Sample records for explore basic biological

  1. Model Organisms Fact Sheet: Using Model Organisms to Study Health and Disease

    MedlinePlus

    ... NIGMS use research organisms to explore the basic biology and chemistry of life. Scientists decide which organism ... controls allow for more precise understanding of the biological factors being studied and provide greater certainty about ...

  2. Diversity and history as drivers of helminth systematics and biology

    USDA-ARS?s Scientific Manuscript database

    Systematics is the foundation for biology. It provides a basic evolutionary map to discover, characterize and interpret global diversity and our place in the biosphere. It also allows us to explore questions related to host associations, life history, genetics, and patterns of infection and disease,...

  3. Role of Suzanne Mubarak Science Exploration Center in Motivating Physics Learning (abstract)

    NASA Astrophysics Data System (ADS)

    Mohsen, Mona

    2009-04-01

    The role of Science Exploration centers to promote learning ``beyond school walls'' is demonstrated. The Suzane Mubarak Science Exploration Center (www.smsec.com) at Hadaek El Kobba, Cairo, was inaugurated in 1998 with the assistance of Zusane Mubarak, the first lady of Egypt and the minister of education. It was the first interactive science and technology center in Egypt. After 10 years, the number of centers has increased to 33 nationwide. Since its inauguration the center has received over 3 million visitors. Through different facilities, such as the internet, science cities, multimedia, and virtual reality programs, basic principles of science are simplified and their technological applications in our daily lives are explored. These facilities are fully equipped with new media such as video conferencing, videotapes, overhead projectors, data shows, and libraries, as well as demonstration tools for basic science. The main objectives of the science exploration centers are discussed such as: (1) curricula development for on-line learning; (2) integration of e-learning programs into basic science (physics, mathematics, chemistry, and biology) and (3) workshops and organizations for students, teachers, and communities dealing with basic science programs.

  4. Chemical Foundations of Hydrogen Sulfide Biology

    PubMed Central

    Li, Qian; Lancaster, Jack R.

    2013-01-01

    Following nitric oxide (nitrogen monoxide) and carbon monoxide, hydrogen sulfide (or its newer systematic name sulfane, H2S) became the third small molecule that can be both toxic and beneficial depending on the concentration. In spite of its impressive therapeutic potential, the underlying mechanisms for its beneficial effects remain unclear. Any novel mechanism has to obey fundamental chemical principles. H2S chemistry was studied long before its biological relevance was discovered, however, with a few exceptions, these past works have received relatively little attention in the path of exploring the mechanistic conundrum of H2S biological functions. This review calls attention to the basic physical and chemical properties of H2S, focuses on the chemistry between H2S and its three potential biological targets: oxidants, metals and thiol derivatives, discusses the applications of these basics into H2S biology and methodology, and introduces the standard terminology to this youthful field. PMID:23850631

  5. Impact of Space Exploration on Biology and Medicine

    NASA Technical Reports Server (NTRS)

    Randt, Clark T.

    1960-01-01

    Basic human drives for pioneering and conquest can find acceptable expression in extraterrestrial exploration. It is unmistakably clear that our civilization cannot survive a thermonuclear conflict. The expression of aggressive drives in war has repeatedly supplied an impetus for unusual increments in the growth of the arts and sciences.. A historical review of intellectual progress and concomitant technological advance gives reason to expect that expanded knowledge of the universe will produce an unprecedented burst of creative activity in biology and medicine as well as in the physical sciences and engineering.

  6. Parts plus pipes: synthetic biology approaches to metabolic engineering

    PubMed Central

    Boyle, Patrick M.; Silver, Pamela A.

    2011-01-01

    Synthetic biologists combine modular biological “parts” to create higher-order devices. Metabolic engineers construct biological “pipes” by optimizing the microbial conversion of basic substrates to desired compounds. Many scientists work at the intersection of these two philosophies, employing synthetic devices to enhance metabolic engineering efforts. These integrated approaches promise to do more than simply improve product yields; they can expand the array of products that are tractable to produce biologically. In this review, we explore the application of synthetic biology techniques to next-generation metabolic engineering challenges, as well as the emerging engineering principles for biological design. PMID:22037345

  7. Making Science Work.

    ERIC Educational Resources Information Center

    Thomas, Lewis

    1981-01-01

    Presents a viewpoint concerning the impact of recent scientific advances on society. Discusses biological discoveries, space exploration, computer technology, development of new astronomical theories, the behavioral sciences, and basic research. Challenges to keeping science current with technological advancement are also discussed. (DS)

  8. Stem Cells and Society: An Undergraduate Course Exploring the Intersections among Science, Religion, and Law

    ERIC Educational Resources Information Center

    Pierret, Chris; Friedrichsen, Patricia

    2009-01-01

    The intersection of science and our society has led to legal and ethical issues in which we all play a part. To support development of scientific literacy, college science courses need to engage students in difficult dialogues around ethical issues. We describe a new course, Stem Cells and Society, in which students explore the basic biology of…

  9. Muscle Satellite Cells: Exploring the Basic Biology to Rule Them.

    PubMed

    Almeida, Camila F; Fernandes, Stephanie A; Ribeiro Junior, Antonio F; Keith Okamoto, Oswaldo; Vainzof, Mariz

    2016-01-01

    Adult skeletal muscle is a postmitotic tissue with an enormous capacity to regenerate upon injury. This is accomplished by resident stem cells, named satellite cells, which were identified more than 50 years ago. Since their discovery, many researchers have been concentrating efforts to answer questions about their origin and role in muscle development, the way they contribute to muscle regeneration, and their potential to cell-based therapies. Satellite cells are maintained in a quiescent state and upon requirement are activated, proliferating, and fusing with other cells to form or repair myofibers. In addition, they are able to self-renew and replenish the stem pool. Every phase of satellite cell activity is highly regulated and orchestrated by many molecules and signaling pathways; the elucidation of players and mechanisms involved in satellite cell biology is of extreme importance, being the first step to expose the crucial points that could be modulated to extract the optimal response from these cells in therapeutic strategies. Here, we review the basic aspects about satellite cells biology and briefly discuss recent findings about therapeutic attempts, trying to raise questions about how basic biology could provide a solid scaffold to more successful use of these cells in clinics.

  10. Knowledge, Expectations, and Inductive Reasoning within Conceptual Hierarchies

    ERIC Educational Resources Information Center

    Coley, John D.; Hayes, Brett; Lawson, Christopher; Moloney, Michelle

    2004-01-01

    Previous research (e.g. "Cognition" 64 (1997) 73) suggests that the privileged level for inductive inference in a folk biological conceptual hierarchy does not correspond to the ''basic'' level (i.e. the level at which concepts are both informative and distinct). To further explore inductive inference within conceptual hierarchies, we examine…

  11. Collection of wild Helianthus anomalus and deserticola sunflower from the desert southwest USA

    USDA-ARS?s Scientific Manuscript database

    Genetic resources are the biological basis of global food security. Collection and preservation of wild relatives of important crop species such as sunflower provide the basic foundation to improve and sustain the crop. Acquisition through exploration is the initial step in the germplasm conservatio...

  12. Understanding Cellular Respiration: An Analysis of Conceptual Change in College Biology.

    ERIC Educational Resources Information Center

    Songer, Catherine J.; Mintzes, Joel J.

    1994-01-01

    Explores and documents the frequencies of conceptual difficulties confronted by college students (n=200) seeking to understand the basic processes of cellular respiration. Findings suggest that novices harbor a wide range of conceptual difficulties that constrain their understanding of cellular respiration and many of these conceptual problems…

  13. Synthetic biology: exploring and exploiting genetic modularity through the design of novel biological networks.

    PubMed

    Agapakis, Christina M; Silver, Pamela A

    2009-07-01

    Synthetic biology has been used to describe many biological endeavors over the past thirty years--from designing enzymes and in vitro systems, to manipulating existing metabolisms and gene expression, to creating entirely synthetic replicating life forms. What separates the current incarnation of synthetic biology from the recombinant DNA technology or metabolic engineering of the past is an emphasis on principles from engineering such as modularity, standardization, and rigorously predictive models. As such, synthetic biology represents a new paradigm for learning about and using biological molecules and data, with applications in basic science, biotechnology, and medicine. This review covers the canonical examples as well as some recent advances in synthetic biology in terms of what we know and what we can learn about the networks underlying biology, and how this endeavor may shape our understanding of living systems.

  14. Understanding students' explanations of biological phenomena: Conceptual frameworks or p-prims?

    NASA Astrophysics Data System (ADS)

    Southerland, Sherry A.; Abrams, Eleanor; Cummins, Catherine L.; Anzelmo, Julie

    2001-07-01

    This study explores two differing perspectives of the nature of students' biological knowledge structures, conceptual frameworks, and p-prims. Students from four grade levels and from three regions of the United States were asked to explain a variety of biological phenomena. Students' responses to the interview probes were analyzed to describe 1) patterns in the nature of students' explanations across grade levels and interview probes, and 2) the consistency of students' explanations across individual interview probes and across the range of probes. The results were interpreted from both perspectives of knowledge structures. While definitive assertions supporting either perspective could not be made, each hypothesis was explored. Although the more prevalent description of student conceptions within a broader conceptual framework could not be discounted, the p-prim of need as a rationale for change was also found to offer a useful description of knowledge frameworks for this content area. The difficulties endemic to the use of biology for the study of basic knowledge structures are also discussed.

  15. OBPR Product Lines, Human Research Initiative, and Physics Roadmap for Exploration

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf

    2004-01-01

    The pace of change has increased at NASA. OBPR s focus is now on the Human interface as it relates to the new Exploration vision. The fundamental physics community must demonstrate how we can contribute. Many opportunities exist for physicists to participate in addressing NASA's cross-disciplinary exploration challenges: a) Physicists can contribute to elucidating basic operating principles for complex biological systems; b) Physics technologies can contribute to developing miniature sensors and systems required for manned missions to Mars. NASA Codes other than OBPR may be viable sources of funding for physics research.

  16. The Discovery of Carboxyethylpyrroles (CEPs): Critical Insights into AMD, Autism, Cancer, and Wound Healing from Basic Research on the Chemistry of Oxidized Phospholipids

    PubMed Central

    Salomon, Robert G.; Hong, Li; Hollyfield, Joe G.

    2011-01-01

    Basic research, exploring the hypothesis that 2-(ω-carboxyethyl)pyrrole (CEP) modifications of proteins are generated nonenzymatically in vivo is delivering a bonanza of molecular mechanistic insights into age-related macular degeneration, autism, cancer, and wound healing. CEPs are produced through covalent modification of protein lysyl ε-amino groups by γ-hydroxyalkenal phospholipids that are formed by oxidative cleavage of docosahexaenate-containing phospholipids. Chemical synthesis of CEP-modified proteins and the production of highly specific antibodies that recognize them preceded and facilitated their detection in vivo and enabled exploration of their biological occurrence and activities. This investigational approach –from the chemistry of biomolecules to disease phenotype – is proving to be remarkably productive. PMID:21875030

  17. Organic synthesis toward small-molecule probes and drugs

    PubMed Central

    Schreiber, Stuart L.

    2011-01-01

    “Organic synthesis” is a compound-creating activity often focused on biologically active small molecules. This special issue of PNAS explores innovations and trends in the field that are enabling the synthesis of new types of small-molecule probes and drugs. This perspective article frames the research described in the special issue but also explores how these modern capabilities can both foster a new and more extensive view of basic research in the academy and promote the linkage of life-science research to the discovery of novel types of small-molecule therapeutics [Schreiber SL (2009) Chem Bio Chem 10:26–29]. This new view of basic research aims to bridge the chasm between basic scientific discoveries in life sciences and new drugs that treat the root cause of human disease—recently referred to as the “valley of death” for drug discovery. This perspective article describes new roles that modern organic chemistry will need to play in overcoming this challenge. PMID:21464328

  18. From Purines to Basic Biochemical Concepts: Experiments for High School Students

    ERIC Educational Resources Information Center

    Marini, Isabella; Ipata, Piero Luigi

    2007-01-01

    Many high school biology courses address mainly the molecular and cellular basis of life. The complexity that underlies the most essential processes is often difficult for the students to understand; possibly, in part, because of the inability to see and explore them. Six simple practical experiments on purine catabolism as a part of a…

  19. Name that Gene: A Meaningful Computer-Based Genetics Classroom Activity that Incorporates Tolls Used by Real Research Scientists

    ERIC Educational Resources Information Center

    Wefer, Stephen H.

    2003-01-01

    "Name That Gene" is a simple classroom activity that incorporates bioinformatics (available biological information) into the classroom using "Basic Logical Alignment Search Tool (BLAST)." An excellent classroom activity involving bioinformatics and "BLAST" has been previously explored using sequences from bacteria, but it is tailored for college…

  20. Nuclear winter - Physics and physical mechanisms

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Toon, O. B.; Pollack, J. B.; Ackerman, T. P.; Sagan, C.

    1991-01-01

    The basic physics of the environmental perturbations caused by multiple nuclear detonations is explored, summarizing current knowledge of the possible physical, chemical, and biological impacts of nuclear war. Emphasis is given to the impact of the bomb-generated smoke (soot) particles. General classes of models that have been used to simulate nuclear winter are examined, using specific models as examples.

  1. BIOLOGICAL NETWORK EXPLORATION WITH CYTOSCAPE 3

    PubMed Central

    Su, Gang; Morris, John H.; Demchak, Barry; Bader, Gary D.

    2014-01-01

    Cytoscape is one of the most popular open-source software tools for the visual exploration of biomedical networks composed of protein, gene and other types of interactions. It offers researchers a versatile and interactive visualization interface for exploring complex biological interconnections supported by diverse annotation and experimental data, thereby facilitating research tasks such as predicting gene function and pathway construction. Cytoscape provides core functionality to load, visualize, search, filter and save networks, and hundreds of Apps extend this functionality to address specific research needs. The latest generation of Cytoscape (version 3.0 and later) has substantial improvements in function, user interface and performance relative to previous versions. This protocol aims to jump-start new users with specific protocols for basic Cytoscape functions, such as installing Cytoscape and Cytoscape Apps, loading data, visualizing and navigating the network, visualizing network associated data (attributes) and identifying clusters. It also highlights new features that benefit experienced users. PMID:25199793

  2. Management Options in Triple-Negative Breast Cancer

    PubMed Central

    Minami, Christina A.; Chung, Debra U.; Chang, Helena R.

    2011-01-01

    Notorious for its poor prognosis and aggressive nature, triple-negative breast cancer (TNBC) is a heterogeneous disease entity. The nature of its biological specificity, which is similar to basal-like cancers, tumors arising in BRCA1 mutation carriers, and claudin-low cancers, is currently being explored in hopes of finding the targets for novel biologics and chemotherapeutic agents. In this review, we aim to give a broad overview of the disease’s nomenclature and epidemiology, as well as the basic mechanisms of emerging targeted therapies and their performance in clinical trials to date. PMID:21863131

  3. The challenges of informatics in synthetic biology: from biomolecular networks to artificial organisms

    PubMed Central

    Ramoni, Marco F.

    2010-01-01

    The field of synthetic biology holds an inspiring vision for the future; it integrates computational analysis, biological data and the systems engineering paradigm in the design of new biological machines and systems. These biological machines are built from basic biomolecular components analogous to electrical devices, and the information flow among these components requires the augmentation of biological insight with the power of a formal approach to information management. Here we review the informatics challenges in synthetic biology along three dimensions: in silico, in vitro and in vivo. First, we describe state of the art of the in silico support of synthetic biology, from the specific data exchange formats, to the most popular software platforms and algorithms. Next, we cast in vitro synthetic biology in terms of information flow, and discuss genetic fidelity in DNA manipulation, development strategies of biological parts and the regulation of biomolecular networks. Finally, we explore how the engineering chassis can manipulate biological circuitries in vivo to give rise to future artificial organisms. PMID:19906839

  4. Opening the Discussion through Challenging Companion Meanings and Pedagogical Approaches That De-Center

    ERIC Educational Resources Information Center

    Rosser, Sue V.

    2014-01-01

    Many aspects of the paper "What if we were in a test tube?: students' gendered meaning making during a biology lesson about the basic facts of the human genitals" intrigue and warrant further exploration. This forum will focus on two particular areas: (1) An expansion of the companion meanings by examining how they resonate with…

  5. Native Plants and Seeds, Oh My! Fifth Graders Explore an Unfamiliar Subject While Learning Plant Basics

    ERIC Educational Resources Information Center

    Pauley, Lauren; Weege, Kendra; Koomen, Michele Hollingsworth

    2016-01-01

    Native plants are not typically the kinds of plants that are used in elementary classroom studies of plant biology. More commonly, students sprout beans or investigate with fast plants. At the time the authors started their plant unit (November), the school-yard garden had an abundance of native plants that had just started seeding, including…

  6. iTAG Barley: A grade 7-12 curriculum to explore inheritance of traits and genes using Oregon Wolfe Barley

    USDA-ARS?s Scientific Manuscript database

    One of the basic concepts in biology is that an organism’s physical traits are controlled by its DNA. In other words, one’s genotype for a particular trait controls the phenotype that is expressed. Yet, this connection between DNA and physical characteristic is not always made. The ‘Inheritance o...

  7. Life sciences and environmental sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment,more » applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.« less

  8. Understanding the biology and control of the poultry red mite Dermanyssus gallinae: a review.

    PubMed

    Pritchard, James; Kuster, Tatiana; Sparagano, Olivier; Tomley, Fiona

    2015-01-01

    Dermanyssus gallinae, the poultry red mite (PRM), is a blood-feeding ectoparasite capable of causing pathology in birds, amongst other animals. It is an increasingly important pathogen in egg layers and is responsible for substantial economic losses to the poultry industry worldwide. Even though PRM poses a serious problem, very little is known about the basic biology of the mite. Here we review the current body of literature describing red mite biology and discuss how this has been, or could be, used to develop methods to control PRM infestations. We focus primarily on the PRM digestive system, salivary glands, nervous system and exoskeleton and also explore areas of PRM biology which have to date received little or no study but have the potential to offer new control targets.

