Sample records for exploration rovers

  1. The backshell for the Mars Exploration Rover 1 (MER-1) is moved toward the rover (foreground, left). The backshell is a protective cover for the rover. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-10

    The backshell for the Mars Exploration Rover 1 (MER-1) is moved toward the rover (foreground, left). The backshell is a protective cover for the rover. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  2. EXPLORING MARS WITH SOLAR-POWERED ROVERS

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2006-01-01

    The Mars Exploration Rover (MER) project landed two solar-powered rovers, "Spirit" and "Opportunity," on the surface of Mars in January of 2003. This talk reviews the history of solar-powered missions to Mars and looks at the science mission of the MER rovers, focusing on the solar energy and array performance.

  3. Rover 2 Moved to Workstand

    NASA Technical Reports Server (NTRS)

    2003-01-01

    January 28, 2003

    The Mars Exploration Rover -2 is moved to a workstand in the Payload Hazardous Servicing Facility. Set to launch in 2003, the Mars. Exploration Rover Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, 2003, and the second rover a window opening June 25, 2003.

  4. Pancam Imaging of the Mars Exploration Rover Landing Sites in Gusev Crater and Meridiani Planum

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Squyres, S. W.; Arvidson, R. E.; Arneson, H. M.; Bass, D.; Cabrol, N.; Calvin, W.; Farmer, J.; Farrand, W. H.

    2004-01-01

    The Mars Exploration Rovers carry four Panoramic Camera (Pancam) instruments (two per rover) that have obtained high resolution multispectral and stereoscopic images for studies of the geology, mineralogy, and surface and atmospheric physical properties at both rover landing sites. The Pancams are also providing significant mission support measurements for the rovers, including Sun-finding for rover navigation, hazard identification and digital terrain modeling to help guide long-term rover traverse decisions, high resolution imaging to help guide the selection of in situ sampling targets, and acquisition of education and public outreach imaging products.

  5. Targeting and Localization for Mars Rover Operations

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.; Crockett, Thomas; Fox, Jason M.; Joswig, Joseph C.; Norris, Jeffrey S.; Rabe, Kenneth J.; McCurdy, Michael; Pyrzak, Guy

    2006-01-01

    In this work we discuss how the quality of localization knowledge impacts the remote operation of rovers on the surface of Mars. We look at the techniques of localization estimation used in the Mars Pathfinder and Mars Exploration Rover missions. We examine the motivation behind the modes of targeting for different types of activities, such as navigation, remote science, and in situ science. We discuss the virtues and shortcomings of existing approaches and new improvements in the latest operations tools used to support the Mars Exploration Rover missions and rover technology development tasks at the Jet Propulsion Laboratory. We conclude with future directions we plan to explore in improving the localization knowledge available for operations and more effective targeting of rovers and their instrument payloads.

  6. KSC-03pd0209

    NASA Image and Video Library

    2003-01-28

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers lift the cover from the Mars Exploration Rover -2. Set to launch in 2003, the Mars Exploration Rover Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, 2003, and the second rover a window opening June 25, 2003.

  7. Mars Exploration Rover (MER) aeroshell

    NASA Image and Video Library

    2003-01-31

    In the Payload Hazardous Servicing Facility, workers prepare the Mars Exploration Rover (MER) aeroshell for transfer to a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  8. KSC-03pd0212

    NASA Image and Video Library

    2003-01-28

    KENNEDY SPACE CENTER, FLA. -- The Mars Exploration Rover -2 is moved to a workstand in the Payload Hazardous Servicing Facility. Set to launch in 2003, the Mars Exploration Rover Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, 2003, and the second rover a window opening June 25, 2003.

  9. KSC-03pd0210

    NASA Image and Video Library

    2003-01-28

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, workers get ready to remove the plastic covering from the Mars Exploration Rover -2. Set to launch in 2003, the Mars Exploration Rover Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, 2003, and the second rover a window opening June 25, 2003.

  10. KSC-03pd0213

    NASA Image and Video Library

    2003-01-28

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility move the Mars Exploration Rover -2 to a workstand in the high bay. Set to launch in 2003, the Mars Exploration Rover Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, 2003, and the second rover a window opening June 25, 2003.

  11. Autonomous Exploration for Gathering Increased Science

    NASA Technical Reports Server (NTRS)

    Bornstein, Benjamin J.; Castano, Rebecca; Estlin, Tara A.; Gaines, Daniel M.; Anderson, Robert C.; Thompson, David R.; DeGranville, Charles K.; Chien, Steve A.; Tang, Benyang; Burl, Michael C.; hide

    2010-01-01

    The Autonomous Exploration for Gathering Increased Science System (AEGIS) provides automated targeting for remote sensing instruments on the Mars Exploration Rover (MER) mission, which at the time of this reporting has had two rovers exploring the surface of Mars (see figure). Currently, targets for rover remote-sensing instruments must be selected manually based on imagery already on the ground with the operations team. AEGIS enables the rover flight software to analyze imagery onboard in order to autonomously select and sequence targeted remote-sensing observations in an opportunistic fashion. In particular, this technology will be used to automatically acquire sub-framed, high-resolution, targeted images taken with the MER panoramic cameras. This software provides: 1) Automatic detection of terrain features in rover camera images, 2) Feature extraction for detected terrain targets, 3) Prioritization of terrain targets based on a scientist target feature set, and 4) Automated re-targeting of rover remote-sensing instruments at the highest priority target.

  12. United States planetary rover status: 1989

    NASA Technical Reports Server (NTRS)

    Pivirotto, Donna L. S.; Dias, William C.

    1990-01-01

    A spectrum of concepts for planetary rovers and rover missions, is covered. Rovers studied range from tiny micro rovers to large and highly automated vehicles capable of traveling hundreds of kilometers and performing complex tasks. Rover concepts are addressed both for the Moon and Mars, including a Lunar/Mars common rover capable of supporting either program with relatively small modifications. Mission requirements considered include both Science and Human Exploration. Studies include a range of autonomy in rovers, from interactive teleoperated systems to those requiring and onboard System Executive making very high level decisions. Both high and low technology rover options are addressed. Subsystems are described for a representative selection of these rovers, including: Mobility, Sample Acquisition, Science, Vehicle Control, Thermal Control, Local Navigation, Computation and Communications. System descriptions of rover concepts include diagrams, technology levels, system characteristics, and performance measurement in terms of distance covered, samples collected, and area surveyed for specific representative missions. Rover development schedules and costs are addressed for Lunar and Mars exploration initiatives.

  13. Using RSVP for analyzing state and previous activities for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Cooper, Brian K.; Hartman, Frank; Maxwell, Scott; Wright, John; Yen, Jeng

    2004-01-01

    Current developments in immersive environments for mission planning include several tools which make up a system for performing and rehearsing missions. This system, known as the Rover Sequencing and Visualization Program (RSVP), includes tools for planning long range sorties for highly autonomous rovers, tools for planning operations with robotic arms, and advanced tools for visualizing telemetry from remote spacecraft and landers. One of the keys to successful planning of rover activities is knowing what the rover has accomplished to date and understanding the current rover state. RSVP builds on the lessons learned and the heritage of the Mars Pathfinder mission This paper will discuss the tools and methodologies present in the RSVP suite for examining rover state, reviewing previous activities, visually comparing telemetered results to rehearsed results, and reviewing science and engineering imagery. In addition we will present how this tool suite was used on the Mars Exploration Rovers (MER) project to explore the surface of Mars.

  14. Working on Mars: Understanding How Scientists, Engineers and Rovers Interacted Across Space and Time during the Mars Exploration Rover (MER) Mission

    NASA Technical Reports Server (NTRS)

    Wales, Roxana C.

    2005-01-01

    This viewgraph presentation summarizes the scheduling and planning difficulties inherent in operating the Mars Exploration Rovers (MER) during the overlapping terrestrial day and Martian sol. The presentation gives special empahsis to communication between the teams controlling the rovers from Earth, and keeping track of time on the two planets.

  15. The University Rover Challenge: A competition highlighting Human and Robotic partnerships for exploration

    NASA Astrophysics Data System (ADS)

    Smith, Heather; Duncan, Andrew

    2016-07-01

    The University Rover Challenge began in 2006 with 4 American college teams competing, now in it's 10th year there are 63 teams from 12 countries registered to compete for the top rover designed to assist humans in the exploration of Mars. The Rovers compete aided by the University teams in four tasks (3 engineering and 1 science) in the Mars analog environment of the Utah Southern Desert in the United States. In this presentation we show amazing rover designs with videos demonstrating the incredible ingenuity, skill and determination of the world's most talented college students. We describe the purpose and results of each of the tasks: Astronaut Assistant, Rover Dexterity, Terrain maneuvering, and Science. We explain the evolution of the competition and common challenges faced by the robotic explorers

  16. KSC-03pd0211

    NASA Image and Video Library

    2003-01-28

    KENNEDY SPACE CENTER, FLA. - After being cleaned up, the Mars Exploration Rover -2 is ready to be moved to a workstand in the Payload Hazardous Servicing Facility. Set to launch in 2003, the Mars Exploration Rover Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, 2003, and the second rover a window opening June 25, 2003.

  17. Size Comparison: Three Generations of Mars Rovers

    NASA Image and Video Library

    2008-11-19

    Full-scale models of three generations of NASA Mars rovers show the increase in size from the Sojourner rover of the Mars Pathfinder project, to the twin Mars Exploration Rovers Spirit and Opportunity, to the Mars Science Laboratory rover.

  18. Rover Family Photo

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Members of the Mars Exploration Rovers Assembly, Test and Launch Operations team gather around Rover 2 and its predecessor, a flight spare of the Pathfinder mission's Sojourner rover, named Marie Curie.

  19. Rover Family Photo

    NASA Image and Video Library

    2003-02-26

    Members of the Mars Exploration Rovers Assembly, Test and Launch Operations team gather around NASA Rover 2 and its predecessor, a flight spare of the Pathfinder mission Sojourner rover, named Marie Curie.

  20. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2) is installed around the Mars Exploration Rover 2 (MER-2). MER-2 is one of NASA's twin Mars Exploration Rovers designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-2 is scheduled to launch no earlier than June 8 as MER-A, with two launch opportunities each day during the launch period that closes on June 19.

    NASA Image and Video Library

    2003-05-31

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2) is installed around the Mars Exploration Rover 2 (MER-2). MER-2 is one of NASA's twin Mars Exploration Rovers designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-2 is scheduled to launch no earlier than June 8 as MER-A, with two launch opportunities each day during the launch period that closes on June 19.

  1. Mars Exploration Rover, Vertical Artist Concept

    NASA Image and Video Library

    2003-12-15

    An artist's concept portrays a NASA Mars Exploration Rover on the surface of Mars. Two rovers, Spirit and Opportunity, will reach Mars in January 2004. Each has the mobility and toolkit to function as a robotic geologist. http://photojournal.jpl.nasa.gov/catalog/PIA04928

  2. Newest is Biggest: Three Generations of NASA Mars Rovers

    NASA Image and Video Library

    2008-11-19

    Full-scale models of three generations of NASA Mars rovers show the increase in size from the Sojourner rover of the Mars Pathfinder project, to the twin Mars Exploration Rovers Spirit and Opportunity, to the Mars Science Laboratory rover.

  3. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and Mars Exploration Rover 2 (MER-A) are ready for the third launch attempt after weather concerns postponed earlier attempts. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and Mars Exploration Rover 2 (MER-A) are ready for the third launch attempt after weather concerns postponed earlier attempts. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  4. Rovers as Geological Helpers for Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Stoker, Carol; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    Rovers can be used to perform field science on other planetary surfaces and in hostile and dangerous environments on Earth. Rovers are mobility systems for carrying instrumentation to investigate targets of interest and can perform geologic exploration on a distant planet (e.g. Mars) autonomously with periodic command from Earth. For nearby sites (such as the Moon or sites on Earth) rovers can be teleoperated with excellent capabilities. In future human exploration, robotic rovers will assist human explorers as scouts, tool and instrument carriers, and a traverse "buddy". Rovers can be wheeled vehicles, like the Mars Pathfinder Sojourner, or can walk on legs, like the Dante vehicle that was deployed into a volcanic caldera on Mt. Spurr, Alaska. Wheeled rovers can generally traverse slopes as high as 35 degrees, can avoid hazards too big to roll over, and can carry a wide range of instrumentation. More challenging terrain and steeper slopes can be negotiated by walkers. Limitations on rover performance result primarily from the bandwidth and frequency with which data are transmitted, and the accuracy with which the rover can navigate to a new position. Based on communication strategies, power availability, and navigation approach planned or demonstrated for Mars missions to date, rovers on Mars will probably traverse only a few meters per day. Collecting samples, especially if it involves accurate instrument placement, will be a slow process. Using live teleoperation (such as operating a rover on the Moon from Earth) rovers have traversed more than 1 km in an 8 hour period while also performing science operations, and can be moved much faster when the goal is simply to make the distance. I will review the results of field experiments with planetary surface rovers, concentrating on their successful and problematic performance aspects. This paper will be accompanied by a working demonstration of a prototype planetary surface rover.

  5. KSC-03pd1221

    NASA Image and Video Library

    2003-04-23

    KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 2 (MER-A) is ready for final closure of the petals on the lander. The lander and rover will be enclosed within an aeroshell for launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.

  6. KSC-03pd1223

    NASA Image and Video Library

    2003-04-23

    KENNEDY SPACE CENTER, FLA. - While workers watch the process, the petals on the lander close up around the Mars Exploration Rover 2 (MER-A). The lander and rover will be enclosed within an aeroshell for launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.

  7. Remote image analysis for Mars Exploration Rover mobility and manipulation operations

    NASA Technical Reports Server (NTRS)

    Leger, Chris; Deen, Robert G.; Bonitz, Robert G.

    2005-01-01

    NASA's Mars Exploration Rovers are two sixwheeled, 175-kg robotic vehicles which have operated on Mars for over a year as of March 2005. The rovers are controlled by teams who must understand the rover's surroundings and develop command sequences on a daily basis. The tight tactical planning timeline and everchanging environment call for tools that allow quick assessment of potential manipulator targets and traverse goals, since command sequences must be developed in a matter of hours after receipt of new data from the rovers. Reachability maps give a visual indication of which targets are reachable by each rover's manipulator, while slope and solar energy maps show the rover operator which terrain areas are safe and unsafe from different standpoints.

  8. Mars Exploration Rovers 2004-2013: Evolving Operational Tactics Driven by Aging Robotic Systems

    NASA Technical Reports Server (NTRS)

    Townsend, Julie; Seibert, Michael; Bellutta, Paolo; Ferguson, Eric; Forgette, Daniel; Herman, Jennifer; Justice, Heather; Keuneke, Matthew; Sosland, Rebekah; Stroupe, Ashley; hide

    2014-01-01

    Over the course of more than 10 years of continuous operations on the Martian surface, the operations team for the Mars Exploration Rovers has encountered and overcome many challenges. The twin rovers, Spirit and Opportunity, designed for a Martian surface mission of three months in duration, far outlived their life expectancy. Spirit explored for six years and Opportunity still operates and, in January 2014, celebrated the 10th anniversary of her landing. As with any machine that far outlives its design life, each rover has experienced a series of failures and degradations attributable to age, use, and environmental exposure. This paper reviews the failures and degradations experienced by the two rovers and the measures taken by the operations team to correct, mitigate, or surmount them to enable continued exploration and discovery.

  9. Transforming Roving-Rolling Explorer (TRREx) for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Edwin, Lionel Ernest

    All planetary surface exploration missions thus far have employed traditional rovers with a rocker-bogie suspension. These rovers can navigate moderately rough and flat terrain, but are not designed to traverse rugged terrain with steep slopes. The fact is, however, that many scientifically interesting missions require exploration platforms with capabilities for navigating such types of chaotic terrain. This issue motivates the development of new kinds of rovers that take advantage of the latest advances in robotic technologies to traverse rugged terrain efficiently. This dissertation proposes and analyses one such rover concept called the Transforming Roving-Rolling Explorer (TRREx) that is principally aimed at addressing the above issue. Biologically inspired by the way the armadillo curls up into a ball when threatened, and the way the golden wheel spider uses the dynamic advantages of a sphere to roll down hills when escaping danger, the novel TRREx rover can traverse like a traditional 6-wheeled rover over conventional terrain, but can also transform itself into a sphere, when necessary, to travel down steep inclines, or navigate rough terrain. This work presents the proposed design architecture and capabilities followed by the development of mathematical models and experiments that facilitate the mobility analysis of the TRREx in the rolling mode. The ability of the rover to self-propel in the rolling mode in the absence of a negative gradient increases its versatility and concept value. Therefore, a dynamic model of a planar version of the problem is first used to investigate the feasibility and value of such self-propelled locomotion - 'actuated rolling'. Construction and testing of a prototype Planar/Cylindrical TRREx that is capable of demonstrating actuated rolling is presented, and the results from the planar dynamic model are experimentally validated. This planar model is then built upon to develop a mathematical model of the spherical TRREx in the rolling mode, i.e. when the rover is a sphere and can steer itself through actuations that shift its center of mass to achieve the desired direction of roll. Case studies that demonstrate the capabilities of the rover in rolling mode and parametric analyses that investigate the dependence of the rover's mobility on its design are presented. This work highlights the contribution of the spherical rolling mode to the enhanced mobility of the TRREx rover and how it could enable challenging surface exploration missions in the future. It represents an important step toward developing a rover capable of traversing a variety of terrains that are impassible by the current fleet of rover designs, and thus has the potential to revolutionize planetary surface exploration.

  10. KENNEDY SPACE CENTER, FLA. - Assembly of the backshell and heat shield surrounding the Mars Exploration Rover 1 (MER-1) is complete. The resulting aeroshell will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - Assembly of the backshell and heat shield surrounding the Mars Exploration Rover 1 (MER-1) is complete. The resulting aeroshell will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  11. The use of harmonic drives on NASA's Mars Exploration Rover

    NASA Technical Reports Server (NTRS)

    Krishnan, S.; Voorhees, C.

    2001-01-01

    The Mars Exploration Rover (MER) mission will send two 185 kg rovers to Mars in 2003 to continue the scientific community's search for evidence of past water on Mars. These twin robotic vehicles will carry harmonic drives and their performance will be characterized at various temperatures, speeds and loads.

  12. KENNEDY SPACE CENTER, FLA. - The second stage of the Delta II rocket is raised off the transporter for its lift up the launch tower on Pad 17-A, Cape Canaveral Air Force Station. It will be mated to the first stage in preparation for the launch of the Mars Exploration Rover 2 (MER-A). The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet’s past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA’s two Mars Exploration Rover missions is scheduled June 5.

    NASA Image and Video Library

    2003-04-28

    KENNEDY SPACE CENTER, FLA. - The second stage of the Delta II rocket is raised off the transporter for its lift up the launch tower on Pad 17-A, Cape Canaveral Air Force Station. It will be mated to the first stage in preparation for the launch of the Mars Exploration Rover 2 (MER-A). The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet’s past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA’s two Mars Exploration Rover missions is scheduled June 5.

  13. An Environmental Control and Life Support System Concept for a Pressurized Lunar Rover

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert M.; Stambaugh, Imelda

    2010-01-01

    Pressurized rovers can add many attractive capabilities to a human lunar exploration campaign, most notably by extending the reach of astronauts far beyond the immediate vicinities of lunar landers and fixed assets such as habitats. Effective campaigns will depend on an efficient allocation of environmental control and life support system (ECLSS) equipment amongst mobile rovers and fixed habitats such that widespread and sustainable exploration can be achieved. This paper will describe some of the key drivers that influence the design of an ECLSS for a pressurized lunar rover and a conceptual design that has been formulated to address those drivers. Opportunities to realize programmatic and operational efficiencies through commonality of rover ECLSS and extravehicular activity (EVA) equipment have also been explored and will be described. Plans for the inclusion of ECLSS functionality in prototype lunar rovers will be summarized

  14. KSC-03pd1224

    NASA Image and Video Library

    2003-04-23

    KENNEDY SPACE CENTER, FLA. - Workers check different areas of the lander as the petals close in around the Mars Exploration Rover 2 (MER-A). The lander and rover will subsequently be enclosed within an aeroshell for launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.

  15. KSC-03pd1225

    NASA Image and Video Library

    2003-04-23

    KENNEDY SPACE CENTER, FLA. - Workers check different areas of the lander as the petals close in around the Mars Exploration Rover 2 (MER-A). The lander and rover will subsequently be enclosed within an aeroshell for launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.

  16. Operation and performance of the mars exploration rover imaging system on the martian surface

    USGS Publications Warehouse

    Maki, J.N.; Litwin, T.; Schwochert, M.; Herkenhoff, K.

    2005-01-01

    The Imaging System on the Mars Exploration Rovers has successfully operated on the surface of Mars for over one Earth year. The acquisition of hundreds of panoramas and tens of thousands of stereo pairs has enabled the rovers to explore Mars at a level of detail unprecedented in the history of space exploration. In addition to providing scientific value, the images also play a key role in the daily tactical operation of the rovers. The mobile nature of the MER surface mission requires extensive use of the imaging system for traverse planning, rover localization, remote sensing instrument targeting, and robotic arm placement. Each of these activity types requires a different set of data compression rates, surface coverage, and image acquisition strategies. An overview of the surface imaging activities is provided, along with a summary of the image data acquired to date. ?? 2005 IEEE.

  17. Integrated optimization of planetary rover layout and exploration routes

    NASA Astrophysics Data System (ADS)

    Lee, Dongoo; Ahn, Jaemyung

    2018-01-01

    This article introduces an optimization framework for the integrated design of a planetary surface rover and its exploration route that is applicable to the initial phase of a planetary exploration campaign composed of multiple surface missions. The scientific capability and the mobility of a rover are modelled as functions of the science weight fraction, a key parameter characterizing the rover. The proposed problem is formulated as a mixed-integer nonlinear program that maximizes the sum of profits obtained through a planetary surface exploration mission by simultaneously determining the science weight fraction of the rover, the sites to visit and their visiting sequences under resource consumption constraints imposed on each route and collectively on a mission. A solution procedure for the proposed problem composed of two loops (the outer loop and the inner loop) is developed. The results of test cases demonstrating the effectiveness of the proposed framework are presented.

  18. Rover-based visual target tracking validation and mission infusion

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Steele, Robert D.; Ansar, Adnan I.; Ali, Khaled; Nesnas, Issa

    2005-01-01

    The Mars Exploration Rovers (MER'03), Spirit and Opportunity, represent the state of the art in rover operations on Mars. This paper presents validation experiments of different visual tracking algorithms using the rover's navigation camera.

  19. CubeRovers for Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Tallaksen, A. P.; Horchler, A. D.; Boirum, C.; Arnett, D.; Jones, H. L.; Fang, E.; Amoroso, E.; Chomas, L.; Papincak, L.; Sapunkov, O. B.; Whittaker, W. L.

    2017-10-01

    CubeRover is a 2-kg class of lunar rover that seeks to standardize and democratize surface mobility and science, analogous to CubeSats. This CubeRover will study in-situ lunar surface trafficability and descent engine blast ejecta phenomena.

  20. Mars Exploration Rovers: 4 Years on Mars

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2008-01-01

    This January, the Mars Exploration Rovers "Spirit" and "Opportunity" are starting their fifth year of exploring the surface of Mars, well over ten times their nominal 90-day design lifetime. This lecture discusses the Mars Exploration Rovers, presents the current mission status for the extended mission, some of the most results from the mission and how it is affecting our current view of Mars, and briefly presents the plans for the coming NASA missions to the surface of Mars and concepts for exploration with robots and humans into the next decade, and beyond.

  1. Dynamic modeling and mobility analysis of the transforming roving-rolling explorer (TRREx) as it Traverses Rugged Martian Terrain

    NASA Astrophysics Data System (ADS)

    Edwin, Lionel E.; Mazzoleni, Andre P.

    2016-03-01

    All planetary surface exploration missions thus far have employed traditional rovers with a rocker-bogie suspension. These rovers can navigate moderately rough and flat terrain, but are not designed to traverse rugged terrain with steep slopes. The fact is, however, that the most scientifically interesting missions require exploration platforms with capabilities for navigating such types of rugged terrain. This issue motivates the development of new kinds of rovers that take advantage of the latest advances in robotic technologies to traverse rugged terrain efficiently. This work analyzes one such rover concept called the Transforming Roving-Rolling Explorer (TRREx) that is principally aimed at addressing the above issue. Biologically inspired by the way the armadillo curls up into a ball when threatened, and the way the golden wheel spider uses the dynamic advantages of a sphere to roll down hills when escaping danger, the TRREx rover can traverse like a traditional 6-wheeled rover over conventional terrain, but can also transform itself into a sphere, when necessary, to travel down steep inclines, or navigate rough terrain. This paper investigates the mobility of the TRREx when it is in its rolling mode, i.e. when it is a sphere and can steer itself through actuations that shift its center of mass to achieve the desired direction of roll. A mathematical model describing the dynamics of the rover in this spherical configuration is presented, and actuated rolling is demonstrated through computer simulation. Parametric analyzes that investigate the rover's mobility as a function of its design parameters are also presented. This work highlights the contribution of the spherical rolling mode to the enhanced mobility of the TRREx rover and how it could enable challenging surface exploration missions in the future.

  2. Visual Target Tracking on the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Kim, Won; Biesiadecki, Jeffrey; Ali, Khaled

    2008-01-01

    Visual target tracking (VTT) software has been incorporated into Release 9.2 of the Mars Exploration Rover (MER) flight software, now running aboard the rovers Spirit and Opportunity. In the VTT operation (see figure), the rover is driven in short steps between stops and, at each stop, still images are acquired by actively aimed navigation cameras (navcams) on a mast on the rover (see artistic rendition). The VTT software processes the digitized navcam images so as to track a target reliably and to make it possible to approach the target accurately to within a few centimeters over a 10-m traverse.

  3. Exploration Rover Concepts and Development Challenges

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.; McKissock, David B.; Woytach, Jeffrey M.; Zakrajsek, June F.; Oswald, Fred B.; McEntire, Kelly J.; Hill, Gerald M.; Abel, Phillip; Eichenberg, Dennis J.; Goodnight, Thomas W.

    2005-01-01

    This paper presents an overview of exploration rover concepts and the various development challenges associated with each as they are applied to exploration objectives and requirements for missions on the Moon and Mars. A variety of concepts for surface exploration vehicles have been proposed since the initial development of the Apollo-era lunar rover. This paper provides a brief description of the rover concepts, along with a comparison of their relative benefits and limitations. In addition, this paper outlines, and investigates a number of critical development challenges that surface exploration vehicles must address in order to successfully meet the exploration mission vision. These include: mission and environmental challenges, design challenges, and production and delivery challenges. Mission and environmental challenges include effects of terrain, extreme temperature differentials, dust issues, and radiation protection. Design methods are discussed that focus on optimum methods for developing highly reliable, long-life and efficient systems. In addition, challenges associated with delivering a surface exploration system is explored and discussed. Based on all the information presented, modularity will be the single most important factor in the development of a truly viable surface mobility vehicle. To meet mission, reliability, and affordability requirements, surface exploration vehicles, especially pressurized rovers, will need to be modularly designed and deployed across all projected Moon and Mars exploration missions.

  4. KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers lower the backshell with the Mars Exploration Rover 1 (MER-1) onto the heat shield. The two components form the aeroshell that will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers lower the backshell with the Mars Exploration Rover 1 (MER-1) onto the heat shield. The two components form the aeroshell that will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  5. KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers check the attachment between the backshell (above) and heat shield (below) surrounding the Mars Exploration Rover 1 (MER-1). The aeroshell will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers check the attachment between the backshell (above) and heat shield (below) surrounding the Mars Exploration Rover 1 (MER-1). The aeroshell will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  6. KENNEDY SPACE CENTER, FLA. - The Mobile Service Tower is rolled back at Launch Complex 17A to reveal a Delta II rocket ready to launch the Mars Exploration Rover-A mission. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

    NASA Image and Video Library

    2003-06-08

    KENNEDY SPACE CENTER, FLA. - The Mobile Service Tower is rolled back at Launch Complex 17A to reveal a Delta II rocket ready to launch the Mars Exploration Rover-A mission. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  7. Mars Exploration Rover surface operations: driving spirit at Gusev Crater

    NASA Technical Reports Server (NTRS)

    Leger, Chris; Trebi-Ollennu, Ashitey; Wright, John; Maxwell, Scott; Bonitz, Bob; Biesiadecki, Jeff; Hartman, Frank; Cooper, Brian; Baumgartner, Eric; Maimone, Mark

    2005-01-01

    Spirit is one of two rovers, that landed on Mars in January 2004 as part of NASA's Mars Exploration Rovers mission. Since then, Spirit has traveled over 4 kilometers accross the Martian surface while investigating rocks and soils, digging trenches to examine the subsurface environment, and climbing hills to reach outcrops of bedrock.

  8. 2017 Exploration Rover Challenge event.

    NASA Image and Video Library

    2017-03-03

    2017 Exploration Rover Challenge events at the U.S. Space and Rocket Center in Huntsville, Alabama. High school and college students from around the U.S. and the world come together for this 2 day event which challenges them to compete for the fastest time as well as technical design of the actual rover itself.

  9. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the launch tower begins to roll back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-09

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the launch tower begins to roll back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  10. KENNEDY SPACE CENTER, FLA. - The launch tower on Launch Complex 17-A, Cape Canaveral Air Force Station, clears the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-09

    KENNEDY SPACE CENTER, FLA. - The launch tower on Launch Complex 17-A, Cape Canaveral Air Force Station, clears the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  11. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are in the clear after tower rollback in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-09

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are in the clear after tower rollback in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  12. KENNEDY SPACE CENTER, FLA. - The Delta II rocket with its Mars Exploration Rover (MER-A) payload leaps off the launch pad into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - The Delta II rocket with its Mars Exploration Rover (MER-A) payload leaps off the launch pad into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  13. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  14. KENNEDY SPACE CENTER, FLA. - With smoke and steam billowing beneath, the Delta II rocket with its Mars Exploration Rover (MER-A) payload leaps off the launch pad into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - With smoke and steam billowing beneath, the Delta II rocket with its Mars Exploration Rover (MER-A) payload leaps off the launch pad into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  15. KENNEDY SPACE CENTER, FLA. - Leaving smoke and steam behind, the Delta II rocket with its Mars Exploration Rover (MER-A) payload lifts off the pad on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - Leaving smoke and steam behind, the Delta II rocket with its Mars Exploration Rover (MER-A) payload lifts off the pad on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  16. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower (right) and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower (right) and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  17. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the launch tower begins to roll back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for another launch attempt. The first two attempts were postponed due to weather concerns. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the launch tower begins to roll back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for another launch attempt. The first two attempts were postponed due to weather concerns. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  18. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are viewed as the launch tower overhead rolls back. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are viewed as the launch tower overhead rolls back. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  19. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload are free of the tower and ready for launch. This will be the third launch attempt in as many days after weather concerns postponed the launches June 8 and June 9. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  20. KENNEDY SPACE CENTER, FLA. - The Delta II rocket with its Mars Exploration Rover (MER-A) payload breaks forth from the smoke and steam into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - The Delta II rocket with its Mars Exploration Rover (MER-A) payload breaks forth from the smoke and steam into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25

  1. KENNEDY SPACE CENTER, FLA. - The Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload is viewed from under the launch tower as it moves away on Launch Complex 17-A, Cape Canaveral Air Force Station. This will be a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-09

    KENNEDY SPACE CENTER, FLA. - The Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload is viewed from under the launch tower as it moves away on Launch Complex 17-A, Cape Canaveral Air Force Station. This will be a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  2. KENNEDY SPACE CENTER, FLA. - The launch tower (right) on Launch Complex 17-A, Cape Canaveral Air Force Station, has been rolled back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload (left) in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-09

    KENNEDY SPACE CENTER, FLA. - The launch tower (right) on Launch Complex 17-A, Cape Canaveral Air Force Station, has been rolled back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload (left) in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  3. KENNEDY SPACE CENTER, FLA. - Amid billows of smoke and steam, the Delta II rocket with its Mars Exploration Rover (MER-A) payload lifts off the pad on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - Amid billows of smoke and steam, the Delta II rocket with its Mars Exploration Rover (MER-A) payload lifts off the pad on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  4. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload waits for rollback of the launch tower in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-09

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload waits for rollback of the launch tower in preparation for a second attempt at launch. The first attempt on June 8, 2003, was scrubbed due to bad weather in the vicinity. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  5. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the launch tower rolls back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for another launch attempt. The first two attempts, June 8 and June 9, were postponed due to weather concerns. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, the launch tower rolls back from the Boeing Delta II rocket and its Mars Exploration Rover (MER-A) payload in preparation for another launch attempt. The first two attempts, June 8 and June 9, were postponed due to weather concerns. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  6. KENNEDY SPACE CENTER, FLA. - Blue sky and sun give a dramatic backdrop for the launch of the Delta II rocket with its Mars Exploration Rover (MER-A) payload. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - Blue sky and sun give a dramatic backdrop for the launch of the Delta II rocket with its Mars Exploration Rover (MER-A) payload. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  7. Scout Rover Applications for Forward Acquisition of Soil and Terrain Data

    NASA Astrophysics Data System (ADS)

    Sonsalla, R.; Ahmed, M.; Fritsche, M.; Akpo, J.; Voegele, T.

    2014-04-01

    As opposed to the present mars exploration missions future mission concepts ask for a fast and safe traverse through vast and varied expanses of terrain. As seen during the Mars Exploration Rover (MER) mission the rovers suffered a lack of detailed soil and terrain information which caused Spirit to get permanently stuck in soft soil. The goal of the FASTER1 EU-FP7 project is to improve the mission safety and the effective traverse speed for planetary rover exploration by determining the traversability of the terrain and lowering the risk to enter hazardous areas. To achieve these goals, a scout rover will be used for soil and terrain sensing ahead of the main rover. This paper describes a highly mobile, and versatile micro scout rover that is used for soil and terrain sensing and is able to co-operate with a primary rover as part of the FASTER approach. The general reference mission idea and concept is addressed within this paper along with top-level requirements derived from the proposed ESA/NASA Mars Sample Return mission (MSR) [4]. Following the mission concept and requirements [3], a concept study for scout rover design and operations has been performed [5]. Based on this study the baseline for the Coyote II rover was designed and built as shown in Figure 1. Coyote II is equipped with a novel locomotion concept, providing high all terrain mobility and allowing to perform side-to-side steering maneuvers which reduce the soil disturbance as compared to common skid steering [6]. The rover serves as test platform for various scout rover application tests ranging from locomotion testing to dual rover operations. From the lessons learned from Coyote II and for an enhanced design, a second generation rover (namely Coyote III) as shown in Figure 2 is being built. This rover serves as scout rover platform for the envisaged FASTER proof of concept field trials. The rover design is based on the test results gained by the Coyote II trials. Coyote III is equipped with two soil sensors,(1) the Wheel Leg Soil Interaction Observation (WLSIO) system, and (2) a Dynamic Plate (DP). These two soil sensors are designed by [2] and proposed to evaluate the trafficability of terrain in front of the primary rover. While the main body houses the WLSIO system, the DP sensor is mounted to the rover via an electro-mechanical interface (EMI) [7], providing a modular payload bay. Within the FASTER approach the scout rover will travel ahead of a primary exploration rover acting as 'remote' sensor platform. This requires a specialized software setup for the scout rover, allowing to safely follow a predefined path while conducting soil measurements. The general operational concept of the scout rover acting in a dual rover team is addressed while focusing on the scout rover software implementation to allow autonomous traversal. A set of integration tests for dual rover operations is planned using the Coyote II and/or Coyote III platforms. Furthermore, it is intended to perform proof of concept field trials with Coyote III as scout rover and the ExoMars breadboard BRIDGET [1] as primary rover. Along with the test results from interface integration testing, the first test results of dual rover field operation may be presented.

  8. Mars Exploration Rover Surface Operations

    NASA Astrophysics Data System (ADS)

    Erickson, J. K.; Adler, M.; Crisp, J.; Mishkin, A.; Welch, R.

    2002-01-01

    The Mars Exploration Rover Project is an ambitious mission to land two highly capable rovers on Mars and concurrently explore the Martian surface for three months each. Launching in 2003, surface operations will commence on January 4, 2004 with the first landing, followed by the second landing on January 25. The prime mission for the second rover will end on April 27, 2004. The science objectives of exploring multiple locations within each of two widely separated and scientifically distinct landing sites will be accomplished along with the demonstration of key surface exploration technologies for future missions. This paper will provide an overview of the planned mission, and also focus on the different operations challenges inherent in operating these two very off road vehicles, and the solutions adopted to enable the best utilization of their capabilities for high science return and responsiveness to scientific discovery.

  9. Robot Science Autonomy in the Atacama Desert and Beyond

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Wettergreen, David S.

    2013-01-01

    Science-guided autonomy augments rovers with reasoning to make observations and take actions related to the objectives of scientific exploration. When rovers can directly interpret instrument measurements then scientific goals can inform and adapt ongoing navigation decisions. These autonomous explorers will make better scientific observations and collect massive, accurate datasets. In current astrobiology studies in the Atacama Desert we are applying algorithms for science autonomy to choose effective observations and measurements. Rovers are able to decide when and where to take follow-up actions that deepen scientific understanding. These techniques apply to planetary rovers, which we can illustrate with algorithms now used by Mars rovers and by discussing future missions.

  10. KSC-03pd0516

    NASA Image and Video Library

    2003-02-19

    KENNEDY SPACE CENTER, FLA. - At NASA's Family & Community Mars Exploration Day, held in Cape Canaveral, Fla., James Garvin, lead scientist for the Mars Exploration Program, talks to students about the Mars Exploration Rover. Garvin is standing next to a replica of the Rover. The event informed students and the general public about Florida's key role as NASA's "Gateway to Mars" and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.

  11. KSC-03PD-0516

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - At NASA's Family & Community Mars Exploration Day, held in Cape Canaveral, Fla., James Garvin, lead scientist for the Mars Exploration Program, talks to students about the Mars Exploration Rover. Garvin is standing next to a replica of the Rover. The event informed students and the general public about Florida's key role as NASA's 'Gateway to Mars' and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.

  12. KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 2 (MER-2) undergoes a weight and center of gravity determination in the Payload Hazardous Servicing Facility. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. Launch of MER-2 is scheduled for June 5 from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-09

    KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 2 (MER-2) undergoes a weight and center of gravity determination in the Payload Hazardous Servicing Facility. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. Launch of MER-2 is scheduled for June 5 from Cape Canaveral Air Force Station.

  13. KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility prepare the Mars Exploration Rover 2 (MER-2) for a weight and center of gravity determination. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. Launch of MER-2 is scheduled for June 5 from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-09

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility prepare the Mars Exploration Rover 2 (MER-2) for a weight and center of gravity determination. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. Launch of MER-2 is scheduled for June 5 from Cape Canaveral Air Force Station.

  14. KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility are preparing to determine weight and center of gravity for the Mars Exploration Rover 2 (MER-2). NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. Launch of MER-2 is scheduled for June 5 from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-09

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility are preparing to determine weight and center of gravity for the Mars Exploration Rover 2 (MER-2). NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. Launch of MER-2 is scheduled for June 5 from Cape Canaveral Air Force Station.

