic performance. The results presented in the paper have been obtained in cooperation with Thales Alenia Space-Italy and Sicme motori, in the framework of a regional program called STEPS . STEPS-Sistemi e Tecnologie per l'EsPlorazione Spaziale is a research project co-financed by Piedmont Region and firms and universities of the Piedmont Aerospace District in the ambit of the P.O.R-F.E.S.R. 2007-2013 program.

  9. Targeting and Localization for Mars Rover Operations

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.; Crockett, Thomas; Fox, Jason M.; Joswig, Joseph C.; Norris, Jeffrey S.; Rabe, Kenneth J.; McCurdy, Michael; Pyrzak, Guy

    2006-01-01

    In this work we discuss how the quality of localization knowledge impacts the remote operation of rovers on the surface of Mars. We look at the techniques of localization estimation used in the Mars Pathfinder and Mars Exploration Rover missions. We examine the motivation behind the modes of targeting for different types of activities, such as navigation, remote science, and in situ science. We discuss the virtues and shortcomings of existing approaches and new improvements in the latest operations tools used to support the Mars Exploration Rover missions and rover technology development tasks at the Jet Propulsion Laboratory. We conclude with future directions we plan to explore in improving the localization knowledge available for operations and more effective targeting of rovers and their instrument payloads.

  10. KSC-03pd0209

    NASA Image and Video Library

    2003-01-28

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers lift the cover from the Mars Exploration Rover -2. Set to launch in 2003, the Mars Exploration Rover Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, 2003, and the second rover a window opening June 25, 2003.

  11. Mars Exploration Rover (MER) aeroshell

    NASA Image and Video Library

    2003-01-31

    In the Payload Hazardous Servicing Facility, workers prepare the Mars Exploration Rover (MER) aeroshell for transfer to a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  12. KSC-03pd0212

    NASA Image and Video Library

    2003-01-28

    KENNEDY SPACE CENTER, FLA. -- The Mars Exploration Rover -2 is moved to a workstand in the Payload Hazardous Servicing Facility. Set to launch in 2003, the Mars Exploration Rover Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, 2003, and the second rover a window opening June 25, 2003.

  13. KSC-03pd0210

    NASA Image and Video Library

    2003-01-28

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, workers get ready to remove the plastic covering from the Mars Exploration Rover -2. Set to launch in 2003, the Mars Exploration Rover Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, 2003, and the second rover a window opening June 25, 2003.

  14. KSC-03pd0213

    NASA Image and Video Library

    2003-01-28

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility move the Mars Exploration Rover -2 to a workstand in the high bay. Set to launch in 2003, the Mars Exploration Rover Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, 2003, and the second rover a window opening June 25, 2003.

  15. Autonomous Exploration for Gathering Increased Science

    NASA Technical Reports Server (NTRS)

    Bornstein, Benjamin J.; Castano, Rebecca; Estlin, Tara A.; Gaines, Daniel M.; Anderson, Robert C.; Thompson, David R.; DeGranville, Charles K.; Chien, Steve A.; Tang, Benyang; Burl, Michael C.; hide

    2010-01-01

    The Autonomous Exploration for Gathering Increased Science System (AEGIS) provides automated targeting for remote sensing instruments on the Mars Exploration Rover (MER) mission, which at the time of this reporting has had two rovers exploring the surface of Mars (see figure). Currently, targets for rover remote-sensing instruments must be selected manually based on imagery already on the ground with the operations team. AEGIS enables the rover flight software to analyze imagery onboard in order to autonomously select and sequence targeted remote-sensing observations in an opportunistic fashion. In particular, this technology will be used to automatically acquire sub-framed, high-resolution, targeted images taken with the MER panoramic cameras. This software provides: 1) Automatic detection of terrain features in rover camera images, 2) Feature extraction for detected terrain targets, 3) Prioritization of terrain targets based on a scientist target feature set, and 4) Automated re-targeting of rover remote-sensing instruments at the highest priority target.

  16. Proposing an International Collaboration on Lightweight Autonomous Vehicles to Conduct Scientific Traverses and Surveys over Antarctica and the Surrounding Sea Ice

    NASA Technical Reports Server (NTRS)

    Carsey, Frank; Behar, Alberto

    2004-01-01

    We have continued to develop a concept for use of autonomous rovers, originally developed for use in planetary exploration, in polar science on Earth; the concept was the subject of a workshop, and this report summarizes and extends that workshop. The workshop on Antarctic Autonomous Scientific Vehicles and Traverses met at the National Geographic Society on February 14 and 15, 2001 to discuss scientific objectives and benefits of the use of autonomous rovers. The participants enthusiastically viewed rovers as being uniquely valuable for such tasks as data taking on tedious or repetitive routes, traverses in polar night, difficult or hazardous routes, extremely remote regions, routes requiring only simple instrumentation, traverses that must be conducted at low speed, augments of manned traverses, and scientific procedures not compatible with human presence or combustion engines. The workshop has concluded that instrumented autonomous vehicles, of the type being developed for planetary exploration, have the potential to contribute significantly to the way science in conducted in Antarctica while also aiding planetary technology development, and engaging the public's interest. Specific objectives can be supported in understanding ice sheet mass balance, sea ice heat and momentum exchange, and surface air chemistry processes. In the interval since the workshop, we have concluded that organized program to employ such rovers to perform scientific tasks in the Fourth International Polar Year would serve the objectives of that program well.

  17. Brake Failure from Residual Magnetism in the Mars Exploration Rover Lander Petal Actuator

    NASA Technical Reports Server (NTRS)

    Jandura, Louise

    2004-01-01

    In January 2004, two Mars Exploration Rover spacecraft arrived at Mars. Each safely delivered an identical rover to the Martian surface in a tetrahedral lander encased in airbags. Upon landing, the airbags deflated and three Lander Petal Actuators opened the three deployable Lander side petals enabling the rover to exit the Lander. Approximately nine weeks prior to the scheduled launch of the first spacecraft, one of these mission-critical Lander Petal Actuators exhibited a brake stuck-open failure during its final flight stow at Kennedy Space Center. Residual magnetism was the definitive conclusion from the failure investigation. Although residual magnetism was recognized as an issue in the design, the lack of an appropriately specified lower bound on brake drop-out voltage inhibited the discovery of this problem earlier in the program. In addition, the brakes had more unit-to-unit variation in drop-out voltage than expected, likely due to a larger than expected variation in the magnetic properties of the 15-5 PH stainless steel brake plates. Failure analysis and subsequent rework of two other Lander Petal Actuators with marginal brakes was completed in three weeks, causing no impact to the launch date.

  18. "Bimodal" Nuclear Thermal Rocket (BNTR) Propulsion for Future Human Mars Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    2004-01-01

    The Nuclear Thermal Rocket (NTR) Propulsion program is discussed. The Rover/NERVA program from 1959-1972 is compared with the current program. A key technology description, bimodal vehicle design for Mars Cargo and the crew transfer vehicle with inflatable module and artificial gravity capability, including diagrams are included. The LOX-Augmented NTR concept/operational features and characteristics are discussed.

  19. The Athena Mars Rover Investigation

    NASA Technical Reports Server (NTRS)

    Squyres, S. W.; Arvidson, R. E.; Bell, J. F., III; Carr, M.; Christensen, P.; DesMarais, D.; Economou, T.; Gorevan, S.; Haskin, L.; Herkenhoff, K.

    2000-01-01

    The Mars Surveyor program requires tools for martian surface exploration, including remote sensing, in-situ sensing, and sample collection. The Athena Mars rover payload is a suite of scientific instruments and sample collection tools designed to: (1) Provide color stereo imaging of martian surface environments, and remotely-sensed point discrimination of mineralogical composition; (2) Determine the elemental and mineralogical composition of martian surface materials; (3) Determine the fine-scale textural properties of these materials; and (4) Collect and store samples. The Athena payload is designed to be implemented on a long-range rover such as the one now under consideration for the 2003 Mars opportunity. The payload is at a high state of maturity, and most of the instruments have now been built for flight.

  20. Working on Mars: Understanding How Scientists, Engineers and Rovers Interacted Across Space and Time during the Mars Exploration Rover (MER) Mission

    NASA Technical Reports Server (NTRS)

    Wales, Roxana C.

    2005-01-01

    This viewgraph presentation summarizes the scheduling and planning difficulties inherent in operating the Mars Exploration Rovers (MER) during the overlapping terrestrial day and Martian sol. The presentation gives special empahsis to communication between the teams controlling the rovers from Earth, and keeping track of time on the two planets.

  1. Potential of Probing the Lunar Regolith using Rover-Mounted Ground Penetrating Radar: Moses Lake Dune Field Analog Study

    NASA Technical Reports Server (NTRS)

    Horz, F.; Heggy, E.; Fong, T.; Kring, D.; Deans, M.; Anglade, A.; Mahiouz, K.; Bualat, M.; Lee, P.; Bluethmann, W.

    2009-01-01

    Probing radars have been widely recognized by the science community to be an efficient tool to explore lunar subsurface providing a unique capability to address several scientific and operational issues. A wideband (200 to 1200 MHz) Ground Penetrating Radar (GPR) mounted on a surface rover can provide high vertical resolution and probing depth from few tens of centimeters to few tens of meters depending on the sounding frequency and the ground conductivity. This in term can provide a better understand regolith thickness, elemental iron concentration (including ilmenite), volatile presence, structural anomalies and fracturing. All those objectives are of important significance for understanding the local geology and potential sustainable resources for future landing sites in particular exploring the thickness, structural heterogeneity and potential volatiles presence in the lunar regolith. While the operation and data collection of GPR is a straightforward case for most terrestrial surveys, it is a challenging task for remote planetary study especially on robotic platforms due to the complexity of remote operation in rough terrains and the data collection constrains imposed by the mechanical motion of the rover and limitation in data transfer. Nevertheless, Rover mounted GPR can be of great support to perform systematic subsurface surveys for a given landing site as it can provide scientific and operational support in exploring subsurface resources and sample collections which can increase the efficiency of the EVA activities for potential human crews as part of the NASA Constellation Program. In this study we attempt to explore the operational challenges and their impact on the EVA scientific return for operating a rover mounted GPR in support of potential human activity on the moon. In this first field study, we mainly focused on the ability of GPR to support subsurface sample collection and explore shallow subsurface volatiles.

  2. The University Rover Challenge: A competition highlighting Human and Robotic partnerships for exploration

    NASA Astrophysics Data System (ADS)

    Smith, Heather; Duncan, Andrew

    2016-07-01

    The University Rover Challenge began in 2006 with 4 American college teams competing, now in it's 10th year there are 63 teams from 12 countries registered to compete for the top rover designed to assist humans in the exploration of Mars. The Rovers compete aided by the University teams in four tasks (3 engineering and 1 science) in the Mars analog environment of the Utah Southern Desert in the United States. In this presentation we show amazing rover designs with videos demonstrating the incredible ingenuity, skill and determination of the world's most talented college students. We describe the purpose and results of each of the tasks: Astronaut Assistant, Rover Dexterity, Terrain maneuvering, and Science. We explain the evolution of the competition and common challenges faced by the robotic explorers

  3. KSC-03pd0211

    NASA Image and Video Library

    2003-01-28

    KENNEDY SPACE CENTER, FLA. - After being cleaned up, the Mars Exploration Rover -2 is ready to be moved to a workstand in the Payload Hazardous Servicing Facility. Set to launch in 2003, the Mars Exploration Rover Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, 2003, and the second rover a window opening June 25, 2003.

  4. Size Comparison: Three Generations of Mars Rovers

    NASA Image and Video Library

    2008-11-19

    Full-scale models of three generations of NASA Mars rovers show the increase in size from the Sojourner rover of the Mars Pathfinder project, to the twin Mars Exploration Rovers Spirit and Opportunity, to the Mars Science Laboratory rover.

  5. Rover Family Photo

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Members of the Mars Exploration Rovers Assembly, Test and Launch Operations team gather around Rover 2 and its predecessor, a flight spare of the Pathfinder mission's Sojourner rover, named Marie Curie.

  6. Rover Family Photo

    NASA Image and Video Library

    2003-02-26

    Members of the Mars Exploration Rovers Assembly, Test and Launch Operations team gather around NASA Rover 2 and its predecessor, a flight spare of the Pathfinder mission Sojourner rover, named Marie Curie.

  7. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2) is installed around the Mars Exploration Rover 2 (MER-2). MER-2 is one of NASA's twin Mars Exploration Rovers designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-2 is scheduled to launch no earlier than June 8 as MER-A, with two launch opportunities each day during the launch period that closes on June 19.

    NASA Image and Video Library

    2003-05-31

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2) is installed around the Mars Exploration Rover 2 (MER-2). MER-2 is one of NASA's twin Mars Exploration Rovers designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-2 is scheduled to launch no earlier than June 8 as MER-A, with two launch opportunities each day during the launch period that closes on June 19.

  8. An advanced terrain modeler for an autonomous planetary rover

    NASA Technical Reports Server (NTRS)

    Hunter, E. L.

    1980-01-01

    A roving vehicle capable of autonomously exploring the surface of an alien world is under development and an advanced terrain modeler to characterize the possible paths of the rover as hazardous or safe is presented. This advanced terrain modeler has several improvements over the Troiani modeler that include: a crosspath analysis, better determination of hazards on slopes, and methods for dealing with missing returns at the extremities of the sensor field. The results from a package of programs to simulate the roving vehicle are then examined and compared to results from the Troiani modeler.

  9. Sample Return Robot Centennial Challenge

    NASA Image and Video Library

    2012-06-16

    NASA Program Manager for Centennial Challenges Sam Ortega help show a young visitor how to drive a rover as part of the interactive NASA Mars rover exhibit during the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)

  10. Integrated Solar System Exploration Education and Public Outreach: Theme, Products and Activities

    NASA Technical Reports Server (NTRS)

    Lowes, Leslie; Lindstrom, Marilyn; Stockman, Stephanie; Scalice, Daniela; Allen, Jaclyn; Tobola, Kay; Klug, Sheri; Harmon, Art

    2004-01-01

    NASA's Solar System Exploration Program is entering an unprecedented period of exploration and discovery. Its goal is to understand the origin and evolution of the solar system and life within it. SSE missions are operating or in development to study the far reaches of our solar system and beyond. These missions proceed in sequence for each body from reconnaissance flybys through orbiters and landers or rovers to sample returns. SSE research programs develop new instruments, analyze mission data or returned samples, and provide experimental or theoretical models to aid in interpretation.

  11. Mars Exploration Rover, Vertical Artist Concept

    NASA Image and Video Library

    2003-12-15

    An artist's concept portrays a NASA Mars Exploration Rover on the surface of Mars. Two rovers, Spirit and Opportunity, will reach Mars in January 2004. Each has the mobility and toolkit to function as a robotic geologist. http://photojournal.jpl.nasa.gov/catalog/PIA04928

  12. Newest is Biggest: Three Generations of NASA Mars Rovers

    NASA Image and Video Library

    2008-11-19

    Full-scale models of three generations of NASA Mars rovers show the increase in size from the Sojourner rover of the Mars Pathfinder project, to the twin Mars Exploration Rovers Spirit and Opportunity, to the Mars Science Laboratory rover.

  13. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and Mars Exploration Rover 2 (MER-A) are ready for the third launch attempt after weather concerns postponed earlier attempts. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and Mars Exploration Rover 2 (MER-A) are ready for the third launch attempt after weather concerns postponed earlier attempts. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  14. Rovers as Geological Helpers for Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Stoker, Carol; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    Rovers can be used to perform field science on other planetary surfaces and in hostile and dangerous environments on Earth. Rovers are mobility systems for carrying instrumentation to investigate targets of interest and can perform geologic exploration on a distant planet (e.g. Mars) autonomously with periodic command from Earth. For nearby sites (such as the Moon or sites on Earth) rovers can be teleoperated with excellent capabilities. In future human exploration, robotic rovers will assist human explorers as scouts, tool and instrument carriers, and a traverse "buddy". Rovers can be wheeled vehicles, like the Mars Pathfinder Sojourner, or can walk on legs, like the Dante vehicle that was deployed into a volcanic caldera on Mt. Spurr, Alaska. Wheeled rovers can generally traverse slopes as high as 35 degrees, can avoid hazards too big to roll over, and can carry a wide range of instrumentation. More challenging terrain and steeper slopes can be negotiated by walkers. Limitations on rover performance result primarily from the bandwidth and frequency with which data are transmitted, and the accuracy with which the rover can navigate to a new position. Based on communication strategies, power availability, and navigation approach planned or demonstrated for Mars missions to date, rovers on Mars will probably traverse only a few meters per day. Collecting samples, especially if it involves accurate instrument placement, will be a slow process. Using live teleoperation (such as operating a rover on the Moon from Earth) rovers have traversed more than 1 km in an 8 hour period while also performing science operations, and can be moved much faster when the goal is simply to make the distance. I will review the results of field experiments with planetary surface rovers, concentrating on their successful and problematic performance aspects. This paper will be accompanied by a working demonstration of a prototype planetary surface rover.

  15. Mars Up Close

    NASA Image and Video Library

    2014-08-05

    Ken Edgett, principal investigator, MAHLI Camera, Mars Exploration Program, discusses what we’ve learned from Curiosity and the other Mars rovers during a “Mars Up Close” panel discussion, Tuesday, August 5, 2014, at the National Geographic Society headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  16. Field Experiments using Telepresence and Virtual Reality to Control Remote Vehicles: Application to Mars Rover Missions

    NASA Technical Reports Server (NTRS)

    Stoker, Carol

    1994-01-01

    This paper will describe a series of field experiments to develop and demonstrate file use of Telepresence and Virtual Reality systems for controlling rover vehicles on planetary surfaces. In 1993, NASA Ames deployed a Telepresence-Controlled Remotely Operated underwater Vehicle (TROV) into an ice-covered sea environment in Antarctica. The goal of the mission was to perform scientific exploration of an unknown environment using a remote vehicle with telepresence and virtual reality as a user interface. The vehicle was operated both locally, from above a dive hole in the ice through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research center, for over two months. Remote control used a bidirectional Internet link to the vehicle control computer. The operator viewed live stereo video from the TROV along with a computer-gene rated graphic representation of the underwater terrain showing file vehicle state and other related information. Tile actual vehicle could be driven either from within the virtual environment or through a telepresence interface. In March 1994, a second field experiment was performed in which [lie remote control system developed for the Antarctic TROV mission was used to control the Russian Marsokhod Rover, an advanced planetary surface rover intended for launch in 1998. Marsokhod consists of a 6-wheel chassis and is capable of traversing several kilometers of terrain each day, The rover can be controlled remotely, but is also capable of performing autonomous traverses. The rover was outfitted with a manipulator arm capable of deploying a small instrument, collecting soil samples, etc. The Marsokhod rover was deployed at Amboy Crater in the Mojave desert, a Mars analog site, and controlled remotely from Los Angeles. in two operating modes: (1) a Mars rover mission simulation with long time delay and (2) a Lunar rover mission simulation with live action video. A team of planetary geologists participated in the mission simulation. The scientific goal of the science mission was to determine what could be learned about the geologic context of the site using the capabilities of imaging and mobility provided by the Marsokhod system in these two modes of operation. I will discuss the lessons learned from these experiments in terms of the strategy for performing Mars surface exploration using rovers. This research is supported by the Solar System Exploration Exobiology, Geology, and Advanced Technology programs.

  17. KSC-03pd1221

    NASA Image and Video Library

    2003-04-23

    KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 2 (MER-A) is ready for final closure of the petals on the lander. The lander and rover will be enclosed within an aeroshell for launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.

  18. KSC-03pd1223

    NASA Image and Video Library

    2003-04-23

    KENNEDY SPACE CENTER, FLA. - While workers watch the process, the petals on the lander close up around the Mars Exploration Rover 2 (MER-A). The lander and rover will be enclosed within an aeroshell for launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.

  19. Remote image analysis for Mars Exploration Rover mobility and manipulation operations

    NASA Technical Reports Server (NTRS)

    Leger, Chris; Deen, Robert G.; Bonitz, Robert G.

    2005-01-01

    NASA's Mars Exploration Rovers are two sixwheeled, 175-kg robotic vehicles which have operated on Mars for over a year as of March 2005. The rovers are controlled by teams who must understand the rover's surroundings and develop command sequences on a daily basis. The tight tactical planning timeline and everchanging environment call for tools that allow quick assessment of potential manipulator targets and traverse goals, since command sequences must be developed in a matter of hours after receipt of new data from the rovers. Reachability maps give a visual indication of which targets are reachable by each rover's manipulator, while slope and solar energy maps show the rover operator which terrain areas are safe and unsafe from different standpoints.

  20. Mars Exploration Rovers 2004-2013: Evolving Operational Tactics Driven by Aging Robotic Systems

    NASA Technical Reports Server (NTRS)

    Townsend, Julie; Seibert, Michael; Bellutta, Paolo; Ferguson, Eric; Forgette, Daniel; Herman, Jennifer; Justice, Heather; Keuneke, Matthew; Sosland, Rebekah; Stroupe, Ashley; hide

    2014-01-01

    Over the course of more than 10 years of continuous operations on the Martian surface, the operations team for the Mars Exploration Rovers has encountered and overcome many challenges. The twin rovers, Spirit and Opportunity, designed for a Martian surface mission of three months in duration, far outlived their life expectancy. Spirit explored for six years and Opportunity still operates and, in January 2014, celebrated the 10th anniversary of her landing. As with any machine that far outlives its design life, each rover has experienced a series of failures and degradations attributable to age, use, and environmental exposure. This paper reviews the failures and degradations experienced by the two rovers and the measures taken by the operations team to correct, mitigate, or surmount them to enable continued exploration and discovery.

  1. Transforming Roving-Rolling Explorer (TRREx) for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Edwin, Lionel Ernest

    All planetary surface exploration missions thus far have employed traditional rovers with a rocker-bogie suspension. These rovers can navigate moderately rough and flat terrain, but are not designed to traverse rugged terrain with steep slopes. The fact is, however, that many scientifically interesting missions require exploration platforms with capabilities for navigating such types of chaotic terrain. This issue motivates the development of new kinds of rovers that take advantage of the latest advances in robotic technologies to traverse rugged terrain efficiently. This dissertation proposes and analyses one such rover concept called the Transforming Roving-Rolling Explorer (TRREx) that is principally aimed at addressing the above issue. Biologically inspired by the way the armadillo curls up into a ball when threatened, and the way the golden wheel spider uses the dynamic advantages of a sphere to roll down hills when escaping danger, the novel TRREx rover can traverse like a traditional 6-wheeled rover over conventional terrain, but can also transform itself into a sphere, when necessary, to travel down steep inclines, or navigate rough terrain. This work presents the proposed design architecture and capabilities followed by the development of mathematical models and experiments that facilitate the mobility analysis of the TRREx in the rolling mode. The ability of the rover to self-propel in the rolling mode in the absence of a negative gradient increases its versatility and concept value. Therefore, a dynamic model of a planar version of the problem is first used to investigate the feasibility and value of such self-propelled locomotion - 'actuated rolling'. Construction and testing of a prototype Planar/Cylindrical TRREx that is capable of demonstrating actuated rolling is presented, and the results from the planar dynamic model are experimentally validated. This planar model is then built upon to develop a mathematical model of the spherical TRREx in the rolling mode, i.e. when the rover is a sphere and can steer itself through actuations that shift its center of mass to achieve the desired direction of roll. Case studies that demonstrate the capabilities of the rover in rolling mode and parametric analyses that investigate the dependence of the rover's mobility on its design are presented. This work highlights the contribution of the spherical rolling mode to the enhanced mobility of the TRREx rover and how it could enable challenging surface exploration missions in the future. It represents an important step toward developing a rover capable of traversing a variety of terrains that are impassible by the current fleet of rover designs, and thus has the potential to revolutionize planetary surface exploration.

  2. KENNEDY SPACE CENTER, FLA. - Assembly of the backshell and heat shield surrounding the Mars Exploration Rover 1 (MER-1) is complete. The resulting aeroshell will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - Assembly of the backshell and heat shield surrounding the Mars Exploration Rover 1 (MER-1) is complete. The resulting aeroshell will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  3. A preliminary study of Mars rover/sample return missions

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Solar System Exploration Committee (SSEC) of the NASA Advisory Council recommends that a Mars Sample Return mission be undertaken before the year 2000. Comprehensive studies of a Mars Sample Return mission have been ongoing since 1984. The initial focus of these studies was an integrated mission concept with the surface rover and sample return vehicle elements delivered to Mars on a single launch and landed together. This approach, to be carried out as a unilateral U.S. initiative, is still a high priority goal in an Augmented Program of exploration, as the SSEC recommendation clearly states. With this background of a well-understood mission concept, NASA decided to focus its 1986 study effort on a potential opportunity not previously examined; namely, a Mars Rover/Sample Return (MRSR) mission which would involve a significant aspect of international cooperation. As envisioned, responsibility for the various mission operations and hardware elements would be divided in a logical manner with clearly defined and acceptable interfaces. The U.S. and its international partner would carry out separately launched but coordinated missions with the overall goal of accomplishing in situ science and returning several kilograms of surface samples from Mars. Important considerations for implementation of such a plan are minimum technology transfer, maximum sharing of scientific results, and independent credibility of each mission role. Under the guidance and oversight of a Mars Exploration Strategy Advisory Group organized by NASA, a study team was formed in the fall of 1986 to develop a preliminary definition of a flight-separable, cooperative mission. The selected concept assumes that the U.S. would undertake the rover mission with its sample collection operations and our international partner would return the samples to Earth. Although the inverse of these roles is also possible, this study report focuses on the rover functions of MRSR because rover operations have not been studied in as much detail as the sample return functions of the mission.

  4. Grid Visualization Tool

    NASA Technical Reports Server (NTRS)

    Chouinard, Caroline; Fisher, Forest; Estlin, Tara; Gaines, Daniel; Schaffer, Steven

    2005-01-01

    The Grid Visualization Tool (GVT) is a computer program for displaying the path of a mobile robotic explorer (rover) on a terrain map. The GVT reads a map-data file in either portable graymap (PGM) or portable pixmap (PPM) format, representing a gray-scale or color map image, respectively. The GVT also accepts input from path-planning and activity-planning software. From these inputs, the GVT generates a map overlaid with one or more rover path(s), waypoints, locations of targets to be explored, and/or target-status information (indicating success or failure in exploring each target). The display can also indicate different types of paths or path segments, such as the path actually traveled versus a planned path or the path traveled to the present position versus planned future movement along a path. The program provides for updating of the display in real time to facilitate visualization of progress. The size of the display and the map scale can be changed as desired by the user. The GVT was written in the C++ language using the Open Graphics Library (OpenGL) software. It has been compiled for both Sun Solaris and Linux operating systems.

  5. Coupling Immersive Experiences with the Use of Mission Data to Encourage Students' Interest in Science, Technology, Engineering, and Math: Examples from the Mars Exploration Program

    NASA Astrophysics Data System (ADS)

    Klug, S. L.; Valderrama, P.; Viotti, M. A.; Watt, K.; Wurman, G.

    2004-12-01

    The Mars Exploration Program, in partnership with the Arizona State University Mars Education Program has created and successfully tested innovative pathways and programs that introduce, develop, and reinforce science, technology, engineering, and mathematics - STEM subjects into pre-college curriculum. With launches scheduled every 26 months, Mars has the unique opportunity and ability to have a long-term, systemic influence on science education. Also, because of the high level of interest in Mars, as exemplified by the10 billion Internet hits during the Mars Exploration Rover mission, it is a great vehicle for the infusion of current science into today's classrooms. These Mars education programs have linked current mission science and engineering with the National Education Standards, integrating them in a teacher-friendly and student-friendly format. These linkages are especially synergistic when combined with long-term partnerships between educators, Mars scientists and engineers, as they exemplify real-world collaborations and teamwork. To accommodate many different audience needs, an array of programs and a variety of approaches to these programs have been developed. High tech, low tech and no tech options can be implemented to help insure that as many students can be accommodated and impacted by these programs as possible. These programs are scaled to match the National Education Standards in the grade levels in which students need to become proficient in these subjects. The Mars Student Imaging Project - MSIP allows teams of students from the fifth grade through community college to be immersed in a hands-on program and experience the scientific process firsthand by using the Thermal Emission Imaging System - THEMIS camera to target their own image of Mars using an educational version of the real flight software used to target THEMIS images. The student teams then analyze their image and report their findings to the MSIP website. This project has been in existence for over two years and has been used by teachers and students from across the US. The Mars Exploration Student Data Team Program was created and prototyped during the Mars Exploration Rover mission this past January through April. Over 500 students from 25 schools from across the US participated in real-time data analysis using the Mars Odyssey and Mars Global Surveyor infrared instruments -Thermal Emission Spectrometer - TES and THEMIS to monitor the rover landing sites. This program utilized a virtual team format and allowed high school students to collaborate with other teams that were, at times, thousands of miles away to implement real-time observations. This program will be carried forward to several of the upcoming missions. Finally, the Athena Student Intern Program is the higher end of involvement for students and teachers. These students and teachers were competitively selected to spend a week during the mission operations of the rovers at JPL. All of these programs have a common thread..ownership of the experience. By empowering the next generation of learners with the knowledge that they can be part of their future through such immersive experiences before they reach college, they will be ready to take on harder challenges that will reach higher towards new frontiers

  6. The use of harmonic drives on NASA's Mars Exploration Rover

    NASA Technical Reports Server (NTRS)

    Krishnan, S.; Voorhees, C.

    2001-01-01

    The Mars Exploration Rover (MER) mission will send two 185 kg rovers to Mars in 2003 to continue the scientific community's search for evidence of past water on Mars. These twin robotic vehicles will carry harmonic drives and their performance will be characterized at various temperatures, speeds and loads.

  7. KENNEDY SPACE CENTER, FLA. - The second stage of the Delta II rocket is raised off the transporter for its lift up the launch tower on Pad 17-A, Cape Canaveral Air Force Station. It will be mated to the first stage in preparation for the launch of the Mars Exploration Rover 2 (MER-A). The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet’s past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA’s two Mars Exploration Rover missions is scheduled June 5.

    NASA Image and Video Library

    2003-04-28

    KENNEDY SPACE CENTER, FLA. - The second stage of the Delta II rocket is raised off the transporter for its lift up the launch tower on Pad 17-A, Cape Canaveral Air Force Station. It will be mated to the first stage in preparation for the launch of the Mars Exploration Rover 2 (MER-A). The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet’s past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA’s two Mars Exploration Rover missions is scheduled June 5.

  8. An Environmental Control and Life Support System Concept for a Pressurized Lunar Rover

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert M.; Stambaugh, Imelda

    2010-01-01

    Pressurized rovers can add many attractive capabilities to a human lunar exploration campaign, most notably by extending the reach of astronauts far beyond the immediate vicinities of lunar landers and fixed assets such as habitats. Effective campaigns will depend on an efficient allocation of environmental control and life support system (ECLSS) equipment amongst mobile rovers and fixed habitats such that widespread and sustainable exploration can be achieved. This paper will describe some of the key drivers that influence the design of an ECLSS for a pressurized lunar rover and a conceptual design that has been formulated to address those drivers. Opportunities to realize programmatic and operational efficiencies through commonality of rover ECLSS and extravehicular activity (EVA) equipment have also been explored and will be described. Plans for the inclusion of ECLSS functionality in prototype lunar rovers will be summarized

  9. KSC-03pd1224

    NASA Image and Video Library

    2003-04-23

    KENNEDY SPACE CENTER, FLA. - Workers check different areas of the lander as the petals close in around the Mars Exploration Rover 2 (MER-A). The lander and rover will subsequently be enclosed within an aeroshell for launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.

  10. KSC-03pd1225

    NASA Image and Video Library

    2003-04-23

    KENNEDY SPACE CENTER, FLA. - Workers check different areas of the lander as the petals close in around the Mars Exploration Rover 2 (MER-A). The lander and rover will subsequently be enclosed within an aeroshell for launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.

  11. Operation and performance of the mars exploration rover imaging system on the martian surface

    USGS Publications Warehouse

    Maki, J.N.; Litwin, T.; Schwochert, M.; Herkenhoff, K.

    2005-01-01

    The Imaging System on the Mars Exploration Rovers has successfully operated on the surface of Mars for over one Earth year. The acquisition of hundreds of panoramas and tens of thousands of stereo pairs has enabled the rovers to explore Mars at a level of detail unprecedented in the history of space exploration. In addition to providing scientific value, the images also play a key role in the daily tactical operation of the rovers. The mobile nature of the MER surface mission requires extensive use of the imaging system for traverse planning, rover localization, remote sensing instrument targeting, and robotic arm placement. Each of these activity types requires a different set of data compression rates, surface coverage, and image acquisition strategies. An overview of the surface imaging activities is provided, along with a summary of the image data acquired to date. ?? 2005 IEEE.

  12. Rover-based visual target tracking validation and mission infusion

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Steele, Robert D.; Ansar, Adnan I.; Ali, Khaled; Nesnas, Issa

    2005-01-01

    The Mars Exploration Rovers (MER'03), Spirit and Opportunity, represent the state of the art in rover operations on Mars. This paper presents validation experiments of different visual tracking algorithms using the rover's navigation camera.

  13. CubeRovers for Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Tallaksen, A. P.; Horchler, A. D.; Boirum, C.; Arnett, D.; Jones, H. L.; Fang, E.; Amoroso, E.; Chomas, L.; Papincak, L.; Sapunkov, O. B.; Whittaker, W. L.

    2017-10-01

    CubeRover is a 2-kg class of lunar rover that seeks to standardize and democratize surface mobility and science, analogous to CubeSats. This CubeRover will study in-situ lunar surface trafficability and descent engine blast ejecta phenomena.

  14. Mars Exploration Rovers: 4 Years on Mars

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2008-01-01

    This January, the Mars Exploration Rovers "Spirit" and "Opportunity" are starting their fifth year of exploring the surface of Mars, well over ten times their nominal 90-day design lifetime. This lecture discusses the Mars Exploration Rovers, presents the current mission status for the extended mission, some of the most results from the mission and how it is affecting our current view of Mars, and briefly presents the plans for the coming NASA missions to the surface of Mars and concepts for exploration with robots and humans into the next decade, and beyond.

  15. Dynamic modeling and mobility analysis of the transforming roving-rolling explorer (TRREx) as it Traverses Rugged Martian Terrain

    NASA Astrophysics Data System (ADS)

    Edwin, Lionel E.; Mazzoleni, Andre P.