  9. Limits to Self-Organising Systems of Learning--The Kalikuppam Experiment

    ERIC Educational Resources Information Center

    Mitra, Sugata; Dangwal, Ritu

    2010-01-01

    What and how much can children learn without subject teachers? In an attempt to find a limit to self organized learning, we explored the capacity of 10-14 year old Tamil-speaking children in a remote Indian village to learn basic molecular biology, initially on their own with a Hole-in-the-Wall public computer facility, and later with the help of…

  10. Basic functional trade-offs in cognition: An integrative framework.

    PubMed

    Del Giudice, Marco; Crespi, Bernard J

    2018-06-14

    Trade-offs between advantageous but conflicting properties (e.g., speed vs. accuracy) are ubiquitous in cognition, but the relevant literature is conceptually fragmented, scattered across disciplines, and has not been organized in a coherent framework. This paper takes an initial step toward a general theory of cognitive trade-offs by examining four key properties of goal-directed systems: performance, efficiency, robustness, and flexibility. These properties define a number of basic functional trade-offs that can be used to map the abstract "design space" of natural and artificial cognitive systems. Basic functional trade-offs provide a shared vocabulary to describe a variety of specific trade-offs including speed vs. accuracy, generalist vs. specialist, exploration vs. exploitation, and many others. By linking specific features of cognitive functioning to general properties such as robustness and efficiency, it becomes possible to harness some powerful insights from systems engineering and systems biology to suggest useful generalizations, point to under-explored but potentially important trade-offs, and prompt novel hypotheses and connections between disparate areas of research. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Parameter space exploration within dynamic simulations of signaling networks.

    PubMed

    De Ambrosi, Cristina; Barla, Annalisa; Tortolina, Lorenzo; Castagnino, Nicoletta; Pesenti, Raffaele; Verri, Alessandro; Ballestrero, Alberto; Patrone, Franco; Parodi, Silvio

    2013-02-01

    We started offering an introduction to very basic aspects of molecular biology, for the reader coming from computer sciences, information technology, mathematics. Similarly we offered a minimum of information about pathways and networks in graph theory, for a reader coming from the bio-medical sector. At the crossover about the two different types of expertise, we offered some definition about Systems Biology. The core of the article deals with a Molecular Interaction Map (MIM), a network of biochemical interactions involved in a small signaling-network sub-region relevant in breast cancer. We explored robustness/sensitivity to random perturbations. It turns out that our MIM is a non-isomorphic directed graph. For non physiological directions of propagation of the signal the network is quite resistant to perturbations. The opposite happens for biologically significant directions of signal propagation. In these cases we can have no signal attenuation, and even signal amplification. Signal propagation along a given pathway is highly unidirectional, with the exception of signal-feedbacks, that again have a specific biological role and significance. In conclusion, even a relatively small network like our present MIM reveals the preponderance of specific biological functions over unspecific isomorphic behaviors. This is perhaps the consequence of hundreds of millions of years of biological evolution.

  12. Acidic and basic drugs in medicinal chemistry: a perspective.

    PubMed

    Charifson, Paul S; Walters, W Patrick

    2014-12-11

    The acid/base properties of a molecule are among the most fundamental for drug action. However, they are often overlooked in a prospective design manner unless it has been established that a certain ionization state (e.g., quaternary base or presence of a carboxylic acid) appears to be required for activity. In medicinal chemistry optimization programs it is relatively common to attenuate basicity to circumvent undesired effects such as lack of biological selectivity or safety risks such as hERG or phospholipidosis. However, teams may not prospectively explore a range of carefully chosen compound pKa values as part of an overall chemistry strategy or design hypothesis. This review summarizes the potential advantages and disadvantages of both acidic and basic drugs and provides some new analyses based on recently available public data.

  13. Basic autonomy as a fundamental step in the synthesis of life.

    PubMed

    Ruiz-Mirazo, Kepa; Moreno, Alvaro

    2004-01-01

    In the search for the primary roots of autonomy (a pivotal concept in Varela's comprehensive understanding of living beings), the theory of autopoiesis provided an explicit criterion to define minimal life in universal terms, and was taken as a guideline in the research program for the artificial synthesis of biological systems. Acknowledging the invaluable contribution of the autopoietic school to present biological thinking, we offer an alternative way of conceiving the most basic forms of autonomy. We give a bottom-up account of the origins of "self-production" (or self-construction, as we propose to call it), pointing out which are the minimal material and energetic requirements for the constitution of basic autonomous systems. This account is, indeed, committed to the project of developing a general theory of biology, but well grounded in the universal laws of physics and chemistry. We consider that the autopoietic theory was formulated in highly abstract terms and, in order to advance in the implementation of minimal autonomous systems (and, at the same time, make major progress in exploring the origins of life), a more specific characterization of minimal autonomous systems is required. Such a characterization will not be drawn from a review of the autopoietic criteria and terminology (à la Fleischaker) but demands a whole reformulation of the question: a proper naturalization of the concept of autonomy. Finally, we also discuss why basic autonomy, according to our account, is necessary but not sufficient for life, in contrast with Varela's idea that autopoiesis was a necessary and sufficient condition for it.

  14. Introducing chemical biology applications to introductory organic chemistry students using series of weekly assignments.

    PubMed

    Kanin, Maralee R; Pontrello, Jason K

    2016-01-01

    Calls to bring interdisciplinary content and examples into introductory science courses have increased, yet strategies that involve course restructuring often suffer from the need for a significant faculty commitment to motivate change. Minimizing the need for dramatic course reorganization, the structure, reactivity, and chemical biology applications of classes of biological monomers and polymers have been integrated into introductory organic chemistry courses through three series of semester-long weekly assignments that explored (a) Carbohydrates and Oligosaccharides, (b) Amino Acids, Peptides, and Proteins, and (c) Nucleosides, Nucleotides, and Nucleic Acids. Comparisons of unannounced pre- and post tests revealed improved understanding of a reaction introduced in the assignments, and course examinations evaluated cumulative assignment topics. Course surveys revealed that demonstrating biologically relevant applications consistently throughout the semesters enhanced student interest in the connection between basic organic chemistry content and its application to new and unfamiliar bio-related examples. Covering basic material related to these classes of molecules outside of the classroom opened lecture time to allow the instructor to further build on information developed through the weekly assignments, teaching advanced topics and applications typically not covered in an introductory organic chemistry lecture course. Assignments were implemented as homework, either with or without accompanying discussion, in both laboratory and lecture organic courses within the context of the existing course structures. © 2015 The International Union of Biochemistry and Molecular Biology.

  15. A Transparent Window into Biology: A Primer on Caenorhabditis elegans.

    PubMed

    Corsi, Ann K; Wightman, Bruce; Chalfie, Martin

    2015-06-01

    A little over 50 years ago, Sydney Brenner had the foresight to develop the nematode (round worm) Caenorhabditis elegans as a genetic model for understanding questions of developmental biology and neurobiology. Over time, research on C. elegans has expanded to explore a wealth of diverse areas in modern biology including studies of the basic functions and interactions of eukaryotic cells, host-parasite interactions, and evolution. C. elegans has also become an important organism in which to study processes that go awry in human diseases. This primer introduces the organism and the many features that make it an outstanding experimental system, including its small size, rapid life cycle, transparency, and well-annotated genome. We survey the basic anatomical features, common technical approaches, and important discoveries in C. elegans research. Key to studying C. elegans has been the ability to address biological problems genetically, using both forward and reverse genetics, both at the level of the entire organism and at the level of the single, identified cell. These possibilities make C. elegans useful not only in research laboratories, but also in the classroom where it can be used to excite students who actually can see what is happening inside live cells and tissues. Copyright © 2015 Corsi, Wightman, and Chalfie.

  16. [Basics and clinical application of human mesenchymal stromal/stem cells].

    PubMed

    Miura, Yasuo

    2015-10-01

    Human mesenchymal stromal/stem cells (MSCs) show a variety of biological characteristics. The clinical trials database provided by the National Institutes of Health, USA, contains about 400 clinical trials of MSCs for a wide range of therapeutic applications internationally (http://www.clinicaltrials.gov, key words "mesenchymal stem cells", as of April, 2015). Encouraging results from these clinical trials include evidence of efficacy against graft versus host disease (GVHD) in hematopoietic stem cell transplantation. Treatment for and/or prevention of engraftment failure and insufficient hematopoietic recovery have also been explored. Herein, we will address the basic principles of MSCs and the current status of clinical studies using MSCs. Future prospects for MSC-based therapy will also be discussed.

  17. Basic energy sciences: Summary of accomplishments

    NASA Astrophysics Data System (ADS)

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  18. Basic Energy Sciences: Summary of Accomplishments

    DOE R&D Accomplishments Database

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  19. Underdetermination in evidence-based medicine.

    PubMed

    Chin-Yee, Benjamin H

    2014-12-01

    This article explores the philosophical implications of evidence-based medicine's (EBM's) epistemology in terms of the problem of underdetermination of theory by evidence as expounded by the Duhem-Quine thesis. EBM hierarchies of evidence privilege clinical research over basic science, exacerbating the problem of underdetermination. Because of severe underdetermination, EBM is unable to meaningfully test core medical beliefs that form the basis of our understanding of disease and therapeutics. As a result, EBM adopts an epistemic attitude that is sceptical of explanations from the basic biological sciences, and is relegated to a view of disease at a population level. EBM's epistemic attitude provides a limited research heuristic by preventing the development of a theoretical framework required for understanding disease mechanism and integrating knowledge to develop new therapies. Medical epistemology should remain pluralistic and include complementary approaches of basic science and clinical research, thus avoiding the limited epistemic attitude entailed by EBM hierarchies. © 2014 John Wiley & Sons, Ltd.

  20. Yeast Genomics for Bread, Beer, Biology, Bucks and Breath

    NASA Astrophysics Data System (ADS)

    Sakharkar, Kishore R.; Sakharkar, Meena K.

    The rapid advances and scale up of projects in DNA sequencing dur ing the past two decades have produced complete genome sequences of several eukaryotic species. The versatile genetic malleability of the yeast, and the high degree of conservation between its cellular processes and those of human cells have made it a model of choice for pioneering research in molecular and cell biology. The complete sequence of yeast genome has proven to be extremely useful as a reference towards the sequences of human and for providing systems to explore key gene functions. Yeast has been a ‘legendary model’ for new technologies and gaining new biological insights into basic biological sciences and biotechnology. This chapter describes the awesome power of yeast genetics, genomics and proteomics in understanding of biological function. The applications of yeast as a screening tool to the field of drug discovery and development are highlighted and the traditional importance of yeast for bakers and brewers is discussed.

  1. Bridging the gap to therapeutic strategies based on connexin/pannexin biology.

    PubMed

    Naus, Christian C; Giaume, Christian

    2016-11-29

    A unique workshop was recently held focusing on enhancing collaborations leading to identify and update the development of therapeutic strategies targeting connexin/pannexin large pore channels. Basic scientists exploring the functions of these channels in various pathologies gathered together with leading pharma companies which are targeting gap junction proteins for specific therapeutic applications. This highlights how paths of discovery research can converge with therapeutic strategies in innovative ways to enhance target identification and validation.

  2. Chemogenomics: a discipline at the crossroad of high throughput technologies, biomarker research, combinatorial chemistry, genomics, cheminformatics, bioinformatics and artificial intelligence.

    PubMed

    Maréchal, Eric

    2008-09-01

    Chemogenomics is the study of the interaction of functional biological systems with exogenous small molecules, or in broader sense the study of the intersection of biological and chemical spaces. Chemogenomics requires expertises in biology, chemistry and computational sciences (bioinformatics, cheminformatics, large scale statistics and machine learning methods) but it is more than the simple apposition of each of these disciplines. Biological entities interacting with small molecules can be isolated proteins or more elaborate systems, from single cells to complete organisms. The biological space is therefore analyzed at various postgenomic levels (genomic, transcriptomic, proteomic or any phenotypic level). The space of small molecules is partially real, corresponding to commercial and academic collections of compounds, and partially virtual, corresponding to the chemical space possibly synthesizable. Synthetic chemistry has developed novel strategies allowing a physical exploration of this universe of possibilities. A major challenge of cheminformatics is to charter the virtual space of small molecules using realistic biological constraints (bioavailability, druggability, structural biological information). Chemogenomics is a descendent of conventional pharmaceutical approaches, since it involves the screening of chemolibraries for their effect on biological targets, and benefits from the advances in the corresponding enabling technologies and the introduction of new biological markers. Screening was originally motivated by the rigorous discovery of new drugs, neglecting and throwing away any molecule that would fail to meet the standards required for a therapeutic treatment. It is now the basis for the discovery of small molecules that might or might not be directly used as drugs, but which have an immense potential for basic research, as probes to explore an increasing number of biological phenomena. Concerns about the environmental impact of chemical industry open new fields of research for chemogenomics.

  3. Translational bioinformatics: linking the molecular world to the clinical world.

    PubMed

    Altman, R B

    2012-06-01

    Translational bioinformatics represents the union of translational medicine and bioinformatics. Translational medicine moves basic biological discoveries from the research bench into the patient-care setting and uses clinical observations to inform basic biology. It focuses on patient care, including the creation of new diagnostics, prognostics, prevention strategies, and therapies based on biological discoveries. Bioinformatics involves algorithms to represent, store, and analyze basic biological data, including DNA sequence, RNA expression, and protein and small-molecule abundance within cells. Translational bioinformatics spans these two fields; it involves the development of algorithms to analyze basic molecular and cellular data with an explicit goal of affecting clinical care.

  4. [Precision medicine: new opportunities and challenges for molecular epidemiology].

    PubMed

    Song, Jing; Hu, Yonghua

    2016-04-01

    Since the completion of the Human Genome Project in 2003 and the announcement of the Precision Medicine Initiative by U.S. President Barack Obama in January 2015, human beings have initially completed the " three steps" of " genomics to biology, genomics to health as well as genomics to society". As a new inter-discipline, the emergence and development of precision medicine have relied on the support and promotion from biological science, basic medicine, clinical medicine, epidemiology, statistics, sociology and information science, etc. Meanwhile, molecular epidemiology is considered to be the core power to promote precision medical as a cross discipline of epidemiology and molecular biology. This article is based on the characteristics and research progress of medicine and molecular epidemiology respectively, focusing on the contribution and significance of molecular epidemiology to precision medicine, and exploring the possible opportunities and challenges in the future.

  5. Cell biology: at the center of modern biomedicine.

    PubMed

    Budde, Priya Prakash; Williams, Elizabeth H; Misteli, Tom

    2012-10-01

    How does basic cell biology contribute to biomedicine? A new series of Features in JCB provides a cross section of compelling examples of how basic cell biology findings can lead to therapeutics. These articles highlight the fruitful, essential, and increasingly prominent bridge that exists between cell biology and the clinic.

  6. Making evolutionary biology a basic science for medicine

    PubMed Central

    Nesse, Randolph M.; Bergstrom, Carl T.; Ellison, Peter T.; Flier, Jeffrey S.; Gluckman, Peter; Govindaraju, Diddahally R.; Niethammer, Dietrich; Omenn, Gilbert S.; Perlman, Robert L.; Schwartz, Mark D.; Thomas, Mark G.; Stearns, Stephen C.; Valle, David

    2010-01-01

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease. PMID:19918069

  7. Evolution in health and medicine Sackler colloquium: Making evolutionary biology a basic science for medicine.

    PubMed

    Nesse, Randolph M; Bergstrom, Carl T; Ellison, Peter T; Flier, Jeffrey S; Gluckman, Peter; Govindaraju, Diddahally R; Niethammer, Dietrich; Omenn, Gilbert S; Perlman, Robert L; Schwartz, Mark D; Thomas, Mark G; Stearns, Stephen C; Valle, David

    2010-01-26

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease.

  8. Life is three-dimensional, and it begins with molecules.

    PubMed

    Bourne, Philip E

    2017-03-01

    The iconic image of the DNA double helix embodies the central role that three-dimensional structures play in understanding biological processes, which, in turn, impact health and well-being. Here, that role is explored through the eyes of one scientist, who has been lucky enough to have over 150 talented people pass through his laboratory. Each contributed to that understanding. What follows is a small fraction of their story, with an emphasis on basic research outcomes of importance to society at large.

  9. Developing microRNA therapeutics.

    PubMed

    van Rooij, Eva; Purcell, Angela L; Levin, Arthur A

    2012-02-03

    Rarely a new research area has gotten such an overwhelming amount of attention as have microRNAs. Although several basic questions regarding their biological principles still remain to be answered, many specific characteristics of microRNAs in combination with compelling therapeutic efficacy data and a clear involvement in human disease have triggered the biotechnology community to start exploring the possibilities of viewing microRNAs as therapeutic entities. This review serves to provide some general insight into some of the current microRNAs targets, how one goes from the initial bench discovery to actually developing a therapeutically useful modality, and will briefly summarize the current patent landscape and the companies that have started to explore microRNAs as the next drug target.

  10. Kirlian Photography as a Teaching Tool of Physics

    NASA Astrophysics Data System (ADS)

    Terrel, Andy; Thacker, Beth Ann, , Dr.

    2002-10-01

    There are a number of groups across the country working on redesigning introductory physics courses by incorporating physics education research, modeling, and making the courses appeal to students in broader fields. We spent the summer exploring Kirlian photography, a subject that can be understood by students with a basic comprehension of electrostatics but is still questioned by many people in other fields. Kirlian photography's applications have captivated alternative medicine but still requires research from both physics and biology to understand if it has potential as medical tool. We used a simple setup to reproduce the physics that has been done to see if it could be used in an educational setting. I will demonstrate how Kirlian photography can be explained by physics but also how the topic still needs research to completely understand its possible biological applications. By incorporating such a topic into a curriculum, one is able to teach students to explore supposed supernatural phenomena scientifically and to promote research among undergraduate students.