  15. KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers prepare to mate the Mars Exploration Rover-2 (MER-2) to the third stage of a Delta II rocket for launch on June 5. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-23

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers prepare to mate the Mars Exploration Rover-2 (MER-2) to the third stage of a Delta II rocket for launch on June 5. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-1 (MER-B) will launch June 25.

  16. KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover 2 (MER-2) is moved to a spin table. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. The MER-2 is scheduled to launch June 5 from Launch Pad 17-A, Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-19

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover 2 (MER-2) is moved to a spin table. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. The MER-2 is scheduled to launch June 5 from Launch Pad 17-A, Cape Canaveral Air Force Station.

  17. KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers mate the Mars Exploration Rover-2 (MER-2) to the third stage of a Delta II rocket for launch on June 5. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-23

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers mate the Mars Exploration Rover-2 (MER-2) to the third stage of a Delta II rocket for launch on June 5. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-1 (MER-B) will launch June 25.

  18. Multiple-Agent Air/Ground Autonomous Exploration Systems

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang; Chao, Tien-Hsin; Tarbell, Mark; Dohm, James M.

    2007-01-01

    Autonomous systems of multiple-agent air/ground robotic units for exploration of the surfaces of remote planets are undergoing development. Modified versions of these systems could be used on Earth to perform tasks in environments dangerous or inaccessible to humans: examples of tasks could include scientific exploration of remote regions of Antarctica, removal of land mines, cleanup of hazardous chemicals, and military reconnaissance. A basic system according to this concept (see figure) would include a unit, suspended by a balloon or a blimp, that would be in radio communication with multiple robotic ground vehicles (rovers) equipped with video cameras and possibly other sensors for scientific exploration. The airborne unit would be free-floating, controlled by thrusters, or tethered either to one of the rovers or to a stationary object in or on the ground. Each rover would contain a semi-autonomous control system for maneuvering and would function under the supervision of a control system in the airborne unit. The rover maneuvering control system would utilize imagery from the onboard camera to navigate around obstacles. Avoidance of obstacles would also be aided by readout from an onboard (e.g., ultrasonic) sensor. Together, the rover and airborne control systems would constitute an overarching closed-loop control system to coordinate scientific exploration by the rovers.

  19. VIPER: Virtual Intelligent Planetary Exploration Rover

    NASA Technical Reports Server (NTRS)

    Edwards, Laurence; Flueckiger, Lorenzo; Nguyen, Laurent; Washington, Richard

    2001-01-01

    Simulation and visualization of rover behavior are critical capabilities for scientists and rover operators to construct, test, and validate plans for commanding a remote rover. The VIPER system links these capabilities. using a high-fidelity virtual-reality (VR) environment. a kinematically accurate simulator, and a flexible plan executive to allow users to simulate and visualize possible execution outcomes of a plan under development. This work is part of a larger vision of a science-centered rover control environment, where a scientist may inspect and explore the environment via VR tools, specify science goals, and visualize the expected and actual behavior of the remote rover. The VIPER system is constructed from three generic systems, linked together via a minimal amount of customization into the integrated system. The complete system points out the power of combining plan execution, simulation, and visualization for envisioning rover behavior; it also demonstrates the utility of developing generic technologies. which can be combined in novel and useful ways.

  20. Airbag Seams Leave Trails

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity's panoramic camera shows where the rover's airbag seams left impressions in the martian soil. The drag marks were made after the rover successfully landed at Meridiani Planum and its airbags were retracted. The rover can be seen in the foreground.

  1. Airbag Impressions in Soil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity's panoramic camera shows where the rover's airbags left impressions in the martian soil. The drag marks were made after the rover successfully landed at Meridiani Planum and its airbags were retracted. The rover can be seen in the foreground.

  2. Optomechanical Design of Ten Modular Cameras for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Ford, Virginia G.; Karlmann, Paul; Hagerott, Ed; Scherr, Larry

    2003-01-01

    This viewgraph presentation reviews the design and fabrication of the modular cameras for the Mars Exploration Rovers. In the 2003 mission there were to be 2 landers and 2 rovers, each were to have 10 cameras each. Views of the camera design, the lens design, the lens interface with the detector assembly, the detector assembly, the electronics assembly are shown.

  3. Mars Exploration Rover: Launch, Cruise, Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Erickson, James K.; Manning, Robert M.; Adler, M.

    2004-01-01

    The Mars Exploration Rover Project was an ambitious effort to land two highly capable rovers on Mars and concurrently explore the Martian surface for three months each. Launched in June and July of 2003, cruise operations were conducted through January 4, 2004 with the first landing, followed by the second landing on January 25. The prime mission for the second rover ended on April 27, 2004. This paper will provide an overview of the launch, cruise, and landing phases of the mission, including the engineering and science objectives and challenges involved in the selection and targeting of the landing sites, as well as the excitement and challenges of atmospheric entry, descent and landing execution.

  4. Onboard planning for geological investigations using a rover team

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Gaines, Daniel; Fisher, Forest; Castano, Rebecca

    2004-01-01

    This paper describes an integrated system for coordinating multiple rover behavior with the overall goal of collecting planetary surface data. The Multi-Rover Integrated Science Understanding System (MISUS) combines techniques from planning and scheduling with machine learning to perform autonomous scientific exploration with cooperating rovers.

  5. Students Compete in NASA's Human Exploration Rover Challenge

    NASA Image and Video Library

    2018-04-03

    NASA's Human Exploration Rover Challenge invites high school and college teams to design, build and test human-powered roving vehicles inspired by the Apollo lunar missions and future exploration missions to the Moon, Mars and beyond. The nearly three-quarter-mile course boasts grueling obstacles that simulate terrain found throughout the solar system. Hosted by NASA’s Marshall Space Flight Center in Huntsville, Alabama, and the U.S. Space & Rocket Center, Rover Challenge is managed by Marshall's Academic Affairs Office.

  6. Low Cost Mars Surface Exploration: The Mars Tumbleweed

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Calhoun, Philip; Flick, John; Hajos, Gregory; Kolacinski, Richard; Minton, David; Owens, Rachel; Parker, Jennifer

    2003-01-01

    The "Mars Tumbleweed," a rover concept that would utilize surface winds for mobility, is being examined as a low cost complement to the current Mars exploration efforts. Tumbleweeds carrying microinstruments would be driven across the Martian landscape by wind, searching for areas of scientific interest. These rovers, relatively simple, inexpensive, and deployed in large numbers to maximize coverage of the Martian surface, would provide a broad scouting capability to identify specific sites for exploration by more complex rover and lander missions.

  7. The Little Rover that Could

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken at NASA's Jet Propulsion Laboratory shows a rover test drive up a manmade slope. The slope simulates one that the Mars Exploration Rover Opportunity will face on Mars if it is sent commands to explore rock outcrop that lies farther into 'Endurance Crater.' Using sand, dirt and rocks, scientists and engineers at JPL constructed the overall platform of the slope at a 25-degree angle, with a 40-degree step in the middle. The test rover successfully descended and climbed the platform, adding confidence that Opportunity could cross a similar hurdle in Endurance Crater.

  8. Novelty Detection in and Between Different Modalities

    NASA Astrophysics Data System (ADS)

    Veflingstad, Henning; Yildirim, Sule

    2008-01-01

    Our general aim is to reflect the advances in artificial intelligence and cognitive science fields to space exploration studies such that next generation space rovers can benefit from these advances. We believe next generation space rovers can benefit from the studies related to employing conceptual representations in generating structured thought. This way, rovers need not be equipped with all necessary steps of an action plan to execute in space exploration but they can autonomously form representations of their world and reason on them to make intelligent decision. As part of this approach, autonomous novelty detection is an important feature of next generation space rovers. This feature allows a rover to make further decisions about exploring a rock sample more closely or not and on its own. This way, a rover will use less of its time for communication between the earth and itself and more of its time for achieving its assigned tasks in space. In this paper, we propose an artificial neural network based novelty detection mechanism that next generation space rovers can employ as part of their intelligence. We also present an implementation of such a mechanism and present its reliability in detecting novelty.

  9. Dust Spectra from Above and Below

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Spectra of martian dust taken by the Mars Exploration Rover Spirit's mini-thermal emission spectrometer are compared to that of the orbital Mars Global Surveyor's thermal emission spectrometer. The graph shows that the two instruments are in excellent agreement.

    Rover Senses Carbon Dioxide [figure removed for brevity, see original site] Click on image for larger view

    This graph, consisting of data acquired on Mars from the Mars Exploration Rover Spirit's mini-thermal emission spectrometer, shows the light, or spectral, signature of carbon dioxide. Carbon dioxide makes up the bulk of the thin martian atmosphere.

    Rover Senses Silicates [figure removed for brevity, see original site] Click on image for larger view

    This graph, consisting of data acquired on Mars by the Mars Exploration Rover Spirit's mini-thermal emission spectrometer, shows the light, or spectral, signature of silicates - a group of minerals that form the majority of Earth's crust. Minerals called feldspars and zeolites are likely candidates responsible for this feature.

    Rover Senses Bound Water [figure removed for brevity, see original site] Click on image for larger view

    This graph, consisting of data acquired on Mars from the Mars Exploration Rover Spirit's mini-thermal emission spectrometer, shows the light, or spectral, signature of an as-of-yet unidentified mineral that contains bound water in its crystal structure. Minerals such as gypsum and zeolites are possible candidates.

    Rover Senses Carbonates [figure removed for brevity, see original site] Click on image for larger view

    This graph, consisting of data from the Mars Exploration Rover Spirit's mini-thermal emission spectrometer, shows the light, or spectral, signatures of carbonates - minerals common to Earth that form only in water. The detection of trace amounts of carbonates on Mars may be due to an interaction between the water vapor in the atmosphere and minerals on the surface.

  10. In Situ Resource Utilization For Mobility In Mars Exploration

    NASA Astrophysics Data System (ADS)

    Hartman, Leo

    There has been considerable interest in the unmanned exploration of Mars for quite some time but the current generation of rovers can explore only a small portion of the total planetary surface. One approach to addressing this deficiency is to consider a rover that has greater range and that is cheaper so that it can be deployed in greater numbers. The option explored in this paper uses the wind to propel a rover platform, trading off precise navigation for greater range. The capabilities of such a rover lie between the global perspective of orbiting satellites and the detailed local analysis of current-generation rovers. In particular, the design includes two inflatable wheels with an unspun payload platform suspended between then. Slightly deflating one of the wheels enables steering away from the direction of the wind and sufficiently deflating both wheels will allow the rover to stop. Current activities revolve around the development of a prototype with a wheel cross-sectional area that is scaled by 1/100 to enable terrestrial trials to provide meaningful insight into the performance and behavior of a full-sized rover on Mars. The paper will discuss the design and its capabilities in more detail as well as current efforts to build a prototype suitable for deployment at a Mars analogue site such as Devon Island in the Canadian arctic.

  11. KSC-03pd1219

    NASA Image and Video Library

    2003-04-23

    KENNEDY SPACE CENTER, FLA. - On Pad 17-A, Cape Canaveral Air Force Station, the first stage of the Delta II rocket is lifted up the launch tower. The Delta will launch the Mars Exploration Rover (MER-A) vehicle. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.

  12. KSC-03pd1215

    NASA Image and Video Library

    2003-04-23

    KENNEDY SPACE CENTER, FLA. - On Pad 17-A, Cape Canaveral Air Force Station, the first stage of the Delta II rocket is nearly vertical in the launch tower. The Delta will launch the Mars Exploration Rover (MER-A) vehicle. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.

  13. KSC-03pd1220

    NASA Image and Video Library

    2003-04-23

    KENNEDY SPACE CENTER, FLA. - On Pad 17-A, Cape Canaveral Air Force Station, the first stage of the Delta II rocket is lifted up the launch tower. The Delta will launch the Mars Exploration Rover (MER-A) vehicle. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.

  14. KSC-03pd1213

    NASA Image and Video Library

    2003-04-23

    KENNEDY SPACE CENTER, FLA. - On Pad 17-A, Cape Canaveral Air Force Station, the first stage of the Delta II rocket is lifted to vertical at the launch tower. The Delta will launch the Mars Exploration Rover (MER-A) vehicle. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for this first of NASA's two Mars Exploration Rover missions is scheduled no earlier than June 6.

  15. The Challenges of Designing the Rocker-Bogie Suspension for the Mars Exploration Rover

    NASA Technical Reports Server (NTRS)

    Harrington, Brian D.; Voorhees, Chris

    2004-01-01

    Over the past decade, the rocker-bogie suspension design has become a proven mobility application known for its superior vehicle stability and obstacle-climbing capability. Following several technology and research rover implementations, the system was successfully flown as part of Mars Pathfinder s Sojourner rover. When the Mars Exploration Rover (MER) Project was first proposed, the use of a rocker-bogie suspension was the obvious choice due to its extensive heritage. The challenge posed by MER was to design a lightweight rocker-bogie suspension that would permit the mobility to stow within the limited space available and deploy into a configuration that the rover could then safely use to egress from the lander and explore the Martian surface. This paper will describe how the MER rocker-bogie suspension subsystem was able to meet these conflicting design requirements while highlighting the variety of deployment and latch mechanisms employed in the design.

  16. KSC-03pd0515

    NASA Image and Video Library

    2003-02-19

    KENNEDY SPACE CENTER, FLA. -- In a demonstration of the agility of the Mars Exploration Rover, a model of the Rover rolls over the prone bodies of two volunteer students during NASA's Family & Community Mars Exploration Day held in Cape Canaveral, Fla. The event informed students and the general public about Florida's key role as NASA's "Gateway to Mars" and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.

  17. KSC-03PD-0515

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- In a demonstration of the agility of the Mars Exploration Rover, a model of the Rover rolls over the prone bodies of two volunteer students during NASA's Family & Community Mars Exploration Day held in Cape Canaveral, Fla. The event informed students and the general public about Florida's key role as NASA's 'Gateway to Mars' and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.

  18. Pathfinder Lander Rover Recharge System, and MARCO POLO Controls and ACME Regolith Feed System Controls and Integration

    NASA Technical Reports Server (NTRS)

    Tran, Sarah Diem

    2015-01-01

    This project stems from the Exploration, Research, and Technology Directorate (UB) Projects Division, and one of their main initiatives is the "Journey to Mars". Landing on the surface of Mars which is millions of miles away is an incredibly large challenge. The terrain is covered in boulders, deep canyons, volcanic mountains, and spotted with sand dunes. The robotic lander is a kind of spacecraft with multiple purposes. One purpose is to be the protective shell for the Martian rover and absorb the impact from the landing forces; another purpose is to be a place where the rovers can come back to, actively communicate with, and recharge their batteries from. Rovers have been instrumental to the Journey to Mars initiative. They have been performing key research on the terrain of the red planet, trying to unlock the mysteries of the land for over a decade. The rovers that will need charging will not all have the same kind of internal battery either. RASSOR batteries may differ from the PbAC batteries inside Red Rover's chassis. NASA has invested heavily in the exploration of the surface of Mars. A driving force behind further exploration is the need for a more efficient operation of Martian rovers. One way is to reduce the weight as much as possible to reduce power consumption given the same mission parameters. In order to reduce the mass of the rovers, power generation, communication, and sample analysis systems currently onboard Martian rovers can be moved to a stationary lander deck. Positioning these systems from the rover to the Lander deck allows a taskforce of smaller, lighter rovers to perform the same tasks currently performed by or planned for larger rovers. A major task in transferring these systems to a stationary lander deck is ensuring that power can be transferred to the rovers.

  19. Amorphous Rover

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A.

    2010-01-01

    A proposed mobile robot, denoted the amorphous rover, would vary its own size and shape in order to traverse terrain by means of rolling and/or slithering action. The amorphous rover was conceived as a robust, lightweight alternative to the wheeled rover-class robotic vehicle heretofore used in exploration of Mars. Unlike a wheeled rover, the amorphous rover would not have a predefined front, back, top, bottom, or sides. Hence, maneuvering of the amorphous rover would be more robust: the amorphous rover would not be vulnerable to overturning, could move backward or sideways as well as forward, and could even narrow itself to squeeze through small openings.

  20. KENNEDY SPACE CENTER, FLA. - On Mars Exploration Rover 1 (MER-1) , air bags are installed on the lander. The airbags will inflate to cushion the landing of the spacecraft on the surface of Mars. When it stops bouncing and rolling, the airbags will deflate and retract, the petals will open to bring the lander to an upright position, and the rover will be exposed. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-10

    KENNEDY SPACE CENTER, FLA. - On Mars Exploration Rover 1 (MER-1) , air bags are installed on the lander. The airbags will inflate to cushion the landing of the spacecraft on the surface of Mars. When it stops bouncing and rolling, the airbags will deflate and retract, the petals will open to bring the lander to an upright position, and the rover will be exposed. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  1. KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 1 (MER-1) is seen after installation of the air bags on the outside of the lander. The airbags will inflate to cushion the landing of the spacecraft on the surface of Mars. When it stops bouncing and rolling, the airbags will deflate and retract, the petals will open to bring the lander to an upright position, and the rover will be exposed. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-10

    KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 1 (MER-1) is seen after installation of the air bags on the outside of the lander. The airbags will inflate to cushion the landing of the spacecraft on the surface of Mars. When it stops bouncing and rolling, the airbags will deflate and retract, the petals will open to bring the lander to an upright position, and the rover will be exposed. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  2. Overview of the Mars Exploration Rover Mission

    NASA Astrophysics Data System (ADS)

    Adler, M.

    2002-12-01

    The Mars Exploration Rover (MER) Project is an ambitious mission to land two highly capable rovers at different sites in the equatorial region of Mars. The two vehicles are launched separately in May through July of 2003. Mars surface operations begin on January 4, 2004 with the first landing, followed by the second landing three weeks later on January 25. The useful surface lifetime of each rover will be at least 90 sols. The science objectives of exploring multiple locations within each of two widely separated and scientifically distinct landing sites will be accomplished along with the demonstration of key surface exploration technologies for future missions. The two MER spacecraft are planned to be identical. The rovers are landed using the Mars Pathfinder approach of a heatshield and parachute to slow the vehicle relative to the atmosphere, solid rockets to slow the lander near the surface, and airbags to cushion the surface impacts. During entry, descent, and landing, the vehicles will transmit coded tones directly to Earth, and in the terminal descent phase will also transmit telemetry to the MGS orbiter to indicate progress through the critical events. Once the lander rolls to a stop, a tetrahedral structure opens to right the lander and to reveal the folded rover, which then deploys and later by command will roll off of the lander to begin its exploration. Each six-wheeled rover carries a suite of instruments to collect contextual information about the landing site using visible and thermal infrared remote sensing, and to collect in situ information on the composition, mineralogy, and texture of selected Martian soils and rocks using an arm-mounted microscopic imager, rock abrasion tool, and spectrometers. During their surface missions, the rovers will communicate with Earth directly through the Deep Space Network as well as indirectly through the Odyssey and MGS orbiters. The solar-powered rovers will be commanded in the morning of each Sol, with the results returned in the afternoon of that Sol guiding the plans for the following Sol. Between the command sessions, the rover will autonomously execute the requested activities, including as an example traverses of tens of meters using autonomous navigation and hazard avoidance.

  3. KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B, Cape Canaveral Air Force Station, the Mars Exploration Rover 1 (MER-B) is moved toward the opening above the Delta rocket. The rover will then be mated with the rocket for launch. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

    NASA Image and Video Library

    2003-06-17

    KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B, Cape Canaveral Air Force Station, the Mars Exploration Rover 1 (MER-B) is moved toward the opening above the Delta rocket. The rover will then be mated with the rocket for launch. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

  4. Prospecting Rovers for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Graham, Jerry B.; Vaughn, Jason A.; Farmer, Jeffery T.

    2007-01-01

    A study of lunar rover options for exploring the permanently shadowed regions of the lunar environment is presented. The potential for nearly continuous solar illumination coupled with the potential for water ice, focus exploration planner's attention on the polar regions of the moon. These regions feature craters that scientists have reason to believe may contain water ice. Water ice can be easily converted to fuel cell reactants, breathing oxygen, potable water, and rocket propellant. For these reasons, the NASA Robotic Lunar Exploration Program (RLEP) sponsored a study of potential prospecting rover concepts as one part of the RLEP-2 Pre-Phase A. Numerous vehicle configurations and power, thermal, and communication options are investigated. Rover options in the 400kg to 530kg class are developed which are capable of either confirming the presence of water ice at the poles, or conclusively demonstrating its absence.

  5. KENNEDY SPACE CENTER, FLA. - In the foreground, three solid rocket boosters (SRBs) suspended in the launch tower flank the Delta II rocket (in the background) that will launch Mars Exploration Rover 2 (MER-2). NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - In the foreground, three solid rocket boosters (SRBs) suspended in the launch tower flank the Delta II rocket (in the background) that will launch Mars Exploration Rover 2 (MER-2). NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  6. KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility prepare to lift and move the backshell that will cover the Mars Exploration Rover 1 (MER-1) and its lander. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-10

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility prepare to lift and move the backshell that will cover the Mars Exploration Rover 1 (MER-1) and its lander. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  7. KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis is introduced to the media at a press conference. The Siberian-born Arizona resident wrote the winning entry in the Name the Rovers Contest sponsored by NASA and the Lego Co., a Denmark-based toymaker, with collaboration from the Planetary Society, Pasadena, Calif. The names she selected for the Mars Exploration Rovers are "Spirit" and "Opportunity." The third grader's essay was chosen from more than 10,000 American student entries. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

    NASA Image and Video Library

    2003-06-08

    KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis is introduced to the media at a press conference. The Siberian-born Arizona resident wrote the winning entry in the Name the Rovers Contest sponsored by NASA and the Lego Co., a Denmark-based toymaker, with collaboration from the Planetary Society, Pasadena, Calif. The names she selected for the Mars Exploration Rovers are "Spirit" and "Opportunity." The third grader's essay was chosen from more than 10,000 American student entries. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  8. KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis (left) shares a light moment with NASA Administrator Sean O'Keefe at a press conference. The Siberian-born Arizona resident wrote the winning entry in the Name the Rovers Contest sponsored by NASA and the Lego Co., a Denmark-based toymaker, with collaboration from the Planetary Society, Pasadena, Calif. The names she selected for the Mars Exploration Rovers are "Spirit" and "Opportunity." The third grader's essay was chosen from more than 10,000 American student entries. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

    NASA Image and Video Library

    2003-06-08

    KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis (left) shares a light moment with NASA Administrator Sean O'Keefe at a press conference. The Siberian-born Arizona resident wrote the winning entry in the Name the Rovers Contest sponsored by NASA and the Lego Co., a Denmark-based toymaker, with collaboration from the Planetary Society, Pasadena, Calif. The names she selected for the Mars Exploration Rovers are "Spirit" and "Opportunity." The third grader's essay was chosen from more than 10,000 American student entries. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  9. KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis (left) is introduced to the media by NASA Administrator Sean O'Keefe at a press conference. The Siberian-born Arizona resident wrote the winning entry in the Name the Rovers Contest sponsored by NASA and the Lego Co., a Denmark-based toymaker, with collaboration from the Planetary Society, Pasadena, Calif. The names she selected for the Mars Exploration Rovers are "Spirit" and "Opportunity." The third grader's essay was chosen from more than 10,000 American student entries. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

    NASA Image and Video Library

    2003-06-08

    KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis (left) is introduced to the media by NASA Administrator Sean O'Keefe at a press conference. The Siberian-born Arizona resident wrote the winning entry in the Name the Rovers Contest sponsored by NASA and the Lego Co., a Denmark-based toymaker, with collaboration from the Planetary Society, Pasadena, Calif. The names she selected for the Mars Exploration Rovers are "Spirit" and "Opportunity." The third grader's essay was chosen from more than 10,000 American student entries. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  10. KENNEDY SPACE CENTER, FLA. - With a glimpse of the Atlantic Ocean over the horizon, the Delta II rocket with its Mars Exploration Rover (MER-A) payload leaps off the launch pad into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - With a glimpse of the Atlantic Ocean over the horizon, the Delta II rocket with its Mars Exploration Rover (MER-A) payload leaps off the launch pad into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25

  11. KENNEDY SPACE CENTER, FLA. - With a glimpse of the Atlantic Ocean over the horizon, the Delta II rocket with its Mars Exploration Rover (MER-A) payload leaps off the launch pad into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

    NASA Image and Video Library

    2003-06-10

    KENNEDY SPACE CENTER, FLA. - With a glimpse of the Atlantic Ocean over the horizon, the Delta II rocket with its Mars Exploration Rover (MER-A) payload leaps off the launch pad into the blue sky to begin its journey to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  12. Enhancing Lunar Exploration with a Radioisotope Powered Dual Mode Lunar Rover

    NASA Astrophysics Data System (ADS)

    Elliott, J. O.; Coste, K.; Schriener, T. M.

    2005-12-01

    The emerging plans for lunar exploration and establishment of a permanent human presence on the moon will require development of numerous infrastructure elements to facilitate their implementation. One such element, which manifestly demonstrated its worth in the Apollo missions, is the lunar roving vehicle. While the original Apollo lunar rovers were designed for single mission use, the intention of proceeding with a long-term sustained lunar exploration campaign gives new impetus to consideration of a lunar roving vehicle with extended capabilities, including the ability to support multiple sequential human missions as well as teleoperated exploration activities between human visits. This paper presents a preliminary design concept for such a vehicle, powered by radioisotope power systems which would give the rover greatly extended capabilities and the versatility to operate at any latitude over the entire lunar day/night cycle. The rover would be used for human transportation during astronaut sorties, and be reconfigured for teleoperation by earth-based controllers during the times between crewed landings. In teleoperated mode the rover could be equipped with a range of scientific instrument suites for exploration and detailed assessment of the lunar environment on a regional scale. With modular payload attachments, the rover could be modified between missions to carry out a variety of scientific and utilitarian tasks, including regolith reconfiguration in support of establishment of a permanent human base.

  13. KSC-03PD-1586

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The backshell is in place over the Mars Exploration Rover 1 (MER-1). The backshell is a protective cover for the rover. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  14. KSC-03PD-1584

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Workers in the Payload Hazardous Servicing Facility lower the backshell over the Mars Exploration Rover 1 (MER-1). The backshell is a protective cover for the rover. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  15. Immersive visualization for navigation and control of the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Hartman, Frank R.; Cooper, Brian; Maxwell, Scott; Wright, John; Yen, Jeng

    2004-01-01

    The Rover Sequencing and Visualization Program (RSVP) is a suite of tools for sequencing of planetary rovers, which are subject to significant light time delay and thus are unsuitable for teleoperation.

  16. Recent Accomplishments in Mars Exploration: The Rover Perspective

    NASA Astrophysics Data System (ADS)

    McLennan, S. M.; McSween, H. Y.

    2018-04-01

    Mobile rovers have revolutionized our understanding of Mars geology by identifying habitable environments and addressing critical questions related to Mars science. Both the advances and limitations of rovers set the scene for Mars Sample Return.

  17. Opportunity Late Afternoon View of Mars

    NASA Image and Video Library

    2012-02-03

    NASA Mars Exploration Rover Opportunity captured this low-light raw image during the late afternoon of the rover 2,847th Martian sol Jan. 27, 2012. The rover is positioned for the Mars winter at Greeley Haven.

  18. Dynamic Modeling and Soil Mechanics for Path Planning of the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Trease, Brian; Arvidson, Raymond; Lindemann, Randel; Bennett, Keith; Zhou, Feng; Iagnemma, Karl; Senatore, Carmine; Van Dyke, Lauren

    2011-01-01

    To help minimize risk of high sinkage and slippage during drives and to better understand soil properties and rover terramechanics from drive data, a multidisciplinary team was formed under the Mars Exploration Rover (MER) project to develop and utilize dynamic computer-based models for rover drives over realistic terrains. The resulting tool, named ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction Simulator), consists of the dynamic model, a library of terramechanics subroutines, and the high-resolution digital elevation maps of the Mars surface. A 200-element model of the rovers was developed and validated for drop tests before launch, using MSC-Adams dynamic modeling software. Newly modeled terrain-rover interactions include the rut-formation effect of deformable soils, using the classical Bekker-Wong implementation of compaction resistances and bull-dozing effects. The paper presents the details and implementation of the model with two case studies based on actual MER telemetry data. In its final form, ARTEMIS will be used in a predictive manner to assess terrain navigability and will become part of the overall effort in path planning and navigation for both Martian and lunar rovers.

  19. KENNEDY SPACE CENTER, FLA. - The overhead crane settles the Mars Exploration Rover 2 (MER-2) entry vehicle onto a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - The overhead crane settles the Mars Exploration Rover 2 (MER-2) entry vehicle onto a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

  20. WATER ON MARS: EVIDENCE FROM MER MISSION RESULTS

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2006-01-01

    The Mars Exploration Rover (MER) mission landed two rovers on Mars, equipped with a highly-capable suite of science instruments. The Spirit rover landed on the inside Gusev Crater on January 5, 2004, and the Opportunity rover three weeks later on Meridiani Planum. This paper summarizes some of the findings from the MER rovers related to the NASA science strategy of investigating past and present water on Mars.

  1. Autonomous control of roving vehicles for unmanned exploration of the planets

    NASA Technical Reports Server (NTRS)

    Yerazunis, S. W.

    1978-01-01

    The guidance of an autonomous rover for unmanned planetary exploration using a short range (0.5 - 3.0 meter) hazard detection system was studied. Experimental data derived from a one laser/one detector system were used in the development of improved algorithms for the guidance of the rover. The new algorithms which account for the dynamic characteristics of the Rensselaer rover can be applied to other rover concepts provided that the rover dynamic parameters are modified appropriately. The new algorithms will also be applicable to the advanced scanning system. The design of an elevation scanning laser/multisensor hazard detection system was completed. All mechanical and electronic hardware components with the exception of the sensor optics and electronic components were constructed and tested.

  2. Autonomous Instrument Placement for Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Leger, P. Chris; Maimone, Mark

    2009-01-01

    Autonomous Instrument Placement (AutoPlace) is onboard software that enables a Mars Exploration Rover to act autonomously in using its manipulator to place scientific instruments on or near designated rock and soil targets. Prior to the development of AutoPlace, it was necessary for human operators on Earth to plan every motion of the manipulator arm in a time-consuming process that included downlinking of images from the rover, analysis of images and creation of commands, and uplinking of commands to the rover. AutoPlace incorporates image analysis and planning algorithms into the onboard rover software, eliminating the need for the downlink/uplink command cycle. Many of these algorithms are derived from the existing groundbased image analysis and planning algorithms, with modifications and augmentations for onboard use.

  3. Heading South on 'Erebus Highway'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA's Mars Exploration Rover Opportunity is currently traveling southward over a pavement of outcrop dubbed the 'Erebus Highway.' 'Erebus Crater,' the rover's next target, lies less than 100 meters (328 feet) south of its current position. This view is a mosaic produced from from frames taken by the rover's navigation camera during Opportunity's 582nd martian day, or sol (Sept. 13, 2005). It shows fractured blocks of ancient sedimentary rock separated by recent sand dunes. Mars Exploration Rover team scientists are investigating both the composition of the rocks and the processes by which the distinctive fracture pattern arose.

  4. Inside Victoria Crater for Extended Exploration

    NASA Technical Reports Server (NTRS)

    2007-01-01

    After a finishing an in-and-out maneuver to check wheel slippage near the rim of Victoria Crater, NASA's Mars Exploration Rover Opportunity re-entered the crater during the rover's 1,293rd Martian day, or sol, (Sept. 13, 2007) to begin a weeks-long exploration of the inner slope.

    Opportunity's front hazard-identification camera recorded this wide-angle view looking down into and across the crater at the end of the day's drive. The rover's position was about six meters (20 feet) inside the rim, in the 'Duck Bay' alcove of the crater.

  5. CRAFT: Collaborative Rover and Astronauts Future Technology

    NASA Astrophysics Data System (ADS)

    Da-Poian, V. D. P.; Koryanov, V. V. K.

    2018-02-01

    Our project is focusing on the relationship between astronauts and rovers to best work together during surface explorations. Robots will help and assist astronauts, and will also work autonomously. Our project is to develop this type of rover.

  6. Opportunity Rover Nears Mars Marathon Feat

    NASA Image and Video Library

    2015-02-10

    In February 2015, NASA Mars Exploration Rover Opportunity is approaching a cumulative driving distance on Mars equal to the length of a marathon race. This map shows the rover position relative to where it could surpass that distance.

  7. The Effects of Clock Drift on the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Ali, Khaled S.; Vanelli, C. Anthony

    2012-01-01

    All clocks drift by some amount, and the mission clock on the Mars Exploration Rovers (MER) is no exception. The mission clock on both MER rovers drifted significantly since the rovers were launched, and it is still drifting on the Opportunity rover. The drift rate is temperature dependent. Clock drift causes problems for onboard behaviors and spacecraft operations, such as attitude estimation, driving, operation of the robotic arm, pointing for imaging, power analysis, and telecom analysis. The MER operations team has techniques to deal with some of these problems. There are a few techniques for reducing and eliminating the clock drift, but each has drawbacks. This paper presents an explanation of what is meant by clock drift on the rovers, its relationship to temperature, how we measure it, what problems it causes, how we deal with those problems, and techniques for reducing the drift.

  8. ARC-2008-ACD08-0216-006

    NASA Image and Video Library

    2008-09-23

    Tech Talk on Extreme Rovers: Unveiling the latest findings of Robotic Exploration of Extreme Environments shown in the Immersve Theater NASA Ames Exploration Center Bldg 943A KbalidAl-Ali CMU - West gives presentation on 'Practical Rover Technology'

  9. ARC-2008-ACD08-0216-008

    NASA Image and Video Library

    2008-09-23

    Tech Talk on Extreme Rovers: Unveiling the latest findings of Robotic Exploration of Extreme Environments shown in the Immersve Theater NASA Ames Exploration Center Bldg 943A KbalidAl-Ali CMU - West gives presentation on 'Practical Rover Technology'

  10. ARC-2008-ACD08-0216-007

    NASA Image and Video Library

    2008-09-23

    Tech Talk on Extreme Rovers: Unveiling the latest findings of Robotic Exploration of Extreme Environments shown in the Immersve Theater NASA Ames Exploration Center Bldg 943A KbalidAl-Ali CMU - West gives presentation on 'Practical Rover Technology'

  11. Virtual Rover Takes its First Turn

    NASA Image and Video Library

    2004-01-13

    This image shows a screenshot from the software used by engineers to drive the Mars Exploration Rover Spirit. The software simulates the rover's movements across the martian terrain, helping to plot a safe course for the rover. The virtual 3-D world around the rover is built from images taken by Spirit's stereo navigation cameras. Regions for which the rover has not yet acquired 3-D data are represented in beige. This image depicts the state of the rover before it backed up and turned 45 degrees on Sol 11 (01-13-04). http://photojournal.jpl.nasa.gov/catalog/PIA05063

  12. Delivering Images for Mars Rover Science Planning

    NASA Technical Reports Server (NTRS)

    Edmonds, Karina

    2008-01-01

    A methodology has been developed for delivering, via the Internet, images transmitted to Earth from cameras on the Mars Explorer Rovers, the Phoenix Mars Lander, the Mars Science Laboratory, and the Mars Reconnaissance Orbiter spacecraft. The images in question are used by geographically dispersed scientists and engineers in planning Rover scientific activities and Rover maneuvers pertinent thereto.

  13. KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, the cylindrical payload canister is lowered around Mars Exploration Rover 1 (MER-B). Once secure inside the canister, the rover will be transported to Launch Complex 17-B, Cape Canaveral Air Force Station, for mating with the Delta rocket. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch from Pad 17-B June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

    NASA Image and Video Library

    2003-06-13

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, the cylindrical payload canister is lowered around Mars Exploration Rover 1 (MER-B). Once secure inside the canister, the rover will be transported to Launch Complex 17-B, Cape Canaveral Air Force Station, for mating with the Delta rocket. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch from Pad 17-B June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

  14. NASA Mars 2020 Rover Mission: New Frontiers in Science

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.

    2014-01-01

    The Mars 2020 rover mission is the next step in NASAs robotic exploration of the red planet. The rover, based on the Mars Science Laboratory Curiosity rover now on Mars, will address key questions about the potential for life on Mars. The mission would also provide opportunities to gather knowledge and demonstrate technologies that address the challenges of future human expeditions to Mars.Like the Mars Science Laboratory rover, which has been exploring Mars since 2012, the Mars 2020 spacecraft will use a guided entry, descent, and landing system which includes a parachute, descent vehicle, and, during the provides the ability to land a very large, heavy rover on the surface of Mars in a more precise landing area. The Mars 2020 mission is designed to accomplish several high-priority planetary science goals and will be an important step toward meeting NASAs challenge to send humans to Mars in the 2030s. The mission will conduct geological assessments of the rover's landing site, determine the habitability of the environment, search for signs of ancient Martian life, and assess natural resources and hazards for future human explorers. The science instruments aboard the rover also will enable scientists to identify and select a collection of rock and soil samples that will be stored for potential return to Earth in the future. The rover also may help designers of a human expedition understand the hazards posed by Martian dust and demonstrate how to collect carbon dioxide from the atmosphere, which could be a valuable resource for producing oxygen and rocket fuel.

  15. 'X' Marks the Spot

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This map of the Mars Exploration Rover Opportunity's new neighborhood at Meridiani Planum, Mars, shows the surface features used to locate the rover. By imaging these 'bumps' on the horizon from the perspective of the rover, mission members were able to pin down the rover's precise location. The image consists of data from the Mars Global Surveyor orbiter, the Mars Odyssey orbiter and the descent image motion estimation system located on the bottom of the rover.

  16. KENNEDY SPACE CENTER, FLA. - Workers watch as an overhead crane begins to lift the backshell with the Mars Exploration Rover 1 (MER-1) inside. The backshell will be moved and attached to the lower heat shield. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - Workers watch as an overhead crane begins to lift the backshell with the Mars Exploration Rover 1 (MER-1) inside. The backshell will be moved and attached to the lower heat shield. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  17. KENNEDY SPACE CENTER, FLA. - A closeup of the cruise stage to be mated to the Mars Exploration Rover 2 (MER-2) entry vehicle. The cruise stage includes fuel tanks, thruster clusters and avionics for steering and propulsion. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-2 is scheduled to launch June 5 as MER-A aboard a Delta rocket from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-06

    KENNEDY SPACE CENTER, FLA. - A closeup of the cruise stage to be mated to the Mars Exploration Rover 2 (MER-2) entry vehicle. The cruise stage includes fuel tanks, thruster clusters and avionics for steering and propulsion. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-2 is scheduled to launch June 5 as MER-A aboard a Delta rocket from Cape Canaveral Air Force Station.