    2016-03-01

    All planetary surface exploration missions thus far have employed traditional rovers with a rocker-bogie suspension. These rovers can navigate moderately rough and flat terrain, but are not designed to traverse rugged terrain with steep slopes. The fact is, however, that the most scientifically interesting missions require exploration platforms with capabilities for navigating such types of rugged terrain. This issue motivates the development of new kinds of rovers that take advantage of the latest advances in robotic technologies to traverse rugged terrain efficiently. This work analyzes one such rover concept called the Transforming Roving-Rolling Explorer (TRREx) that is principally aimed at addressing the above issue. Biologically inspired by the way the armadillo curls up into a ball when threatened, and the way the golden wheel spider uses the dynamic advantages of a sphere to roll down hills when escaping danger, the TRREx rover can traverse like a traditional 6-wheeled rover over conventional terrain, but can also transform itself into a sphere, when necessary, to travel down steep inclines, or navigate rough terrain. This paper investigates the mobility of the TRREx when it is in its rolling mode, i.e. when it is a sphere and can steer itself through actuations that shift its center of mass to achieve the desired direction of roll. A mathematical model describing the dynamics of the rover in this spherical configuration is presented, and actuated rolling is demonstrated through computer simulation. Parametric analyzes that investigate the rover's mobility as a function of its design parameters are also presented. This work highlights the contribution of the spherical rolling mode to the enhanced mobility of the TRREx rover and how it could enable challenging surface exploration missions in the future.

  16. Visual Target Tracking on the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Kim, Won; Biesiadecki, Jeffrey; Ali, Khaled

    2008-01-01

    Visual target tracking (VTT) software has been incorporated into Release 9.2 of the Mars Exploration Rover (MER) flight software, now running aboard the rovers Spirit and Opportunity. In the VTT operation (see figure), the rover is driven in short steps between stops and, at each stop, still images are acquired by actively aimed navigation cameras (navcams) on a mast on the rover (see artistic rendition). The VTT software processes the digitized navcam images so as to track a target reliably and to make it possible to approach the target accurately to within a few centimeters over a 10-m traverse.

  17. Photo-realistic Terrain Modeling and Visualization for Mars Exploration Rover Science Operations

    NASA Technical Reports Server (NTRS)

    Edwards, Laurence; Sims, Michael; Kunz, Clayton; Lees, David; Bowman, Judd

    2005-01-01

    Modern NASA planetary exploration missions employ complex systems of hardware and software managed by large teams of. engineers and scientists in order to study remote environments. The most complex and successful of these recent projects is the Mars Exploration Rover mission. The Computational Sciences Division at NASA Ames Research Center delivered a 30 visualization program, Viz, to the MER mission that provides an immersive, interactive environment for science analysis of the remote planetary surface. In addition, Ames provided the Athena Science Team with high-quality terrain reconstructions generated with the Ames Stereo-pipeline. The on-site support team for these software systems responded to unanticipated opportunities to generate 30 terrain models during the primary MER mission. This paper describes Viz, the Stereo-pipeline, and the experiences of the on-site team supporting the scientists at JPL during the primary MER mission.

  18. Exploration Rover Concepts and Development Challenges

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.; McKissock, David B.; Woytach, Jeffrey M.; Zakrajsek, June F.; Oswald, Fred B.; McEntire, Kelly J.; Hill, Gerald M.; Abel, Phillip; Eichenberg, Dennis J.; Goodnight, Thomas W.

    2005-01-01

    This paper presents an overview of exploration rover concepts and the various development challenges associated with each as they are applied to exploration objectives and requirements for missions on the Moon and Mars. A variety of concepts for surface exploration vehicles have been proposed since the initial development of the Apollo-era lunar rover. This paper provides a brief description of the rover concepts, along with a comparison of their relative benefits and limitations. In addition, this paper outlines, and investigates a number of critical development challenges that surface exploration vehicles must address in order to successfully meet the exploration mission vision. These include: mission and environmental challenges, design challenges, and production and delivery challenges. Mission and environmental challenges include effects of terrain, extreme temperature differentials, dust issues, and radiation protection. Design methods are discussed that focus on optimum methods for developing highly reliable, long-life and efficient systems. In addition, challenges associated with delivering a surface exploration system is explored and discussed. Based on all the information presented, modularity will be the single most important factor in the development of a truly viable surface mobility vehicle. To meet mission, reliability, and affordability requirements, surface exploration vehicles, especially pressurized rovers, will need to be modularly designed and deployed across all projected Moon and Mars exploration missions.

  19. Ground Processing of Data From the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Wright, Jesse; Sturdevant, Kathryn; Noble, David

    2006-01-01

    A computer program implements the Earth side of the protocol that governs the transfer of data files generated by the Mars Exploration Rovers. It also provides tools for viewing data in these files and integrating data-product files into automated and manual processes. It reconstitutes files from telemetry data packets. Even if only one packet is received, metadata provide enough information to enable this program to identify and use partial data products. This software can generate commands to acknowledge received files and retransmit missed parts of files, or it can feed a manual process to make decisions about retransmission. The software uses an Extensible Markup Language (XML) data dictionary to provide a generic capability for displaying files of basic types, and uses external "plug-in" application programs to provide more sophisticated displays. This program makes data products available with very low latency, and can trigger automated actions when complete or partial products are received. The software is easy to install and use. The only system requirement for installing the software is a Java J2SE 1.4 platform. Several instances of the software can be executed simultaneously on the same machine.

  20. KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers lower the backshell with the Mars Exploration Rover 1 (MER-1) onto the heat shield. The two components form the aeroshell that will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers lower the backshell with the Mars Exploration Rover 1 (MER-1) onto the heat shield. The two components form the aeroshell that will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  1. KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers check the attachment between the backshell (above) and heat shield (below) surrounding the Mars Exploration Rover 1 (MER-1). The aeroshell will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers check the attachment between the backshell (above) and heat shield (below) surrounding the Mars Exploration Rover 1 (MER-1). The aeroshell will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  2. KENNEDY SPACE CENTER, FLA. - The Mobile Service Tower is rolled back at Launch Complex 17A to reveal a Delta II rocket ready to launch the Mars Exploration Rover-A mission. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

    NASA Image and Video Library

    2003-06-08

    KENNEDY SPACE CENTER, FLA. - The Mobile Service Tower is rolled back at Launch Complex 17A to reveal a Delta II rocket ready to launch the Mars Exploration Rover-A mission. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  3. Mars Exploration Rover surface operations: driving spirit at Gusev Crater

    NASA Technical Reports Server (NTRS)

    Leger, Chris; Trebi-Ollennu, Ashitey; Wright, John; Maxwell, Scott; Bonitz, Bob; Biesiadecki, Jeff; Hartman, Frank; Cooper, Brian; Baumgartner, Eric; Maimone, Mark

    2005-01-01

    Spirit is one of two rovers, that landed on Mars in January 2004 as part of NASA's Mars Exploration Rovers mission. Since then, Spirit has traveled over 4 kilometers accross the Martian surface while investigating rocks and soils, digging trenches to examine the subsurface environment, and climbing hills to reach outcrops of bedrock.

  4. 2017 Exploration Rover Challenge event.

    NASA Image and Video Library

    2017-03-03

    2017 Exploration Rover Challenge events at the U.S. Space and Rocket Center in Huntsville, Alabama. High school and college students from around the U.S. and the world come together for this 2 day event which challenges them to compete for the fastest time as well as technical design of the actual rover itself.

  5. Accuracy Analysis and Validation of the Mars Science Laboratory (MSL) Robotic Arm

    NASA Technical Reports Server (NTRS)

    Collins, Curtis L.; Robinson, Matthew L.

    2013-01-01

    The Mars Science Laboratory (MSL) Curiosity Rover is currently exploring the surface of Mars with a suite of tools and instruments mounted to the end of a five degree-of-freedom robotic arm. To verify and meet a set of end-to-end system level accuracy requirements, a detailed positioning uncertainty model of the arm was developed and exercised over the arm operational workspace. Error sources at each link in the arm kinematic chain were estimated and their effects propagated to the tool frames.A rigorous test and measurement program was developed and implemented to collect data to characterize and calibrate the kinematic and stiffness parameters of the arm. Numerous absolute and relative accuracy and repeatability requirements were validated with a combination of analysis and test data extrapolated to the Mars gravity and thermal environment. Initial results of arm accuracy and repeatability on Mars demonstrate the effectiveness of the modeling and test program as the rover continues to explore the foothills of Mount Sharp.

  6. Mars Exploration Rover Mission: Entry, Descent, and Landing System Validation

    NASA Technical Reports Server (NTRS)

    Mitcheltree, Robert A.; Lee, Wayne; Steltzner, Adam; SanMartin, Alejanhdro

    2004-01-01

    System validation for a Mars entry, descent, and landing system is not simply a demonstration that the electrical system functions in the associated environments. The function of this system is its interaction with the atmospheric and surface environment. Thus, in addition to traditional test-bed, hardware-in-the-loop, testing, a validation program that confirms the environmental interaction is required. Unfortunately, it is not possible to conduct a meaningful end-to-end test of a Mars landing system on Earth. The validation plan must be constructed from an interconnected combination of simulation, analysis and test. For the Mars Exploration Rover mission, this combination of activities and the logic of how they combined to the system's validation was explicitly stated, reviewed, and tracked as part of the development plan.

  7. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the launch tower begins to roll back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-09

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the launch tower begins to roll back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  8. KENNEDY SPACE CENTER, FLA. - The launch tower on Launch Complex 17-A, Cape Canaveral Air Force Station, clears the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-09

    KENNEDY SPACE CENTER, FLA. - The launch tower on Launch Complex 17-A, Cape Canaveral Air Force Station, clears the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  9. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are in the clear after tower rollback in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-09

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are in the clear after tower rollback in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  10. KENNEDY SPACE CENTER, FLA. - The Delta II rocket with its Mars Exploration Rover (MER-A) payload leaps off the launch pad into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - The Delta II rocket with its Mars Exploration Rover (MER-A) payload leaps off the launch pad into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  11. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  12. KENNEDY SPACE CENTER, FLA. - With smoke and steam billowing beneath, the Delta II rocket with its Mars Exploration Rover (MER-A) payload leaps off the launch pad into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - With smoke and steam billowing beneath, the Delta II rocket with its Mars Exploration Rover (MER-A) payload leaps off the launch pad into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  13. KENNEDY SPACE CENTER, FLA. - Leaving smoke and steam behind, the Delta II rocket with its Mars Exploration Rover (MER-A) payload lifts off the pad on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - Leaving smoke and steam behind, the Delta II rocket with its Mars Exploration Rover (MER-A) payload lifts off the pad on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  14. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower (right) and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower (right) and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  15. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the launch tower begins to roll back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for another launch attempt. The first two attempts were postponed due to weather concerns. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the launch tower begins to roll back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for another launch attempt. The first two attempts were postponed due to weather concerns. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  16. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are viewed as the launch tower overhead rolls back. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are viewed as the launch tower overhead rolls back. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  17. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  18. KENNEDY SPACE CENTER, FLA. - The Delta II rocket with its Mars Exploration Rover (MER-A) payload breaks forth from the smoke and steam into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - The Delta II rocket with its Mars Exploration Rover (MER-A) payload breaks forth from the smoke and steam into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25

  19. KENNEDY SPACE CENTER, FLA. - The Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload is viewed from under the launch tower as it moves away on Launch Complex 17-A, Cape Canaveral Air Force Station. This will be a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-09

    KENNEDY SPACE CENTER, FLA. - The Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload is viewed from under the launch tower as it moves away on Launch Complex 17-A, Cape Canaveral Air Force Station. This will be a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  20. KENNEDY SPACE CENTER, FLA. - The launch tower (right) on Launch Complex 17-A, Cape Canaveral Air Force Station, has been rolled back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload (left) in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-09

    KENNEDY SPACE CENTER, FLA. - The launch tower (right) on Launch Complex 17-A, Cape Canaveral Air Force Station, has been rolled back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload (left) in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  1. KENNEDY SPACE CENTER, FLA. - Amid billows of smoke and steam, the Delta II rocket with its Mars Exploration Rover (MER-A) payload lifts off the pad on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - Amid billows of smoke and steam, the Delta II rocket with its Mars Exploration Rover (MER-A) payload lifts off the pad on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  2. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload waits for rollback of the launch tower in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-09

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload waits for rollback of the launch tower in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  3. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the launch tower rolls back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for another launch attempt. The first two attempts, June 8 and June 9, were postponed due to weather concerns. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the launch tower rolls back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for another launch attempt. The first two attempts, June 8 and June 9, were postponed due to weather concerns. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  4. KENNEDY SPACE CENTER, FLA. - Blue sky and sun give a dramatic backdrop for the launch of the Delta II rocket with its Mars Exploration Rover (MER-A) payload. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - Blue sky and sun give a dramatic backdrop for the launch of the Delta II rocket with its Mars Exploration Rover (MER-A) payload. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  5. The Extended Mission Rover (EMR)

    NASA Technical Reports Server (NTRS)

    Shields, W.; Halecki, Anthony; Chung, Manh; Clarke, Ken; Frankle, Kevin; Kassemkhani, Fariba; Kuhlhoff, John; Lenzini, Josh; Lobdell, David; Morgan, Sam

    1992-01-01

    A key component in ensuring America's status as a leader in the global community is its active pursuit of space exploration. On the twentieth anniversary of Apollo 11, President George Bush challenged the nation to place a man on the moon permanently and to conduct human exploration of Mars in the 21st century. The students of the FAMU/FSU College of Engineering hope to make a significant contribution to this challenge, America's Space Exploration Initiative (SEI), with their participation in the NASA/USRA Advanced Design Program. The project selected by the 1991/1992 Aerospace Design group is the design of an Extended Mission Rover (EMR) for use on the lunar surface. This vehicle will serve as a mobile base to provide future astronauts with a 'shirt-sleeve' living and working environment. Some of the proposed missions are planetary surface exploration, construction and maintenance, hardware setup, and in situ resource experimentation. This vehicle will be put into use in the 2010-2030 time frame.

  6. A Mars Exploration Discovery Program

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Paige, D. A.

    2000-07-01

    The Mars Exploration Program should consider following the Discovery Program model. In the Discovery Program a team of scientists led by a PI develop the science goals of their mission, decide what payload achieves the necessary measurements most effectively, and then choose a spacecraft with the capabilities needed to carry the payload to the desired target body. The primary constraints associated with the Discovery missions are time and money. The proposer must convince reviewers that their mission has scientific merit and is feasible. Every Announcement of Opportunity has resulted in a collection of creative ideas that fit within advertised constraints. Following this model, a "Mars Discovery Program" would issue an Announcement of Opportunity for each launch opportunity with schedule constraints dictated by the launch window and fiscal constraints in accord with the program budget. All else would be left to the proposer to choose, based on the science the team wants to accomplish, consistent with the program theme of "Life, Climate and Resources". A proposer could propose a lander, an orbiter, a fleet of SCOUT vehicles or penetrators, an airplane, a balloon mission, a large rover, a small rover, etc. depending on what made the most sense for the science investigation and payload. As in the Discovery program, overall feasibility relative to cost, schedule and technology readiness would be evaluated and be part of the selection process.

  7. A Mars Exploration Discovery Program

    NASA Technical Reports Server (NTRS)

    Hansen, C. J.; Paige, D. A.

    2000-01-01

    The Mars Exploration Program should consider following the Discovery Program model. In the Discovery Program a team of scientists led by a PI develop the science goals of their mission, decide what payload achieves the necessary measurements most effectively, and then choose a spacecraft with the capabilities needed to carry the payload to the desired target body. The primary constraints associated with the Discovery missions are time and money. The proposer must convince reviewers that their mission has scientific merit and is feasible. Every Announcement of Opportunity has resulted in a collection of creative ideas that fit within advertised constraints. Following this model, a "Mars Discovery Program" would issue an Announcement of Opportunity for each launch opportunity with schedule constraints dictated by the launch window and fiscal constraints in accord with the program budget. All else would be left to the proposer to choose, based on the science the team wants to accomplish, consistent with the program theme of "Life, Climate and Resources". A proposer could propose a lander, an orbiter, a fleet of SCOUT vehicles or penetrators, an airplane, a balloon mission, a large rover, a small rover, etc. depending on what made the most sense for the science investigation and payload. As in the Discovery program, overall feasibility relative to cost, schedule and technology readiness would be evaluated and be part of the selection process.

  8. Scout Rover Applications for Forward Acquisition of Soil and Terrain Data

    NASA Astrophysics Data System (ADS)

    Sonsalla, R.; Ahmed, M.; Fritsche, M.; Akpo, J.; Voegele, T.

    2014-04-01

    As opposed to the present mars exploration missions future mission concepts ask for a fast and safe traverse through vast and varied expanses of terrain. As seen during the Mars Exploration Rover (MER) mission the rovers suffered a lack of detailed soil and terrain information which caused Spirit to get permanently stuck in soft soil. The goal of the FASTER1 EU-FP7 project is to improve the mission safety and the effective traverse speed for planetary rover exploration by determining the traversability of the terrain and lowering the risk to enter hazardous areas. To achieve these goals, a scout rover will be used for soil and terrain sensing ahead of the main rover. This paper describes a highly mobile, and versatile micro scout rover that is used for soil and terrain sensing and is able to co-operate with a primary rover as part of the FASTER approach. The general reference mission idea and concept is addressed within this paper along with top-level requirements derived from the proposed ESA/NASA Mars Sample Return mission (MSR) [4]. Following the mission concept and requirements [3], a concept study for scout rover design and operations has been performed [5]. Based on this study the baseline for the Coyote II rover was designed and built as shown in Figure 1. Coyote II is equipped with a novel locomotion concept, providing high all terrain mobility and allowing to perform side-to-side steering maneuvers which reduce the soil disturbance as compared to common skid steering [6]. The rover serves as test platform for various scout rover application tests ranging from locomotion testing to dual rover operations. From the lessons learned from Coyote II and for an enhanced design, a second generation rover (namely Coyote III) as shown in Figure 2 is being built. This rover serves as scout rover platform for the envisaged FASTER proof of concept field trials. The rover design is based on the test results gained by the Coyote II trials. Coyote III is equipped with two soil sensors,(1) the Wheel Leg Soil Interaction Observation (WLSIO) system, and (2) a Dynamic Plate (DP). These two soil sensors are designed by [2] and proposed to evaluate the trafficability of terrain in front of the primary rover. While the main body houses the WLSIO system, the DP sensor is mounted to the rover via an electro-mechanical interface (EMI) [7], providing a modular payload bay. Within the FASTER approach the scout rover will travel ahead of a primary exploration rover acting as 'remote' sensor platform. This requires a specialized software setup for the scout rover, allowing to safely follow a predefined path while conducting soil measurements. The general operational concept of the scout rover acting in a dual rover team is addressed while focusing on the scout rover software implementation to allow autonomous traversal. A set of integration tests for dual rover operations is planned using the Coyote II and/or Coyote III platforms. Furthermore, it is intended to perform proof of concept field trials with Coyote III as scout rover and the ExoMars breadboard BRIDGET [1] as primary rover. Along with the test results from interface integration testing, the first test results of dual rover field operation may be presented.

  9. Mars Exploration Rover Surface Operations

    NASA Astrophysics Data System (ADS)

    Erickson, J. K.; Adler, M.; Crisp, J.; Mishkin, A.; Welch, R.

    2002-01-01

    The Mars Exploration Rover Project is an ambitious mission to land two highly capable rovers on Mars and concurrently explore the Martian surface for three months each. Launching in 2003, surface operations will commence on January 4, 2004 with the first landing, followed by the second landing on January 25. The prime mission for the second rover will end on April 27, 2004. The science objectives of exploring multiple locations within each of two widely separated and scientifically distinct landing sites will be accomplished along with the demonstration of key surface exploration technologies for future missions. This paper will provide an overview of the planned mission, and also focus on the different operations challenges inherent in operating these two very off road vehicles, and the solutions adopted to enable the best utilization of their capabilities for high science return and responsiveness to scientific discovery.

  10. She's an Engineer

    NASA Image and Video Library

    2016-11-05

    Junior Girl Scouts from two locals conceils, Girl Scouts of Central Maryland and Girl Scouts of Nations Capital, participated in She's an Engineer! Girl Scout program on November 3, 2016. They met with female NASA engineers and tested rover models in simulated I&T stations to explore the Engineering Design process.

  11. Compact high-speed scanning lidar system

    NASA Astrophysics Data System (ADS)

    Dickinson, Cameron; Hussein, Marwan; Tripp, Jeff; Nimelman, Manny; Koujelev, Alexander

    2012-06-01

    The compact High Speed Scanning Lidar (HSSL) was designed to meet the requirements for a rover GN&C sensor. The eye-safe HSSL's fast scanning speed, low volume and low power, make it the ideal choice for a variety of real-time and non-real-time applications including: 3D Mapping; Vehicle guidance and Navigation; Obstacle Detection; Orbiter Rendezvous; Spacecraft Landing / Hazard Avoidance. The HSSL comprises two main hardware units: Sensor Head and Control Unit. In a rover application, the Sensor Head mounts on the top of the rover while the Control Unit can be mounted on the rover deck or within its avionics bay. An Operator Computer is used to command the lidar and immediately display the acquired scan data. The innovative lidar design concept was a result of an extensive trade study conducted during the initial phase of an exploration rover program. The lidar utilizes an innovative scanner coupled with a compact fiber laser and high-speed timing electronics. Compared to existing compact lidar systems, distinguishing features of the HSSL include its high accuracy, high resolution, high refresh rate and large field of view. Other benefits of this design include the capability to quickly configure scan settings to fit various operational modes.

  12. Robot Science Autonomy in the Atacama Desert and Beyond

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Wettergreen, David S.

    2013-01-01

    Science-guided autonomy augments rovers with reasoning to make observations and take actions related to the objectives of scientific exploration. When rovers can directly interpret instrument measurements then scientific goals can inform and adapt ongoing navigation decisions. These autonomous explorers will make better scientific observations and collect massive, accurate datasets. In current astrobiology studies in the Atacama Desert we are applying algorithms for science autonomy to choose effective observations and measurements. Rovers are able to decide when and where to take follow-up actions that deepen scientific understanding. These techniques apply to planetary rovers, which we can illustrate with algorithms now used by Mars rovers and by discussing future missions.

  13. MEP (Mars Environment Package): toward a package for studying environmental conditions at the surface of Mars from future lander/rover missions.

    PubMed

    Chassefière, E; Bertaux, J-L; Berthelier, J-J; Cabane, M; Ciarletti, V; Durry, G; Forget, F; Hamelin, M; Leblanc, F; Menvielle, M; Gerasimov, M; Korablev, O; Linkin, S; Managadze, G; Jambon, A; Manhès, G; Lognonné, Ph; Agrinier, P; Cartigny, P; Giardini, D; Pike, T; Kofman, W; Herique, A; Coll, P; Person, A; Costard, F; Sarda, Ph; Paillou, Ph; Chaussidon, M; Marty, B; Robert, F; Maurice, S; Blanc, M; d'Uston, C; Sabroux, J-Ch; Pineau, J-F; Rochette, P

    2004-01-01

    In view to prepare Mars human exploration, it is necessary to promote and lead, at the international level, a highly interdisciplinary program, involving specialists of geochemistry, geophysics, atmospheric science, space weather, and biology. The goal of this program will be to elaborate concepts of individual instruments, then of integrated instrumental packages, able to collect exhaustive data sets of environmental parameters from future landers and rovers of Mars, and to favour the conditions of their implementation. Such a program is one of the most urgent need for preparing human exploration, in order to develop mitigation strategies aimed at ensuring the safety of human explorers, and minimizing risk for surface operations. A few main areas of investigation may be listed: particle and radiation environment, chemical composition of atmosphere, meteorology, chemical composition of dust, surface and subsurface material, water in the subsurface, physical properties of the soil, search for an hypothesized microbial activity, characterization of radio-electric properties of the Martian ionosphere. Scientists at the origin of the present paper, already involved at a high degree of responsibility in several Mars missions, and actively preparing in situ instrumentation for future landed platforms (Netlander--now cancelled, MSL-09), express their readiness to participate in both ESA/AURORA and NASA programs of Mars human exploration. They think that the formation of a Mars Environment working group at ESA, in the course of the AURORA definition phase, could act positively in favour of the program, by increasing its scientific cross-section and making it still more focused on human exploration. c2004 Published by Elsevier Ltd on behalf of COSPAR.

  14. Driving on the surface of Mars with the rover sequencing and visualization program

    NASA Technical Reports Server (NTRS)

    Wright, J.; Hartman, F.; Cooper, B.; Maxwell, S.; Yen, J.; Morrison, J.

    2005-01-01

    Operating a rover on Mars is not possible using teleoperations due to the distance involved and the bandwith limitations. To operate these rovers requires sophisticated tools to make operators knowledgeable of the terrain, hazards, features of interest, and rover state and limitations, and to support building command sequences and rehearsing expected operations. This paper discusses how the Rover Sequencing and Visualization program and a small set of associated tools support this requirement.

  15. Concept for a radioisotope powered dual mode lunar rover

    NASA Technical Reports Server (NTRS)

    Elliott, John O.; Schriener, Timothy M.; Coste, Keith

    2006-01-01

    Over three decades ago, the Apollo missions manifestly demonstrated the value of a lunar rover to expand the exploration activities of lunar astronauts. The stated plan of the new Vision for Space Exploration to establish a permanent presence on the moon in the next decades gives new impetus to providing long range roving and exploration capability in support of the siting, construction, and maintenance of future human bases. The incorporation of radioisotope power systems and telerobotic capability in the design has the potential to significantly expand the capability of such a rover, allowing continuous operation during the full lunar day/night cycle, as well as enabling exploration in permanently shadowed regions that may be of interest to humans for the resources they may hold. This paper describes a concept that builds on earlier studies originated in the Apollo program for a Dual Mode (crewed and telerobotic) Lunar Roving Vehicle (DMLRV). The goal of this vehicle would be to provide a multipurpose infrastructure element and remote science platform for the exploration of the moon. The DMLRV would be essential for extending the productivity of human exploration crews, and would provide a unique capability for diverse long-range, long-duration science exploration between human visits. With minimal reconfiguration this vehicle could also provide the basic platform to support a range of site survey and preparation activities in anticipation of the establishment of a permanent human presence on the moon. A conceptual design is presented for the DMLRV, including discussion of mission architecture, vehicle performance, representative science payload accommodation, and equipment and crew radiation considerations.

  16. Concept for a Radioisotope Powered Dual Mode Lunar Rover

    NASA Astrophysics Data System (ADS)

    Elliott, John O.; Schriener, Timothy M.; Coste, Keith

    2006-01-01

    Over three decades ago, the Apollo missions manifestly demonstrated the value of a lunar rover to expand the exploration activities of lunar astronauts. The stated plan of the new Vision for Space Exploration to establish a permanent presence on the moon in the next decades gives new impetus to providing long range roving and exploration capability in support of the siting, construction, and maintenance of future human bases. The incorporation of radioisotope power systems and telerobotic capability in the design has the potential to significantly expand the capability of such a rover, allowing continuous operation during the full lunar day/night cycle, as well as enabling exploration in permanently shadowed regions that may be of interest to humans for the resources they may hold. This paper describes a concept that builds on earlier studies originated in the Apollo program for a Dual Mode (crewed and telerobotic) Lunar Roving Vehicle (DMLRV). The goal of this vehicle would be to provide a multipurpose infrastructure element and remote science platform for the exploration of the moon. The DMLRV would be essential for extending the productivity of human exploration crews, and would provide a unique capability for diverse long-range, long-duration science exploration between human visits. With minimal reconfiguration this vehicle could also provide the basic platform to support a range of site survey and preparation activities in anticipation of the establishment of a permanent human presence on the moon. A conceptual design is presented for the DMLRV, including discussion of mission architecture, vehicle performance, representative science payload accommodation, and equipment and crew radiation considerations.

  17. KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 2 (MER-2) undergoes a weight and center of gravity determination in the Payload Hazardous Servicing Facility. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. Launch of MER-2 is scheduled for June 5 from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-09

    KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 2 (MER-2) undergoes a weight and center of gravity determination in the Payload Hazardous Servicing Facility. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. Launch of MER-2 is scheduled for June 5 from Cape Canaveral Air Force Station.

  18. KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility prepare the Mars Exploration Rover 2 (MER-2) for a weight and center of gravity determination. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. Launch of MER-2 is scheduled for June 5 from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-09

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility prepare the Mars Exploration Rover 2 (MER-2) for a weight and center of gravity determination. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. Launch of MER-2 is scheduled for June 5 from Cape Canaveral Air Force Station.

  19. KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility are preparing to determine weight and center of gravity for the Mars Exploration Rover 2 (MER-2). NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. Launch of MER-2 is scheduled for June 5 from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-09

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility are preparing to determine weight and center of gravity for the Mars Exploration Rover 2 (MER-2). NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. Launch of MER-2 is scheduled for June 5 from Cape Canaveral Air Force Station.

  20. KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers prepare to mate the Mars Exploration Rover-2 (MER-2) to the third stage of a Delta II rocket for launch on June 5. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-23

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers prepare to mate the Mars Exploration Rover-2 (MER-2) to the third stage of a Delta II rocket for launch on June 5. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-1 (MER-B) will launch June 25.

  1. KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover 2 (MER-2) is moved to a spin table. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. The MER-2 is scheduled to launch June 5 from Launch Pad 17-A, Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-19

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover 2 (MER-2) is moved to a spin table. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. The MER-2 is scheduled to launch June 5 from Launch Pad 17-A, Cape Canaveral Air Force Station.

  2. KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers mate the Mars Exploration Rover-2 (MER-2) to the third stage of a Delta II rocket for launch on June 5. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-23

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers mate the Mars Exploration Rover-2 (MER-2) to the third stage of a Delta II rocket for launch on June 5. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-1 (MER-B) will launch June 25.

  3. Multiple-Agent Air/Ground Autonomous Exploration Systems

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang; Chao, Tien-Hsin; Tarbell, Mark; Dohm, James M.

    2007-01-01

    Autonomous systems of multiple-agent air/ground robotic units for exploration of the surfaces of remote planets are undergoing development. Modified versions of these systems could be used on Earth to perform tasks in environments dangerous or inaccessible to humans: examples of tasks could include scientific exploration of remote regions of Antarctica, removal of land mines, cleanup of hazardous chemicals, and military reconnaissance. A basic system according to this concept (see figure) would include a unit, suspended by a balloon or a blimp, that would be in radio communication with multiple robotic ground vehicles (rovers) equipped with video cameras and possibly other sensors for scientific exploration. The airborne unit would be free-floating, controlled by thrusters, or tethered either to one of the rovers or to a stationary object in or on the ground. Each rover would contain a semi-autonomous control system for maneuvering and would function under the supervision of a control system in the airborne unit. The rover maneuvering control system would utilize imagery from the onboard camera to navigate around obstacles. Avoidance of obstacles would also be aided by readout from an onboard (e.g., ultrasonic) sensor. Together, the rover and airborne control systems would constitute an overarching closed-loop control system to coordinate scientific exploration by the rovers.

  4. A Capable and Temporary Test Facility on a Shoestring Budget: The MSL Touchdown Test Facility

    NASA Technical Reports Server (NTRS)

    White, Christopher V.; Frankovich, John K.; Yates, Philip; Wells, George, Jr.; Robert, Losey

    2008-01-01

    The Mars Science Laboratory mission (MSL) has undertaken a developmental Touchdown Test Program that utilizes a full-scale rover vehicle and an overhead winch system to replicate the skycrane landing event. Landing surfaces consisting of flat and sloped granular media, planar, rigid surfaces, and various combinations of rocks and slopes were studied. Information gathered from these tests was vital for validating the rover analytical model, validating certain design or system behavior assumptions, and for exploring events and phenomenon that are either very difficult or too costly to model in a credible way. This paper describes this test program, with a focus on the creation of test facility, daily test operations, and some of the challenges faced and lessons learned along the way.

  5. VIPER: Virtual Intelligent Planetary Exploration Rover

    NASA Technical Reports Server (NTRS)

    Edwards, Laurence; Flueckiger, Lorenzo; Nguyen, Laurent; Washington, Richard

    2001-01-01

    Simulation and visualization of rover behavior are critical capabilities for scientists and rover operators to construct, test, and validate plans for commanding a remote rover. The VIPER system links these capabilities. using a high-fidelity virtual-reality (VR) environment. a kinematically accurate simulator, and a flexible plan executive to allow users to simulate and visualize possible execution outcomes of a plan under development. This work is part of a larger vision of a science-centered rover control environment, where a scientist may inspect and explore the environment via VR tools, specify science goals, and visualize the expected and actual behavior of the remote rover. The VIPER system is constructed from three generic systems, linked together via a minimal amount of customization into the integrated system. The complete system points out the power of combining plan execution, simulation, and visualization for envisioning rover behavior; it also demonstrates the utility of developing generic technologies. which can be combined in novel and useful ways.

  6. Airbag Seams Leave Trails

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity's panoramic camera shows where the rover's airbag seams left impressions in the martian soil. The drag marks were made after the rover successfully landed at Meridiani Planum and its airbags were retracted. The rover can be seen in the foreground.

  7. Airbag Impressions in Soil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity's panoramic camera shows where the rover's airbags left impressions in the martian soil. The drag marks were made after the rover successfully landed at Meridiani Planum and its airbags were retracted. The rover can be seen in the foreground.

  8. Bringing Terramechanics to bear on Planetary Rover Design

    NASA Astrophysics Data System (ADS)

    Richter, L.

    2007-08-01

    Thus far, planetary rovers have been successfully operated on the Earth's moon and on Mars. In particular, the two NASA Mars Exploration Rovers (MERs) ,Spirit' and ,Opportunity' are still in sustained daily operations at two sites on Mars more than 3 years after landing there. Currently, several new planetary rover missions are in development targeting Mars (the US Mars Science Lab vehicle for launch in 2009 and ESA's ExoMars rover for launch in 2013), with lunar rover missions under study by China and Japan for launches around 2012. Moreover, the US Constellation program is preparing pre-development of lunar rovers for initially unmanned and, subsequently, human missions to the Moon with a corresponding team dedicated to mobility system development having been set up at the NASA Glenn Research Center. Given this dynamic environment, it was found timely to establish an expert group on off-the-road mobility as relevant for robotic vehicles that would involve individuals representing the various on-going efforts on the different continents. This was realized through the International Society of Terrain-Vehicle Systems (ISTVS), a research organisation devoted to terramechanics and to the ,science' of off-the-road vehicle development which as a result is just now establishing a Technical Group on Terrestrial and Planetary Rovers. Members represent space-related as well as military research institutes and universities from the US, Germany, Italy, and Japan. The group's charter for 2007 is to define its objectives, functions, organizational structure and recommended research objectives to support planetary rover design and development. Expected areas of activity of the ISTVS-sponsored group include: the problem of terrain specification for planetary rovers; identification of limitations in modelling of rover mobility; a survey of existing rover mobility testbeds; the consolidation of mobility predictive models and their state of validation; sensing and real-time processing issues; improvements in modelling of vehicle slippage and traction; study of methods to achieve rover design robustness. This paper will present the charter of the ISTVS Rovers Technical Group and its upcoming activities and therefore will be of a programmatic nature.