  11. Circulating Tumor Cell and Cell-free Circulating Tumor DNA in Lung Cancer.

    PubMed

    Nurwidya, Fariz; Zaini, Jamal; Putra, Andika Chandra; Andarini, Sita; Hudoyo, Achmad; Syahruddin, Elisna; Yunus, Faisal

    2016-09-01

    Circulating tumor cells (CTCs) are tumor cells that are separated from the primary site or metastatic lesion and disseminate in blood circulation. CTCs are considered to be part of the long process of cancer metastasis. As a 'liquid biopsy', CTC molecular examination and investigation of single cancer cells create an important opportunity for providing an understanding of cancer biology and the process of metastasis. In the last decade, we have seen dramatic development in defining the role of CTCs in lung cancer in terms of diagnosis, genomic alteration determination, treatment response and, finally, prognosis prediction. The aims of this review are to understand the basic biology and to review methods of detection of CTCs that apply to the various types of solid tumor. Furthermore, we explored clinical applications, including treatment monitoring to anticipate therapy resistance as well as biomarker analysis, in the context of lung cancer. We also explored the potential use of cell-free circulating tumor DNA (ctDNA) in the genomic alteration analysis of lung cancer.

  12. Explorative solid-phase extraction (E-SPE) for accelerated microbial natural product discovery, dereplication, and purification.

    PubMed

    Månsson, Maria; Phipps, Richard K; Gram, Lone; Munro, Murray H G; Larsen, Thomas O; Nielsen, Kristian F

    2010-06-25

    Microbial natural products (NP) cover a high chemical diversity, and in consequence extracts from microorganisms are often complex to analyze and purify. A distribution analysis of calculated pK(a) values from the 34390 records in Antibase2008 revealed that within pH 2-11, 44% of all included compounds had an acidic functionality, 17% a basic functionality, and 9% both. This showed a great potential for using ion-exchange chromatography as an integral part of the separation procedure, orthogonal to the classic reversed-phase strategy. Thus, we investigated the use of an "explorative solid-phase extraction" (E-SPE) protocol using SAX, Oasis MAX, SCX, and LH-20 columns for targeted exploitation of chemical functionalities. E-SPE provides a minimum of fractions (15) for chemical and biological analyses and implicates development into a preparative scale methodology. Overall, this allows fast extract prioritization, easier dereplication, mapping of biological activities, and formulation of a purification strategy.

  13. ``What if we were in a test tube?'' Students' gendered meaning making during a biology lesson about the basic facts of the human genitals

    NASA Astrophysics Data System (ADS)

    Orlander, Auli Arvola

    2014-06-01

    This paper explores what happens in the encounters between presentations of "basic facts" about the human genitals and 15-year-old students during a biology lesson in a Swedish secondary school. In this paper, meaning making was approached as relational, context-dependent and continually transacted. For this reason the analysis was conducted through a series of close readings of situations where students interacted with each other and the teacher in opening up gaps about alternative ways of discussing gender. Drawing on Foucault's theories about the inclusion and exclusion of knowledge and the subsequent work of Butler and other feminist researchers, the paper illuminates what gendered relations remain tacit in the conversation. It then illustrates possible ways in which these tacit gendered meanings could be made overt and discussed with the students when making meaning about the human genitals. The paper also shows how the ways in which human genitals are transacted in the science classroom have importance for what kind of learning is made available to the students.

  14. Characterization of soluble microbial products in a drinking water biological aerated filter.

    PubMed

    Kang, Jia; Ma, Teng-Fei; Zhang, Peng; Gao, Xu; Chen, You-Peng

    2016-05-01

    Utilization-associated products (UAPs) and biomass-associated products (BAPs) were quantified separately in this study to characterize soluble microbial products (SMPs) in a drinking water lab-scale biological aerated filter (BAF), and their basic characteristics were explored using gel filtration chromatography and three-dimensional excitation-emission matrix (3D-EEM) spectrophotometry with fluorescence regional integration analysis and parallel factor model. UAPs were observed increased with the increase of filter media depth and accumulated after BAF treatment, whereas BAPs were basically constant. 3D-EEM spectroscopy analysis result showed that tryptophan and protein-like compounds were the main components of UAPs and BAPs, and fulvic-acid-like substance was a major component of BAPs, rather than UAPs. In terms of molecular weight (MW) distribution, UAP MW presented a bimodal distribution in the range of 1-5 and >10 kDa, while BAP MW exhibited unimodal distribution with MW >20 kDa fraction accounting for more than 90 %. The macromolecules of UAPs accumulated after BAF treatment. This study provides theoretical support for in-depth study of SMP characteristics.

  15. Recent advances in inkjet dispensing technologies: applications in drug discovery.

    PubMed

    Zhu, Xiangcheng; Zheng, Qiang; Yang, Hu; Cai, Jin; Huang, Lei; Duan, Yanwen; Xu, Zhinan; Cen, Peilin

    2012-09-01

    Inkjet dispensing technology is a promising fabrication methodology widely applied in drug discovery. The automated programmable characteristics and high-throughput efficiency makes this approach potentially very useful in miniaturizing the design patterns for assays and drug screening. Various custom-made inkjet dispensing systems as well as specialized bio-ink and substrates have been developed and applied to fulfill the increasing demands of basic drug discovery studies. The incorporation of other modern technologies has further exploited the potential of inkjet dispensing technology in drug discovery and development. This paper reviews and discusses the recent developments and practical applications of inkjet dispensing technology in several areas of drug discovery and development including fundamental assays of cells and proteins, microarrays, biosensors, tissue engineering, basic biological and pharmaceutical studies. Progression in a number of areas of research including biomaterials, inkjet mechanical systems and modern analytical techniques as well as the exploration and accumulation of profound biological knowledge has enabled different inkjet dispensing technologies to be developed and adapted for high-throughput pattern fabrication and miniaturization. This in turn presents a great opportunity to propel inkjet dispensing technology into drug discovery.

  16. Special aspects for forming the interiors of thai shopping malls through the use of the biological approach

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Iryna O.; Rosliakova, Ljubov V.; Zakharchuk, Viktorija L.; Samosudova, Natalia

    2017-10-01

    This study reviews the biological approach to Thai shopping mall’s interior design planning. The authors defined the principles of the mall’s design optimization in Thailand on the basis of the imitation of biological samples at constructive, art-compositional, organizational and ecological levels. The analysis of forming the shopping malls interiors and space-planning solutions is based on the imitation of eight basic levels of organization of living things: molecules, cells, tissues, organs, organisms, populations, ecosystem and biosphere. The examples of the direct and implicit application of biological analogues were demonstrated in the architecture and design of Thai shopping malls. In the study, the shopping mall is regarded as an open self-sufficient system with a high level of autonomy and a fortified structural organization that includes various functional components. On the basis of the analysis of existing Thai shopping malls, a list of the basic requirements for the design of the malls was compiled. This corresponds to the needs and desires of the modern customer and ensures the competitiveness of the establishment. The phenomenon of multisensory design approach that enhances the psychophysical comfort of the shopping mall visitors is described. Socio-cultural and geographical factors were identified which determine the development of biodesign in Thailand. The article reveals the potential for a combination of biology and design to enhance the aesthetics, ergonomics and efficiency of the shopping malls. The prospects within the development of this field and the possibility of applying the solutions in practice were explored.

  17. Emerging Biomimetic Applications of DNA Nanotechnology.

    PubMed

    Shen, Haijing; Wang, Yingqian; Wang, Jie; Li, Zhihao; Yuan, Quan

    2018-06-25

    Re-engineering cellular components and biological processes has received great interest and promised compelling advantages in applications ranging from basic cell biology to biomedicine. With the advent of DNA nanotechnology, the programmable self-assembly ability makes DNA an appealing candidate for rational design of artificial components with different structures and functions. This Forum Article summarizes recent developments of DNA nanotechnology in mimicking the structures and functions of existing cellular components. We highlight key successes in the achievements of DNA-based biomimetic membrane proteins and discuss the assembly behavior of these artificial proteins. Then, we focus on the construction of higher-order structures by DNA nanotechnology to recreate cell-like structures. Finally, we explore the current challenges and speculate on future directions of DNA nanotechnology in biomimetics.

  18. Development and verification of hardware for life science experiments in the Japanese Experiment Module "Kibo" on the International Space Station.

    PubMed

    Ishioka, Noriaki; Suzuki, Hiromi; Asashima, Makoto; Kamisaka, Seiichiro; Mogami, Yoshihiro; Ochiai, Toshimasa; Aizawa-Yano, Sachiko; Higashibata, Akira; Ando, Noboru; Nagase, Mutsumu; Ogawa, Shigeyuki; Shimazu, Toru; Fukui, Keiji; Fujimoto, Nobuyoshi

    2004-03-01

    Japan Aerospace Exploration Agency (JAXA) has developed a cell biology experiment facility (CBEF) and a clean bench (CB) as a common hardware in which life science experiments in the Japanese Experiment Module (JEM known as "Kibo") of the International Space Station (ISS) can be performed. The CBEF, a CO2 incubator with a turntable that provides variable gravity levels, is the basic hardware required to carry out the biological experiments using microorganisms, cells, tissues, small animals, plants, etc. The CB provides a closed aseptic operation area for life science and biotechnology experiments in Kibo. A phase contrast and fluorescence microscope is installed inside CB. The biological experiment units (BEU) are designed to run individual experiments using the CBEF and the CB. A plant experiment unit (PEU) and two cell experiment units (CEU type1 and type2) for the BEU have been developed.

  19. Fluorescent nucleobases as tools for studying DNA and RNA

    NASA Astrophysics Data System (ADS)

    Xu, Wang; Chan, Ke Min; Kool, Eric T.

    2017-11-01

    Understanding the diversity of dynamic structures and functions of DNA and RNA in biology requires tools that can selectively and intimately probe these biomolecules. Synthetic fluorescent nucleobases that can be incorporated into nucleic acids alongside their natural counterparts have emerged as a powerful class of molecular reporters of location and environment. They are enabling new basic insights into DNA and RNA, and are facilitating a broad range of new technologies with chemical, biological and biomedical applications. In this Review, we will present a brief history of the development of fluorescent nucleobases and explore their utility as tools for addressing questions in biophysics, biochemistry and biology of nucleic acids. We provide chemical insights into the two main classes of these compounds: canonical and non-canonical nucleobases. A point-by-point discussion of the advantages and disadvantages of both types of fluorescent nucleobases is made, along with a perspective into the future challenges and outlook for this burgeoning field.

  20. Urine: Waste product or biologically active tissue?

    PubMed

    2018-03-01

    Historically, urine has been viewed primarily as a waste product with little biological role in the overall health of an individual. Increasingly, data suggest that urine plays a role in human health beyond waste excretion. For example, urine might act as an irritant and contribute to symptoms through interaction with-and potential compromise of-the urothelium. To explore the concept that urine may be a vehicle for agents with potential or occult bioactivity and to discuss existing evidence and novel research questions that may yield insight into such a role, the National Institute of Diabetes and Digestive and Kidney Disease invited experts in the fields of comparative evolutionary physiology, basic science, nephrology, urology, pediatrics, metabolomics, and proteomics (among others) to a Urinology Think Tank meeting on February 9, 2015. This report reflects ideas that evolved from this meeting and current literature, including the concept of urine quality, the biological, chemical, and physical characteristics of urine, including the microbiota, cells, exosomes, pH, metabolites, proteins, and specific gravity (among others). Additionally, the manuscript presents speculative, and hopefully testable, ideas about the functional roles of urine constituents in health and disease. Moving forward, there are several questions that need further understanding and pursuit. There were suggestions to consider actively using various animal models and their biological specimens to elaborate on basic mechanistic information regarding human bladder dysfunction. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  1. Oxygen regulates molecular mechanisms of cancer progression and metastasis.

    PubMed

    Gupta, Kartik; Madan, Esha; Sayyid, Muzzammil; Arias-Pulido, Hugo; Moreno, Eduardo; Kuppusamy, Periannan; Gogna, Rajan

    2014-03-01

    Oxygen is the basic molecule which supports life and it truly is "god's gift to life." Despite its immense importance, research on "oxygen biology" has never received the light of the day and has been limited to physiological and biochemical studies. It seems that in modern day biology, oxygen research is summarized in one word "hypoxia." Scientists have focused on hypoxia-induced transcriptomics and molecular-cellular alterations exclusively in disease models. Interestingly, the potential of oxygen to control the basic principles of biology like homeostatic maintenance, transcription, replication, and protein folding among many others, at the molecular level, has been completely ignored. Here, we present a perspective on the crucial role played by oxygen in regulation of basic biological phenomena. Our conclusion highlights the importance of establishing novel research areas like oxygen biology, as there is great potential in this field for basic science discoveries and clinical benefits to the society.

  2. Biological Based Risk Assessment for Space Exploration

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2011-01-01

    Exposures from galactic cosmic rays (GCR) - made up of high-energy protons and high-energy and charge (HZE) nuclei, and solar particle events (SPEs) - comprised largely of low- to medium-energy protons are the primary health concern for astronauts for long-term space missions. Experimental studies have shown that HZE nuclei produce both qualitative and quantitative differences in biological effects compared to terrestrial radiation, making risk assessments for cancer and degenerative risks, such as central nervous system effects and heart disease, highly uncertain. The goal for space radiation protection at NASA is to be able to reduce the uncertainties in risk assessments for Mars exploration to be small enough to ensure acceptable levels of risks are not exceeded and to adequately assess the efficacy of mitigation measures such as shielding or biological countermeasures. We review the recent BEIR VII and UNSCEAR-2006 models of cancer risks and their uncertainties. These models are shown to have an inherent 2-fold uncertainty as defined by ratio of the 95% percent confidence level to the mean projection, even before radiation quality is considered. In order to overcome the uncertainties in these models, new approaches to risk assessment are warranted. We consider new computational biology approaches to modeling cancer risks. A basic program of research that includes stochastic descriptions of the physics and chemistry of radiation tracks and biochemistry of metabolic pathways, to emerging biological understanding of cellular and tissue modifications leading to cancer is described.

  3. Slow science: the value of long ocean biogeochemistry records.

    PubMed

    Henson, Stephanie A

    2014-09-28

    Sustained observations (SOs) have provided invaluable information on the ocean's biology and biogeochemistry for over 50 years. They continue to play a vital role in elucidating the functioning of the marine ecosystem, particularly in the light of ongoing climate change. Repeated, consistent observations have provided the opportunity to resolve temporal and/or spatial variability in ocean biogeochemistry, which has driven exploration of the factors controlling biological parameters and processes. Here, I highlight some of the key breakthroughs in biological oceanography that have been enabled by SOs, which include areas such as trophic dynamics, understanding variability, improved biogeochemical models and the role of ocean biology in the global carbon cycle. In the near future, SOs are poised to make progress on several fronts, including detecting climate change effects on ocean biogeochemistry, high-resolution observations of physical-biological interactions and greater observational capability in both the mesopelagic zone and harsh environments, such as the Arctic. We are now entering a new era for biological SOs, one in which our motivations have evolved from the need to acquire basic understanding of the ocean's state and variability, to a need to understand ocean biogeochemistry in the context of increasing pressure in the form of climate change, overfishing and eutrophication.

  4. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  5. Multiscale mechanobiology: computational models for integrating molecules to multicellular systems

    PubMed Central

    Mak, Michael; Kim, Taeyoon

    2015-01-01

    Mechanical signals exist throughout the biological landscape. Across all scales, these signals, in the form of force, stiffness, and deformations, are generated and processed, resulting in an active mechanobiological circuit that controls many fundamental aspects of life, from protein unfolding and cytoskeletal remodeling to collective cell motions. The multiple scales and complex feedback involved present a challenge for fully understanding the nature of this circuit, particularly in development and disease in which it has been implicated. Computational models that accurately predict and are based on experimental data enable a means to integrate basic principles and explore fine details of mechanosensing and mechanotransduction in and across all levels of biological systems. Here we review recent advances in these models along with supporting and emerging experimental findings. PMID:26019013

  6. Physics through the 1990s: Scientific interfaces and technological applications

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume examines the scientific interfaces and technological applications of physics. Twelve areas are dealt with: biological physics-biophysics, the brain, and theoretical biology; the physics-chemistry interface-instrumentation, surfaces, neutron and synchrotron radiation, polymers, organic electronic materials; materials science; geophysics-tectonics, the atmosphere and oceans, planets, drilling and seismic exploration, and remote sensing; computational physics-complex systems and applications in basic research; mathematics-field theory and chaos; microelectronics-integrated circuits, miniaturization, future trends; optical information technologies-fiber optics and photonics; instrumentation; physics applications to energy needs and the environment; national security-devices, weapons, and arms control; medical physics-radiology, ultrasonics, MNR, and photonics. An executive summary and many chapters contain recommendations regarding funding, education, industry participation, small-group university research and large facility programs, government agency programs, and computer database needs.

  7. [Seed geography: its concept and basic scientific issues].

    PubMed

    Yu, Shun-Li; Wang, Zong-Shuai; Zeren, Wangmu

    2010-01-01

    In this paper, a new concept 'seed geography' was provided, and its definition, research contents, and scientific issues were put forward. Seed geography is a newly developed interdisciplinary science from plant geography, seed ecology, and phytosociology, which studies the geographic variation patterns of seed biological traits as well as their relationships with environmental factors from macroscopic to microscopic, and the seed formation, development, and change trends. The main research contents would include geography of seed mass, geography of seed chemical components, geography of seed morphology, geography of seed cell biological characteristics, geography of seed physiological characteristics, geography of seed genetic characteristics, and geography of flower and fruit. To explore the scientific issues in seed geography would help us to better understand the long-term adaptation and evolution of seed characteristics to natural environments.

  8. Exploring Biology Teachers' Pedagogical Content Knowledge in the Teaching of Genetics in Swaziland Science Classrooms

    NASA Astrophysics Data System (ADS)

    Mthethwa-Kunene, Eunice; Oke Onwu, Gilbert; de Villiers, Rian

    2015-05-01

    This study explored the pedagogical content knowledge (PCK) and its development of four experienced biology teachers in the context of teaching school genetics. PCK was defined in terms of teacher content knowledge, pedagogical knowledge and knowledge of students' preconceptions and learning difficulties. Data sources of teacher knowledge base included teacher-constructed concept maps, pre- and post-lesson teacher interviews, video-recorded genetics lessons, post-lesson teacher questionnaire and document analysis of teacher's reflective journals and students' work samples. The results showed that the teachers' individual PCK profiles consisted predominantly of declarative and procedural content knowledge in teaching basic genetics concepts. Conditional knowledge, which is a type of meta-knowledge for blending together declarative and procedural knowledge, was also demonstrated by some teachers. Furthermore, the teachers used topic-specific instructional strategies such as context-based teaching, illustrations, peer teaching, and analogies in diverse forms but failed to use physical models and individual or group student experimental activities to assist students' internalization of the concepts. The finding that all four teachers lacked knowledge of students' genetics-related preconceptions was equally significant. Formal university education, school context, journal reflection and professional development programmes were considered as contributing to the teachers' continuing PCK development. Implications of the findings for biology teacher education are briefly discussed.