  18. KENNEDY SPACE CENTER, FLA. - A solid rocket booster arrives at Launch Complex 17-A, Cape Canaveral Air Force Station. It is one of nine that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-14

    KENNEDY SPACE CENTER, FLA. - A solid rocket booster arrives at Launch Complex 17-A, Cape Canaveral Air Force Station. It is one of nine that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  19. KENNEDY SPACE CENTER, FLA. - Workers walk with the suspended backshell/ Mars Exploration Rover 1 (MER-1) as it travels across the floor of the Payload Hazardous Servicing Facility. The backshell will be attached to the lower heat shield. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - Workers walk with the suspended backshell/ Mars Exploration Rover 1 (MER-1) as it travels across the floor of the Payload Hazardous Servicing Facility. The backshell will be attached to the lower heat shield. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  20. VNIR Multispectral Observations of Rocks at Spirit of St. Louis Crater and Marathon Valley on Th Rim of Endeavour Crater Made by the Opportunity Rover Pancam

    NASA Technical Reports Server (NTRS)

    Farrand, W. H.; Johnson, J. R.; Bell, J. F., III; Mittlefehldt, D.W.

    2016-01-01

    The Mars Exploration Rover Opportunity has been exploring the western rim of the 22 km diameter Endeavour crater since August, 2011. Recently, Opportunity has reached a break in the Endeavour rim that the rover team has named Mara-thon Valley. This is the site where orbital observations from the MRO CRISM imaging spectrometer indicated the presence of iron smectites. On the outer western portion of Marathon Valley, Opportunity explored the crater-form feature dubbed Spirit of St. Louis (SoSL) crater. This presentation describes the 430 to 1009 nm (VNIR) reflectance, measured by the rover's Pancam, of rock units present both at Spirit of St. Louis and within Marathon Valley.

  1. Microbiological cleanliness of the Mars Exploration Rover spacecraft

    NASA Technical Reports Server (NTRS)

    Newlin, L.; Barengoltz, J.; Chung, S.; Kirschner, L.; Koukol, R.; Morales, F.

    2002-01-01

    Planetary protection for Mars missions is described, and the approach being taken by the Mars Exploration Rover Project is discussed. Specific topics include alcohol wiping, dry heat microbial reduction, microbiological assays, and the Kennedy Space center's PHSF clean room.

  2. The Mars Exploration Rover Project : 2005 surface operations results

    NASA Technical Reports Server (NTRS)

    Erickson, James K.; Callas, John L.; Haldemann, Albert F. C.

    2005-01-01

    The intent of this paper is to provide the aerospace community a status report of the progress of the Mars Rovers exploration of the Martian surface, picking up after the landings and continuing through fiscal year 2005.

  3. First Image from a Mars Rover Choosing a Target

    NASA Image and Video Library

    2010-03-23

    This true-color image is the result of the first observation of a target selected autonomously by NASA Mars Exploration Rover Opportunity using newly developed and uploaded software named Autonomous Exploration for Gathering Increased Science, or AEGIS.

  4. Mars Exploration Rover -2

    NASA Image and Video Library

    2003-03-06

    In the Payload Hazardous Servicing Facility resides one of the Mars Exploration Rovers, MER-2. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.

  5. Mars Exploration Rover -2

    NASA Image and Video Library

    2003-03-06

    Technicians in the Payload Hazardous Servicing Facility look over the Mars Exploration Rover -2. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.

  6. Attitude and position estimation on the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Ali, Khaled S.; Vanelli, C. Anthony; Biesiadecki, Jeffrey J.; Maimone, Mark W.; Yang Cheng, A.; San Martin, Miguel; Alexander, James W.

    2005-01-01

    NASA/JPL 's Mars Exploration Rovers acquire their attitude upon command and autonomously propagate their attitude and position. The rovers use accelerometers and images of the sun to acquire attitude, autonomously searching the sky for the sun with a pointable camera. To propagate the attitude and position the rovers use either accelerometer and gyro readings or gyro readings and wheel odometiy, depending on the nature of the movement ground operators are commanding. Where necessary, visual odometry is performed on images to fine tune the position updates, particularly in high slip environments. The capability also exists for visual odometry attitude updates. This paper describes the techniques used by the rovers to acquire and maintain attitude and position knowledge, the accuracy which is obtainable, and lessons learned after more than one year in operation.

  7. Autonomous localisation of rovers for future planetary exploration

    NASA Astrophysics Data System (ADS)

    Bajpai, Abhinav

    Future Mars exploration missions will have increasingly ambitious goals compared to current rover and lander missions. There will be a need for extremely long distance traverses over shorter periods of time. This will allow more varied and complex scientific tasks to be performed and increase the overall value of the missions. The missions may also include a sample return component, where items collected on the surface will be returned to a cache in order to be returned to Earth, for further study. In order to make these missions feasible, future rover platforms will require increased levels of autonomy, allowing them to operate without heavy reliance on a terrestrial ground station. Being able to autonomously localise the rover is an important element in increasing the rover's capability to independently explore. This thesis develops a Planetary Monocular Simultaneous Localisation And Mapping (PM-SLAM) system aimed specifically at a planetary exploration context. The system uses a novel modular feature detection and tracking algorithm called hybrid-saliency in order to achieve robust tracking, while maintaining low computational complexity in the SLAM filter. The hybrid saliency technique uses a combination of cognitive inspired saliency features with point-based feature descriptors as input to the SLAM filter. The system was tested on simulated datasets generated using the Planetary, Asteroid and Natural scene Generation Utility (PANGU) as well as two real world datasets which closely approximated images from a planetary environment. The system was shown to provide a higher accuracy of localisation estimate than a state-of-the-art VO system tested on the same data set. In order to be able to localise the rover absolutely, further techniques are investigated which attempt to determine the rover's position in orbital maps. Orbiter Mask Matching uses point-based features detected by the rover to associate descriptors with large features extracted from orbital imagery and stored in the rover memory prior the mission launch. A proof of concept is evaluated using a PANGU simulated boulder field.

  8. Mars Mission Surface Operation Simulation Testing of Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Bugga, R.; Whitcanack, L. D.; Chin, K. B.; Davies, E. D.; Surampudi, S.

    2003-01-01

    The objectives of this program are to 1) Assess viability of using lithium-ion technology for future NASA applications, with emphasis upon Mars landers and rovers which will operate on the planetary surface; 2) Support the JPL 2003 Mars Exploration Rover program to assist in the delivery and testing of a 8 AHr Lithium-Ion battery (Lithion/Yardney) which will power the rover; 3) Demonstrate applicability of using lithium-ion technologyfor future Mars applications: Mars 09 Science Laboratory (Smart Lander) and Future Mars Surface Operations (General). Mission simulation testing was carried out for cells and batteries on the Mars Surveyor 2001 Lander and the 2003 Mars Exploration Rover.

  9. Mars Exploration Rover surface operations: driving opportunity at Meridiani Planum

    NASA Technical Reports Server (NTRS)

    Biesiadecki, Jeffrey J.; Baumgartner, E.; Bonitz, R.; Cooper, B.; Hartman, F.; Leger, C.; Maimone, M.; Maxwell, S.; Trebi-Ollenu, A.; Wright, J.

    2005-01-01

    This paper will detail the experience of driving Opportunity through this alien landscape from the point of view of the Rover Planners, the people who tell the rover where to drive and how to use its robotic arm.

  10. Opportunity View on Sols 1803 and 1804 Stereo

    NASA Image and Video Library

    2009-03-03

    NASA Mars Exploration Rover Opportunity combined images into this full-circle view of the rover surroundings. Tracks from the rover drive recede northward across dark-toned sand ripples in the Meridiani Planum region of Mars. You need 3D glasses.

  11. Opportunity View After Drive on Sol 1806 Stereo

    NASA Image and Video Library

    2009-03-03

    NASA Mars Exploration Rover Opportunity combined images into this full-circle view of the rover surroundings. Tracks from the rover drive recede northward across dark-toned sand ripples in the Meridiani Planum region of Mars. You need 3D glasses.

  12. Design of a Mars rover and sample return mission

    NASA Technical Reports Server (NTRS)

    Bourke, Roger D.; Kwok, Johnny H.; Friedlander, Alan

    1990-01-01

    The design of a Mars Rover Sample Return (MRSR) mission that satisfies scientific and human exploration precursor needs is described. Elements included in the design include an imaging rover that finds and certifies safe landing sites and maps rover traverse routes, a rover that operates the surface with an associated lander for delivery, and a Mars communications orbiter that allows full-time contact with surface elements. A graph of MRSR candidate launch vehice performances is presented.

  13. Current Status and Readiness on In-Situ Exploration of Asteroid Surface by MINERVA Rover in Hayabusa Mission

    NASA Astrophysics Data System (ADS)

    Yoshimitsu, T.; Sasaki, S.; Yanagisawa, M.

    2005-03-01

    This paper describes the current status of the MINERVA rover boarded on the Japanese asteroid explorer Hayabusa. Also the plan and the strategy to acquire surface images of the asteroid are presented.

  14. Strategy for planetary surface exploration by rover

    NASA Astrophysics Data System (ADS)

    Clark, Benton C.

    1993-02-01

    Surface transportation for humans on Mars and the moon is important for maximizing the science return. But in the larger sense, it is fundamentally essential because a sufficient exploration could otherwise be accomplished purely by robotic means, albeit at a much slower pace. Rovers for humans must be robust for both safety considerations and the mission requirements to reach prime exploration regions and landmarks of scientific and public interest. Dual rovers moving in convoy and an operating strategy that can effect self-rescue and adapt to unknown conditions will be necessary to achieve success with acceptable risk.

  15. KENNEDY SPACE CENTER, FLA. - An overhead crane lifts the Mars Exploration Rover 2 (MER-2) entry vehicle from its stand to move it to a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - An overhead crane lifts the Mars Exploration Rover 2 (MER-2) entry vehicle from its stand to move it to a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

  16. KENNEDY SPACE CENTER, FLA. - With help from workers, the overhead crane lowers the Mars Exploration Rover 2 (MER-2) entry vehicle onto a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - With help from workers, the overhead crane lowers the Mars Exploration Rover 2 (MER-2) entry vehicle onto a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

  17. KENNEDY SPACE CENTER, FLA. - An overhead crane moves the Mars Exploration Rover 2 (MER-2) entry vehicle across the Payload Hazardous Servicing Facility toward a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - An overhead crane moves the Mars Exploration Rover 2 (MER-2) entry vehicle across the Payload Hazardous Servicing Facility toward a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

  18. KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility help guide the Mars Exploration Rover 2 (MER-2) entry vehicle toward a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility help guide the Mars Exploration Rover 2 (MER-2) entry vehicle toward a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

  19. KENNEDY SPACE CENTER, FLA. - An overhead crane is in place to lift the Mars Exploration Rover 2 (MER-2) entry vehicle to move it to a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - An overhead crane is in place to lift the Mars Exploration Rover 2 (MER-2) entry vehicle to move it to a spin table for a dry-spin test. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch for MER-2 (MER-A) is scheduled for June 5.

  20. Mars Exploration Rover Operations with the Science Activity Planner

    NASA Technical Reports Server (NTRS)

    Jeffrey S. Norris; Powell, Mark W.; Vona, Marsette A.; Backes, Paul G.; Wick, Justin V.

    2005-01-01

    The Science Activity Planner (SAP) is the primary science operations tool for the Mars Exploration Rover mission and NASA's Software of the Year for 2004. SAP utilizes a variety of visualization and planning capabilities to enable the mission operations team to direct the activities of the Spirit and Opportunity rovers. This paper outlines some of the challenging requirements that drove the design of SAP and discusses lessons learned from the development and use of SAP in mission operations.

  1. KSC-03pd0916

    NASA Image and Video Library

    2003-03-29

    KENNEDY SPACE CENTER, FLA. - A worker makes the final launch preparations on the rover equipment deck (RED) for the Mars Exploration Rover 2 (MER-2). Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. The rovers will be identical to each other, but will land at different regions of Mars. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  2. KSC-03pd0785

    NASA Image and Video Library

    2003-03-21

    KENNEDY SPACE CENTER, Fla. - Workers in the Payload Hazardous Servicing Facility check different parts of the Mars Exploration Rover-2 (MER-2) after testing the rover's mobility and maneuverability. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  3. Visual Target Tracking on the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Biesiadecki, Jeffrey J.; Ali, Khaled S.

    2008-01-01

    Visual Target Tracking (VTT) has been implemented in the new Mars Exploration Rover (MER) Flight Software (FSW) R9.2 release, which is now running on both Spirit and Opportunity rovers. Applying the normalized cross-correlation (NCC) algorithm with template image magnification and roll compensation on MER Navcam images, VTT tracks the target and enables the rover to approach the target within a few cm over a 10 m traverse. Each VTT update takes 1/2 to 1 minute on the rovers, 2-3 times faster than one Visual Odometry (Visodom) update. VTT is a key element to achieve a target approach and instrument placement over a 10-m run in a single sol in contrast to the original baseline of 3 sols. VTT has been integrated into the MER FSW so that it can operate with any combination of blind driving, Autonomous Navigation (Autonav) with hazard avoidance, and Visodom. VTT can either guide the rover towards the target or simply image the target as the rover drives by. Three recent VTT operational checkouts on Opportunity were all successful, tracking the selected target reliably within a few pixels.

  4. Bird's-Eye View of Opportunity at 'Erebus' (Vertical)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This view combines frames taken by the panoramic camera on NASA's Mars Exploration Rover Opportunity on the rover's 652nd through 663rd Martian days, or sols (Nov. 23 to Dec. 5, 2005), at the edge of 'Erebus Crater.' The mosaic is presented as a vertical projection. This type of projection provides a true-to-scale overhead view of the rover deck and nearby surrounding terrain. The view here shows outcrop rocks, sand dunes, and other features out to a distance of about 25 meters (82 feet) from the rover. Opportunity examined targets on the outcrop called 'Rimrock' in front of the rover, testing the mobility and operation of Opportunity's robotic arm. The view shows examples of the dunes and ripples that Opportunity has been crossing as the rover drives on the Meridiani plains.

    This view is a false-color composite of images taken through the camera's 750-nanometer, 530-nanometer and 430-nanometer filters. This kind of false-color scheme emphasizes differences in composition among the different kinds of materials that the rover is exploring.

  5. A Rover Mobility Platform with Autonomous Capability to Enable Mars Sample Return

    NASA Astrophysics Data System (ADS)

    Fulford, P.; Langley, C.; Shaw, A.

    2018-04-01

    The next step in understanding Mars is sample return. In Fall 2016, the CSA conducted an analogue deployment using the Mars Exploration Science Rover. An objective was to demonstrate the maturity of the rover's guidance, navigation, and control.

  6. Spatial Coverage Planning for Exploration Robots

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel; Estlin, Tara; Chouinard, Caroline

    2007-01-01

    A report discusses an algorithm for an onboard planning and execution technology to support the exploration and characterization of geological features by autonomous rovers. A rover that is capable of deciding which observations are more important relieves the engineering team from much of the burden of attempting to make accurate predictions of what the available rover resources will be in the future. Instead, the science and engineering teams can uplink a set of observation requests that may potentially oversubscribe resources and let the rover use observation priorities and its current assessment of available resources to make decisions about which observations to perform and when to perform them. The algorithm gives the rover the ability to model spatial coverage quality based on data from different scientific instruments, to assess the impact of terrain on coverage quality, to incorporate user-defined priorities among subregions of the terrain to be covered, and to update coverage quality rankings of observations when terrain knowledge changes. When the rover is exploring large geographical features such as craters, channels, or boundaries between two different regions, an important factor in assessing the quality of a mission plan is how the set of chosen observations spatially cover the area of interest. The algorithm allows the rover to evaluate which observation to perform and to what extent the candidate observation will increase the spatial coverage of the plan.

  7. KSC-03PD-1606

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Payload Hazardous Servicing Facility, workers lower the backshell with the Mars Exploration Rover 1 (MER-1) onto the heat shield. The two components form the aeroshell that will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  8. KSC-03PD-1607

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Payload Hazardous Servicing Facility, workers lower the backshell with the Mars Exploration Rover 1 (MER-1) onto the heat shield. The two components form the aeroshell that will protect the rover on its journey to Mars. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  9. Spirit's Course

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    This digital elevation map shows the topography of the 'Columbia Hills,' just in front of the Mars Exploration Rover Spirit's current position. Rover planners have plotted the safest route for Spirit to climb to the front hill, called 'West Spur.' The black line in the middle of the image represents the rover's traverse path, which starts at 'Hank's Hollow' and ends at the top of 'West Spur.' Scientists are sending Spirit up the hill to investigate the interesting rock outcrops visible in images taken by the rover. Data from the Mars Orbital Camera on the orbiting Mars Global Surveyor were used to create this 3-D map.

    In figure 1, the digital map shows the slopes of the 'Columbia Hills,' just in front of the Mars Exploration Rover Spirit's current position. Colors indicate the slopes of the hills, with red areas being the gentlest and blue the steepest. Rover planners have plotted the safest route for Spirit to climb the front hill, called 'West Spur.' The path is indicated here with a curved black line. Stereo images from the Mars Orbital Camera on the orbiting Mars Global Surveyor were used to create this 3-D map.

    In figure 2, the map shows the north-facing slopes of the 'Columbia Hills,' just in front of the Mars Exploration Rover Spirit's current position. Bright areas indicate surfaces sloping more toward the north than dark areas. To reach the rock outcrop at the top of the hill, engineers will aim to drive the rover around the dark areas, which would yield less solar power. The curved black line in the middle represents the rover's planned traverse path.

  10. Robust Coordination for Large Sets of Simple Rovers

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Agogino, Adrian

    2006-01-01

    The ability to coordinate sets of rovers in an unknown environment is critical to the long-term success of many of NASA;s exploration missions. Such coordination policies must have the ability to adapt in unmodeled or partially modeled domains and must be robust against environmental noise and rover failures. In addition such coordination policies must accommodate a large number of rovers, without excessive and burdensome hand-tuning. In this paper we present a distributed coordination method that addresses these issues in the domain of controlling a set of simple rovers. The application of these methods allows reliable and efficient robotic exploration in dangerous, dynamic, and previously unexplored domains. Most control policies for space missions are directly programmed by engineers or created through the use of planning tools, and are appropriate for single rover missions or missions requiring the coordination of a small number of rovers. Such methods typically require significant amounts of domain knowledge, and are difficult to scale to large numbers of rovers. The method described in this article aims to address cases where a large number of rovers need to coordinate to solve a complex time dependent problem in a noisy environment. In this approach, each rover decomposes a global utility, representing the overall goal of the system, into rover-specific utilities that properly assign credit to the rover s actions. Each rover then has the responsibility to create a control policy that maximizes its own rover-specific utility. We show a method of creating rover-utilities that are "aligned" with the global utility, such that when the rovers maximize their own utility, they also maximize the global utility. In addition we show that our method creates rover-utilities that allow the rovers to create their control policies quickly and reliably. Our distributed learning method allows large sets rovers be used unmodeled domains, while providing robustness against rover failures and changing environments. In experimental simulations we show that our method scales well with large numbers of rovers in addition to being robust against noisy sensor inputs and noisy servo control. The results show that our method is able to scale to large numbers of rovers and achieves up to 400% performance improvement over standard machine learning methods.

  11. KENNEDY SPACE CENTER, FLA. - At right is the Delta II rocket on Launch Complex 17-A, Cape Canaveral Air Force Station, that will launch Mars Exploration Rover 2 (MER-2) on June 5. In the center are three more solid rocket boosters that will be added to the Delta, which will carry nine in all. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - At right is the Delta II rocket on Launch Complex 17-A, Cape Canaveral Air Force Station, that will launch Mars Exploration Rover 2 (MER-2) on June 5. In the center are three more solid rocket boosters that will be added to the Delta, which will carry nine in all. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch as MER-A. MER-1 (MER-B) will launch June 25.

  12. KENNEDY SPACE CENTER, FLA. - The Delta II rocket on Launch Complex 17-A, Cape Canaveral Air Force Station, is having solid rocket boosters (SRBs) installed that will help launch Mars Exploration Rover 2 (MER-2) on June 5. In the center are three more solid rocket boosters that will be added to the Delta, which will carry nine in all. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - The Delta II rocket on Launch Complex 17-A, Cape Canaveral Air Force Station, is having solid rocket boosters (SRBs) installed that will help launch Mars Exploration Rover 2 (MER-2) on June 5. In the center are three more solid rocket boosters that will be added to the Delta, which will carry nine in all. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch as MER-A. MER-1 (MER-B) will launch June 25.

  13. KENNEDY SPACE CENTER, FLA. - A third solid rocket booster (SRB) is lifted up the launch tower on Launch Complex 17-A, Cape Canaveral Air Force Station. They are three of nine SRBs that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-14

    KENNEDY SPACE CENTER, FLA. - A third solid rocket booster (SRB) is lifted up the launch tower on Launch Complex 17-A, Cape Canaveral Air Force Station. They are three of nine SRBs that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  14. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, workers complete raising a solid rocket booster to a vertical position. It will be lifted up the launch tower and mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-14

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, workers complete raising a solid rocket booster to a vertical position. It will be lifted up the launch tower and mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  15. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, a solid rocket booster is raised off the transporter. When vertical, it will be lifted up the launch tower and mated to the Delta rocket (in the background) to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-14

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, a solid rocket booster is raised off the transporter. When vertical, it will be lifted up the launch tower and mated to the Delta rocket (in the background) to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  16. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, a solid rocket booster is moved into position to raise to vertical and lift up the launch tower. It is one of nine that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-14

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, a solid rocket booster is moved into position to raise to vertical and lift up the launch tower. It is one of nine that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  17. KENNEDY SPACE CENTER, FLA. - Workers on the launch tower of Complex 17-A, Cape Canaveral Air Force Station, stand by while a solid rocket booster (SRB) is lifted to vertical. It is one of nine that will help launch Mars Exploration Rover 2 (MER-2). NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - Workers on the launch tower of Complex 17-A, Cape Canaveral Air Force Station, stand by while a solid rocket booster (SRB) is lifted to vertical. It is one of nine that will help launch Mars Exploration Rover 2 (MER-2). NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  18. KSC-03pd0752

    NASA Image and Video Library

    2003-03-17

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers align the Rover Equipment Deck (RED) on one of the Mars Exploration Rovers (MER) with the Warm Electronics Box (WEB). Processing of the rovers, plus cruise stage, lander and heat shield elements, is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  19. Deployment Process, Mechanization, and Testing for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Iskenderian, Ted

    2004-01-01

    NASA's Mar Exploration Rover (MER) robotic prospectors were produced in an environment of unusually challenging schedule, volume, and mass restrictions. The technical challenges pushed the system s design towards extensive integration of function, which resulted in complex system engineering issues. One example of the system's integrated complexity can be found in the deployment process for the rover. Part of this process, rover "standup", is outlined in this paper. Particular attention is given to the Rover Lift Mechanism's (RLM) role and its design. Analysis methods are presented and compared to test results. It is shown that because prudent design principles were followed, a robust mechanism was created that minimized the duration of integration and test, and enabled recovery without perturbing related systems when reasonably foreseeable problems did occur. Examples of avoidable, unnecessary difficulty are also presented.

  20. Mars Exploration Rover -2

    NASA Image and Video Library

    2003-03-06

    Technicians in the Payload Hazardous Servicing Facility work on components of the Mars Exploration Rovers. In the center is a lander. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.

  1. Microscope on Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken at Meridiani Planum, Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's microscopic imager (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.

  2. Approaching Endeavour Crater, Sol 2,680

    NASA Image and Video Library

    2011-10-10

    This image from the navigation camera on NASA Mars Exploration Rover Opportunity shows the view ahead on the day before the rover reached the rim of Endeavour crater. It was taken during the 2,680th Martian day, or sol, of the rover work on Mars.

  3. High Martian Viewpoint for 11-Year-Old Rover False-Color Landscape

    NASA Image and Video Library

    2015-01-22

    NASA Mars Exploration Rover Opportunity obtained this view from the top of the Cape Tribulation segment of the rim of Endeavour Crater. The rover reached this point three weeks before the 11th anniversary of its January 2004 landing on Mars.

  4. Spirit Ascent Movie, Rover's-Eye View

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A movie assembled from frames taken by the rear hazard-identification camera on NASA's Mars Exploration Rover Spirit shows the last few days of the rover's ascent to the crest of 'Husband Hill' inside Mars' Gusev Crater. The rover was going in reverse. Rover planners often drive Spirit backwards to keep wheel lubrication well distributed. The images in this clip span a timeframe from Spirit's 573rd martian day, or sol (Aug, 13, 2005) to sol 582 (Aug. 22, 2005), the day after the rover reached the crest. During that period, Spirit drove 136 meters (446 feet),

  5. Lunar environment and design of China's first moon rover Yutu

    NASA Astrophysics Data System (ADS)

    Jianhui, Wu

    China launched the Chang'e-3 lunar probe with the country's first moon rover aboard on Dec.14, marking a significant step toward deep space exploration.Lunar environment and environmental tests of typical lunar survyeors are discussed in this papaer.According to the needs of China's lunar exploration project,environmental impact of moon rovers and Yutu design ideas are studied.Through the research, temperature control device, micro-gravity environment design ,dust and other equipment devices used on Yutu all meet the mission requirements.

  6. Conceptual Design and Architecture of Mars Exploration Rover (MER) for Seismic Experiments Over Martian Surfaces

    NASA Astrophysics Data System (ADS)

    Garg, Akshay; Singh, Amit

    2012-07-01

    Keywords: MER, Mars, Rover, Seismometer Mars has been a subject of human interest for exploration missions for quite some time now. Both rover as well as orbiter missions have been employed to suit mission objectives. Rovers have been preferentially deployed for close range reconnaissance and detailed experimentation with highest accuracy. However, it is essential to strike a balance between the chosen science objectives and the rover operations as a whole. The objective of this proposed mechanism is to design a vehicle (MER) to carry out seismic studies over Martian surface. The conceptual design consists of three units i.e. Mother Rover as a Surrogate (Carrier) and Baby Rovers (two) as seeders for several MEMS-based accelerometer / seismometer units (Nodes). Mother Rover can carry these Baby Rovers, having individual power supply with solar cells and with individual data transmission capabilities, to suitable sites such as Chasma associated with Valles Marineris, Craters or Sand Dunes. Mother rover deploys these rovers in two opposite direction and these rovers follow a triangulation pattern to study shock waves generated through firing tungsten carbide shells into the ground. Till the time of active experiments Mother Rover would act as a guiding unit to control spatial spread of detection instruments. After active shock experimentation, the babies can still act as passive seismometer units to study and record passive shocks from thermal quakes, impact cratering & landslides. Further other experiments / payloads (XPS / GAP / APXS) can also be carried by Mother Rover. Secondary power system consisting of batteries can also be utilized for carrying out further experiments over shallow valley surfaces. The whole arrangement is conceptually expected to increase the accuracy of measurements (through concurrent readings) and prolong life cycle of overall experimentation. The proposed rover can be customised according to the associated scientific objectives and further needs.

  7. Opportunity on 'Cabo Frio' (Simulated)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image superimposes an artist's concept of the Mars Exploration Rover Opportunity atop the 'Cabo Frio' promontory on the rim of 'Victoria Crater' in the Meridiani Planum region of Mars. It is done to give a sense of scale. The underlying image was taken by Opportunity's panoramic camera during the rover's 952nd Martian day, or sol (Sept. 28, 2006).

    This synthetic image of NASA's Opportunity Mars Exploration Rover at Victoria Crater was produced using 'Virtual Presence in Space' technology. Developed at NASA's Jet Propulsion Laboratory, Pasadena, Calif., this technology combines visualization and image processing tools with Hollywood-style special effects. The image was created using a photorealistic model of the rover and an approximately full-color mosaic.

  8. Terrain Modelling for Immersive Visualization for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Wright, J.; Hartman, F.; Cooper, B.; Maxwell, S.; Yen, J.; Morrison, J.

    2004-01-01

    Immersive environments are being used to support mission operations at the Jet Propulsion Laboratory. This technology contributed to the Mars Pathfinder Mission in planning sorties for the Sojourner rover and is being used for the Mars Exploration Rover (MER) missions. The stereo imagery captured by the rovers is used to create 3D terrain models, which can be viewed from any angle, to provide a powerful and information rich immersive visualization experience. These technologies contributed heavily to both the mission success and the phenomenal level of public outreach achieved by Mars Pathfinder and MER. This paper will review the utilization of terrain modelling for immersive environments in support of MER.

  9. The Panoramic Camera (Pancam) Investigation on the NASA 2003 Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.; Schwochert, M.; Dingizian, A.; Brown, D.; Morris, R. V.; Arneson, H. M.; Johnson, M. J.

    2003-01-01

    The Panoramic Camera System (Pancam) is part of the Athena science payload to be launched to Mars in 2003 on NASA's twin Mars Exploration Rover (MER) missions. The Pancam imaging system on each rover consists of two major components: a pair of digital CCD cameras, and the Pancam Mast Assembly (PMA), which provides the azimuth and elevation actuation for the cameras as well as a 1.5 meter high vantage point from which to image. Pancam is a multispectral, stereoscopic, panoramic imaging system, with a field of regard provided by the PMA that extends across 360 of azimuth and from zenith to nadir, providing a complete view of the scene around the rover.

  10. KSC-03pd0764

    NASA Image and Video Library

    2003-03-20

    KENNEDY SPACE CENTER, Fla. - With cables released, this Mars Exploration Rover sits on the floor of the Payload Hazardous Servicing Facility. Processing of the rovers, cruise stage, lander and heat shield elements is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  11. KSC-03pd0765

    NASA Image and Video Library

    2003-03-20

    KENNEDY SPACE CENTER, Fla. - With cables released, this Mars Exploration Rover (MER) sits on the floor of the Payload Hazardous Servicing Facility. Processing of the rovers, cruise stage, lander and heat shield elements is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  12. KSC-03pd0762

    NASA Image and Video Library

    2003-03-20

    KENNEDY SPACE CENTER, Fla. - A worker in the Payload Hazardous Servicing Facility makes adjustments on one of the Mars Exploration Rovers (MER). Processing of the rovers, cruise stage, lander and heat shield elements is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  13. KSC-03pd0784

    NASA Image and Video Library

    2003-03-21

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover-2 (MER-2) has rotated. Atop the rover can be seen the cameras, mounted on a Pancam Mast Assembly (PMA). Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  14. KSC-03pd0761

    NASA Image and Video Library

    2003-03-20

    KENNEDY SPACE CENTER, Fla. - Workers in the Payload Hazardous Servicing Facility look over one of the Mars Exploration Rovers (MER). Processing of the rovers, cruise stage, lander and heat shield elements is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  15. KSC-03pd0758

    NASA Image and Video Library

    2003-03-20

    KENNEDY SPACE CENTER, FLA. - One of the Mars Exploration Rovers (MER) sits on a stand in the Payload Hazardous Servicing Facility. Processing of the rovers, cruise stage, lander and heat shield elements is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  16. KSC-03PD-1850

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Nine-year-old Sofi Collis is introduced to the media at a press conference. The Siberian-born Arizona resident wrote the winning entry in the Name the Rovers Contest sponsored by NASA and the Lego Co., a Denmark-based toymaker, with collaboration from the Planetary Society, Pasadena, Calif. The names she selected for the Mars Exploration Rovers are 'Spirit' and 'Opportunity.' The third grader's essay was chosen from more than 10,000 American student entries. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  17. Advanced Radioisotope Power System Enabled Titan Rover Concept with Inflatable Wheels

    NASA Astrophysics Data System (ADS)

    Balint, Tibor S.; Schriener, Timothy M.; Shirley, James H.

    2006-01-01

    The Decadal Survey identified Titan as one of the top priority science destinations in the large moons category, while NASA's proposed Design Reference Mission Set ranked a Titan in-situ explorer second, after a recommended Europa Geophysical Explorer mission. This paper discusses a Titan rover concept, enabled by a single advanced Radioisotope Power System that could provide about 110 We (BOL). The concept targets the smaller Flagship or potentially the New Frontiers mission class. This MSL class rover would traverse on four 1.5 m diameter inflatable wheels during its 3 years mission duration and would use as much design and flight heritage as possible to reduce mission cost. Direct to Earth communication would remove the need for a relay orbiter. Details on the strawman instrument payload, and rover subsystems are given for this science driven mission concept. In addition, power system trades between Advanced RTG, TPV, and Advanced-Stirling and Brayton RPSs are outlined. While many possible approaches exist for Titan in-situ exploration, the Titan rover concept presented here could provide a scientifically interesting and programmatically affordable solution.

  18. Availability of feature-oriented scanning probe microscopy for remote-controlled measurements on board a space laboratory or planet exploration Rover.

    PubMed

    Lapshin, Rostislav V

    2009-06-01

    Prospects for a feature-oriented scanning (FOS) approach to investigations of sample surfaces, at the micrometer and nanometer scales, with the use of scanning probe microscopy under space laboratory or planet exploration rover conditions, are examined. The problems discussed include decreasing sensitivity of the onboard scanning probe microscope (SPM) to temperature variations, providing autonomous operation, implementing the capabilities for remote control, self-checking, self-adjustment, and self-calibration. A number of topical problems of SPM measurements in outer space or on board a planet exploration rover may be solved via the application of recently proposed FOS methods.

  19. Operation and performance of the Mars Exploration Rover imaging system on the Martian surface

    NASA Technical Reports Server (NTRS)

    Maki, Justin N.; Litwin, Todd; Herkenhoff, Ken

    2005-01-01

    The Imaging System on the Mars Exploration Rovers has successfully operated on the surface of Mars for over one Earth year. An overview of the surface imaging activities is provided, along with a summary of the image data acquired to date.

  20. Looking Back at Spirit Trail to the Summit Stereo

    NASA Image and Video Library

    2005-10-21

    Before moving on to explore more of Mars, NASA Mars Exploration Rover Spirit looked back at the long and winding trail of twin wheel tracks the rover created to get to the top of Husband Hill. 3D glasses are necessary to view this image.

  1. A Well-Traveled 'Eagle Crater' (left-eye)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is the left-eye version of the Mars Exploration Rover Opportunity's view on its 56th sol on Mars, before it left its landing-site crater. To the right, the rover tracks are visible at the original spot where the rover attempted unsuccessfully to exit the crater. After a one-sol delay, Opportunity took another route to the plains of Meridiani Planum. This image was taken by the rover's navigation camera.

  2. Rock Dusting Leaves 'Mickey Mouse' Mark

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the navigation camera on the Mars Exploration Rover Spirit shows the rock dubbed 'Humphrey' and the circular areas on the rock that were wiped off by the rover. The rover used a brush on its rock abrasion tool to clean these spots before examining them with its miniature thermal emission spectrometer. Later, the rover drilled into the rock with its rock abrasion tool, exposing fresh rock underneath.

  3. Students Race Rovers on a Martian and Lunar-themed Obstacle Course

    NASA Image and Video Library

    2017-01-05

    NASA's Human Exploration Rover Challenge encourages STEM-based research and development of new technologies focusing on current plans to explore planets, moons, asteroids and comets -- all members of the solar system family. This year's race will be held March 30 - April 1, 2017, at the U.S. Space & Rocket Center in Huntsville, Alabama. The challenge will focus on designing, constructing and testing technologies for mobility devices to perform in these different environments, and it will provide valuable experiences that engage students in the technologies and concepts that will be needed in future exploration missions. Rovers will be human-powered and carry two students, one female and one male, over a half-mile obstacle course of simulated extraterrestrial terrain of craters, boulders, ridges, inclines, crevasses and depressions. Follow them on social media at: TWITTER: https://twitter.com/RoverChallenge FACEBOOK: https://www.facebook.com/roverchallenge/ Or visit the website at: www.nasa.gov/roverchallenge

  4. Dynamic Modeling and Soil Mechanics for Path Planning of the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Trease, Brian

    2011-01-01

    To help minimize risk of high sinkage and slippage during drives and to better understand soil properties and rover terramechanics from drive data, a multidisciplinary team was formed under the Mars Exploration Rover project to develop and utilize dynamic computer-based models for rover drives over realistic terrains. The resulting system, named ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction System), consists of the dynamic model, a library of terramechanics subroutines, and the high-resolution digital elevation maps of the Mars surface. A 200-element model of the rovers was developed and validated for drop tests before launch, using Adams dynamic modeling software. The external library was built in Fortran and called by Adams to model the wheel-soil interactions include the rut-formation effect of deformable soils, lateral and longitudinal forces, bull-dozing effects, and applied wheel torque. The paper presents the details and implementation of the system. To validate the developed system, one study case is presented from a realistic drive on Mars of the Opportunity rover. The simulation results match well from the measurement of on-board telemetry data. In its final form, ARTEMIS will be used in a predictive manner to assess terrain navigability and will become part of the overall effort in path planning and navigation for both Martian and lunar rovers.