  9. Optomechanical Design of Ten Modular Cameras for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Ford, Virginia G.; Karlmann, Paul; Hagerott, Ed; Scherr, Larry

    2003-01-01

    This viewgraph presentation reviews the design and fabrication of the modular cameras for the Mars Exploration Rovers. In the 2003 mission there were to be 2 landers and 2 rovers, each were to have 10 cameras each. Views of the camera design, the lens design, the lens interface with the detector assembly, the detector assembly, the electronics assembly are shown.

  10. Mars Exploration Rover: Launch, Cruise, Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Erickson, James K.; Manning, Robert M.; Adler, M.

    2004-01-01

    The Mars Exploration Rover Project was an ambitious effort to land two highly capable rovers on Mars and concurrently explore the Martian surface for three months each. Launched in June and July of 2003, cruise operations were conducted through January 4, 2004 with the first landing, followed by the second landing on January 25. The prime mission for the second rover ended on April 27, 2004. This paper will provide an overview of the launch, cruise, and landing phases of the mission, including the engineering and science objectives and challenges involved in the selection and targeting of the landing sites, as well as the excitement and challenges of atmospheric entry, descent and landing execution.

  11. Proceedings of the 2nd Annual Conference on NASA/University Advanced Space Design Program

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Topics discussed include: lunar transportation system, Mars rover, lunar fiberglass production, geosynchronous space stations, regenerative system for growing plants, lunar mining devices, lunar oxygen transporation system, mobile remote manipulator system, Mars exploration, launch/landing facility for a lunar base, and multi-megawatt nuclear power system.

  12. Onboard planning for geological investigations using a rover team

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Gaines, Daniel; Fisher, Forest; Castano, Rebecca

    2004-01-01

    This paper describes an integrated system for coordinating multiple rover behavior with the overall goal of collecting planetary surface data. The Multi-Rover Integrated Science Understanding System (MISUS) combines techniques from planning and scheduling with machine learning to perform autonomous scientific exploration with cooperating rovers.

  13. Students Compete in NASA's Human Exploration Rover Challenge

    NASA Image and Video Library

    2018-04-03

    NASA's Human Exploration Rover Challenge invites high school and college teams to design, build and test human-powered roving vehicles inspired by the Apollo lunar missions and future exploration missions to the Moon, Mars and beyond. The nearly three-quarter-mile course boasts grueling obstacles that simulate terrain found throughout the solar system. Hosted by NASA’s Marshall Space Flight Center in Huntsville, Alabama, and the U.S. Space & Rocket Center, Rover Challenge is managed by Marshall's Academic Affairs Office.

  14. Low Cost Mars Surface Exploration: The Mars Tumbleweed

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Calhoun, Philip; Flick, John; Hajos, Gregory; Kolacinski, Richard; Minton, David; Owens, Rachel; Parker, Jennifer

    2003-01-01

    The "Mars Tumbleweed," a rover concept that would utilize surface winds for mobility, is being examined as a low cost complement to the current Mars exploration efforts. Tumbleweeds carrying microinstruments would be driven across the Martian landscape by wind, searching for areas of scientific interest. These rovers, relatively simple, inexpensive, and deployed in large numbers to maximize coverage of the Martian surface, would provide a broad scouting capability to identify specific sites for exploration by more complex rover and lander missions.

  15. The Little Rover that Could

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken at NASA's Jet Propulsion Laboratory shows a rover test drive up a manmade slope. The slope simulates one that the Mars Exploration Rover Opportunity will face on Mars if it is sent commands to explore rock outcrop that lies farther into 'Endurance Crater.' Using sand, dirt and rocks, scientists and engineers at JPL constructed the overall platform of the slope at a 25-degree angle, with a 40-degree step in the middle. The test rover successfully descended and climbed the platform, adding confidence that Opportunity could cross a similar hurdle in Endurance Crater.

  16. Novelty Detection in and Between Different Modalities

    NASA Astrophysics Data System (ADS)

    Veflingstad, Henning; Yildirim, Sule

    2008-01-01

    Our general aim is to reflect the advances in artificial intelligence and cognitive science fields to space exploration studies such that next generation space rovers can benefit from these advances. We believe next generation space rovers can benefit from the studies related to employing conceptual representations in generating structured thought. This way, rovers need not be equipped with all necessary steps of an action plan to execute in space exploration but they can autonomously form representations of their world and reason on them to make intelligent decision. As part of this approach, autonomous novelty detection is an important feature of next generation space rovers. This feature allows a rover to make further decisions about exploring a rock sample more closely or not and on its own. This way, a rover will use less of its time for communication between the earth and itself and more of its time for achieving its assigned tasks in space. In this paper, we propose an artificial neural network based novelty detection mechanism that next generation space rovers can employ as part of their intelligence. We also present an implementation of such a mechanism and present its reliability in detecting novelty.

  17. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, right, is shown the Mars 2020 spacecraft descent stage from inside the Spacecraft Assembly Facility (SAF) by JPL Director Michael Watkins, left, and NASA Mars Exploration Manager Li Fuk at NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Mars 2020 is a Mars rover mission by NASA's Mars Exploration Program with a planned launch in 2020. Photo Credit: (NASA/Bill Ingalls)

  18. Dust Spectra from Above and Below

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Spectra of martian dust taken by the Mars Exploration Rover Spirit's mini-thermal emission spectrometer are compared to that of the orbital Mars Global Surveyor's thermal emission spectrometer. The graph shows that the two instruments are in excellent agreement.

    Rover Senses Carbon Dioxide [figure removed for brevity, see original site] Click on image for larger view

    This graph, consisting of data acquired on Mars from the Mars Exploration Rover Spirit's mini-thermal emission spectrometer, shows the light, or spectral, signature of carbon dioxide. Carbon dioxide makes up the bulk of the thin martian atmosphere.

    Rover Senses Silicates [figure removed for brevity, see original site] Click on image for larger view

    This graph, consisting of data acquired on Mars by the Mars Exploration Rover Spirit's mini-thermal emission spectrometer, shows the light, or spectral, signature of silicates - a group of minerals that form the majority of Earth's crust. Minerals called feldspars and zeolites are likely candidates responsible for this feature.

    Rover Senses Bound Water [figure removed for brevity, see original site] Click on image for larger view

    This graph, consisting of data acquired on Mars from the Mars Exploration Rover Spirit's mini-thermal emission spectrometer, shows the light, or spectral, signature of an as-of-yet unidentified mineral that contains bound water in its crystal structure. Minerals such as gypsum and zeolites are possible candidates.

    Rover Senses Carbonates [figure removed for brevity, see original site] Click on image for larger view

    This graph, consisting of data from the Mars Exploration Rover Spirit's mini-thermal emission spectrometer, shows the light, or spectral, signatures of carbonates - minerals common to Earth that form only in water. The detection of trace amounts of carbonates on Mars may be due to an interaction between the water vapor in the atmosphere and minerals on the surface.

  19. In Situ Resource Utilization For Mobility In Mars Exploration

    NASA Astrophysics Data System (ADS)

    Hartman, Leo

    There has been considerable interest in the unmanned exploration of Mars for quite some time but the current generation of rovers can explore only a small portion of the total planetary surface. One approach to addressing this deficiency is to consider a rover that has greater range and that is cheaper so that it can be deployed in greater numbers. The option explored in this paper uses the wind to propel a rover platform, trading off precise navigation for greater range. The capabilities of such a rover lie between the global perspective of orbiting satellites and the detailed local analysis of current-generation rovers. In particular, the design includes two inflatable wheels with an unspun payload platform suspended between then. Slightly deflating one of the wheels enables steering away from the direction of the wind and sufficiently deflating both wheels will allow the rover to stop. Current activities revolve around the development of a prototype with a wheel cross-sectional area that is scaled by 1/100 to enable terrestrial trials to provide meaningful insight into the performance and behavior of a full-sized rover on Mars. The paper will discuss the design and its capabilities in more detail as well as current efforts to build a prototype suitable for deployment at a Mars analogue site such as Devon Island in the Canadian arctic.

  20. KSC-03pd1219

    NASA Image and Video Library

    2003-04-23

    KENNEDY SPACE CENTER, FLA. - On Pad 17-A, Cape Canaveral Air Force Station, the first stage of the Delta II rocket is lifted up the launch tower. The Delta will launch the Mars Exploration Rover (MER-A) vehicle. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.

  1. KSC-03pd1215

    NASA Image and Video Library

    2003-04-23

    KENNEDY SPACE CENTER, FLA. - On Pad 17-A, Cape Canaveral Air Force Station, the first stage of the Delta II rocket is nearly vertical in the launch tower. The Delta will launch the Mars Exploration Rover (MER-A) vehicle. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.

  2. KSC-03pd1220

    NASA Image and Video Library

    2003-04-23

    KENNEDY SPACE CENTER, FLA. - On Pad 17-A, Cape Canaveral Air Force Station, the first stage of the Delta II rocket is lifted up the launch tower. The Delta will launch the Mars Exploration Rover (MER-A) vehicle. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.

  3. KSC-03pd1213

    NASA Image and Video Library

    2003-04-23

    KENNEDY SPACE CENTER, FLA. - On Pad 17-A, Cape Canaveral Air Force Station, the first stage of the Delta II rocket is lifted to vertical at the launch tower. The Delta will launch the Mars Exploration Rover (MER-A) vehicle. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.

  4. The Challenges of Designing the Rocker-Bogie Suspension for the Mars Exploration Rover

    NASA Technical Reports Server (NTRS)

    Harrington, Brian D.; Voorhees, Chris

    2004-01-01

    Over the past decade, the rocker-bogie suspension design has become a proven mobility application known for its superior vehicle stability and obstacle-climbing capability. Following several technology and research rover implementations, the system was successfully flown as part of Mars Pathfinder s Sojourner rover. When the Mars Exploration Rover (MER) Project was first proposed, the use of a rocker-bogie suspension was the obvious choice due to its extensive heritage. The challenge posed by MER was to design a lightweight rocker-bogie suspension that would permit the mobility to stow within the limited space available and deploy into a configuration that the rover could then safely use to egress from the lander and explore the Martian surface. This paper will describe how the MER rocker-bogie suspension subsystem was able to meet these conflicting design requirements while highlighting the variety of deployment and latch mechanisms employed in the design.

  5. KSC-03pd0515

    NASA Image and Video Library

    2003-02-19

    KENNEDY SPACE CENTER, FLA. -- In a demonstration of the agility of the Mars Exploration Rover, a model of the Rover rolls over the prone bodies of two volunteer students during NASA's Family & Community Mars Exploration Day held in Cape Canaveral, Fla. The event informed students and the general public about Florida's key role as NASA's "Gateway to Mars" and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.

  6. KSC-03PD-0515

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- In a demonstration of the agility of the Mars Exploration Rover, a model of the Rover rolls over the prone bodies of two volunteer students during NASA's Family & Community Mars Exploration Day held in Cape Canaveral, Fla. The event informed students and the general public about Florida's key role as NASA's 'Gateway to Mars' and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.

  7. Pathfinder Lander Rover Recharge System, and MARCO POLO Controls and ACME Regolith Feed System Controls and Integration

    NASA Technical Reports Server (NTRS)

    Tran, Sarah Diem

    2015-01-01

    This project stems from the Exploration, Research, and Technology Directorate (UB) Projects Division, and one of their main initiatives is the "Journey to Mars". Landing on the surface of Mars which is millions of miles away is an incredibly large challenge. The terrain is covered in boulders, deep canyons, volcanic mountains, and spotted with sand dunes. The robotic lander is a kind of spacecraft with multiple purposes. One purpose is to be the protective shell for the Martian rover and absorb the impact from the landing forces; another purpose is to be a place where the rovers can come back to, actively communicate with, and recharge their batteries from. Rovers have been instrumental to the Journey to Mars initiative. They have been performing key research on the terrain of the red planet, trying to unlock the mysteries of the land for over a decade. The rovers that will need charging will not all have the same kind of internal battery either. RASSOR batteries may differ from the PbAC batteries inside Red Rover's chassis. NASA has invested heavily in the exploration of the surface of Mars. A driving force behind further exploration is the need for a more efficient operation of Martian rovers. One way is to reduce the weight as much as possible to reduce power consumption given the same mission parameters. In order to reduce the mass of the rovers, power generation, communication, and sample analysis systems currently onboard Martian rovers can be moved to a stationary lander deck. Positioning these systems from the rover to the Lander deck allows a taskforce of smaller, lighter rovers to perform the same tasks currently performed by or planned for larger rovers. A major task in transferring these systems to a stationary lander deck is ensuring that power can be transferred to the rovers.

  8. Amorphous Rover

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A.

    2010-01-01

    A proposed mobile robot, denoted the amorphous rover, would vary its own size and shape in order to traverse terrain by means of rolling and/or slithering action. The amorphous rover was conceived as a robust, lightweight alternative to the wheeled rover-class robotic vehicle heretofore used in exploration of Mars. Unlike a wheeled rover, the amorphous rover would not have a predefined front, back, top, bottom, or sides. Hence, maneuvering of the amorphous rover would be more robust: the amorphous rover would not be vulnerable to overturning, could move backward or sideways as well as forward, and could even narrow itself to squeeze through small openings.

  9. Robotic vehicles for planetary exploration

    NASA Astrophysics Data System (ADS)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  10. Robotic vehicles for planetary exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian; Matthies, Larry; Gennery, Donald; Cooper, Brian; Nguyen, Tam; Litwin, Todd; Mishkin, Andrew; Stone, Henry

    1992-01-01

    A program to develop planetary rover technology is underway at the Jet Propulsion Laboratory (JPL) under sponsorship of the National Aeronautics and Space Administration. Developmental systems with the necessary sensing, computing, power, and mobility resources to demonstrate realistic forms of control for various missions have been developed, and initial testing has been completed. These testbed systems and the associated navigation techniques used are described. Particular emphasis is placed on three technologies: Computer-Aided Remote Driving (CARD), Semiautonomous Navigation (SAN), and behavior control. It is concluded that, through the development and evaluation of such technologies, research at JPL has expanded the set of viable planetary rover mission possibilities beyond the limits of remotely teleoperated systems such as Lunakhod. These are potentially applicable to exploration of all the solid planetary surfaces in the solar system, including Mars, Venus, and the moons of the gas giant planets.

  11. Robot Swarms

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2005-01-01

    Engineers and interns at this NASA field center are building the prototype of a robotic rover that could go where no wheeled rover has gone before-into the dark cold craters at the lunar poles and across the Moon s rugged highlands-like a walking tetrahedron. With NASA pushing to meet President Bush's new exploration objectives, the robots taking shape here today could be on the Moon in a decade. In the longer term, the concept could lead to shape-shifting robot swarms designed to explore distant planetary surfaces in advance of humans. "If you look at all of NASA s projections of the future, anyone s projections of the space program, they re all rigid-body architecture," says Steven Curtis, principal investigator on the effort. "This is not rigid-body. The whole key here is flexibility and reconfigurability with a capital R."

  12. Extended mission/lunar rover, executive summary

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The design project selected to be undertaken by the 1991/92 Aerospace Design Group was that of conceptually designing an Extended Mission Rover for use on the Lunar Surface. This vehicle would serve the function as a mobile base of sorts, and be able to provide future astronauts with a mobile 'shirt-sleeve' self-sufficient living and working environment. Some of the proposed missions would be planetary surface exploration, construction and maintenance, hardware set-up and in-situ resource experimentation. The need for this type of vehicle has already been declared in the Stafford Group's report on the future of America's Space Program, entitled 'America at the Threshold: America's Space Exploration Initiative'. In the four architectures described within the report, the concept of a pressurized vehicle occurred multiple times. The approximate time frame that this vehicle would be put into use is 2010-2030.

  13. KENNEDY SPACE CENTER, FLA. - On Mars Exploration Rover 1 (MER-1) , air bags are installed on the lander. The airbags will inflate to cushion the landing of the spacecraft on the surface of Mars. When it stops bouncing and rolling, the airbags will deflate and retract, the petals will open to bring the lander to an upright position, and the rover will be exposed. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-10

    KENNEDY SPACE CENTER, FLA. - On Mars Exploration Rover 1 (MER-1) , air bags are installed on the lander. The airbags will inflate to cushion the landing of the spacecraft on the surface of Mars. When it stops bouncing and rolling, the airbags will deflate and retract, the petals will open to bring the lander to an upright position, and the rover will be exposed. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  14. KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 1 (MER-1) is seen after installation of the air bags on the outside of the lander. The airbags will inflate to cushion the landing of the spacecraft on the surface of Mars. When it stops bouncing and rolling, the airbags will deflate and retract, the petals will open to bring the lander to an upright position, and the rover will be exposed. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-10

    KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 1 (MER-1) is seen after installation of the air bags on the outside of the lander. The airbags will inflate to cushion the landing of the spacecraft on the surface of Mars. When it stops bouncing and rolling, the airbags will deflate and retract, the petals will open to bring the lander to an upright position, and the rover will be exposed. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  15. NASA/ASEE Summer Faculty Fellowship Program, 1990, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1990-01-01

    The 1990 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston-University Park and Johnson Space Centers (JSC). A compilation of the final reports on the research projects is presented. The following topics are covered: the Space Shuttle; the Space Station; lunar exploration; mars exploration; spacecraft power supplies; mars rover vehicle; mission planning for the Space Exploration Initiative; instrument calibration standards; a lunar oxygen production plant; optical filters for a hybrid vision system; dynamic structural analysis; lunar bases; pharmacodynamics of scopolamine; planetary spacecraft cost modeling; and others.

  16. Overview of the Mars Exploration Rover Mission

    NASA Astrophysics Data System (ADS)

    Adler, M.

    2002-12-01

    The Mars Exploration Rover (MER) Project is an ambitious mission to land two highly capable rovers at different sites in the equatorial region of Mars. The two vehicles are launched separately in May through July of 2003. Mars surface operations begin on January 4, 2004 with the first landing, followed by the second landing three weeks later on January 25. The useful surface lifetime of each rover will be at least 90 sols. The science objectives of exploring multiple locations within each of two widely separated and scientifically distinct landing sites will be accomplished along with the demonstration of key surface exploration technologies for future missions. The two MER spacecraft are planned to be identical. The rovers are landed using the Mars Pathfinder approach of a heatshield and parachute to slow the vehicle relative to the atmosphere, solid rockets to slow the lander near the surface, and airbags to cushion the surface impacts. During entry, descent, and landing, the vehicles will transmit coded tones directly to Earth, and in the terminal descent phase will also transmit telemetry to the MGS orbiter to indicate progress through the critical events. Once the lander rolls to a stop, a tetrahedral structure opens to right the lander and to reveal the folded rover, which then deploys and later by command will roll off of the lander to begin its exploration. Each six-wheeled rover carries a suite of instruments to collect contextual information about the landing site using visible and thermal infrared remote sensing, and to collect in situ information on the composition, mineralogy, and texture of selected Martian soils and rocks using an arm-mounted microscopic imager, rock abrasion tool, and spectrometers. During their surface missions, the rovers will communicate with Earth directly through the Deep Space Network as well as indirectly through the Odyssey and MGS orbiters. The solar-powered rovers will be commanded in the morning of each Sol, with the results returned in the afternoon of that Sol guiding the plans for the following Sol. Between the command sessions, the rover will autonomously execute the requested activities, including as an example traverses of tens of meters using autonomous navigation and hazard avoidance.

  17. Micro-technology for planetary exploration and education

    NASA Technical Reports Server (NTRS)

    Miller, David P.; Varsi, Giulio

    1991-01-01

    The use of combined miniaturization technology and distributed information systems in planetary exploration is discussed. Missions in which teams of microrovers collect samples from planetary surfaces are addressed, emphasizing the ability of rovers to provide coverage of large areas, reliability through redundancy, and participation of a large group of investigators. The latter could involve people from a variety of institutions, increasing the opportunity for wide education and the increased interest of society in general in space exploration. A three-phase program to develop the present approach is suggested.

  18. KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B, Cape Canaveral Air Force Station, the Mars Exploration Rover 1 (MER-B) is moved toward the opening above the Delta rocket. The rover will then be mated with the rocket for launch. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

    NASA Image and Video Library

    2003-06-17

    KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B, Cape Canaveral Air Force Station, the Mars Exploration Rover 1 (MER-B) is moved toward the opening above the Delta rocket. The rover will then be mated with the rocket for launch. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

  19. KENNEDY SPACE CENTER, FLA. - In the foreground, three solid rocket boosters (SRBs) suspended in the launch tower flank the Delta II rocket (in the background) that will launch Mars Exploration Rover 2 (MER-2). NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - In the foreground, three solid rocket boosters (SRBs) suspended in the launch tower flank the Delta II rocket (in the background) that will launch Mars Exploration Rover 2 (MER-2). NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  20. KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility prepare to lift and move the backshell that will cover the Mars Exploration Rover 1 (MER-1) and its lander. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-10

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility prepare to lift and move the backshell that will cover the Mars Exploration Rover 1 (MER-1) and its lander. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  1. KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis is introduced to the media at a press conference. The Siberian-born Arizona resident wrote the winning entry in the Name the Rovers Contest sponsored by NASA and the Lego Co., a Denmark-based toymaker, with collaboration from the Planetary Society, Pasadena, Calif. The names she selected for the Mars Exploration Rovers are "Spirit" and "Opportunity." The third grader's essay was chosen from more than 10,000 American student entries. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

    NASA Image and Video Library

    2003-06-08

    KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis is introduced to the media at a press conference. The Siberian-born Arizona resident wrote the winning entry in the Name the Rovers Contest sponsored by NASA and the Lego Co., a Denmark-based toymaker, with collaboration from the Planetary Society, Pasadena, Calif. The names she selected for the Mars Exploration Rovers are "Spirit" and "Opportunity." The third grader's essay was chosen from more than 10,000 American student entries. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  2. KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis (left) shares a light moment with NASA Administrator Sean O'Keefe at a press conference. The Siberian-born Arizona resident wrote the winning entry in the Name the Rovers Contest sponsored by NASA and the Lego Co., a Denmark-based toymaker, with collaboration from the Planetary Society, Pasadena, Calif. The names she selected for the Mars Exploration Rovers are "Spirit" and "Opportunity." The third grader's essay was chosen from more than 10,000 American student entries. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

    NASA Image and Video Library

    2003-06-08

    KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis (left) shares a light moment with NASA Administrator Sean O'Keefe at a press conference. The Siberian-born Arizona resident wrote the winning entry in the Name the Rovers Contest sponsored by NASA and the Lego Co., a Denmark-based toymaker, with collaboration from the Planetary Society, Pasadena, Calif. The names she selected for the Mars Exploration Rovers are "Spirit" and "Opportunity." The third grader's essay was chosen from more than 10,000 American student entries. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  3. KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis (left) is introduced to the media by NASA Administrator Sean O'Keefe at a press conference. The Siberian-born Arizona resident wrote the winning entry in the Name the Rovers Contest sponsored by NASA and the Lego Co., a Denmark-based toymaker, with collaboration from the Planetary Society, Pasadena, Calif. The names she selected for the Mars Exploration Rovers are "Spirit" and "Opportunity." The third grader's essay was chosen from more than 10,000 American student entries. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

    NASA Image and Video Library

    2003-06-08

    KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis (left) is introduced to the media by NASA Administrator Sean O'Keefe at a press conference. The Siberian-born Arizona resident wrote the winning entry in the Name the Rovers Contest sponsored by NASA and the Lego Co., a Denmark-based toymaker, with collaboration from the Planetary Society, Pasadena, Calif. The names she selected for the Mars Exploration Rovers are "Spirit" and "Opportunity." The third grader's essay was chosen from more than 10,000 American student entries. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  4. KENNEDY SPACE CENTER, FLA. - With a glimpse of the Atlantic Ocean over the horizon, the Delta II rocket with its Mars Exploration Rover (MER-A) payload leaps off the launch pad into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - With a glimpse of the Atlantic Ocean over the horizon, the Delta II rocket with its Mars Exploration Rover (MER-A) payload leaps off the launch pad into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25

  5. KENNEDY SPACE CENTER, FLA. - With a glimpse of the Atlantic Ocean over the horizon, the Delta II rocket with its Mars Exploration Rover (MER-A) payload leaps off the launch pad into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - With a glimpse of the Atlantic Ocean over the horizon, the Delta II rocket with its Mars Exploration Rover (MER-A) payload leaps off the launch pad into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  6. Enhancing Lunar Exploration with a Radioisotope Powered Dual Mode Lunar Rover

    NASA Astrophysics Data System (ADS)

    Elliott, J. O.; Coste, K.; Schriener, T. M.

    2005-12-01

    The emerging plans for lunar exploration and establishment of a permanent human presence on the moon will require development of numerous infrastructure elements to facilitate their implementation. One such element, which manifestly demonstrated its worth in the Apollo missions, is the lunar roving vehicle. While the original Apollo lunar rovers were designed for single mission use, the intention of proceeding with a long-term sustained lunar exploration campaign gives new impetus to consideration of a lunar roving vehicle with extended capabilities, including the ability to support multiple sequential human missions as well as teleoperated exploration activities between human visits. This paper presents a preliminary design concept for such a vehicle, powered by radioisotope power systems which would give the rover greatly extended capabilities and the versatility to operate at any latitude over the entire lunar day/night cycle. The rover would be used for human transportation during astronaut sorties, and be reconfigured for teleoperation by earth-based controllers during the times between crewed landings. In teleoperated mode the rover could be equipped with a range of scientific instrument suites for exploration and detailed assessment of the lunar environment on a regional scale. With modular payload attachments, the rover could be modified between missions to carry out a variety of scientific and utilitarian tasks, including regolith reconfiguration in support of establishment of a permanent human base.

  7. Robotic missions to Mars - Paving the way for humans

    NASA Technical Reports Server (NTRS)

    Pivirotto, D. S.; Bourke, R. D.; Cunningham, G. E.; Golombek, M. P.; Sturms, F. M.; Kahl, R. C.; Lance, N.; Martin, J. S.

    1990-01-01

    NASA is in the planning stages of a program leading to the human exploration of Mars. A critical element in that program is a set of robotic missions that will acquire information on the Martian environment and test critical functions (such as aerobraking) at the planet. This paper presents some history of Mars missions, as well as results of recent studies of the Mars robotic missions that are under consideration as part of the exploration program. These missions include: (1) global synoptic geochemical and climatological characterization from orbit (Mars Observer), (2) global network of small meteorological and seismic stations, (3) sample returns, (4) reconnaissance orbiters and (5) rovers.

  8. KSC-03PD-1586

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The backshell is in place over the Mars Exploration Rover 1 (MER-1). The backshell is a protective cover for the rover. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  9. KSC-03PD-1584

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Workers in the Payload Hazardous Servicing Facility lower the backshell over the Mars Exploration Rover 1 (MER-1). The backshell is a protective cover for the rover. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  10. Recent Accomplishments in Mars Exploration: The Rover Perspective

    NASA Astrophysics Data System (ADS)

    McLennan, S. M.; McSween, H. Y.

    2018-04-01

    Mobile rovers have revolutionized our understanding of Mars geology by identifying habitable environments and addressing critical questions related to Mars science. Both the advances and limitations of rovers set the scene for Mars Sample Return.

  11. Opportunity Late Afternoon View of Mars

    NASA Image and Video Library

    2012-02-03

    NASA Mars Exploration Rover Opportunity captured this low-light raw image during the late afternoon of the rover 2,847th Martian sol Jan. 27, 2012. The rover is positioned for the Mars winter at Greeley Haven.

  12. Dynamic Modeling and Soil Mechanics for Path Planning of the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Trease, Brian; Arvidson, Raymond; Lindemann, Randel; Bennett, Keith; Zhou, Feng; Iagnemma, Karl; Senatore, Carmine; Van Dyke, Lauren

    2011-01-01

    To help minimize risk of high sinkage and slippage during drives and to better understand soil properties and rover terramechanics from drive data, a multidisciplinary team was formed under the Mars Exploration Rover (MER) project to develop and utilize dynamic computer-based models for rover drives over realistic terrains. The resulting tool, named ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction Simulator), consists of the dynamic model, a library of terramechanics subroutines, and the high-resolution digital elevation maps of the Mars surface. A 200-element model of the rovers was developed and validated for drop tests before launch, using MSC-Adams dynamic modeling software. Newly modeled terrain-rover interactions include the rut-formation effect of deformable soils, using the classical Bekker-Wong implementation of compaction resistances and bull-dozing effects. The paper presents the details and implementation of the model with two case studies based on actual MER telemetry data. In its final form, ARTEMIS will be used in a predictive manner to assess terrain navigability and will become part of the overall effort in path planning and navigation for both Martian and lunar rovers.

  13. KENNEDY SPACE CENTER, FLA. - The overhead crane settles the Mars Exploration Rover 2 (MER-2) entry vehicle onto a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - The overhead crane settles the Mars Exploration Rover 2 (MER-2) entry vehicle onto a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

  14. WATER ON MARS: EVIDENCE FROM MER MISSION RESULTS

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2006-01-01

    The Mars Exploration Rover (MER) mission landed two rovers on Mars, equipped with a highly-capable suite of science instruments. The Spirit rover landed on the inside Gusev Crater on January 5, 2004, and the Opportunity rover three weeks later on Meridiani Planum. This paper summarizes some of the findings from the MER rovers related to the NASA science strategy of investigating past and present water on Mars.

  15. Autonomous control of roving vehicles for unmanned exploration of the planets

    NASA Technical Reports Server (NTRS)

    Yerazunis, S. W.

    1978-01-01

    The guidance of an autonomous rover for unmanned planetary exploration using a short range (0.5 - 3.0 meter) hazard detection system was studied. Experimental data derived from a one laser/one detector system were used in the development of improved algorithms for the guidance of the rover. The new algorithms which account for the dynamic characteristics of the Rensselaer rover can be applied to other rover concepts provided that the rover dynamic parameters are modified appropriately. The new algorithms will also be applicable to the advanced scanning system. The design of an elevation scanning laser/multisensor hazard detection system was completed. All mechanical and electronic hardware components with the exception of the sensor optics and electronic components were constructed and tested.

  16. Autonomous Instrument Placement for Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Leger, P. Chris; Maimone, Mark

    2009-01-01

    Autonomous Instrument Placement (AutoPlace) is onboard software that enables a Mars Exploration Rover to act autonomously in using its manipulator to place scientific instruments on or near designated rock and soil targets. Prior to the development of AutoPlace, it was necessary for human operators on Earth to plan every motion of the manipulator arm in a time-consuming process that included downlinking of images from the rover, analysis of images and creation of commands, and uplinking of commands to the rover. AutoPlace incorporates image analysis and planning algorithms into the onboard rover software, eliminating the need for the downlink/uplink command cycle. Many of these algorithms are derived from the existing groundbased image analysis and planning algorithms, with modifications and augmentations for onboard use.

  17. Heading South on 'Erebus Highway'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA's Mars Exploration Rover Opportunity is currently traveling southward over a pavement of outcrop dubbed the 'Erebus Highway.' 'Erebus Crater,' the rover's next target, lies less than 100 meters (328 feet) south of its current position. This view is a mosaic produced from from frames taken by the rover's navigation camera during Opportunity's 582nd martian day, or sol (Sept. 13, 2005). It shows fractured blocks of ancient sedimentary rock separated by recent sand dunes. Mars Exploration Rover team scientists are investigating both the composition of the rocks and the processes by which the distinctive fracture pattern arose.

  18. Assemby, test, and launch operations for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Wallace, Matthew T.; Hardy, Paul V.; Romero, Raul A.; Salvo, Christopher G.; Shain, Thomas W.; Thompson, Arthur D.; Wirth, John W.

    2005-01-01

    In January of 2004, NASA's twin Mars rovers, Spirit and Opportunity, successfully landed on opposite sides of the Red Planet after a seven month Earth to Mars cruise period. Both vehicles have operated well beyond their 90 day primary mission design life requirements. The Assembly, Test, and Launch Operations (ATLO) program for these missions presented unique technical and schedule challenges to the team at the Jet Propulsion Laboratory (JPL). Among these challenges were a highly compressed schedule and late deliveries leading to extended double shift staffing, dual spacecraft operations requiring test program diversification and resource arbitration, multiple atypical test configurations for airbag/rocket landings and surface mobility testing, and verification of an exceptionally large number of separations, deployments, and mechanisms. This paper discusses the flight system test philosophies and approach, and presents lessons learned.

  19. Inside Victoria Crater for Extended Exploration

    NASA Technical Reports Server (NTRS)

    2007-01-01

    After a finishing an in-and-out maneuver to check wheel slippage near the rim of Victoria Crater, NASA's Mars Exploration Rover Opportunity re-entered the crater during the rover's 1,293rd Martian day, or sol, (Sept. 13, 2007) to begin a weeks-long exploration of the inner slope.

    Opportunity's front hazard-identification camera recorded this wide-angle view looking down into and across the crater at the end of the day's drive. The rover's position was about six meters (20 feet) inside the rim, in the 'Duck Bay' alcove of the crater.

  20. Geology of Potential Landing Sites for Martian Sample Returns

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    2003-01-01

    This project involved the analysis of potential landing sites on Mars. As originally proposed, the project focused on landing sites from which samples might be returned to Earth. However, as the project proceeded, the emphasis shifted to missions that would not include sample return, because the Mars Exploration Program had deferred sample returns to the next decade. Subsequently, this project focused on the study of potential landing sites for the Mars Exploration Rovers.

  1. Lunokhod 2 - A retrospective Glance after 30 Years

    NASA Astrophysics Data System (ADS)

    Gromov, V.; Kemurdjian, A.; Bogatchev, A.; Koutcherenko, V.; Malenkov, M.; Matrossov, S.; Vladykin, S.; Petriga, V.; Khakhanov, Y.