  9. SH2 Domain-Based FRET Biosensor for Measuring BCR-ABL Activity in Living CML Cells.

    PubMed

    Fujioka, Mari; Asano, Yumi; Nakada, Shigeyuki; Ohba, Yusuke

    2017-01-01

    Fluorescent proteins (FPs) displaying distinct spectra have shed their light on a wide range of biological functions. Moreover, sophisticated biosensors engineered to contain single or multiple FPs, including Förster resonance energy transfer (FRET)-based biosensors, spatiotemporally reveal the molecular mechanisms underlying a variety of pathophysiological processes. However, their usefulness for applied life sciences has yet to be fully explored. Recently, our research group has begun to expand the potential of FPs from basic biological research to the clinic. Here, we describe a method to evaluate the responsiveness of leukemia cells from patients to tyrosine kinase inhibitors using a biosensor based on FP technology and the principle of FRET. Upon phosphorylation of the tyrosine residue of the biosensor, binding of the SH2 domain to phosphotyrosine induces conformational change of the biosensor and brings the donor and acceptor FPs into close proximity. Therefore, kinase activity and response to kinase inhibitors can be monitored by an increase and a decrease in FRET efficiency, respectively. As in basic research, this biosensor resolves hitherto arduous tasks and may provide innovative technological advances in clinical laboratory examinations. State-of-the-art detection devices that enable such innovation are also introduced.

  10. Mathematical models of cell motility.

    PubMed

    Flaherty, Brendan; McGarry, J P; McHugh, P E

    2007-01-01

    Cell motility is an essential biological action in the creation, operation and maintenance of our bodies. Developing mathematical models elucidating cell motility will greatly advance our understanding of this fundamental biological process. With accurate models it is possible to explore many permutations of the same event and concisely investigate their outcome. While great advancements have been made in experimental studies of cell motility, it now has somewhat fallen on mathematical models to taking a leading role in future developments. The obvious reason for this is the complexity of cell motility. Employing the processing power of today's computers will give researches the ability to run complex biophysical and biochemical scenarios, without the inherent difficulty and time associated with in vitro investigations. Before any great advancement can be made, the basics of cell motility will have to be well-defined. Without this, complicated mathematical models will be hindered by their inherent conjecture. This review will look at current mathematical investigations of cell motility, explore the reasoning behind such work and conclude with how best to advance this interesting and challenging research area.

  11. Revisiting Preschoolers' Living Things Concept: A Microgenetic Analysis of Conceptual Change in Basic Biology

    ERIC Educational Resources Information Center

    Opfer, John E.; Siegler, Robert S.

    2004-01-01

    Many preschoolers know that plants and animals share basic biological properties, but this knowledge does not usually lead them to conclude that plants, like animals, are living things. To resolve this seeming paradox, we hypothesized that preschoolers largely base their judgments of life status on a biological property, capacity for teleological…

  12. Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum.

    PubMed

    Alabouvette, Claude; Olivain, Chantal; Migheli, Quirico; Steinberg, Christian

    2009-11-01

    Plant diseases induced by soil-borne plant pathogens are among the most difficult to control. In the absence of effective chemical control methods, there is renewed interest in biological control based on application of populations of antagonistic micro-organisms. In addition to Pseudomonas spp. and Trichoderma spp., which are the two most widely studied groups of biological control agents, the protective strains of Fusarium oxysporum represent an original model. These protective strains of F. oxysporum can be used to control wilt induced by pathogenic strains of the same species. Exploring the mechanisms involved in the protective capability of these strains is not only necessary for their development as commercial biocontrol agents but raises many basic questions related to the determinism of pathogenicity versus biocontrol capacity in the F. oxysporum species complex. In this paper, current knowledge regarding the interaction between the plant and the protective strains is reviewed in comparison with interactions between the plant and pathogenic strains. The success of biological control depends not only on plant-microbial interactions but also on the ecological fitness of the biological control agents.

  13. Cytomegalovirus and immunotherapy: opportunistic pathogen, novel target for cancer and a promising vaccine vector.

    PubMed

    Quinn, Michael; Erkes, Dan A; Snyder, Christopher M

    2016-02-01

    Cytomegalovirus (CMV) is a β-herpesvirus that infects most people in the world and is almost always asymptomatic in the healthy host. However, CMV persists for life, requiring continuous immune surveillance to prevent disease and thus, CMV is a frequent complication in immune compromised patients. Many groups have been exploring the potential for adoptive T-cell therapies to control CMV reactivation as well as the progression of solid tumors harboring CMV. In addition, CMV itself is being explored as a vaccine vector for eliciting potent T-cell responses. This review will discuss key features of the basic biology of CMV-specific T cells as well as highlighting unanswered questions and ongoing work in the development of T-cell-based immunotherapies to target CMV.

  14. The physical characteristics of human proteins in different biological functions.

    PubMed

    Wang, Tengjiao; Tang, Hailin

    2017-01-01

    The physical properties of gene products are the foundation of their biological functions. In this study, we systematically explored relationships between physical properties and biological functions. The physical properties including origin time, evolution pressure, mRNA and protein stability, molecular weight, hydrophobicity, acidity/alkaline, amino acid compositions, and chromosome location. The biological functions are defined from 4 aspects: biological process, molecular function, cellular component and cell/tissue/organ expression. We found that the proteins associated with basic material and energy metabolism process originated earlier, while the proteins associated with immune, neurological system process etc. originated later. Tissues may have a strong influence on evolution pressure. The proteins associated with energy metabolism are double-stable. Immune and peripheral cell proteins tend to be mRNA stable/protein unstable. There are very few function items with double-unstable of mRNA and protein. The proteins involved in the cell adhesion tend to consist of large proteins with high proportion of small amino acids. The proteins of organic acid transport, neurological system process and amine transport have significantly high hydrophobicity. Interestingly, the proteins involved in olfactory receptor activity tend to have high frequency of aromatic, sulfuric and hydroxyl amino acids.

  15. The physical characteristics of human proteins in different biological functions

    PubMed Central

    Tang, Hailin

    2017-01-01

    The physical properties of gene products are the foundation of their biological functions. In this study, we systematically explored relationships between physical properties and biological functions. The physical properties including origin time, evolution pressure, mRNA and protein stability, molecular weight, hydrophobicity, acidity/alkaline, amino acid compositions, and chromosome location. The biological functions are defined from 4 aspects: biological process, molecular function, cellular component and cell/tissue/organ expression. We found that the proteins associated with basic material and energy metabolism process originated earlier, while the proteins associated with immune, neurological system process etc. originated later. Tissues may have a strong influence on evolution pressure. The proteins associated with energy metabolism are double-stable. Immune and peripheral cell proteins tend to be mRNA stable/protein unstable. There are very few function items with double-unstable of mRNA and protein. The proteins involved in the cell adhesion tend to consist of large proteins with high proportion of small amino acids. The proteins of organic acid transport, neurological system process and amine transport have significantly high hydrophobicity. Interestingly, the proteins involved in olfactory receptor activity tend to have high frequency of aromatic, sulfuric and hydroxyl amino acids. PMID:28459865

  16. Recent science and its exploration: the case of molecular biology.

    PubMed

    Rheinberger, Hans-Jörg

    2009-03-01

    This paper is about the interaction and the intertwinement between history of science as a historical process and history of science as the historiography of this process, taking molecular biology as an example. In the first part, two historical shifts are briefly characterized that appear to have punctuated the emergence of molecular biology between the 1930s and the 1980s, one connected to a new generation of analytical apparatus, the other to properly molecular tools. The second part concentrates on the historiography of this development. Basically, it distinguishes three phases. The first phase was largely dominated by accounts of the actors themselves. The second coincided with the general 'practical turn' in history of science at large, and today's historical appropriations of the molecularization of the life sciences appear to be marked by the changing disciplinary status of the science under review. In a closing remark, an argument is made for differentiating between long-range, middle-range and short-range perspectives in dealing with the history of the sciences.

  17. Modularization of biochemical networks based on classification of Petri net t-invariants.

    PubMed

    Grafahrend-Belau, Eva; Schreiber, Falk; Heiner, Monika; Sackmann, Andrea; Junker, Björn H; Grunwald, Stefanie; Speer, Astrid; Winder, Katja; Koch, Ina

    2008-02-08

    Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior.With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system. Here, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied. We considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability. We propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis.

  18. Modularization of biochemical networks based on classification of Petri net t-invariants

    PubMed Central

    Grafahrend-Belau, Eva; Schreiber, Falk; Heiner, Monika; Sackmann, Andrea; Junker, Björn H; Grunwald, Stefanie; Speer, Astrid; Winder, Katja; Koch, Ina

    2008-01-01

    Background Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior. With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system. Methods Here, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied. Results We considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability. Conclusion We propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis. PMID:18257938

  19. Awakening interest in the natural sciences - BASF's Kids' Labs.

    PubMed

    Lang, Cinthia

    2012-01-01

    At BASF's Ludwigshafen headquarters, kids and young adults in grades 1-13 can learn about chemistry in the Kids' Labs. Different programs exist for different levels of knowledge. In the two 'Hands-on Lab H(2)O & Co.' Kids' Labs, students from grades 1-6 explore the secrets of chemistry. BASF Kids' Labs have now been set up in over 30 countries. In Switzerland alone, almost 2,000 students have taken part in the 'Water Loves Chemistry' Kids' Lab since it was started in 2011. In Alsace, 600 students have participated to date. In the Teens' Lab 'Xplore Middle School', middle school students explore five different programs with the themes 'substance labyrinth', 'nutrition', 'coffee, caffeine & co.', 'cosmetics' and 'energy'. Biotechnological methods are the focus of the Teens' Lab 'Xplore Biotech' for students taking basic and advanced biology courses. In the 'Xplore High School' Teens' Lab, chemistry teachers present their own experimental lab instruction for students in basic and advanced chemistry courses. The Virtual Lab has been expanding the offerings of the BASF Kids' Labs since 2011. The online lab was developed by the company for the International Year Of Chemistry and gives kids and young adults the opportunity to do interactive experiments outside of the lab.

  20. Functions of MicroRNAs in Cardiovascular Biology and Disease

    PubMed Central

    Hata, Akiko

    2015-01-01

    In 1993, lin-4 was discovered as a critical modulator of temporal development in Caenorhabditis elegans and, most notably, as the first in the class of small, single-stranded noncoding RNAs now defined as microRNAs (miRNAs). Another eight years elapsed before miRNA expression was detected in mammalian cells. Since then, explosive advancements in the field of miRNA biology have elucidated the basic mechanism of miRNA biogenesis, regulation, and gene-regulatory function. The discovery of this new class of small RNAs has augmented the complexity of gene-regulatory programs as well as the understanding of developmental and pathological processes in the cardiovascular system. Indeed, the contributions of miRNAs in cardiovascular development and function have been widely explored, revealing the extensive role of these small regulatory RNAs in cardiovascular physiology. PMID:23157557

  1. New Combinational Method for Noninvasive Treatments of Superficial Tissues for Body Aesthetics Applications

    NASA Astrophysics Data System (ADS)

    Rybyanets, A. N.; Naumenko, A. A.

    The paper introduces an innovative combinational treatment method based on ultrasonic standing waves (USW) technology for noninvasive surgical, therapeutic, lypolitic or cosmetic treatment of tissues including subcutaneous adipose tissue, cellulite or skin on arbitrary body part of patient. The method is based on simultaneous or successive applying of constructively interfering physically and biologically sensed influences: USW, ultrasonic shear waves, radio-frequency (RF) heating, and vacuum massage. The paper provides basic physical principles of USW as well as critical comparison of USW and HIFU methods. The results of finite-elements and finite- difference modeling of USW transducer design and nodal pattern structure in tissue are presented. Biological effects of USW-tissue interaction and synergetic aspects of USW and RF combination are explored. Combinational treatment transducer designs and original in-vitro experiments on tissues are described.

  2. Epigenomics and the concept of degeneracy in biological systems

    PubMed Central

    Mason, Paul H.; Barron, Andrew B.

    2014-01-01

    Researchers in the field of epigenomics are developing more nuanced understandings of biological complexity, and exploring the multiple pathways that lead to phenotypic expression. The concept of degeneracy—referring to the multiple pathways that a system recruits to achieve functional plasticity—is an important conceptual accompaniment to the growing body of knowledge in epigenomics. Distinct from degradation, redundancy and dilapidation; degeneracy refers to the plasticity of traits whose function overlaps in some environments, but diverges in others. While a redundant system is composed of repeated identical elements performing the same function, a degenerate system is composed of different elements performing similar or overlapping functions. Here, we describe the degenerate structure of gene regulatory systems from the basic genetic code to flexible epigenomic modifications, and discuss how these structural features have contributed to organism complexity, robustness, plasticity and evolvability. PMID:24335757

  3. Research in Undergraduate Instruction: A Biotech Lab Project for Recombinant DNA Protein Expression in Bacteria

    NASA Astrophysics Data System (ADS)

    Brockman, Mark; Ordman, Alfred B.; Campbell, A. Malcolm

    1996-06-01

    In the sophomore-level Molecular Biology and Biotechnology course at Beloit College, students learn basic methods in molecular biology in the context of pursuing a semester-long original research project. We are exploring how DNA sequence affects expression levels of proteins. A DNA fragment encoding all or part of the guanylate monokinase (gmk) sequence is cloned into pSP73 and expressed in E. coli. A monoclonal antibody is made to gmk. The expression level of gmk is determined by SDS gel elctrophoresis, a Western blot, and an ELISA assay. Over four years, an increase in enrollment in the course from 9 to 34 students, the 85% of majors pursuing advanced degrees, and course evaluations all support the conclusion that involving students in research during undergraduate courses encourages them to pursue careers in science.

  4. Slow science: the value of long ocean biogeochemistry records

    PubMed Central

    Henson, Stephanie A.

    2014-01-01

    Sustained observations (SOs) have provided invaluable information on the ocean's biology and biogeochemistry for over 50 years. They continue to play a vital role in elucidating the functioning of the marine ecosystem, particularly in the light of ongoing climate change. Repeated, consistent observations have provided the opportunity to resolve temporal and/or spatial variability in ocean biogeochemistry, which has driven exploration of the factors controlling biological parameters and processes. Here, I highlight some of the key breakthroughs in biological oceanography that have been enabled by SOs, which include areas such as trophic dynamics, understanding variability, improved biogeochemical models and the role of ocean biology in the global carbon cycle. In the near future, SOs are poised to make progress on several fronts, including detecting climate change effects on ocean biogeochemistry, high-resolution observations of physical–biological interactions and greater observational capability in both the mesopelagic zone and harsh environments, such as the Arctic. We are now entering a new era for biological SOs, one in which our motivations have evolved from the need to acquire basic understanding of the ocean's state and variability, to a need to understand ocean biogeochemistry in the context of increasing pressure in the form of climate change, overfishing and eutrophication. PMID:25157192

  5. JPRS Report, China, Handbook of Military Knowledge for Commanders

    DTIC Science & Technology

    1988-03-07

    Chemical and Biological Weapons Chapter I Nuclear Weapons (178) A. Summary Statement on Nuclear Weapons (178) 1. Basic Principles of Nuclear...199) 1. Basic Principles of Protection Against Nuclear, Chemical and Biological Weapons* (199) 2. Maior Actions For Protection Against Nuclear...people’s bodies through the digestive tract. Skin contact. Biological warfare agents may enter the body directly through the skin , mucous membranes or

  6. Hitting the right target: taxonomic challenges for, and of, plant invasions

    PubMed Central

    Pyšek, Petr; Hulme, Philip E.; Meyerson, Laura A.; Smith, Gideon F.; Boatwright, James S.; Crouch, Neil R.; Figueiredo, Estrela; Foxcroft, Llewellyn C.; Jarošík, Vojtěch; Richardson, David M.; Suda, Jan; Wilson, John R. U.

    2013-01-01

    This paper explores how a lack of taxonomic expertise, and by implication a dearth of taxonomic products such as identification tools, has hindered progress in understanding and managing biological invasions. It also explores how the taxonomic endeavour could benefit from studies of invasive species. We review the literature on the current situation in taxonomy with a focus on the challenges of identifying alien plant species and explore how this has affected the study of biological invasions. Biosecurity strategies, legislation dealing with invasive species, quarantine, weed surveillance and monitoring all depend on accurate and rapid identification of non-native taxa. However, such identification can be challenging because the taxonomic skill base in most countries is diffuse and lacks critical mass. Taxonomic resources are essential for the effective management of invasive plants and incorrect identifications can impede ecological studies. On the other hand, biological invasions have provided important tests of basic theories about species concepts. Better integration of classical alpha taxonomy and modern genetic taxonomic approaches will improve the accuracy of species identification and further refine taxonomic classification at the level of populations and genotypes in the field and laboratory. Modern taxonomy therefore needs to integrate both classical and new concepts and approaches. In particular, differing points of view between the proponents of morphological and molecular approaches should be negotiated because a narrow taxonomic perspective is harmful; the rigour of taxonomic decision-making clearly increases if insights from a variety of different complementary disciplines are combined and confronted. Taxonomy plays a critical role in the study of plant invasions and in turn benefits from the insights gained from these studies.

  7. Student understanding of pH: "i don't know what the log actually is, i only know where the button is on my calculator".