  5. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, a crane is in place to lift the fairing for the Mars Exploration Rover 2 (MER-2/MER-A). The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, a crane is in place to lift the fairing for the Mars Exploration Rover 2 (MER-2/MER-A). The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  6. KENNEDY SPACE CENTER, FLA. - The fairing for the Mars Exploration Rover 2 (MER-2/MER-A) arrives at Launch Complex 17-A, Cape Canaveral Air Force Station. It will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - The fairing for the Mars Exploration Rover 2 (MER-2/MER-A) arrives at Launch Complex 17-A, Cape Canaveral Air Force Station. It will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  7. KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B, Cape Canaveral Air Force Station, the Mars Exploration Rover 1 (MER-B) arrives at the tower landing where it will be mated with the Delta rocket. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

    NASA Image and Video Library

    2003-06-17

    KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B, Cape Canaveral Air Force Station, the Mars Exploration Rover 1 (MER-B) arrives at the tower landing where it will be mated with the Delta rocket. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

  8. KENNEDY SPACE CENTER, FLA. - Workers on Launch Pad 17-B, Cape Canaveral Air Force Station, complete mating of the Mars Exploration Rover 1 (MER-B), above, to the Delta rocket below. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

    NASA Image and Video Library

    2003-06-17

    KENNEDY SPACE CENTER, FLA. - Workers on Launch Pad 17-B, Cape Canaveral Air Force Station, complete mating of the Mars Exploration Rover 1 (MER-B), above, to the Delta rocket below. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

  9. KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B, Cape Canaveral Air Force Station, the Mars Exploration Rover 1 (MER-B) is lifted up the tower for mating with the Delta rocket. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

    NASA Image and Video Library

    2003-06-17

    KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B, Cape Canaveral Air Force Station, the Mars Exploration Rover 1 (MER-B) is lifted up the tower for mating with the Delta rocket. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

  10. KENNEDY SPACE CENTER, FLA. - In the gantry on Launch Complex 17-B, Cape Canaveral Air Force Station, workers start removing the canister from around the Mars Exploration Rover 1 (MER-B). The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

    NASA Image and Video Library

    2003-06-17

    KENNEDY SPACE CENTER, FLA. - In the gantry on Launch Complex 17-B, Cape Canaveral Air Force Station, workers start removing the canister from around the Mars Exploration Rover 1 (MER-B). The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

  11. KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 1 (MER-B) arrives at Launch Pad 17-B, Cape Canaveral Air Force Station, where it will be mated with the Delta rocket for launch. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

    NASA Image and Video Library

    2003-06-17

    KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 1 (MER-B) arrives at Launch Pad 17-B, Cape Canaveral Air Force Station, where it will be mated with the Delta rocket for launch. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

  12. KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 1 (MER-B) is moved out of the Payload Hazardous Servicing Facility for transfer to Launch Pad 17-B, Cape Canaveral Air Force Station. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

    NASA Image and Video Library

    2003-06-17

    KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 1 (MER-B) is moved out of the Payload Hazardous Servicing Facility for transfer to Launch Pad 17-B, Cape Canaveral Air Force Station. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

  13. KSC-03pd0753

    NASA Image and Video Library

    2003-03-17

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, workers check alignment of the Rover Equipment Deck (RED) on one of the Mars Exploration Rovers (MER) with the Warm Electronics Box (WEB). Processing of the rovers, plus cruise stage, lander and heat shield elements, is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  14. KSC-03pd0756

    NASA Image and Video Library

    2003-03-17

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, the Rover Equipment Deck (RED) on one of the Mars Exploration Rovers (MER) is integrated to the Warm Electronics Box (WEB) on the WEB cart. Processing of the rovers, plus cruise stage, lander and heat shield elements, is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  15. KSC-03pd0754

    NASA Image and Video Library

    2003-03-17

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, the Rover Equipment Deck (RED) on one of the Mars Exploration Rovers (MER) is integrated to the Warm Electronics Box (WEB) on the WEB cart. Processing of the rovers, plus cruise stage, lander and heat shield elements, is ongoing. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  16. ISRU Reactant, Fuel Cell Based Power Plant for Robotic and Human Mobile Exploration Applications

    NASA Technical Reports Server (NTRS)

    Baird, Russell S.; Sanders, Gerald; Simon, Thomas; McCurdy, Kerri

    2003-01-01

    Three basic power generation system concepts are generally considered for lander, rover, and Extra-Vehicular Activity (EVA) assistant applications for robotic and human Moon and Mars exploration missions. The most common power system considered is the solar array and battery system. While relatively simple and successful, solar array/battery systems have some serious limitations for mobile applications. For typical rover applications, these limitations include relatively low total energy storage capabilities, daylight only operating times (6 to 8 hours on Mars), relatively short operating lives depending on the operating environment, and rover/lander size and surface use constraints. Radioisotope power systems are being reconsidered for long-range science missions. Unfortunately, the high cost, political controversy, and launch difficulties that are associated with nuclear-based power systems suggests that the use of radioisotope powered landers, rovers, and EVA assistants will be limited. The third power system concept now being considered are fuel cell based systems. Fuel cell power systems overcome many of the performance and surface exploration limitations of solar array/battery power systems and the prohibitive cost and other difficulties associated with nuclear power systems for mobile applications. In an effort to better understand the capabilities and limitations of fuel cell power systems for Moon and Mars exploration applications, NASA is investigating the use of in-Situ Resource Utilization (ISRU) produced reactant, fuel cell based power plants to power robotic outpost rovers, science equipment, and future human spacecraft, surface-excursion rovers, and EVA assistant rovers. This paper will briefly compare the capabilities and limitations of fuel cell power systems relative to solar array/battery and nuclear systems, discuss the unique and enhanced missions that fuel cell power systems enable, and discuss the common technology and system attributes possible for robotic and human exploration to maximize scientific return and minimize cost and risk to both. Progress made to date at the Johnson Space Center on an ISRU producible reactant, Proton Exchange Membrane (PEM) fuel cell based power plant project to demonstrate the concept in conjunction with rover applications will be presented in detail.

  17. ISRU Reactant, Fuel Cell Based Power Plant for Robotic and Human Mobile Exploration Applications

    NASA Astrophysics Data System (ADS)

    Baird, Russell S.; Sanders, Gerald; Simon, Thomas; McCurdy, Kerri

    2003-01-01

    Three basic power generation system concepts are generally considered for lander, rover, and Extra-Vehicular Activity (EVA) assistant applications for robotic and human Moon and Mars exploration missions. The most common power system considered is the solar array and battery system. While relatively simple and successful, solar array/battery systems have some serious limitations for mobile applications. For typical rover applications, these limitations include relatively low total energy storage capabilities, daylight only operating times (6 to 8 hours on Mars), relatively short operating lives depending on the operating environment, and rover/lander size and surface use constraints. Radioisotope power systems are being reconsidered for long-range science missions. Unfortunately, the high cost, political controversy, and launch difficulties that are associated with nuclear-based power systems suggests that the use of radioisotope powered landers, rovers, and EVA assistants will be limited. The third power system concept now being considered are fuel cell based systems. Fuel cell power systems overcome many of the performance and surface exploration limitations of solar array/battery power systems and the prohibitive cost and other difficulties associated with nuclear power systems for mobile applications. In an effort to better understand the capabilities and limitations of fuel cell power systems for Moon and Mars exploration applications. NASA is investigating the use of In-Situ Resource Utilization (ISRU) produced reactant, fuel cell based power plants to power robotic outpost rovers, science equipment, and future human spacecraft, surface-excursion rovers, and EVA assistant rovers. This paper will briefly compare the capabilities and limitations of fuel cell power systems relative to solar array/battery and nuclear systems, discuss the unique and enhanced missions that fuel cell power systems enable, and discuss the common technology and system attributes possible for robotic and human exploration to maximize scientific return and minimize cost and risk to both. Progress made to date at the Johnson Space Center on an ISRU producible reactant. Proton Exchange Membrane (PEM) fuel cell based power plant project for use in the first demonstration of this concept in conjunction with rover applications will be presented in detail.

  18. KSC-03PD-1836

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Sofi Collis, the third grade student winner of the 'Name the Rovers' contest, poses with a model of a rover. The names she proposed -- Spirit and Opportunity -- were announced today in a press conference held by NASA Administrator Sean O'Keefe. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  19. Design of a Day/Night Lunar Rover

    NASA Astrophysics Data System (ADS)

    Berkelman, Peter; Easudes, Jesse; Martin, Martin C.; Rollins, Eric; Silberman, Jack; Chen, Mei; Hancock, John; Mor, Andrew B.; Sharf, Alex; Warren, Tom; Bapna, Deepak

    1995-06-01

    The pair of lunar rovers discussed in this report will return video and state data to various ventures, including theme park and marketing concerns, science agencies, and educational institutions. The greatest challenge accepted by the design team was to enable operations throughout the extremely cold and dark lunar night, an unprecedented goal in planetary exploration. This is achieved through the use of the emerging technology of Alkali Metal Thermal to Electric Converters (AMTEC), provided with heat from a innovative beta-decay heat source, Krypton-85 gas. Although previous space missions have returned still images, our design will convey panoramic video from a ring of cameras around the rover. A six-wheel rocker bogie mechanism is implemented to propel the rover. The rovers will also provide the ability to safeguard their operation to allow untrained members of the general public to drive the vehicle. Additionally, scientific exploration and educational outreach will be supported with a user operable, steerable and zoomable camera.

  20. Mars Exploration Rover -2

    NASA Image and Video Library

    2003-03-06

    Components of the two Mars Exploration Rovers (MER) reside in the Payload Hazardous Servicing Facility. At right MER-2. At left is a lander. In the background is one of the aeroshells. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.

  1. Axel Robotic Platform for Crater and Extreme Terrain Exploration

    NASA Technical Reports Server (NTRS)

    Nesnas, Issa A.; Matthews, Jaret B.; Edlund, Jeffrey A.; Burdick, Joel W.; Abad-Manterola, Pablo

    2012-01-01

    To be able to conduct science investigations on highly sloped and challenging terrains, it is necessary to deploy science payloads to such locations and collect and process in situ samples. A tethered robotic platform has been developed that is capable of exploring very challenging terrain. The Axel rover is a symmetrical rover that is minimally actuated, can traverse arbitrary paths, and operate upside-down or right-side up. It can be deployed from a larger platform (rover, lander, or aerobot) or from a dual Axel configuration. Axel carries and manages its own tether, reducing damage to the tether during operations. Fundamentally, Axel is a two-wheeled rover with a symmetric body and a trailing link. Because the primary goal is minimal complexity, this version of the Axel rover uses only four primary actuators to control its wheels, tether, and a trailing link. A fifth actuator is used for level winding of tether onto Axel s spool.

  2. Searching for Subsurface Lunar Water Ice using a Nuclear-Powered Rover

    NASA Astrophysics Data System (ADS)

    Randolph, James E.; Abelson, Robert D.; Oxnevad, Knut I.; Shirley, James H.

    2005-02-01

    The Vision for Space Exploration has identified the Earth's moon as a future destination for human explorers as a stepping-stone for further manned deep space exploration. The feasibility of building and maintaining a human presence on the moon could be directly related to whether in-situ resources, especially water ice, can be obtained and utilized by astronauts. With the recent success of both Mars Exploration Rovers (MERs), it is clear that a lunar rover could be a desirable platform with which to search for evidence of lunar water prior to the arrival of astronauts. However, since surface water can only exist in permanently shadowed areas of the moon (i.e., deep craters near the poles), conventionally powered rovers would not be practical for exploring these areas for extended periods. Thus, a study was performed to assess the feasibility of a lunar rover mission enabled by small radioisotope power systems (RPS), i.e., systems that use single GPHSs. Small RPSs, the feasibility of which has been looked at by the Department of Energy, would be capable of providing sufficient electrical and thermal power to allow scientific measurements and operations of a small rover on the floor of dark lunar craters. A conceptual study was completed that considered the science instruments that could be accommodated on a MER-type rover using RPS power. To investigate the subsurface characteristics of the crater floor, a pulsed gamma ray/neutron spectrometer and a ground-penetrating radar would be used. Also, a drill would provide core samples from a depth of 1 meter. A rover architecture consistent with MER capabilities included a mast with panoramic cameras and navigation cameras as well as an instrument deployment device (IDD) that allowed direct contact between the instrument head and surface materials to be measured. Because the crater floor is eternally dark, artificial illumination must be used for both landing and roving operations. The rover design included of dual headlights that would be operated during visual imaging observations. During the landing approach, the lander would use a laser imaging technique to image the approaching surface and react to that image to avoid hazards. The baseline rover concept used four GPHS power sources for a total of about 50 We in conjunction with a 25 A hr battery to supply power during peak loads. A detailed analysis of energy usage for various operational scenarios (e.g. roving, science instrument operations, and telecommunications) was completed using an elaborate power simulation tool. The results show that very demanding activities are possible on a daily basis while maintaining the battery charging.

  3. The Mars Astrobiology Explorer-Cacher (MAX-C): a potential rover mission for 2018. Final report of the Mars Mid-Range Rover Science Analysis Group (MRR-SAG) October 14, 2009.

    PubMed

    2010-03-01

    This report documents the work of the Mid-Range Rover Science Analysis Group (MRR-SAG), which was assigned to formulate a concept for a potential rover mission that could be launched to Mars in 2018. Based on programmatic and engineering considerations as of April 2009, our deliberations assumed that the potential mission would use the Mars Science Laboratory (MSL) sky-crane landing system and include a single solar-powered rover. The mission would also have a targeting accuracy of approximately 7 km (semimajor axis landing ellipse), a mobility range of at least 10 km, and a lifetime on the martian surface of at least 1 Earth year. An additional key consideration, given recently declining budgets and cost growth issues with MSL, is that the proposed rover must have lower cost and cost risk than those of MSL--this is an essential consideration for the Mars Exploration Program Analysis Group (MEPAG). The MRR-SAG was asked to formulate a mission concept that would address two general objectives: (1) conduct high priority in situ science and (2) make concrete steps toward the potential return of samples to Earth. The proposed means of achieving these two goals while balancing the trade-offs between them are described here in detail. We propose the name Mars Astrobiology Explorer-Cacher(MAX-C) to reflect the dual purpose of this potential 2018 rover mission.

  4. KSC-03pd0980

    NASA Image and Video Library

    2003-04-04

    KENNEDY SPACE CENTER, FLA. - Workers prepare the shrouded Mars Exploration Rover 2 (MER-2) for mating to the lander. Set to launch in Spring 2003, the MER Mission consists of two identical rovers, landing at different regions of Mars, designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  5. Cutting the Cord

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation shows the view from the front hazard avoidance cameras on the Mars Exploration Rover Spirit as the rover turns 45 degrees clockwise. This maneuver is the first step in a 3-point turn that will rotate the rover 115 degrees to face west. The rover must make this turn before rolling off the lander because airbags are blocking it from exiting off the front lander petal. Before this crucial turn could take place, engineers instructed the rover to cut the final cord linking it to the lander. The turn took around 30 minutes to complete.

  6. Cutting the Cord-2

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation shows the view from the rear hazard avoidance cameras on the Mars Exploration Rover Spirit as the rover turns 45 degrees clockwise. This maneuver is the first step in a 3-point turn that will rotate the rover 115 degrees to face west. The rover must make this turn before rolling off the lander because airbags are blocking it from exiting from the front lander petal. Before this crucial turn took place, engineers instructed the rover to cut the final cord linking it to the lander. The turn took around 30 minutes to complete.

  7. KSC-03pd1249

    NASA Image and Video Library

    2003-04-25

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility help guide the Mars Exploration Rover 1 (MER-1) as it is moved to the lander base petal for installation. The MER Mission consists of two identical rovers, landing at different regions of Mars, designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening June 5, and the second rover a window opening June 25. The rovers will be launched from Cape Canaveral Air Force Station.

  8. KSC-03pd1250

    NASA Image and Video Library

    2003-04-25

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility guide the Mars Exploration Rover 1 (MER-1) as it is lowered onto the lander base petal for installation. The MER Mission consists of two identical rovers, landing at different regions of Mars, designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening June 5, and the second rover a window opening June 25. The rovers will be launched from Cape Canaveral Air Force Station.

  9. KSC-03pd1251

    NASA Image and Video Library

    2003-04-25

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility guide the Mars Exploration Rover 1 (MER-1) as it is lowered onto the lander base petal for installation. The MER Mission consists of two identical rovers, landing at different regions of Mars, designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening June 5, and the second rover a window opening June 25. The rovers will be launched from Cape Canaveral Air Force Station.

  10. Crane Lowers Aeroshell

    NASA Technical Reports Server (NTRS)

    2003-01-01

    January 31, 2003

    In the Payload Hazardous Servicing Facility, an overhead crane lowers the Mars Exploration Rover (MER) aeroshell toward a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  11. KSC-03pd0771

    NASA Image and Video Library

    2003-03-20

    KENNEDY SPACE CENTER, Fla. - The solar arrays on the Mars Exploration Rover-2 (MER-2) are fully opened during a test in the Payload Hazardous Servicing Facility. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  12. KSC-03pd0957

    NASA Image and Video Library

    2003-04-02

    KENNEDY SPACE CENTER, FLA. - The Mars Exploration Rover 1 (MER-1) is seen in the foreground after the science boom was deployed. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  13. KSC-03pd0909

    NASA Image and Video Library

    2003-03-29

    KENNEDY SPACE CENTER, FLA. - Workers gather around the Mars Exploration Rover 2 (MER-2) before flight stow of the solar panels, still extended. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. The rovers will be identical to each other, but will land at different regions of Mars. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  14. KSC-03pd0232

    NASA Image and Video Library

    2003-01-31

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, an overhead crane lifts the Mars Exploration Rover (MER) aeroshell for transfer to a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  15. KSC-03pd0913

    NASA Image and Video Library

    2003-03-29

    KENNEDY SPACE CENTER, FLA. - Workers begin closing the solar panels on the Mars Exploration Rover 2 (MER-2) for flight stow. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. The rovers will be identical to each other, but will land at different regions of Mars. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  16. KSC-03pd0438

    NASA Image and Video Library

    2003-02-04

    KENNEDY SPACE CENTER, FLA. -- The aeroshell for Mars Exploration Rover 2 rests on a rotation stand in the Payload Hazardous Servicing Facility. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  17. KSC-03pd0230

    NASA Image and Video Library

    2003-01-31

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover (MER) aeroshell is being prepared for transfer to a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  18. KSC-03pd0768

    NASA Image and Video Library

    2003-03-20

    KENNEDY SPACE CENTER, FLA. -- The Mars Exploration Rover-2 (MER-2) is ready for solar array testing in the Payload Hazardous Servicing Facility. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  19. KSC-03pd0786

    NASA Image and Video Library

    2003-03-21

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover-2 (MER-2) is tested for mobility and maneuverability. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  20. KSC-03pd0234

    NASA Image and Video Library

    2003-01-31

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, an overhead crane lowers the Mars Exploration Rover (MER) aeroshell toward a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  1. KSC-03pd0457

    NASA Image and Video Library

    2003-02-06

    KENNEDY SPACE CENTER, FLA. -- Technicians secure the aeroshell for Mars Exploration Rover 2 to a workstand in the Payload Hazardous Servicing Facility. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25, 2003.

  2. KSC-03pd0439

    NASA Image and Video Library

    2003-02-04

    KENNEDY SPACE CENTER, FLA. -- The aeroshell for Mars Exploration Rover 2 rests on end after rotation in the Payload Hazardous Servicing Facility. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  3. KSC-03pd0236

    NASA Image and Video Library

    2003-01-31

    KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility help guide the Mars Exploration Rover (MER) aeroshell onto a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  4. KSC-03pd0235

    NASA Image and Video Library

    2003-01-31

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility help guide the Mars Exploration Rover (MER) aeroshell as it is lowered toward a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  5. KSC-03pd0440

    NASA Image and Video Library

    2003-02-04

    KENNEDY SPACE CENTER, FLA. - During processing, workers in the Payload Hazardous Servicing Facility work on part of the aeroshell for Mars Exploration Rover 2. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  6. KSC-03pd0955

    NASA Image and Video Library

    2003-04-02

    KENNEDY SPACE CENTER, FLA. - A worker examines the Mars Exploration Rover 1 (MER-1) after the science boom was deployed. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  7. KSC-03pd0911

    NASA Image and Video Library

    2003-03-29

    KENNEDY SPACE CENTER, FLA. - A worker checks a component of the Mars Exploration Rover 2 (MER-2) before flight stow of the solar panels, still extended. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. The rovers will be identical to each other, but will land at different regions of Mars. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  8. KSC-03pd0886

    NASA Image and Video Library

    2003-03-28

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover-2 (MER-2) rests on the base petal of its lander assembly. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25.

  9. KSC-03pd0958

    NASA Image and Video Library

    2003-04-02

    KENNEDY SPACE CENTER, FLA. - On the Mars Exploration Rover 1 (MER-1), the science boom, below the front petal, is deployed. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  10. KSC-03pd0910

    NASA Image and Video Library

    2003-03-29

    KENNEDY SPACE CENTER, FLA. - Workers make additional checks of the Mars Exploration Rover 2 (MER-2) before flight stow of the solar panels, still extended. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. The rovers will be identical to each other, but will land at different regions of Mars. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  11. KSC-03pd0793

    NASA Image and Video Library

    2003-03-21

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, the Mars Exploration Rover-2 (MER-2) rolls over ramps to test its mobility and maneuverability. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  12. KSC-03pd0914

    NASA Image and Video Library

    2003-03-29

    KENNEDY SPACE CENTER, FLA. - After closing the solar panels for flight stow, workers examine the Mars Exploration Rover 2 (MER-2). Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. The rovers will be identical to each other, but will land at different regions of Mars. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  13. Arusha Rover Deployable Medical Workstation

    NASA Technical Reports Server (NTRS)

    Boswell, Tyrone; Hopson, Sonya; Marzette, Russell; Monroe, Gilena; Mustafa, Ruqayyah

    2014-01-01

    The NSBE Arusha rover concept offers a means of human transport and habitation during long-term exploration missions on the moon. This conceptual rover calls for the availability of medical supplies and equipment for crew members in order to aid in mission success. This paper addresses the need for a dedicated medical work station aboard the Arusha rover. The project team investigated multiple options for implementing a feasible deployable station to address both the medical and workstation layout needs of the rover and crew. Based on layout specifications and medical workstation requirements, the team has proposed a deployable workstation concept that can be accommodated within the volumetric constraints of the Arusha rover spacecraft

  14. The Collaborative Information Portal and NASA's Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Mak, Ronald; Walton, Joan

    2005-01-01

    The Collaborative Information Portal was enterprise software developed jointly by the NASA Ames Research Center and the Jet Propulsion Laboratory for NASA's Mars Exploration Rover mission. Mission managers, engineers, scientists, and researchers used this Internet application to view current staffing and event schedules, download data and image files generated by the rovers, receive broadcast messages, and get accurate times in various Mars and Earth time zones. This article describes the features, architecture, and implementation of this software, and concludes with lessons we learned from its deployment and a look towards future missions.

  15. The Mars Exploration Rover/Collaborative Information Portal

    NASA Technical Reports Server (NTRS)

    Walton, Joan; Filman, Robert E.; Schreiner, John; Koga, Dennis (Technical Monitor)

    2002-01-01

    Astrology has long argued that the alignment of the planets governs human affairs. Science usually scoffs at this. There is, however, an important exception: sending spacecraft for planetary exploration. In late May and early June, 2003, Mars will be in position for Earth launch. Two Mars Exploration Rovers (MER) will rocket towards the red planet. The rovers will perform a series of geological and meteorological experiments, seeking to examine geological evidence for water and conditions once favorable for life. Back on earth, a small army of surface operations staff will work to keep the rovers running, sending directions for each day's operations and receiving the files encoding the outputs of the Rover's six instruments. (Mars is twenty light minutes from Earth. The rovers must be robots.) The fundamental purpose of the project is, after all, Science. Scientists have experiments they want to run. Ideally, scientists want to be immediately notified when the data products of their experiments have been received, so that they can examine their data and (collaboratively) deduce results. Mars is an unpredictable environment. We may issue commands to the rovers but there is considerable uncertainty in how the commands will be executed and whether what the rovers sense will be worthy of further pursuit. The steps of what is, to a scientist, conceptually an individual experiment may be scattered over a large number of activities. While the scientific staff has an overall strategic idea of what it would like to accomplish, activities are planned daily. The data and surprises of the previous day need to be integrated into the negotiations for the next day's activities, all synchronized to a schedule of transmission windows . Negotiations is the operative term, as different scientists want the resources to run possibly incompatible experiments. Many meetings plan each day's activities.

  16. Mars Exploration Rover engineering cameras

    USGS Publications Warehouse

    Maki, J.N.; Bell, J.F.; Herkenhoff, K. E.; Squyres, S. W.; Kiely, A.; Klimesh, M.; Schwochert, M.; Litwin, T.; Willson, R.; Johnson, Aaron H.; Maimone, M.; Baumgartner, E.; Collins, A.; Wadsworth, M.; Elliot, S.T.; Dingizian, A.; Brown, D.; Hagerott, E.C.; Scherr, L.; Deen, R.; Alexander, D.; Lorre, J.

    2003-01-01

    NASA's Mars Exploration Rover (MER) Mission will place a total of 20 cameras (10 per rover) onto the surface of Mars in early 2004. Fourteen of the 20 cameras are designated as engineering cameras and will support the operation of the vehicles on the Martian surface. Images returned from the engineering cameras will also be of significant importance to the scientific community for investigative studies of rock and soil morphology. The Navigation cameras (Navcams, two per rover) are a mast-mounted stereo pair each with a 45?? square field of view (FOV) and an angular resolution of 0.82 milliradians per pixel (mrad/pixel). The Hazard Avoidance cameras (Hazcams, four per rover) are a body-mounted, front- and rear-facing set of stereo pairs, each with a 124?? square FOV and an angular resolution of 2.1 mrad/pixel. The Descent camera (one per rover), mounted to the lander, has a 45?? square FOV and will return images with spatial resolutions of ???4 m/pixel. All of the engineering cameras utilize broadband visible filters and 1024 x 1024 pixel detectors. Copyright 2003 by the American Geophysical Union.

  17. Update on Rover Sequencing and Visualization Program

    NASA Technical Reports Server (NTRS)

    Cooper, Brian; Hartman, Frank; Maxwell, Scott; Yen, Jeng; Wright, John; Balacuit, Carlos

    2005-01-01

    The Rover Sequencing and Visualization Program (RSVP) has been updated. RSVP was reported in Rover Sequencing and Visualization Program (NPO-30845), NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 38. To recapitulate: The Rover Sequencing and Visualization Program (RSVP) is the software tool to be used in the Mars Exploration Rover (MER) mission for planning rover operations and generating command sequences for accomplishing those operations. RSVP combines three-dimensional (3D) visualization for immersive exploration of the operations area, stereoscopic image display for high-resolution examination of the downlinked imagery, and a sophisticated command-sequence editing tool for analysis and completion of the sequences. RSVP is linked with actual flight code modules for operations rehearsal to provide feedback on the expected behavior of the rover prior to committing to a particular sequence. Playback tools allow for review of both rehearsed rover behavior and downlinked results of actual rover operations. These can be displayed simultaneously for comparison of rehearsed and actual activities for verification. The primary inputs to RSVP are downlink data products from the Operations Storage Server (OSS) and activity plans generated by the science team. The activity plans are high-level goals for the next day s activities. The downlink data products include imagery, terrain models, and telemetered engineering data on rover activities and state. The Rover Sequence Editor (RoSE) component of RSVP performs activity expansion to command sequences, command creation and editing with setting of command parameters, and viewing and management of rover resources. The HyperDrive component of RSVP performs 2D and 3D visualization of the rover s environment, graphical and animated review of rover predicted and telemetered state, and creation and editing of command sequences related to mobility and Instrument Deployment Device (robotic arm) operations. Additionally, RoSE and HyperDrive together evaluate command sequences for potential violations of flight and safety rules. The products of RSVP include command sequences for uplink that are stored in the Distributed Object Manager (DOM) and predicted rover state histories stored in the OSS for comparison and validation of downlinked telemetry. The majority of components comprising RSVP utilize the MER command and activity dictionaries to automatically customize the system for MER activities.

  18. KSC-03pd1230

    NASA Image and Video Library

    2003-04-24

    KENNEDY SPACE CENTER, FLA. - This closeup shows the size of the computer chip that holds about 35,000 laser-engraved signatures of visitors to the Mars Exploration Rovers at the Jet Propulsion Laboratory. It will be placed on the second rover to be launched to Mars; the first rover already has one. The signatures include those of senators, artists, and John Glenn. The identical Mars rovers are scheduled to launch June 5 and June 25 from Cape Canaveral Air Force Station.

  19. KSC-03pd1232

    NASA Image and Video Library

    2003-04-24

    KENNEDY SPACE CENTER, FLA. - Jim Lloyd, with the Mars Exploration Rover program, holds a computer chip with about 35,000 laser-engraved signatures of visitors to the Jet Propulsion Laboratory. The chip will be placed on the second rover to be launched to Mars (MER-1/MER-B); the first rover already has one. The signatures include those of senators, artists, and John Glenn. The identical Mars rovers are scheduled to launch June 5 and June 25 from Cape Canaveral Air Force Station.

  20. KENNEDY SPACE CENTER, FLA. - After arriving at Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted off its transporter. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - After arriving at Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted off its transporter. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  1. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  2. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) reaches the top of the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) reaches the top of the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  3. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted off the transporter. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted off the transporter. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  4. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is moved inside the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5..

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is moved inside the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5..

  5. KSC-03pd0883

    NASA Image and Video Library

    2003-03-28

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers adjust the position of the Mars Exploration Rover-2 (MER-2) on the base petal of its lander assembly. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25.

  6. KSC-03pd0795

    NASA Image and Video Library

    2003-03-21

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, workers watch as the Mars Exploration Rover-2 (MER-2) rolls over ramps to test its mobility and maneuverability. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  7. KSC-03pd0791

    NASA Image and Video Library

    2003-03-21

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, workers watch as the Mars Exploration Rover-2 (MER-2) rolls over ramps to test its mobility and maneuverability. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  8. KSC-03pd0790

    NASA Image and Video Library

    2003-03-21

    KENNEDY SPACE CENTER, Fla. - In the Payload Hazardous Servicing Facility, workers watch as the Mars Exploration Rover-2 (MER-2) rolls over ramps to test its mobility and maneuverability. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  9. KSC-03pd0879

    NASA Image and Video Library

    2003-03-28

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers move the Mars Exploration Rover-2 (MER-2) into position over the base petal of its lander assembly. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25.

  10. KSC-03pd0881

    NASA Image and Video Library

    2003-03-28

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers lower the Mars Exploration Rover-2 (MER-2) onto the base petal of its lander assembly. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25.

  11. KSC-03pd0877

    NASA Image and Video Library

    2003-03-28

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers prepare the base petal of a lander assembly to receive the Mars Exploration Rover-2 (MER-2). Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25.

  12. KSC-03pd0878

    NASA Image and Video Library

    2003-03-28

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers move the Mars Exploration Rover-2 (MER-2) towards the base petal of its lander assembly. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25.

  13. KSC-03pd0233

    NASA Image and Video Library

    2003-01-31

    KENNEDY SPACE CENTER, FLA. - Suspended by an overhead crane in the Payload Hazardous Servicing Facility, the Mars Exploration Rover (MER) aeroshell is guided by workers as it moves to a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  14. KSC-03PD-1852

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Nine-year-old Sofi Collis (left) shares a light moment with NASA Administrator Sean O'Keefe at a press conference. The Siberian-born Arizona resident wrote the winning entry in the Name the Rovers Contest sponsored by NASA and the Lego Co., a Denmark-based toymaker, with collaboration from the Planetary Society, Pasadena, Calif. The names she selected for the Mars Exploration Rovers are 'Spirit' and 'Opportunity.' The third grader's essay was chosen from more than 10,000 American student entries. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  15. KSC-03PD-1851

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Nine-year-old Sofi Collis (left) is introduced to the media by NASA Administrator Sean O'Keefe at a press conference. The Siberian-born Arizona resident wrote the winning entry in the Name the Rovers Contest sponsored by NASA and the Lego Co., a Denmark-based toymaker, with collaboration from the Planetary Society, Pasadena, Calif. The names she selected for the Mars Exploration Rovers are 'Spirit' and 'Opportunity.' The third grader's essay was chosen from more than 10,000 American student entries. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  16. MRSR: Rationale for a Mars Rover/Sample Return mission

    NASA Technical Reports Server (NTRS)

    Carr, Michael H.

    1992-01-01

    The Solar System Exploration Committee of the NASA Advisory Council has recommended that a Mars Rover/Sample Return mission be launched before the year 2000. The recommendation is consistent with the science objectives as outlined by the National Academy of Sciences committees on Planetary and Lunar Exploration, and Planetary Biology and Chemical Evolution. Interest has also focused on Mars Rover/Sample Return (MRSR) missions, because of their crucial role as precursors for human exploration. As a result of this consensus among the advisory groups, a study of an MRSR mission began early in 1987. The study has the following goals: (1) to assess the technical feasibility of the mission; (2) to converge on two or three options for the general architecture of the mission; (3) to determine what new technologies need to be developed in order to implement the mission; (4) to define the different options sufficiently well that preliminary cost estimates can be made; and (5) to better define the science requirements. This chapter briefly describes Mars Rover/Sample Return missions that were examined in the late 1980s. These missions generally include a large (1000 kg) rover and return of over 5 kg of sample.

  17. Ground-based real-time tracking and traverse recovery of China's first lunar rover

    NASA Astrophysics Data System (ADS)

    Zhou, Huan; Li, Haitao; Xu, Dezhen; Dong, Guangliang

    2016-02-01

    The Chang'E-3 unmanned lunar exploration mission forms an important stage in China's Lunar Exploration Program. China's first lunar rover "Yutu" is a sub-probe of the Chang'E-3 mission. Its main science objectives cover the investigations of the lunar soil and crust structure, explorations of mineral resources, and analyses of matter compositions. Some of these tasks require accurate real-time and continuous position tracking of the rover. To achieve these goals with the scale-limited Chinese observation network, this study proposed a ground-based real-time very long baseline interferometry phase referencing tracking method. We choose the Chang'E-3 lander as the phase reference source, and the accurate location of the rover is updated every 10 s using its radio-image sequences with the help of a priori information. The detailed movements of the Yutu rover have been captured with a sensitivity of several centimeters, and its traverse across the lunar surface during the first few days after its separation from the Chang'E-3 lander has been recovered. Comparisons and analysis show that the position tracking accuracy reaches a 1-m level.

  18. PIA05044

    NASA Image and Video Library

    2004-01-11

    This mosaic image taken by the navigation camera on the Mars Exploration Rover Spirit represents an overhead view of the rover as it prepares to roll off the lander and onto the martian surface. The yellow arrow illustrates the direction the rover may take to roll safely off the lander. The rover was originally positioned to roll straight forward off the lander (south side of image). However, an airbag is blocking its path. To take this northeastern route, the rover must back up and perform what is likened to a 3-point turn in a cramped parking lot. http://photojournal.jpl.nasa.gov/catalog/PIA05044

  19. Lunar Surface Scenarios: Habitation and Life Support Systems for a Pressurized Rover

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Hanford, Anthony; Howard, Robert; Toups, Larry

    2006-01-01

    Pressurized rovers will be a critical component of successful lunar exploration to enable safe investigation of sites distant from the outpost location. A pressurized rover is a complex system with the same functions as any other crewed vehicle. Designs for a pressurized rover need to take into account significant constraints, a multitude of tasks to be performed inside and out, and the complexity of life support systems to support the crew. In future studies, pressurized rovers should be given the same level of consideration as any other vehicle occupied by the crew.

  20. 'Bird's Eye' View of Egress

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This mosaic image taken by the navigation camera on the Mars Exploration Rover Spirit represents an overhead view of the rover as it prepares to roll off the lander and onto the martian surface. The yellow arrow illustrates the direction the rover may take to roll safely off the lander. The rover was originally positioned to roll straight forward off the lander (south side of image). However, an airbag is blocking its path. To take this northeastern route, the rover must back up and perform what is likened to a 3-point turn in a cramped parking lot.

  1. Spirit Beholds Bumpy Boulder

    NASA Technical Reports Server (NTRS)

    2006-01-01

    As NASA's Mars Exploration Rover Spirit began collecting images for a 360-degree panorama of new terrain, the rover captured this view of a dark boulder with an interesting surface texture. The boulder sits about 40 centimeters (16 inches) tall on Martian sand about 5 meters (16 feet) away from Spirit. It is one of many dark, volcanic rock fragments -- many pocked with rounded holes called vesicles -- littering the slope of 'Low Ridge.' The rock surface facing the rover is similar in appearance to the surface texture on the outside of lava flows on Earth.

    Spirit took this approximately true-color image with the panoramic camera on the rover's 810th sol, or Martian day, of exploring Mars (April 13, 2006), using the camera's 753-nanometer, 535-nanometer, and 432-nanometer filters.

  2. Peeling Back the Layers of Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a 3-D model of the trench excavated by the Mars Exploration Rover Opportunity on the 23rd day, or sol, of its mission. An oblique view of the trench from a bit above and to the right of the rover's right wheel is shown. The model was generated from images acquired by the rover's front hazard-avoidance cameras.

  3. Autonomous Rover Traverse and Precise Arm Placement on Remotely Designated Targets

    NASA Technical Reports Server (NTRS)

    Felder, Michael; Nesnas, Issa A.; Pivtoraiko, Mihail; Kelly, Alonzo; Volpe, Richard

    2011-01-01

    Exploring planetary surfaces typically involves traversing challenging and unknown terrain and acquiring in-situ measurements at designated locations using arm-mounted instruments. We present field results for a new implementation of an autonomous capability that enables a rover to traverse and precisely place an arm-mounted instrument on remote targets. Using point-and-click mouse commands, a scientist designates targets in the initial imagery acquired from the rover's mast cameras. The rover then autonomously traverse the rocky terrain for a distance of 10 - 15 m, tracks the target(s) of interest during the traverse, positions itself for approaching the target, and then precisely places an arm-mounted instrument within 2-3 cm from the originally designated target. The rover proceeds to acquire science measurements with the instrument. This work advances what has been previously developed and integrated on the Mars Exploration Rovers by using algorithms that are capable of traversing more rock-dense terrains, enabling tight thread-the-needle maneuvers. We integrated these algorithms on the newly refurbished Athena Mars research rover and fielded them in the JPL Mars Yard. We conducted 43 runs with targets at distances ranging from 5 m to 15 m and achieved a success rate of 93% for placement of the instrument within 2-3 cm.

  4. Li-ion rechargeable batteries on Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar; Smart, M.; Whitacanack, L.; Ewell, R.; Surampudi, S.

    2006-01-01

    Lithium-ion batteries have contributed significantly to the success of NASA's Mars Rovers, Spirit and Opportunity that have been exploring the surface of Mars for the last two years and performing astounding geological studies to answer the ever-puzzling questions of life beyond Earth and the origin of our planets. Combined with the triple-junction solar cells, the lithium-ion batteries have been powering the robotic rovers, and assist in keeping the rover electronics warm, and in supporting nighttime experimentation and communications. The use of Li-ion batteries has resulted in significant benefits in several categories, such as mass, volume, energy efficiency, self discharge, and above all low temperature performance. Designed initially for the primary mission needs of 300 cycles over 90 days of surface operation, the batteries have been performing admirably, over the last two years. After about 670 days of exploration and at least as many cycles, there is little change in the end-of discharge (EOD) voltages or capacities of these batteries, as estimated from the in-flight data and corroborated by ground testing. Aided by such impressive durability from the Li-ion batteries, both from cycling and calendar life stand point, these rovers are poised to extend their exploration well beyond two years. In this paper, we will describe the performance characteristics of these batteries during launch, cruise phase and on the surface of Mars thus far.

  5. KSC-03PD-1849

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Nine-year-old Sofi Collis (third from left) and her family pose proudly with a banner displaying the names she selected for the Mars Exploration Rovers -- 'Spirit' and 'Opportunity' -- following a press conference announcing the names. The names Sofi suggested were chosen from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  6. KSC-03PD-1847

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Nine-year-old Sofi Collis (left) is congratulated by NASA Administrator Sean O'Keefe for selecting the names of the Mars Exploration Rovers -- 'Spirit' and 'Opportunity' -- during a press conference. The names Sofi suggested were chosen from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  7. KSC-2012-3316

    NASA Image and Video Library

    2012-06-12

    CAPE CANAVERAL, Fla. – NASA In Situ Resource Utilization Project Manager William Larson, back to rover, discusses the design and operation of the prototype rover Artemis Jr. for NASA’s Regolith and Environment Science and Oxygen and Lunar Volatile Extraction, or RESOLVE, project with media representatives during a rover demonstration in a field beside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. The rover and its drill are provided by the Canadian Space Agency and work in concert with NASA science instruments to prospect for water, ice and other lunar resources. RESOLVE also will demonstrate how future explorers can take advantage of resources at potential landing sites by manufacturing oxygen from soil. NASA will conduct field tests in July outside of Hilo, Hawaii, with equipment and concept vehicles that demonstrate how explorers might prospect for resources and make their own oxygen for survival while on other planetary bodies. For more information, visit http://www.nasa.gov/exploration/analogs/index.html. Photo credit: NASA/Dimitri Gerondidakis

  8. Air Bag Installation

    NASA Technical Reports Server (NTRS)

    2003-01-01

    May 10, 2003Prelaunch at Kennedy Space Center

    On Mars Exploration Rover 1 (MER-1) , air bags are installed on the lander. The airbags will inflate to cushion the landing of the spacecraft on the surface of Mars. When it stops bouncing and rolling, the airbags will deflate and retract, the petals will open to bring the lander to an upright position, and the rover will be exposed. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  9. Downward Slope

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image from NASA's Mars Exploration Rover Opportunity panoramic camera shows a downward view from the rover as it sits at the edge of 'Endurance' crater. The gradual, 'blueberry'-strewn slope before the rover contains an exposed dark layer of rock that wraps around the upper section of the crater. Scientists suspect that this rock layer will provide clues about Mars' distant past. This mosaic image comprises images taken from 10 rover positions using 750, 530 and 430 nanometer filters, acquired on sol 131 (June 6, 2004).