    2003-04-01

    30 years have passed since the second Soviet research Lunokhod-2 rover landed on the Moon on January 16, 1973 within the framework of the Luna-21 mission. Scientific explorations of the lunar surface and space, begun with the Lunokhod-1 rover (1970-1971), were continued with Lunokhod-2. Creation of Lunokhod-1 and Lunokhod-2 marked realization of direction on study of planets using mobile self-propelled robots. Other direction connected with using planetary rovers to transport astronauts, scientific equipment and weights was realized as a result of creation of the American LRV lunar rover. Astronauts during Apollo-15 (1971), Apollo-15 (1972) and Apollo-15 (1972) missions used it. Programs of operation for Lunokhod-1,-2 on the Moon envisaged investigations of topographic and morphological peculiarities of the terrain, determination of the chemical composition and physical and mechanical properties of soil, experiments on the laser detection and ranging of the Moon and, etc. Successful fulfilment of programs was ensured, to a considerable extent, with the self-propelled chassis developed at VNIITRANSMASH to order of the Lavochkin Scientific and Production Association (NPOL). The chassis, on the one hand, ensured necessary cross-country ability for Lunokhod-1,-2, on the other hand, it was as the independent scientific instrument, which provided investigation as temperature measurement of the lunar surface, surface topography and craters distribution, physical and mechanical properties of soil with the special PROP instrument equipped with the penetrometer, chassis traction-cohesive characteristics, upper surface layer by a character its deformation by the mover, etc. A number of improvements of Lunokhod-2 improving its operating characteristics were performed on the basis of results of Lunokhod-1 operation. Lunokhod-1,-2 operation confirmed that automatic mobile robots can be used as effective means for studying planets and their satellites. At the same time, an operational experience of Lunokhod-1,-2, also American LRV rover, given extensive material, which as being used while developing and manufacturing chassis and their systems for new-generation planetary rovers, as well as special equipment to Earth-based tests. The present paper considers features of the Lunochod-2 design, some results of the Lunokhod-1,-2 operation on the Moon, examples of locomotion systems for new-generation rovers with the ski-walking, wheel-walking and hopping movers. A brief review of locomotion system demonstrators (IDD-1,-2, IARES, LRMC, JRover-1,-2, etc), developed at VNIITRANSMASH and Science &Technology Rover Co. Ltd. to order of ESA and foreign organizations taking part in space explorations. The locomotion systems description for the RoSA-2 project and ExoMaDeR model for "ExoMars-2009" project, developed by RCL in cooperation and to order of ESA, is given.

  2. CRAFT: Collaborative Rover and Astronauts Future Technology

    NASA Astrophysics Data System (ADS)

    Da-Poian, V. D. P.; Koryanov, V. V. K.

    2018-02-01

    Our project is focusing on the relationship between astronauts and rovers to best work together during surface explorations. Robots will help and assist astronauts, and will also work autonomously. Our project is to develop this type of rover.

  3. Opportunity Rover Nears Mars Marathon Feat

    NASA Image and Video Library

    2015-02-10

    In February 2015, NASA Mars Exploration Rover Opportunity is approaching a cumulative driving distance on Mars equal to the length of a marathon race. This map shows the rover position relative to where it could surpass that distance.

  4. The Effects of Clock Drift on the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Ali, Khaled S.; Vanelli, C. Anthony

    2012-01-01

    All clocks drift by some amount, and the mission clock on the Mars Exploration Rovers (MER) is no exception. The mission clock on both MER rovers drifted significantly since the rovers were launched, and it is still drifting on the Opportunity rover. The drift rate is temperature dependent. Clock drift causes problems for onboard behaviors and spacecraft operations, such as attitude estimation, driving, operation of the robotic arm, pointing for imaging, power analysis, and telecom analysis. The MER operations team has techniques to deal with some of these problems. There are a few techniques for reducing and eliminating the clock drift, but each has drawbacks. This paper presents an explanation of what is meant by clock drift on the rovers, its relationship to temperature, how we measure it, what problems it causes, how we deal with those problems, and techniques for reducing the drift.

  5. ARC-2008-ACD08-0216-006

    NASA Image and Video Library

    2008-09-23

    Tech Talk on Extreme Rovers: Unveiling the latest findings of Robotic Exploration of Extreme Environments shown in the Immersve Theater NASA Ames Exploration Center Bldg 943A KbalidAl-Ali CMU - West gives presentation on 'Practical Rover Technology'

  6. ARC-2008-ACD08-0216-008

    NASA Image and Video Library

    2008-09-23

    Tech Talk on Extreme Rovers: Unveiling the latest findings of Robotic Exploration of Extreme Environments shown in the Immersve Theater NASA Ames Exploration Center Bldg 943A KbalidAl-Ali CMU - West gives presentation on 'Practical Rover Technology'

  7. ARC-2008-ACD08-0216-007

    NASA Image and Video Library

    2008-09-23

    Tech Talk on Extreme Rovers: Unveiling the latest findings of Robotic Exploration of Extreme Environments shown in the Immersve Theater NASA Ames Exploration Center Bldg 943A KbalidAl-Ali CMU - West gives presentation on 'Practical Rover Technology'

  8. Virtual Rover Takes its First Turn

    NASA Image and Video Library

    2004-01-13

    This image shows a screenshot from the software used by engineers to drive the Mars Exploration Rover Spirit. The software simulates the rover's movements across the martian terrain, helping to plot a safe course for the rover. The virtual 3-D world around the rover is built from images taken by Spirit's stereo navigation cameras. Regions for which the rover has not yet acquired 3-D data are represented in beige. This image depicts the state of the rover before it backed up and turned 45 degrees on Sol 11 (01-13-04). http://photojournal.jpl.nasa.gov/catalog/PIA05063

  9. Delivering Images for Mars Rover Science Planning

    NASA Technical Reports Server (NTRS)

    Edmonds, Karina

    2008-01-01

    A methodology has been developed for delivering, via the Internet, images transmitted to Earth from cameras on the Mars Explorer Rovers, the Phoenix Mars Lander, the Mars Science Laboratory, and the Mars Reconnaissance Orbiter spacecraft. The images in question are used by geographically dispersed scientists and engineers in planning Rover scientific activities and Rover maneuvers pertinent thereto.

  10. KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, the cylindrical payload canister is lowered around Mars Exploration Rover 1 (MER-B). Once secure inside the canister, the rover will be transported to Launch Complex 17-B, Cape Canaveral Air Force Station, for mating with the Delta rocket. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch from Pad 17-B June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

    NASA Image and Video Library

    2003-06-13

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, the cylindrical payload canister is lowered around Mars Exploration Rover 1 (MER-B). Once secure inside the canister, the rover will be transported to Launch Complex 17-B, Cape Canaveral Air Force Station, for mating with the Delta rocket. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch from Pad 17-B June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

  11. NASA Mars 2020 Rover Mission: New Frontiers in Science

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.

    2014-01-01

    The Mars 2020 rover mission is the next step in NASAs robotic exploration of the red planet. The rover, based on the Mars Science Laboratory Curiosity rover now on Mars, will address key questions about the potential for life on Mars. The mission would also provide opportunities to gather knowledge and demonstrate technologies that address the challenges of future human expeditions to Mars.Like the Mars Science Laboratory rover, which has been exploring Mars since 2012, the Mars 2020 spacecraft will use a guided entry, descent, and landing system which includes a parachute, descent vehicle, and, during the provides the ability to land a very large, heavy rover on the surface of Mars in a more precise landing area. The Mars 2020 mission is designed to accomplish several high-priority planetary science goals and will be an important step toward meeting NASAs challenge to send humans to Mars in the 2030s. The mission will conduct geological assessments of the rover's landing site, determine the habitability of the environment, search for signs of ancient Martian life, and assess natural resources and hazards for future human explorers. The science instruments aboard the rover also will enable scientists to identify and select a collection of rock and soil samples that will be stored for potential return to Earth in the future. The rover also may help designers of a human expedition understand the hazards posed by Martian dust and demonstrate how to collect carbon dioxide from the atmosphere, which could be a valuable resource for producing oxygen and rocket fuel.

  12. 'X' Marks the Spot

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This map of the Mars Exploration Rover Opportunity's new neighborhood at Meridiani Planum, Mars, shows the surface features used to locate the rover. By imaging these 'bumps' on the horizon from the perspective of the rover, mission members were able to pin down the rover's precise location. The image consists of data from the Mars Global Surveyor orbiter, the Mars Odyssey orbiter and the descent image motion estimation system located on the bottom of the rover.

  13. KENNEDY SPACE CENTER, FLA. - Workers watch as an overhead crane begins to lift the backshell with the Mars Exploration Rover 1 (MER-1) inside. The backshell will be moved and attached to the lower heat shield. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - Workers watch as an overhead crane begins to lift the backshell with the Mars Exploration Rover 1 (MER-1) inside. The backshell will be moved and attached to the lower heat shield. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  14. KENNEDY SPACE CENTER, FLA. - A closeup of the cruise stage to be mated to the Mars Exploration Rover 2 (MER-2) entry vehicle. The cruise stage includes fuel tanks, thruster clusters and avionics for steering and propulsion. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-2 is scheduled to launch June 5 as MER-A aboard a Delta rocket from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-06

    KENNEDY SPACE CENTER, FLA. - A closeup of the cruise stage to be mated to the Mars Exploration Rover 2 (MER-2) entry vehicle. The cruise stage includes fuel tanks, thruster clusters and avionics for steering and propulsion. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-2 is scheduled to launch June 5 as MER-A aboard a Delta rocket from Cape Canaveral Air Force Station.

  15. KENNEDY SPACE CENTER, FLA. - A solid rocket booster arrives at Launch Complex 17-A, Cape Canaveral Air Force Station. It is one of nine that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-14

    KENNEDY SPACE CENTER, FLA. - A solid rocket booster arrives at Launch Complex 17-A, Cape Canaveral Air Force Station. It is one of nine that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  16. KENNEDY SPACE CENTER, FLA. - Workers walk with the suspended backshell/ Mars Exploration Rover 1 (MER-1) as it travels across the floor of the Payload Hazardous Servicing Facility. The backshell will be attached to the lower heat shield. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - Workers walk with the suspended backshell/ Mars Exploration Rover 1 (MER-1) as it travels across the floor of the Payload Hazardous Servicing Facility. The backshell will be attached to the lower heat shield. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  17. VNIR Multispectral Observations of Rocks at Spirit of St. Louis Crater and Marathon Valley on Th Rim of Endeavour Crater Made by the Opportunity Rover Pancam

    NASA Technical Reports Server (NTRS)

    Farrand, W. H.; Johnson, J. R.; Bell, J. F., III; Mittlefehldt, D.W.

    2016-01-01

    The Mars Exploration Rover Opportunity has been exploring the western rim of the 22 km diameter Endeavour crater since August, 2011. Recently, Opportunity has reached a break in the Endeavour rim that the rover team has named Mara-thon Valley. This is the site where orbital observations from the MRO CRISM imaging spectrometer indicated the presence of iron smectites. On the outer western portion of Marathon Valley, Opportunity explored the crater-form feature dubbed Spirit of St. Louis (SoSL) crater. This presentation describes the 430 to 1009 nm (VNIR) reflectance, measured by the rover's Pancam, of rock units present both at Spirit of St. Louis and within Marathon Valley.

  18. Mars Rover Model Celebration: Developing Inquiry Based Lesson Plans to Teach Planetary Science In Elementary And Middle School

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.; Dominey, W.; Ramsey, J.; Konstantinidis, I.; James, J.; Sweaney, S.; Mendez, R.

    2012-12-01

    The recent NASA Mars Rover missions capture the imagination of children, as NASA missions have done for decades. The University of Houston is in the process of developing a prototype of a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model rover. The existing prototype program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students will design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. The model will be a mock-up, constructed at a minimal cost from art supplies. The students will build the models as part of a project on Mars. The students will be given design criteria for a rover and will do basic research on Mars that will determine the objectives and features of their rover. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the development of a detailed set of new 5E lesson plans to support this project as a classroom activity. The challenge of developing interactive learning activities for planetary science will be explored. These lesson plans incorporate state of the art interactive pedagogy and current NASA Planetary Science materials.

  19. Microbiological cleanliness of the Mars Exploration Rover spacecraft

    NASA Technical Reports Server (NTRS)

    Newlin, L.; Barengoltz, J.; Chung, S.; Kirschner, L.; Koukol, R.; Morales, F.

    2002-01-01

    Planetary protection for Mars missions is described, and the approach being taken by the Mars Exploration Rover Project is discussed. Specific topics include alcohol wiping, dry heat microbial reduction, microbiological assays, and the Kennedy Space center's PHSF clean room.

  20. The Mars Exploration Rover Project : 2005 surface operations results

    NASA Technical Reports Server (NTRS)

    Erickson, James K.; Callas, John L.; Haldemann, Albert F. C.

    2005-01-01

    The intent of this paper is to provide the aerospace community a status report of the progress of the Mars Rovers exploration of the Martian surface, picking up after the landings and continuing through fiscal year 2005.

  1. First Image from a Mars Rover Choosing a Target

    NASA Image and Video Library

    2010-03-23

    This true-color image is the result of the first observation of a target selected autonomously by NASA Mars Exploration Rover Opportunity using newly developed and uploaded software named Autonomous Exploration for Gathering Increased Science, or AEGIS.

  2. Bringing NASA Technology Down to Earth

    NASA Technical Reports Server (NTRS)

    Lockney, Daniel P.; Taylor, Terry L.

    2018-01-01

    Whether putting rovers on Mars or sustaining life in extreme conditions, NASA develops technologies to solve some of the most difficult challenges ever faced. Through its Technology Transfer Program, the agency makes the innovations behind space exploration available to industry, academia, and the general public. This paper describes the primary mechanisms through which NASA disseminates technology to solve real-life problems; illustrates recent program accomplishments; and provides examples of spinoff success stories currently impacting everyday life.

  3. Mars Exploration Rover -2

    NASA Image and Video Library

    2003-03-06

    In the Payload Hazardous Servicing Facility resides one of the Mars Exploration Rovers, MER-2. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.

  4. Mars Exploration Rover -2

    NASA Image and Video Library

    2003-03-06

    Technicians in the Payload Hazardous Servicing Facility look over the Mars Exploration Rover -2. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.

  5. Attitude and position estimation on the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Ali, Khaled S.; Vanelli, C. Anthony; Biesiadecki, Jeffrey J.; Maimone, Mark W.; Yang Cheng, A.; San Martin, Miguel; Alexander, James W.

    2005-01-01

    NASA/JPL 's Mars Exploration Rovers acquire their attitude upon command and autonomously propagate their attitude and position. The rovers use accelerometers and images of the sun to acquire attitude, autonomously searching the sky for the sun with a pointable camera. To propagate the attitude and position the rovers use either accelerometer and gyro readings or gyro readings and wheel odometiy, depending on the nature of the movement ground operators are commanding. Where necessary, visual odometry is performed on images to fine tune the position updates, particularly in high slip environments. The capability also exists for visual odometry attitude updates. This paper describes the techniques used by the rovers to acquire and maintain attitude and position knowledge, the accuracy which is obtainable, and lessons learned after more than one year in operation.

  6. Autonomous localisation of rovers for future planetary exploration

    NASA Astrophysics Data System (ADS)

    Bajpai, Abhinav

    Future Mars exploration missions will have increasingly ambitious goals compared to current rover and lander missions. There will be a need for extremely long distance traverses over shorter periods of time. This will allow more varied and complex scientific tasks to be performed and increase the overall value of the missions. The missions may also include a sample return component, where items collected on the surface will be returned to a cache in order to be returned to Earth, for further study. In order to make these missions feasible, future rover platforms will require increased levels of autonomy, allowing them to operate without heavy reliance on a terrestrial ground station. Being able to autonomously localise the rover is an important element in increasing the rover's capability to independently explore. This thesis develops a Planetary Monocular Simultaneous Localisation And Mapping (PM-SLAM) system aimed specifically at a planetary exploration context. The system uses a novel modular feature detection and tracking algorithm called hybrid-saliency in order to achieve robust tracking, while maintaining low computational complexity in the SLAM filter. The hybrid saliency technique uses a combination of cognitive inspired saliency features with point-based feature descriptors as input to the SLAM filter. The system was tested on simulated datasets generated using the Planetary, Asteroid and Natural scene Generation Utility (PANGU) as well as two real world datasets which closely approximated images from a planetary environment. The system was shown to provide a higher accuracy of localisation estimate than a state-of-the-art VO system tested on the same data set. In order to be able to localise the rover absolutely, further techniques are investigated which attempt to determine the rover's position in orbital maps. Orbiter Mask Matching uses point-based features detected by the rover to associate descriptors with large features extracted from orbital imagery and stored in the rover memory prior the mission launch. A proof of concept is evaluated using a PANGU simulated boulder field.

  7. Mars Exploration Rover surface operations: driving opportunity at Meridiani Planum

    NASA Technical Reports Server (NTRS)

    Biesiadecki, Jeffrey J.; Baumgartner, E.; Bonitz, R.; Cooper, B.; Hartman, F.; Leger, C.; Maimone, M.; Maxwell, S.; Trebi-Ollenu, A.; Wright, J.

    2005-01-01

    This paper will detail the experience of driving Opportunity through this alien landscape from the point of view of the Rover Planners, the people who tell the rover where to drive and how to use its robotic arm.

  8. Opportunity View on Sols 1803 and 1804 Stereo

    NASA Image and Video Library

    2009-03-03

    NASA Mars Exploration Rover Opportunity combined images into this full-circle view of the rover surroundings. Tracks from the rover drive recede northward across dark-toned sand ripples in the Meridiani Planum region of Mars. You need 3D glasses.

  9. Opportunity View After Drive on Sol 1806 Stereo

    NASA Image and Video Library

    2009-03-03

    NASA Mars Exploration Rover Opportunity combined images into this full-circle view of the rover surroundings. Tracks from the rover drive recede northward across dark-toned sand ripples in the Meridiani Planum region of Mars. You need 3D glasses.

  10. Design of a Mars rover and sample return mission

    NASA Technical Reports Server (NTRS)

    Bourke, Roger D.; Kwok, Johnny H.; Friedlander, Alan

    1990-01-01

    The design of a Mars Rover Sample Return (MRSR) mission that satisfies scientific and human exploration precursor needs is described. Elements included in the design include an imaging rover that finds and certifies safe landing sites and maps rover traverse routes, a rover that operates the surface with an associated lander for delivery, and a Mars communications orbiter that allows full-time contact with surface elements. A graph of MRSR candidate launch vehice performances is presented.

  11. Robotic Technology Development at Ames: The Intelligent Robotics Group and Surface Telerobotics

    NASA Technical Reports Server (NTRS)

    Bualat, Maria; Fong, Terrence

    2013-01-01

    Future human missions to the Moon, Mars, and other destinations offer many new opportunities for exploration. But, astronaut time will always be limited and some work will not be feasible for humans to do manually. Robots, however, can complement human explorers, performing work autonomously or under remote supervision from Earth. Since 2004, the Intelligent Robotics Group has been working to make human-robot interaction efficient and effective for space exploration. A central focus of our research has been to develop and field test robots that benefit human exploration. Our approach is inspired by lessons learned from the Mars Exploration Rovers, as well as human spaceflight programs, including Apollo, the Space Shuttle, and the International Space Station. We conduct applied research in computer vision, geospatial data systems, human-robot interaction, planetary mapping and robot software. In planning for future exploration missions, architecture and study teams have made numerous assumptions about how crew can be telepresent on a planetary surface by remotely operating surface robots from space (i.e. from a flight vehicle or deep space habitat). These assumptions include estimates of technology maturity, existing technology gaps, and likely operational and functional risks. These assumptions, however, are not grounded by actual experimental data. Moreover, no crew-controlled surface telerobotic system has yet been fully tested, or rigorously validated, through flight testing. During Summer 2013, we conducted a series of tests to examine how astronauts in the International Space Station (ISS) can remotely operate a planetary rover across short time delays. The tests simulated portions of a proposed human-robotic Lunar Waypoint mission, in which astronauts in lunar orbit remotely operate a planetary rover on the lunar Farside to deploy a radio telescope array. We used these tests to obtain baseline-engineering data.

  12. Current Status and Readiness on In-Situ Exploration of Asteroid Surface by MINERVA Rover in Hayabusa Mission

    NASA Astrophysics Data System (ADS)

    Yoshimitsu, T.; Sasaki, S.; Yanagisawa, M.

    2005-03-01

    This paper describes the current status of the MINERVA rover boarded on the Japanese asteroid explorer Hayabusa. Also the plan and the strategy to acquire surface images of the asteroid are presented.

  13. Strategy for planetary surface exploration by rover

    NASA Astrophysics Data System (ADS)

    Clark, Benton C.

    1993-02-01

    Surface transportation for humans on Mars and the moon is important for maximizing the science return. But in the larger sense, it is fundamentally essential because a sufficient exploration could otherwise be accomplished purely by robotic means, albeit at a much slower pace. Rovers for humans must be robust for both safety considerations and the mission requirements to reach prime exploration regions and landmarks of scientific and public interest. Dual rovers moving in convoy and an operating strategy that can effect self-rescue and adapt to unknown conditions will be necessary to achieve success with acceptable risk.

  14. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    Michael Watkins (right), mission manager and Mars Science Laboratory (MSL) engineer, Jet Propulsion Lab, Pasadena, Calif., speaks at a press conference, as Michael Meyer, Mars Exploration Program lead scientist looks on, at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The MSL, or Curiosity, is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  15. Proceedings of the 8th Annual Summer Conference: NASA/USRA Advanced Design Program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Papers presented at the 8th Annual Summer Conference are categorized as Space Projects and Aeronautics projects. Topics covered include: Systematic Propulsion Optimization Tools (SPOT), Assured Crew Return Vehicle Post Landing Configuration Design and Test, Autonomous Support for Microorganism Research in Space, Bioregenerative System Components for Microgravity, The Extended Mission Rover (EMR), Planetary Surface Exploration MESUR/Autonomous Lunar Rover, Automation of Closed Environments in Space for Human Comfort and Safety, Walking Robot Design, Extraterrestrial Surface Propulsion Systems, The Design of Four Hypersonic Reconnaissance Aircraft, Design of a Refueling Tanker Delivering Liquid Hydrogen, The Design of a Long-Range Megatransport Aircraft, and Solar Powered Multipurpose Remotely Powered Aircraft.

  16. KENNEDY SPACE CENTER, FLA. - An overhead crane lifts the Mars Exploration Rover 2 (MER-2) entry vehicle from its stand to move it to a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - An overhead crane lifts the Mars Exploration Rover 2 (MER-2) entry vehicle from its stand to move it to a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

  17. KENNEDY SPACE CENTER, FLA. - With help from workers, the overhead crane lowers the Mars Exploration Rover 2 (MER-2) entry vehicle onto a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - With help from workers, the overhead crane lowers the Mars Exploration Rover 2 (MER-2) entry vehicle onto a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

  18. KENNEDY SPACE CENTER, FLA. - An overhead crane moves the Mars Exploration Rover 2 (MER-2) entry vehicle across the Payload Hazardous Servicing Facility toward a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - An overhead crane moves the Mars Exploration Rover 2 (MER-2) entry vehicle across the Payload Hazardous Servicing Facility toward a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

  19. KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility help guide the Mars Exploration Rover 2 (MER-2) entry vehicle toward a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility help guide the Mars Exploration Rover 2 (MER-2) entry vehicle toward a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

  20. KENNEDY SPACE CENTER, FLA. - An overhead crane is in place to lift the Mars Exploration Rover 2 (MER-2) entry vehicle to move it to a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - An overhead crane is in place to lift the Mars Exploration Rover 2 (MER-2) entry vehicle to move it to a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

  1. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, 2nd from right, is shown the Mars 2020 spacecraft descent stage from inside the Spacecraft Assembly Facility (SAF) by JPL Director Michael Watkins, to the Vice President's left, and NASA Mars Exploration Manager Li Fuk at NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Mars 2020 is a Mars rover mission by NASA's Mars Exploration Program with a planned launch in 2020. Photo Credit: (NASA/Bill Ingalls)

  2. Mars Exploration Rover Operations with the Science Activity Planner

    NASA Technical Reports Server (NTRS)

    Jeffrey S. Norris; Powell, Mark W.; Vona, Marsette A.; Backes, Paul G.; Wick, Justin V.

    2005-01-01

    The Science Activity Planner (SAP) is the primary science operations tool for the Mars Exploration Rover mission and NASA's Software of the Year for 2004. SAP utilizes a variety of visualization and planning capabilities to enable the mission operations team to direct the activities of the Spirit and Opportunity rovers. This paper outlines some of the challenging requirements that drove the design of SAP and discusses lessons learned from the development and use of SAP in mission operations.

  3. KSC-03pd0916

    NASA Image and Video Library

    2003-03-29

    KENNEDY SPACE CENTER, FLA. - A worker makes the final launch preparations on the rover equipment deck (RED) for the Mars Exploration Rover 2 (MER-2). Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. The rovers will be identical to each other, but will land at different regions of Mars. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  4. KSC-03pd0785

    NASA Image and Video Library

    2003-03-21

    KENNEDY SPACE CENTER, Fla. - Workers in the Payload Hazardous Servicing Facility check different parts of the Mars Exploration Rover-2 (MER-2) after testing the rover's mobility and maneuverability. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  5. Mapping and localization for extraterrestrial robotic explorations

    NASA Astrophysics Data System (ADS)

    Xu, Fengliang

    In the exploration of an extraterrestrial environment such as Mars, orbital data, such as high-resolution imagery Mars Orbital Camera-Narrow Angle (MOC-NA), laser ranging data Mars Orbital Laser Altimeter (MOLA), and multi-spectral imagery Thermal Emission Imaging System (THEMIS), play more and more important roles. However, these remote sensing techniques can never replace the role of landers and rovers, which can provide a close up and inside view. Similarly, orbital mapping can not compete with ground-level close-range mapping in resolution, precision, and speed. This dissertation addresses two tasks related to robotic extraterrestrial exploration: mapping and rover localization. Image registration is also discussed as an important aspect for both of them. Techniques from computer vision and photogrammetry are applied for automation and precision. Image registration is classified into three sub-categories: intra-stereo, inter-stereo, and cross-site, according to the relationship between stereo images. In the intra-stereo registration, which is the most fundamental sub-category, interest point-based registration and verification by parallax continuity in the principal direction are proposed. Two other techniques, inter-scanline search with constrained dynamic programming for far range matching and Markov Random Field (MRF) based registration for big terrain variation, are explored as possible improvements. Creating using rover ground images mainly involves the generation of Digital Terrain Model (DTM) and ortho-rectified map (orthomap). The first task is to derive the spatial distribution statistics from the first panorama and model the DTM with a dual polynomial model. This model is used for interpolation of the DTM, using Kriging in the close range and Triangular Irregular Network (TIN) in the far range. To generate a uniformly illuminated orthomap from the DTM, a least-squares-based automatic intensity balancing method is proposed. Finally a seamless orthomap is constructed by a split-and-merge technique: the mapped area is split or subdivided into small regions of image overlap, and then each small map piece was processed and all of the pieces are merged together to form a seamless map. Rover localization has three stages, all of which use a least-squares adjustment procedure: (1) an initial localization which is accomplished by adjustment over features common to rover images and orbital images, (2) an adjustment of image pointing angles at a single site through inter and intra-stereo tie points, and (3) an adjustment of the rover traverse through manual cross-site tie points. The first stage is based on adjustment of observation angles of features. The second stage and third stage are based on bundle-adjustment. In the third-stage an incremental adjustment method was proposed. Automation in rover localization includes automatic intra/inter-stereo tie point selection, computer-assisted cross-site tie point selection, and automatic verification of accuracy. (Abstract shortened by UMI.)

  6. Visual Target Tracking on the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Biesiadecki, Jeffrey J.; Ali, Khaled S.

    2008-01-01

    Visual Target Tracking (VTT) has been implemented in the new Mars Exploration Rover (MER) Flight Software (FSW) R9.2 release, which is now running on both Spirit and Opportunity rovers. Applying the normalized cross-correlation (NCC) algorithm with template image magnification and roll compensation on MER Navcam images, VTT tracks the target and enables the rover to approach the target within a few cm over a 10 m traverse. Each VTT update takes 1/2 to 1 minute on the rovers, 2-3 times faster than one Visual Odometry (Visodom) update. VTT is a key element to achieve a target approach and instrument placement over a 10-m run in a single sol in contrast to the original baseline of 3 sols. VTT has been integrated into the MER FSW so that it can operate with any combination of blind driving, Autonomous Navigation (Autonav) with hazard avoidance, and Visodom. VTT can either guide the rover towards the target or simply image the target as the rover drives by. Three recent VTT operational checkouts on Opportunity were all successful, tracking the selected target reliably within a few pixels.

  7. Bird's-Eye View of Opportunity at 'Erebus' (Vertical)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This view combines frames taken by the panoramic camera on NASA's Mars Exploration Rover Opportunity on the rover's 652nd through 663rd Martian days, or sols (Nov. 23 to Dec. 5, 2005), at the edge of 'Erebus Crater.' The mosaic is presented as a vertical projection. This type of projection provides a true-to-scale overhead view of the rover deck and nearby surrounding terrain. The view here shows outcrop rocks, sand dunes, and other features out to a distance of about 25 meters (82 feet) from the rover. Opportunity examined targets on the outcrop called 'Rimrock' in front of the rover, testing the mobility and operation of Opportunity's robotic arm. The view shows examples of the dunes and ripples that Opportunity has been crossing as the rover drives on the Meridiani plains.

    This view is a false-color composite of images taken through the camera's 750-nanometer, 530-nanometer and 430-nanometer filters. This kind of false-color scheme emphasizes differences in composition among the different kinds of materials that the rover is exploring.

  8. A Rover Mobility Platform with Autonomous Capability to Enable Mars Sample Return

    NASA Astrophysics Data System (ADS)

    Fulford, P.; Langley, C.; Shaw, A.

    2018-04-01

    The next step in understanding Mars is sample return. In Fall 2016, the CSA conducted an analogue deployment using the Mars Exploration Science Rover. An objective was to demonstrate the maturity of the rover's guidance, navigation, and control.

  9. 2013: A Year in Space

    NASA Image and Video Library

    2014-01-24

    2013 was a big year for Ames Research Center's space exploration programs, including several new launches, and continuing a long history of cutting-edge innovations. Projects listed include: LADEE, IRIS, Kepler, PhoneSat, TechEdSat, NLAS, K10 Rover, Seedling Growth-1, Cell Biology Tech Demonstration, ADEPT, Spaceloft 7 and 8, CheMin, MSL, MRO, Bion-M1, Pioneer 11.

  10. SOLAR SYSTEM EXPLORATION: NASA Blasted for Rising Costs, Cancellations.

    PubMed

    Lawler, A

    2000-12-01

    When NASA cancelled a project last month that would have sent a tiny rover crawling over an asteroid, the community of planetary scientists issued a public tongue lashing of the agency. Its letter warned of larger problems in the U.S. program caused by spiraling costs and recommended a sweeping reexamination of the outer solar system effort.

  11. Spatial Coverage Planning for Exploration Robots

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel; Estlin, Tara; Chouinard, Caroline

    2007-01-01

    A report discusses an algorithm for an onboard planning and execution technology to support the exploration and characterization of geological features by autonomous rovers. A rover that is capable of deciding which observations are more important relieves the engineering team from much of the burden of attempting to make accurate predictions of what the available rover resources will be in the future. Instead, the science and engineering teams can uplink a set of observation requests that may potentially oversubscribe resources and let the rover use observation priorities and its current assessment of available resources to make decisions about which observations to perform and when to perform them. The algorithm gives the rover the ability to model spatial coverage quality based on data from different scientific instruments, to assess the impact of terrain on coverage quality, to incorporate user-defined priorities among subregions of the terrain to be covered, and to update coverage quality rankings of observations when terrain knowledge changes. When the rover is exploring large geographical features such as craters, channels, or boundaries between two different regions, an important factor in assessing the quality of a mission plan is how the set of chosen observations spatially cover the area of interest. The algorithm allows the rover to evaluate which observation to perform and to what extent the candidate observation will increase the spatial coverage of the plan.

  12. KSC-03PD-1606

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Payload Hazardous Servicing Facility, workers lower the backshell with the Mars Exploration Rover 1 (MER-1) onto the heat shield. The two components form the aeroshell that will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  13. KSC-03PD-1607

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Payload Hazardous Servicing Facility, workers lower the backshell with the Mars Exploration Rover 1 (MER-1) onto the heat shield. The two components form the aeroshell that will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  14. Spirit's Course

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    This digital elevation map shows the topography of the 'Columbia Hills,' just in front of the Mars Exploration Rover Spirit's current position. Rover planners have plotted the safest route for Spirit to climb to the front hill, called 'West Spur.' The black line in the middle of the image represents the rover's traverse path, which starts at 'Hank's Hollow' and ends at the top of 'West Spur.' Scientists are sending Spirit up the hill to investigate the interesting rock outcrops visible in images taken by the rover. Data from the Mars Orbital Camera on the orbiting Mars Global Surveyor were used to create this 3-D map.

    In figure 1, the digital map shows the slopes of the 'Columbia Hills,' just in front of the Mars Exploration Rover Spirit's current position. Colors indicate the slopes of the hills, with red areas being the gentlest and blue the steepest. Rover planners have plotted the safest route for Spirit to climb the front hill, called 'West Spur.' The path is indicated here with a curved black line. Stereo images from the Mars Orbital Camera on the orbiting Mars Global Surveyor were used to create this 3-D map.

    In figure 2, the map shows the north-facing slopes of the 'Columbia Hills,' just in front of the Mars Exploration Rover Spirit's current position. Bright areas indicate surfaces sloping more toward the north than dark areas. To reach the rock outcrop at the top of the hill, engineers will aim to drive the rover around the dark areas, which would yield less solar power. The curved black line in the middle represents the rover's planned traverse path.

  15. KENNEDY SPACE CENTER, FLA. - At right is the Delta II rocket on Launch Complex 17-A, Cape Canaveral Air Force Station, that will launch Mars Exploration Rover 2 (MER-2) on June 5. In the center are three more solid rocket boosters that will be added to the Delta, which will carry nine in all. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - At right is the Delta II rocket on Launch Complex 17-A, Cape Canaveral Air Force Station, that will launch Mars Exploration Rover 2 (MER-2) on June 5. In the center are three more solid rocket boosters that will be added to the Delta, which will carry nine in all. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch as MER-A. MER-1 (MER-B) will launch June 25.

  16. KENNEDY SPACE CENTER, FLA. - The Delta II rocket on Launch Complex 17-A, Cape Canaveral Air Force Station, is having solid rocket boosters (SRBs) installed that will help launch Mars Exploration Rover 2 (MER-2) on June 5. In the center are three more solid rocket boosters that will be added to the Delta, which will carry nine in all. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - The Delta II rocket on Launch Complex 17-A, Cape Canaveral Air Force Station, is having solid rocket boosters (SRBs) installed that will help launch Mars Exploration Rover 2 (MER-2) on June 5. In the center are three more solid rocket boosters that will be added to the Delta, which will carry nine in all. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch as MER-A. MER-1 (MER-B) will launch June 25.