    PubMed

    Watters, Dianne J; Watters, James J

    2006-07-01

    In foundation biochemistry and biological chemistry courses, a major problem area that has been identified is students' lack of understanding of pH, acids, bases, and buffers and their inability to apply their knowledge in solving acid/base problems. The aim of this study was to explore students' conceptions of pH and their ability to solve problems associated with the behavior of biological acids to understand the source of student difficulties. The responses given by most students are characteristic of an atomistic approach in which they pay no attention to the structure of the problem and concentrate only on juggling the elements together until they get a solution. Many students reported difficulty in understanding what the question was asking and were unable to interpret a simple graph showing the pH activity profile of an enzyme. The most startling finding was the lack of basic understanding of logarithms and the inability of all except one student to perform a simple calculation on logs without a calculator. This deficiency in high school mathematical skills severely hampered their understanding of pH. This study has highlighted a widespread deficiency in basic mathematical skills among first year undergraduates and a fragmented understanding of acids and bases. Implications for the way in which the concepts of pH and buffers are taught are discussed. Copyright © 2006 International Union of Biochemistry and Molecular Biology, Inc.

  8. Artificial Symmetry-Breaking for Morphogenetic Engineering Bacterial Colonies.

    PubMed

    Nuñez, Isaac N; Matute, Tamara F; Del Valle, Ilenne D; Kan, Anton; Choksi, Atri; Endy, Drew; Haseloff, Jim; Rudge, Timothy J; Federici, Fernan

    2017-02-17

    Morphogenetic engineering is an emerging field that explores the design and implementation of self-organized patterns, morphologies, and architectures in systems composed of multiple agents such as cells and swarm robots. Synthetic biology, on the other hand, aims to develop tools and formalisms that increase reproducibility, tractability, and efficiency in the engineering of biological systems. We seek to apply synthetic biology approaches to the engineering of morphologies in multicellular systems. Here, we describe the engineering of two mechanisms, symmetry-breaking and domain-specific cell regulation, as elementary functions for the prototyping of morphogenetic instructions in bacterial colonies. The former represents an artificial patterning mechanism based on plasmid segregation while the latter plays the role of artificial cell differentiation by spatial colocalization of ubiquitous and segregated components. This separation of patterning from actuation facilitates the design-build-test-improve engineering cycle. We created computational modules for CellModeller representing these basic functions and used it to guide the design process and explore the design space in silico. We applied these tools to encode spatially structured functions such as metabolic complementation, RNAPT7 gene expression, and CRISPRi/Cas9 regulation. Finally, as a proof of concept, we used CRISPRi/Cas technology to regulate cell growth by controlling methionine synthesis. These mechanisms start from single cells enabling the study of morphogenetic principles and the engineering of novel population scale structures from the bottom up.

  9. 3-D Technology Approaches for Biological Ecologies

    NASA Astrophysics Data System (ADS)

    Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team

    Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).

  10. A high-throughput screening approach to discovering good forms of biologically inspired visual representation.

    PubMed

    Pinto, Nicolas; Doukhan, David; DiCarlo, James J; Cox, David D

    2009-11-01

    While many models of biological object recognition share a common set of "broad-stroke" properties, the performance of any one model depends strongly on the choice of parameters in a particular instantiation of that model--e.g., the number of units per layer, the size of pooling kernels, exponents in normalization operations, etc. Since the number of such parameters (explicit or implicit) is typically large and the computational cost of evaluating one particular parameter set is high, the space of possible model instantiations goes largely unexplored. Thus, when a model fails to approach the abilities of biological visual systems, we are left uncertain whether this failure is because we are missing a fundamental idea or because the correct "parts" have not been tuned correctly, assembled at sufficient scale, or provided with enough training. Here, we present a high-throughput approach to the exploration of such parameter sets, leveraging recent advances in stream processing hardware (high-end NVIDIA graphic cards and the PlayStation 3's IBM Cell Processor). In analogy to high-throughput screening approaches in molecular biology and genetics, we explored thousands of potential network architectures and parameter instantiations, screening those that show promising object recognition performance for further analysis. We show that this approach can yield significant, reproducible gains in performance across an array of basic object recognition tasks, consistently outperforming a variety of state-of-the-art purpose-built vision systems from the literature. As the scale of available computational power continues to expand, we argue that this approach has the potential to greatly accelerate progress in both artificial vision and our understanding of the computational underpinning of biological vision.

  11. A High-Throughput Screening Approach to Discovering Good Forms of Biologically Inspired Visual Representation

    PubMed Central

    Pinto, Nicolas; Doukhan, David; DiCarlo, James J.; Cox, David D.

    2009-01-01

    While many models of biological object recognition share a common set of “broad-stroke” properties, the performance of any one model depends strongly on the choice of parameters in a particular instantiation of that model—e.g., the number of units per layer, the size of pooling kernels, exponents in normalization operations, etc. Since the number of such parameters (explicit or implicit) is typically large and the computational cost of evaluating one particular parameter set is high, the space of possible model instantiations goes largely unexplored. Thus, when a model fails to approach the abilities of biological visual systems, we are left uncertain whether this failure is because we are missing a fundamental idea or because the correct “parts” have not been tuned correctly, assembled at sufficient scale, or provided with enough training. Here, we present a high-throughput approach to the exploration of such parameter sets, leveraging recent advances in stream processing hardware (high-end NVIDIA graphic cards and the PlayStation 3's IBM Cell Processor). In analogy to high-throughput screening approaches in molecular biology and genetics, we explored thousands of potential network architectures and parameter instantiations, screening those that show promising object recognition performance for further analysis. We show that this approach can yield significant, reproducible gains in performance across an array of basic object recognition tasks, consistently outperforming a variety of state-of-the-art purpose-built vision systems from the literature. As the scale of available computational power continues to expand, we argue that this approach has the potential to greatly accelerate progress in both artificial vision and our understanding of the computational underpinning of biological vision. PMID:19956750

  12. RNA Graph Partitioning for the Discovery of RNA Modularity: A Novel Application of Graph Partition Algorithm to Biology

    PubMed Central

    Elmetwaly, Shereef; Schlick, Tamar

    2014-01-01

    Graph representations have been widely used to analyze and design various economic, social, military, political, and biological networks. In systems biology, networks of cells and organs are useful for understanding disease and medical treatments and, in structural biology, structures of molecules can be described, including RNA structures. In our RNA-As-Graphs (RAG) framework, we represent RNA structures as tree graphs by translating unpaired regions into vertices and helices into edges. Here we explore the modularity of RNA structures by applying graph partitioning known in graph theory to divide an RNA graph into subgraphs. To our knowledge, this is the first application of graph partitioning to biology, and the results suggest a systematic approach for modular design in general. The graph partitioning algorithms utilize mathematical properties of the Laplacian eigenvector (µ2) corresponding to the second eigenvalues (λ2) associated with the topology matrix defining the graph: λ2 describes the overall topology, and the sum of µ2′s components is zero. The three types of algorithms, termed median, sign, and gap cuts, divide a graph by determining nodes of cut by median, zero, and largest gap of µ2′s components, respectively. We apply these algorithms to 45 graphs corresponding to all solved RNA structures up through 11 vertices (∼220 nucleotides). While we observe that the median cut divides a graph into two similar-sized subgraphs, the sign and gap cuts partition a graph into two topologically-distinct subgraphs. We find that the gap cut produces the best biologically-relevant partitioning for RNA because it divides RNAs at less stable connections while maintaining junctions intact. The iterative gap cuts suggest basic modules and assembly protocols to design large RNA structures. Our graph substructuring thus suggests a systematic approach to explore the modularity of biological networks. In our applications to RNA structures, subgraphs also suggest design strategies for novel RNA motifs. PMID:25188578

  13. Increasing Student Understanding of Microscope Optics by Building and Testing the Limits of Simple, Hand-Made Model Microscopes†

    PubMed Central

    Drace, Kevin; Couch, Brett; Keeling, Patrick J.

    2012-01-01

    The ability to effectively use a microscope to observe microorganisms is a crucial skill required for many disciplines within biology, especially general microbiology and cell biology. A basic understanding of the optical properties of light microscopes is required for students to use microscopes effectively, but this subject can also be a challenge to make personally interesting to students. To explore basic optical principles of magnification and resolving power in a more engaging and hands-on fashion, students constructed handmade lenses and microscopes based on Antony van Leeuwenhoek’s design using simple materials—paper, staples, glass, and adhesive putty. Students determined the power of their lenses using a green laser pointer to magnify a copper grid of known size, which also allowed students to examine variables affecting the power and resolution of a lens such as diameter, working distance, and wavelength of light. To assess the effectiveness of the laboratory’s learning objectives, four sections of a general microbiology course were given a brief pre-activity assessment quiz to determine their background knowledge on the subject. One week after the laboratory activity, students were given the same quiz (unannounced) under similar conditions. Students showed significant gains in their understanding of microscope optics. PMID:23653781

  14. An exploration of alternative visualisations of the basic helix-loop-helix protein interaction network

    PubMed Central

    Holden, Brian J; Pinney, John W; Lovell, Simon C; Amoutzias, Grigoris D; Robertson, David L

    2007-01-01

    Background Alternative representations of biochemical networks emphasise different aspects of the data and contribute to the understanding of complex biological systems. In this study we present a variety of automated methods for visualisation of a protein-protein interaction network, using the basic helix-loop-helix (bHLH) family of transcription factors as an example. Results Network representations that arrange nodes (proteins) according to either continuous or discrete information are investigated, revealing the existence of protein sub-families and the retention of interactions following gene duplication events. Methods of network visualisation in conjunction with a phylogenetic tree are presented, highlighting the evolutionary relationships between proteins, and clarifying the context of network hubs and interaction clusters. Finally, an optimisation technique is used to create a three-dimensional layout of the phylogenetic tree upon which the protein-protein interactions may be projected. Conclusion We show that by incorporating secondary genomic, functional or phylogenetic information into network visualisation, it is possible to move beyond simple layout algorithms based on network topology towards more biologically meaningful representations. These new visualisations can give structure to complex networks and will greatly help in interpreting their evolutionary origins and functional implications. Three open source software packages (InterView, TVi and OptiMage) implementing our methods are available. PMID:17683601

  15. Encouraging minority undergraduates to choose science careers: career paths survey results.

    PubMed

    Villarejo, Merna; Barlow, Amy E L; Kogan, Deborah; Veazey, Brian D; Sweeney, Jennifer K

    2008-01-01

    To explore the reasons for the dearth of minorities in Ph.D.-level biomedical research and identify opportunities to increase minority participation, we surveyed high-achieving alumni of an undergraduate biology enrichment program for underrepresented minorities. Respondents were asked to describe their career paths and to reflect on the influences that guided their career choices. We particularly probed for attitudes and experiences that influenced students to pursue a research career, as well as factors relevant to their choice between medicine (the dominant career choice) and basic science. In agreement with earlier studies, alumni strongly endorsed supplemental instruction as a mechanism for achieving excellence in basic science courses. Undergraduate research was seen as broadening by many and was transformative for half of the alumni who ultimately decided to pursue Ph.D.s in biomedical research. That group had expressed no interest in research careers at college entry and credits their undergraduate research experience with putting them on track toward a research career. A policy implication of these results is that making undergraduate research opportunities widely available to biology students (including "premed" students) in the context of a structured educational enrichment program should increase the number of minority students who choose to pursue biomedical Ph.D.s.

  16. Some Basic Techniques in Bioimpedance Research

    NASA Astrophysics Data System (ADS)

    Martinsen, Ørjan G.

    2004-09-01

    Any physiological or anatomical changes in a biological material will also change its electrical properties. Hence, bioimpedance measurements can be used for diagnosing or classification of tissue. Applications are numerous within medicine, biology, cosmetics, food industry, sports, etc, and different basic approaches for the development of bioimpedance techniques are discussed in this paper.

  17. Bioinstrumentation: Tools for Understanding Life.

    ERIC Educational Resources Information Center

    Wandersee, James H., Ed.; And Others

    This book was written to help introductory biology teachers gain a basic understanding of contemporary bioinstrumentation and the uses to which it is put in the laboratory. It includes topics that are most basic to understanding the nature of biology. The book is divided into five sections: (1) "Separation and Identification" that includes…

  18. Senior Computational Scientist | Center for Cancer Research

    Cancer.gov

    The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). The Cancer & Inflammation Program (CIP),

  19. Secretary | Center for Cancer Research

    Cancer.gov

    The Basic Science Program (BSP) pursues independent, multidisciplinary research programs in basic or applied molecular biology, immunology, retrovirology, cancer biology, or human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick national Laboratory for Cancer Research (FNLCR). The BSP Office provides

  20. Point of impact: the effect of size and speed on puncture mechanics.

    PubMed

    Anderson, P S L; LaCosse, J; Pankow, M

    2016-06-06

    The use of high-speed puncture mechanics for prey capture has been documented across a wide range of organisms, including vertebrates, arthropods, molluscs and cnidarians. These examples span four phyla and seven orders of magnitude difference in size. The commonality of these puncture systems offers an opportunity to explore how organisms at different scales and with different materials, morphologies and kinematics perform the same basic function. However, there is currently no framework for combining kinematic performance with cutting mechanics in biological puncture systems. Our aim here is to establish this framework by examining the effects of size and velocity in a series of controlled ballistic puncture experiments. Arrows of identical shape but varying in mass and speed were shot into cubes of ballistic gelatine. Results from high-speed videography show that projectile velocity can alter how the target gel responds to cutting. Mixed models comparing kinematic variables and puncture patterns indicate that the kinetic energy of a projectile is a better predictor of penetration than either momentum or velocity. These results form a foundation for studying the effects of impact on biological puncture, opening the door for future work to explore the influence of morphology and material organization on high-speed cutting dynamics.

  1. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  2. Exploration of Experiences and Perceptions of Three Botswana Basic Education Stakeholders on Employment and Unemployment of Graduates of Basic Education

    ERIC Educational Resources Information Center

    Tidimane, Christopher

    2012-01-01

    This study used a phenomenological approach to explore the lived experiences of three groups of stakeholders of the Botswana basic education program related to the employment and unemployment of graduates of basic education. Semi-structured interviews were conducted with 21 participants from three groups of stakeholders, graduates of basic…

  3. Central Dog-ma Disease Detectives: A Molecular Biology Inquiry Activity for Undergraduates

    NASA Astrophysics Data System (ADS)

    Quan, T. K.; Yuh, P.; Black, F.

    2010-12-01

    The Minority Access to Research Careers (MARC) and Minority Biomedical Research Support (MBRS) are programs at the University of California at Santa Cruz designed to support minority undergraduate students majoring in the sciences. Each summer MARC/MBRS sponsors a Summer Institute that involves week long "rotations" with different faculty mentors. In 2008, the Center for Adaptive Optics (CfAO) Professional Development Program (PDP) was responsible for overseeing one week of the Summer Institute, and designed it to be a Biomedical Short Course. As part of this short course, we designed a four-hour activity in which students collected their own data and explored relationships between the basic biomolecules DNA, RNA, and protein. The goal was to have the students use experimental data to support their explanation of the "Central Dogma" of molecular biology. Here we describe details of our activity and provide a post-teaching reflection on its success.

  4. Tendinopathy: injury, repair, and current exploration

    PubMed Central

    Lipman, Kelsey; Wang, Chenchao; Ting, Kang; Soo, Chia; Zheng, Zhong

    2018-01-01

    Both acute and chronic tendinopathy result in high morbidity, requiring management that is often lengthy and expensive. However, limited and conflicting scientific evidence surrounding current management options has presented a challenge when trying to identify the best treatment for tendinopathy. As a result of shortcomings of current treatments, response to available therapies is often poor, resulting in frustration in both patients and physicians. Due to a lack of understanding of basic tendon-cell biology, further scientific investigation is needed in the field for the development of biological solutions. Optimization of new delivery systems and therapies that spatially and temporally mimic normal tendon physiology hold promise for clinical application. This review focuses on the clinical importance of tendinopathy, the structure of healthy tendons, tendon injury, and healing, and a discussion of current approaches for treatment that highlight the need for the development of new nonsurgical interventions. PMID:29593382

  5. Procurement of State-of-the-Art Research Equipment to Support Faculty Members Within the RNAi Therapeutics Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terence Flotte, MD; Patricia McNulty

    2010-06-29

    This project funded the procurement of state-of-the-art research equipment to support world class faculty members within the RNAi Therapeutics Institute, a central program of the Advanced Therapeutics Cluster (ATC) project. The equipment purchased under this grant supports the RNA Therapeutics Institute (RTI) at the University of Massachusetts Medical School which seeks to build a community of scientists passionate about RNA. By uniting researchers studying the fundamental biology and mechanisms of cellular RNAs with those working to devise human therapies using or targeting nucleic acids, the RTI represents a new model for scientific exploration. By interweaving basic and applied nucleic acidmore » scientists with clinicians dedicated to finding new cures, our goal is to create a new paradigm for organizing molecular research that enables the rapid application of new biological discoveries to solutions for unmet challenges in human health.« less

  6. The Ty1 LTR-retrotransposon of budding yeast, Saccharomyces cerevisiae

    PubMed Central

    Curcio, M. Joan; Lutz, Sheila; Lesage, Pascale

    2015-01-01

    Summary Long-terminal repeat (LTR)-retrotransposons generate a copy of their DNA (cDNA) by reverse transcription of their RNA genome in cytoplasmic nucleocapsids. They are widespread in the eukaryotic kingdom and are the evolutionary progenitors of retroviruses [1]. The Ty1 element of the budding yeast Saccharomyces cerevisiae was the first LTR-retrotransposon demonstrated to mobilize through an RNA intermediate, and not surprisingly, is the best studied. The depth of our knowledge of Ty1 biology stems not only from the predominance of active Ty1 elements in the S. cerevisiae genome but also the ease and breadth of genomic, biochemical and cell biology approaches available to study cellular processes in yeast. This review describes the basic structure of Ty1 and its gene products, the replication cycle, the rapidly expanding compendium of host co-factors known to influence retrotransposition and the nature of Ty1's elaborate symbiosis with its host. Our goal is to illuminate the value of Ty1 as a paradigm to explore the biology of LTR-retrotransposons in multicellular organisms, where the low frequency of retrotransposition events presents a formidable barrier to investigations of retrotransposon biology. PMID:25893143

  7. Teaching Emergence and Collective Behavior in Physics and Biology to Non-majors

    NASA Astrophysics Data System (ADS)

    Manhart, Michael

    2014-03-01

    Emergence and collective behavior form one of the most fertile intersections of physics and biology in current research. Unfortunately, modern and interdisciplinary concepts such as these are often neglected in physics courses for non-majors. A team of four graduate students and a faculty advisor recently redesigned our department's course for non-majors (Concepts of Physics for Humanities and Social Science Students) to focus on emergence and collective behavior along with three other major themes in modern physics. In the course we developed basic concepts of statistical physics and thermodynamics to understand a variety of emergent phenomena in physics and biology, including bird flocking, superconductivity, and protein folding. We discussed the notion of life itself as an inherently emergent phenomenon arising from the collective behavior of molecules. The students also wrote their own blog posts on emergent phenomena and interactively explored emergence through workshops on Foldit (the protein folding game) and Conway's Game of Life. We believe our course demonstrates some possibilities and challenges for teaching non-majors at the intersection of physics and biology. I gratefully acknowledge my collaboration with Aatish Bhatia, Deepak Iyer, Simon Knapen, and Saurabh Jha.