  10. Toward remotely controlled planetary rovers.

    NASA Technical Reports Server (NTRS)

    Moore, J. W.

    1972-01-01

    Studies of unmanned planetary rovers have emphasized a Mars mission. Relatively simple rovers, weighing about 50 kg and tethered to the lander, may precede semiautonomous roving vehicles. It is conceivable that the USSR will deploy a rover on Mars before Viking lands. The feasibility of the roving vehicle as an explorational tool hinges on its ability to operate for extended periods of time relatively independent of earth, to withstand the harshness of the Martian environment, and to travel hundreds of kilometers independent of the spacecraft that delivers it.

  11. Approaching Rock Target No. 1

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D stereo anaglyph image was taken by the Mars Exploration Rover Spirit front hazard-identification camera after the rover's first post-egress drive on Mars Sunday. Engineers drove the rover approximately 3 meters (10 feet) from the Columbia Memorial Station toward the first rock target, seen in the foreground. The football-sized rock was dubbed Adirondack because of its mountain-shaped appearance. Scientists plan to use instruments at the end of the rover's robotic arm to examine the rock and understand how it formed.

  12. Adirondack Under the Microscope

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image was taken by the Mars Exploration Rover Spirit front hazard-identification camera after the rover's first post-egress drive on Mars Sunday, Jan. 15, 2004. Engineers drove the rover approximately 3 meters (10 feet) from the Columbia Memorial Station toward the first rock target, seen in the foreground. The football-sized rock was dubbed Adirondack because of its mountain-shaped appearance. Scientists have begun using the microscopic imager instrument at the end of the rover's robotic arm to examine the rock and understand how it formed.

  13. Mars Rover Studies Soil on Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Both out on the plains of Gusev Crater and in the 'Columbia Hills,' NASA's Mars Exploration Rover Spirit has encountered a thin (approximately 1 millimeter or 0.04 inch thick), light-colored, fine-grained layer of material on top of a dark-colored, coarser layer of soil. In the hills, Spirit stopped to take a closer look at soil compacted by one of the rover's wheels. Spirit took this image with the front hazard-avoidance camera during the rover's 314th martian day, or sol (Nov. 19, 2004).

  14. Entry trajectory and atmosphere reconstruction methodologies for the Mars Exploration Rover mission

    NASA Astrophysics Data System (ADS)

    Desai, Prasun N.; Blanchard, Robert C.; Powell, Richard W.

    2004-02-01

    The Mars Exploration Rover (MER) mission will land two landers on the surface of Mars, arriving in January 2004. Both landers will deliver the rovers to the surface by decelerating with the aid of an aeroshell, a supersonic parachute, retro-rockets, and air bags for safely landing on the surface. The reconstruction of the MER descent trajectory and atmosphere profile will be performed for all the phases from hypersonic flight through landing. A description of multiple methodologies for the flight reconstruction is presented from simple parameter identification methods through a statistical Kalman filter approach.

  15. High Gain Antenna Gimbal for the 2003-2004 Mars Exploration Rover Program

    NASA Technical Reports Server (NTRS)

    Sokol, Jeff; Krishnan, Satish; Ayari, Laoucet

    2004-01-01

    The High Gain Antenna Assemblies built for the 2003-2004 Mars Exploration Rover (MER) missions provide the primary communication link for the Rovers once they arrive on Mars. The High Gain Antenna Gimbal (HGAG) portion of the assembly is a two-axis gimbal that provides the structural support, pointing, and tracking for the High Gain Antenna (HGA). The MER mission requirements provided some unique design challenges for the HGAG. This paper describes all the major subsystems of the HGAG that were developed to meet these challenges, and the requirements that drove their design.

  16. KSC-03PD-0514

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. - At NASA's Family & Community Mars Exploration Day held in Cape Canaveral, Fla., students look at a remote-controlled model of the Mars Exploration Rover. The event informed students and the general public about Florida's key role as NASA's 'Gateway to Mars' and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.

  17. KSC-03pd0514

    NASA Image and Video Library

    2003-02-19

    KENNEDY SPACE CENTER, FLA. - At NASA's Family & Community Mars Exploration Day held in Cape Canaveral, Fla., students look at a remote-controlled model of the Mars Exploration Rover. The event informed students and the general public about Florida's key role as NASA's "Gateway to Mars" and offered an opportunity to meet with scientists, engineers, educators and others working Mars exploration missions. The Mars Exploration Rovers are being prepared for launch this spring aboard Boeing Delta II rockets from the Cape Canaveral Air Force Station. They will land on Mars and start exploring in January 2004.

  18. Planning for rover opportunistic science

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel M.; Estlin, Tara; Forest, Fisher; Chouinard, Caroline; Castano, Rebecca; Anderson, Robert C.

    2004-01-01

    The Mars Exploration Rover Spirit recently set a record for the furthest distance traveled in a single sol on Mars. Future planetary exploration missions are expected to use even longer drives to position rovers in areas of high scientific interest. This increase provides the potential for a large rise in the number of new science collection opportunities as the rover traverses the Martian surface. In this paper, we describe the OASIS system, which provides autonomous capabilities for dynamically identifying and pursuing these science opportunities during longrange traverses. OASIS uses machine learning and planning and scheduling techniques to address this goal. Machine learning techniques are applied to analyze data as it is collected and quickly determine new science gods and priorities on these goals. Planning and scheduling techniques are used to alter the behavior of the rover so that new science measurements can be performed while still obeying resource and other mission constraints. We will introduce OASIS and describe how planning and scheduling algorithms support opportunistic science.

  19. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover "Opportunity" for the second Mars Exploration Rover mission launches at 11:18:15 p.m. EDT. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.

    NASA Image and Video Library

    2003-07-07

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover "Opportunity" for the second Mars Exploration Rover mission launches at 11:18:15 p.m. EDT. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.

  20. Photometric Observations of Soils and Rocks at the Mars Exploration Rover Landing Sites

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Arvidson, R. A.; Bell, J. F., III; Farrand, W.; Guinness, E.; Johnson, M.; Herkenhoff, K. E.; Lemmon, M.; Morris, R. V.; Seelos, F., IV

    2005-01-01

    The Panoramic Cameras (Pancam) on the Spirit and Opportunity Mars Exploration Rovers have acquired multispectral reflectance observations of rocks and soils at different incidence, emission, and phase angles that will be used for photometric modeling of surface materials. Phase angle coverage at both sites extends from approx. 0 deg. to approx. 155 deg.

  1. KSC-03PD-1578

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Workers in the Payload Hazardous Servicing Facility prepare to lift and move the backshell that will cover the Mars Exploration Rover 1 (MER-1) and its lander. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  2. Preliminary Surface Thermal Design of the Mars 2020 Rover

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Kempenaar, Jason G.; Redmond, Matthew J.; Bhandari, Pradeep

    2015-01-01

    The Mars 2020 rover, scheduled for launch in July 2020, is currently being designed at NASA's Jet Propulsion Laboratory. The Mars 2020 rover design is derived from the Mars Science Laboratory (MSL) rover, Curiosity, which has been exploring the surface of Mars in Gale Crater for over 2.5 years. The Mars 2020 rover will carry a new science payload made up of 7 instruments. In addition, the Mars 2020 rover is responsible for collecting a sample cache of Mars regolith and rock core samples that could be returned to Earth in a future mission. Accommodation of the new payload and the Sampling Caching System (SCS) has driven significant thermal design changes from the original MSL rover design. This paper describes the similarities and differences between the heritage MSL rover thermal design and the new Mars 2020 thermal design. Modifications to the MSL rover thermal design that were made to accommodate the new payload and SCS are discussed. Conclusions about thermal design flexibility are derived from the Mars 2020 preliminary thermal design experience.

  3. KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis poses proudly with a banner displaying the names she selected for the Mars Exploration Rovers -- "Spirit" and "Opportunity" -- during a press conference. Participating in the press conference are, from left, Brad Justus, LEGO Co. senior vice president; Sofi Collis, a third grade student from Arizona; Dr. John Marburger, science advisor to the President and director of the Office of Science and Technology Policy; and NASA Administrator Sean O'Keefe. The names Sofi suggested were selected from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

    NASA Image and Video Library

    2003-06-08

    KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis poses proudly with a banner displaying the names she selected for the Mars Exploration Rovers -- "Spirit" and "Opportunity" -- during a press conference. Participating in the press conference are, from left, Brad Justus, LEGO Co. senior vice president; Sofi Collis, a third grade student from Arizona; Dr. John Marburger, science advisor to the President and director of the Office of Science and Technology Policy; and NASA Administrator Sean O'Keefe. The names Sofi suggested were selected from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  4. KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis poses proudly with a banner displaying the names she selected for the Mars Exploration Rovers -- "Spirit" and "Opportunity" -- during a press conference. Participating in the press conference are, from left, Brad Justus, LEGO Co. senior vice president; Sofi Collis, third grade student from Arizona; Dr. John Marburger, science advisor to the President and director of the Office of Science and Technology Policy; and NASA Administrator Sean O'Keefe. The names Sofi suggested were selected from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

    NASA Image and Video Library

    2003-06-08

    KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis poses proudly with a banner displaying the names she selected for the Mars Exploration Rovers -- "Spirit" and "Opportunity" -- during a press conference. Participating in the press conference are, from left, Brad Justus, LEGO Co. senior vice president; Sofi Collis, third grade student from Arizona; Dr. John Marburger, science advisor to the President and director of the Office of Science and Technology Policy; and NASA Administrator Sean O'Keefe. The names Sofi suggested were selected from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  5. KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis unveils the names of the Mars Exploration Rovers -- "Spirit" and "Opportunity" -- during a press conference. Participating in the press conference are, from left, Dr. John Marburger, science advisor to the President and director of the Office of Science and Technology Policy; NASA Administrator Sean O'Keefe; Sofi Collis, a third grade student from Arizona; and Brad Justus, LEGO Co. senior vice president. The names Sofi suggested were selected from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

    NASA Image and Video Library

    2003-06-08

    KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis unveils the names of the Mars Exploration Rovers -- "Spirit" and "Opportunity" -- during a press conference. Participating in the press conference are, from left, Dr. John Marburger, science advisor to the President and director of the Office of Science and Technology Policy; NASA Administrator Sean O'Keefe; Sofi Collis, a third grade student from Arizona; and Brad Justus, LEGO Co. senior vice president. The names Sofi suggested were selected from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  6. Lunar surface exploration using mobile robots

    NASA Astrophysics Data System (ADS)

    Nishida, Shin-Ichiro; Wakabayashi, Sachiko

    2012-06-01

    A lunar exploration architecture study is being carried out by space agencies. JAXA is carrying out research and development of a mobile robot (rover) to be deployed on the lunar surface for exploration and outpost construction. The main target areas for outpost construction and lunar exploration are mountainous zones. The moon's surface is covered by regolith. Achieving a steady traversal of such irregular terrain constitutes the major technical problem for rovers. A newly developed lightweight crawler mechanism can effectively traverse such irregular terrain because of its low contact force with the ground. This fact was determined on the basis of the mass and expected payload of the rover. This paper describes a plan for Japanese lunar surface exploration using mobile robots, and presents the results of testing and analysis needed in their development. This paper also gives an overview of the lunar exploration robot to be deployed in the SELENE follow-on mission, and the composition of its mobility, navigation, and control systems.

  7. At Home in the Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The wheel tracks seen above and to the left of the lander trace the path the Mars Exploration Rover Opportunity has traveled since landing in a small crater at Meridiani Planum, Mars. After this picture was taken, the rover excavated a trench near the soil seen at the lower left corner of the image. This image mosaic was taken by the rover's navigation camera.

  8. KSC-03pd1235

    NASA Image and Video Library

    2003-04-24

    KENNEDY SPACE CENTER, FLA. - Jim Lloyd, with the Mars Exploration Rover (MER) program, places on MER-1 a computer chip with about 35,000 laser-engraved signatures of visitors to the rovers at the Jet Propulsion Laboratory. The signatures include those of senators, artists, and John Glenn. The identical Mars rovers are scheduled to launch June 5 and June 25 from Cape Canaveral Air Force Station.

  9. Lander and rover exploration on the lunar surface: A study for SELENE-B mission

    NASA Astrophysics Data System (ADS)

    Selene-B Rover Science Group; Sasaki, S.; Sugihara, T.; Saiki, K.; Akiyama, H.; Ohtake, M.; Takeda, H.; Hasebe, N.; Kobayashi, M.; Haruyama, J.; Shirai, K.; Kato, M.; Kubota, T.; Kunii, Y.; Kuroda, Y.

    The SELENE-B, a lunar landing mission, has been studied in Japan, where a scientific investigation plan is proposed using a robotic rover and a static lander. The main theme to be investigated is to clarify the lunar origin and evolution, especially for early crustal formation process probably from the ancient magma ocean. The highest priority is placed on a direct in situ geology at a crater central peak, “a window to the interior”, where subcrustal materials are exposed and directly accessed without drilling. As a preliminary study was introduced by Sasaki et al. [Sasaki, S., Kubota, T., Okada, T. et al. Scientific exploration of lunar surface using a rover in Japanse future lunar mission. Adv. Space Res. 30, 1921 1926, 2002.], the rover and lander are jointly used, where detailed analyses of the samples collected by the rover are conducted at the lander. Primary scientific instruments are a multi-band stereo imager, a gamma-ray spectrometer, and a sampling tool on the rover, and a multi-spectral telescopic imager, a sampling system, and a sample analysis package with an X-ray spectrometer/diffractometer, a multi-band microscope as well as a sample cleaning and grinding device on the lander.

  10. Cape Verde

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This Mars Exploration Rover Opportunity Pancam 'super resolution' mosaic of the approximately 6 m (20 foot) high cliff face of the Cape Verde promontory was taken by the rover from inside Victoria Crater, during the rover's descent into Duck Bay. Super-resolution is an imaging technique which utilizes information from multiple pictures of the same target in order to generate an image with a higher resolution than any of the individual images. Cape Verde is a geologically rich outcrop and is teaching scientists about how rocks at Victoria crater were modified since they were deposited long ago. This image complements super resolution mosaics obtained at Cape St. Mary and Cape St. Vincent and is consistent with the hypothesis that Victoria crater is located in the middle of what used to be an ancient sand dune field. Many rover team scientists are hoping to be able to eventually drive the rover closer to these layered rocks in the hopes of measuring their chemistry and mineralogy.

    This is a Mars Exploration Rover Opportunity Panoramic Camera image mosaic acquired on sols 1342 and 1356 (November 2 and 17, 2007), and was constructed from a mathematical combination of 64 different blue filter (480 nm) images.

  11. KSC-03pd0987

    NASA Image and Video Library

    2003-04-04

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility examine the Mars Exploration Rover 2 (MER-2) as it is lowered onto the base petal of the lander. Set to launch in Spring 2003, the MER Mission consists of two identical rovers. Landing at different regions of Mars, they are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  12. KSC-03pd0984

    NASA Image and Video Library

    2003-04-04

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility check the Mars Exploration Rover 2 (MER-2) before it is lifted and moved to the lander where it will be mated to the base petal. Set to launch in Spring 2003, the MER Mission consists of two identical rovers, landing at different regions of Mars, designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  13. KSC-03pd0988

    NASA Image and Video Library

    2003-04-04

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility release the overhead crane used to lower the Mars Exploration Rover 2 (MER-2) onto the base petal of the lander. Set to launch in Spring 2003, the MER Mission consists of two identical rovers. Landing at different regions of Mars, they are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover has a launch window opening May 30, and the second rover a window opening June 25.

  14. KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility prepare Mars Exploration Rover 1 (MER-B) to be mated with the third stage of the Delta rocket that will launch it to Mars. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch from Launch Pad 17-B, Cape Canaveral Air Force Station, June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility prepare Mars Exploration Rover 1 (MER-B) to be mated with the third stage of the Delta rocket that will launch it to Mars. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch from Launch Pad 17-B, Cape Canaveral Air Force Station, June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

  15. KENNEDY SPACE CENTER, FLA. - In the background, right, workers in the Payload Hazardous Servicing Facility get ready to lift Mars Exploration Rover 1 (MER-B) to the third stage of the Delta rocket (foreground) for mating. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch from Launch Pad 17-B, Cape Canaveral Air Force Station, June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - In the background, right, workers in the Payload Hazardous Servicing Facility get ready to lift Mars Exploration Rover 1 (MER-B) to the third stage of the Delta rocket (foreground) for mating. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch from Launch Pad 17-B, Cape Canaveral Air Force Station, June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

  16. KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers check the connections after the Mars Exploration Rover 1 (MER-B) above was mated with the third stage of the Delta rocket below. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch from Launch Pad 17-B, Cape Canaveral Air Force Station, June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

    NASA Image and Video Library

    2003-06-12

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers check the connections after the Mars Exploration Rover 1 (MER-B) above was mated with the third stage of the Delta rocket below. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch from Launch Pad 17-B, Cape Canaveral Air Force Station, June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

  17. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is raised to a vertical position for its lift up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the first half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is raised to a vertical position for its lift up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  18. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is raised to a vertical position for its lift up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is raised to a vertical position for its lift up the launch tower. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  19. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) nears the top of the launch tower. The fairing will be installed around the payload for protection during launch on a Delta II rocket. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) nears the top of the launch tower. The fairing will be installed around the payload for protection during launch on a Delta II rocket. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  20. Airbag Trails

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This segment of the first color image from the panoramic camera on the Mars Exploration Rover Spirit shows the rover's airbag trails. These depressions in the soil were made when the airbags were deflated and retracted after landing.

  1. Endeavour on the Horizon False Color

    NASA Image and Video Library

    2010-04-30

    NASA Mars Exploration Rover Opportunity used its panoramic camera Pancam to capture this false-color view of the rim of Endeavour crater, the rover destination in a multi-year traverse along the sandy Martian landscape.

  2. Endeavour on the Horizon

    NASA Image and Video Library

    2010-04-30

    NASA Mars Exploration Rover Opportunity used its panoramic camera Pancam to capture this view approximately true-color view of the rim of Endeavour crater, the rover destination in a multi-year traverse along the sandy Martian landscape.

  3. Rover 2

    NASA Image and Video Library

    2003-11-07

    In the Payload Hazardous Servicing Facility, the lander petals of the Mars Exploration Rover 2 MER-2 have been reopened and its solar panels deployed to allow technicians access to the spacecraft to remove one of its circuit boards.

  4. Almost Like Being at Bonneville

    NASA Image and Video Library

    2004-03-17

    NASA Mars Exploration Rover Spirit took this 3-D navigation camera mosaic of the crater called Bonneville. The rover solar panels can be seen in the foreground. 3D glasses are necessary to view this image.

  5. Adirondack Under the Microscope-2

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This overhead look at the martian rock dubbed Adirondack was captured by the Mars Exploration Rover Spirit's panoramic camera. It shows the approximate region where the rover's microscopic imager began its first close-up inspection.

  6. Lander Trench Dug by Opportunity

    NASA Image and Video Library

    2015-01-27

    On March 20, 2004, NASA Mars Exploration Rover Opportunity used a wheel to dig a trench revealing subsurface material beside the lander hardware that carried the rover to the surface of Mars 55 Martian days earlier.

  7. Rover Rehearses Roll-Off at JPL

    NASA Image and Video Library

    2004-01-15

    Footage from the JPL In-Situ Instruments Laboratory, or testbed, shows engineers rehearsing a crucial maneuver called egress in which NASA Mars Exploration Rover Spirit rolls off its lander platform and touches martian soil.

  8. KENNEDY SPACE CENTER, FLA. --Shown upside down to read the names, this plaque commemorating the STS-107 Space Shuttle Columbia crew now looks over the Mars landscape after the successful landing and deployment of the Mars Exploration Rover “Spirit” Jan. 4 onto the red planet. The plaque, mounted on the high-gain antenna, is shown while the rover underwent final checkout March 28, 2003, in the Payload Hazardous Servicing Facility at KSC.

    NASA Image and Video Library

    2004-01-06

    KENNEDY SPACE CENTER, FLA. --Shown upside down to read the names, this plaque commemorating the STS-107 Space Shuttle Columbia crew now looks over the Mars landscape after the successful landing and deployment of the Mars Exploration Rover “Spirit” Jan. 4 onto the red planet. The plaque, mounted on the high-gain antenna, is shown while the rover underwent final checkout March 28, 2003, in the Payload Hazardous Servicing Facility at KSC.

  9. Spirit Beholds Bumpy Boulder (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    As NASA's Mars Exploration Rover Spirit began collecting images for a 360-degree panorama of new terrain, the rover captured this view of a dark boulder with an interesting surface texture. The boulder sits about 40 centimeters (16 inches) tall on Martian sand about 5 meters (16 feet) away from Spirit. It is one of many dark, volcanic rock fragments -- many pocked with rounded holes called vesicles -- littering the slope of 'Low Ridge.' The rock surface facing the rover is similar in appearance to the surface texture on the outside of lava flows on Earth.

    Spirit took this false-color image with the panoramic camera on the rover's 810th sol, or Martian day, of exploring Mars (April 13, 2006). This image is a false-color rendering using camera's 753-nanometer, 535-nanometer, and 432-nanometer filters.

  10. Attitude determination of planetary exploration rovers using solar panels characteristics and accelerometer

    NASA Astrophysics Data System (ADS)

    Ishida, Takayuki; Takahashi, Masaki

    2014-12-01

    In this study, we propose a new attitude determination system, which we call Irradiance-based Attitude Determination (IRAD). IRAD employs the characteristics and geometry of solar panels. First, the sun vector is estimated using data from solar panels including current, voltage, temperature, and the normal vectors of each solar panel. Because these values are obtained using internal sensors, it is easy for rovers to provide redundancy for IRAD. The normal vectors are used to apply to various shapes of rovers. Second, using the gravity vector obtained from an accelerometer, the attitude of a rover is estimated using a three-axis attitude determination method. The effectiveness of IRAD is verified through numerical simulations and experiments that show IRAD can estimate all the attitude angles (roll, pitch, and yaw) within a few degrees of accuracy, which is adequate for planetary explorations.

  11. High gain antenna pointing on the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Vanelli, C. Anthony; Ali, Khaled S.

    2005-01-01

    This paper describes the algorithm used to point the high gain antennae on NASA/JPL's Mars Exploration Rovers. The gimballed antennae must track the Earth as it moves across the Martian sky during communication sessions. The algorithm accounts for (1) gimbal range limitations, (2) obstructions both on the rover and in the surrounding environment, (3) kinematic singularities in the gimbal design, and (4) up to two joint-space solutions for a given pointing direction. The algorithm computes the intercept-times for each of the occlusions and chooses the jointspace solution that provides the longest track time before encountering an occlusion. Upon encountering an occlusion, the pointing algorithm automatically switches to the other joint-space solution if it is not also occluded. The algorithm has successfully provided flop-free pointing for both rovers throughout the mission.

  12. Lunar rover technology demonstrations with Dante and Ratler

    NASA Technical Reports Server (NTRS)

    Krotkov, Eric; Bares, John; Katragadda, Lalitesh; Simmons, Reid; Whittaker, Red

    1994-01-01

    Carnegie Mellon University has undertaken a research, development, and demonstration program to enable a robotic lunar mission. The two-year mission scenario is to traverse 1,000 kilometers, revisiting the historic sites of Apollo 11, Surveyor 5, Ranger 8, Apollo 17, and Lunokhod 2, and to return continuous live video amounting to more than 11 terabytes of data. Our vision blends autonomously safeguarded user driving with autonomous operation augmented with rich visual feedback, in order to enable facile interaction and exploration. The resulting experience is intended to attract mass participation and evoke strong public interest in lunar exploration. The encompassing program that forwards this work is the Lunar Rover Initiative (LRI). Two concrete technology demonstration projects currently advancing the Lunar Rover Initiative are: (1) The Dante/Mt. Spurr project, which, at the time of this writing, is sending the walking robot Dante to explore the Mt. Spurr volcano, in rough terrain that is a realistic planetary analogue. This project will generate insights into robot system robustness in harsh environments, and into remote operation by novices; and (2) The Lunar Rover Demonstration project, which is developing and evaluating key technologies for navigation, teleoperation, and user interfaces in terrestrial demonstrations. The project timetable calls for a number of terrestrial traverses incorporating teleoperation and autonomy including natural terrain this year, 10 km in 1995. and 100 km in 1996. This paper will discuss the goals of the Lunar Rover Initiative and then focus on the present state of the Dante/Mt. Spurr and Lunar Rover Demonstration projects.

  13. Lunar Thermal Wadis and Exploration Rovers: Outpost Productivity and Participatory Exploration

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt; Wegeng, Robert; Suzuki, Nantel

    2009-01-01

    The presentation introduces the concept of a thermal wadi, an engineered source of thermal energy that can be created using native material on the moon or elsewhere to store solar energy for use by various lunar surface assets to survive the extremely cold environment of the lunar night. A principal benefit of this approach to energy storage is the low mass requirement for transportation from Earth derived from the use of the lunar soil, or regolith, as the energy storage medium. The presentation includes a summary of the results of a feasibility study involving the numerical modeling of the performance of a thermal wadi including a manufactured thermal mass, a solar energy reflector, a nighttime thermal energy reflector and a lunar surface rover. The feasibility study shows that sufficient thermal energy can be stored using unconcentrated solar flux to keep a lunar surface rover sufficiently warm throughout a 354 hour lunar night at the lunar equator, and that similar approaches can be used to sustain surface assets during shorter dark periods that occur at the lunar poles. The presentation includes descriptions of a compact lunar rover concept that could be used to manufacture a thermal wadi and could alternatively be used to conduct a variety of high-value tasks on the lunar surface. Such rovers can be produced more easily because the capability for surviving the lunar night is offloaded to the thermal wadi infrastructure. The presentation also includes several concepts for operational scenarios that could be implemented on the moon using the thermal wadi and compact rover concepts in which multiple affordable rovers, operated by multiple terrestrial organizations, can conduct resource prospecting and human exploration site preparation tasks.

  14. Rover Sequencing and Visualization Program

    NASA Technical Reports Server (NTRS)

    Cooper, Brian; Hartman, Frank; Maxwell, Scott; Yen, Jeng; Wright, John; Balacuit, Carlos

    2005-01-01

    The Rover Sequencing and Visualization Program (RSVP) is the software tool for use in the Mars Exploration Rover (MER) mission for planning rover operations and generating command sequences for accomplishing those operations. RSVP combines three-dimensional (3D) visualization for immersive exploration of the operations area, stereoscopic image display for high-resolution examination of the downlinked imagery, and a sophisticated command-sequence editing tool for analysis and completion of the sequences. RSVP is linked with actual flight-code modules for operations rehearsal to provide feedback on the expected behavior of the rover prior to committing to a particular sequence. Playback tools allow for review of both rehearsed rover behavior and downlinked results of actual rover operations. These can be displayed simultaneously for comparison of rehearsed and actual activities for verification. The primary inputs to RSVP are downlink data products from the Operations Storage Server (OSS) and activity plans generated by the science team. The activity plans are high-level goals for the next day s activities. The downlink data products include imagery, terrain models, and telemetered engineering data on rover activities and state. The Rover Sequence Editor (RoSE) component of RSVP performs activity expansion to command sequences, command creation and editing with setting of command parameters, and viewing and management of rover resources. The HyperDrive component of RSVP performs 2D and 3D visualization of the rover s environment, graphical and animated review of rover-predicted and telemetered state, and creation and editing of command sequences related to mobility and Instrument Deployment Device (IDD) operations. Additionally, RoSE and HyperDrive together evaluate command sequences for potential violations of flight and safety rules. The products of RSVP include command sequences for uplink that are stored in the Distributed Object Manager (DOM) and predicted rover state histories stored in the OSS for comparison and validation of downlinked telemetry. The majority of components comprising RSVP utilize the MER command and activity dictionaries to automatically customize the system for MER activities. Thus, RSVP, being highly data driven, may be tailored to other missions with minimal effort. In addition, RSVP uses a distributed, message-passing architecture to allow multitasking, and collaborative visualization and sequence development by scattered team members.

  15. 2018 Human Exploration Rover Challenge

    NASA Image and Video Library

    2018-04-13

    High school and university students competed in the 2018 Human Exploration Rover Challenge event at the U.S. Space and Rocket Center in Huntsville, Alabama. Students came from across the U.S. as well as several foreign countries such as Brazil, Germany, India, and Mexico. This event, which is normally a 2 day event, was shortened to 1 day in 2018 due to adverse weather conditions.

  16. CE-4 Mission and Future Journey to Lunar

    NASA Astrophysics Data System (ADS)

    Zou, Yongliao; Wang, Qin; Liu, Xiaoqun

    2016-07-01

    Chang'E-4 mission, being undertaken by phase two of China Lunar Exploration Program, represents China's first attempt to explore farside of lunar surface. Its probe includes a lander, a rover and a telecommunication relay which is scheduled to launch in around 2018. The scientific objectives of CE-4 mission will be implemented to investigate the lunar regional geological characteristics of landing and roving area, and also will make the first radio-astronomy measurements from the most radio-quiet region of near-earth space. The rover will opreate for at least 3 months, the lander for half a year, and the relay for no less than 3 years. Its scinetific instruments includes Cameras, infrared imaging spectrometer, Penetrating Radar onboard the rover in which is the same as the paylads on board the CE-3 rover, and a Dust-analyzer, a Temperature-instrument and a Wide Band Low Frequency Digital Radio Astronomical Station will be installed on board the lander. Our scientific goals of the future lunar exploration will aim at the lunar geology, resources and surface environments. A series of exploraion missions such as robotic exploration and non-manned lunar scientific station is proposed in this paper.

  17. Assessment of Spatial Navigation and Docking Performance During Simulated Rover Tasks

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Dean, S. L.; De Dios, Y. E.; Moore, S. T.

    2010-01-01

    INTRODUCTION: Following long-duration exploration transits, pressurized rovers will enhance surface mobility to explore multiple sites across Mars and other planetary bodies. Multiple rovers with docking capabilities are envisioned to expand the range of exploration. However, adaptive changes in sensorimotor and cognitive function may impair the crew s ability to safely navigate and perform docking tasks shortly after transition to the new gravitoinertial environment. The primary goal of this investigation is to quantify post-flight decrements in spatial navigation and docking performance during a rover simulation. METHODS: Eight crewmembers returning from the International Space Station will be tested on a motion simulator during four pre-flight and three post-flight sessions over the first 8 days following landing. The rover simulation consists of a serial presentation of discrete tasks to be completed within a scheduled 10 min block. The tasks are based on navigating around a Martian outpost spread over a 970 sq m terrain. Each task is subdivided into three components to be performed as quickly and accurately as possible: (1) Perspective taking: Subjects use a joystick to indicate direction of target after presentation of a map detailing current orientation and location of the rover with the task to be performed. (2) Navigation: Subjects drive the rover to the desired location while avoiding obstacles. (3) Docking: Fine positioning of the rover is required to dock with another object or align a camera view. Overall operator proficiency will be based on how many tasks the crewmember can complete during the 10 min time block. EXPECTED RESULTS: Functionally relevant testing early post-flight will develop evidence regarding the limitations to early surface operations and what countermeasures are needed. This approach can be easily adapted to a wide variety of simulated vehicle designs to provide sensorimotor assessments for other operational and civilian populations.

  18. KSC-03PD-1601

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Workers attach an overhead crane to the Mars Exploration Rover 1 (MER-1) inside the upper backshell. The backshell will be moved and attached to the lower heat shield. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  19. KSC-03PD-1603

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Workers walk with the suspended backshell/ Mars Exploration Rover 1 (MER-1) as it travels across the floor of the Payload Hazardous Servicing Facility. The backshell will be attached to the lower heat shield. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  20. KSC-03PD-1605

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. In the Payload Hazardous Servicing Facility, workers move the heat shield (foreground) toward the upper backshell/ Mars Exploration Rover 1 (MER-1), in the background. The backshell and heat shield will be mated. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.

  1. KSC-03PD-1587

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. A solid rocket booster arrives at Launch Complex 17-A, Cape Canaveral Air Force Station. It is one of nine that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASAs twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans cant yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  2. Two Years of Chemical Sampling on Meridiani Planum by the Alpha Particle X-Ray Spectrometer Onboard the Mars Exploration Rover Opportunity

    NASA Technical Reports Server (NTRS)

    Bruckner, J.; Gellert, R.; Clark, B.C.; Dreibus, G.; Rieder, R.; Wanke, H.; d'Uston, C.; Economou, T.; Klingelhofer, G.; Lugmair, G.; hide

    2006-01-01

    For over two terrestrial years, the Mars Exploration Rover Opportunity has been exploring the martian surface at Meridiani Planum using the Athena instrument payload [1], including the Alpha Particle X-Ray Spectrometer (APXS). The APXS has a small sensor head that is mounted on the robotic arm of the rover. The chemistry, mineralogy and morphology of selected samples were investigated by the APXS along with the Moessbauer Spectrometer (MB) and the Microscopic Imager (MI). The Rock Abrasion Tool (RAT) provided the possibility to dust and/or abrade rock surfaces down to several millimeters to expose fresh material for analysis. We report here on APXS data gathered along the nearly 6-kilometers long traverse in craters and plains of Meridiani.

  3. Spirit Rover on 'Husband Hill'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Figure 1: Location of Spirit

    Two Earth years ago, NASA's Mars Exploration Rover Spirit touched down in Gusev Crater. The rover marked its first Mars-year (687 Earth days) anniversary in November 2005. Shortly before Spirit's Martian anniversary, the Mars Orbiter Camera on NASA's Mars Global Surveyor acquired an image covering approximately 3 kilometers by 3 kilometers (1.9 miles by 1.9 miles) centered on the rover's location at that time in the 'Columbia Hills.'

    'Husband Hill,' the tallest in the range, is just below the center of the image. The image has a resolution of about 50 centimeters (1.6 feet) per pixel. North is up; illumination is from the left. The location is near 14.8 degrees south latitude, 184.6 degrees west longitude.

    The image was acquired on Nov. 2, 2005. A white box (see Figure 1) indicates the location of an excerpted portion on which the location of Spirit on that date is marked. Dr. Timothy J. Parker of the Mars Exploration Rover team at the NASA's Jet Propulsion Laboratory, Pasadena, Calif., confirmed the location of the rover in the image. The region toward the bottom of the image shows the area where the rover is currently headed. The large dark patch and other similar dark patches are accumulations of windblown sand and granules.

  4. Large Multispectral and Albedo Panoramas Acquired by the Pancam Instruments on the Mars Exploration Rovers Spirit and Opportunity

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Arneson, H. M.; Farrand, W. H.; Goetz, W.; Hayes, A. G.; Herkenhoff, K.; Johnson, M. J.; Johnson, J. R.; Joseph, J.; Kinch, K.

    2005-01-01

    Introduction. The panoramic camera (Pancam) multispectral, stereoscopic imaging systems on the Mars Exploration Rovers Spirit and Opportunity [1] have acquired and downlinked more than 45,000 images (35 Gbits of data) over more than 700 combined sols of operation on Mars as of early January 2005. A large subset of these images were acquired as part of 26 large multispectral and/or broadband "albedo" panoramas (15 on Spirit, 11 on Opportunity) covering large ranges of azimuth (12 spanning 360 ) and designed to characterize major regional color and albedo characteristics of the landing sites and various points along both rover traverses.

  5. What Lies Ahead (left-eye)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is the left-eye version of the 3-D cylindrical-perspective mosaic showing the view south of the martian crater dubbed 'Bonneville.' The image was taken by the navigation camera on the Mars Exploration Rover Spirit. The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.

  6. 'Endurance' Untouched

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This navigation camera mosaic, created from images taken by NASA's Mars Exploration Rover Opportunity on sols 115 and 116 (May 21 and 22, 2004) provides a dramatic view of 'Endurance Crater.' The rover engineering team carefully plotted the safest path into the football field-sized crater, eventually easing the rover down the slopes around sol 130 (June 12, 2004). To the upper left of the crater sits the rover's protective heatshield, which sheltered Opportunity as it passed through the martian atmosphere. The 360-degree view is presented in a cylindrical projection, with geometric and radiometric seam correction.

  7. 'Endurance' Untouched (vertical)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This navigation camera mosaic, created from images taken by NASA's Mars Exploration Rover Opportunity on sols 115 and 116 (May 21 and 22, 2004) provides a dramatic view of 'Endurance Crater.' The rover engineering team carefully plotted the safest path into the football field-sized crater, eventually easing the rover down the slopes around sol 130 (June 12, 2004). To the upper left of the crater sits the rover's protective heatshield, which sheltered Opportunity as it passed through the martian atmosphere. The 360-degree view is presented in a vertical projection, with geometric and radiometric seam correction.

  8. 'Endurance' Untouched (polar)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This navigation camera mosaic, created from images taken by NASA's Mars Exploration Rover Opportunity on sols 115 and 116 (May 21 and 22, 2004) provides a dramatic view of 'Endurance Crater.' The rover engineering team carefully plotted the safest path into the football field-sized crater, eventually easing the rover down the slopes around sol 130 (June 12, 2004). To the upper left of the crater sits the rover's protective heatshield, which sheltered Opportunity as it passed through the martian atmosphere. The 360-degree view is presented in a polar projection, with geometric and radiometric seam correction.

  9. KSC-03pd1231

    NASA Image and Video Library

    2003-04-24

    KENNEDY SPACE CENTER, FLA. - Tom Shain, the MER ATLO logistics manager, holds a computer chip with about 35,000 laser-engraved signatures of visitors to the Mars Exploration Rovers at the Jet Propulsion Laboratory. He and Jim Lloyd, also with the program, will place the chip on the second rover to be launched to Mars (MER-1/MER-B); the first rover already has one. The signatures include those of senators, artists, and John Glenn. The identical Mars rovers are scheduled to launch June 5 and June 25 from Cape Canaveral Air Force Station.

  10. A Sampling of Martian Soils

    NASA Image and Video Library

    2012-12-03

    This collage shows the variety of soils found at landing sites on Mars. The elemental composition of the typical, reddish soils were investigated by NASA Viking, Pathfinder and Mars Exploration Rover missions, and now with the Curiosity rover.

  11. Opportunity Surroundings After 25 Miles on Mars

    NASA Image and Video Library

    2014-08-14

    This July 29, 2014, panorama combines several images from the navigation camera on NASA Mars Exploration Rover Opportunity to show the rover surroundings after surpassing 25 miles 40.23 kilometers of total driving on Mars.

  12. Spirit Robotic Stretch on Sol 2052

    NASA Image and Video Library

    2009-10-19

    NASA Mars Exploration Rover Spirit recorded this forward view of its arm and surroundings; bright soil in the left half of the image is loose, fluffy material churned by the rover left-front wheel as Spirit.