  17. KENNEDY SPACE CENTER, FLA. - A third solid rocket booster (SRB) is lifted up the launch tower on Launch Complex 17-A, Cape Canaveral Air Force Station. They are three of nine SRBs that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-14

    KENNEDY SPACE CENTER, FLA. - A third solid rocket booster (SRB) is lifted up the launch tower on Launch Complex 17-A, Cape Canaveral Air Force Station. They are three of nine SRBs that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  18. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, workers complete raising a solid rocket booster to a vertical position. It will be lifted up the launch tower and mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-14

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, workers complete raising a solid rocket booster to a vertical position. It will be lifted up the launch tower and mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  19. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, a solid rocket booster is raised off the transporter. When vertical, it will be lifted up the launch tower and mated to the Delta rocket (in the background) to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-14

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, a solid rocket booster is raised off the transporter. When vertical, it will be lifted up the launch tower and mated to the Delta rocket (in the background) to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  20. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, a solid rocket booster is moved into position to raise to vertical and lift up the launch tower. It is one of nine that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-14

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, a solid rocket booster is moved into position to raise to vertical and lift up the launch tower. It is one of nine that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  1. KENNEDY SPACE CENTER, FLA. - Workers on the launch tower of Complex 17-A, Cape Canaveral Air Force Station, stand by while a solid rocket booster (SRB) is lifted to vertical. It is one of nine that will help launch Mars Exploration Rover 2 (MER-2). NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - Workers on the launch tower of Complex 17-A, Cape Canaveral Air Force Station, stand by while a solid rocket booster (SRB) is lifted to vertical. It is one of nine that will help launch Mars Exploration Rover 2 (MER-2). NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  2. KSC-03pd0752

    NASA Image and Video Library

    2003-03-17

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers align the Rover Equipment Deck (RED) on one of the Mars Exploration Rovers (MER) with the Warm Electronics Box (WEB). Processing of the rovers, plus cruise stage, lander and heat shield elements, is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  3. Deployment Process, Mechanization, and Testing for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Iskenderian, Ted

    2004-01-01

    NASA's Mar Exploration Rover (MER) robotic prospectors were produced in an environment of unusually challenging schedule, volume, and mass restrictions. The technical challenges pushed the system s design towards extensive integration of function, which resulted in complex system engineering issues. One example of the system's integrated complexity can be found in the deployment process for the rover. Part of this process, rover "standup", is outlined in this paper. Particular attention is given to the Rover Lift Mechanism's (RLM) role and its design. Analysis methods are presented and compared to test results. It is shown that because prudent design principles were followed, a robust mechanism was created that minimized the duration of integration and test, and enabled recovery without perturbing related systems when reasonably foreseeable problems did occur. Examples of avoidable, unnecessary difficulty are also presented.

  4. Mars Exploration Rover -2

    NASA Image and Video Library

    2003-03-06

    Technicians in the Payload Hazardous Servicing Facility work on components of the Mars Exploration Rovers. In the center is a lander. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.

  5. Microscope on Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken at Meridiani Planum, Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's microscopic imager (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.

  6. Approaching Endeavour Crater, Sol 2,680

    NASA Image and Video Library

    2011-10-10

    This image from the navigation camera on NASA Mars Exploration Rover Opportunity shows the view ahead on the day before the rover reached the rim of Endeavour crater. It was taken during the 2,680th Martian day, or sol, of the rover work on Mars.

  7. High Martian Viewpoint for 11-Year-Old Rover False-Color Landscape

    NASA Image and Video Library

    2015-01-22

    NASA Mars Exploration Rover Opportunity obtained this view from the top of the Cape Tribulation segment of the rim of Endeavour Crater. The rover reached this point three weeks before the 11th anniversary of its January 2004 landing on Mars.

  8. Spirit Ascent Movie, Rover's-Eye View

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A movie assembled from frames taken by the rear hazard-identification camera on NASA's Mars Exploration Rover Spirit shows the last few days of the rover's ascent to the crest of 'Husband Hill' inside Mars' Gusev Crater. The rover was going in reverse. Rover planners often drive Spirit backwards to keep wheel lubrication well distributed. The images in this clip span a timeframe from Spirit's 573rd martian day, or sol (Aug, 13, 2005) to sol 582 (Aug. 22, 2005), the day after the rover reached the crest. During that period, Spirit drove 136 meters (446 feet),

  9. Mars Exploration Rovers Landing Dispersion Analysis

    NASA Technical Reports Server (NTRS)

    Knocke, Philip C.; Wawrzyniak, Geoffrey G.; Kennedy, Brian M.; Desai, Prasun N.; Parker, TImothy J.; Golombek, Matthew P.; Duxbury, Thomas C.; Kass, David M.

    2004-01-01

    Landing dispersion estimates for the Mars Exploration Rover missions were key elements in the site targeting process and in the evaluation of landing risk. This paper addresses the process and results of the landing dispersion analyses performed for both Spirit and Opportunity. The several contributors to landing dispersions (navigation and atmospheric uncertainties, spacecraft modeling, winds, and margins) are discussed, as are the analysis tools used. JPL's MarsLS program, a MATLAB-based landing dispersion visualization and statistical analysis tool, was used to calculate the probability of landing within hazardous areas. By convolving this with the probability of landing within flight system limits (in-spec landing) for each hazard area, a single overall measure of landing risk was calculated for each landing ellipse. In-spec probability contours were also generated, allowing a more synoptic view of site risks, illustrating the sensitivity to changes in landing location, and quantifying the possible consequences of anomalies such as incomplete maneuvers. Data and products required to support these analyses are described, including the landing footprints calculated by NASA Langley's POST program and JPL's AEPL program, cartographically registered base maps and hazard maps, and flight system estimates of in-spec landing probabilities for each hazard terrain type. Various factors encountered during operations, including evolving navigation estimates and changing atmospheric models, are discussed and final landing points are compared with approach estimates.

  10. Lunar environment and design of China's first moon rover Yutu

    NASA Astrophysics Data System (ADS)

    Jianhui, Wu

    China launched the Chang'e-3 lunar probe with the country's first moon rover aboard on Dec.14, marking a significant step toward deep space exploration.Lunar environment and environmental tests of typical lunar survyeors are discussed in this papaer.According to the needs of China's lunar exploration project,environmental impact of moon rovers and Yutu design ideas are studied.Through the research, temperature control device, micro-gravity environment design ,dust and other equipment devices used on Yutu all meet the mission requirements.

  11. Conceptual Design and Architecture of Mars Exploration Rover (MER) for Seismic Experiments Over Martian Surfaces

    NASA Astrophysics Data System (ADS)

    Garg, Akshay; Singh, Amit

    2012-07-01

    Keywords: MER, Mars, Rover, Seismometer Mars has been a subject of human interest for exploration missions for quite some time now. Both rover as well as orbiter missions have been employed to suit mission objectives. Rovers have been preferentially deployed for close range reconnaissance and detailed experimentation with highest accuracy. However, it is essential to strike a balance between the chosen science objectives and the rover operations as a whole. The objective of this proposed mechanism is to design a vehicle (MER) to carry out seismic studies over Martian surface. The conceptual design consists of three units i.e. Mother Rover as a Surrogate (Carrier) and Baby Rovers (two) as seeders for several MEMS-based accelerometer / seismometer units (Nodes). Mother Rover can carry these Baby Rovers, having individual power supply with solar cells and with individual data transmission capabilities, to suitable sites such as Chasma associated with Valles Marineris, Craters or Sand Dunes. Mother rover deploys these rovers in two opposite direction and these rovers follow a triangulation pattern to study shock waves generated through firing tungsten carbide shells into the ground. Till the time of active experiments Mother Rover would act as a guiding unit to control spatial spread of detection instruments. After active shock experimentation, the babies can still act as passive seismometer units to study and record passive shocks from thermal quakes, impact cratering & landslides. Further other experiments / payloads (XPS / GAP / APXS) can also be carried by Mother Rover. Secondary power system consisting of batteries can also be utilized for carrying out further experiments over shallow valley surfaces. The whole arrangement is conceptually expected to increase the accuracy of measurements (through concurrent readings) and prolong life cycle of overall experimentation. The proposed rover can be customised according to the associated scientific objectives and further needs.

  12. Opportunity on 'Cabo Frio' (Simulated)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image superimposes an artist's concept of the Mars Exploration Rover Opportunity atop the 'Cabo Frio' promontory on the rim of 'Victoria Crater' in the Meridiani Planum region of Mars. It is done to give a sense of scale. The underlying image was taken by Opportunity's panoramic camera during the rover's 952nd Martian day, or sol (Sept. 28, 2006).

    This synthetic image of NASA's Opportunity Mars Exploration Rover at Victoria Crater was produced using 'Virtual Presence in Space' technology. Developed at NASA's Jet Propulsion Laboratory, Pasadena, Calif., this technology combines visualization and image processing tools with Hollywood-style special effects. The image was created using a photorealistic model of the rover and an approximately full-color mosaic.

  13. Terrain Modelling for Immersive Visualization for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Wright, J.; Hartman, F.; Cooper, B.; Maxwell, S.; Yen, J.; Morrison, J.

    2004-01-01

    Immersive environments are being used to support mission operations at the Jet Propulsion Laboratory. This technology contributed to the Mars Pathfinder Mission in planning sorties for the Sojourner rover and is being used for the Mars Exploration Rover (MER) missions. The stereo imagery captured by the rovers is used to create 3D terrain models, which can be viewed from any angle, to provide a powerful and information rich immersive visualization experience. These technologies contributed heavily to both the mission success and the phenomenal level of public outreach achieved by Mars Pathfinder and MER. This paper will review the utilization of terrain modelling for immersive environments in support of MER.

  14. The Panoramic Camera (Pancam) Investigation on the NASA 2003 Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.; Schwochert, M.; Dingizian, A.; Brown, D.; Morris, R. V.; Arneson, H. M.; Johnson, M. J.

    2003-01-01

    The Panoramic Camera System (Pancam) is part of the Athena science payload to be launched to Mars in 2003 on NASA's twin Mars Exploration Rover (MER) missions. The Pancam imaging system on each rover consists of two major components: a pair of digital CCD cameras, and the Pancam Mast Assembly (PMA), which provides the azimuth and elevation actuation for the cameras as well as a 1.5 meter high vantage point from which to image. Pancam is a multispectral, stereoscopic, panoramic imaging system, with a field of regard provided by the PMA that extends across 360 of azimuth and from zenith to nadir, providing a complete view of the scene around the rover.

  15. Exomars 2018 Rover Pasteur Payload

    NASA Astrophysics Data System (ADS)

    Debus, Andre; Bacher, M.; Ball, A.; Barcos, O.; Bethge, B.; Gaubert, F.; Haldemann, A.; Lindner, R.; Pacros, A.; Trautner, R.; Vag, J.

    ars programme is a joint ESA-NASA program having exobiology as one of the key science objectives. It is divided into 2 missions: the first mission is ESA-led with an ESA orbiter and an ESA Entry, Descent and Landing (EDL) demonstrator, launched in 2016 by NASA, and the second mission is NASA-led, launched in 2018 by NASA carrying an ESA rover and a NASA rover both deployed by a single NASA EDL system. For ESA, the ExoMars programme will demonstrate key flight and in situ enabling technologies in support of the European ambitions for future exploration missions, as outlined in the Aurora Declaration. While the ExoMars 2016 mission will accomplish a technological objective (Entry, Descent and Landing of a payload on the surface) and a Scientific objective (investigation of Martian atmospheric trace gases and their sources, focussing particularly on methane), the ExoMars 2018 ESA Rover will carry a comprehensive and coherent suite of analytical instruments dedicated to exobiology and geology research: the Pasteur Payload (PPL). This payload includes a selection of complementary instruments, having the following goals: to search for signs of past and present life on Mars and to investigate the water/geochemical environment as a function of depth in the shallow subsurface. The ExoMars Rover includes a drill for accessing underground materials, and a Sample Preparation and Distribution System. The Rover will travel several kilometres looking for sites warranting further investigation, where it will collect and analyse samples from within outcrops and from the subsurface for traces of complex organic molecules. In addition to further details on this Exomars 2018 rover mission, this presentation will focus on the scientific objectives and the instruments needed to achieve them, including details of how the Pasteur Payload as a whole addresses Mars research objectives.

  16. KSC-03pd0764

    NASA Image and Video Library

    2003-03-20

    KENNEDY SPACE CENTER, Fla. - With cables released, this Mars Exploration Rover sits on the floor of the Payload Hazardous Servicing Facility. Processing of the rovers, cruise stage, lander and heat shield elements is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  17. KSC-03pd0765

    NASA Image and Video Library

    2003-03-20

    KENNEDY SPACE CENTER, Fla. - With cables released, this Mars Exploration Rover (MER) sits on the floor of the Payload Hazardous Servicing Facility. Processing of the rovers, cruise stage, lander and heat shield elements is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  18. KSC-03pd0762

    NASA Image and Video Library

    2003-03-20

    KENNEDY SPACE CENTER, Fla. - A worker in the Payload Hazardous Servicing Facility makes adjustments on one of the Mars Exploration Rovers (MER). Processing of the rovers, cruise stage, lander and heat shield elements is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  19. KSC-03pd0784

    NASA Image and Video Library

    2003-03-21

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover-2 (MER-2) has rotated. Atop the rover can be seen the cameras, mounted on a Pancam Mast Assembly (PMA). Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  20. KSC-03pd0761

    NASA Image and Video Library

    2003-03-20

    KENNEDY SPACE CENTER, Fla. - Workers in the Payload Hazardous Servicing Facility look over one of the Mars Exploration Rovers (MER). Processing of the rovers, cruise stage, lander and heat shield elements is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  1. KSC-03pd0758

    NASA Image and Video Library

    2003-03-20

    KENNEDY SPACE CENTER, FLA. - One of the Mars Exploration Rovers (MER) sits on a stand in the Payload Hazardous Servicing Facility. Processing of the rovers, cruise stage, lander and heat shield elements is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  2. 'RAT' Hole on 'Pilbara' (pre-RAT)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Mars Exploration Rover Opportunity broke its own record for the deepest hole ground into a rock on another planet with a 7.2-millimeter (about 0.28-inch) grind on the rock 'Pilbara,' on the rover's 86th sol on Mars.

    This image is from the rover's panoramic camera and features Pilbara before the rover ground into it with its rock abrasion tool. After careful examination of the rock, the rock abrasion tool engineers determined that the upper left portion (visible in this image) of Pilbara was the safest area to grind. The now familiar 'blueberries,' or spherules, are present in this rock, however, they do not appear in the same manner as other berries examined during this mission. Reminiscent of a golf tee, the blueberries sit atop a 'stem,' thus making them even more of an obstacle through which to grind. The left side of the rock is relatively berry-free and proved to be an ideal spot for the procedure.

    The team has developed a new approach to commanding the rock abrasion tool that allows for more aggressive grinding parameters. The tool is now programmed, in the event of a stall, to retreat from its target and attempt to grind again. This allows the grinder to essentially reset itself instead of aborting its sequence altogether and waiting for further commands from rover planners.

  3. KSC-03PD-1850

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Nine-year-old Sofi Collis is introduced to the media at a press conference. The Siberian-born Arizona resident wrote the winning entry in the Name the Rovers Contest sponsored by NASA and the Lego Co., a Denmark-based toymaker, with collaboration from the Planetary Society, Pasadena, Calif. The names she selected for the Mars Exploration Rovers are 'Spirit' and 'Opportunity.' The third grader's essay was chosen from more than 10,000 American student entries. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  4. Advanced Radioisotope Power System Enabled Titan Rover Concept with Inflatable Wheels

    NASA Astrophysics Data System (ADS)

    Balint, Tibor S.; Schriener, Timothy M.; Shirley, James H.

    2006-01-01

    The Decadal Survey identified Titan as one of the top priority science destinations in the large moons category, while NASA's proposed Design Reference Mission Set ranked a Titan in-situ explorer second, after a recommended Europa Geophysical Explorer mission. This paper discusses a Titan rover concept, enabled by a single advanced Radioisotope Power System that could provide about 110 We (BOL). The concept targets the smaller Flagship or potentially the New Frontiers mission class. This MSL class rover would traverse on four 1.5 m diameter inflatable wheels during its 3 years mission duration and would use as much design and flight heritage as possible to reduce mission cost. Direct to Earth communication would remove the need for a relay orbiter. Details on the strawman instrument payload, and rover subsystems are given for this science driven mission concept. In addition, power system trades between Advanced RTG, TPV, and Advanced-Stirling and Brayton RPSs are outlined. While many possible approaches exist for Titan in-situ exploration, the Titan rover concept presented here could provide a scientifically interesting and programmatically affordable solution.

  5. Availability of feature-oriented scanning probe microscopy for remote-controlled measurements on board a space laboratory or planet exploration Rover.

    PubMed

    Lapshin, Rostislav V

    2009-06-01

    Prospects for a feature-oriented scanning (FOS) approach to investigations of sample surfaces, at the micrometer and nanometer scales, with the use of scanning probe microscopy under space laboratory or planet exploration rover conditions, are examined. The problems discussed include decreasing sensitivity of the onboard scanning probe microscope (SPM) to temperature variations, providing autonomous operation, implementing the capabilities for remote control, self-checking, self-adjustment, and self-calibration. A number of topical problems of SPM measurements in outer space or on board a planet exploration rover may be solved via the application of recently proposed FOS methods.

  6. Preface: The Chang'e-3 lander and rover mission to the Moon

    NASA Astrophysics Data System (ADS)

    Ip, Wing-Huen; Yan, Jun; Li, Chun-Lai; Ouyang, Zi-Yuan

    2014-12-01

    The Chang'e-3 (CE-3) lander and rover mission to the Moon was an intermediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number of remote-sensing instruments including a pair of cameras (Landing Camera and Terrain Camera) for recording the landing process and surveying terrain, an extreme ultraviolet camera for monitoring activities in the Earth's plasmasphere, and a first-ever Moon-based ultraviolet telescope for astronomical observations. The Yutu rover successfully carried out close-up observations with the Panoramic Camera, mineralogical investigations with the VIS-NIR Imaging Spectrometer, study of elemental abundances with the Active Particle-induced X-ray Spectrometer, and pioneering measurements of the lunar subsurface with Lunar Penetrating Radar. This special issue provides a collection of key information on the instrumental designs, calibration methods and data processing procedures used by these experiments with a perspective of facilitating further analyses of scientific data from CE-3 in preparation for future missions.

  7. Academic Skills Rovers: A Just in Time Peer Support Initiative for Academic Skills and Literacy Development

    ERIC Educational Resources Information Center

    Copeman, Peter; Keightley, Polly

    2014-01-01

    In 2013 the University of Canberra (UC) initiated a program of peer-assisted academic skills help, the Academic Skills Rovers program, with the goal of providing drop-in peer learning support to students at campus locations where they congregate to study. The Academic Skills Rovers were initially recruited from the teacher education discipline,…

  8. Operation and performance of the Mars Exploration Rover imaging system on the Martian surface

    NASA Technical Reports Server (NTRS)

    Maki, Justin N.; Litwin, Todd; Herkenhoff, Ken

    2005-01-01

    The Imaging System on the Mars Exploration Rovers has successfully operated on the surface of Mars for over one Earth year. An overview of the surface imaging activities is provided, along with a summary of the image data acquired to date.

  9. Looking Back at Spirit Trail to the Summit Stereo

    NASA Image and Video Library

    2005-10-21

    Before moving on to explore more of Mars, NASA Mars Exploration Rover Spirit looked back at the long and winding trail of twin wheel tracks the rover created to get to the top of Husband Hill. 3D glasses are necessary to view this image.

  10. A Well-Traveled 'Eagle Crater' (left-eye)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is the left-eye version of the Mars Exploration Rover Opportunity's view on its 56th sol on Mars, before it left its landing-site crater. To the right, the rover tracks are visible at the original spot where the rover attempted unsuccessfully to exit the crater. After a one-sol delay, Opportunity took another route to the plains of Meridiani Planum. This image was taken by the rover's navigation camera.

  11. Rock Dusting Leaves 'Mickey Mouse' Mark

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the navigation camera on the Mars Exploration Rover Spirit shows the rock dubbed 'Humphrey' and the circular areas on the rock that were wiped off by the rover. The rover used a brush on its rock abrasion tool to clean these spots before examining them with its miniature thermal emission spectrometer. Later, the rover drilled into the rock with its rock abrasion tool, exposing fresh rock underneath.

  12. Students Race Rovers on a Martian and Lunar-themed Obstacle Course

    NASA Image and Video Library

    2017-01-05

    NASA's Human Exploration Rover Challenge encourages STEM-based research and development of new technologies focusing on current plans to explore planets, moons, asteroids and comets -- all members of the solar system family. This year's race will be held March 30 - April 1, 2017, at the U.S. Space & Rocket Center in Huntsville, Alabama. The challenge will focus on designing, constructing and testing technologies for mobility devices to perform in these different environments, and it will provide valuable experiences that engage students in the technologies and concepts that will be needed in future exploration missions. Rovers will be human-powered and carry two students, one female and one male, over a half-mile obstacle course of simulated extraterrestrial terrain of craters, boulders, ridges, inclines, crevasses and depressions. Follow them on social media at: TWITTER: https://twitter.com/RoverChallenge FACEBOOK: https://www.facebook.com/roverchallenge/ Or visit the website at: www.nasa.gov/roverchallenge

  13. Dynamic Modeling and Soil Mechanics for Path Planning of the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Trease, Brian

    2011-01-01

    To help minimize risk of high sinkage and slippage during drives and to better understand soil properties and rover terramechanics from drive data, a multidisciplinary team was formed under the Mars Exploration Rover project to develop and utilize dynamic computer-based models for rover drives over realistic terrains. The resulting system, named ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction System), consists of the dynamic model, a library of terramechanics subroutines, and the high-resolution digital elevation maps of the Mars surface. A 200-element model of the rovers was developed and validated for drop tests before launch, using Adams dynamic modeling software. The external library was built in Fortran and called by Adams to model the wheel-soil interactions include the rut-formation effect of deformable soils, lateral and longitudinal forces, bull-dozing effects, and applied wheel torque. The paper presents the details and implementation of the system. To validate the developed system, one study case is presented from a realistic drive on Mars of the Opportunity rover. The simulation results match well from the measurement of on-board telemetry data. In its final form, ARTEMIS will be used in a predictive manner to assess terrain navigability and will become part of the overall effort in path planning and navigation for both Martian and lunar rovers.

  14. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, a crane is in place to lift the fairing for the Mars Exploration Rover 2 (MER-2/MER-A). The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, a crane is in place to lift the fairing for the Mars Exploration Rover 2 (MER-2/MER-A). The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  15. KENNEDY SPACE CENTER, FLA. - The fairing for the Mars Exploration Rover 2 (MER-2/MER-A) arrives at Launch Complex 17-A, Cape Canaveral Air Force Station. It will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - The fairing for the Mars Exploration Rover 2 (MER-2/MER-A) arrives at Launch Complex 17-A, Cape Canaveral Air Force Station. It will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  16. KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B, Cape Canaveral Air Force Station, the Mars Exploration Rover 1 (MER-B) arrives at the tower landing where it will be mated with the Delta rocket. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

    NASA Image and Video Library

    2003-06-17

    KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B, Cape Canaveral Air Force Station, the Mars Exploration Rover 1 (MER-B) arrives at the tower landing where it will be mated with the Delta rocket. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

  17. KENNEDY SPACE CENTER, FLA. - Workers on Launch Pad 17-B, Cape Canaveral Air Force Station, complete mating of the Mars Exploration Rover 1 (MER-B), above, to the Delta rocket below. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

    NASA Image and Video Library

    2003-06-17

    KENNEDY SPACE CENTER, FLA. - Workers on Launch Pad 17-B, Cape Canaveral Air Force Station, complete mating of the Mars Exploration Rover 1 (MER-B), above, to the Delta rocket below. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

  18. KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B, Cape Canaveral Air Force Station, the Mars Exploration Rover 1 (MER-B) is lifted up the tower for mating with the Delta rocket. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

    NASA Image and Video Library

    2003-06-17

    KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B, Cape Canaveral Air Force Station, the Mars Exploration Rover 1 (MER-B) is lifted up the tower for mating with the Delta rocket. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

  19. KENNEDY SPACE CENTER, FLA. - In the gantry on Launch Complex 17-B, Cape Canaveral Air Force Station, workers start removing the canister from around the Mars Exploration Rover 1 (MER-B). The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

    NASA Image and Video Library

    2003-06-17

    KENNEDY SPACE CENTER, FLA. - In the gantry on Launch Complex 17-B, Cape Canaveral Air Force Station, workers start removing the canister from around the Mars Exploration Rover 1 (MER-B). The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

  20. KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 1 (MER-B) arrives at Launch Pad 17-B, Cape Canaveral Air Force Station, where it will be mated with the Delta rocket for launch. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

    NASA Image and Video Library

    2003-06-17

    KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 1 (MER-B) arrives at Launch Pad 17-B, Cape Canaveral Air Force Station, where it will be mated with the Delta rocket for launch. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

  1. KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 1 (MER-B) is moved out of the Payload Hazardous Servicing Facility for transfer to Launch Pad 17-B, Cape Canaveral Air Force Station. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

    NASA Image and Video Library

    2003-06-17

    KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 1 (MER-B) is moved out of the Payload Hazardous Servicing Facility for transfer to Launch Pad 17-B, Cape Canaveral Air Force Station. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

  2. KSC-03pd0753

    NASA Image and Video Library

    2003-03-17

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, workers check alignment of the Rover Equipment Deck (RED) on one of the Mars Exploration Rovers (MER) with the Warm Electronics Box (WEB). Processing of the rovers, plus cruise stage, lander and heat shield elements, is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  3. KSC-03pd0756

    NASA Image and Video Library

    2003-03-17

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, the Rover Equipment Deck (RED) on one of the Mars Exploration Rovers (MER) is integrated to the Warm Electronics Box (WEB) on the WEB cart. Processing of the rovers, plus cruise stage, lander and heat shield elements, is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  4. KSC-03pd0754

    NASA Image and Video Library

    2003-03-17

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, the Rover Equipment Deck (RED) on one of the Mars Exploration Rovers (MER) is integrated to the Warm Electronics Box (WEB) on the WEB cart. Processing of the rovers, plus cruise stage, lander and heat shield elements, is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  5. ISRU Reactant, Fuel Cell Based Power Plant for Robotic and Human Mobile Exploration Applications

    NASA Technical Reports Server (NTRS)

    Baird, Russell S.; Sanders, Gerald; Simon, Thomas; McCurdy, Kerri

    2003-01-01

    Three basic power generation system concepts are generally considered for lander, rover, and Extra-Vehicular Activity (EVA) assistant applications for robotic and human Moon and Mars exploration missions. The most common power system considered is the solar array and battery system. While relatively simple and successful, solar array/battery systems have some serious limitations for mobile applications. For typical rover applications, these limitations include relatively low total energy storage capabilities, daylight only operating times (6 to 8 hours on Mars), relatively short operating lives depending on the operating environment, and rover/lander size and surface use constraints. Radioisotope power systems are being reconsidered for long-range science missions. Unfortunately, the high cost, political controversy, and launch difficulties that are associated with nuclear-based power systems suggests that the use of radioisotope powered landers, rovers, and EVA assistants will be limited. The third power system concept now being considered are fuel cell based systems. Fuel cell power systems overcome many of the performance and surface exploration limitations of solar array/battery power systems and the prohibitive cost and other difficulties associated with nuclear power systems for mobile applications. In an effort to better understand the capabilities and limitations of fuel cell power systems for Moon and Mars exploration applications, NASA is investigating the use of in-Situ Resource Utilization (ISRU) produced reactant, fuel cell based power plants to power robotic outpost rovers, science equipment, and future human spacecraft, surface-excursion rovers, and EVA assistant rovers. This paper will briefly compare the capabilities and limitations of fuel cell power systems relative to solar array/battery and nuclear systems, discuss the unique and enhanced missions that fuel cell power systems enable, and discuss the common technology and system attributes possible for robotic and human exploration to maximize scientific return and minimize cost and risk to both. Progress made to date at the Johnson Space Center on an ISRU producible reactant, Proton Exchange Membrane (PEM) fuel cell based power plant project to demonstrate the concept in conjunction with rover applications will be presented in detail.

  6. ISRU Reactant, Fuel Cell Based Power Plant for Robotic and Human Mobile Exploration Applications

    NASA Astrophysics Data System (ADS)

    Baird, Russell S.; Sanders, Gerald; Simon, Thomas; McCurdy, Kerri

    2003-01-01

    Three basic power generation system concepts are generally considered for lander, rover, and Extra-Vehicular Activity (EVA) assistant applications for robotic and human Moon and Mars exploration missions. The most common power system considered is the solar array and battery system. While relatively simple and successful, solar array/battery systems have some serious limitations for mobile applications. For typical rover applications, these limitations include relatively low total energy storage capabilities, daylight only operating times (6 to 8 hours on Mars), relatively short operating lives depending on the operating environment, and rover/lander size and surface use constraints. Radioisotope power systems are being reconsidered for long-range science missions. Unfortunately, the high cost, political controversy, and launch difficulties that are associated with nuclear-based power systems suggests that the use of radioisotope powered landers, rovers, and EVA assistants will be limited. The third power system concept now being considered are fuel cell based systems. Fuel cell power systems overcome many of the performance and surface exploration limitations of solar array/battery power systems and the prohibitive cost and other difficulties associated with nuclear power systems for mobile applications. In an effort to better understand the capabilities and limitations of fuel cell power systems for Moon and Mars exploration applications. NASA is investigating the use of In-Situ Resource Utilization (ISRU) produced reactant, fuel cell based power plants to power robotic outpost rovers, science equipment, and future human spacecraft, surface-excursion rovers, and EVA assistant rovers. This paper will briefly compare the capabilities and limitations of fuel cell power systems relative to solar array/battery and nuclear systems, discuss the unique and enhanced missions that fuel cell power systems enable, and discuss the common technology and system attributes possible for robotic and human exploration to maximize scientific return and minimize cost and risk to both. Progress made to date at the Johnson Space Center on an ISRU producible reactant. Proton Exchange Membrane (PEM) fuel cell based power plant project for use in the first demonstration of this concept in conjunction with rover applications will be presented in detail.

  7. KSC-03PD-1836

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Sofi Collis, the third grade student winner of the 'Name the Rovers' contest, poses with a model of a rover. The names she proposed -- Spirit and Opportunity -- were announced today in a press conference held by NASA Administrator Sean O'Keefe. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  8. Design of a Day/Night Lunar Rover

    NASA Astrophysics Data System (ADS)

    Berkelman, Peter; Easudes, Jesse; Martin, Martin C.; Rollins, Eric; Silberman, Jack; Chen, Mei; Hancock, John; Mor, Andrew B.; Sharf, Alex; Warren, Tom; Bapna, Deepak

    1995-06-01

    The pair of lunar rovers discussed in this report will return video and state data to various ventures, including theme park and marketing concerns, science agencies, and educational institutions. The greatest challenge accepted by the design team was to enable operations throughout the extremely cold and dark lunar night, an unprecedented goal in planetary exploration. This is achieved through the use of the emerging technology of Alkali Metal Thermal to Electric Converters (AMTEC), provided with heat from a innovative beta-decay heat source, Krypton-85 gas. Although previous space missions have returned still images, our design will convey panoramic video from a ring of cameras around the rover. A six-wheel rocker bogie mechanism is implemented to propel the rover. The rovers will also provide the ability to safeguard their operation to allow untrained members of the general public to drive the vehicle. Additionally, scientific exploration and educational outreach will be supported with a user operable, steerable and zoomable camera.

  9. Mars Exploration Rover -2

    NASA Image and Video Library

    2003-03-06

    Components of the two Mars Exploration Rovers (MER) reside in the Payload Hazardous Servicing Facility. At right MER-2. At left is a lander. In the background is one of the aeroshells. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.

  10. Axel Robotic Platform for Crater and Extreme Terrain Exploration

    NASA Technical Reports Server (NTRS)

    Nesnas, Issa A.; Matthews, Jaret B.; Edlund, Jeffrey A.; Burdick, Joel W.; Abad-Manterola, Pablo

    2012-01-01

    To be able to conduct science investigations on highly sloped and challenging terrains, it is necessary to deploy science payloads to such locations and collect and process in situ samples. A tethered robotic platform has been developed that is capable of exploring very challenging terrain. The Axel rover is a symmetrical rover that is minimally actuated, can traverse arbitrary paths, and operate upside-down or right-side up. It can be deployed from a larger platform (rover, lander, or aerobot) or from a dual Axel configuration. Axel carries and manages its own tether, reducing damage to the tether during operations. Fundamentally, Axel is a two-wheeled rover with a symmetric body and a trailing link. Because the primary goal is minimal complexity, this version of the Axel rover uses only four primary actuators to control its wheels, tether, and a trailing link. A fifth actuator is used for level winding of tether onto Axel s spool.

  11. Searching for Subsurface Lunar Water Ice using a Nuclear-Powered Rover

    NASA Astrophysics Data System (ADS)

    Randolph, James E.; Abelson, Robert D.; Oxnevad, Knut I.; Shirley, James H.

    2005-02-01

    The Vision for Space Exploration has identified the Earth's moon as a future destination for human explorers as a stepping-stone for further manned deep space exploration. The feasibility of building and maintaining a human presence on the moon could be directly related to whether in-situ resources, especially water ice, can be obtained and utilized by astronauts. With the recent success of both Mars Exploration Rovers (MERs), it is clear that a lunar rover could be a desirable platform with which to search for evidence of lunar water prior to the arrival of astronauts. However, since surface water can only exist in permanently shadowed areas of the moon (i.e., deep craters near the poles), conventionally powered rovers would not be practical for exploring these areas for extended periods. Thus, a study was performed to assess the feasibility of a lunar rover mission enabled by small radioisotope power systems (RPS), i.e., systems that use single GPHSs. Small RPSs, the feasibility of which has been looked at by the Department of Energy, would be capable of providing sufficient electrical and thermal power to allow scientific measurements and operations of a small rover on the floor of dark lunar craters. A conceptual study was completed that considered the science instruments that could be accommodated on a MER-type rover using RPS power. To investigate the subsurface characteristics of the crater floor, a pulsed gamma ray/neutron spectrometer and a ground-penetrating radar would be used. Also, a drill would provide core samples from a depth of 1 meter. A rover architecture consistent with MER capabilities included a mast with panoramic cameras and navigation cameras as well as an instrument deployment device (IDD) that allowed direct contact between the instrument head and surface materials to be measured. Because the crater floor is eternally dark, artificial illumination must be used for both landing and roving operations. The rover design included of dual headlights that would be operated during visual imaging observations. During the landing approach, the lander would use a laser imaging technique to image the approaching surface and react to that image to avoid hazards. The baseline rover concept used four GPHS power sources for a total of about 50 We in conjunction with a 25 A hr battery to supply power during peak loads. A detailed analysis of energy usage for various operational scenarios (e.g. roving, science instrument operations, and telecommunications) was completed using an elaborate power simulation tool. The results show that very demanding activities are possible on a daily basis while maintaining the battery charging.