  8. Evolutionary Biology: Its Value to Society

    ERIC Educational Resources Information Center

    Carson, Hampton L.

    1972-01-01

    Cites examples of the contribution of basic research in evolutionary biology to the solution of problems facing society (1) by dispelling myths about human origins, the nature of the individual, and the nature of race (2) by providing basic data concerning the effects of overpopulation, the production of improved sources of food, resistance of…

  9. Recognizing Biological Motion and Emotions from Point-Light Displays in Autism Spectrum Disorders

    PubMed Central

    Nackaerts, Evelien; Wagemans, Johan; Helsen, Werner; Swinnen, Stephan P.; Wenderoth, Nicole; Alaerts, Kaat

    2012-01-01

    One of the main characteristics of Autism Spectrum Disorder (ASD) are problems with social interaction and communication. Here, we explored ASD-related alterations in ‘reading’ body language of other humans. Accuracy and reaction times were assessed from two observational tasks involving the recognition of ‘biological motion’ and ‘emotions’ from point-light displays (PLDs). Eye movements were recorded during the completion of the tests. Results indicated that typically developed-participants were more accurate than ASD-subjects in recognizing biological motion or emotions from PLDs. No accuracy differences were revealed on two control-tasks (involving the indication of color-changes in the moving point-lights). Group differences in reaction times existed on all tasks, but effect sizes were higher for the biological and emotion recognition tasks. Biological motion recognition abilities were related to a person’s ability to recognize emotions from PLDs. However, ASD-related atypicalities in emotion recognition could not entirely be attributed to more basic deficits in biological motion recognition, suggesting an additional ASD-specific deficit in recognizing the emotional dimension of the point light displays. Eye movements were assessed during the completion of tasks and results indicated that ASD-participants generally produced more saccades and shorter fixation-durations compared to the control-group. However, especially for emotion recognition, these altered eye movements were associated with reductions in task-performance. PMID:22970227

  10. Laser surface texturing of polymers for biomedical applications

    NASA Astrophysics Data System (ADS)

    Riveiro, Antonio; Maçon, Anthony L. B.; del Val, Jesus; Comesaña, Rafael; Pou, Juan

    2018-02-01

    Polymers are materials widely used in biomedical science because of their biocompatibility, and good mechanical properties (which, in some cases, are similar to those of human tissues); however, these materials are, in general, chemically and biologically inert. Surface characteristics, such as topography (at the macro-, micro, and nanoscale), surface chemistry, surface energy, charge or wettability are interrelated properties, and they cooperatively influence the biological performance of materials when used for biomedical applications. They regulate the biological response at the implant/tissue interface (e.g., influencing the cell adhesion, cell orientation, cell motility, etc.). Several surface processing techniques have been explored to modulate these properties for biomedical applications. Despite their potentials, these methods have limitations that prevent their applicability. In this regard, laser-based methods, in particular laser surface texturing (LST), can be an interesting alternative. Different works have showed the potentiality of this technique to control the surface properties of biomedical polymers and enhance their biological performance; however, more research is needed to obtain the desired biological response. This work provides a general overview of the basics and applications of LST for the surface modification of polymers currently used in the clinical practice (e.g. PEEK, UHMWPE, PP, etc.). The modification of roughness, wettability, and their impact on the biological response is addressed to offer new insights on the surface modification of biomedical polymers.

  11. Recognizing biological motion and emotions from point-light displays in autism spectrum disorders.

    PubMed

    Nackaerts, Evelien; Wagemans, Johan; Helsen, Werner; Swinnen, Stephan P; Wenderoth, Nicole; Alaerts, Kaat

    2012-01-01

    One of the main characteristics of Autism Spectrum Disorder (ASD) are problems with social interaction and communication. Here, we explored ASD-related alterations in 'reading' body language of other humans. Accuracy and reaction times were assessed from two observational tasks involving the recognition of 'biological motion' and 'emotions' from point-light displays (PLDs). Eye movements were recorded during the completion of the tests. Results indicated that typically developed-participants were more accurate than ASD-subjects in recognizing biological motion or emotions from PLDs. No accuracy differences were revealed on two control-tasks (involving the indication of color-changes in the moving point-lights). Group differences in reaction times existed on all tasks, but effect sizes were higher for the biological and emotion recognition tasks. Biological motion recognition abilities were related to a person's ability to recognize emotions from PLDs. However, ASD-related atypicalities in emotion recognition could not entirely be attributed to more basic deficits in biological motion recognition, suggesting an additional ASD-specific deficit in recognizing the emotional dimension of the point light displays. Eye movements were assessed during the completion of tasks and results indicated that ASD-participants generally produced more saccades and shorter fixation-durations compared to the control-group. However, especially for emotion recognition, these altered eye movements were associated with reductions in task-performance.

  12. Molecular mechanisms underlying airway smooth muscle contraction and proliferation: implications for asthma.

    PubMed

    Pelaia, Girolamo; Renda, Teresa; Gallelli, Luca; Vatrella, Alessandro; Busceti, Maria Teresa; Agati, Sergio; Caputi, Mario; Cazzola, Mario; Maselli, Rosario; Marsico, Serafino A

    2008-08-01

    Airway smooth muscle (ASM) plays a key role in bronchomotor tone, as well as in structural remodeling of the bronchial wall. Therefore, ASM contraction and proliferation significantly participate in the development and progression of asthma. Many contractile agonists also behave as mitogenic stimuli, thus contributing to frame a hyperresponsive and hyperplastic ASM phenotype. In this review, the molecular mechanisms and signaling pathways involved in excitation-contraction coupling and ASM cell growth will be outlined. Indeed, the recent advances in understanding the basic aspects of ASM biology are disclosing important cellular targets, currently explored for the implementation of new, more effective anti-asthma therapies.

  13. Bioinformatics for spermatogenesis: annotation of male reproduction based on proteomics

    PubMed Central

    Zhou, Tao; Zhou, Zuo-Min; Guo, Xue-Jiang

    2013-01-01

    Proteomics strategies have been widely used in the field of male reproduction, both in basic and clinical research. Bioinformatics methods are indispensable in proteomics-based studies and are used for data presentation, database construction and functional annotation. In the present review, we focus on the functional annotation of gene lists obtained through qualitative or quantitative methods, summarizing the common and male reproduction specialized proteomics databases. We introduce several integrated tools used to find the hidden biological significance from the data obtained. We further describe in detail the information on male reproduction derived from Gene Ontology analyses, pathway analyses and biomedical analyses. We provide an overview of bioinformatics annotations in spermatogenesis, from gene function to biological function and from biological function to clinical application. On the basis of recently published proteomics studies and associated data, we show that bioinformatics methods help us to discover drug targets for sperm motility and to scan for cancer-testis genes. In addition, we summarize the online resources relevant to male reproduction research for the exploration of the regulation of spermatogenesis. PMID:23852026

  14. Reproductive science as an essential component of conservation biology.

    PubMed

    Holt, William V; Brown, Janine L; Comizzoli, Pierre

    2014-01-01

    In this chapter we argue that reproductive science in its broadest sense has never been more important in terms of its value to conservation biology, which itself is a synthetic and multidisciplinary topic. Over recent years the place of reproductive science in wildlife conservation has developed massively across a wide and integrated range of cutting edge topics. We now have unprecedented insight into the way that environmental change affects basic reproductive functions such as ovulation, sperm production, pregnancy and embryo development through previously unsuspected influences such as epigenetic modulation of the genome. Environmental change in its broadest sense alters the quality of foodstuffs that all animals need for reproductive success, changes the synchrony between breeding seasons and reproductive events, perturbs gonadal and embryo development through the presence of pollutants in the environment and drives species to adapt their behaviour and phenotype. In this book we explore many aspects of reproductive science and present wide ranging and up to date accounts of the scientific and technological advances that are currently enabling reproductive science to support conservation biology.

  15. Design principles of hair-like structures as biological machines

    PubMed Central

    2018-01-01

    Hair-like structures are prevalent throughout biology and frequently act to sense or alter interactions with an organism's environment. The overall shape of a hair is simple: a long, filamentous object that protrudes from the surface of an organism. This basic design, however, can confer a wide range of functions, owing largely to the flexibility and large surface area that it usually possesses. From this simple structural basis, small changes in geometry, such as diameter, curvature and inter-hair spacing, can have considerable effects on mechanical properties, allowing functions such as mechanosensing, attachment, movement and protection. Here, we explore how passive features of hair-like structures, both individually and within arrays, enable diverse functions across biology. Understanding the relationships between form and function can provide biologists with an appreciation for the constraints and possibilities on hair-like structures. Additionally, such structures have already been used in biomimetic engineering with applications in sensing, water capture and adhesion. By examining hairs as a functional mechanical unit, geometry and arrangement can be rationally designed to generate new engineering devices and ideas. PMID:29848593

  16. Revisiting the NIH Taskforce on the Research needs of Eosinophil-Associated Diseases (RE-TREAD).

    PubMed

    Khoury, Paneez; Akuthota, Praveen; Ackerman, Steven J; Arron, Joseph R; Bochner, Bruce S; Collins, Margaret H; Kahn, Jean-Emmanuel; Fulkerson, Patricia C; Gleich, Gerald J; Gopal-Srivastava, Rashmi; Jacobsen, Elizabeth A; Leiferman, Kristen M; Francesca, Levi-Schaffer; Mathur, Sameer K; Minnicozzi, Michael; Prussin, Calman; Rothenberg, Marc E; Roufosse, Florence; Sable, Kathleen; Simon, Dagmar; Simon, Hans-Uwe; Spencer, Lisa A; Steinfeld, Jonathan; Wardlaw, Andrew J; Wechsler, Michael E; Weller, Peter F; Klion, Amy D

    2018-04-19

    Eosinophil-associated diseases (EADs) are rare, heterogeneous disorders characterized by the presence of eosinophils in tissues and/or peripheral blood resulting in immunopathology. The heterogeneity of tissue involvement, lack of sufficient animal models, technical challenges in working with eosinophils, and lack of standardized histopathologic approaches have hampered progress in basic research. Additionally, clinical trials and drug development for rare EADs are limited by the lack of primary and surrogate endpoints, biomarkers, and validated patient-reported outcomes. Researchers with expertise in eosinophil biology and eosinophil-related diseases reviewed the state of current eosinophil research, resources, progress, and unmet needs in the field since the 2012 meeting of the NIH Taskforce on the Research of Eosinophil-Associated Diseases (TREAD). RE-TREAD focused on gaps in basic science, translational, and clinical research on eosinophils and eosinophil-related pathogenesis. Improved recapitulation of human eosinophil biology and pathogenesis in murine models was felt to be of importance. Characterization of eosinophil phenotypes, the role of eosinophil subsets in tissues, identification of biomarkers of eosinophil activation and tissue load, and a better understanding of the role of eosinophils in human disease were prioritized. Finally, an unmet need for tools for use in clinical trials was emphasized. Histopathologic scoring, patient- and clinician-reported outcomes, and appropriate coding were deemed of paramount importance for research collaborations, drug development, and approval by regulatory agencies. Further exploration of the eosinophil genome, epigenome, and proteome was also encouraged. Although progress has been made since 2012, unmet needs in eosinophil research remain a priority. ©2018 Society for Leukocyte Biology.

  17. Microendophenotypes of psychiatric disorders: phenotypes of psychiatric disorders at the level of molecular dynamics, synapses, neurons, and neural circuits.

    PubMed

    Kida, S; Kato, T

    2015-01-01

    Psychiatric disorders are caused not only by genetic factors but also by complicated factors such as environmental ones. Moreover, environmental factors are rarely quantitated as biological and biochemical indicators, making it extremely difficult to understand the pathological conditions of psychiatric disorders as well as their underlying pathogenic mechanisms. Additionally, we have actually no other option but to perform biological studies on postmortem human brains that display features of psychiatric disorders, thereby resulting in a lack of experimental materials to characterize the basic biology of these disorders. From these backgrounds, animal, tissue, or cell models that can be used in basic research are indispensable to understand biologically the pathogenic mechanisms of psychiatric disorders. In this review, we discuss the importance of microendophenotypes of psychiatric disorders, i.e., phenotypes at the level of molecular dynamics, neurons, synapses, and neural circuits, as targets of basic research on these disorders.

  18. Practices and exploration on competition of molecular biological detection technology among students in food quality and safety major.

    PubMed

    Chang, Yaning; Peng, Yuke; Li, Pengfei; Zhuang, Yingping

    2017-07-08

    With the increasing importance in the application of the molecular biological detection technology in the field of food safety, strengthening education in molecular biology experimental techniques is more necessary for the culture of the students in food quality and safety major. However, molecular biology experiments are not always in curricula of Food quality and safety Majors. This paper introduced a project "competition of molecular biological detection technology for food safety among undergraduate sophomore students in food quality and safety major", students participating in this project needed to learn the fundamental molecular biology experimental techniques such as the principles of molecular biology experiments and genome extraction, PCR and agarose gel electrophoresis analysis, and then design the experiments in groups to identify the meat species in pork and beef products using molecular biological methods. The students should complete the experimental report after basic experiments, write essays and make a presentation after the end of the designed experiments. This project aims to provide another way for food quality and safety majors to improve their knowledge of molecular biology, especially experimental technology, and enhances them to understand the scientific research activities as well as give them a chance to learn how to write a professional thesis. In addition, in line with the principle of an open laboratory, the project is also open to students in other majors in East China University of Science and Technology, in order to enhance students in other majors to understand the fields of molecular biology and food safety. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):343-350, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  19. [Role of G-protein alpha sub-units in the morphogenic processes of filamentous Ascomycota fungi].

    PubMed

    García-Rico, Ramón O; Fierro, Francisco

    The phylum Ascomycota comprises about 75% of all the fungal species described, and includes species of medical, phytosanitary, agricultural, and biotechnological importance. The ability to spread, explore, and colonise new substrates is a feature of critical importance for this group of organisms. In this regard, basic processes such as conidial germination, the extension of hyphae and sporulation, make up the backbone of development in most filamentous fungi. These processes require specialised morphogenic machinery, coordinated and regulated by mechanisms that are still being elucidated. In recent years, substantial progress has been made in understanding the role of the signalling pathway mediated by heterotrimericG proteins in basic biological processes of many filamentous fungi. This review focuses on the role of the alpha subunits of heterotrimericG proteins in the morphogenic processes of filamentous Ascomycota. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Role of basic biological sciences in clinical orthodontics: a case series.

    PubMed

    Davidovitch, Ze'ev; Krishnan, Vinod

    2009-02-01

    Orthodontic therapy is based on interaction between mechanics and biology. Basic biologic research aims at developing a better understanding of the mechanism of transformation of mechanical energy into biologic reactions, and exposing the reasons for iatrogenic tissue damage in orthodontics. Previous research has shown that inflammation is a major part of the biologic response to orthodontic forces. In inflammation, signal molecules that originate in remote diseased organs can reach strained paradental tissues and exacerbate the inflammatory process, leading to tissue damage. Our case series includes 3 patients, each having had systemic diseases and malocclusion. One had diabetes mellitus, Hashimoto's thyroiditis, and depression. Concern about the possible effect of these conditions on the well-being of the teeth and their surrounding tissues compelled the orthodontist to choose not to treat this patient. The other 2 patients had allergies, and 1 also had bronchial asthma and bruises. Although these conditions are thought to be risk factors for root resorption, these patients received orthodontic treatment for 2 and 3.5 years, respectively. At the end of treatment, both had excessive root resorption of many teeth. In 1 patient, this damage led to the loss of most maxillary teeth. Basic research should continue to address questions related to the biologic mechanisms of tooth movement on tissue, cellular, and molecular levels. Moreover, this research should continue to identify risk factors that might jeopardize the longevity of treated teeth. Such basic research should promote the development of new tissue-friendly and patient-friendly therapeutic methods.

  1. Dentistry in the future--on the role and goal of basic research in oral biology.

    PubMed

    Mäkinen, K K

    1993-01-01

    Examination of the state of affairs of oral biology cannot be endeavoured without considering the mutual interactions and interdependencies of sciences, and without considering the impact human acts will exert on these developments. Oral biology deals with the biochemical, chemical, molecular biologic, general biologic and physical aspects of all processes that take place in the oral cavity, in the masticatory organ, and in tissues and body fluids that are associated with the above processes. Oral biology also reaps the harvest sown by (other) basic sciences. From the methodological point of view, oral biology is indistinguishable from basic sciences; it is the anatomical object that makes it specific. Oral biology cannot be regarded as "big science" (i.e. compared with the human genome project, space research, AIDS research etc.). This fact may preserve the attractiveness of oral biology. Important science--this concerns oral biology as well--still emerges in smaller settings, although there are omens that large research cartels will swallow larger and larger portions of research appropriations. A key to staying competitive is to use new science sources and--in some cases--to join bigger groups. Once upon a time oral biologists--or scientists in general--assumed that a record of solid accomplishments was sufficient to maintain research support. Today, in several countries, politics and public visibility unfortunately determine the funding privileges. Provided that human operations on earth will render future development of sciences possible, the future of oral biology will depend 1) on concomitant development in the above basic fields, and 2) on innovations in the individual psyches. This combination will unravel the structure of genes involved in the development and metabolism of oral processes, clone important salivary and connective tissue proteins, and control most important oral diseases. To achieve these goals, oral biology must attract young talent and funding must be made available. There is no shortcut, however. Individual efforts and persistent labouring at the laboratory bench will still remain prerequisites. Although successful prevention of certain oral diseases, such as dental caries, may be possible in certain regions of the Earth, the prospects are much gloomier globally.