  13. Turning in the Testbed

    NASA Image and Video Library

    2004-01-13

    This image, taken in the JPL In-Situ Instruments Laboratory or Testbed, shows the view from the front hazard avoidance cameras on the Mars Exploration Rover Spirit after the rover has backed up and turned 45 degrees counterclockwise.

  14. MER surface fault protection system

    NASA Technical Reports Server (NTRS)

    Neilson, Tracy

    2005-01-01

    The Mars Exploration Rovers surface fault protection design was influenced by the fact that the solar-powered rovers must recharge their batteries during the day to survive the night. the rovers needed to autonomously maintain thermal stability, initiate safe and reliable communication with orbiting assets or directly to Earth, while maintaining energy balance. This paper will describe the system fault protection design for the surface phase of the mission.

  15. Spirit Switches on Its X-ray Vision

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows the Mars Exploration Rover Spirit probing its first target rock, Adirondack. At the time this picture was snapped, the rover had begun analyzing the rock with the alpha particle X-ray spectrometer located on its robotic arm. This instrument uses alpha particles and X-rays to determine the elemental composition of martian rocks and soil. The image was taken by the rover's hazard-identification camera.

  16. Opportunity Egress Aid Contacts Soil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image from the navigation camera on the Mars Exploration Rover Opportunity shows the rover's egress aid touching the martian soil at Meridiani Planum, Mars. The image was taken after the rear lander petal hyperextended in a manuever to tilt the lander forward. The maneuver pushed the front edge lower, placing the tips of the egress aids in the soil. The rover will drive straight ahead to exit the lander.

  17. After Opportunity's First Drive in Six Weeks

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Mars Exploration Rover Opportunity used its front hazard-identification camera to obtain this image at the end of a drive on the rover's 1,271st sol, or Martian day (Aug. 21, 2007).

    Due to sun-obscuring dust storms limiting the rover's supply of solar energy, Opportunity had not driven since sol 1,232 (July 12, 2007). On sol 1,271, after the sky above Opportunity had been gradually clearing for more than two weeks, the rover rolled 13.38 meters (44 feet). Wheel tracks are visible in front of the rover because the drive ended with a short test of driving backwards.

    Opportunity's turret of four tools at the end of the robotic arm fills the center of the image. Victoria Crater, site of the rover's next science targets, lies ahead.

  18. A Wind-powered Rover for a Low-Cost Venus Mission

    NASA Technical Reports Server (NTRS)

    Benigno, Gina; Hoza, Kathleen; Motiwala, Samira; Landis, Geoffrey A.; Colozza, Anthony J.

    2013-01-01

    Venus, with a surface temperature of 450 C and an atmospheric pressure 90 times higher than that of the Earth, is a difficult target for exploration. However, high-temperature electronics and power systems now being developed make it possible that future missions may be able to operate in the Venus environment. Powering such a rover within the scope of a Discovery class mission will be difficult, but harnessing Venus' surface winds provides a possible way to keep a powered rover small and light. This project scopes out the feasibility of a wind-powered rover for Venus surface missions. Two rover concepts, a land-sailing rover and a wind-turbine-powered rover, were considered. The turbine-powered rover design is selected as being a low-risk and low-cost strategy. Turbine detailed analysis and design shows that the turbine can meet mission requirements across the desired range of wind speeds by utilizing three constant voltage generators at fixed gear ratios.

  19. Robot Sequencing and Visualization Program (RSVP)

    NASA Technical Reports Server (NTRS)

    Cooper, Brian K.; Maxwell,Scott A.; Hartman, Frank R.; Wright, John R.; Yen, Jeng; Toole, Nicholas T.; Gorjian, Zareh; Morrison, Jack C

    2013-01-01

    The Robot Sequencing and Visualization Program (RSVP) is being used in the Mars Science Laboratory (MSL) mission for downlink data visualization and command sequence generation. RSVP reads and writes downlink data products from the operations data server (ODS) and writes uplink data products to the ODS. The primary users of RSVP are members of the Rover Planner team (part of the Integrated Planning and Execution Team (IPE)), who use it to perform traversability/articulation analyses, take activity plan input from the Science and Mission Planning teams, and create a set of rover sequences to be sent to the rover every sol. The primary inputs to RSVP are downlink data products and activity plans in the ODS database. The primary outputs are command sequences to be placed in the ODS for further processing prior to uplink to each rover. RSVP is composed of two main subsystems. The first, called the Robot Sequence Editor (RoSE), understands the MSL activity and command dictionaries and takes care of converting incoming activity level inputs into command sequences. The Rover Planners use the RoSE component of RSVP to put together command sequences and to view and manage command level resources like time, power, temperature, etc. (via a transparent realtime connection to SEQGEN). The second component of RSVP is called HyperDrive, a set of high-fidelity computer graphics displays of the Martian surface in 3D and in stereo. The Rover Planners can explore the environment around the rover, create commands related to motion of all kinds, and see the simulated result of those commands via its underlying tight coupling with flight navigation, motor, and arm software. This software is the evolutionary replacement for the Rover Sequencing and Visualization software used to create command sequences (and visualize the Martian surface) for the Mars Exploration Rover mission.

  20. Centralized Planning for Multiple Exploratory Robots

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Rabideau, Gregg; Chien, Steve; Barrett, Anthony

    2005-01-01

    A computer program automatically generates plans for a group of robotic vehicles (rovers) engaged in geological exploration of terrain. The program rapidly generates multiple command sequences that can be executed simultaneously by the rovers. Starting from a set of high-level goals, the program creates a sequence of commands for each rover while respecting hardware constraints and limitations on resources of each rover and of hardware (e.g., a radio communication terminal) shared by all the rovers. First, a separate model of each rover is loaded into a centralized planning subprogram. The centralized planning software uses the models of the rovers plus an iterative repair algorithm to resolve conflicts posed by demands for resources and by constraints associated with the all the rovers and the shared hardware. During repair, heuristics are used to make planning decisions that will result in solutions that will be better and will be found faster than would otherwise be possible. In particular, techniques from prior solutions of the multiple-traveling- salesmen problem are used as heuristics to generate plans in which the paths taken by the rovers to assigned scientific targets are shorter than they would otherwise be.

  1. Mars rover local navigation and hazard avoidance

    NASA Technical Reports Server (NTRS)

    Wilcox, B. H.; Gennery, D. B.; Mishkin, A. H.

    1989-01-01

    A Mars rover sample return mission has been proposed for the late 1990's. Due to the long speed-of-light delays between earth and Mars, some autonomy on the rover is highly desirable. JPL has been conducting research in two possible modes of rover operation, Computer-Aided Remote Driving and Semiautonomous Navigation. A recently-completed research program used a half-scale testbed vehicle to explore several of the concepts in semiautonomous navigation. A new, full-scale vehicle with all computational and power resources on-board will be used in the coming year to demonstrate relatively fast semiautonomous navigation. The computational and power requirements for Mars rover local navigation and hazard avoidance are discussed.

  2. Mars Rover Local Navigation And Hazard Avoidance

    NASA Astrophysics Data System (ADS)

    Wilcox, B. H.; Gennery, D. B.; Mishkin, A. H.

    1989-03-01

    A Mars rover sample return mission has been proposed for the late 1990's. Due to the long speed-of-light delays between Earth and Mars, some autonomy on the rover is highly desirable. JPL has been conducting research in two possible modes of rover operation, Computer-Aided Remote Driving and Semiautonomous Navigation. A recently-completed research program used a half-scale testbed vehicle to explore several of the concepts in semiautonomous navigation. A new, full-scale vehicle with all computational and power resources on-board will be used in the coming year to demonstrate relatively fast semiautonomous navigation. The computational and power requirements for Mars rover local navigation and hazard avoidance are discussed.

  3. KSC-03PD-1846

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Nine-year-old Sofi Collis proudly presents the names she selected for the Mars Exploration Rovers - - 'Spirit' and 'Opportunity' -- during a press conference. Also participating in the press conference are NASA Administrator Sean O'Keefe (left) and Brad Justus, LEGO Co. senior vice president (right). The names Sofi suggested were selected from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  4. Mars Exploration Rover Spirit End of Mission Report

    NASA Technical Reports Server (NTRS)

    Callas, John L.

    2015-01-01

    The Mars Exploration Rover (MER) Spirit landed in Gusev crater on Mars on January 4, 2004, for a prime mission designed to last three months (90 sols). After more than six years operating on the surface of Mars, the last communication received from Spirit occurred on Sol 2210 (March 22, 2010). Following the loss of signal, the Mars Exploration Rover Project radiated over 1400 commands to Mars in an attempt to elicit a response from the rover. Attempts were made utilizing Deep Space Network X-Band and UHF relay via both Mars Odyssey and the Mars Reconnaissance Orbiter. Search and recovery efforts concluded on July 13, 2011. It is the MER project's assessment that Spirit succumbed to the extreme environmental conditions experienced during its fourth winter on Mars. Focusing on the time period from the end of the third Martian winter through the fourth winter and end of recovery activities, this report describes possible explanations for the loss of the vehicle and the extent of recovery efforts that were performed. It offers lessons learned and provides an overall mission summary.

  5. 2018 Human Exploration Rover Challenge event

    NASA Image and Video Library

    2018-04-17

    High school and university students competed in the 2018 Human Exploration Rover Challenge event at the U.S. Space and Rocket Center in Huntsville, Alabama. Students came from across the U.S. as well as several foreign countries such as Brazil, Germany, India, and Mexico. This event, which is normally a 2 day event, was shortened to 1 day in 2018 due to adverse weather conditions.

  6. Testing the Capture Magnet

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image of a model capture magnet was taken after an experiment in a Mars simulation chamber at the University of Aarhus, Denmark. It has some dust on it, but not as much as that on the Mars Exploration Rover Spirit's capture magnet. The capture and filter magnets on both Mars Exploration Rovers were delivered by the magnetic properties team at the Center for Planetary Science, Copenhagen, Denmark.

  7. Rock with Odd Coating Beside a Young Martian Crater

    NASA Image and Video Library

    2010-03-24

    This image from the panoramic camera on NASA Mars Exploration Rover Opportunity shows a rock called Chocolate Hills, which the rover found and examined at the edge of a young crater called Concepción.

  8. Airbag Trails-2

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This segment of the first color image from the panoramic camera on the Mars Exploration Rover Spirit shows the rover's airbag trails (upper left). These depressions in the soil were made when the airbags were deflated and retracted after landing.

  9. Opportunity Stretches Out 3-D

    NASA Image and Video Library

    2004-02-02

    This is a three-dimensional stereo anaglyph of an image taken by the front hazard-identification camera onboard NASA Mars Exploration Rover Opportunity, showing the rover arm in its extended position. 3D glasses are necessary to view this image.

  10. Opportunity Surroundings on Sol 1687 Stereo

    NASA Image and Video Library

    2009-01-05

    NASA Mars Exploration Rover Opportunity combined images into this stereo, 360-degree view of the rover surroundings on Oct. 22, 2008. Opportunity position was about 300 meters southwest of Victoria. 3D glasses are necessary to view this image.

  11. Endurance All Around 3-D

    NASA Image and Video Library

    2004-07-21

    This 360-degree stereo anaglyph of the terrain surrounding NASA Mars Exploration Rover Opportunity was taken on the rover 171st sol on Mars. Opportunity had driven 11 meters 36 feet into Endurance Crater. 3D glasses are necessary.

  12. Seeing Rust

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The rust color of the Martian landscape is apparent in this low-resolution thumbnail image taken by the panoramic camera on the Mars Exploration Rover Spirit. This image is part of a larger image currently stored onboard the rover in its memory.

  13. Activity Planning for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Bresina, John L.; Jonsson, Ari K.; Morris, Paul H.; Rajan, Kanna

    2004-01-01

    Operating the Mars Exploration Rovers is a challenging, time-pressured task. Each day, the operations team must generate a new plan describing the rover activities for the next day. These plans must abide by resource limitations, safety rules, and temporal constraints. The objective is to achieve as much science as possible, choosing from a set of observation requests that oversubscribe rover resources. In order to accomplish this objective, given the short amount of planning time available, the MAPGEN (Mixed-initiative Activity Plan GENerator) system was made a mission-critical part of the ground operations system. MAPGEN is a mixed-initiative system that employs automated constraint-based planning, scheduling, and temporal reasoning to assist operations staff in generating the daily activity plans. This paper describes the adaptation of constraint-based planning and temporal reasoning to a mixed-initiative setting and the key technical solutions developed for the mission deployment of MAPGEN.

  14. KSC-03PD-1837

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Siberian-born Sofi Collis (second from left), the third grade student winner of the 'Name the Rovers' contest, poses with her adopted American family. The names she proposed -- Spirit and Opportunity -- were announced today in a press conference held by NASA Administrator Sean O'Keefe. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  15. Mars Exploration Rover Heat Shield Recontact Analysis

    NASA Technical Reports Server (NTRS)

    Raiszadeh, Behzad; Desai, Prasun N.; Michelltree, Robert

    2011-01-01

    The twin Mars Exploration Rover missions landed successfully on Mars surface in January of 2004. Both missions used a parachute system to slow the rover s descent rate from supersonic to subsonic speeds. Shortly after parachute deployment, the heat shield, which protected the rover during the hypersonic entry phase of the mission, was jettisoned using push-off springs. Mission designers were concerned about the heat shield recontacting the lander after separation, so a separation analysis was conducted to quantify risks. This analysis was used to choose a proper heat shield ballast mass to ensure successful separation with low probability of recontact. This paper presents the details of such an analysis, its assumptions, and the results. During both landings, the radar was able to lock on to the heat shield, measuring its distance, as it descended away from the lander. This data is presented and is used to validate the heat shield separation/recontact analysis.

  16. KSC-03PD-2060

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The Mobile Service Tower is rolled back at Space Launch Complex 17B, Cape Canaveral Air Force Station, to reveal the Delta II Heavy launch vehicle ready for launch of the Mars Exploration Rover-B (MER-B) mission, with the rover 'Opportunity' aboard. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-B is scheduled to launch on June 28 at one of two available times, 11:56:16 p.m. EDT or 12:37:59 a.m. EDT on June 29.

  17. Exploration of Planetary Terrains with a Legged Robot as a Scout Adjunct to a Rover

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano; Kirchner, Frank; Spenneberg, Dirk; Hanratty, James

    2004-01-01

    The Scorpion robot is an innovative, biologically inspired 8-legged walking robot. It currently runs a novel approach to control which utilizes a central pattern generator (CPG) and local reflex action for each leg. From this starting point we are proposing to both extend the system's individual capabilities and its capacity to function as a "scout", cooperating with a larger wheeled rover. For this purpose we propose to develop a distributed system architecture that extends the system's capabilities both in the direction of high level planning and execution in collaboration with a rover, and in the direction of force-feedback based low level behaviors that will greatly enhance its ability to walk and climb in rough varied terrains. The final test of this improved ability will be a rappelling experiment where the Scorpion explores a steep cliff side in cooperation with a rover that serves as both anchor and planner/executive.

  18. Spirit on 'Husband Hill,' with 2004 Comparison

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Two Earth years ago, NASA's Mars Exploration Rover Spirit touched down in Gusev Crater. The rover marked its first Mars-year (687 Earth days) anniversary in November 2005. On Nov. 2, 2005, shortly before Spirit's Martian anniversary, the Mars Orbiter Camera on NASA's Mars Global Surveyor acquired an image centered on the rover's location in the 'Columbia Hills.' The location of Spirit on that date is circled on the image on the right. On the left, for comparison, is an image from Jan. 10, 2004, when few dreamed that the Spirit would ever reach the hills from its landing site about three kilometers (two miles) away.

    The newer image has a resolution of about 50 centimeters (1.6 feet) per pixel. North is up; illumination is from the left. The location is near 14.8 degrees south latitude, 184.6 degrees west longitude. Dr. Timothy J. Parker of the Mars Exploration Rover team at NASA's Jet Propulsion Laboratory, Pasadena, Calif., confirmed the location of the rover in the 2005 image. The scale bar is 50 meters (164 feet).

  19. ARPS Enabled Titan Rover Concept with Inflatable Wheels

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Schriener, Timothy M.; Shirley, James H.

    2006-01-01

    The Decadal Survey identified Titan as one of the top priority science destinations in the large moons category, while NASA's proposed Design Reference Mission Set ranked a Titan in-situ explorer second, after a recommended Europa Geophysical Observer mission. This paper discusses a Titan rover concept, enabled by a single advanced Radioisotope Power System that could provide about 110We (BOL). The concept targets the smaller Flagship or potentially the New Frontiers mission class. This MSL class rover would traverse on four 1.5 m diameter inflatable wheels during its 3 years mission duration and would use as much design and flight heritage as possible to reduce mission cost. Direct to Earth communication would remove the need for a relay orbiter. Details on the strawman instrument payload, and rover subsystems are given for this science driven mission concept. In addition, power system trades between Advanced RTG, TPV, and Advanced Stirling and Brayton Radioisotope Power Systems (RPS) are outlined. While many possible approaches exist for Titan in-situ exploration, the Titan rover concept presented here could provide a scientifically interesting and programmatically affordable solution.

  20. Software for Displaying Data from Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Powell, Mark; Backers, Paul; Norris, Jeffrey; Vona, Marsette; Steinke, Robert

    2003-01-01

    Science Activity Planner (SAP) DownlinkBrowser is a computer program that assists in the visualization of processed telemetric data [principally images, image cubes (that is, multispectral images), and spectra] that have been transmitted to Earth from exploratory robotic vehicles (rovers) on remote planets. It is undergoing adaptation to (1) the Field Integrated Design and Operations (FIDO) rover (a prototype Mars-exploration rover operated on Earth as a test bed) and (2) the Mars Exploration Rover (MER) mission. This program has evolved from its predecessor - the Web Interface for Telescience (WITS) software - and surpasses WITS in the processing, organization, and plotting of data. SAP DownlinkBrowser creates Extensible Markup Language (XML) files that organize data files, on the basis of content, into a sortable, searchable product database, without the overhead of a relational database. The data-display components of SAP DownlinkBrowser (descriptively named ImageView, 3DView, OrbitalView, PanoramaView, ImageCubeView, and SpectrumView) are designed to run in a memory footprint of at least 256MB on computers that utilize the Windows, Linux, and Solaris operating systems.

  1. Martian Surface Mineralogy from Rovers with Spirit, Opportunity, and Curiosity

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.

    2016-01-01

    Beginning in 2004, NASA has landed three well-instrumented rovers on the equatorial martian surface. The Spirit rover landed in Gusev crater in early January, 2004, and the Opportunity rover landed on the opposite side of Mars at Meridian Planum 21 days later. The Curiosity rover landed in Gale crater to the west of Gusev crater in August, 2012. Both Opportunity and Curiosity are currently operational. The twin rovers Spirit and Opportunity carried Mossbauer spectrometers to determine the oxidation state of iron and its mineralogical composition. The Curiosity rover has an X-ray diffraction instrument for identification and quantification of crystalline materials including clay minerals. Instrument suites on all three rovers are capable of distinguishing primary rock-forming minerals like olivine, pyroxene and magnetite and products of aqueous alteration in including amorphous iron oxides, hematite, goethite, sulfates, and clay minerals. The oxidation state of iron ranges from that typical for unweathered rocks and soils to nearly completely oxidized (weathered) rocks and soils as products of aqueous and acid-sulfate alteration. The in situ rover mineralogy also serves as ground-truth for orbital observations, and orbital mineralogical inferences are used for evaluating and planning rover exploration.

  2. KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted up the outside of the launch tower. Visible on another side is the Delta II rocket that will carry the payload into space. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

    NASA Image and Video Library

    2003-04-30

    KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-A, Cape Canaveral Air Force Station, the second half of the fairing for the Mars Exploration Rover 2 (MER-2/MER-A) is lifted up the outside of the launch tower. Visible on another side is the Delta II rocket that will carry the payload into space. The fairing will be installed around the payload for protection during launch. The MER Mission consists of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. Identical to each other, the rovers will land at different regions of Mars. Launch date for MER-A is scheduled for June 5.

  3. Lunar Daylight Exploration

    NASA Technical Reports Server (NTRS)

    Griffin, Brand Norman

    2010-01-01

    With 1 rover, 2 astronauts and 3 days, the Apollo 17 Mission covered over 30 km, setup 10 scientific experiments and returned 110 kg of samples. This is a lot of science in a short time and the inspiration for a barebones, return-to-the-Moon strategy called Daylight Exploration. The Daylight Exploration approach poses an answer to the question, What could the Apollo crew have done with more time and today s robotics? In contrast to more ambitious and expensive strategies that create outposts then rely on pressurized rovers to drive to the science sites, Daylight Exploration is a low-overhead approach conceived to land near the scientific site, conduct Apollo-like exploration then leave before the sun goes down. A key motivation behind Daylight Exploration is cost reduction, but it does not come at the expense of scientific exploration. As a goal, Daylight Exploration provides access to the top 10 science sites by using the best capabilities of human and robotic exploration. Most science sites are within an equatorial band of 26 degrees latitude and on the Moon, at the equator, the day is 14 Earth days long; even more important, the lunar night is 14 days long. Human missions are constrained to 12 days because the energy storage systems required to operate during the lunar night adds mass, complexity and cost. In addition, short missions are beneficial because they require fewer consumables, do not require an airlock, reduce radiation exposure, minimize the dwell-time for the ascent and orbiting propulsion systems and allow a low-mass, campout accommodations. Key to Daylight Exploration is the use of piloted rovers used as tele-operated science platforms. Rovers are launched before or with the crew, and continue to operate between crew visits analyzing and collecting samples during the lunar daylight

  4. KSC-03pd1234

    NASA Image and Video Library

    2003-04-24

    KENNEDY SPACE CENTER, FLA. - Jim Lloyd, with the Mars Exploration Rover (MER) program, points to the place on MER-1 where he will place a computer chip with about 35,000 laser-engraved signatures of visitors to the rovers at the Jet Propulsion Laboratory. The signatures include those of senators, artists, and John Glenn. The identical Mars rovers are scheduled to launch June 5 and June 25 from Cape Canaveral Air Force Station.

  5. KSC-03pd1233

    NASA Image and Video Library

    2003-04-24

    KENNEDY SPACE CENTER, FLA. - This hand points to the place on the Mars Exploration Rover 1 where a computer chip with about 35,000 laser-engraved signatures of visitors to the Jet Propulsion Laboratory will be placed. The first rover already has one. The signatures include those of senators, artists, and John Glenn. The identical Mars rovers are scheduled to launch June 5 and June 25 from Cape Canaveral Air Force Station.

  6. An Analog Rover Exploration Mission for Education and Outreach

    NASA Astrophysics Data System (ADS)

    Moores, John; Campbell, Charissa L.; Smith, Christina L.; Cooper, Brittney A.

    2017-10-01

    This abstract describes an analog rover exploration mission designed as an outreach program for high school and undergraduate students. This program is used to teach them about basic mission control operations, how to manage a rover as if it were on another planetary body, and employing the rover remotely to complete mission objectives. One iteration of this program has been completed and another is underway. In both trials, participants were shown the different operation processes involved in a real-life mission. Modifications were made to these processes to decrease complexity and better simulate a mission control environment in a short time period (three 20-minute-long mission “days”). In the first run of the program, participants selected a landing site, what instruments would be on the rover - subject to cost, size, and weight limitations - and were randomly assigned one of six different mission operations roles, each with specific responsibilities. For example, a Science Planner/Integrator (SPI) would plan science activities whilst a Rover Engineer (RE) would keep on top of rover constraints. Planning consisted of a series of four meetings to develop and verify the current plan, pre-plan the next day's activities and uplink the activities to the “rover” (a human colleague). Participants were required to attend certain meetings depending upon their assigned role. To conclude the mission, students viewed the site to understand any differences between remote viewing and reality in relation to the rover. Another mission is currently in progress with revisions from the earlier run to improve the experience. This includes broader roles and meetings and pre-selecting the landing site and rover. The new roles are: Mission Lead, Rover Engineer and Science Planner. The SPI role was previously popular so most of the students were placed in this category. The meetings were reduced to three but extended in length. We are also planning to integrate this program into the Ontario Science Center (OSC) to educate and fascinate people of all ages.

  7. Zephyr: A Landsailing Rover for Venus

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Oleson, Steven R.; Grantier, David

    2014-01-01

    With an average temperature of 450C and a corrosive atmosphere at a pressure of 90 bars, the surface of Venus is the most hostile environment of any planetary surface in the solar system. Exploring the surface of Venus would be an exciting goal, since Venus is a planet with significant scientific mysteries, and interesting geology and geophysics. Technology to operate at the environmental conditions of Venus is under development. A rover on the surface of Venus with capability comparable to the rovers that have been sent to Mars would push the limits of technology in high-temperature electronics, robotics, and robust systems. Such a rover would require the ability to traverse the landscape on extremely low power levels. We have analyzed an innovative concept for a planetary rover: a sail-propelled rover to explore the surface of Venus. Such a rover can be implemented with only two moving parts; the sail, and the steering. Although the surface wind speeds are low (under 1 m/s), at Venus atmospheric density even low wind speeds develop significant force. Under funding by the NASA Innovative Advanced Concepts office, a conceptual design for such a rover has been done. Total landed mass of the system is 265 kg, somewhat less than that of the MER rovers, with a 12 square meter rigid sail. The rover folds into a 3.6 meter aeroshell for entry into the Venus atmosphere and subsequent parachute landing on the surface. Conceptual designs for a set of hightemperature scientific instruments and a UHF communication system were done. The mission design lifetime is 50 days, allowing operation during the sunlit portion of one Venus day. Although some technology development is needed to bring the high-temperature electronics to operational readiness, the study showed that such a mobility approach is feasible, and no major difficulties are seen.

  8. Using RSVP for analyzing state and previous activities for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Cooper, Brian K.; Wright, John; Hartman, Frank; Maxwell, Scott; Yen, Jeng

    2004-01-01

    This paper will discuss the tools and methodologies present in the RSVP suite for examining rover state, reviewing previous activities, visually comparing telemetered results to rehearse results, and reveiwing sciene and engineering imagery.

  9. Rotations by Spirit Right-Front Wheel, Sol 2117

    NASA Image and Video Library

    2009-12-21

    This frame taken from a three-frame animation aids evaluation of performance of the right-front wheel on NASA Mars Exploration Rover Spirit during a drive on the rover 2,117th Martian day, or sol Dec. 16, 2009.

  10. Drive Direction Image by Opportunity After Surpassing 20 Miles

    NASA Image and Video Library

    2011-07-19

    NASA Mars Exploration Rover Opportunity used its navigation camera to record this view in the eastward driving direction after completing a drive on July 17, 2011, that took the rover total driving distance on Mars beyond 20 miles.

  11. West Rim of Endeavour Crater on Mars

    NASA Image and Video Library

    2011-08-10

    A portion of the west rim of Endeavour crater sweeps southward in this color view from NASA Mars Exploration Rover Opportunity. The rover first destination on the rim, called Spirit Point in tribute to Opportunity now-inactive twin, Spirit.

  12. Magnified Look at a Meteorite on Mars

    NASA Image and Video Library

    2009-08-06

    NASA Mars Exploration Rover Opportunity used its microscopic imager to get this view of the surface of a rock called Block Island during the 1,963rd Martian day, or sol, of the rover mission on Mars Aug. 1, 2009.

  13. Opportunity Arm and Gagarin Rock, Sol 405

    NASA Image and Video Library

    2011-04-08

    NASA Mars Exploration Rover Opportunity used its rock abrasion tool on a rock informally named Gagarin, leaving a circular mark. At the end of the rover arm, the tool turret is positioned with the rock abrasion tool pointing upward.

  14. Opportunity Surroundings After Sol 2363 Drive

    NASA Image and Video Library

    2010-09-29

    This mosaic of images from the navigation camera on NASA Mars Exploration Rover Opportunity shows surroundings of the rover location following a drive on Sept. 16, 2010. The terrain includes light-toned bedrock and darker ripples of wind-blown sand.

  15. Opportunity Beside a Small, Young Crater

    NASA Image and Video Library

    2011-06-02

    NASA Mars Exploration Rover Opportunity captured this view of a wee crater, informally named Skylab, along the rover route. Based on the estimated age of the area sand ripples, the crater was likely formed within the past 100,000 years.

  16. Skirting an Obstacle, Opportunity Sol 1867

    NASA Image and Video Library

    2009-07-15

    This view from the navigation camera on NASA Mars Exploration Rover Opportunity shows tracks left by backing out of a wind-formed ripple after the rover wheels had started to dig too deeply into the dust and sand of the ripple.

  17. Roll-Off Test at JPL

    NASA Image and Video Library

    2004-01-11

    This still image illustrates what the Mars Exploration Rover Spirit will look like as it rolls off the northeastern side of the lander on Mars. The image was taken from footage of rover testing at JPL In-Situ Instruments Laboratory, or Testbed.

  18. Rover Slip Validation and Prediction Algorithm

    NASA Technical Reports Server (NTRS)

    Yen, Jeng

    2009-01-01

    A physical-based simulation has been developed for the Mars Exploration Rover (MER) mission that applies a slope-induced wheel-slippage to the rover location estimator. Using the digital elevation map from the stereo images, the computational method resolves the quasi-dynamic equations of motion that incorporate the actual wheel-terrain speed to estimate the gross velocity of the vehicle. Based on the empirical slippage measured by the Visual Odometry software of the rover, this algorithm computes two factors for the slip model by minimizing the distance of the predicted and actual vehicle location, and then uses the model to predict the next drives. This technique, which has been deployed to operate the MER rovers in the extended mission periods, can accurately predict the rover position and attitude, mitigating the risk and uncertainties in the path planning on high-slope areas.

  19. Spirit Wiggles into Position

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA's Mars Exploration Rover Spirit completed a difficult, rocky ascent en route to reaching a captivating rock outcrop nicknamed 'Hillary' at the summit of 'Husband Hill.' At the end of the climb the robotic geologist was tilted almost 30 degrees. To get the rover on more solid footing for deploying the instrument arm, rover drivers told Spirit to wiggle its wheels one at a time. This animation shows Spirit's position before and after completing the wheel wiggle, during which the rover slid approximately 1 centimeter (0.4 inch) downhill. Rover drivers decided this position was too hazardous for deploying the instrument arm and subsequently directed Spirit to a more stable position before conducting analyses with instruments on the rover's arm.

    Spirit took these images with its front hazard-avoidance camera on martian day, or sol, 625 (Oct. 6, 2005).

  20. Windows to Meridiani's Water-Soaked Past

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity shows the two holes that allowed scientists to peer into Meridiani Planum's wet past. The rover drilled the holes into rocks in the region dubbed 'El Capitan' with its rock abrasion tool. By analyzing the freshly exposed rock with the rover's suite of scientific instruments, scientists gathered evidence that this part of Mars may have once been drenched in water. The lower hole, located on a target called 'McKittrick,' was made on the 30th martian day, or sol, of Opportunity's journey. The upper hole, located on a target called 'Guadalupe' was made on the 34th sol of the rover's mission. This image was taken on the 35th martian day, or sol, by the rover's hazard-avoidance camera. The rock abrasion tool and scientific instruments are located on the rover's robotic arm.

  1. Ambler - An autonomous rover for planetary exploration

    NASA Technical Reports Server (NTRS)

    Bares, John; Hebert, Martial; Kanade, Takeo; Krotkov, Eric; Mitchell, Tom

    1989-01-01

    The authors are building a prototype legged rover, called the Ambler (loosely an acronym for autonomous mobile exploration robot) and testing it on full-scale, rugged terrain of the sort that might be encountered on the Martian surface. They present an overview of their research program, focusing on locomotion, perception, planning, and control. They summarize some of the most important goals and requirements of a rover design and describe how locomotion, perception, and planning systems can satisfy these requirements. Since the program is relatively young (one year old at the time of writing) they identify issues and approaches and describe work in progress rather than report results. It is expected that many of the technologies developed will be applicable to other planetary bodies and to terrestrial concerns such as hazardous waste assessment and remediation, ocean floor exploration, and mining.

  2. A multitasking behavioral control system for the Robotic All Terrain Lunar Exploration Rover (RATLER)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klarer, P.

    1994-03-01

    The design of a multitasking behavioral control system for the Robotic All Terrain Lunar Exploration Rover (RATLER) is described. The control system design attempts to ameliorate some of the problems noted by some researchers when implementing subsumption or behavioral control systems, particularly with regard to multiple processor systems and real-time operations. The architecture is designed to allow both synchronous and asynchronous operations between various behavior modules by taking advantage of intertask communications channels, and by implementing each behavior module and each interconnection node as a stand-alone task. The potential advantages of this approach over those previously described in the fieldmore » are discussed. An implementation of the architecture is planned for a prototype Robotic All Terrain Lunar Exploration Rover (RATLER) currently under development, and is briefly described.« less

  3. Dynamic Dust Accumulation and Dust Removal Observed on the Mars Exploration Rover Magnets

    NASA Technical Reports Server (NTRS)

    Bertelsen, P.; Bell, J. F., III; Goetz, W.; Gunnlaugsson, H. P.; Herkenhoff, K. E.; Hviid, S. F.; Johnson, J. R.; Kinch, K. M.; Knudsen, J. M.; Madsen, M. B.

    2005-01-01

    The Mars Exploration Rovers each carry a set of Magnetic Properties Experiments designed to investigate the properties of the airborne dust in the Martian atmosphere. It is a preferred interpretation of previous experiments that the airborne dust in the Martian atmosphere is primarily composed by composite silicate particles containing one or more highly magnetic minerals as a minor constituent. The ultimate goal of the magnetic properties experiments on the Mars Exploration Rover mission is to provide some information/ constraints on whether the dust is formed by volcanic, meteoritic, aqueous, or other processes. The first problem is to identify the magnetic mineral(s) in the airborne dust on Mars. While the overall results of the magnetic properties experiments are presented in, this abstract will focus on dust deposition and dust removal on some of the magnets.

  4. Students, Teachers, and Scientists Partner to Explore Mars

    NASA Astrophysics Data System (ADS)

    Bowman, C. D.; Bebak, M.; Curtis, K.; Daniel, C.; Grigsby, B.; Herman, T.; Haynes, E.; Lineberger, D. H.; Pieruccini, S.; Ransom, S.; Reedy, K.; Spencer, C.; Steege, A.

    2003-12-01

    The Mars Exploration Rovers began their journey to the red planet in the summer of 2003 and, in early 2004, will begin an unprecedented level of scientific exploration on Mars, attracting the attention of scientists and the public worldwide. In an effort to engage students and teachers in this exciting endeavor, NASA's Mars Public Engagement Office, partnering with the Athena Science Investigation, coordinates a student-scientist research partnership program called the Athena Student Interns Program. The Athena Student Interns Program \\(ASIP\\) began in early 1999 as the LAPIS program, a pilot hands-on educational effort associated with the FIDO prototype Mars rover field tests \\(Arvidson, 2000\\). In ASIP, small groups of students and teachers selected through a national application process are paired with mentors from the mission's Athena Science Team to carry out an aspect of the mission. To prepare for actual operations during the landed rover mission, the students and teachers participate in one of the Science Team's Operational Readiness Tests \\(ORTs\\) at JPL using a prototype rover in a simulated Mars environment \\(Crisp, et al., in press. See also http://mars.jpl.nasa.gov/mer/fido/\\). Once the rovers have landed, each ASIP group will spend one week at JPL in mission operations, working as part of their mentor's own team to help manage and interpret data coming from Mars. To reach other teachers and students, each group gives school and community presentations, contributes to publications such as web articles and conference abstracts, and participates in NASA webcasts and webchats. Partnering with other groups and organizations, such as NASA's Solar System Ambassadors and the Housing and Urban Development Neighborhood Networks helps reach an even broader audience. ASIP is evaluated through the use of empowerment evaluation, a technique that actively involves participants in program assessment \\(Fetterman and Bowman, 2002\\). With the knowledge they gain through the ASIP program and their participation in the empowerment evaluation, ASIP members will help refine the current program and provide a model for student-scientist research partnerships associated with future space missions to Mars and beyond. Arvidson, R.E., et al. \\(2000\\) Students participate in Mars Sample Return Rover field tests. Eos, 81(11). Crisp, J.A., et al. \\(in press\\) The Mars Exploration Rover Mission. J. Geophys. Research-Planets. Fetterman, D. and C.D. Bowman. \\(2002\\) Experiential Education and Empowerment Evaluation: Mars Rover Educational Program Case Example. J. Experiential Education, 25(2).

  5. True Colors Shining Through

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image mosaic illustrates how scientists use the color calibration targets (upper left) located on both Mars Exploration Rovers to fine-tune the rovers' sense of color. In the center, spectra, or light signatures, acquired in the laboratory of the colored chips on the targets are shown as lines. Actual data from Mars Exploration Rover Spirit's panoramic camera is mapped on top of these lines as dots. The plot demonstrates that the observed colors of Mars match the colors of the chips, and thus approximate the red planet's true colors. This finding is further corroborated by the picture taken on Mars of the calibration target, which shows the colored chips as they would appear on Earth.

  6. Opportunity's Travels During its First 205 Martian Days

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This map shows the traverse of NASA's Mars Exploration Rover Opportunity through the rover's 205th martian day, or sol (Aug. 21, 2004). The background image is from the rover's descent imaging camera. Images inset along the route are from Opportunity's navigation camera. Opportunity began its exploration inside 'Eagle' crater near the left edge of the map. Following completion of its study of the outcrop there, it traversed eastward to a small crater ('Fram' crater) before driving southeastward to the rim of 'Endurance' crater. After a survey partly around the south rim of Endurance crater, Opportunity drove inside the southwest rim of Endurance crater and began a systematic study of outcrops exposed on the crater's inner slope.

  7. Spatial Coverage Planning for a Planetary Rover

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel M.; Estlin, Tara; Chouinard, Caroline

    2008-01-01

    We are developing onboard planning and execution technologies to support the exploration and characterization of geological features by autonomous rovers. In order to generate high quality mission plans, an autonomous rover must reason about the relative importance of the observations it can perform. In this paper we look at the scientific criteria of selecting observations that improve the quality of the area covered by samples. Our approach makes use of a priori information, if available, and allows scientists to mark sub-regions of the area with relative priorities for exploration. We use an efficient algorithm for prioritizing observations based on spatial coverage that allows the system to update observation rankings as new information is gained during execution.

  8. Mixed-Initiative Activity Planning for Mars Rovers

    NASA Technical Reports Server (NTRS)

    Bresina, John; Jonsson, Ari; Morris, Paul; Rajan, Kanna

    2005-01-01

    One of the ground tools used to operate the Mars Exploration Rovers is a mixed-initiative planning system called MAPGEN. The role of the system is to assist operators building daily plans for each of the rovers, maximizing science return, while maintaining rover safety and abiding by science and engineering constraints. In this paper, we describe the MAPGEN system, focusing on the mixed-initiative planning aspect. We note important challenges, both in terms of human interaction and in terms of automated reasoning requirements. We then describe the approaches taken in MAPGEN, focusing on the novel methods developed by our team.

  9. 'El Capitan's' Scientific Gems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This mosaic of images taken by the panoramic camera onboard the Mars Exploration Rover Opportunity shows the rock region dubbed 'El Capitan,' which lies within the larger outcrop near the rover's landing site. 'El Capitan' is being studied in great detail using the scientific instruments on the rover's arm; images from the panoramic camera help scientists choose the locations for this compositional work. The millimeter-scale detail of the lamination covering these rocks can be seen. The face of the rock to the right of the mosaic may be a future target for grinding with the rover's rock abrasion tool.