  12. KSC-03pd0980

    NASA Image and Video Library

    2003-04-04

    KENNEDY SPACE CENTER, FLA. - Workers prepare the shrouded Mars Exploration Rover 2 (MER-2) for mating to the lander. Set to launch in Spring 2003, the MER Mission consists of two identical rovers, landing at different regions of Mars, designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  13. Cutting the Cord

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation shows the view from the front hazard avoidance cameras on the Mars Exploration Rover Spirit as the rover turns 45 degrees clockwise. This maneuver is the first step in a 3-point turn that will rotate the rover 115 degrees to face west. The rover must make this turn before rolling off the lander because airbags are blocking it from exiting off the front lander petal. Before this crucial turn could take place, engineers instructed the rover to cut the final cord linking it to the lander. The turn took around 30 minutes to complete.

  14. Cutting the Cord-2

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation shows the view from the rear hazard avoidance cameras on the Mars Exploration Rover Spirit as the rover turns 45 degrees clockwise. This maneuver is the first step in a 3-point turn that will rotate the rover 115 degrees to face west. The rover must make this turn before rolling off the lander because airbags are blocking it from exiting from the front lander petal. Before this crucial turn took place, engineers instructed the rover to cut the final cord linking it to the lander. The turn took around 30 minutes to complete.

  15. KSC-03pd1249

    NASA Image and Video Library

    2003-04-25

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility help guide the Mars Exploration Rover 1 (MER-1) as it is moved to the lander base petal for installation. The MER Mission consists of two identical rovers, landing at different regions of Mars, designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening June 5, and the second rover a window opening June 25. The rovers will be launched from Cape Canaveral Air Force Station.

  16. KSC-03pd1250

    NASA Image and Video Library

    2003-04-25

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility guide the Mars Exploration Rover 1 (MER-1) as it is lowered onto the lander base petal for installation. The MER Mission consists of two identical rovers, landing at different regions of Mars, designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening June 5, and the second rover a window opening June 25. The rovers will be launched from Cape Canaveral Air Force Station.

  17. KSC-03pd1251

    NASA Image and Video Library

    2003-04-25

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility guide the Mars Exploration Rover 1 (MER-1) as it is lowered onto the lander base petal for installation. The MER Mission consists of two identical rovers, landing at different regions of Mars, designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening June 5, and the second rover a window opening June 25. The rovers will be launched from Cape Canaveral Air Force Station.

  18. Crane Lowers Aeroshell

    NASA Technical Reports Server (NTRS)

    2003-01-01

    January 31, 2003

    In the Payload Hazardous Servicing Facility, an overhead crane lowers the Mars Exploration Rover (MER) aeroshell toward a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  19. KSC-03pd0771

    NASA Image and Video Library

    2003-03-20

    KENNEDY SPACE CENTER, Fla. - The solar arrays on the Mars Exploration Rover-2 (MER-2) are fully opened during a test in the Payload Hazardous Servicing Facility. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  20. KSC-03pd0957

    NASA Image and Video Library

    2003-04-02

    KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 1 (MER-1) is seen in the foreground after the science boom was deployed. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  1. KSC-03pd0909

    NASA Image and Video Library

    2003-03-29

    KENNEDY SPACE CENTER, FLA. - Workers gather around the Mars Exploration Rover 2 (MER-2) before flight stow of the solar panels, still extended. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. The rovers will be identical to each other, but will land at different regions of Mars. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  2. KSC-03pd0232

    NASA Image and Video Library

    2003-01-31

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, an overhead crane lifts the Mars Exploration Rover (MER) aeroshell for transfer to a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  3. KSC-03pd0913

    NASA Image and Video Library

    2003-03-29

    KENNEDY SPACE CENTER, FLA. - Workers begin closing the solar panels on the Mars Exploration Rover 2 (MER-2) for flight stow. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. The rovers will be identical to each other, but will land at different regions of Mars. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  4. KSC-03pd0438

    NASA Image and Video Library

    2003-02-04

    KENNEDY SPACE CENTER, FLA. -- The aeroshell for Mars Exploration Rover 2 rests on a rotation stand in the Payload Hazardous Servicing Facility. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  5. KSC-03pd0230

    NASA Image and Video Library

    2003-01-31

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover (MER) aeroshell is being prepared for transfer to a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  6. KSC-03pd0768

    NASA Image and Video Library

    2003-03-20

    KENNEDY SPACE CENTER, FLA. -- The Mars Exploration Rover-2 (MER-2) is ready for solar array testing in the Payload Hazardous Servicing Facility. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  7. KSC-03pd0786

    NASA Image and Video Library

    2003-03-21

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover-2 (MER-2) is tested for mobility and maneuverability. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  8. KSC-03pd0234

    NASA Image and Video Library

    2003-01-31

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, an overhead crane lowers the Mars Exploration Rover (MER) aeroshell toward a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  9. KSC-03pd0457

    NASA Image and Video Library

    2003-02-06

    KENNEDY SPACE CENTER, FLA. -- Technicians secure the aeroshell for Mars Exploration Rover 2 to a workstand in the Payload Hazardous Servicing Facility. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25, 2003.

  10. KSC-03pd0439

    NASA Image and Video Library

    2003-02-04

    KENNEDY SPACE CENTER, FLA. -- The aeroshell for Mars Exploration Rover 2 rests on end after rotation in the Payload Hazardous Servicing Facility. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  11. KSC-03pd0236

    NASA Image and Video Library

    2003-01-31

    KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility help guide the Mars Exploration Rover (MER) aeroshell onto a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  12. KSC-03pd0235

    NASA Image and Video Library

    2003-01-31

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility help guide the Mars Exploration Rover (MER) aeroshell as it is lowered toward a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  13. KSC-03pd0440

    NASA Image and Video Library

    2003-02-04

    KENNEDY SPACE CENTER, FLA. - During processing, workers in the Payload Hazardous Servicing Facility work on part of the aeroshell for Mars Exploration Rover 2. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  14. KSC-03pd0955

    NASA Image and Video Library

    2003-04-02

    KENNEDY SPACE CENTER, FLA. - A worker examines the Mars Exploration Rover 1 (MER-1) after the science boom was deployed. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  15. KSC-03pd0911

    NASA Image and Video Library

    2003-03-29

    KENNEDY SPACE CENTER, FLA. - A worker checks a component of the Mars Exploration Rover 2 (MER-2) before flight stow of the solar panels, still extended. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. The rovers will be identical to each other, but will land at different regions of Mars. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  16. KSC-03pd0886

    NASA Image and Video Library

    2003-03-28

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover-2 (MER-2) rests on the base petal of its lander assembly. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25.

  17. KSC-03pd0958

    NASA Image and Video Library

    2003-04-02

    KENNEDY SPACE CENTER, FLA. - On the Mars Exploration Rover 1 (MER-1), the science boom, below the front petal, is deployed. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  18. KSC-03pd0910

    NASA Image and Video Library

    2003-03-29

    KENNEDY SPACE CENTER, FLA. - Workers make additional checks of the Mars Exploration Rover 2 (MER-2) before flight stow of the solar panels, still extended. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. The rovers will be identical to each other, but will land at different regions of Mars. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  19. KSC-03pd0793

    NASA Image and Video Library

    2003-03-21

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover-2 (MER-2) rolls over ramps to test its mobility and maneuverability. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  20. KSC-03pd0914

    NASA Image and Video Library

    2003-03-29

    KENNEDY SPACE CENTER, FLA. - After closing the solar panels for flight stow, workers examine the Mars Exploration Rover 2 (MER-2). Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. The rovers will be identical to each other, but will land at different regions of Mars. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  1. Arusha Rover Deployable Medical Workstation

    NASA Technical Reports Server (NTRS)

    Boswell, Tyrone; Hopson, Sonya; Marzette, Russell; Monroe, Gilena; Mustafa, Ruqayyah

    2014-01-01

    The NSBE Arusha rover concept offers a means of human transport and habitation during long-term exploration missions on the moon. This conceptual rover calls for the availability of medical supplies and equipment for crew members in order to aid in mission success. This paper addresses the need for a dedicated medical work station aboard the Arusha rover. The project team investigated multiple options for implementing a feasible deployable station to address both the medical and workstation layout needs of the rover and crew. Based on layout specifications and medical workstation requirements, the team has proposed a deployable workstation concept that can be accommodated within the volumetric constraints of the Arusha rover spacecraft

  2. Learning from the Mars Rover Mission: Scientific Discovery, Learning and Memory

    NASA Technical Reports Server (NTRS)

    Linde, Charlotte

    2005-01-01

    Purpose: Knowledge management for space exploration is part of a multi-generational effort. Each mission builds on knowledge from prior missions, and learning is the first step in knowledge production. This paper uses the Mars Exploration Rover mission as a site to explore this process. Approach: Observational study and analysis of the work of the MER science and engineering team during rover operations, to investigate how learning occurs, how it is recorded, and how these representations might be made available for subsequent missions. Findings: Learning occurred in many areas: planning science strategy, using instrumen?s within the constraints of the martian environment, the Deep Space Network, and the mission requirements; using software tools effectively; and running two teams on Mars time for three months. This learning is preserved in many ways. Primarily it resides in individual s memories. It is also encoded in stories, procedures, programming sequences, published reports, and lessons learned databases. Research implications: Shows the earliest stages of knowledge creation in a scientific mission, and demonstrates that knowledge management must begin with an understanding of knowledge creation. Practical implications: Shows that studying learning and knowledge creation suggests proactive ways to capture and use knowledge across multiple missions and generations. Value: This paper provides a unique analysis of the learning process of a scientific space mission, relevant for knowledge management researchers and designers, as well as demonstrating in detail how new learning occurs in a learning organization.

  3. The Collaborative Information Portal and NASA's Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Mak, Ronald; Walton, Joan

    2005-01-01

    The Collaborative Information Portal was enterprise software developed jointly by the NASA Ames Research Center and the Jet Propulsion Laboratory for NASA's Mars Exploration Rover mission. Mission managers, engineers, scientists, and researchers used this Internet application to view current staffing and event schedules, download data and image files generated by the rovers, receive broadcast messages, and get accurate times in various Mars and Earth time zones. This article describes the features, architecture, and implementation of this software, and concludes with lessons we learned from its deployment and a look towards future missions.

  4. The Mars Exploration Rover/Collaborative Information Portal

    NASA Technical Reports Server (NTRS)

    Walton, Joan; Filman, Robert E.; Schreiner, John; Koga, Dennis (Technical Monitor)

    2002-01-01

    Astrology has long argued that the alignment of the planets governs human affairs. Science usually scoffs at this. There is, however, an important exception: sending spacecraft for planetary exploration. In late May and early June, 2003, Mars will be in position for Earth launch. Two Mars Exploration Rovers (MER) will rocket towards the red planet. The rovers will perform a series of geological and meteorological experiments, seeking to examine geological evidence for water and conditions once favorable for life. Back on earth, a small army of surface operations staff will work to keep the rovers running, sending directions for each day's operations and receiving the files encoding the outputs of the Rover's six instruments. (Mars is twenty light minutes from Earth. The rovers must be robots.) The fundamental purpose of the project is, after all, Science. Scientists have experiments they want to run. Ideally, scientists want to be immediately notified when the data products of their experiments have been received, so that they can examine their data and (collaboratively) deduce results. Mars is an unpredictable environment. We may issue commands to the rovers but there is considerable uncertainty in how the commands will be executed and whether what the rovers sense will be worthy of further pursuit. The steps of what is, to a scientist, conceptually an individual experiment may be scattered over a large number of activities. While the scientific staff has an overall strategic idea of what it would like to accomplish, activities are planned daily. The data and surprises of the previous day need to be integrated into the negotiations for the next day's activities, all synchronized to a schedule of transmission windows . Negotiations is the operative term, as different scientists want the resources to run possibly incompatible experiments. Many meetings plan each day's activities.

  5. Mars Rover Model Celebration: Using Planetary Exploration To Enrich STEM Teaching In Elementary And Middle School

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Ramsey, J.; Dominey, W.; Kapral, A.; Carlson, C.; Konstantinidis, I.; James, J.; Sweaney, S.; Mendez, R.

    2011-12-01

    The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. The recent NASA Mars Rover missions capture the imagination of children, as NASA missions have done for decades. The University of Houston is in the process of developing a prototype of a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model rover. The existing prototype program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students will design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. The model will be a mock-up, constructed at a minimal cost from art supplies. The students will build the models as part of a project on Mars. The students will be given design criteria for a rover and will do basic research on Mars that will determine the objectives and features of their rover. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The program culminates in a capstone event held at the University of Houston (or other central location in the other communities that will be involved) where the best models from each school or group are brought together for a celebratory showcase exhibit and judging. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning.

  6. Mars Exploration Rover engineering cameras

    USGS Publications Warehouse

    Maki, J.N.; Bell, J.F.; Herkenhoff, K. E.; Squyres, S. W.; Kiely, A.; Klimesh, M.; Schwochert, M.; Litwin, T.; Willson, R.; Johnson, Aaron H.; Maimone, M.; Baumgartner, E.; Collins, A.; Wadsworth, M.; Elliot, S.T.; Dingizian, A.; Brown, D.; Hagerott, E.C.; Scherr, L.; Deen, R.; Alexander, D.; Lorre, J.

    2003-01-01

    NASA's Mars Exploration Rover (MER) Mission will place a total of 20 cameras (10 per rover) onto the surface of Mars in early 2004. Fourteen of the 20 cameras are designated as engineering cameras and will support the operation of the vehicles on the Martian surface. Images returned from the engineering cameras will also be of significant importance to the scientific community for investigative studies of rock and soil morphology. The Navigation cameras (Navcams, two per rover) are a mast-mounted stereo pair each with a 45?? square field of view (FOV) and an angular resolution of 0.82 milliradians per pixel (mrad/pixel). The Hazard Avoidance cameras (Hazcams, four per rover) are a body-mounted, front- and rear-facing set of stereo pairs, each with a 124?? square FOV and an angular resolution of 2.1 mrad/pixel. The Descent camera (one per rover), mounted to the lander, has a 45?? square FOV and will return images with spatial resolutions of ???4 m/pixel. All of the engineering cameras utilize broadband visible filters and 1024 x 1024 pixel detectors. Copyright 2003 by the American Geophysical Union.

  7. Constructing an Educational Mars Simulation

    NASA Technical Reports Server (NTRS)

    Henke, Stephen A.

    2004-01-01

    January 14th 2004, President George Bush announces his plans to catalyst the space program into a new era of space exploration and discovery. His vision encompasses a robotics program to explore our solar system, a return to the moon, the human exploration of Mars, and to promote international prosperity towards our endeavors. We at NASA now have the task of constructing this vision in a very real timeframe. I have been chosen to begin phase 1 of making this vision a reality. I will be working on creating an Educational Mars Simulation of human exploration of Mars to stimulate interest and involvement with the project from investors and the community. GRC s Computer Services Division (CSD) in collaboration with the Office of Education Programs will be designing models, constructing terrain, and programming this simulation to create a realistic portrayal of human exploration on mars. With recent and past technological breakthroughs in computing, my primary goal can be accomplished with only the aid of 3-4 software packages. Lightwave 3D is the modeling package we have selected to use for the creation of our digital objects. This includes a Mars pressurized rover, rover cockpit, landscape/terrain, and habitat. Once we have the models completed they need textured so Photoshop and Macromedia Fireworks are handy for bringing these objects to life. Before directly importing all of this data into a simulation environment, it is necessary to first render a stunning animation of the desired final product. This animation with represent what we hope to capture out of the simulation and it will include all of the accessories like ray-tracing, fog effects, shadows, anti-aliasing, particle effects, volumetric lighting, and lens flares. Adobe Premier will more than likely be used for video editing and adding ambient noises and music. Lastly, V-Tree is the real-time 3D graphics engine which will facilitate our realistic simulation. Additional information is included in the original extended abstract.

  8. KSC-03pd1230

    NASA Image and Video Library

    2003-04-24

    KENNEDY SPACE CENTER, FLA. - This closeup shows the size of the computer chip that holds about 35,000 laser-engraved signatures of visitors to the Mars Exploration Rovers at the Jet Propulsion Laboratory. It will be placed on the second rover to be launched to Mars; the first rover already has one. The signatures include those of senators, artists, and John Glenn. The identical Mars rovers are scheduled to launch June 5 and June 25 from Cape Canaveral Air Force Station.

  9. KENNEDY SPACE CENTER, FLA. - After arriving at Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted off its transporter. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - After arriving at Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted off its transporter. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  10. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  11. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) reaches the top of the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) reaches the top of the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  12. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted off the transporter. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted off the transporter. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  13. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is moved inside the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5..

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is moved inside the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5..

  14. Ballistic Range Testing of the Mars Exploration Rover Entry Capsule

    NASA Technical Reports Server (NTRS)

    Schoenenberger, Mark; Hathaway, Wayne; Yates, Leslie; Desai, Prasun

    2005-01-01

    Results from a 25 shot ballistic range test of the Mars Exploration Rover (MER) aeroshell are presented. The supersonic pitch damping properties of the MER capsule were characterized between Mach = 1.5 and Mach = 3.5 and total angles-of-attack from 0 degrees to greater than 25 degrees. Three capsule center-of-gravity positions were tested across this range of conditions, 0.27, 0.30 and 0.33 body diameters aft of the nose. Parameter identification results show that the capsule is dynamically unstable at low angles-of-attack across the Mach numbers tested, with instability increasing with lower speeds. This dynamic instability was seen to increase with aft center-of-gravity movement. The MER outer mold line was very similar to the successful Mars Pathfinder capsule with only minor modifications. Pathfinder relied on Viking forced oscillation data for preflight predictions. The pitch damping data calculated from this test program are shown to more accurately reproduce the measured Path finder flight data.

  15. KSC-03pd0883

    NASA Image and Video Library

    2003-03-28

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers adjust the position of the Mars Exploration Rover-2 (MER-2) on the base petal of its lander assembly. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25.

  16. KSC-03pd0795

    NASA Image and Video Library

    2003-03-21

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, workers watch as the Mars Exploration Rover-2 (MER-2) rolls over ramps to test its mobility and maneuverability. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  17. KSC-03pd0791

    NASA Image and Video Library

    2003-03-21

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, workers watch as the Mars Exploration Rover-2 (MER-2) rolls over ramps to test its mobility and maneuverability. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  18. KSC-03pd0790

    NASA Image and Video Library

    2003-03-21

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, workers watch as the Mars Exploration Rover-2 (MER-2) rolls over ramps to test its mobility and maneuverability. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  19. KSC-03pd0879

    NASA Image and Video Library

    2003-03-28

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers move the Mars Exploration Rover-2 (MER-2) into position over the base petal of its lander assembly. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25.

  20. KSC-03pd0881

    NASA Image and Video Library

    2003-03-28

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers lower the Mars Exploration Rover-2 (MER-2) onto the base petal of its lander assembly. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25.

  1. KSC-03pd0877

    NASA Image and Video Library

    2003-03-28

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers prepare the base petal of a lander assembly to receive the Mars Exploration Rover-2 (MER-2). Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25.

  2. KSC-03pd0878

    NASA Image and Video Library

    2003-03-28

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers move the Mars Exploration Rover-2 (MER-2) towards the base petal of its lander assembly. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25.

  3. KSC-03pd0233

    NASA Image and Video Library

    2003-01-31

    KENNEDY SPACE CENTER, FLA. - Suspended by an overhead crane in the Payload Hazardous Servicing Facility, the Mars Exploration Rover (MER) aeroshell is guided by workers as it moves to a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  4. KSC-03PD-1852

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Nine-year-old Sofi Collis (left) shares a light moment with NASA Administrator Sean O'Keefe at a press conference. The Siberian-born Arizona resident wrote the winning entry in the Name the Rovers Contest sponsored by NASA and the Lego Co., a Denmark-based toymaker, with collaboration from the Planetary Society, Pasadena, Calif. The names she selected for the Mars Exploration Rovers are 'Spirit' and 'Opportunity.' The third grader's essay was chosen from more than 10,000 American student entries. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  5. KSC-03PD-1851

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Nine-year-old Sofi Collis (left) is introduced to the media by NASA Administrator Sean O'Keefe at a press conference. The Siberian-born Arizona resident wrote the winning entry in the Name the Rovers Contest sponsored by NASA and the Lego Co., a Denmark-based toymaker, with collaboration from the Planetary Society, Pasadena, Calif. The names she selected for the Mars Exploration Rovers are 'Spirit' and 'Opportunity.' The third grader's essay was chosen from more than 10,000 American student entries. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  6. MRSR: Rationale for a Mars Rover/Sample Return mission

    NASA Technical Reports Server (NTRS)

    Carr, Michael H.

    1992-01-01

    The Solar System Exploration Committee of the NASA Advisory Council has recommended that a Mars Rover/Sample Return mission be launched before the year 2000. The recommendation is consistent with the science objectives as outlined by the National Academy of Sciences committees on Planetary and Lunar Exploration, and Planetary Biology and Chemical Evolution. Interest has also focused on Mars Rover/Sample Return (MRSR) missions, because of their crucial role as precursors for human exploration. As a result of this consensus among the advisory groups, a study of an MRSR mission began early in 1987. The study has the following goals: (1) to assess the technical feasibility of the mission; (2) to converge on two or three options for the general architecture of the mission; (3) to determine what new technologies need to be developed in order to implement the mission; (4) to define the different options sufficiently well that preliminary cost estimates can be made; and (5) to better define the science requirements. This chapter briefly describes Mars Rover/Sample Return missions that were examined in the late 1980s. These missions generally include a large (1000 kg) rover and return of over 5 kg of sample.

  7. PIA05044

    NASA Image and Video Library

    2004-01-11

    This mosaic image taken by the navigation camera on the Mars Exploration Rover Spirit represents an overhead view of the rover as it prepares to roll off the lander and onto the martian surface. The yellow arrow illustrates the direction the rover may take to roll safely off the lander. The rover was originally positioned to roll straight forward off the lander (south side of image). However, an airbag is blocking its path. To take this northeastern route, the rover must back up and perform what is likened to a 3-point turn in a cramped parking lot. http://photojournal.jpl.nasa.gov/catalog/PIA05044

  8. Lunar Surface Scenarios: Habitation and Life Support Systems for a Pressurized Rover

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Hanford, Anthony; Howard, Robert; Toups, Larry

    2006-01-01

    Pressurized rovers will be a critical component of successful lunar exploration to enable safe investigation of sites distant from the outpost location. A pressurized rover is a complex system with the same functions as any other crewed vehicle. Designs for a pressurized rover need to take into account significant constraints, a multitude of tasks to be performed inside and out, and the complexity of life support systems to support the crew. In future studies, pressurized rovers should be given the same level of consideration as any other vehicle occupied by the crew.

  9. 'Bird's Eye' View of Egress

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This mosaic image taken by the navigation camera on the Mars Exploration Rover Spirit represents an overhead view of the rover as it prepares to roll off the lander and onto the martian surface. The yellow arrow illustrates the direction the rover may take to roll safely off the lander. The rover was originally positioned to roll straight forward off the lander (south side of image). However, an airbag is blocking its path. To take this northeastern route, the rover must back up and perform what is likened to a 3-point turn in a cramped parking lot.

  10. Planetary exploration through year 2000: An augmented program. Part two of a report by the Solar System Exploration Committee of the NASA Advisory Council

    NASA Technical Reports Server (NTRS)

    1986-01-01

    In 1982, the NASA Solar System Exploration Committee (SSEC) published a report on a Core Program of planetary missions, representing the minimum-level program that could be carried out in a cost effective manner, and would yield a continuing return of basic scientific results. This is the second part of the SSEC report, describing missions of the highest scientific merit that lie outside the scope of the previously recommended Core Program because of their cost and technical challenge. These missions include the autonomous operation of a mobile scientific rover on the surface of Mars, the automated collection and return of samples from that planet, the return to Earth of samples from asteroids and comets, projects needed to lay the groundwork for the eventual utilization of near-Earth resources, outer planet missions, observation programs for extra-solar planets, and technological developments essential to make these missions possible.

  11. Spirit Beholds Bumpy Boulder

    NASA Technical Reports Server (NTRS)

    2006-01-01

    As NASA's Mars Exploration Rover Spirit began collecting images for a 360-degree panorama of new terrain, the rover captured this view of a dark boulder with an interesting surface texture. The boulder sits about 40 centimeters (16 inches) tall on Martian sand about 5 meters (16 feet) away from Spirit. It is one of many dark, volcanic rock fragments -- many pocked with rounded holes called vesicles -- littering the slope of 'Low Ridge.' The rock surface facing the rover is similar in appearance to the surface texture on the outside of lava flows on Earth.

    Spirit took this approximately true-color image with the panoramic camera on the rover's 810th sol, or Martian day, of exploring Mars (April 13, 2006), using the camera's 753-nanometer, 535-nanometer, and 432-nanometer filters.

  12. Peeling Back the Layers of Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a 3-D model of the trench excavated by the Mars Exploration Rover Opportunity on the 23rd day, or sol, of its mission. An oblique view of the trench from a bit above and to the right of the rover's right wheel is shown. The model was generated from images acquired by the rover's front hazard-avoidance cameras.

  13. Raising Nuclear Thermal Propulsion (NTP) Technology Readiness Above 3

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2014-01-01

    NTP development is currently supported by the NASA program office "Advanced Exploration Systems". The concept is a main propulsion option being considered for human missions to Mars in the 2030's. Major NTP development took place in the 1960's and 1970's under the Rover/NERVA program. The technology had matured to TRL 6 and was preparing to go to TRL 7 with a prototype flight engine before the program was cancelled. Over the last 40 years, a variety of continuations started, but only lasted a few years each. The Rover/NERVA infrastructure is almost all gone. The only remains are a few pieces of hardware, final reports and a few who worked the Rover/NERVA. Two types of nuclear fuel are being investigated to meet the current engine design specific impulse of 900 seconds compared to approximately 850 seconds demonstrated during Rover/NERVA. One is a continuation of composite fuel with new coatings to better control mid-band corrosion. The other type is a CERMET fuel made of Tungsten and UO2. Both fuels are being made from Rover/NERVA lessons learned, but with slightly different recipes to increase fuel endurance at higher operating temperatures. The technology readiness level (TRL) of these current modified reactor fuels is approximately TRL 3. To keep the development cost low and help mature the TRL level past 4 quickly, a few special non-nuclear test facilities have been made to test surrogate fuel, with depleted uranium, as coupons and full length elements. Both facilities utilize inductive heating and are licensed to handle depleted uranium. TRL 5 requires exposing the fuel to a nuclear environment and TRL 6 requires a prototype ground or flight engine system test. Currently, three different NTP ground test facility options are being investigated: exhaust scrubber, bore hole, and total exhaust containment. In parallel, a prototype flight demonstration test is also being studied. The first human mission to Mars in the 2030's is currently 2033. For an advanced propulsion concept to be seriously considered for use, the engine development plans need to show it is feasible and affordable to reach TRL 8 by 2027 and can be qualified for human mission use.

  14. Autonomous Rover Traverse and Precise Arm Placement on Remotely Designated Targets

    NASA Technical Reports Server (NTRS)

    Felder, Michael; Nesnas, Issa A.; Pivtoraiko, Mihail; Kelly, Alonzo; Volpe, Richard

    2011-01-01

    Exploring planetary surfaces typically involves traversing challenging and unknown terrain and acquiring in-situ measurements at designated locations using arm-mounted instruments. We present field results for a new implementation of an autonomous capability that enables a rover to traverse and precisely place an arm-mounted instrument on remote targets. Using point-and-click mouse commands, a scientist designates targets in the initial imagery acquired from the rover's mast cameras. The rover then autonomously traverse the rocky terrain for a distance of 10 - 15 m, tracks the target(s) of interest during the traverse, positions itself for approaching the target, and then precisely places an arm-mounted instrument within 2-3 cm from the originally designated target. The rover proceeds to acquire science measurements with the instrument. This work advances what has been previously developed and integrated on the Mars Exploration Rovers by using algorithms that are capable of traversing more rock-dense terrains, enabling tight thread-the-needle maneuvers. We integrated these algorithms on the newly refurbished Athena Mars research rover and fielded them in the JPL Mars Yard. We conducted 43 runs with targets at distances ranging from 5 m to 15 m and achieved a success rate of 93% for placement of the instrument within 2-3 cm.

  15. Li-ion rechargeable batteries on Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar; Smart, M.; Whitacanack, L.; Ewell, R.; Surampudi, S.

    2006-01-01

    Lithium-ion batteries have contributed significantly to the success of NASA's Mars Rovers, Spirit and Opportunity that have been exploring the surface of Mars for the last two years and performing astounding geological studies to answer the ever-puzzling questions of life beyond Earth and the origin of our planets. Combined with the triple-junction solar cells, the lithium-ion batteries have been powering the robotic rovers, and assist in keeping the rover electronics warm, and in supporting nighttime experimentation and communications. The use of Li-ion batteries has resulted in significant benefits in several categories, such as mass, volume, energy efficiency, self discharge, and above all low temperature performance. Designed initially for the primary mission needs of 300 cycles over 90 days of surface operation, the batteries have been performing admirably, over the last two years. After about 670 days of exploration and at least as many cycles, there is little change in the end-of discharge (EOD) voltages or capacities of these batteries, as estimated from the in-flight data and corroborated by ground testing. Aided by such impressive durability from the Li-ion batteries, both from cycling and calendar life stand point, these rovers are poised to extend their exploration well beyond two years. In this paper, we will describe the performance characteristics of these batteries during launch, cruise phase and on the surface of Mars thus far.

  16. KSC-03PD-1849

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Nine-year-old Sofi Collis (third from left) and her family pose proudly with a banner displaying the names she selected for the Mars Exploration Rovers -- 'Spirit' and 'Opportunity' -- following a press conference announcing the names. The names Sofi suggested were chosen from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  17. KSC-03PD-1847

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Nine-year-old Sofi Collis (left) is congratulated by NASA Administrator Sean O'Keefe for selecting the names of the Mars Exploration Rovers -- 'Spirit' and 'Opportunity' -- during a press conference. The names Sofi suggested were chosen from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  18. KSC-2012-3316

    NASA Image and Video Library

    2012-06-12

    CAPE CANAVERAL, Fla. – NASA In Situ Resource Utilization Project Manager William Larson, back to rover, discusses the design and operation of the prototype rover Artemis Jr. for NASA’s Regolith and Environment Science and Oxygen and Lunar Volatile Extraction, or RESOLVE, project with media representatives during a rover demonstration in a field beside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. The rover and its drill are provided by the Canadian Space Agency and work in concert with NASA science instruments to prospect for water, ice and other lunar resources. RESOLVE also will demonstrate how future explorers can take advantage of resources at potential landing sites by manufacturing oxygen from soil. NASA will conduct field tests in July outside of Hilo, Hawaii, with equipment and concept vehicles that demonstrate how explorers might prospect for resources and make their own oxygen for survival while on other planetary bodies. For more information, visit http://www.nasa.gov/exploration/analogs/index.html. Photo credit: NASA/Dimitri Gerondidakis

  19. Air Bag Installation

    NASA Technical Reports Server (NTRS)

    2003-01-01

    May 10, 2003Prelaunch at Kennedy Space Center

    On Mars Exploration Rover 1 (MER-1) , air bags are installed on the lander. The airbags will inflate to cushion the landing of the spacecraft on the surface of Mars. When it stops bouncing and rolling, the airbags will deflate and retract, the petals will open to bring the lander to an upright position, and the rover will be exposed. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  20. Downward Slope

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image from NASA's Mars Exploration Rover Opportunity panoramic camera shows a downward view from the rover as it sits at the edge of 'Endurance' crater. The gradual, 'blueberry'-strewn slope before the rover contains an exposed dark layer of rock that wraps around the upper section of the crater. Scientists suspect that this rock layer will provide clues about Mars' distant past. This mosaic image comprises images taken from 10 rover positions using 750, 530 and 430 nanometer filters, acquired on sol 131 (June 6, 2004).

  1. Toward remotely controlled planetary rovers.

    NASA Technical Reports Server (NTRS)

    Moore, J. W.

    1972-01-01

    Studies of unmanned planetary rovers have emphasized a Mars mission. Relatively simple rovers, weighing about 50 kg and tethered to the lander, may precede semiautonomous roving vehicles. It is conceivable that the USSR will deploy a rover on Mars before Viking lands. The feasibility of the roving vehicle as an explorational tool hinges on its ability to operate for extended periods of time relatively independent of earth, to withstand the harshness of the Martian environment, and to travel hundreds of kilometers independent of the spacecraft that delivers it.

  2. Approaching Rock Target No. 1

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D stereo anaglyph image was taken by the Mars Exploration Rover Spirit front hazard-identification camera after the rover's first post-egress drive on Mars Sunday. Engineers drove the rover approximately 3 meters (10 feet) from the Columbia Memorial Station toward the first rock target, seen in the foreground. The football-sized rock was dubbed Adirondack because of its mountain-shaped appearance. Scientists plan to use instruments at the end of the rover's robotic arm to examine the rock and understand how it formed.

  3. Adirondack Under the Microscope

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image was taken by the Mars Exploration Rover Spirit front hazard-identification camera after the rover's first post-egress drive on Mars Sunday, Jan. 15, 2004. Engineers drove the rover approximately 3 meters (10 feet) from the Columbia Memorial Station toward the first rock target, seen in the foreground. The football-sized rock was dubbed Adirondack because of its mountain-shaped appearance. Scientists have begun using the microscopic imager instrument at the end of the rover's robotic arm to examine the rock and understand how it formed.

  4. Mars Rover Studies Soil on Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Both out on the plains of Gusev Crater and in the 'Columbia Hills,' NASA's Mars Exploration Rover Spirit has encountered a thin (approximately 1 millimeter or 0.04 inch thick), light-colored, fine-grained layer of material on top of a dark-colored, coarser layer of soil. In the hills, Spirit stopped to take a closer look at soil compacted by one of the rover's wheels. Spirit took this image with the front hazard-avoidance camera during the rover's 314th martian day, or sol (Nov. 19, 2004).

  5. Entry trajectory and atmosphere reconstruction methodologies for the Mars Exploration Rover mission

    NASA Astrophysics Data System (ADS)

    Desai, Prasun N.; Blanchard, Robert C.; Powell, Richard W.