  2. Research on Life Science and Life Support Engineering Problems of Manned Deep Space Exploration Mission

    NASA Astrophysics Data System (ADS)

    Qi, Bin; Guo, Linli; Zhang, Zhixian

    2016-07-01

    Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key technologies.

  3. Thin film bioreactors in space

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Scheld, H. W.

    1989-01-01

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization, and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers an opportunity to learn more about basic biological systems with one inmportant variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would make it possible to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  4. Commentary: Prerequisite Knowledge

    ERIC Educational Resources Information Center

    Taylor, Ann T. S.

    2013-01-01

    Most biochemistry, genetics, cell biology, and molecular biology classes have extensive prerequisite or co-requisite requirements, often including introductory chemistry, introductory biology, and organic chemistry coursework. But what is the function of these prerequisites? While it seems logical that a basic understanding of biological and…

  5. Connecting biology and organic chemistry introductory laboratory courses through a collaborative research project.

    PubMed

    Boltax, Ariana L; Armanious, Stephanie; Kosinski-Collins, Melissa S; Pontrello, Jason K

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an interdisciplinary, medically relevant, project intended to help students see connections between chemistry and biology. Second term organic chemistry laboratory students designed and synthesized potential polymer inhibitors or inducers of polyglutamine protein aggregation. The use of novel target compounds added the uncertainty of scientific research to the project. Biology laboratory students then tested the novel potential pharmaceuticals in Huntington's disease model assays, using in vitro polyglutamine peptide aggregation and in vivo lethality studies in Drosophila. Students read articles from the primary literature describing the system from both chemical and biological perspectives. Assessment revealed that students emerged from both courses with a deeper understanding of the interdisciplinary nature of biology and chemistry and a heightened interest in basic research. The design of this collaborative project for introductory biology and organic chemistry labs demonstrated how the local interests and expertise at a university can be drawn from to create an effective way to integrate these introductory courses. Rather than simply presenting a series of experiments to be replicated, we hope that our efforts will inspire other scientists to think about how some aspect of authentic work can be brought into their own courses, and we also welcome additional collaborations to extend the scope of the scientific exploration. © 2015 The International Union of Biochemistry and Molecular Biology.

  6. The RCSB Protein Data Bank: views of structural biology for basic and applied research and education

    PubMed Central

    Rose, Peter W.; Prlić, Andreas; Bi, Chunxiao; Bluhm, Wolfgang F.; Christie, Cole H.; Dutta, Shuchismita; Green, Rachel Kramer; Goodsell, David S.; Westbrook, John D.; Woo, Jesse; Young, Jasmine; Zardecki, Christine; Berman, Helen M.; Bourne, Philip E.; Burley, Stephen K.

    2015-01-01

    The RCSB Protein Data Bank (RCSB PDB, http://www.rcsb.org) provides access to 3D structures of biological macromolecules and is one of the leading resources in biology and biomedicine worldwide. Our efforts over the past 2 years focused on enabling a deeper understanding of structural biology and providing new structural views of biology that support both basic and applied research and education. Herein, we describe recently introduced data annotations including integration with external biological resources, such as gene and drug databases, new visualization tools and improved support for the mobile web. We also describe access to data files, web services and open access software components to enable software developers to more effectively mine the PDB archive and related annotations. Our efforts are aimed at expanding the role of 3D structure in understanding biology and medicine. PMID:25428375

  7. Conceptual Foundations of Systems Biology Explaining Complex Cardiac Diseases.

    PubMed

    Louridas, George E; Lourida, Katerina G

    2017-02-21

    Systems biology is an important concept that connects molecular biology and genomics with computing science, mathematics and engineering. An endeavor is made in this paper to associate basic conceptual ideas of systems biology with clinical medicine. Complex cardiac diseases are clinical phenotypes generated by integration of genetic, molecular and environmental factors. Basic concepts of systems biology like network construction, modular thinking, biological constraints (downward biological direction) and emergence (upward biological direction) could be applied to clinical medicine. Especially, in the field of cardiology, these concepts can be used to explain complex clinical cardiac phenotypes like chronic heart failure and coronary artery disease. Cardiac diseases are biological complex entities which like other biological phenomena can be explained by a systems biology approach. The above powerful biological tools of systems biology can explain robustness growth and stability during disease process from modulation to phenotype. The purpose of the present review paper is to implement systems biology strategy and incorporate some conceptual issues raised by this approach into the clinical field of complex cardiac diseases. Cardiac disease process and progression can be addressed by the holistic realistic approach of systems biology in order to define in better terms earlier diagnosis and more effective therapy.

  8. Point of impact: the effect of size and speed on puncture mechanics

    PubMed Central

    Anderson, P. S. L.; LaCosse, J.; Pankow, M.

    2016-01-01

    The use of high-speed puncture mechanics for prey capture has been documented across a wide range of organisms, including vertebrates, arthropods, molluscs and cnidarians. These examples span four phyla and seven orders of magnitude difference in size. The commonality of these puncture systems offers an opportunity to explore how organisms at different scales and with different materials, morphologies and kinematics perform the same basic function. However, there is currently no framework for combining kinematic performance with cutting mechanics in biological puncture systems. Our aim here is to establish this framework by examining the effects of size and velocity in a series of controlled ballistic puncture experiments. Arrows of identical shape but varying in mass and speed were shot into cubes of ballistic gelatine. Results from high-speed videography show that projectile velocity can alter how the target gel responds to cutting. Mixed models comparing kinematic variables and puncture patterns indicate that the kinetic energy of a projectile is a better predictor of penetration than either momentum or velocity. These results form a foundation for studying the effects of impact on biological puncture, opening the door for future work to explore the influence of morphology and material organization on high-speed cutting dynamics. PMID:27274801

  9. Current Status and Recommendations for the Future of Research, Teaching, and Testing in the Biological Sciences of Radiation Oncology: Report of the American Society for Radiation Oncology Cancer Biology/Radiation Biology Task Force, Executive Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallner, Paul E., E-mail: pwallner@theabr.org; Anscher, Mitchell S.; Barker, Christopher A.

    In early 2011, a dialogue was initiated within the Board of Directors (BOD) of the American Society for Radiation Oncology (ASTRO) regarding the future of the basic sciences of the specialty, primarily focused on the current state and potential future direction of basic research within radiation oncology. After consideration of the complexity of the issues involved and the precise nature of the undertaking, in August 2011, the BOD empanelled a Cancer Biology/Radiation Biology Task Force (TF). The TF was charged with developing an accurate snapshot of the current state of basic (preclinical) research in radiation oncology from the perspective ofmore » relevance to the modern clinical practice of radiation oncology as well as the education of our trainees and attending physicians in the biological sciences. The TF was further charged with making suggestions as to critical areas of biological basic research investigation that might be most likely to maintain and build further the scientific foundation and vitality of radiation oncology as an independent and vibrant medical specialty. It was not within the scope of service of the TF to consider the quality of ongoing research efforts within the broader radiation oncology space, to presume to consider their future potential, or to discourage in any way the investigators committed to areas of interest other than those targeted. The TF charge specifically precluded consideration of research issues related to technology, physics, or clinical investigations. This document represents an Executive Summary of the Task Force report.« less

  10. Current status and recommendations for the future of research, teaching, and testing in the biological sciences of radiation oncology: report of the American Society for Radiation Oncology Cancer Biology/Radiation Biology Task Force, executive summary.

    PubMed

    Wallner, Paul E; Anscher, Mitchell S; Barker, Christopher A; Bassetti, Michael; Bristow, Robert G; Cha, Yong I; Dicker, Adam P; Formenti, Silvia C; Graves, Edward E; Hahn, Stephen M; Hei, Tom K; Kimmelman, Alec C; Kirsch, David G; Kozak, Kevin R; Lawrence, Theodore S; Marples, Brian; McBride, William H; Mikkelsen, Ross B; Park, Catherine C; Weidhaas, Joanne B; Zietman, Anthony L; Steinberg, Michael

    2014-01-01

    In early 2011, a dialogue was initiated within the Board of Directors (BOD) of the American Society for Radiation Oncology (ASTRO) regarding the future of the basic sciences of the specialty, primarily focused on the current state and potential future direction of basic research within radiation oncology. After consideration of the complexity of the issues involved and the precise nature of the undertaking, in August 2011, the BOD empanelled a Cancer Biology/Radiation Biology Task Force (TF). The TF was charged with developing an accurate snapshot of the current state of basic (preclinical) research in radiation oncology from the perspective of relevance to the modern clinical practice of radiation oncology as well as the education of our trainees and attending physicians in the biological sciences. The TF was further charged with making suggestions as to critical areas of biological basic research investigation that might be most likely to maintain and build further the scientific foundation and vitality of radiation oncology as an independent and vibrant medical specialty. It was not within the scope of service of the TF to consider the quality of ongoing research efforts within the broader radiation oncology space, to presume to consider their future potential, or to discourage in any way the investigators committed to areas of interest other than those targeted. The TF charge specifically precluded consideration of research issues related to technology, physics, or clinical investigations. This document represents an Executive Summary of the Task Force report. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. From genes to proteins to behavior: a laboratory project that enhances student understanding in cell and molecular biology.

    PubMed

    Aronson, Benjamin D; Silveira, Linda A

    2009-01-01

    In the laboratory, students can actively explore concepts and experience the nature of scientific research. We have devised a 5-wk laboratory project in our introductory college biology course whose aim was to improve understanding in five major concepts that are central to basic cellular, molecular biology, and genetics while teaching molecular biology techniques. The project was focused on the production of adenine in Saccharomyces cerevisiae and investigated the nature of mutant red colonies of this yeast. Students created red mutants from a wild-type strain, amplified the two genes capable of giving rise to the red phenotype, and then analyzed the nucleotide sequences. A quiz assessing student understanding in the five areas was given at the start and the end of the course. Analysis of the quiz showed significant improvement in each of the areas. These areas were taught in the laboratory and the classroom; therefore, students were surveyed to determine whether the laboratory played a role in their improved understanding of the five areas. Student survey data demonstrated that the laboratory did have an important role in their learning of the concepts. This project simulated steps in a research project and could be adapted for an advanced course in genetics.

  12. Topical oxygenation therapy in wound care: are patients getting enough?

    PubMed

    Hunt, Sharon

    2017-08-10

    Wound management is a major burden on today's healthcare provider, both clinically with regard to available resources and financially. Most importantly, it has a significant impact on the patient's quality of life and experience. Within the field of wound care these pressures, alongside an ageing population, multiple comorbidities, disease processes and negative lifestyle choices, increase incidences of reduced skin integrity and challenging wounds. In an attempt to meet these challenges alternative, innovative therapies are being explored to support the wound healing process. Wound care experts are now exploring the scientific, biological aspects of wound healing at a cellular level. They are taking wound care back to basics with the identification of elements that, if introduced as an 'adjunct' or as a stand-alone device alongside gold-standard regimens, can positively impact the static or problematic wounds that pose the most challenges to clinicians on a daily basis. This article explores the phenomenon of oxygen, its place in tissue formation and the effect of depletion on the wound healing process and highlights ways in which patients may receive benefit from non-invasive intervention to improve wound care outcomes.

  13. The Carnegie Department of Embryology at 100: Looking Forward.

    PubMed

    Spradling, Allan C

    2016-01-01

    Biological research has a realistic chance within the next 50 years of discovering the basic mechanisms by which metazoan genomes encode the complex morphological structures and capabilities that characterize life as we know it. However, achieving those goals is now threatened by researchers who advocate an end to basic research on nonmammalian organisms. For the sake of society, medicine, and the science of biology, the focus of biomedical research should place more emphasis on basic studies guided by the underlying evolutionary commonality of all major animals, as manifested in their genes, pathways, cells, and organs. © 2016 Elsevier Inc. All rights reserved.

  14. Structural DNA Nanotechnology: Artificial Nanostructures for Biomedical Research.

    PubMed

    Ke, Yonggang; Castro, Carlos; Choi, Jong Hyun

    2018-06-04

    Structural DNA nanotechnology utilizes synthetic or biologic DNA as designer molecules for the self-assembly of artificial nanostructures. The field is founded upon the specific interactions between DNA molecules, known as Watson-Crick base pairing. After decades of active pursuit, DNA has demonstrated unprecedented versatility in constructing artificial nanostructures with significant complexity and programmability. The nanostructures could be either static, with well-controlled physicochemical properties, or dynamic, with the ability to reconfigure upon external stimuli. Researchers have devoted considerable effort to exploring the usability of DNA nanostructures in biomedical research. We review the basic design methods for fabricating both static and dynamic DNA nanostructures, along with their biomedical applications in fields such as biosensing, bioimaging, and drug delivery.

  15. The Comparative Toxicogenomics Database (CTD): A Resource for Comparative Toxicological Studies

    PubMed Central

    CJ, Mattingly; MC, Rosenstein; GT, Colby; JN, Forrest; JL, Boyer

    2006-01-01

    The etiology of most chronic diseases involves interactions between environmental factors and genes that modulate important biological processes (Olden and Wilson, 2000). We are developing the publicly available Comparative Toxicogenomics Database (CTD) to promote understanding about the effects of environmental chemicals on human health. CTD identifies interactions between chemicals and genes and facilitates cross-species comparative studies of these genes. The use of diverse animal models and cross-species comparative sequence studies has been critical for understanding basic physiological mechanisms and gene and protein functions. Similarly, these approaches will be valuable for exploring the molecular mechanisms of action of environmental chemicals and the genetic basis of differential susceptibility. PMID:16902965

  16. Introducing basic molecular biology to Turkish rural and urban primary school children via hands-on PCR and gel electrophoresis activities.

    PubMed

    Selli, Cigdem; Yıldırım, Gokce; Kaymak, Aysegul; Karacicek, Bilge; Ogut, Deniz; Gungor, Turkan; Erem, Erdem; Ege, Mehmet; Bümen, Nilay; Tosun, Metiner

    2014-01-01

    This study includes the results of a 2-day education project titled "Molecular Biology Laboratory Summer School, MoBiLYO." The project was held at a University Research Center by scientists from Department of Pharmacology and graduate students. The project was composed of introductory lectures, model construction, DNA isolation, polymerase chain reaction (PCR), and gel electrophoresis. The participants were 13-year-old eighth-graders attending primary schools affiliated with Ministry of National Education in urban and rural areas of Izmir, Turkey. The purpose of this study was to introduce basic molecular biology concepts through individually performed experiments such as PCR and gel electrophoresis integrated with creative drama. The students were assessed at the beginning and the end of each project day via mini-tests, experimental and presentation skills evaluation forms. Data showed that students' knowledge about DNA structure and basic molecular biology techniques significantly increased. On the basis of experimental and presentational skills, there was no significant difference between kids from urban and rural schools or between public and boarding public schools, whereas the average score of girls was significantly higher than that of boys. In conclusion, individually performed experiments integrated with creative drama significantly increased students' perception of complex experimental procedures on basic molecular biology concepts. Data suggests that integration of these concepts into the science and technology curriculum of Turkish primary education may support the recruitment of future scientists who can handle rapidly developing genomic techniques that will affect our everyday life. © 2014 by The International Union of Biochemistry and Molecular Biology.

  17. Basic Science Living Skills for Today's World. Teacher's Edition.

    ERIC Educational Resources Information Center

    Zellers (Robert W.) Educational Services, Johnstown, PA.

    This document is a teacher's edition of a basic skills curriculum in science for adult basic education (ABE) students. The course consists of 25 lessons on basic science concepts, designed to give students a good understanding of the biological and physical sciences. Suggested activities and experiments that the student can do are also included.…

  18. Biological Concepts. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Carnegie, John W.

    This manual contains the textual material for a three-lesson unit which introduces students to the basic concepts applicable to all biological treatment systems. The general topic areas addressed in the lessons are: (1) the microorganisms found in biological systems; (2) the factors that affect the growth and health of biological systems; and (3)…

  19. Fundulus as the Premier Teleost Model in Environmental Biology: Opportunities for New Insights Using Genomics

    PubMed Central

    Burnett, Karen G.; Bain, Lisa J.; Baldwin, William S.; Callard, Gloria V.; Cohen, Sarah; Di Giulio, Richard T.; Evans, David H.; Gómez-Chiarri, Marta; Hahn, Mark E.; Hoover, Cindi A.; Karchner, Sibel I.; Katoh, Fumi; MacLatchy, Deborah L.; Marshall, William S.; Meyer, Joel N.; Nacci, Diane E.; Oleksiak, Marjorie F.; Rees, Bernard B.; Singer, Thomas D.; Stegeman, John J.; Towle, David W.; Van Veld, Peter A.; Vogelbein, Wolfgang K.; Whitehead, Andrew; Winn, Richard N.; Crawford, Douglas L.

    2007-01-01

    A strong foundation of basic and applied research documents that the estuarine fish Fundulus heteroclitus and related species are unique laboratory and field models for understanding how individuals and populations interact with their environment. In this paper we summarize an extensive body of work examining the adaptive responses of Fundulus species to environmental conditions, and describe how this research has contributed importantly to our understanding of physiology, gene regulation, toxicology, and ecological and evolutionary genetics of teleosts and other vertebrates. These explorations have reached a critical juncture at which advancement is hindered by the lack of genomic resources for these species. We suggest that a more complete genomics toolbox for F. heteroclitus and related species will permit researchers to exploit the power of this model organism to rapidly advance our understanding of fundamental biological and pathological mechanisms among vertebrates, as well as ecological strategies and evolutionary processes common to all living organisms. PMID:18071578

  20. Intracellular antioxidants dissolve man-made antioxidant nanoparticles: using redox vulnerability of nanoceria to develop a responsive drug delivery system.