  10. Assessment of Proficiency During Simulated Rover Operations Following Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Dean, S. L.; De Dios, Y. E.; MacDougall, H. G.; Moore, S. T.

    2011-01-01

    Following long-duration space travel, pressurized rovers will enhance crew mobility to explore Mars and other planetary surfaces. Adaptive changes in sensorimotor function may limit the crew s proficiency when performing some rover operations shortly after transition to the new gravitoinertial environment. The primary goal of this investigation is to quantify postflight decrements in operational proficiency in a motion-based rover simulation after International Space Station (ISS) expeditions. Given that postflight performance will also be influenced by the level of preflight proficiency attained, a ground-based normative study was conducted to characterize the acquisition of skills over multiple sessions.

  11. Choosing Mars-Time: Analysis of the Mars Exploration Rover Experience

    NASA Technical Reports Server (NTRS)

    Bass, Deborah S.; Wales,Roxana C.; Shalin, Valerie L.

    2004-01-01

    This paper focuses on the Mars Exploration Rover (MER) mission decision to work on Mars Time and the implications of that decision on the tactical surface operations process as personnel planned activities and created a new command load for work on each Martian sol. The paper also looks at tools that supported the complexities of Mars Time work, and makes some comparisons between Earth and Mars time scheduling.

  12. An Astronaut Assistant Rover for Martian Surface Exploration

    NASA Astrophysics Data System (ADS)

    1999-01-01

    Lunar exploration, recent field tests, and even on-orbit operations suggest the need for a robotic assistant for an astronaut during extravehicular activity (EVA) tasks. The focus of this paper is the design of a 300-kg, 2 cubic meter, semi-autonomous robotic rover to assist astronauts during Mars surface exploration. General uses of this rover include remote teleoperated control, local EVA astronaut control, and autonomous control. Rover size, speed, sample capacity, scientific payload and dexterous fidelity were based on known Martian environmental parameters,- established National Aeronautics and Space Administration (NASA) standards, the NASA Mars Exploration Reference Mission, and lessons learned from lunar and on-orbit sorties. An assumed protocol of a geological, two astronaut EVA performed during daylight hours with a maximum duration of tour hour dictated the following design requirements: (1) autonomously follow the EVA team over astronaut traversable Martian terrain for four hours; (2) retrieve, catalog, and carry 12 kg of samples; (3) carry tools and minimal in-field scientific equipment; (4) provide contingency life support; (5) compile and store a detailed map of surrounding terrain and estimate current position with respect to base camp; (6) provide supplemental communications systems; and (7) carry and support the use of a 7 degree - of- freedom dexterous manipulator.

  13. Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets

    USGS Publications Warehouse

    Kinch, K.M.; Sohl-Dickstein, J.; Bell, J.F.; Johnson, J. R.; Goetz, W.; Landis, G.A.

    2007-01-01

    The Panoramic Camera (Pancam) on the Mars Exploration Rover mission has acquired in excess of 20,000 images of the Pancam calibration targets on the rovers. Analysis of this data set allows estimates of the rate of deposition and removal of aeolian dust on both rovers. During the first 150-170 sols there was gradual dust accumulation on the rovers but no evidence for dust removal. After that time there is ample evidence for both dust removal and dust deposition on both rover decks. We analyze data from early in both rover missions using a diffusive reflectance mixing model. Assuming a dust settling rate proportional to the atmospheric optical depth, we derive spectra of optically thick layers of airfall dust that are consistent with spectra from dusty regions on the Martian surface. Airfall dust reflectance at the Opportunity site appears greater than at the Spirit site, consistent with other observations. We estimate the optical depth of dust deposited on the Spirit calibration target by sol 150 to be 0.44 ?? 0.13. For Opportunity the value was 0.39 ?? 0.12. Assuming 80% pore space, we estimate that the dust layer grew at a rate of one grain diameter per ???100 sols on the Spirit calibration target. On Opportunity the rate was one grain diameter per ???125 sols. These numbers are consistent with dust deposition rates observed by Mars Pathfinder taking into account the lower atmospheric dust optical depth during the Mars Pathfinder mission. Copyright 2007 by the American Geophysical Union.

  14. Rock with Odd Coating Beside a Young Martian Crater, False Color

    NASA Image and Video Library

    2010-03-24

    This false color image from the panoramic camera on NASA Mars Exploration Rover Opportunity shows a rock called Chocolate Hills, which the rover found and examined at the edge of a young crater called Concepción.

  15. Coating on Rock Beside a Young Martian Crater

    NASA Image and Video Library

    2010-03-24

    This image from the microscopic imager on NASA Mars Exploration Rover Opportunity shows details of the coating on a rock called Chocolate Hills, which the rover found and examined at the edge of a young crater called Concepción.

  16. First 3-D Panorama of Spirit Landing Site

    NASA Image and Video Library

    2004-01-05

    This sprawling look at the martian landscape surrounding the Mars Exploration Rover Spirit is the first 3-D stereo image from the rover navigation camera. Sleepy Hollow can be seen to center left of the image. 3D glasses are necessary.

  17. Streaks on Opportunity Solar Panel After Uphill Drive

    NASA Image and Video Library

    2016-03-31

    This image from the navigation camera on the mast of NASA Mars Exploration Rover Opportunity shows streaks of dust or sand on the vehicle rear solar panel after a series of drives during which the rover was pointed steeply uphill.

  18. Autonomous Hazard Checks Leave Patterned Rover Tracks on Mars Stereo

    NASA Image and Video Library

    2011-05-18

    A dance-step pattern is visible in the wheel tracks near the left edge of this scene recorded by NASA Mars Exploration Rover Opportunity on Mars on April 1, 2011. 3D glasses are necessary to view this image.

  19. Outcrop on Murray Ridge Section of Martian Crater Rim False Color

    NASA Image and Video Library

    2014-01-03

    This false color image from NASA Mars Exploration Rover Opportunity is of the outcrop on the Murray Ridge portion of the rim of Endeavour Crater as the rover approached the 10th anniversary of its landing on Mars.

  20. Opportunity at the Wall 3-D

    NASA Image and Video Library

    2004-11-23

    NASA Mars Exploration Rover Opportunity reached the base of Burns Cliff, a portion of the inner wall of Endurance Crater in this anaglyph from the rover 285th martian day Nov. 11, 2004. 3D glasses are necessary to view this image.

  1. Improvement in Visual Target Tracking for a Mobile Robot

    NASA Technical Reports Server (NTRS)

    Kim, Won; Ansar, Adnan; Madison, Richard

    2006-01-01

    In an improvement of the visual-target-tracking software used aboard a mobile robot (rover) of the type used to explore the Martian surface, an affine-matching algorithm has been replaced by a combination of a normalized- cross-correlation (NCC) algorithm and a template-image-magnification algorithm. Although neither NCC nor template-image magnification is new, the use of both of them to increase the degree of reliability with which features can be matched is new. In operation, a template image of a target is obtained from a previous rover position, then the magnification of the template image is based on the estimated change in the target distance from the previous rover position to the current rover position (see figure). For this purpose, the target distance at the previous rover position is determined by stereoscopy, while the target distance at the current rover position is calculated from an estimate of the current pose of the rover. The template image is then magnified by an amount corresponding to the estimated target distance to obtain a best template image to match with the image acquired at the current rover position.

  2. Design of a wheeled articulating land rover

    NASA Technical Reports Server (NTRS)

    Stauffer, Larry; Dilorenzo, Mathew; Yandle, Barbara

    1994-01-01

    The WALRUS is a wheeled articulating land rover that will provide Ames Research Center with a reliable, autonomous vehicle for demonstrating and evaluating advanced technologies. The vehicle is one component of the Ames Research Center's on-going Human Exploration Demonstration Project. Ames Research Center requested a system capable of traversing a broad spectrum of surface types and obstacles. In addition, this vehicle must have an autonomous navigation and control system on board and its own source of power. The resulting design is a rover that articulates in two planes of motion to allow for increased mobility and stability. The rover is driven by six conical shaped aluminum wheels, each with an independent, internally coupled motor. Mounted on the rover are two housings and a removable remote control system. In the housings, the motor controller board, tilt sensor, navigation circuitry, and QED board are mounted. Finally, the rover's motors and electronics are powered by thirty C-cell rechargeable batteries, which are located in the rover wheels and recharged by a specially designed battery charger.

  3. KSC-03pd0536

    NASA Image and Video Library

    2003-02-24

    KENNEDY SPACE CENTER, FLA. -- The cruise stage, aeroshell and lander for the Mars Exploration Rover-1 mission and the MER-2 rover arrive at KSC. The same flight hardware for the MER-2 rover arrived Jan. 27; however, the MER-2 rover is scheduled to arrive at KSC in March. While at KSC, each of the two rovers, the aeroshells and the landers will undergo a full mission simulation. All of these flight elements will then be integrated together. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers will be identical to each other, but will land at different regions of Mars. Launch of the MER-1 is scheduled for May 30. MER-2 will follow June 25.

  4. Autonomous Onboard Science Image Analysis for Future Mars Rover Missions

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Morris, R. L.; Ruzon, M. A.; Roush, T. L.

    1999-01-01

    To explore high priority landing sites and to prepare for eventual human exploration, future Mars missions will involve rovers capable of traversing tens of kilometers. However, the current process by which scientists interact with a rover does not scale to such distances. Specifically, numerous command cycles are required to complete even simple tasks, such as, pointing the spectrometer at a variety of nearby rocks. In addition, the time required by scientists to interpret image data before new commands can be given and the limited amount of data that can be downlinked during a given command cycle constrain rover mobility and achievement of science goals. Experience with rover tests on Earth supports these concerns. As a result, traverses to science sites as identified in orbital images would require numerous science command cycles over a period of many weeks, months or even years, perhaps exceeding rover design life and other constraints. Autonomous onboard science analysis can address these problems in two ways. First, it will allow the rover to transmit only "interesting" images, defined as those likely to have higher science content. Second, the rover will be able to anticipate future commands. For example, a rover might autonomously acquire and return spectra of "interesting" rocks along with a high resolution image of those rocks in addition to returning the context images in which they were detected. Such approaches, coupled with appropriate navigational software, help to address both the data volume and command cycle bottlenecks that limit both rover mobility and science yield. We are developing fast, autonomous algorithms to enable such intelligent on-board decision making by spacecraft. Autonomous algorithms developed to date have the ability to identify rocks and layers in a scene, locate the horizon, and compress multi-spectral image data. Output from these algorithms could be used to autonomously obtain rock spectra, determine which images should be transmitted to the ground, or to aid in image compression. We will discuss these and other algorithms and demonstrate their performance during a recent rover field test.

  5. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the second Mars Exploration Rover, Opportunity, is poised for launch after rollback of the Mobile Service Tower. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.

    NASA Image and Video Library

    2003-07-07

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the second Mars Exploration Rover, Opportunity, is poised for launch after rollback of the Mobile Service Tower. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.

  6. Opportunity Landing Spot Panorama (3-D Model)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The rocky outcrop traversed by the Mars Exploration Rover Opportunity is visible in this three-dimensional model of the rover's landing site. Opportunity has acquired close-up images along the way, and scientists are using the rover's instruments to closely examine portions of interest. The white fragments that look crumpled near the center of the image are portions of the airbags. Distant scenery is displayed on a spherical backdrop or 'billboard' for context. Artifacts near the top rim of the crater are a result of the transition between the three-dimensional model and the billboard. Portions of the terrain model lacking sufficient data appear as blank spaces or gaps, colored reddish-brown for better viewing. This image was generated using special software from NASA's Ames Research Center and a mosaic of images taken by the rover's panoramic camera.

    [figure removed for brevity, see original site] Click on image for larger view

    The rocky outcrop traversed by the Mars Exploration Rover Opportunity is visible in this zoomed-in portion of a three-dimensional model of the rover's landing site. Opportunity has acquired close-up images along the way, and scientists are using the rover's instruments to closely examine portions of interest. The white fragments that look crumpled near the center of the image are portions of the airbags. Distant scenery is displayed on a spherical backdrop or 'billboard' for context. Artifacts near the top rim of the crater are a result of the transition between the three-dimensional model and the billboard. Portions of the terrain model lacking sufficient data appear as blank spaces or gaps, colored reddish-brown for better viewing. This image was generated using special software from NASA's Ames Research Center and a mosaic of images taken by the rover's panoramic camera.

  7. KSC-03PD-2086

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover 'Opportunity' for the second Mars Exploration Rover mission is poised for launch after rollback of the Mobile Service Tower. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rovers prime mission is planned to last three months on Mars.

  8. KSC-03PD-2091

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover 'Opportunity' for the second Mars Exploration Rover mission launches at 11:18:15 p.m. EDT. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rovers prime mission is planned to last three months on Mars.

  9. Delta II Heavy launch of "Opportunity" MER-B Rover

    NASA Image and Video Library

    2003-07-07

    On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover "Opportunity" for the second Mars Exploration Rover mission launches at 11:18:15 p.m. EDT. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.

  10. KSC-03PD-2090

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover 'Opportunity' for the second Mars Exploration Rover mission launches at 11:18:15 p.m. EDT. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rovers prime mission is planned to last three months on Mars.

  11. Home and Back Again

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Mars Exploration Rover Opportunity finished observations of the prominent rock outcrop it has been studying during its 51 martian days, or sols, on Mars, and is currently on the hunt for new discoveries. This image from the rover's navigation camera atop its mast features Opportunity's lander--its temporary home for the six-month cruise to Mars. The rover's soil survey traverse plan involves arcing around its landing site, called the Challenger Memorial Station, and over the trench it made on sol 23. In this image, Opportunity is situated about 6.2 meters (about 20.3 feet) from the lander. Rover tracks zig-zag along the surface. Bounce marks and airbag retraction marks are visible around the lander. The calibration target or sundial, which both rover panoramic cameras use to verify the true colors and brightness of the red planet, is visible on the back end of the rover.

  12. At Base of 'Burns Cliff'

    NASA Image and Video Library

    2004-11-11

    NASA's Mars Exploration Rover Opportunity captured this view from the base of "Burns Cliff" during the rover's 280th martian day (Nov. 6, 2004). This cliff in the inner wall of "Endurance Crater" displays multiple layers of bedrock for the rover to examine with its panoramic camera and miniature thermal emission spectrometer. The rover team has decided that the farthest Opportunity can safely advance along the base of the cliff is close to the squarish white rock near the center of this image. After examining the site for a few days from that position, the the rover will turn around and head out of the crater. The view is a mosaic of frames taken by Opportunity's navigation camera. The rover was on ground with a slope of about 30 degrees when the pictures were taken, and the view is presented here in a way that corrects for that tilt of the camera. http://photojournal.jpl.nasa.gov/catalog/PIA07039

  13. Defining Long-Duration Traverses of Lunar Volcanic Complexes with LROC NAC Images

    NASA Technical Reports Server (NTRS)

    Stopar, J. D.; Lawrence, S. J.; Joliff, B. L.; Speyerer, E. J.; Robinson, M. S.

    2016-01-01

    A long-duration lunar rover [e.g., 1] would be ideal for investigating large volcanic complexes like the Marius Hills (MH) (approximately 300 x 330 km), where widely spaced sampling points are needed to explore the full geologic and compositional variability of the region. Over these distances, a rover would encounter varied surface morphologies (ranging from impact craters to rugged lava shields), each of which need to be considered during the rover design phase. Previous rovers including Apollo, Lunokhod, and most recently Yutu, successfully employed pre-mission orbital data for planning (at scales significantly coarser than that of the surface assets). LROC was specifically designed to provide mission-planning observations at scales useful for accurate rover traverse planning (crewed and robotic) [2]. After-the-fact analyses of the planning data can help improve predictions of future rover performance [e.g., 3-5].

  14. Off-Earth Driving Champs in Miles

    NASA Image and Video Library

    2011-12-07

    The total distance driven on Mars by NASA Mars Exploration Rover, 21.35 miles by early December 2011, is approaching the record total for off-Earth driving, held by the robotic Lunokhod 2 rover operated on Earth moon by the Soviet Union in 1973.

  15. Student Participation in Mars Sample Return Rover Field Tests, Silver Lake, California

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.; Arvidson, R. E.; Bowman, J. D.; Dunham, C. D.; Backes, P.; Baumgartner, E. T.; Bell, J.; Dworetzky, S. C.; Klug, S.; Peck, N.

    2000-01-01

    An integrated team of students and teachers from four high schools across the country developed and implemented their own mission of exploration and discovery using the Mars Sample Return prototype rover, FIDO, at Silver Lake in the Mojave Desert.

  16. A New Vehicle for Planetary Surface Exploration: The Mars Tumbleweed

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey

    2005-01-01

    The surface of Mars is currently being explored with a combination of orbiting spacecraft, stationary landers and wheeled rovers. However, only a small portion of the Martian surface has undergone in-situ examination. Landing sites must be chosen to insure the safety of the vehicles (and human explorers) and provide the greatest opportunity for mission success. While wheeled rovers provide the ability to move beyond the landing sites, they are also limited in their ability to traverse rough terrain; therefore, many scientifically interesting sites are inaccessible by current vehicles. In order to access these sites, a capability is needed that can transport scientific instruments across varied Martian terrain. A new "rover" concept for exploring the Martian surface, known as the Mars Tumbleweed, will derive mobility through use of the surface winds on Mars, much like the Tumbleweed plant does here on Earth. Using the winds on Mars, a Tumbleweed rover could conceivably travel great distances and cover broad areas of the planetary surface. Tumbleweed vehicles would be designed to withstand repeated bouncing and rolling on the rock covered Martian surface and may be durable enough to explore areas on Mars such as gullies and canyons that are currently inaccessible by conventional rovers. Achieving Mars wind-driven mobility; however, is not a minor task. The density of the atmosphere on Mars is approximately 60-80 times less than that on Earth and wind speeds are typically around 2-5 m/s during the day, with periodic winds of 10 m/s to 20 m/s (in excess of 25 m/s during seasonal dust storms). However, because of the Martian atmosphere#s low density, even the strongest winds on Mars equate to only a gentle breeze on Earth. Tumbleweed rovers therefore need to be relatively large (4-6 m in diameter), very lightweight (10-20 kg), and equipped with lightweight, low-power instruments. This paper provides an overview of the Tumbleweed concept, presents several notional design concepts, mission scenarios, and highlights recent tests and analyses of Tumbleweed prototypes.

  17. Use of Geochemistry Data Collected by the Mars Exploration Rover Spirit in Gusev Crater to Teach Geomorphic Zonation through Principal Components Analysis

    ERIC Educational Resources Information Center

    Rodrigue, Christine M.

    2011-01-01

    This paper presents a laboratory exercise used to teach principal components analysis (PCA) as a means of surface zonation. The lab was built around abundance data for 16 oxides and elements collected by the Mars Exploration Rover Spirit in Gusev Crater between Sol 14 and Sol 470. Students used PCA to reduce 15 of these into 3 components, which,…

  18. Evaluation of Human vs. Teleoperated Robotic Performance in Field Geology Tasks at a Mars Analog Site

    NASA Technical Reports Server (NTRS)

    Glass, B.; Briggs, G.

    2003-01-01

    Exploration mission designers and planners have costing models used to assess the affordability of given missions - but very little data exists on the relative science return produced by different ways of exploring a given region. Doing cost-benefit analyses for future missions requires a way to compare the relative field science productivity of spacesuited humans vs. virtual presence/teleoperation from a nearby habitat or orbital station, vs. traditional terrestrial-controlled rover operations. The goal of this study was to define science-return metrics for comparing human and robotic fieldwork, and then obtain quantifiable science-return performance comparisons between teleoperated rovers and spacesuited humans. Test runs with a simulated 2015-class rover and with spacesuited geologists were conducted at Haughton Crater in the Canadian Arctic in July 2002. Early results imply that humans will be 1-2 orders of magnitude more productive per unit time in exploration than future terrestrially-controlled robots.

  19. Fe-Bearing Phases Identified by the Moessbauer Spectrometers on the Mars Exploration Rovers: An Overview

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Klingelhoefer, G.; Rodionov, D.; Yen, A.; Gellert, R.

    2006-01-01

    The twin Mars Exploration Rovers Spirit and Opportunity have explored the martian surface at Gusev Crater (GC) and Meridiani Planum (MP), respectively, for about two Earth years. The Moessbauer (MB) spectrometers on both rovers have analyzed an aggregate of 200 surface targets and have returned to Earth information on the oxidation state of iron, the mineralogical composition of Febearing phases, and the distribution of Fe among oxidation states and phases at the two landing sites [1-7]. To date, 15 component subspectra (10 doublets and 5 sextets) have been identified and most have been assigned to mineralogical compositions. Two subspectra are assigned to phases (jarosite and goethite) that are marker minerals for aqueous processes because they contain hydroxide anion in their structures. In this paper, we give an overview of the Febearing phases identified and their distributions at Gusev crater and Meridiani Planum.

  20. Fe-Bearing Phases Indentified by the Moessbauer Spectrometers on the Mars Exploration Rovers: An Overview

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Klingelhoefer, G.; Ming, D. W.; Schroeder, C.; Rodionov, D.; Yen, A.; Gellert, R.

    2006-01-01

    The twin Mars Exploration Rovers Spirit and Opportunity have explored the martian surface at Gusev Crater (GC) and Meridiani Planum (MP), respectively, for about two Earth years. The Moessbauer (MB) spectrometers on both rovers have analyzed an aggregate of approx.200 surface targets and have returned to Earth information on the oxidation state of iron, the mineralogical composition of Fe-bearing phases, and the distribution of Fe among oxidation states and phases at the two landing sites [1-7]. To date, 15 component subspectra (10 doublets and 5 sextets) have been identified and most have been assigned to mineralogical compositions. Two subspectra are assigned to phases (jarosite and goethite) that are marker minerals for aqueous processes because they contain hydroxide anion in their structures. In this paper, we give an overview of the Febearing phases identified and their distributions at Gusev crater and Meridiani Planum.

  1. Mars Exploration Rover Six-Degree-Of-Freedom Entry Trajectory Analysis

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Schoenenberger, Mark; Cheatwood, F. M.

    2003-01-01

    The Mars Exploration Rover mission will be the next opportunity for surface exploration of Mars in January 2004. Two rovers will be delivered to the surface of Mars using the same entry, descent, and landing scenario that was developed and successfully implemented by Mars Pathfinder. This investigation describes the trajectory analysis that was performed for the hypersonic portion of the MER entry. In this analysis, a six-degree-of-freedom trajectory simulation of the entry is performed to determine the entry characteristics of the capsules. In addition, a Monte Carlo analysis is also performed to statistically assess the robustness of the entry design to off-nominal conditions to assure that all entry requirements are satisfied. The results show that the attitude at peak heating and parachute deployment are well within entry limits. In addition, the parachute deployment dynamics pressure and Mach number are also well within the design requirements.

  2. Amazonian chemical weathering rate derived from stony meteorite finds at Meridiani Planum on Mars

    NASA Astrophysics Data System (ADS)

    Schröder, Christian; Bland, Phil A.; Golombek, Matthew P.; Ashley, James W.; Warner, Nicholas H.; Grant, John A.

    2016-11-01

    Spacecraft exploring Mars such as the Mars Exploration Rovers Spirit and Opportunity, as well as the Mars Science Laboratory or Curiosity rover, have accumulated evidence for wet and habitable conditions on early Mars more than 3 billion years ago. Current conditions, by contrast, are cold, extremely arid and seemingly inhospitable. To evaluate exactly how dry today's environment is, it is important to understand the ongoing current weathering processes. Here we present chemical weathering rates determined for Mars. We use the oxidation of iron in stony meteorites investigated by the Mars Exploration Rover Opportunity at Meridiani Planum. Their maximum exposure age is constrained by the formation of Victoria crater and their minimum age by erosion of the meteorites. The chemical weathering rates thus derived are ~1 to 4 orders of magnitude slower than that of similar meteorites found in Antarctica where the slowest rates are observed on Earth.

  3. Amazonian chemical weathering rate derived from stony meteorite finds at Meridiani Planum on Mars.

    PubMed

    Schröder, Christian; Bland, Phil A; Golombek, Matthew P; Ashley, James W; Warner, Nicholas H; Grant, John A

    2016-11-11

    Spacecraft exploring Mars such as the Mars Exploration Rovers Spirit and Opportunity, as well as the Mars Science Laboratory or Curiosity rover, have accumulated evidence for wet and habitable conditions on early Mars more than 3 billion years ago. Current conditions, by contrast, are cold, extremely arid and seemingly inhospitable. To evaluate exactly how dry today's environment is, it is important to understand the ongoing current weathering processes. Here we present chemical weathering rates determined for Mars. We use the oxidation of iron in stony meteorites investigated by the Mars Exploration Rover Opportunity at Meridiani Planum. Their maximum exposure age is constrained by the formation of Victoria crater and their minimum age by erosion of the meteorites. The chemical weathering rates thus derived are ∼1 to 4 orders of magnitude slower than that of similar meteorites found in Antarctica where the slowest rates are observed on Earth.

  4. Amazonian chemical weathering rate derived from stony meteorite finds at Meridiani Planum on Mars

    PubMed Central

    Schröder, Christian; Bland, Phil A.; Golombek, Matthew P.; Ashley, James W.; Warner, Nicholas H.; Grant, John A.

    2016-01-01

    Spacecraft exploring Mars such as the Mars Exploration Rovers Spirit and Opportunity, as well as the Mars Science Laboratory or Curiosity rover, have accumulated evidence for wet and habitable conditions on early Mars more than 3 billion years ago. Current conditions, by contrast, are cold, extremely arid and seemingly inhospitable. To evaluate exactly how dry today's environment is, it is important to understand the ongoing current weathering processes. Here we present chemical weathering rates determined for Mars. We use the oxidation of iron in stony meteorites investigated by the Mars Exploration Rover Opportunity at Meridiani Planum. Their maximum exposure age is constrained by the formation of Victoria crater and their minimum age by erosion of the meteorites. The chemical weathering rates thus derived are ∼1 to 4 orders of magnitude slower than that of similar meteorites found in Antarctica where the slowest rates are observed on Earth. PMID:27834377

  5. KSC-03PD-1593

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. While one solid rocket booster (SRB) is suspended in the launch tower on Launch Complex 17-A, Cape Canaveral Air Force Station, another is raised from its transporter for a similar lift. They are two of nine SRBs that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASAs twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans cant yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  6. KSC-2012-3318

    NASA Image and Video Library

    2012-06-12

    CAPE CANAVERAL, Fla. – The solar array on the prototype rover Artemis Jr. for NASA’s Regolith and Environment Science and Oxygen and Lunar Volatile Extraction, or RESOLVE, project soaks up the sunlight during a rover demonstration for media representatives in a field beside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. The rover and its drill are provided by the Canadian Space Agency and work in concert with NASA science instruments to prospect for water, ice and other lunar resources. RESOLVE also will demonstrate how future explorers can take advantage of resources at potential landing sites by manufacturing oxygen from soil. NASA will conduct field tests in July outside of Hilo, Hawaii, with equipment and concept vehicles that demonstrate how explorers might prospect for resources and make their own oxygen for survival while on other planetary bodies. For more information, visit http://www.nasa.gov/exploration/analogs/index.html. Photo credit: NASA/Dimitri Gerondidakis

  7. Spirit's 'Paige' Panorama of the Interior of 'Home Plate' (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    On Feb. 19, 2006, the 758th Martian day of exploration of the red planet by NASA's Mars Exploration Rover Spirit, the rover acquired this panoramic view of the interior of 'Home Plate,' a circular topographic feature amid the 'Columbia Hills.' This view, called the 'Paige' panorama, is from the top of Home Plate. It shows layered rocks exposed at the edge as well as dark rocks exhibiting both smooth and sponge-like 'scoriaceous' textures. To the east from this vantage point, 'McCool Hill' looms on the horizon. At the base of McCool Hill is a reddish outcrop called 'Oberth,' which Spirit may explore during the rapidly approaching Martian winter. 'Von Braun' and 'Goddard' hills are partially visible beyond the opposite rim of Home Plate.

    The limited spatial coverage of this panorama is the result of steadily decreasing power available to the rover for science activities as the Martian winter arrives and the sun traces a lower path across the sky. The rover team anticipates that the north-facing slopes of McCool Hill should sufficiently tilt the rover's solar panels toward the sun to allow Spirit to survive the winter.

    The view covers about 230 degrees of terrain around the rover. Spirit's panoramic camera (Pancam) took 72 separate images of this scene with four different Pancam filters. This is a false-color rendering using the Pancam's 75-nanometer, 535-nanometer, and 432-nanometer filters, enhanced to show many subtle color differences in rocks, soils, and hills in the scene. Image-to-image seams have been eliminated from the sky portion of the mosaic to better simulate the vista a person standing on Mars would see.

  8. Spirit's 'Paige' Panorama of the Interior of 'Home Plate'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on the image for Spirit's 'Paige' Panorama of the Interior of 'Home Plate' (QTVR)

    On Feb. 19, 2006, the 758th Martian day of exploration of the red planet by NASA's Mars Exploration Rover Spirit, the rover acquired this panoramic view of the interior of 'Home Plate,' a circular topographic feature amid the 'Columbia Hills.' This view, called the 'Paige' panorama, is from the top of Home Plate. It shows layered rocks exposed at the edge as well as dark rocks exhibiting both smooth and sponge-like 'scoriaceous' textures. To the east from this vantage point, 'McCool Hill' looms on the horizon. At the base of McCool Hill is a reddish outcrop called 'Oberth,' which Spirit may explore during the rapidly approaching Martian winter. 'Von Braun' and 'Goddard' hills are partially visible beyond the opposite rim of Home Plate.

    The limited spatial coverage of this panorama is the result of steadily decreasing power available to the rover for science activities as the Martian winter arrives and the sun traces a lower path across the sky. The rover team anticipates that the north-facing slopes of McCool Hill should sufficiently tilt the rover's solar panels toward the sun to allow Spirit to survive the winter.

    The view covers about 230 degrees of terrain around the rover. Spirit's panoramic camera (Pancam) took 72 separate images of this scene with four different Pancam filters. This is an approximately true-color rendering using the Pancam's 75-nanometer, 535-nanometer, and 432-nanometer filters. Image-to-image seams have been eliminated from the sky portion of the mosaic to better simulate the vista a person standing on Mars would see.

  9. KSC-03PD-1845

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Nine-year-old Sofi Collis unveils the names of the Mars Exploration Rovers -- 'Spirit' and 'Opportunity' -- during a press conference. Participating in the press conference are, from left, Dr. John Marburger, science advisor to the President and director of the Office of Science and Technology Policy; NASA Administrator Sean O'Keefe; Sofi Collis, a third grade student from Arizona; and Brad Justus, LEGO Co. senior vice president. The names Sofi suggested were selected from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  10. Payload topography camera of Chang'e-3

    NASA Astrophysics Data System (ADS)

    Yu, Guo-Bin; Liu, En-Hai; Zhao, Ru-Jin; Zhong, Jie; Zhou, Xiang-Dong; Zhou, Wu-Lin; Wang, Jin; Chen, Yuan-Pei; Hao, Yong-Jie

    2015-11-01

    Chang'e-3 was China's first soft-landing lunar probe that achieved a successful roving exploration on the Moon. A topography camera functioning as the lander's “eye” was one of the main scientific payloads installed on the lander. It was composed of a camera probe, an electronic component that performed image compression, and a cable assembly. Its exploration mission was to obtain optical images of the lunar topography in the landing zone for investigation and research. It also observed rover movement on the lunar surface and finished taking pictures of the lander and rover. After starting up successfully, the topography camera obtained static images and video of rover movement from different directions, 360° panoramic pictures of the lunar surface around the lander from multiple angles, and numerous pictures of the Earth. All images of the rover, lunar surface, and the Earth were clear, and those of the Chinese national flag were recorded in true color. This paper describes the exploration mission, system design, working principle, quality assessment of image compression, and color correction of the topography camera. Finally, test results from the lunar surface are provided to serve as a reference for scientific data processing and application.

  11. Extraterrestrial Moessbauer Spectroscopy: More than Three Years of Mars Exploration and Developments for Future Missions

    NASA Technical Reports Server (NTRS)

    Schroeder, Christian; Klingelhoefer, Goestar; Morris, Richard V.; Rodionov, Daniel S.; Fleischer, Iris; Blumers, Mathias

    2007-01-01

    The NASA Mars Exploration Rovers (MER), Spirit and Opportunity, landed on the Red Planet in January 2004. Both rovers are equipped with a miniaturized Moessbauer spectrometer MIMOS II. Designed for a three months mission, both rovers and both Moessbauer instruments are still working after more than three years of exploring the Martian surface. At the beginning of the mission, with a landed intensity of the Moessbauer source of 150 mCi, a 30 minute touch and go measurement produced scientifically valuable data while a good quality Moessbauer spectrum was obtained after approximately eight hours. Now, after about five halflives of the sources have passed, Moessbauer integrations are routinely planned to last approx.48 hours. Because of this and other age-related hardware degradations of the two rover systems, measurements now occur less frequently, but are still of outstanding quality and scientific importance. Summarizing important Moessbauer results, Spirit has traversed the plains from her landing site in Gusev crater and is now, for the greater part of the mission, investigating the stratigraphically older Columbia Hills. Olivine in rocks and soils in the plains suggests that physical rather than chemical processes are currently active.

  12. Autonomous Navigation Results from the Mars Exploration Rover (MER) Mission

    NASA Technical Reports Server (NTRS)

    Maimone, Mark; Johnson, Andrew; Cheng, Yang; Willson, Reg; Matthies, Larry H.

    2004-01-01

    In January, 2004, the Mars Exploration Rover (MER) mission landed two rovers, Spirit and Opportunity, on the surface of Mars. Several autonomous navigation capabilities were employed in space for the first time in this mission. ]n the Entry, Descent, and Landing (EDL) phase, both landers used a vision system called the, Descent Image Motion Estimation System (DIMES) to estimate horizontal velocity during the last 2000 meters (m) of descent, by tracking features on the ground with a downlooking camera, in order to control retro-rocket firing to reduce horizontal velocity before impact. During surface operations, the rovers navigate autonomously using stereo vision for local terrain mapping and a local, reactive planning algorithm called Grid-based Estimation of Surface Traversability Applied to Local Terrain (GESTALT) for obstacle avoidance. ]n areas of high slip, stereo vision-based visual odometry has been used to estimate rover motion, As of mid-June, Spirit had traversed 3405 m, of which 1253 m were done autonomously; Opportunity had traversed 1264 m, of which 224 m were autonomous. These results have contributed substantially to the success of the mission and paved the way for increased levels of autonomy in future missions.

  13. Opportunity's First Dip into Victoria Crater

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Mars Exploration Rover Opportunity entered Victoria Crater during the rover's 1,291st Martian day, or sol, (Sept. 11, 2007). The rover team commanded Opportunity to drive just far enough into the crater to get all six wheels onto the inner slope, and then to back out again and assess how much the wheels slipped on the slope. The driving commands for the day included a precaution for the rover to stop driving if the wheels were slipping more than 40 percent. Slippage exceeded that amount on the last step of the drive, so Opportunity stopped with its front pair of wheels still inside the crater. The rover team planned to assess results of the drive, then start Opportunity on an extended exploration inside the crater.

    This wide-angle view taken by Opportunity's front hazard-identification camera at the end of the day's driving shows the wheel tracks created by the short dip into the crater. The left half of the image looks across an alcove informally named 'Duck Bay' toward a promontory called 'Cape Verde' clockwise around the crater wall. The right half of the image looks across the main body of the crater, which is 800 meters (half a mile) in diameter.

  14. Cerebellum Augmented Rover Development

    NASA Technical Reports Server (NTRS)

    King, Matthew

    2005-01-01

    Bio-Inspired Technologies and Systems (BITS) are a very natural result of thinking about Nature's way of solving problems. Knowledge of animal behaviors an be used in developing robotic behaviors intended for planetary exploration. This is the expertise of the JFL BITS Group and has served as a philosophical model for NMSU RioRobolab. Navigation is a vital function for any autonomous system. Systems must have the ability to determine a safe path between their current location and some target location. The MER mission, as well as other JPL rover missions, uses a method known as dead-reckoning to determine position information. Dead-reckoning uses wheel encoders to sense the wheel's rotation. In a sandy environment such as Mars, this method is highly inaccurate because the wheels will slip in the sand. Improving positioning error will allow the speed of an autonomous navigating rover to be greatly increased. Therefore, local navigation based upon landmark tracking is desirable in planetary exploration. The BITS Group is developing navigation technology based upon landmark tracking. Integration of the current rover architecture with a cerebellar neural network tracking algorithm will demonstrate that this approach to navigation is feasible and should be implemented in future rover and spacecraft missions.

  15. Science Activity Planner for the MER Mission

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Crockett, Thomas M.; Fox, Jason M.; Joswig, Joseph C.; Powell, Mark W.; Shams, Khawaja S.; Torres, Recaredo J.; Wallick, Michael N.; Mittman, David S.

    2008-01-01

    The Maestro Science Activity Planner is a computer program that assists human users in planning operations of the Mars Explorer Rover (MER) mission and visualizing scientific data returned from the MER rovers. Relative to its predecessors, this program is more powerful and easier to use. This program is built on the Java Eclipse open-source platform around a Web-browser-based user-interface paradigm to provide an intuitive user interface to Mars rovers and landers. This program affords a combination of advanced display and simulation capabilities. For example, a map view of terrain can be generated from images acquired by the High Resolution Imaging Science Explorer instrument aboard the Mars Reconnaissance Orbiter spacecraft and overlaid with images from a navigation camera (more precisely, a stereoscopic pair of cameras) aboard a rover, and an interactive, annotated rover traverse path can be incorporated into the overlay. It is also possible to construct an overhead perspective mosaic image of terrain from navigation-camera images. This program can be adapted to similar use on other outer-space missions and is potentially adaptable to numerous terrestrial applications involving analysis of data, operations of robots, and planning of such operations for acquisition of scientific data.

  16. Field Experiments using Telepresence and Virtual Reality to Control Remote Vehicles: Application to Mars Rover Missions

    NASA Technical Reports Server (NTRS)

    Stoker, Carol

    1994-01-01

    This paper will describe a series of field experiments to develop and demonstrate file use of Telepresence and Virtual Reality systems for controlling rover vehicles on planetary surfaces. In 1993, NASA Ames deployed a Telepresence-Controlled Remotely Operated underwater Vehicle (TROV) into an ice-covered sea environment in Antarctica. The goal of the mission was to perform scientific exploration of an unknown environment using a remote vehicle with telepresence and virtual reality as a user interface. The vehicle was operated both locally, from above a dive hole in the ice through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research center, for over two months. Remote control used a bidirectional Internet link to the vehicle control computer. The operator viewed live stereo video from the TROV along with a computer-gene rated graphic representation of the underwater terrain showing file vehicle state and other related information. Tile actual vehicle could be driven either from within the virtual environment or through a telepresence interface. In March 1994, a second field experiment was performed in which [lie remote control system developed for the Antarctic TROV mission was used to control the Russian Marsokhod Rover, an advanced planetary surface rover intended for launch in 1998. Marsokhod consists of a 6-wheel chassis and is capable of traversing several kilometers of terrain each day, The rover can be controlled remotely, but is also capable of performing autonomous traverses. The rover was outfitted with a manipulator arm capable of deploying a small instrument, collecting soil samples, etc. The Marsokhod rover was deployed at Amboy Crater in the Mojave desert, a Mars analog site, and controlled remotely from Los Angeles. in two operating modes: (1) a Mars rover mission simulation with long time delay and (2) a Lunar rover mission simulation with live action video. A team of planetary geologists participated in the mission simulation. The scientific goal of the science mission was to determine what could be learned about the geologic context of the site using the capabilities of imaging and mobility provided by the Marsokhod system in these two modes of operation. I will discuss the lessons learned from these experiments in terms of the strategy for performing Mars surface exploration using rovers. This research is supported by the Solar System Exploration Exobiology, Geology, and Advanced Technology programs.