    2004-02-01

    The Mars Exploration Rover (MER) mission will land two landers on the surface of Mars, arriving in January 2004. Both landers will deliver the rovers to the surface by decelerating with the aid of an aeroshell, a supersonic parachute, retro-rockets, and air bags for safely landing on the surface. The reconstruction of the MER descent trajectory and atmosphere profile will be performed for all the phases from hypersonic flight through landing. A description of multiple methodologies for the flight reconstruction is presented from simple parameter identification methods through a statistical Kalman filter approach.

  6. KSC-03PD-0514

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - At NASA's Family & Community Mars Exploration Day held in Cape Canaveral, Fla., students look at a remote-controlled model of the Mars Exploration Rover. The event informed students and the general public about Florida's key role as NASA's 'Gateway to Mars' and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.

  7. KSC-03pd0514

    NASA Image and Video Library

    2003-02-19

    KENNEDY SPACE CENTER, FLA. - At NASA's Family & Community Mars Exploration Day held in Cape Canaveral, Fla., students look at a remote-controlled model of the Mars Exploration Rover. The event informed students and the general public about Florida's key role as NASA's "Gateway to Mars" and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.

  8. Planning for rover opportunistic science

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel M.; Estlin, Tara; Forest, Fisher; Chouinard, Caroline; Castano, Rebecca; Anderson, Robert C.

    2004-01-01

    The Mars Exploration Rover Spirit recently set a record for the furthest distance traveled in a single sol on Mars. Future planetary exploration missions are expected to use even longer drives to position rovers in areas of high scientific interest. This increase provides the potential for a large rise in the number of new science collection opportunities as the rover traverses the Martian surface. In this paper, we describe the OASIS system, which provides autonomous capabilities for dynamically identifying and pursuing these science opportunities during longrange traverses. OASIS uses machine learning and planning and scheduling techniques to address this goal. Machine learning techniques are applied to analyze data as it is collected and quickly determine new science gods and priorities on these goals. Planning and scheduling techniques are used to alter the behavior of the rover so that new science measurements can be performed while still obeying resource and other mission constraints. We will introduce OASIS and describe how planning and scheduling algorithms support opportunistic science.

  9. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover "Opportunity" for the second Mars Exploration Rover mission launches at 11:18:15 p.m. EDT. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.

    NASA Image and Video Library

    2003-07-07

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover "Opportunity" for the second Mars Exploration Rover mission launches at 11:18:15 p.m. EDT. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.

  10. Exomars Mission Achievements

    NASA Astrophysics Data System (ADS)

    Lecomte, J.; Juillet, J. J.

    2016-12-01

    ExoMars is the first step of the European Space Agency's Aurora Exploration Programme. Comprising two missions, the first one launched in 2016 and the second one to be launched in 2020, ExoMars is a program developed in a broad ESA and Roscosmos co-operation, with significant contribution from NASA that addresses the scientific question of whether life ever existed on Mars and demonstrate key technologies for entry, descent, landing, drilling and roving on the Martian surface . Thales Alenia Space is the overall prime contractor of the Exomars program leading a large industrial team The Spacecraft Composite (SCC), consisting of a Trace Gas Orbiter (TGO) and an EDL (Entry Descend and Landing) Demonstrator Module (EDM) named Schiaparelli, has been launched on 14 March 2016 from the Baikonur Cosmodrome by a Proton Launcher. The two modules will separate on 16 October 2016 after a 7 months cruise. The TGO will search for evidence of methane and other atmospheric gases that could be signatures of active biological or geological processes on Mars and will provide communications relay for the 2020 surface assets. The Schiaparelli module will prove the technologies required to safely land a payload on the surface of Mars, with a package of sensors aimed to support the reconstruction of the flown trajectory and the assessment of the performance of the EDL subsystems. For the second Exomars mission a space vehicle composed of a Carrier Module (CM) and a Descent Module (DM), whose Landing Platform (LP) will house a Rover, will begin a 7 months long trip to Mars in August 2020. In 2021 the Descent Module will be separated from the Carrier to carry out the entry into the planet's atmosphere and subsequently make the Landing Platform and the Rover land gently on the surface of Mars. While the LP will continue to measure the environmental parameters of the landing site, the Rover will begin exploration of the surface, which is expected to last 218 Martian days (approx. 230 Earth days). During the exploration the Rover will use the TGO-2016 for the communications with Earth. This paper will outline the Exomars 2016 mission design, first in flight achievement and performance results and provide a description of the major design drivers of the 2020 mission, with a view to highlight lessons learnt aspects that must be considered for future mission design.

  11. Java PathExplorer: A Runtime Verification Tool

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Rosu, Grigore; Clancy, Daniel (Technical Monitor)

    2001-01-01

    We describe recent work on designing an environment called Java PathExplorer for monitoring the execution of Java programs. This environment facilitates the testing of execution traces against high level specifications, including temporal logic formulae. In addition, it contains algorithms for detecting classical error patterns in concurrent programs, such as deadlocks and data races. An initial prototype of the tool has been applied to the executive module of the planetary Rover K9, developed at NASA Ames. In this paper we describe the background and motivation for the development of this tool, including comments on how it relates to formal methods tools as well as to traditional testing, and we then present the tool itself.

  12. Photometric Observations of Soils and Rocks at the Mars Exploration Rover Landing Sites

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Arvidson, R. A.; Bell, J. F., III; Farrand, W.; Guinness, E.; Johnson, M.; Herkenhoff, K. E.; Lemmon, M.; Morris, R. V.; Seelos, F., IV

    2005-01-01

    The Panoramic Cameras (Pancam) on the Spirit and Opportunity Mars Exploration Rovers have acquired multispectral reflectance observations of rocks and soils at different incidence, emission, and phase angles that will be used for photometric modeling of surface materials. Phase angle coverage at both sites extends from approx. 0 deg. to approx. 155 deg.

  13. KSC-03PD-1578

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Workers in the Payload Hazardous Servicing Facility prepare to lift and move the backshell that will cover the Mars Exploration Rover 1 (MER-1) and its lander. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  14. Preliminary Surface Thermal Design of the Mars 2020 Rover

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Kempenaar, Jason G.; Redmond, Matthew J.; Bhandari, Pradeep

    2015-01-01

    The Mars 2020 rover, scheduled for launch in July 2020, is currently being designed at NASA's Jet Propulsion Laboratory. The Mars 2020 rover design is derived from the Mars Science Laboratory (MSL) rover, Curiosity, which has been exploring the surface of Mars in Gale Crater for over 2.5 years. The Mars 2020 rover will carry a new science payload made up of 7 instruments. In addition, the Mars 2020 rover is responsible for collecting a sample cache of Mars regolith and rock core samples that could be returned to Earth in a future mission. Accommodation of the new payload and the Sampling Caching System (SCS) has driven significant thermal design changes from the original MSL rover design. This paper describes the similarities and differences between the heritage MSL rover thermal design and the new Mars 2020 thermal design. Modifications to the MSL rover thermal design that were made to accommodate the new payload and SCS are discussed. Conclusions about thermal design flexibility are derived from the Mars 2020 preliminary thermal design experience.

  15. Mars Rover Sample Return mission study

    NASA Technical Reports Server (NTRS)

    Bourke, Roger D.

    1989-01-01

    The Mars Rover/Sample Return mission is examined as a precursor to a manned mission to Mars. The value of precursor missions is noted, using the Apollo lunar program as an example. The scientific objectives of the Mars Rover/Sample Return mission are listed and the basic mission plans are described. Consideration is given to the options for mission design, launch configurations, rover construction, and entry and lander design. Also, the potential for international cooperation on the Mars Rover/Sample Return mission is discussed.

  16. ExoMars Mission 2016, Orbiter Module Power System Architecture (Based On An Unregulated Bus & MPPT Controlled Step-Down Voltage Regulators)

    NASA Astrophysics Data System (ADS)

    Digoin, JJ.; Boutelet, E.

    2011-10-01

    The main objective of the ExoMars program is to demonstrate key flight in situ enabling technologies in support of the European ambitions for future exploration missions and to pursue fundamental scientific investigations. Two missions are foreseen within the ExoMars program for the 2016 and 2018 launch opportunities to Mars. The 2016 mission is an ESA led mission that will supply a Mars Orbiter Module (OM) carrying an Entry Descent module (EDM) and NASA/ESA scientific instruments. The 2018 mission is a NASA led mission bringing one ESA rover and one NASA rover onto the Mars surface. This paper presents the OM Electrical Power Sub- system (EPS) design achieved at the end of pre- development phase. The main aspects addressed are: - EPS major constraints due to mission and environment, a succinct description of the power units, - Trade-off analyses results leading to the selected EPS architecture, - Preliminary results of electrical and energy simulations, - EPS units development plan.

  17. First results from the Mojave Volatiles Prospector (MVP) Field Campaign, a Lunar Polar Rover Mission Analog

    NASA Astrophysics Data System (ADS)

    Heldmann, J. L.; Colaprete, A.; Cook, A.; Deans, M. C.; Elphic, R. C.; Lim, D. S. S.; Skok, J. R.

    2014-12-01

    The Mojave Volatiles Prospector (MVP) project is a science-driven field program with the goal to produce critical knowledge for conducting robotic exploration of the Moon. MVP will feed science, payload, and operational lessons learned to the development of a real-time, short-duration lunar polar volatiles prospecting mission. MVP achieves these goals through a simulated lunar rover mission to investigate the composition and distribution of surface and subsurface volatiles in a natural and a priori unknown environment within the Mojave Desert, improving our understanding of how to find, characterize, and access volatiles on the Moon. The MVP field site is the Mojave Desert, selected for its low, naturally occurring water abundance. The Mojave typically has on the order of 2-6% water, making it a suitable lunar analog for this field test. MVP uses the Near Infrared and Visible Spectrometer Subsystem (NIRVSS), Neutron Spectrometer Subsystem (NSS), and a downward facing GroundCam camera on the KREX-2 rover to investigate the relationship between the distribution of volatiles and soil crust variation. Through this investigation, we mature robotic in situ instruments and concepts of instrument operations, improve ground software tools for real time science, and carry out publishable research on the water cycle and its connection to geomorphology and mineralogy in desert environments. A lunar polar rover mission is unlike prior space missions and requires a new concept of operations. The rover must navigate 3-5 km of terrain and examine multiple sites in in just ~6 days. Operational decisions must be made in real time, requiring constant situational awareness, data analysis and rapid turnaround decision support tools. This presentation will focus on the first science results and operational architecture findings from the MVP field deployment relevant to a lunar polar rover mission.

  18. KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis poses proudly with a banner displaying the names she selected for the Mars Exploration Rovers -- "Spirit" and "Opportunity" -- during a press conference. Participating in the press conference are, from left, Brad Justus, LEGO Co. senior vice president; Sofi Collis, a third grade student from Arizona; Dr. John Marburger, science advisor to the President and director of the Office of Science and Technology Policy; and NASA Administrator Sean O'Keefe. The names Sofi suggested were selected from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

    NASA Image and Video Library

    2003-06-08

    KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis poses proudly with a banner displaying the names she selected for the Mars Exploration Rovers -- "Spirit" and "Opportunity" -- during a press conference. Participating in the press conference are, from left, Brad Justus, LEGO Co. senior vice president; Sofi Collis, a third grade student from Arizona; Dr. John Marburger, science advisor to the President and director of the Office of Science and Technology Policy; and NASA Administrator Sean O'Keefe. The names Sofi suggested were selected from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  19. KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis poses proudly with a banner displaying the names she selected for the Mars Exploration Rovers -- "Spirit" and "Opportunity" -- during a press conference. Participating in the press conference are, from left, Brad Justus, LEGO Co. senior vice president; Sofi Collis, third grade student from Arizona; Dr. John Marburger, science advisor to the President and director of the Office of Science and Technology Policy; and NASA Administrator Sean O'Keefe. The names Sofi suggested were selected from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

    NASA Image and Video Library

    2003-06-08

    KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis poses proudly with a banner displaying the names she selected for the Mars Exploration Rovers -- "Spirit" and "Opportunity" -- during a press conference. Participating in the press conference are, from left, Brad Justus, LEGO Co. senior vice president; Sofi Collis, third grade student from Arizona; Dr. John Marburger, science advisor to the President and director of the Office of Science and Technology Policy; and NASA Administrator Sean O'Keefe. The names Sofi suggested were selected from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  20. KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis unveils the names of the Mars Exploration Rovers -- "Spirit" and "Opportunity" -- during a press conference. Participating in the press conference are, from left, Dr. John Marburger, science advisor to the President and director of the Office of Science and Technology Policy; NASA Administrator Sean O'Keefe; Sofi Collis, a third grade student from Arizona; and Brad Justus, LEGO Co. senior vice president. The names Sofi suggested were selected from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

    NASA Image and Video Library

    2003-06-08

    KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis unveils the names of the Mars Exploration Rovers -- "Spirit" and "Opportunity" -- during a press conference. Participating in the press conference are, from left, Dr. John Marburger, science advisor to the President and director of the Office of Science and Technology Policy; NASA Administrator Sean O'Keefe; Sofi Collis, a third grade student from Arizona; and Brad Justus, LEGO Co. senior vice president. The names Sofi suggested were selected from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  1. Lunar surface exploration using mobile robots

    NASA Astrophysics Data System (ADS)

    Nishida, Shin-Ichiro; Wakabayashi, Sachiko

    2012-06-01

    A lunar exploration architecture study is being carried out by space agencies. JAXA is carrying out research and development of a mobile robot (rover) to be deployed on the lunar surface for exploration and outpost construction. The main target areas for outpost construction and lunar exploration are mountainous zones. The moon's surface is covered by regolith. Achieving a steady traversal of such irregular terrain constitutes the major technical problem for rovers. A newly developed lightweight crawler mechanism can effectively traverse such irregular terrain because of its low contact force with the ground. This fact was determined on the basis of the mass and expected payload of the rover. This paper describes a plan for Japanese lunar surface exploration using mobile robots, and presents the results of testing and analysis needed in their development. This paper also gives an overview of the lunar exploration robot to be deployed in the SELENE follow-on mission, and the composition of its mobility, navigation, and control systems.

  2. At Home in the Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The wheel tracks seen above and to the left of the lander trace the path the Mars Exploration Rover Opportunity has traveled since landing in a small crater at Meridiani Planum, Mars. After this picture was taken, the rover excavated a trench near the soil seen at the lower left corner of the image. This image mosaic was taken by the rover's navigation camera.

  3. The Chang'e 3 Mission Overview

    NASA Astrophysics Data System (ADS)

    Li, Chunlai; Liu, Jianjun; Ren, Xin; Zuo, Wei; Tan, Xu; Wen, Weibin; Li, Han; Mu, Lingli; Su, Yan; Zhang, Hongbo; Yan, Jun; Ouyang, Ziyuan

    2015-07-01

    The Chang'e 3 (CE-3) mission was implemented as the first lander/rover mission of the Chinese Lunar Exploration Program (CLEP). After its successful launch at 01:30 local time on December 2, 2013, CE-3 was inserted into an eccentric polar lunar orbit on December 6, and landed to the east of a 430 m crater in northwestern Mare Imbrium (19.51°W, 44.12°N) at 21:11 on December 14, 2013. The Yutu rover separated from the lander at 04:35, December 15, and traversed for a total of 0.114 km. Acquisition of science data began during the descent of the lander and will continue for 12 months during the nominal mission. The CE-3 lander and rover each carry four science instruments. Instruments on the lander are: Landing Camera (LCAM), Terrain Camera (TCAM), Extreme Ultraviolet Camera (EUVC), and Moon-based Ultraviolet Telescope (MUVT). The four instruments on the rover are: Panoramic Camera (PCAM), VIS-NIR Imaging Spectrometer (VNIS), Active Particle induced X-ray Spectrometer (APXS), and Lunar Penetrating Radar (LPR). The science objectives of the CE-3 mission include: (1) investigation of the morphological features and geological structures of and near the landing area; (2) integrated in-situ analysis of mineral and chemical composition of and near the landing area; and (3) exploration of the terrestrial-lunar space environment and lunar-based astronomical observations. This paper describes the CE-3 objectives and measurements that address the science objectives outlined by the Comprehensive Demonstration Report of Phase II of CLEP. The CE-3 team has archived the initial science data, and we describe data accessibility by the science community.

  4. Lander and rover exploration on the lunar surface: A study for SELENE-B mission

    NASA Astrophysics Data System (ADS)

    Selene-B Rover Science Group; Sasaki, S.; Sugihara, T.; Saiki, K.; Akiyama, H.; Ohtake, M.; Takeda, H.; Hasebe, N.; Kobayashi, M.; Haruyama, J.; Shirai, K.; Kato, M.; Kubota, T.; Kunii, Y.; Kuroda, Y.

    The SELENE-B, a lunar landing mission, has been studied in Japan, where a scientific investigation plan is proposed using a robotic rover and a static lander. The main theme to be investigated is to clarify the lunar origin and evolution, especially for early crustal formation process probably from the ancient magma ocean. The highest priority is placed on a direct in situ geology at a crater central peak, “a window to the interior”, where subcrustal materials are exposed and directly accessed without drilling. As a preliminary study was introduced by Sasaki et al. [Sasaki, S., Kubota, T., Okada, T. et al. Scientific exploration of lunar surface using a rover in Japanse future lunar mission. Adv. Space Res. 30, 1921 1926, 2002.], the rover and lander are jointly used, where detailed analyses of the samples collected by the rover are conducted at the lander. Primary scientific instruments are a multi-band stereo imager, a gamma-ray spectrometer, and a sampling tool on the rover, and a multi-spectral telescopic imager, a sampling system, and a sample analysis package with an X-ray spectrometer/diffractometer, a multi-band microscope as well as a sample cleaning and grinding device on the lander.

  5. Cape Verde

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This Mars Exploration Rover Opportunity Pancam 'super resolution' mosaic of the approximately 6 m (20 foot) high cliff face of the Cape Verde promontory was taken by the rover from inside Victoria Crater, during the rover's descent into Duck Bay. Super-resolution is an imaging technique which utilizes information from multiple pictures of the same target in order to generate an image with a higher resolution than any of the individual images. Cape Verde is a geologically rich outcrop and is teaching scientists about how rocks at Victoria crater were modified since they were deposited long ago. This image complements super resolution mosaics obtained at Cape St. Mary and Cape St. Vincent and is consistent with the hypothesis that Victoria crater is located in the middle of what used to be an ancient sand dune field. Many rover team scientists are hoping to be able to eventually drive the rover closer to these layered rocks in the hopes of measuring their chemistry and mineralogy.

    This is a Mars Exploration Rover Opportunity Panoramic Camera image mosaic acquired on sols 1342 and 1356 (November 2 and 17, 2007), and was constructed from a mathematical combination of 64 different blue filter (480 nm) images.

  6. KSC-03pd0987

    NASA Image and Video Library

    2003-04-04

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility examine the Mars Exploration Rover 2 (MER-2) as it is lowered onto the base petal of the lander. Set to launch in Spring 2003, the MER Mission consists of two identical rovers. Landing at different regions of Mars, they are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  7. KSC-03pd0984

    NASA Image and Video Library

    2003-04-04

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility check the Mars Exploration Rover 2 (MER-2) before it is lifted and moved to the lander where it will be mated to the base petal. Set to launch in Spring 2003, the MER Mission consists of two identical rovers, landing at different regions of Mars, designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  8. KSC-03pd0988

    NASA Image and Video Library

    2003-04-04

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility release the overhead crane used to lower the Mars Exploration Rover 2 (MER-2) onto the base petal of the lander. Set to launch in Spring 2003, the MER Mission consists of two identical rovers. Landing at different regions of Mars, they are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  9. KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility prepare Mars Exploration Rover 1 (MER-B) to be mated with the third stage of the Delta rocket that will launch it to Mars. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch from Launch Pad 17-B, Cape Canaveral Air Force Station, June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility prepare Mars Exploration Rover 1 (MER-B) to be mated with the third stage of the Delta rocket that will launch it to Mars. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch from Launch Pad 17-B, Cape Canaveral Air Force Station, June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

  10. KENNEDY SPACE CENTER, FLA. - In the background, right, workers in the Payload Hazardous Servicing Facility get ready to lift Mars Exploration Rover 1 (MER-B) to the third stage of the Delta rocket (foreground) for mating. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch from Launch Pad 17-B, Cape Canaveral Air Force Station, June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - In the background, right, workers in the Payload Hazardous Servicing Facility get ready to lift Mars Exploration Rover 1 (MER-B) to the third stage of the Delta rocket (foreground) for mating. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch from Launch Pad 17-B, Cape Canaveral Air Force Station, June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

  11. KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers check the connections after the Mars Exploration Rover 1 (MER-B) above was mated with the third stage of the Delta rocket below. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch from Launch Pad 17-B, Cape Canaveral Air Force Station, June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers check the connections after the Mars Exploration Rover 1 (MER-B) above was mated with the third stage of the Delta rocket below. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch from Launch Pad 17-B, Cape Canaveral Air Force Station, June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

  12. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is raised to a vertical position for its lift up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is raised to a vertical position for its lift up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  13. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is raised to a vertical position for its lift up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is raised to a vertical position for its lift up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  14. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) nears the top of the launch tower. The fairing will be installed around the payload for protection during launch on a Delta II rocket. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) nears the top of the launch tower. The fairing will be installed around the payload for protection during launch on a Delta II rocket. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  15. Accomplishing Mars exploration goals by returning a simple "locality" sample

    NASA Astrophysics Data System (ADS)

    McKay, G.; Draper, D.; Bogard, D.; Agee, C.; Ming, D.; Jones, J.

    A major stumbling block to a Mars sample return (MSR) mission is cost. This problem is greatly exacerbated by using elaborate rovers, sophisticated on-board instruments, and complex sample selection techniques to maximize diversity. We argue that many key science goals of the Mars Exploration Program may be accomplished by returning a simple "locality" sample from a well-chosen landing site. Such a sample , collected by a simple scoop, would consist of local regolith containing soil, windblown fines, and lithic fragments (plus Martian atmosphere). Even the simplest sample return mission could revolutionize our understanding of Mars, without the need for expensive rovers or sophisticated on-board instruments. We expect that by the time a MSR mission could be flown, information from the Mars Odyssey, Mars Express, 2003 Mars Exploration Rovers, and 2005 Mars Reconnaissance Orbiter will be sufficient to choose a good landing site. Returned samples of Martian regolith have the potential to answer key questions of fundamental importance to the Mars Exploration Program: The search for life; the role and history of water and other volatiles; interpreting remotely-sensed spectral data; and understanding the planet as a system. A locality sample can further the search for life by identifying trace organics, biogenic elements and their isotopic compositions, evidence for water such as hydrous minerals or cements, the Martian soil oxidant, and trace biomarkers. Learning the nature and timing of atmosphere-soil-rock interactions will improve understanding of the role and history of water. An atmosphere sample will reveal fundamental information about current atmospheric processes. Information about the mineralogy and lithology of sample materials, the extent of impact gardening, and the nature of dust coatings and alteration rinds will provide much-needed ground truth for interpreting remotely-sensed data, including Mars Pathfinder. Basic planetology questions that might be answered include the compositions and ages of the highlands or lowlands, and how wet Mars was, and at what time in its history. By bringing a simple locality sample back for analysis in the world's best labs, using the world's most sophisticated state-of-the-art instruments, we can make break-through progress in addressing fundamental questions about Mars.

  16. Airbag Trails

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This segment of the first color image from the panoramic camera on the Mars Exploration Rover Spirit shows the rover's airbag trails. These depressions in the soil were made when the airbags were deflated and retracted after landing.

  17. Endeavour on the Horizon False Color

    NASA Image and Video Library

    2010-04-30

    NASA Mars Exploration Rover Opportunity used its panoramic camera Pancam to capture this false-color view of the rim of Endeavour crater, the rover destination in a multi-year traverse along the sandy Martian landscape.

  18. Endeavour on the Horizon

    NASA Image and Video Library

    2010-04-30

    NASA Mars Exploration Rover Opportunity used its panoramic camera Pancam to capture this view approximately true-color view of the rim of Endeavour crater, the rover destination in a multi-year traverse along the sandy Martian landscape.

  19. Rover 2

    NASA Image and Video Library

    2003-11-07

    In the Payload Hazardous Servicing Facility, the lander petals of the Mars Exploration Rover 2 MER-2 have been reopened and its solar panels deployed to allow technicians access to the spacecraft to remove one of its circuit boards.

  20. Almost Like Being at Bonneville

    NASA Image and Video Library

    2004-03-17

    NASA Mars Exploration Rover Spirit took this 3-D navigation camera mosaic of the crater called Bonneville. The rover solar panels can be seen in the foreground. 3D glasses are necessary to view this image.

  1. Adirondack Under the Microscope-2

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This overhead look at the martian rock dubbed Adirondack was captured by the Mars Exploration Rover Spirit's panoramic camera. It shows the approximate region where the rover's microscopic imager began its first close-up inspection.

  2. Lander Trench Dug by Opportunity

    NASA Image and Video Library

    2015-01-27

    On March 20, 2004, NASA Mars Exploration Rover Opportunity used a wheel to dig a trench revealing subsurface material beside the lander hardware that carried the rover to the surface of Mars 55 Martian days earlier.

  3. Rover Rehearses Roll-Off at JPL

    NASA Image and Video Library

    2004-01-15

    Footage from the JPL In-Situ Instruments Laboratory, or testbed, shows engineers rehearsing a crucial maneuver called egress in which NASA Mars Exploration Rover Spirit rolls off its lander platform and touches martian soil.

  4. KENNEDY SPACE CENTER, FLA. --Shown upside down to read the names, this plaque commemorating the STS-107 Space Shuttle Columbia crew now looks over the Mars landscape after the successful landing and deployment of the Mars Exploration Rover “Spirit” Jan. 4 onto the red planet. The plaque, mounted on the high-gain antenna, is shown while the rover underwent final checkout March 28, 2003, in the Payload Hazardous Servicing Facility at KSC.

    NASA Image and Video Library

    2004-01-06

    KENNEDY SPACE CENTER, FLA. --Shown upside down to read the names, this plaque commemorating the STS-107 Space Shuttle Columbia crew now looks over the Mars landscape after the successful landing and deployment of the Mars Exploration Rover “Spirit” Jan. 4 onto the red planet. The plaque, mounted on the high-gain antenna, is shown while the rover underwent final checkout March 28, 2003, in the Payload Hazardous Servicing Facility at KSC.

  5. Spirit Beholds Bumpy Boulder (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    As NASA's Mars Exploration Rover Spirit began collecting images for a 360-degree panorama of new terrain, the rover captured this view of a dark boulder with an interesting surface texture. The boulder sits about 40 centimeters (16 inches) tall on Martian sand about 5 meters (16 feet) away from Spirit. It is one of many dark, volcanic rock fragments -- many pocked with rounded holes called vesicles -- littering the slope of 'Low Ridge.' The rock surface facing the rover is similar in appearance to the surface texture on the outside of lava flows on Earth.

    Spirit took this false-color image with the panoramic camera on the rover's 810th sol, or Martian day, of exploring Mars (April 13, 2006). This image is a false-color rendering using camera's 753-nanometer, 535-nanometer, and 432-nanometer filters.

  6. Attitude determination of planetary exploration rovers using solar panels characteristics and accelerometer

    NASA Astrophysics Data System (ADS)

    Ishida, Takayuki; Takahashi, Masaki

    2014-12-01

    In this study, we propose a new attitude determination system, which we call Irradiance-based Attitude Determination (IRAD). IRAD employs the characteristics and geometry of solar panels. First, the sun vector is estimated using data from solar panels including current, voltage, temperature, and the normal vectors of each solar panel. Because these values are obtained using internal sensors, it is easy for rovers to provide redundancy for IRAD. The normal vectors are used to apply to various shapes of rovers. Second, using the gravity vector obtained from an accelerometer, the attitude of a rover is estimated using a three-axis attitude determination method. The effectiveness of IRAD is verified through numerical simulations and experiments that show IRAD can estimate all the attitude angles (roll, pitch, and yaw) within a few degrees of accuracy, which is adequate for planetary explorations.

  7. High gain antenna pointing on the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Vanelli, C. Anthony; Ali, Khaled S.

    2005-01-01

    This paper describes the algorithm used to point the high gain antennae on NASA/JPL's Mars Exploration Rovers. The gimballed antennae must track the Earth as it moves across the Martian sky during communication sessions. The algorithm accounts for (1) gimbal range limitations, (2) obstructions both on the rover and in the surrounding environment, (3) kinematic singularities in the gimbal design, and (4) up to two joint-space solutions for a given pointing direction. The algorithm computes the intercept-times for each of the occlusions and chooses the jointspace solution that provides the longest track time before encountering an occlusion. Upon encountering an occlusion, the pointing algorithm automatically switches to the other joint-space solution if it is not also occluded. The algorithm has successfully provided flop-free pointing for both rovers throughout the mission.

  8. Lunar Thermal Wadis and Exploration Rovers: Outpost Productivity and Participatory Exploration

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt; Wegeng, Robert; Suzuki, Nantel

    2009-01-01

    The presentation introduces the concept of a thermal wadi, an engineered source of thermal energy that can be created using native material on the moon or elsewhere to store solar energy for use by various lunar surface assets to survive the extremely cold environment of the lunar night. A principal benefit of this approach to energy storage is the low mass requirement for transportation from Earth derived from the use of the lunar soil, or regolith, as the energy storage medium. The presentation includes a summary of the results of a feasibility study involving the numerical modeling of the performance of a thermal wadi including a manufactured thermal mass, a solar energy reflector, a nighttime thermal energy reflector and a lunar surface rover. The feasibility study shows that sufficient thermal energy can be stored using unconcentrated solar flux to keep a lunar surface rover sufficiently warm throughout a 354 hour lunar night at the lunar equator, and that similar approaches can be used to sustain surface assets during shorter dark periods that occur at the lunar poles. The presentation includes descriptions of a compact lunar rover concept that could be used to manufacture a thermal wadi and could alternatively be used to conduct a variety of high-value tasks on the lunar surface. Such rovers can be produced more easily because the capability for surviving the lunar night is offloaded to the thermal wadi infrastructure. The presentation also includes several concepts for operational scenarios that could be implemented on the moon using the thermal wadi and compact rover concepts in which multiple affordable rovers, operated by multiple terrestrial organizations, can conduct resource prospecting and human exploration site preparation tasks.

  9. Exomars 2018 Rover Pasteur Payload Sample Analysis

    NASA Astrophysics Data System (ADS)

    Debus, Andre; Bacher, M.; Ball, A.; Barcos, O.; Bethge, B.; Gaubert, F.; Haldemann, A.; Kminek, G.; Lindner, R.; Pacros, A.; Rohr, T.; Trautner, R.; Vago, J.

    The ExoMars programme is a joint ESA-NASA program having exobiology as one of the key science objectives. It is divided into 2 missions: the first mission is ESA-led with an ESA orbiter and an ESA Entry, Descent and Landing (EDL) demonstrator, launched in 2016 by NASA, and the second mission is NASA-led, launched in 2018 by NASA including an ESA rover and a NASA rover both deployed by a single NASA EDL system. For ESA, the ExoMars programme will demonstrate key flight and in situ enabling technologies in support of the European ambitions for future exploration missions, as outlined in the Aurora Declaration. The ExoMars 2018 ESA Rover will carry a comprehensive and coherent suite of analytical instruments dedicated to exobiology and geology research: the Pasteur Payload (PPL). This payload includes a selection of complementary instruments, having the following goals: to search for signs of past and present life on Mars and to investigate the water/geochemical environment as a function of depth in the shallow subsurface. The ExoMars Rover will travel several kilometres searching for sites warranting further investigation. The Rover includes a drill and a Sample Preparation and Distribution System which will be used to collect and analyse samples from within outcrops and from the subsurface. The Rover systems and instruments, in particular those located inside the Analytical Laboratory Drawer must meet many stringent requirements to be compatible with exobiologic investigations: the samples must be maintained in a cold and uncontaminated environment, requiring sterile and ultraclean preparation of the instruments, to preserve volatile materials and to avoid false positive results. The value of the coordinated observations suggests that a significant return on investment is to be expected from this complex development. We will present the challenges facing the ExoMars PPL, and the plans for sending a robust exobiology laboratory to Mars in 2018.

  10. 2018 Human Exploration Rover Challenge

    NASA Image and Video Library

    2018-04-13

    High school and university students competed in the 2018 Human Exploration Rover Challenge event at the U.S. Space and Rocket Center in Huntsville, Alabama. Students came from across the U.S. as well as several foreign countries such as Brazil, Germany, India, and Mexico. This event, which is normally a 2 day event, was shortened to 1 day in 2018 due to adverse weather conditions.

  11. The supercam instrument on the NASA Mars 2020 mission: optical design and performance

    NASA Astrophysics Data System (ADS)

    Perez, R.; Parès, Laurent P.; Newell, R.; Robinson, S.; Bernardi, P.; Réess, J.-M.; Caïs, Ph.; McCabe, K.; Maurice, S.; Wiens, R. C.

    2017-09-01

    NASA is developing the MARS 2020 mission, which includes a rover that will land and operate on the surface of Mars. MARS 2020, scheduled for launch in July, 2020, is designed to conduct an assessment of Mars' past habitability, search for potential biosignatures, demonstrate progress toward the future return of samples to Earth, and contribute to NASA's Human Exploration and Space Technology Programs.

  12. Assessment of Spatial Navigation and Docking Performance During Simulated Rover Tasks

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Dean, S. L.; De Dios, Y. E.; Moore, S. T.

    2010-01-01

    INTRODUCTION: Following long-duration exploration transits, pressurized rovers will enhance surface mobility to explore multiple sites across Mars and other planetary bodies. Multiple rovers with docking capabilities are envisioned to expand the range of exploration. However, adaptive changes in sensorimotor and cognitive function may impair the crew s ability to safely navigate and perform docking tasks shortly after transition to the new gravitoinertial environment. The primary goal of this investigation is to quantify post-flight decrements in spatial navigation and docking performance during a rover simulation. METHODS: Eight crewmembers returning from the International Space Station will be tested on a motion simulator during four pre-flight and three post-flight sessions over the first 8 days following landing. The rover simulation consists of a serial presentation of discrete tasks to be completed within a scheduled 10 min block. The tasks are based on navigating around a Martian outpost spread over a 970 sq m terrain. Each task is subdivided into three components to be performed as quickly and accurately as possible: (1) Perspective taking: Subjects use a joystick to indicate direction of target after presentation of a map detailing current orientation and location of the rover with the task to be performed. (2) Navigation: Subjects drive the rover to the desired location while avoiding obstacles. (3) Docking: Fine positioning of the rover is required to dock with another object or align a camera view. Overall operator proficiency will be based on how many tasks the crewmember can complete during the 10 min time block. EXPECTED RESULTS: Functionally relevant testing early post-flight will develop evidence regarding the limitations to early surface operations and what countermeasures are needed. This approach can be easily adapted to a wide variety of simulated vehicle designs to provide sensorimotor assessments for other operational and civilian populations.