  17. NASA Planetary Rover Program

    NASA Technical Reports Server (NTRS)

    Lavery, David; Bedard, Roger J., Jr.

    1991-01-01

    The NASA Planetary Rover Project was initiated in 1989. The emphasis of the work to date has been on development of autonomous navigation technology within the context of a high mobility wheeled vehicle at the JPL and an innovative legged locomotion concept at Carnegie Mellon University. The status and accomplishments of these two efforts are discussed. First, however, background information is given on the three rover types required for the Space Exploration Initiative (SEI) whose objective is a manned mission to Mars.

  18. Airbag Trail Dubbed 'Magic Carpet'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Click on the image for Airbag Trail Dubbed 'Magic Carpet' (QTVR)

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Magic Carpet Close-upMagic Carpet Close-up HD

    This section of the first color image from the Mars Exploration Rover Spirit has been further processed to produce a sharper look at a trail left by the one of rover's airbags. The drag mark was made after the rover landed and its airbags were deflated and retracted. Scientists have dubbed the region the 'Magic Carpet' after a crumpled portion of the soil that appears to have been peeled away (lower left side of the drag mark). Rocks were also dragged by the airbags, leaving impressions and 'bow waves' in the soil. The mission team plans to drive the rover over to this site to look for additional clues about the composition of the martian soil. This image was taken by Spirit's panoramic camera.

    This extreme close-up image (see insets above) highlights the martian feature that scientists have named 'Magic Carpet' because of its resemblance to a crumpled carpet fold. Scientists think the soil here may have detached from its underlying layer, possibly due to interaction with the Mars Exploration Rover Spirit's airbag after landing. This image was taken on Mars by the rover's panoramic camera.

  19. Planetary surface exploration MESUR/autonomous lunar rover

    NASA Astrophysics Data System (ADS)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Laux, Richard; Lentz, Dale; Nance, Preston

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars have been designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA/Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental Survey (MESUR) Alpha Particle/Proton/X-ray (APX) Instrument. The system is to be launched with the 16 MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker have been developed to deploy the APX from the lander to the Martian Surface. While on Mars, the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation that NASA can use for future lunar exploratory missions. This report includes a detailed description of the designs and the methods and procedures which the University of Idaho design teams followed to arrive at the final designs.

  20. Planetary surface exploration: MESUR/autonomous lunar rover

    NASA Astrophysics Data System (ADS)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Lentz, Dale; Laux, Richard; Nance, Preston

    1992-06-01

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars was designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA-Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental SURvey (MESUR) Alpha Particle/Proton/X-ray instruments (APX). The system is to be launched with the sixteen MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker was developed to deploy the APX from the lander to the Martian surface. While on Mars the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar-terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation which NASA can use for future lunar exploratory missions. A detailed description of the designs, methods, and procedures which the University of Idaho design teams followed to arrive at the final designs are included.

  1. Planetary surface exploration MESUR/autonomous lunar rover

    NASA Technical Reports Server (NTRS)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Laux, Richard; Lentz, Dale; Nance, Preston

    1992-01-01

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars have been designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA/Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental Survey (MESUR) Alpha Particle/Proton/X-ray (APX) Instrument. The system is to be launched with the 16 MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker have been developed to deploy the APX from the lander to the Martian Surface. While on Mars, the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation that NASA can use for future lunar exploratory missions. This report includes a detailed description of the designs and the methods and procedures which the University of Idaho design teams followed to arrive at the final designs.

  2. Planetary surface exploration: MESUR/autonomous lunar rover

    NASA Technical Reports Server (NTRS)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Lentz, Dale; Laux, Richard; Nance, Preston

    1992-01-01

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars was designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA-Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental SURvey (MESUR) Alpha Particle/Proton/X-ray instruments (APX). The system is to be launched with the sixteen MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker was developed to deploy the APX from the lander to the Martian surface. While on Mars the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar-terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation which NASA can use for future lunar exploratory missions. A detailed description of the designs, methods, and procedures which the University of Idaho design teams followed to arrive at the final designs are included.

  3. Archiving Data From the 2003 Mars Exploration Rover Mission

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.

    2002-12-01

    The two Mars Exploration Rovers will touch down on the red planet in January 2004 and each will operate for at least 90 sols, traversing hundreds of meters across the surface and acquiring data from the Athena Science Payload (mast-based multi-spectral, stereo-imaging data and emission spectra; arm-based in-situ Alpha Particle X-Ray (APXS) and Mössbauer Spectroscopy, microscopic imaging, coupled with use of a rock abrasion tool) at a number of locations. In addition, the rovers will acquire science and engineering data along traverses to characterize terrain properties and perhaps be used to dig trenches. An "Analyst's Notebook" concept has been developed to capture, organize, archive and distribute raw and derived data sets and documentation (http://wufs.wustl.edu/rover). The Notebooks will be implemented in ways that will allow users to "playback" the mission, using executed commands to drive animated views of rover activities, and pop-up windows to show why particular observations were acquired, along with displays of raw and derived data products. In addition, the archive will include standard Planetary Data System files and software for processing to higher-level products. The Notebooks will exist both as an online system and as a set of distributable Digital Video Discs or other appropriate media. The Notebooks will be made available through the Planetary Data System within six months after the end of observations for the relevant rovers.

  4. Rover Team Decides: Safety First

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's Mars Exploration Rover Spirit recorded this view while approaching the northwestern edge of 'Home Plate,' a circular plateau-like area of bright, layered outcrop material roughly 80 meters (260 feet) in diameter. The images combined into this mosaic were taken by Spirit's navigation camera during the rover's 746th, 748th and 750th Martian days, or sols (Feb. 7, 9 and 11, 2006).

    With Martian winter closing in, engineers and scientists working with NASA's Mars Exploration Rover Spirit decided to play it safe for the time being rather than attempt to visit the far side of Home Plate in search of rock layers that might show evidence of a past watery environment. This feature has been one of the major milestones of the mission. Though it's conceivable that rock layers might be exposed on the opposite side, sunlight is diminishing on the rover's solar panels and team members chose not to travel in a counterclockwise direction that would take the rover to the west and south slopes of the plateau. Slopes in that direction are hidden from view and team members chose, following a long, thorough discussion, to have the rover travel clockwise and remain on north-facing slopes rather than risk sending the rover deeper into unknown terrain.

    In addition to studying numerous images from Spirit's cameras, team members studied three-dimensional models created with images from the Mars Orbiter Camera on NASA's Mars Globel Surveyor orbiter. The models showed a valley on the southern side of Home Plate, the slopes of which might cause the rover's solar panels to lose power for unknown lengths of time. In addition, images from Spirit's cameras showed a nearby, talus-covered section of slope on the west side of Home Plate, rather than exposed rock layers scientists eventually hope to investigate.

    Home Plate has been on the rover's potential itinerary since the early days of the mission, when it stood out in images taken by the Mars Orbiter Camera shortly after the rover landed on Mars. Spirit arrived at Home Plate after traveling 4 miles (6.4 kilometers) across the plains of Gusev Crater, up the slopes of 'West Spur' and 'Husband Hill,' and down again. Scientists are studying the origin of the layering in the outcrop using the Athena science instruments on the rover's arm.

  5. KSC-03PD-1956

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. The Mars Exploration Rover 1 (MER-B) is moved out of the Payload Hazardous Servicing Facility for transfer to Launch Pad 17-B, Cape Canaveral Air Force Station. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

  6. Rover Traverse Planning to Support a Lunar Polar Volatiles Mission

    NASA Technical Reports Server (NTRS)

    Heldmann, J.L.; Colaprete, A.C.; Elphic, R. C.; Bussey, B.; McGovern, A.; Beyer, R.; Lees, D.; Deans, M. C.; Otten, N.; Jones, H.; hide

    2015-01-01

    Studies of lunar polar volatile depositsare of interest for scientific purposes to understandthe nature and evolution of the volatiles, and alsofor exploration reasons as a possible in situ resource toenable long term exploration and settlement of theMoon. Both theoretical and observational studies havesuggested that significant quantities of volatiles exist inthe polar regions, although the lateral and horizontaldistribution remains unknown at the km scale and finerresolution. A lunar polar rover mission is required tofurther characterize the distribution, quantity, andcharacter of lunar polar volatile deposits at thesehigher spatial resolutions. Here we present two casestudies for NASA’s Resource Prospector (RP) missionconcept for a lunar polar rover and utilize this missionarchitecture and associated constraints to evaluatewhether a suitable landing site exists to support an RPflight mission.

  7. Development of Testing Station for Prototype Rover Thermal Subsystem

    NASA Technical Reports Server (NTRS)

    Burlingame, Kaitlin

    2010-01-01

    In order to successfully and efficiently explore the moon or other planets, a vehicle must be built to assist astronauts as they travel across the surface. One concept created to meet this need is NASA's Space Exploration Vehicle (SEV). The SEV, a small pressurized cabin integrated onto a 12-wheeled chassis, can support two astronauts up to 14 days. Engineers are currently developing the second generation of the SEV, with the goal of being faster, more robust, and able to carry a heavier payload. In order to function properly, the rover must dissipate heat produced during operation and maintain an appropriate temperature profile inside the rover. If these activities do not occur, components of the rover will start to break down, eventually leading to the failure of the rover. On the rover, these requirements are the responsibility of the thermal subsystem. My project for the summer was to design and build a testing station to facilitate the design and testing of the new thermal subsystem. As the rover develops, initial low fidelity parts can be interchanged for the high fidelity parts used on the rover. Based on a schematic of the proposed thermal system, I sized and selected parts for each of the components in the thermal subsystem. For the components in the system that produced heat but had not yet been finalized or fabricated, I used power resistors to model their load patterns. I also selected all of the fittings to put the system together and a mounting platform to support the testing station. Finally, I implemented sensors at various points in the system to measure the temperature, pressure, and flow rate, and a data acquisition system to collect this information. In the future, the information from these sensors will be used to study the behavior of the subsystem under different conditions and select the best part for the rover.

  8. KSC-03pd1373

    NASA Image and Video Library

    2003-04-29

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility look over the aeroshell enclosing Mars Exploration Rover 2 and lander that is being moved to a rotation table for a spin stabilization test. There are two identical rovers that will land at different regions of Mars and are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover, MER-A, is scheduled to launch June 5 from Cape Canaveral Air Force Station. The second is scheduled for launch June 25.

  9. KSC-03pd1372

    NASA Image and Video Library

    2003-04-29

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility look over the aeroshell enclosing Mars Exploration Rover 2 and lander that is being moved to a rotation table for a spin stabilization test. There are two identical rovers that will land at different regions of Mars and are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover, MER-A, is scheduled to launch June 5 from Cape Canaveral Air Force Station. The second is scheduled for launch June 25.

  10. KSC-03pd1366

    NASA Image and Video Library

    2003-04-29

    KENNEDY SPACE CENTER, FLA. - Workers in the Payload Hazardous Servicing Facility begin moving the aeroshell enclosing Mars Exploration Rover 2 and lander to a rotation table for a spin stabilization test. There are two identical rovers that will land at different regions of Mars and are designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The first rover, MER-A, is scheduled to launch June 5 from Cape Canaveral Air Force Station. The second is scheduled for launch June 25.

  11. Opportunity Examining Composition of 'Cook Islands' Outcrop

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This image taken by the front hazard-avoidance camera on NASA's Mars Exploration Rover Opportunity shows the rover's arm extended to examine the composition of a rock using the alpha particle X-ray spectrometer.

    Opportunity took this image during the 1,826th Martian day, or sol, of the rover's Mars-surface mission (March 13, 2009).

    The spectrometer is at a target called 'Penrhyn,' on a rock called 'Cook Islands.' As Opportunity makes its way on a long journey from Victoria Crater toward Endeavour Crater, the team is stopping the drive occasionally on the route to check whether the rover finds a trend in the composition of rock exposures.

  12. Strategic Analysis for the MER Cape Verde Approach

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel; Belluta, Paolo; Herman, Jennifer; Hwang, Pauline; Mukai, Ryan; Porter, Dan; Jones, Byron; Wood, Eric; Grotzinger, John; Edgar, Lauren; hide

    2009-01-01

    The Mars Exploration Rover Opportunity has recently completed a two year campaign studying Victoria Crater. The campaign culminated in a close approach of Cape Verde in order to acquire high resolution imagery of the exposed stratigraphy in the cliff face. The close approach to Cape Verde provided significant challenges for every subsystem of the rover as the rover needed to traverse difficult, uncharacterised terrain and approach a cliff face with the potential of blocking out solar energy and communications with Earth. In this paper we describe the strategic analyses performed by the science and engineering teams so that we could successfully achieve the science objectives while keeping the rover safe.

  13. Heat Shield's Main Piece

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA's Mars Exploration Rover Opportunity caught this view of the main piece of the spacecraft's heat shield during the rover's 328th martian day, or sol (Dec. 25, 2004). A separation spring can be seen on the ground to the lower left side of the heat shield.

  14. Meridiani Bedrock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    23 December 2004 The Mars Exploration Rover (MER-B), Opportunity, spent much of this year exploring outcrops of light-toned, layered, sedimentary rock that occur just beneath the dark plains of Sinus Meridiani. To access these rocks, the rover had to look at the walls and rims of impact craters. Further to the north and east of where the rover landed, similar rocks outcrop at the surface -- in other words, they are not covered by dark sand and granules as they are at the rover site. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example from eastern Sinus Meridiani. All of the light-toned surfaces in this image are outcrops of ancient sedimentary rock. Similar rocks probably occur beneath the low albedo (dark) materials that mantle the lower-elevation surfaces in this area. This picture is located near 0.5oS, 356.7oW. The image covers an area about 3 km (1.9 mi) wide and sunlight illuminates the scene from the upper left.

  15. Opportunity Captures 'Lion King' Panorama

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Click on the image for Opportunity Captures 'Lion King' Panorama (QTVR)

    This approximate true-color panorama, dubbed 'Lion King,' shows 'Eagle Crater' and the surrounding plains of Meridiani Planum. It was obtained by the Mars Exploration Rover Opportunity's panoramic camera on sols 58 and 60 using infrared (750-nanometer), green (530-nanometer) and blue (430-nanometer) filters.

    This is the largest panorama obtained yet by either rover. It was taken in eight segments using six filters per segment, for a total of 558 images and more than 75 megabytes of data. Additional lower elevation tiers were added to ensure that the entire crater was covered in the mosaic.

    This panorama depicts a story of exploration including the rover's lander, a thorough examination of the outcrop, a study of the soils at the near-side of the lander, a successful exit from Eagle Crater and finally the rover's next desination, the large crater dubbed 'Endurance'.

  16. Cooperative Exploration of Rough Martian Terrains with the "Scorpion" Legged Robot as an Adjunct to a Rover.

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano P.; Kirchner, Frank; Spenneberg, Dirk; Starman, Jared; Hanratty, James; Kovsmeyer, David (Technical Monitor)

    2003-01-01

    NASA needs autonomous robotic exploration of difficult (rough and/or steep) scientifically interesting Martian terrains. Concepts involving distributed autonomy for cooperative robotic exploration are key to enabling new scientific objectives in robotic missions. We propose to utilize a legged robot as an adjunct scout to a rover for access to difficult - scientifically interesting - terrains (rocky areas, slopes, cliffs). Our final mission scenario involves the Ames rover platform "K9" and Scorpion acting together to explore a steep cliff, with the Scorpion robot rappelling down using the K9 as an anchor as well as mission planner and executive. Cooperation concepts, including wheeled rappelling robots have been proposed before. Now we propose to test the combined advantages of a wheeled vehicle with a legged scout as well as the advantages of merging of high level planning and execution with biologically inspired, behavior based robotics. We propose to use the 8-legged, multifunctional autonomous robot platform Scorpion that is currently capable of: Walking on different terrains (rocks, sand, grass, ...). Perceiving its environment and modifying its behavioral pattern accordingly. These capabilities would be extended to enable the Scorpion to: communicate and cooperate with a partner robot; climb over rocks, rubble piles, and objects with structural features. This will be done in the context of exploration of rough terrains in the neighborhood of the rover, but inaccessible to it, culminating in the added capability of rappelling down a steep cliff for both vertical and horizontal terrain observation.

  17. (Nearly) Seven Years on Mars: Adventure, Adversity, and Achievements with the NASA Mars Exploration Rovers Spirit and Opportunity

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Mars Exploration Rover Science; Engineering Teams

    2010-12-01

    NASA successfully landed twin rovers, Spirit and Opportunity, on Mars in January 2004, in the most ambitious mission of robotic exploration attempted to that time. Each rover is outfitted as a robot field geologist with an impressive array of scientific instruments--cameras, spectrometers, other sensors--designed to investigate the composition and geologic history of two distinctly-different landing sites. The sites were chosen because of their potential to reveal clues about the past history of water and climate on Mars, and thus to provide tests of the hypothesis that the planet may once have been an abode for life. In this presentation I will review the images, spectra, and chemical/mineralogic information that the rover team has been acquiring from the landing sites and along the rovers' 7.7 and 22.7 km traverse paths, respectively. The data and interpretations have been widely shared with the public and the scientific community through web sites, frequent press releases, and scientific publications, and they provide quantitative evidence that liquid water has played a role in the modification of the Martian surface during the earliest part of the planet's history. At the Spirit site in Gusev Crater, the role of water appears to have been relatively minor in general, although the recent discovery of enigmatic hydrated sulfate salt and amorphous silica deposits suggests that locally there may have been significant water-rock interactions, and perhaps even sustained hydrothermal activity. At the Opportunity site in Meridiani Planum, geologic and mineralogic evidence suggests that liquid water was stable at the surface and shallow subsurface for significant periods of early Martian geologic history. An exciting implication from both missions is that localized environments on early Mars may have been "habitable" by some terrestrial standards. As of early September 2010, the rovers had operated for 2210 and 2347 Martian days (sols), respectively, with the Spirit rover in an assumed intentional state of "hibernation" since mid-April 2010. and the Opportunity rover actively embarking on a long (> 12 km) drive to the 22-km diameter crater Endeavour. This presentation will provide an update on the status of the expected return to operations of the Spirit rover this summer or fall, and the team's plans to continue to explore the potential hydrothermal environment in the region around the ancient volcanic feature known as Home Plate. I will also provide an update on the progress of Opportunity's drive to Endeavour, and the team's plans to study clay mineral (phyllosilicate) deposits that have been identified on the rim of Endeavour from orbital remote sensing observations. A key point of this presentation is that despite this being a robotic mission, it isn't really the rovers that are exploring Mars; rather, it is a large team of people here on Earth (as well as the interested public) that have spent nearly 7 years "virtually" roving across the red planet using some amazing and highly capable robotic tools.

  18. An Update on the Performance of Li-Ion Rechargeable Batteries on Mars Rovers

    NASA Technical Reports Server (NTRS)

    Ratnakumara, Bugga V.; Smart, M. C.; Whitcanack, L. D.; Chin, K. B.; Ewell, R. C.; Surampudi, S.; Puglia, F.; Gitzendanner, R.

    2006-01-01

    NASA's Mars Rovers, Spirit and Opportunity have been exploring the surface of Mars for the last thirty months, far exceeding the primary mission life of three months, performing astounding geological studies to examine the habitability of Mars. Such an extended mission life may be attributed to impressive performances of several subsystems, including power subsystem components, i.e., solar array and batteries. The novelty and challenge for this mission in terms of energy storage is the use of lithium-ion batteries, for the first time in a major NASA mission, for keeping the rover electronics warm, and supporting nighttime experimentation and communications. The use of Li-ion batteries has considerably enhanced or even enabled these rovers, by providing greater mass and volume allocations for the payload and wider range of operating temperatures for the power subsystem and thus reduced thermal management. After about 800 days of exploration, there is only marginal change in the end-of discharge (EOD) voltages of the batteries or in their capacities, as estimated from in-flight voltage data and corroborated by ground testing of prototype batteries. Enabled by such impressive durability from the Li-ion batteries, both from a cycling and calendar life stand point, these rovers are poised to extend their exploration well beyond 1000 sols, though other components have started showing signs of decay. In this paper, we will update the performance characteristics of these batteries on both Spirit and Opportunity.

  19. A predictive wheel-soil interaction model for planetary rovers validated in testbeds and against MER Mars rover performance data

    NASA Astrophysics Data System (ADS)

    Richter, L.; Ellery, A.; Gao, Y.; Michaud, S.; Schmitz, N.; Weiss, S.

    Successful designs of vehicles intended for operations on planetary objects outside the Earth demand, just as for terrestrial off-the-road vehicles, a careful assessment of the terrain relevant for the vehicle mission and predictions of the mobility performance to allow rational trade-off's to be made for the choice of the locomotion concept and sizing. Principal issues driving the chassis design for rovers are the stress-strain properties of the planetary surface soil, the distribution of rocks in the terrain representing potential obstacles to movement, and the gravity level on the celestial object in question. Thus far, planetary rovers have been successfully designed and operated for missions to the Earth's moon and to the planet Mars, including NASA's Mars Exploration Rovers (MER's) `Spirit' and `Opportunity' being in operation on Mars since their landings in January 2004. Here we report on the development of a wheel-soil interaction model with application to wheel sizes and wheel loads relevant to current and near-term robotic planetary rovers, i.e. wheel diameters being between about 200 and 500 mm and vertical quasistatic wheel loads in operation of roughly 100 to 200 N. Such a model clearly is indispensable for sizings of future rovers to analyse the aspect of rover mobility concerned with motion across soils. This work is presently funded by the European Space Agency (ESA) as part of the `Rover Chassis Evaluation Tools' (RCET) effort which has developed a set of S/W-implemented models for predictive mobility analysis of rovers in terms of movement on soils and across obstacles, coupled with dedicated testbeds to validate the wheel-soil models. In this paper, we outline the details of the wheel-soil modelling performed within the RCET work and present comparisons of predictions of wheel performance (motion resistance, torque vs. slip and drawbar pull vs. slip) for specific test cases with the corresponding measurements performed in the RCET single wheel testbed and in the RCET system-level testbed, the latter permitting drawbar pull vs. slip measurements for complete rover development vehicles under controlled and homogeneous soil conditions. Required modifications of the wheel-soil model, in particular related to modelling the effect of wheel slip, are discussed. To strengthen the model validation base, we have run single wheel measurements using a spare MER Mars rover wheel and have performed comparisons with MER actual mobility performance data, available through one of us (LR) who is a member of the MER Athena science team. Corresponding results will be presented. Keywords: rovers, wheel, soil, mobility, vehicle performance, RCET (Rover Chassis Evaluation Tools), MER (Mars Exploration Rover mission) 2

  20. A Curious Landscape

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 'postcard' from the panoramic camera on the Mars Exploration Rover Opportunity shows the view of the martian landscape southwest of the rover. The image was taken in the late martian afternoon at Meridiani Planum on Mars, where Opportunity landed at approximately 9:05 p.m. PST on Saturday, Jan. 24.

  1. Up-Close Look at 'Bread-Basket'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Mars Exploration Rover Spirit took this image with its front hazard-avoidance camera on sol 175 (June 30, 2004). It captures the instrument deployment device in perfect position as the rover uses its microscopic imager to get an up-close look at the rock target 'Bread-Basket.'

  2. Science Goals and Objectives for Canadian Robotic Exploration of the Moon Enabled by the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Bourassa, M.; Osinski, G. R.; Cross, M.; Hill, P.; King, D.; Morse, Z.; Pilles, E.; Tolometti, G.; Tornabene, L. L.; Zanetti, M.

    2018-02-01

    Canadian contributions to the science goals and objectives of a lunar precursor rover for HERACLES, an international mission concept, are discussed. Enabled by the Deep Space Gateway, this rover is a technical demonstrator for robotic sample return.

  3. Application of CFS to a Lunar Rover: Resource Prospector (RP)

    NASA Technical Reports Server (NTRS)

    Cannon, Howard

    2017-01-01

    Resource Prospector (RP) is a lunar mission sponsored by NASA's Advanced Exploration Systems (AES) division, that aims to study in-situ resource utilization (ISRU) feasibility and technologies on the surface of the moon. The RP mission's lunar surface segment includes a rover equipped with with a suite of instruments specifically designed to measure and map volatiles both at the surface and in the subsurface. Of particular interest is the quantity and state of volatiles in permanently shadowed regions. To conduct the mission, ground system operators will remotely drive the rover, directing it to waypoints along the surface in order to achieve measurement objectives. At selected locations, an onboard drill will be deployed to collect material and obtain direct measurements of the subsurface constituents. RP is currently planned for launch in 2022. RP is managed at NASA Ames Research Center. The RP Rover is being designed and developed by NASA Johnson Space Center (JSC) in partnership with NASA Ames. NASA Kennedy Space Center (KSC) is responsible for the Honeybee drilling system and science payload. In order to better understand the technical challenges and demonstrate capability, in 2015 the RP project developed a rover testbed (known as RP15). In this mission in a year, a rover was designed, developed, and outfitted with science instruments and a drill. The rover was operated from a remote operations center, and operated in an outdoor lunar rock yard at Johnson space center. The study was a resounding success meeting all objectives. The RP Rover software architecture and development processes were based on the successful Lunar Atmosphere and Dust Environment Explorer spacecraft. This architecture is built on the Core Flight System software and an interface to Matlab/Simulink auto-generated software components known as the Simulink Interface Layer (SIL). The application of this lunar satellite inspired framework worked well for the rover application, and is currently being planned for the mission. This presentation provides an overview of the architecture and processes, and describes some of the changes and challenges for the rover application.

  4. Application of the Core Flight System to a Lunar Rover

    NASA Technical Reports Server (NTRS)

    Cannon, Howard

    2017-01-01

    Resource Prospector (RP) is a lunar mission sponsored by NASAs Advanced Exploration Systems (AES) division, that aims to study in-situ resource utilization (ISRU) feasibility and technologies on the surface of the moon. The RP missions lunar surface segment includes a rover equipped with with a suite of instruments specifically designed to measure and map volatiles both at the surface and in the subsurface. Of particular interest is the quantity and state of volatiles in permanently shadowed regions. To conduct the mission, ground system operators will remotely drive the rover, directing it to waypoints along the surface in order to achieve measurement objectives. At selected locations, an onboard drill will be deployed to collect material and obtain direct measurements of the subsurface constituents. RP is currently planned for launch in 2022. RP is managed at NASA Ames Research Center. The RP Rover is being designed and developed by NASA Johnson Space Center (JSC) in partnership with NASA Ames. NASA Kennedy Space Center (KSC) is responsible for the Honeybee drilling system and science payload.In order to better understand the technical challenges and demonstrate capability, in 2015 the RP project developed a rover testbed (known as RP15). In this mission in a year, a rover was designed, developed, and outfitted with science instruments and a drill. The rover was operated from a remote operations center, and operated in an outdoor lunar rock yard at Johnson space center. The study was a resounding success meeting all objectives. The RP Rover software architecture and development processes were based on the successful Lunar Atmosphere and Dust Environment Explorer spacecraft. This architecture is built on the Core Flight System software and an interface to MatlabSimulink auto-generated software components known as the Simulink Interface Layer (SIL). The application of this lunar satellite inspired framework worked well for the rover application, and is currently being planned for the mission. This presentation provides an overview of the architecture and processes, and describes some of the changes and challenges for the rover application.

  5. Mars Science Laboratory Engineering Cameras

    NASA Technical Reports Server (NTRS)

    Maki, Justin N.; Thiessen, David L.; Pourangi, Ali M.; Kobzeff, Peter A.; Lee, Steven W.; Dingizian, Arsham; Schwochert, Mark A.

    2012-01-01

    NASA's Mars Science Laboratory (MSL) Rover, which launched to Mars in 2011, is equipped with a set of 12 engineering cameras. These cameras are build-to-print copies of the Mars Exploration Rover (MER) cameras, which were sent to Mars in 2003. The engineering cameras weigh less than 300 grams each and use less than 3 W of power. Images returned from the engineering cameras are used to navigate the rover on the Martian surface, deploy the rover robotic arm, and ingest samples into the rover sample processing system. The navigation cameras (Navcams) are mounted to a pan/tilt mast and have a 45-degree square field of view (FOV) with a pixel scale of 0.82 mrad/pixel. The hazard avoidance cameras (Haz - cams) are body-mounted to the rover chassis in the front and rear of the vehicle and have a 124-degree square FOV with a pixel scale of 2.1 mrad/pixel. All of the cameras utilize a frame-transfer CCD (charge-coupled device) with a 1024x1024 imaging region and red/near IR bandpass filters centered at 650 nm. The MSL engineering cameras are grouped into two sets of six: one set of cameras is connected to rover computer A and the other set is connected to rover computer B. The MSL rover carries 8 Hazcams and 4 Navcams.

  6. The Test Drive

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken at NASA's Jet Propulsion Laboratory shows engineers rehearsing the sol 133 (June 8, 2004) drive into 'Endurance' crater by NASA's Mars Exploration Rover Opportunity. Engineers and scientists have recreated the martian surface and slope the rover will encounter using a combination of bare and thinly sand-coated rocks, simulated martian 'blueberries' and a platform tilted at a 25-degree angle. The results of this test convinced engineers that the rover was capable of driving up and down a straight slope before it attempted the actual drive on Mars.

  7. Design Concept for a Nuclear Reactor-Powered Mars Rover

    NASA Technical Reports Server (NTRS)

    Elliott, John; Poston, Dave; Lipinski, Ron

    2007-01-01

    A report presents a design concept for an instrumented robotic vehicle (rover) to be used on a future mission of exploration of the planet Mars. The design incorporates a nuclear fission power system to provide long range, long life, and high power capabilities unachievable through the use of alternative solar or radioisotope power systems. The concept described in the report draws on previous rover designs developed for the 2009 Mars Science laboratory (MSL) mission to minimize the need for new technology developments.

  8. Microsensors and Microinstruments for Space Science and Exploration

    NASA Technical Reports Server (NTRS)

    Kukkonen, C. A.; Venneri, S.

    1997-01-01

    Most future NASA spacecraft will be small, low cost, highly integrated vehicles using advanced technology. This will also be true of planetary rovers. In order to maintain a high scientific value to these missions, the instruments, sensors and subsystems must be dramatically miniaturized without compromising their measurement capabilities. A rover must be designed to deliver its science package. In fact, the rover should be considered as the arms, legs and/or wheels that are needed to enable a mobile integrated scientific payload.

  9. Hybrid Aerial/Rover Vehicle

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron

    2003-01-01

    A proposed instrumented robotic vehicle called an "aerover" would fly, roll along the ground, and/or float on bodies of liquid, as needed. The aerover would combine features of an aerobot (a robotic lighter-than-air balloon) and a wheeled robot of the "rover" class. An aerover would also look very much like a variant of the "beach-ball" rovers. Although the aerover was conceived for use in scientific exploration of Titan (the largest moon of the planet Saturn), the aerover concept could readily be adapted to similar uses on Earth.

  10. Opportunity and Its Mother Ship

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image captured by the Mars Exploration Rover Opportunity's navigation camera shows the rover and the now-empty lander that carried it 283 million miles to Meridiani Planum, Mars. Engineers received confirmation that Opportunity's six wheels rolled off the lander and onto martian soil at 3:02 a.m. PST, January 31, 2004, on the seventh martian day, or sol, of the mission. The rover, seen at the bottom of the image, is approximately 1 meter (3 feet) in front of the lander, facing north.

  11. Mars pathfinder Rover egress deployable ramp assembly

    NASA Technical Reports Server (NTRS)

    Spence, Brian R.; Sword, Lee F.

    1996-01-01

    The Mars Pathfinder Program is a NASA Discovery Mission, led by the Jet Propulsion Laboratory, to launch and place a small planetary Rover for exploration on the Martian surface. To enable safe and successful egress of the Rover vehicle from the spacecraft, a pair of flight-qualified, deployable ramp assemblies have been developed. This paper focuses on the unique, lightweight deployable ramp assemblies. A brief mission overview and key design requirements are discussed. Design and development activities leading to qualification and flight systems are presented.

  12. KSC-03pd1137

    NASA Image and Video Library

    2003-04-15

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the lander petals of the Mars Exploration Rover 2 (MER-2) have been reopened to allow technicians access to one of the spacecraft's circuit boards. A concern arose during prelaunch testing regarding how the spacecraft interprets signals sent from its main computer to peripherals in the cruise stage, lander and small deep space transponder. The MER Mission consists of two identical rovers set to launch in June 2003. The problem will be fixed on both rovers.

  13. KSC-03pd1135

    NASA Image and Video Library

    2003-04-15

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians reopen the lander petals of the Mars Exploration Rover 2 (MER-2) to allow access to one of the spacecraft's circuit boards. A concern arose during prelaunch testing regarding how the spacecraft interprets signals sent from its main computer to peripherals in the cruise stage, lander and small deep space transponder. The MER Mission consists of two identical rovers set to launch in June 2003. The problem will be fixed on both rovers.

  14. KSC-03pd1136

    NASA Image and Video Library

    2003-04-15

    KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians reopen the lander petals of the Mars Exploration Rover 2 (MER-2) to allow access to one of the spacecraft's circuit boards. A concern arose during prelaunch testing regarding how the spacecraft interprets signals sent from its main computer to peripherals in the cruise stage, lander and small deep space transponder. The MER Mission consists of two identical rovers set to launch in June 2003. The problem will be fixed on both rovers.

  15. Rover Magnets All Around

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This illustration shows the locations of the various magnets on the Mars Exploration Rover, which are: its front side, or chest; its back, near the color calibration target; and on its rock abrasion tool. Scientists will use these tools to collect dust for detailed studies. The origins of martian dust are a mystery, although it is believed to come from at least one of three sources: volcanic ash, pulverized rocks or mineral precipitates from liqiud water. By studying the dust with the rover's two spectrometers, scientists hope to find an answer.

  16. Rover deployment system for lunar landing mission

    NASA Astrophysics Data System (ADS)

    Sutoh, Masataku; Hoshino, Takeshi; Wakabayashi, Sachiko

    2017-09-01

    For lunar surface exploration, a deployment system is necessary to allow a rover to leave the lander. The system should be as lightweight as possible and stored retracted when launched. In this paper, two types of retractable deployment systems for lunar landing missions, telescopic- and fold-type ramps, are discussed. In the telescopic-type system, a ramp is stored with the sections overlapping and slides out during deployment. In the fold-type system, it is stored folded and unfolds for the deployment. For the development of these ramps, a design concept study and structural analysis were conducted first. Subsequently, ramp deployment and rover release tests were performed using the developed ramp prototypes. Through these tests, the validity of their design concepts and functions have been confirmed. In the rover release test, it was observed that the developed lightweight ramp was sufficiently strong for a 50-kg rover to descend. This result suggests that this ramp system is suitable for the deployment of a 300-kg-class rover on the Moon, where the gravity is about one-sixth that on Earth. The lightweight and sturdy ramp developed in this study will contribute to both safe rover deployment and increase of lander/rover payload.

  17. KSC-03pd0537

    NASA Image and Video Library

    2003-02-24

    KENNEDY SPACE CENTER, FLA. -- The cruise stage, aeroshell and lander for the Mars Exploration Rover-1 mission and the MER-2 rover arrive at KSC's Multi-Payload Processing Facility. The same flight hardware for the MER-2 rover arrived Jan. 27; however, the MER-2 rover is scheduled to arrive at KSC in March. While at KSC, each of the two rovers, the aeroshells and the landers will undergo a full mission simulation. All of these flight elements will then be integrated together. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers will be identical to each other, but will land at different regions of Mars. Launch of the MER-1 is scheduled for May 30. MER-2 will follow June 25.

  18. Potential of Probing the Lunar Regolith using Rover-Mounted Ground Penetrating Radar: Moses Lake Dune Field Analog Study

    NASA Technical Reports Server (NTRS)

    Horz, F.; Heggy, E.; Fong, T.; Kring, D.; Deans, M.; Anglade, A.; Mahiouz, K.; Bualat, M.; Lee, P.; Bluethmann, W.

    2009-01-01

    Probing radars have been widely recognized by the science community to be an efficient tool to explore lunar subsurface providing a unique capability to address several scientific and operational issues. A wideband (200 to 1200 MHz) Ground Penetrating Radar (GPR) mounted on a surface rover can provide high vertical resolution and probing depth from few tens of centimeters to few tens of meters depending on the sounding frequency and the ground conductivity. This in term can provide a better understand regolith thickness, elemental iron concentration (including ilmenite), volatile presence, structural anomalies and fracturing. All those objectives are of important significance for understanding the local geology and potential sustainable resources for future landing sites in particular exploring the thickness, structural heterogeneity and potential volatiles presence in the lunar regolith. While the operation and data collection of GPR is a straightforward case for most terrestrial surveys, it is a challenging task for remote planetary study especially on robotic platforms due to the complexity of remote operation in rough terrains and the data collection constrains imposed by the mechanical motion of the rover and limitation in data transfer. Nevertheless, Rover mounted GPR can be of great support to perform systematic subsurface surveys for a given landing site as it can provide scientific and operational support in exploring subsurface resources and sample collections which can increase the efficiency of the EVA activities for potential human crews as part of the NASA Constellation Program. In this study we attempt to explore the operational challenges and their impact on the EVA scientific return for operating a rover mounted GPR in support of potential human activity on the moon. In this first field study, we mainly focused on the ability of GPR to support subsurface sample collection and explore shallow subsurface volatiles.

  19. Left Panorama of Spirit's Landing Site

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Left Panorama of Spirit's Landing Site

    This is a version of the first 3-D stereo image from the rover's navigation camera, showing only the view from the left stereo camera onboard the Mars Exploration Rover Spirit. The left and right camera images are combined to produce a 3-D image.

  20. Simulation of the Mars surface solar spectra for optimized performance of triple junction solar cells

    NASA Technical Reports Server (NTRS)

    Edmondson, Kenneth M.; Joslin, David E.; Fetzer, Chris M.; King, Richard R.; Karam, Nasser H.; Mardesich, Nick; Stella, Paul M.; Rapp, Donald; Mueller, Robert

    2005-01-01

    The unparalleled success of the Mars Exploration Rovers (MER) powered by GaInP/GaAs/Ge triple-junction solar cells has demonstrated a lifetime for the rovers that exceeded the baseline mission duration by more than a factor of five.

Top