  13. Merits of a Locality Sample for Accomplishing Mars Exploration Goals: The First Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Draper, D. S.; Bogard, D. D.; Agee, C. B.; McKay, G. A.; Jones, J. H.

    2002-05-01

    A major stumbling block to a Mars sample return (MSR) mission is the seemingly prohibitive cost of maximizing sample diversity. The use of rovers, sophisticated on-board instrumentation, and various sample selection techniques are perceived by some to be necessary to maximize the scientific return by making it possible to acquire as diverse a suite of samples as possible. Here, we argue that many key science goals of the Mars Exploration Program may be accomplished by returning only a "locality sample" at a well-chosen landing site. A locality sample would be local regolith consisting of soil, windblown fines, and lithic fragments (plus Martian atmosphere). We argue that even the simplest sample return mission could revolutionize our understanding of the planet, without requiring the large outlays for technology development currently envisioned. By the time a MSR mission could realistically be flown, it is reasonable to expect that information from the Mars Odyssey, Mars Express, 2003 Mars Exploration Rovers, and 2005 Mars Reconnaissance Orbiter will be sufficient to make a good choice of landing site. Returned samples of Martian regolith have the potential to answer key questions of fundamental importance to the Mars Exploration Program: The search for life; understanding the role and history of water and other volatiles; helping to interpret remotely-sensed spectral data; and understanding the planet as a system. The value of such samples has been studied exhaustively for decades and detailed in publications dating back at least to 1974. A locality sample can further the search for life by identifying, among other things, trace quantities of surface organics, biogenic elements and their isotopic compositions, evidence for water in the form of hydrous minerals and/or cements, the nature of the Martian soil oxidant, trace biomarkers, and evidence for clay-forming processes. The role of water will be better understood by revealing, in addition, whether interactions between soil/rocks and the Martian atmosphere have recently occurred, and whether there are currently pathways among cyclic reservoirs (e.g. for carbon). Fundamental information regarding the current atmosphere is certain to be gained as well. Interpreting remotely-sensed data will be greatly strengthened by providing ground truth in the form of mineralogy and lithology of sample materials and by allowing an estimate of the extent of regolith gardening by impacts, the nature and thickness of dust coatings and/or alteration rinds, the nature of Martian layered deposits, and the extent to which materials like the Martian meteorites are present at the surface. Basic planetology questions that might be answered include the compositions and ages of the highlands or lowlands, and how wet Mars was, and at what time in its history. The much-discussed alternative, a mission built around a very capable rover, has several large drawbacks. First, the mass and expense of making the rover highly autonomous diminishes science return. Second, the rover represents a single-point failure; if the rover is stranded, the samples cannot be returned. Third, there is no demonstrable positive correlation between roving ability/range and sampling diversity. A simple locality-sample MSR mission provides the foundation for later, targeted return missions. Such a mission "follows the water" down into surface minerals and soils, and uniquely provides understanding of the surface environment that will best enable us to target the most promising sites to look for life.

  14. KSC-03PD-1601

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Workers attach an overhead crane to the Mars Exploration Rover 1 (MER-1) inside the upper backshell. The backshell will be moved and attached to the lower heat shield. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  15. KSC-03PD-1603

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Workers walk with the suspended backshell/ Mars Exploration Rover 1 (MER-1) as it travels across the floor of the Payload Hazardous Servicing Facility. The backshell will be attached to the lower heat shield. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  16. KSC-03PD-1605

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Payload Hazardous Servicing Facility, workers move the heat shield (foreground) toward the upper backshell/ Mars Exploration Rover 1 (MER-1), in the background. The backshell and heat shield will be mated. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  17. KSC-03PD-1587

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. A solid rocket booster arrives at Launch Complex 17-A, Cape Canaveral Air Force Station. It is one of nine that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASAs twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans cant yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  18. Two Years of Chemical Sampling on Meridiani Planum by the Alpha Particle X-Ray Spectrometer Onboard the Mars Exploration Rover Opportunity

    NASA Technical Reports Server (NTRS)

    Bruckner, J.; Gellert, R.; Clark, B.C.; Dreibus, G.; Rieder, R.; Wanke, H.; d'Uston, C.; Economou, T.; Klingelhofer, G.; Lugmair, G.; hide

    2006-01-01

    For over two terrestrial years, the Mars Exploration Rover Opportunity has been exploring the martian surface at Meridiani Planum using the Athena instrument payload [1], including the Alpha Particle X-Ray Spectrometer (APXS). The APXS has a small sensor head that is mounted on the robotic arm of the rover. The chemistry, mineralogy and morphology of selected samples were investigated by the APXS along with the Moessbauer Spectrometer (MB) and the Microscopic Imager (MI). The Rock Abrasion Tool (RAT) provided the possibility to dust and/or abrade rock surfaces down to several millimeters to expose fresh material for analysis. We report here on APXS data gathered along the nearly 6-kilometers long traverse in craters and plains of Meridiani.

  19. Spirit Rover on 'Husband Hill'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Figure 1: Location of Spirit

    Two Earth years ago, NASA's Mars Exploration Rover Spirit touched down in Gusev Crater. The rover marked its first Mars-year (687 Earth days) anniversary in November 2005. Shortly before Spirit's Martian anniversary, the Mars Orbiter Camera on NASA's Mars Global Surveyor acquired an image covering approximately 3 kilometers by 3 kilometers (1.9 miles by 1.9 miles) centered on the rover's location at that time in the 'Columbia Hills.'

    'Husband Hill,' the tallest in the range, is just below the center of the image. The image has a resolution of about 50 centimeters (1.6 feet) per pixel. North is up; illumination is from the left. The location is near 14.8 degrees south latitude, 184.6 degrees west longitude.

    The image was acquired on Nov. 2, 2005. A white box (see Figure 1) indicates the location of an excerpted portion on which the location of Spirit on that date is marked. Dr. Timothy J. Parker of the Mars Exploration Rover team at the NASA's Jet Propulsion Laboratory, Pasadena, Calif., confirmed the location of the rover in the image. The region toward the bottom of the image shows the area where the rover is currently headed. The large dark patch and other similar dark patches are accumulations of windblown sand and granules.

  20. Large Multispectral and Albedo Panoramas Acquired by the Pancam Instruments on the Mars Exploration Rovers Spirit and Opportunity

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Arneson, H. M.; Farrand, W. H.; Goetz, W.; Hayes, A. G.; Herkenhoff, K.; Johnson, M. J.; Johnson, J. R.; Joseph, J.; Kinch, K.

    2005-01-01

    Introduction. The panoramic camera (Pancam) multispectral, stereoscopic imaging systems on the Mars Exploration Rovers Spirit and Opportunity [1] have acquired and downlinked more than 45,000 images (35 Gbits of data) over more than 700 combined sols of operation on Mars as of early January 2005. A large subset of these images were acquired as part of 26 large multispectral and/or broadband "albedo" panoramas (15 on Spirit, 11 on Opportunity) covering large ranges of azimuth (12 spanning 360 ) and designed to characterize major regional color and albedo characteristics of the landing sites and various points along both rover traverses.

  1. What Lies Ahead (left-eye)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is the left-eye version of the 3-D cylindrical-perspective mosaic showing the view south of the martian crater dubbed 'Bonneville.' The image was taken by the navigation camera on the Mars Exploration Rover Spirit. The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.

  2. 'Endurance' Untouched

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This navigation camera mosaic, created from images taken by NASA's Mars Exploration Rover Opportunity on sols 115 and 116 (May 21 and 22, 2004) provides a dramatic view of 'Endurance Crater.' The rover engineering team carefully plotted the safest path into the football field-sized crater, eventually easing the rover down the slopes around sol 130 (June 12, 2004). To the upper left of the crater sits the rover's protective heatshield, which sheltered Opportunity as it passed through the martian atmosphere. The 360-degree view is presented in a cylindrical projection, with geometric and radiometric seam correction.

  3. 'Endurance' Untouched (vertical)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This navigation camera mosaic, created from images taken by NASA's Mars Exploration Rover Opportunity on sols 115 and 116 (May 21 and 22, 2004) provides a dramatic view of 'Endurance Crater.' The rover engineering team carefully plotted the safest path into the football field-sized crater, eventually easing the rover down the slopes around sol 130 (June 12, 2004). To the upper left of the crater sits the rover's protective heatshield, which sheltered Opportunity as it passed through the martian atmosphere. The 360-degree view is presented in a vertical projection, with geometric and radiometric seam correction.

  4. 'Endurance' Untouched (polar)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This navigation camera mosaic, created from images taken by NASA's Mars Exploration Rover Opportunity on sols 115 and 116 (May 21 and 22, 2004) provides a dramatic view of 'Endurance Crater.' The rover engineering team carefully plotted the safest path into the football field-sized crater, eventually easing the rover down the slopes around sol 130 (June 12, 2004). To the upper left of the crater sits the rover's protective heatshield, which sheltered Opportunity as it passed through the martian atmosphere. The 360-degree view is presented in a polar projection, with geometric and radiometric seam correction.

  5. A Sampling of Martian Soils

    NASA Image and Video Library

    2012-12-03

    This collage shows the variety of soils found at landing sites on Mars. The elemental composition of the typical, reddish soils were investigated by NASA Viking, Pathfinder and Mars Exploration Rover missions, and now with the Curiosity rover.

  6. Opportunity Surroundings After 25 Miles on Mars

    NASA Image and Video Library

    2014-08-14

    This July 29, 2014, panorama combines several images from the navigation camera on NASA Mars Exploration Rover Opportunity to show the rover surroundings after surpassing 25 miles 40.23 kilometers of total driving on Mars.

  7. Spirit Robotic Stretch on Sol 2052

    NASA Image and Video Library

    2009-10-19

    NASA Mars Exploration Rover Spirit recorded this forward view of its arm and surroundings; bright soil in the left half of the image is loose, fluffy material churned by the rover left-front wheel as Spirit.

  8. Turning in the Testbed

    NASA Image and Video Library

    2004-01-13

    This image, taken in the JPL In-Situ Instruments Laboratory or Testbed, shows the view from the front hazard avoidance cameras on the Mars Exploration Rover Spirit after the rover has backed up and turned 45 degrees counterclockwise.

  9. MER surface fault protection system

    NASA Technical Reports Server (NTRS)

    Neilson, Tracy

    2005-01-01

    The Mars Exploration Rovers surface fault protection design was influenced by the fact that the solar-powered rovers must recharge their batteries during the day to survive the night. the rovers needed to autonomously maintain thermal stability, initiate safe and reliable communication with orbiting assets or directly to Earth, while maintaining energy balance. This paper will describe the system fault protection design for the surface phase of the mission.

  10. Spirit Switches on Its X-ray Vision

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows the Mars Exploration Rover Spirit probing its first target rock, Adirondack. At the time this picture was snapped, the rover had begun analyzing the rock with the alpha particle X-ray spectrometer located on its robotic arm. This instrument uses alpha particles and X-rays to determine the elemental composition of martian rocks and soil. The image was taken by the rover's hazard-identification camera.

  11. Opportunity Egress Aid Contacts Soil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image from the navigation camera on the Mars Exploration Rover Opportunity shows the rover's egress aid touching the martian soil at Meridiani Planum, Mars. The image was taken after the rear lander petal hyperextended in a manuever to tilt the lander forward. The maneuver pushed the front edge lower, placing the tips of the egress aids in the soil. The rover will drive straight ahead to exit the lander.

  12. Viking '79 Rover study. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results of a study to define a roving vehicle suitable for inclusion in a 1979 Viking mission to Mars are presented. The study focused exclusively on the 1979 mission incorporating a rover that would be stowed on and deployed from a modified Viking lander. The overall objective of the study was to define a baseline rover, the lander/rover interfaces, a mission operations concept, and a rover development program compatible with the 1979 launch opportunity. During the study, numerous options at the rover system and subsystem levels were examined and a baseline configuration was selected. Launch vehicle, orbiter, and lander performance capabilities were examined to ensure that the baseline rover could be transported to Mars using minimum-modified Viking '75 hardware and designs.

  13. After Opportunity's First Drive in Six Weeks

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Mars Exploration Rover Opportunity used its front hazard-identification camera to obtain this image at the end of a drive on the rover's 1,271st sol, or Martian day (Aug. 21, 2007).

    Due to sun-obscuring dust storms limiting the rover's supply of solar energy, Opportunity had not driven since sol 1,232 (July 12, 2007). On sol 1,271, after the sky above Opportunity had been gradually clearing for more than two weeks, the rover rolled 13.38 meters (44 feet). Wheel tracks are visible in front of the rover because the drive ended with a short test of driving backwards.

    Opportunity's turret of four tools at the end of the robotic arm fills the center of the image. Victoria Crater, site of the rover's next science targets, lies ahead.

  14. A Wind-powered Rover for a Low-Cost Venus Mission

    NASA Technical Reports Server (NTRS)

    Benigno, Gina; Hoza, Kathleen; Motiwala, Samira; Landis, Geoffrey A.; Colozza, Anthony J.

    2013-01-01

    Venus, with a surface temperature of 450 C and an atmospheric pressure 90 times higher than that of the Earth, is a difficult target for exploration. However, high-temperature electronics and power systems now being developed make it possible that future missions may be able to operate in the Venus environment. Powering such a rover within the scope of a Discovery class mission will be difficult, but harnessing Venus' surface winds provides a possible way to keep a powered rover small and light. This project scopes out the feasibility of a wind-powered rover for Venus surface missions. Two rover concepts, a land-sailing rover and a wind-turbine-powered rover, were considered. The turbine-powered rover design is selected as being a low-risk and low-cost strategy. Turbine detailed analysis and design shows that the turbine can meet mission requirements across the desired range of wind speeds by utilizing three constant voltage generators at fixed gear ratios.

  15. Planetary Rover Robotics Experiments in Education: HUSAR-5, the NXT-Based Rover Model for Measuring the Planetary Surface

    NASA Astrophysics Data System (ADS)

    Lang, Á.; Bérczi, Sz.; Szalay, K.; Prajczer, P.; Kocsis, Á.

    2014-11-01

    We report about the work of the HUSAR-5 groups from the Széchenyi István Gimnázium High School Sopron, Hungary. We build and program robot-rovers, that can autonomous move and measure on a planetary surface.

  16. Project of the planetary terrain analogs research for technology development and education in geodesy and image processing.

    NASA Astrophysics Data System (ADS)

    Semenov, Mikhail; Gavrushin, Nikolay; Bataev, Mikhail; Kruzhkov, Maxim; Oberst, Juergen

    2013-04-01

    The MIIGAiK Extraterrestrial Laboratory (MExLab) is currently finalizing the development the robotic mobile science platform MExRover, designed for simulating rover activities on the surface of earth-type planets and satellites. In the project, we develop a hardware and software platform for full rover operation and telemetry processing from onboard instruments, as a means of training undergraduate and postgraduate students and young scientists working in the field of planetary exploration. 1. Introduction The main aim of the project is to provide the research base for image processing development and geodesy survey. Other focus is the development of research programs with participation of students and young scientists of the University, for digital terrain model creation for macro- and microrelief surveying. MExRover would be a bridge from the old soviet Lunokhod experience to the new research base for the future rover technology development support. 2. Rover design The design of the rover and its instrument suite allows acquiring images and navigation data satisfying the requirements for photogrammetric processing. The high-quality color panoramas as well as DTMs (Digital Terrain Models) will be produced aboard and could be used for the real-time track correction and environment analysis. A local operator may control the rover remotely from a distance up to 3 km and continuously monitor all systems. The MExRover has a modular design, which provides maximum flexibility for accomplishing different tasks with different sets of additional equipment weighing up to 15 kg. The framework can be easily disassembled and fit into 3 transport boxes, which allows transporting them on foot, by car, train or plane as a the ordinary luggage. The imaging system included in the present design comprises low resolution video cameras, high resolution stereo camera, microphone and IR camera. More instruments are planned to be installed later as auxiliary equipment, such as: spectrometer, odometer, solar radiation sensor, temperature sensor, wind sensor, magnetometer and radiation detector. The first version of the MExRover is operational and now is in testing process. We are open to proposals of mutual exploitation of MExRover platform for science, education and outreach purposes. 3. Specification Dimensions W×L×H 600×1000×400/1700 mm Maximum weight 60 kg Payload weight 20 kg Cruising range 3 km Mean velocity 1 km/h Acknowledgements This work is supported by the Ministry of Education and Science of the Russian Federation (MEGA-GRANT, Project name: "Geodesy, cartography and the study of planets and satellites", contract # 11.G34.31.0021 dd. 30.11.2010).

  17. KSC-03PD-1846

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Nine-year-old Sofi Collis proudly presents the names she selected for the Mars Exploration Rovers - - 'Spirit' and 'Opportunity' -- during a press conference. Also participating in the press conference are NASA Administrator Sean O'Keefe (left) and Brad Justus, LEGO Co. senior vice president (right). The names Sofi suggested were selected from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  18. Mars Exploration Rover Spirit End of Mission Report

    NASA Technical Reports Server (NTRS)

    Callas, John L.

    2015-01-01

    The Mars Exploration Rover (MER) Spirit landed in Gusev crater on Mars on January 4, 2004, for a prime mission designed to last three months (90 sols). After more than six years operating on the surface of Mars, the last communication received from Spirit occurred on Sol 2210 (March 22, 2010). Following the loss of signal, the Mars Exploration Rover Project radiated over 1400 commands to Mars in an attempt to elicit a response from the rover. Attempts were made utilizing Deep Space Network X-Band and UHF relay via both Mars Odyssey and the Mars Reconnaissance Orbiter. Search and recovery efforts concluded on July 13, 2011. It is the MER project's assessment that Spirit succumbed to the extreme environmental conditions experienced during its fourth winter on Mars. Focusing on the time period from the end of the third Martian winter through the fourth winter and end of recovery activities, this report describes possible explanations for the loss of the vehicle and the extent of recovery efforts that were performed. It offers lessons learned and provides an overall mission summary.

  19. 2018 Human Exploration Rover Challenge event

    NASA Image and Video Library

    2018-04-17

    High school and university students competed in the 2018 Human Exploration Rover Challenge event at the U.S. Space and Rocket Center in Huntsville, Alabama. Students came from across the U.S. as well as several foreign countries such as Brazil, Germany, India, and Mexico. This event, which is normally a 2 day event, was shortened to 1 day in 2018 due to adverse weather conditions.

  20. Testing the Capture Magnet

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image of a model capture magnet was taken after an experiment in a Mars simulation chamber at the University of Aarhus, Denmark. It has some dust on it, but not as much as that on the Mars Exploration Rover Spirit's capture magnet. The capture and filter magnets on both Mars Exploration Rovers were delivered by the magnetic properties team at the Center for Planetary Science, Copenhagen, Denmark.

  1. Rock with Odd Coating Beside a Young Martian Crater

    NASA Image and Video Library

    2010-03-24

    This image from the panoramic camera on NASA Mars Exploration Rover Opportunity shows a rock called Chocolate Hills, which the rover found and examined at the edge of a young crater called Concepción.

  2. Airbag Trails-2

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This segment of the first color image from the panoramic camera on the Mars Exploration Rover Spirit shows the rover's airbag trails (upper left). These depressions in the soil were made when the airbags were deflated and retracted after landing.

  3. Opportunity Stretches Out 3-D

    NASA Image and Video Library

    2004-02-02

    This is a three-dimensional stereo anaglyph of an image taken by the front hazard-identification camera onboard NASA Mars Exploration Rover Opportunity, showing the rover arm in its extended position. 3D glasses are necessary to view this image.

  4. Opportunity Surroundings on Sol 1687 Stereo

    NASA Image and Video Library

    2009-01-05

    NASA Mars Exploration Rover Opportunity combined images into this stereo, 360-degree view of the rover surroundings on Oct. 22, 2008. Opportunity position was about 300 meters southwest of Victoria. 3D glasses are necessary to view this image.

  5. Endurance All Around 3-D

    NASA Image and Video Library

    2004-07-21

    This 360-degree stereo anaglyph of the terrain surrounding NASA Mars Exploration Rover Opportunity was taken on the rover 171st sol on Mars. Opportunity had driven 11 meters 36 feet into Endurance Crater. 3D glasses are necessary.

  6. Seeing Rust

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The rust color of the Martian landscape is apparent in this low-resolution thumbnail image taken by the panoramic camera on the Mars Exploration Rover Spirit. This image is part of a larger image currently stored onboard the rover in its memory.

  7. Activity Planning for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Bresina, John L.; Jonsson, Ari K.; Morris, Paul H.; Rajan, Kanna

    2004-01-01

    Operating the Mars Exploration Rovers is a challenging, time-pressured task. Each day, the operations team must generate a new plan describing the rover activities for the next day. These plans must abide by resource limitations, safety rules, and temporal constraints. The objective is to achieve as much science as possible, choosing from a set of observation requests that oversubscribe rover resources. In order to accomplish this objective, given the short amount of planning time available, the MAPGEN (Mixed-initiative Activity Plan GENerator) system was made a mission-critical part of the ground operations system. MAPGEN is a mixed-initiative system that employs automated constraint-based planning, scheduling, and temporal reasoning to assist operations staff in generating the daily activity plans. This paper describes the adaptation of constraint-based planning and temporal reasoning to a mixed-initiative setting and the key technical solutions developed for the mission deployment of MAPGEN.

  8. KSC-03PD-1837

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Siberian-born Sofi Collis (second from left), the third grade student winner of the 'Name the Rovers' contest, poses with her adopted American family. The names she proposed -- Spirit and Opportunity -- were announced today in a press conference held by NASA Administrator Sean O'Keefe. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  9. Mars Exploration Rover Heat Shield Recontact Analysis

    NASA Technical Reports Server (NTRS)

    Raiszadeh, Behzad; Desai, Prasun N.; Michelltree, Robert

    2011-01-01

    The twin Mars Exploration Rover missions landed successfully on Mars surface in January of 2004. Both missions used a parachute system to slow the rover s descent rate from supersonic to subsonic speeds. Shortly after parachute deployment, the heat shield, which protected the rover during the hypersonic entry phase of the mission, was jettisoned using push-off springs. Mission designers were concerned about the heat shield recontacting the lander after separation, so a separation analysis was conducted to quantify risks. This analysis was used to choose a proper heat shield ballast mass to ensure successful separation with low probability of recontact. This paper presents the details of such an analysis, its assumptions, and the results. During both landings, the radar was able to lock on to the heat shield, measuring its distance, as it descended away from the lander. This data is presented and is used to validate the heat shield separation/recontact analysis.

  10. KSC-03PD-2060

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The Mobile Service Tower is rolled back at Space Launch Complex 17B, Cape Canaveral Air Force Station, to reveal the Delta II Heavy launch vehicle ready for launch of the Mars Exploration Rover-B (MER-B) mission, with the rover 'Opportunity' aboard. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-B is scheduled to launch on June 28 at one of two available times, 11:56:16 p.m. EDT or 12:37:59 a.m. EDT on June 29.

  11. Exploration of Planetary Terrains with a Legged Robot as a Scout Adjunct to a Rover

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano; Kirchner, Frank; Spenneberg, Dirk; Hanratty, James

    2004-01-01

    The Scorpion robot is an innovative, biologically inspired 8-legged walking robot. It currently runs a novel approach to control which utilizes a central pattern generator (CPG) and local reflex action for each leg. From this starting point we are proposing to both extend the system's individual capabilities and its capacity to function as a "scout", cooperating with a larger wheeled rover. For this purpose we propose to develop a distributed system architecture that extends the system's capabilities both in the direction of high level planning and execution in collaboration with a rover, and in the direction of force-feedback based low level behaviors that will greatly enhance its ability to walk and climb in rough varied terrains. The final test of this improved ability will be a rappelling experiment where the Scorpion explores a steep cliff side in cooperation with a rover that serves as both anchor and planner/executive.

  12. Spirit on 'Husband Hill,' with 2004 Comparison

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Two Earth years ago, NASA's Mars Exploration Rover Spirit touched down in Gusev Crater. The rover marked its first Mars-year (687 Earth days) anniversary in November 2005. On Nov. 2, 2005, shortly before Spirit's Martian anniversary, the Mars Orbiter Camera on NASA's Mars Global Surveyor acquired an image centered on the rover's location in the 'Columbia Hills.' The location of Spirit on that date is circled on the image on the right. On the left, for comparison, is an image from Jan. 10, 2004, when few dreamed that the Spirit would ever reach the hills from its landing site about three kilometers (two miles) away.

    The newer image has a resolution of about 50 centimeters (1.6 feet) per pixel. North is up; illumination is from the left. The location is near 14.8 degrees south latitude, 184.6 degrees west longitude. Dr. Timothy J. Parker of the Mars Exploration Rover team at NASA's Jet Propulsion Laboratory, Pasadena, Calif., confirmed the location of the rover in the 2005 image. The scale bar is 50 meters (164 feet).

  13. ARPS Enabled Titan Rover Concept with Inflatable Wheels

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Schriener, Timothy M.; Shirley, James H.

    2006-01-01

    The Decadal Survey identified Titan as one of the top priority science destinations in the large moons category, while NASA's proposed Design Reference Mission Set ranked a Titan in-situ explorer second, after a recommended Europa Geophysical Observer mission. This paper discusses a Titan rover concept, enabled by a single advanced Radioisotope Power System that could provide about 110We (BOL). The concept targets the smaller Flagship or potentially the New Frontiers mission class. This MSL class rover would traverse on four 1.5 m diameter inflatable wheels during its 3 years mission duration and would use as much design and flight heritage as possible to reduce mission cost. Direct to Earth communication would remove the need for a relay orbiter. Details on the strawman instrument payload, and rover subsystems are given for this science driven mission concept. In addition, power system trades between Advanced RTG, TPV, and Advanced Stirling and Brayton Radioisotope Power Systems (RPS) are outlined. While many possible approaches exist for Titan in-situ exploration, the Titan rover concept presented here could provide a scientifically interesting and programmatically affordable solution.

  14. Martian Surface Mineralogy from Rovers with Spirit, Opportunity, and Curiosity

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.

    2016-01-01

    Beginning in 2004, NASA has landed three well-instrumented rovers on the equatorial martian surface. The Spirit rover landed in Gusev crater in early January, 2004, and the Opportunity rover landed on the opposite side of Mars at Meridian Planum 21 days later. The Curiosity rover landed in Gale crater to the west of Gusev crater in August, 2012. Both Opportunity and Curiosity are currently operational. The twin rovers Spirit and Opportunity carried Mossbauer spectrometers to determine the oxidation state of iron and its mineralogical composition. The Curiosity rover has an X-ray diffraction instrument for identification and quantification of crystalline materials including clay minerals. Instrument suites on all three rovers are capable of distinguishing primary rock-forming minerals like olivine, pyroxene and magnetite and products of aqueous alteration in including amorphous iron oxides, hematite, goethite, sulfates, and clay minerals. The oxidation state of iron ranges from that typical for unweathered rocks and soils to nearly completely oxidized (weathered) rocks and soils as products of aqueous and acid-sulfate alteration. The in situ rover mineralogy also serves as ground-truth for orbital observations, and orbital mineralogical inferences are used for evaluating and planning rover exploration.

  15. Mars 2020 Science Rover: Science Goals and Mission Concept

    NASA Astrophysics Data System (ADS)

    Mustard, John F.; Beaty, D.; Bass, D.

    2013-10-01

    The Mars 2020 Science Definition Team (SDT), chartered in January 2013 by NASA, formulated a spacecraft mission concept for a science-focused, highly mobile rover to explore and investigate in detail a site on Mars that likely was once habitable. The mission, based on the Mars Science Laboratory landing and rover systems, would address, within a cost- and time-constrained framework, four objectives: (A) Explore an astrobiologically relevant ancient environment on Mars to decipher its geological processes and history, including the assessment of past habitability; (B) Assess the biosignature preservation potential within the selected geological environment and search for potential biosignatures; (C) Demonstrate significant technical progress towards the future return of scientifically selected, well-documented samples to Earth; and (D) provide an opportunity for contributed instruments from Human Exploration or Space Technology Programs. The SDT addressed the four mission objectives and six additional charter-specified tasks independently while specifically looking for synergy among them. Objectives A and B are each ends unto themselves, while Objective A is also the means by which samples are selected for objective B, and together they motivate and inform Objective C. The SDT also found that Objective D goals are well aligned with A through C. Critically, Objectives A, B, and C as an ensemble brought the SDT to the conclusion that exploration oriented toward both astrobiology and the preparation of a returnable cache of scientifically selected, well documented surface samples is the only acceptable mission concept. Importantly the SDT concluded that the measurements needed to attain these objectives were essentially identical, consisting of six types of field measurements: 1) context imaging 2) context mineralogy, 3) fine-scale imaging, 4) fine-scale mineralogy, 5) fine-scale elemental chemistry, and 6) organic matter detection. The mission concept fully addresses the requirements specified by NASA in the SDT charter while also ensuring alignment with the recommendations of the National Academy of Sciences Decadal Survey for Planetary Exploration (Visions and Voyages, 2011).

  16. 2D/3D Visual Tracker for Rover Mast

    NASA Technical Reports Server (NTRS)

    Bajracharya, Max; Madison, Richard W.; Nesnas, Issa A.; Bandari, Esfandiar; Kunz, Clayton; Deans, Matt; Bualat, Maria

    2006-01-01

    A visual-tracker computer program controls an articulated mast on a Mars rover to keep a designated feature (a target) in view while the rover drives toward the target, avoiding obstacles. Several prior visual-tracker programs have been tested on rover platforms; most require very small and well-estimated motion between consecutive image frames a requirement that is not realistic for a rover on rough terrain. The present visual-tracker program is designed to handle large image motions that lead to significant changes in feature geometry and photometry between frames. When a point is selected in one of the images acquired from stereoscopic cameras on the mast, a stereo triangulation algorithm computes a three-dimensional (3D) location for the target. As the rover moves, its body-mounted cameras feed images to a visual-odometry algorithm, which tracks two-dimensional (2D) corner features and computes their old and new 3D locations. The algorithm rejects points, the 3D motions of which are inconsistent with a rigid-world constraint, and then computes the apparent change in the rover pose (i.e., translation and rotation). The mast pan and tilt angles needed to keep the target centered in the field-of-view of the cameras (thereby minimizing the area over which the 2D-tracking algorithm must operate) are computed from the estimated change in the rover pose, the 3D position of the target feature, and a model of kinematics of the mast. If the motion between the consecutive frames is still large (i.e., 3D tracking was unsuccessful), an adaptive view-based matching technique is applied to the new image. This technique uses correlation-based template matching, in which a feature template is scaled by the ratio between the depth in the original template and the depth of pixels in the new image. This is repeated over the entire search window and the best correlation results indicate the appropriate match. The program could be a core for building application programs for systems that require coordination of vision and robotic motion.

  17. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted up the outside of the launch tower. Visible on another side is the Delta II rocket that will carry the payload into space. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted up the outside of the launch tower. Visible on another side is the Delta II rocket that will carry the payload into space. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  18. Lunar Daylight Exploration

    NASA Technical Reports Server (NTRS)

    Griffin, Brand Norman

    2010-01-01

    With 1 rover, 2 astronauts and 3 days, the Apollo 17 Mission covered over 30 km, setup 10 scientific experiments and returned 110 kg of samples. This is a lot of science in a short time and the inspiration for a barebones, return-to-the-Moon strategy called Daylight Exploration. The Daylight Exploration approach poses an answer to the question, What could the Apollo crew have done with more time and today s robotics? In contrast to more ambitious and expensive strategies that create outposts then rely on pressurized rovers to drive to the science sites, Daylight Exploration is a low-overhead approach conceived to land near the scientific site, conduct Apollo-like exploration then leave before the sun goes down. A key motivation behind Daylight Exploration is cost reduction, but it does not come at the expense of scientific exploration. As a goal, Daylight Exploration provides access to the top 10 science sites by using the best capabilities of human and robotic exploration. Most science sites are within an equatorial band of 26 degrees latitude and on the Moon, at the equator, the day is 14 Earth days long; even more important, the lunar night is 14 days long. Human missions are constrained to 12 days because the energy storage systems required to operate during the lunar night adds mass, complexity and cost. In addition, short missions are beneficial because they require fewer consumables, do not require an airlock, reduce radiation exposure, minimize the dwell-time for the ascent and orbiting propulsion systems and allow a low-mass, campout accommodations. Key to Daylight Exploration is the use of piloted rovers used as tele-operated science platforms. Rovers are launched before or with the crew, and continue to operate between crew visits analyzing and collecting samples during the lunar daylight

  19. View Northward from Spirit's Winter Roost

    NASA Technical Reports Server (NTRS)

    2006-01-01

    One part of the research program that NASA's Mars Exploration Rover Spirit is conducting while sitting at a favorable location for wintertime solar energy is the most detailed panorama yet taken on the surface of Mars. This view is a partial preliminary product from the continuing work on the full image, which will be called the 'McMurdo Panorama.'

    Spirit's panoramic camera (Pancam) began taking exposures for the McMurdo Panorama on the rover's 814th Martian day (April 18, 2006). The rover has accumulated more than 900 exposures for this panorama so far, through all of the Pancam mineralogy filters and using little or no image compression. Even with a tilt toward the winter sun, the amount of energy available daily is small, so the job will still take one to two more months to complete.

    This portion of the work in progress looks toward the north. 'Husband Hill,' which Spirit was climbing a year ago, is on the horizon near the center. 'Home Plate' is a between that hill and the rover's current position. Wheel tracks imprinted when Spirit drove south from Home Plate can be seen crossing the middle distance of the image from the center to the right.

    This is an approximate true-color rendering combining exposures taken through three of the panoramic camera's filters. The filters used are centered on wavelengths of 750 nanometers, 530 nanometers and 430 nanometers.

  20. PISCES: A "Stepping Stone" to International Space Exploration and Development

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Henley, Mark W.; Schowengerdt, Frank

    2007-01-01

    The Pacific International Space Center for Exploration Systems (PISCES) was initiated by the Japan/US Science, Technology and Space Application Programs (JUSTSAP) to advance research and education in space exploration technology and systems working closely with the State of Hawaii. Hawaii has a heritage with space exploration including the training of Apollo astronauts and testing of lunar rover systems in some of the most realistic terrestrial sites available. The high altitude dry environment with greater solar insolation, and the dry lunar regolith-like volcanic ash and cratered terrain make Hawaiian sites ideal to support, international space exploration technology development, demonstration, education and training. This paper will summarize development and roles of PISCES in lunar surface analogs, simulations, technology demonstrations, research and training for space exploration technology and systems.

Top