    PubMed

    Muhammad, Faheem; Wang, Aifei; Qi, Wenxiu; Zhang, Shixing; Zhu, Guangshan

    2014-01-01

    Regeneratable antioxidant property of nanoceria has widely been explored to minimize the deleterious influences of reactive oxygen species. Limited information is, however, available regarding the biological interactions and subsequent fate of nanoceria in body fluids. This study demonstrates a surprising dissolution of stable and ultrasmall (4 nm) cerium oxide nanoparticles (CeO2 NPs) in response to biologically prevalent antioxidant molecules (glutathione, vitamin C). Such a redox sensitive behavior of CeO2 NPs is subsequently exploited to design a redox responsive drug delivery system for transporting anticancer drug (camptothecin). Upon exposing the CeO2 capped and drug loaded nanoconstruct to vitamin c or glutathione, dissolution-accompanied aggregation of CeO2 nanolids unleashes the drug molecules from porous silica to achieve a significant anticancer activity. Besides stimuli responsive drug delivery, immobilization of nanoceria onto the surface of mesoporous silica also facilitates us to gain a basic insight into the biotransformation of CeO2 in physiological mediums.

  1. Three-dimensional nano-biointerface as a new platform for guiding cell fate.

    PubMed

    Liu, Xueli; Wang, Shutao

    2014-04-21

    Three-dimensional nano-biointerface has been emerging as an important topic for chemistry, nanotechnology, and life sciences in recent years. Understanding the exchanges of materials, signals, and energy at biological interfaces has inspired and helped the serial design of three-dimensional nano-biointerfaces. The intimate interactions between cells and nanostructures bring many novel properties, making three-dimensional nano-biointerfaces a powerful platform to guide cell fate in a controllable and accurate way. These advantages and capabilities endow three-dimensional nano-biointerfaces with an indispensable role in developing advanced biological science and technology. This tutorial review is mainly focused on the recent progress of three-dimensional nano-biointerfaces and highlights the new explorations and unique phenomena of three-dimensional nano-biointerfaces for cell-related fundamental studies and biomedical applications. Some basic bio-inspired principles for the design and creation of three-dimensional nano-biointerfaces are also delivered in this review. Current and further challenges of three-dimensional nano-biointerfaces are finally addressed and proposed.

  2. Developing defined substrates for stem cell culture and differentiation.

    PubMed

    Hagbard, Louise; Cameron, Katherine; August, Paul; Penton, Christopher; Parmar, Malin; Hay, David C; Kallur, Therése

    2018-07-05

    Over the past few decades, a variety of different reagents for stem cell maintenance and differentiation have been commercialized. These reagents share a common goal in facilitating the manufacture of products suitable for cell therapy while reducing the amount of non-defined components. Lessons from developmental biology have identified signalling molecules that can guide the differentiation process in vitro , but less attention has been paid to the extracellular matrix used. With the introduction of more biologically relevant and defined matrices, that better mimic specific cell niches, researchers now have powerful resources to fine-tune their in vitro differentiation systems, which may allow the manufacture of therapeutically relevant cell types. In this review article, we revisit the basics of the extracellular matrix, and explore the important role of the cell-matrix interaction. We focus on laminin proteins because they help to maintain pluripotency and drive cell fate specification.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'. © 2018 The Authors.

  3. Ludwig von Bertalanffy's organismic view on the theory of evolution.

    PubMed

    Drack, Manfred

    2015-03-01

    Ludwig von Bertalanffy was a key figure in the advancement of theoretical biology. His early considerations already led him to recognize the necessity of considering the organism as a system, as an organization of parts and processes. He termed the resulting research program organismic biology, which he extended to all basic questions of biology and almost all areas of biology, hence also to the theory of evolution. This article begins by outlining the rather unknown (because often written in German) research of Bertalanffy in the field of theoretical biology. The basics of the organismic approach are then described. This is followed by Bertalanffy's considerations on the theory of evolution, in which he used methods from theoretical biology and then introduced his own, organismic, view on evolution, leading to the demand for finding laws of evolution. Finally, his view on the concept of homology is presented. © 2015 Wiley Periodicals, Inc.

  4. Bibliometric analysis of original molecular biology research in anaesthesia.

    PubMed

    Schreiber, K; Girard, T; Kindler, C H

    2004-10-01

    Molecular biology has expanded the horizons of anaesthesia during the last 20 years and has led to an increase of basic science articles that are published in the specialised anaesthetic journals or originate in anaesthetic institutions. We searched for and analysed the specific features, such as year of publication, publishing journal, and country of origin, of all such molecular biology articles stored in the MEDLINE database during the period 1986-2002. We identified 1265 original articles that used molecular biology techniques; 223 (18%) of these articles were published in anaesthetic journals and 1042 (82%) articles in 556 other biomedical journals. While in the late 1980s only a few molecular biology articles were published each year by anaesthetic institutions, worldwide this number reached approximately 200 basic science articles by the end of 2002. The USA clearly dominates the field of anaesthesia with respect to molecular biology research with 839 (66%) such articles.

  5. Strategies for the acquisition of transcriptional and epigenetic information in single cells.

    PubMed

    Li, Guang; Dzilic, Elda; Flores, Nick; Shieh, Alice; Wu, Sean M

    2017-03-01

    As the basic unit of living organisms, each single cell has unique molecular signatures and functions. Our ability to uncover the transcriptional and epigenetic signature of single cells has been hampered by the lack of tools to explore this area of research. The advent of microfluidic single cell technology along with single cell genome-wide DNA amplification methods had greatly improved our understanding of the expression variation in single cells. Transcriptional expression profile by multiplex qPCR or genome-wide RNA sequencing has enabled us to examine genes expression in single cells in different tissues. With the new tools, the identification of new cellular heterogeneity, novel marker genes, unique subpopulations, and spatial locations of each single cell can be acquired successfully. Epigenetic modifications for each single cell can also be obtained via similar methods. Based on single cell genome sequencing, single cell epigenetic information including histone modifications, DNA methylation, and chromatin accessibility have been explored and provided valuable insights regarding gene regulation and disease prognosis. In this article, we review the development of strategies to obtain single cell transcriptional and epigenetic data. Furthermore, we discuss ways in which single cell studies may help to provide greater understanding of the mechanisms of basic cardiovascular biology that will eventually lead to improvement in our ability to diagnose disease and develop new therapies.

  6. The phytotronist and the phenotype: plant physiology, Big Science, and a Cold War biology of the whole plant.

    PubMed

    Munns, David P D

    2015-04-01

    This paper describes how, from the early twentieth century, and especially in the early Cold War era, the plant physiologists considered their discipline ideally suited among all the plant sciences to study and explain biological functions and processes, and ranked their discipline among the dominant forms of the biological sciences. At their apex in the late-1960s, the plant physiologists laid claim to having discovered nothing less than the "basic laws of physiology." This paper unwraps that claim, showing that it emerged from the construction of monumental big science laboratories known as phytotrons that gave control over the growing environment. Control meant that plant physiologists claimed to be able to produce a standard phenotype valid for experimental biology. Invoking the standards of the physical sciences, the plant physiologists heralded basic biological science from the phytotronic produced phenotype. In the context of the Cold War era, the ability to pursue basic science represented the highest pinnacle of standing within the scientific community. More broadly, I suggest that by recovering the history of an underappreciated discipline, plant physiology, and by establishing the centrality of the story of the plant sciences in the history of biology can historians understand the massive changes wrought to biology by the conceptual emergence of the molecular understanding of life, the dominance of the discipline of molecular biology, and the rise of biotechnology in the 1980s. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Influential Parameters for the Analysis of Intracellular Parasite Metabolomics.

    PubMed

    Carey, Maureen A; Covelli, Vincent; Brown, Audrey; Medlock, Gregory L; Haaren, Mareike; Cooper, Jessica G; Papin, Jason A; Guler, Jennifer L

    2018-04-25

    Metabolomics is increasingly popular for the study of pathogens. For the malaria parasite Plasmodium falciparum , both targeted and untargeted metabolomics have improved our understanding of pathogenesis, host-parasite interactions, and antimalarial drug treatment and resistance. However, purification and analysis procedures for performing metabolomics on intracellular pathogens have not been explored. Here, we purified in vitro -grown ring-stage intraerythrocytic P. falciparum parasites for untargeted metabolomics studies; the small size of this developmental stage amplifies the challenges associated with metabolomics studies as the ratio between host and parasite biomass is maximized. Following metabolite identification and data preprocessing, we explored multiple confounding factors that influence data interpretation, including host contamination and normalization approaches (including double-stranded DNA, total protein, and parasite numbers). We conclude that normalization parameters have large effects on differential abundance analysis and recommend the thoughtful selection of these parameters. However, normalization does not remove the contribution from the parasite's extracellular environment (culture media and host erythrocyte). In fact, we found that extraparasite material is as influential on the metabolome as treatment with a potent antimalarial drug with known metabolic effects (artemisinin). Because of this influence, we could not detect significant changes associated with drug treatment. Instead, we identified metabolites predictive of host and medium contamination that could be used to assess sample purification. Our analysis provides the first quantitative exploration of the effects of these factors on metabolomics data analysis; these findings provide a basis for development of improved experimental and analytical methods for future metabolomics studies of intracellular organisms. IMPORTANCE Molecular characterization of pathogens such as the malaria parasite can lead to improved biological understanding and novel treatment strategies. However, the distinctive biology of the Plasmodium parasite, including its repetitive genome and the requirement for growth within a host cell, hinders progress toward these goals. Untargeted metabolomics is a promising approach to learn about pathogen biology. By measuring many small molecules in the parasite at once, we gain a better understanding of important pathways that contribute to the parasite's response to perturbations such as drug treatment. Although increasingly popular, approaches for intracellular parasite metabolomics and subsequent analysis are not well explored. The findings presented in this report emphasize the critical need for improvements in these areas to limit misinterpretation due to host metabolites and to standardize biological interpretation. Such improvements will aid both basic biological investigations and clinical efforts to understand important pathogens. Copyright © 2018 Carey et al.

  8. Foundational model of structural connectivity in the nervous system with a schema for wiring diagrams, connectome, and basic plan architecture

    PubMed Central

    Swanson, Larry W.; Bota, Mihail

    2010-01-01

    The nervous system is a biological computer integrating the body's reflex and voluntary environmental interactions (behavior) with a relatively constant internal state (homeostasis)—promoting survival of the individual and species. The wiring diagram of the nervous system's structural connectivity provides an obligatory foundational model for understanding functional localization at molecular, cellular, systems, and behavioral organization levels. This paper provides a high-level, downwardly extendible, conceptual framework—like a compass and map—for describing and exploring in neuroinformatics systems (such as our Brain Architecture Knowledge Management System) the structural architecture of the nervous system's basic wiring diagram. For this, the Foundational Model of Connectivity's universe of discourse is the structural architecture of nervous system connectivity in all animals at all resolutions, and the model includes two key elements—a set of basic principles and an internally consistent set of concepts (defined vocabulary of standard terms)—arranged in an explicitly defined schema (set of relationships between concepts) allowing automatic inferences. In addition, rules and procedures for creating and modifying the foundational model are considered. Controlled vocabularies with broad community support typically are managed by standing committees of experts that create and refine boundary conditions, and a set of rules that are available on the Web. PMID:21078980

  9. DCB Funding

    Cancer.gov

    The Division of Cancer Biology (DCB) funds and supports extramural basic research that investigates the fundamental biology behind cancer. Find out more about DCB's grants process and funding opportunities.

  10. Ecology, Ecosystem Management and Biology Teaching. Biology and Human Welfare.

    ERIC Educational Resources Information Center

    Spellerberg, Ian F.; Pritchard, Alan J.

    This six-chapter document (part of a series on biology and human welfare) focuses on ecology, ecosystem management, and biology teaching. Chapter 1 discusses the basic elements of ecology (considering organisms and their environment, populations, and communities and ecosystems). Chapter 2 describes several aspects of human ecology and resources…

  11. Female Sex and Gender in Lung/Sleep Health and Disease: Increased Understanding of Basic Biological, Pathophysiological and Behavioral Mechanisms Leading to Better Health for Female Patients with Lung Disease.

    PubMed

    Han, MeiLan K; Arteaga-Solis, Emilio; Blenis, John; Bourjeily, Ghada; Clegg, Deborah J; DeMeo, Dawn; Duffy, Jeanne; Gaston, Ben; Heller, Nicola M; Hemnes, Anna; Henske, Elizabeth Petri; Jain, Raksha; Lahm, Tim; Lancaster, Lisa H; Lee, Joyce; Legato, Marianne J; McKee, Sherry; Mehra, Reena; Morris, Alison; Prakash, Y S; Stampfli, Martin R; Gopal-Srivastava, Rashmi; Laposky, Aaron D; Punturieri, Antonello; Reineck, Lora; Tigno, Xenia; Clayton, Janine

    2018-05-10

    Female sex/gender is an under-characterized variable in studies related to lung development and disease. Notwithstanding, many aspects of lung and sleep biology and pathobiology are impacted by female sex and female reproductive transitions. These may manifest as differential gene expression or peculiar organ development. Some conditions are more prevalent in women, such as asthma and insomnia, or in the case of LAM, are seen almost exclusively in women. In other diseases, presentation differs such as the higher frequency of exacerbations experienced by women with COPD or greater cardiac morbidity among women with sleep disordered breathing. Recent advances in -omics and behavioral science provide an opportunity to specifically address sex-based differences and explore research needs and opportunities that will elucidate biochemical pathways, thus enabling more targeted/personalized therapies. To explore the status of and opportunities for research in this area, the National Heart, Lung, and Blood Institute (NHLBI), in partnership with the National Institutes of Health (NIH) Office of Research on Women's Health (ORWH) and the Office of Rare Diseases Research (ORDR), convened a workshop of investigators in Bethesda, (MD) on September 18-19, 2017. At the workshop the participants reviewed the current understanding of the biological, behavioral, and clinical implications of female sex and gender on lung and sleep health and disease, and formulated recommendations that address research gaps, with a view of achieving better health outcomes through more precise management of female patients with non-neoplastic lung disease were proposed. This report summarizes those discussions.

  12. Teaching Cell Biology to Nonscience Majors through Forensics, or How to Design a Killer Course

    ERIC Educational Resources Information Center

    Arwood, Laura

    2004-01-01

    Nonscience majors often do not respond to traditional lecture-only biology courses. However, these students still need exposure to basic biological concepts. To accomplish this goal, forensic science was paired with compatible cell biology subjects. Several topics such as human development and molecular biology were found to fulfill this purpose.…

  13. The RCSB Protein Data Bank: views of structural biology for basic and applied research and education.

    PubMed

    Rose, Peter W; Prlić, Andreas; Bi, Chunxiao; Bluhm, Wolfgang F; Christie, Cole H; Dutta, Shuchismita; Green, Rachel Kramer; Goodsell, David S; Westbrook, John D; Woo, Jesse; Young, Jasmine; Zardecki, Christine; Berman, Helen M; Bourne, Philip E; Burley, Stephen K

    2015-01-01

    The RCSB Protein Data Bank (RCSB PDB, http://www.rcsb.org) provides access to 3D structures of biological macromolecules and is one of the leading resources in biology and biomedicine worldwide. Our efforts over the past 2 years focused on enabling a deeper understanding of structural biology and providing new structural views of biology that support both basic and applied research and education. Herein, we describe recently introduced data annotations including integration with external biological resources, such as gene and drug databases, new visualization tools and improved support for the mobile web. We also describe access to data files, web services and open access software components to enable software developers to more effectively mine the PDB archive and related annotations. Our efforts are aimed at expanding the role of 3D structure in understanding biology and medicine. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Alternative Methods by Which Basic Science Pharmacy Faculty Can Relate to Clinical Practice.

    ERIC Educational Resources Information Center

    Kabat, Hugh F.; And Others

    1982-01-01

    A panel of pharmacy faculty ranked a broad inventory of basic pharmaceutical science topics in terms of their applicability to clinical pharmacy practice. The panel concluded that basic pharmaceutical sciences are essentially applications of foundation areas in biological, physical, and social sciences. (Author/MLW)

  15. Basic techniques in mammalian cell tissue culture.

    PubMed

    Phelan, Katy; May, Kristin M

    2015-03-02

    Cultured mammalian cells are used extensively in cell biology studies. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells. Copyright © 2015 John Wiley & Sons, Inc.

  16. Towards a semantic lexicon for biological language processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verspoor, K.

    It is well understood that natural language processing (NLP) applications require sophisticated lexical resources to support their processing goals. In the biomedical domain, we are privileged to have access to extensive terminological resources in the form of controlled vocabularies and ontologies, which have been integrated into the framework of the National Library of Medicine's Unified Medical Language System's (UMLS) Metathesaurus. However, the existence of such terminological resources does not guarantee their utility for NLP. In particular, we have two core requirements for lexical resources for NLP in addition to the basic enumeration of important domain terms: representation of morphosyntactic informationmore » about those terms, specifically part of speech information and inflectional patterns to support parsing and lemma assignment, and representation of semantic information indicating general categorical information about terms, and significant relations between terms to support text understanding and inference (Hahn et at, 1999). Biomedical vocabularies by and large commonly leave out morphosyntactic information, and where they address semantic considerations, they often do so in an unprincipled manner, for instance by indicating a relation between two concepts without indicating the type of that relation. But all is not lost. The UMLS knowledge sources include two additional resources which are relevant - the SPECIALIST lexicon, a lexicon addressing our morphosyntactic requirements, and the Semantic Network, a representation of core conceptual categories in the biomedical domain. The coverage of these two knowledge sources with respect to the full coverage of the Metathesaurus is, however, not entirely clear. Furthermore, when our goals are specifically to process biological text - and often more specifically, text in the molecular biology domain - it is difficult to say whether the coverage of these resources is meaningful. The utility of the UMLS knowledge sources for medical language processing (MLP) has been explored (Johnson, 1999; Friedman et al 2001); the time has now come to repeat these experiments with respect to biological language processing (BLP). To that end, this paper presents an analysis of ihe UMLS resources, specifically with an eye towards constructing lexical resources suitable for BLP. We follow the paradigm presented in Johnson (1999) for medical language, exploring overlap between the UMLS Metathesaurus and SPECIALIST lexicon to construct a morphosyntactic and semantically-specified lexicon, and then further explore the overlap with a relevant domain corpus for molecular biology.« less

  17. Stem Cells and Society: An Undergraduate Course Exploring the Intersections among Science, Religion, and Law

    PubMed Central

    Friedrichsen, Patricia

    2009-01-01

    The intersection of science and our society has led to legal and ethical issues in which we all play a part. To support development of scientific literacy, college science courses need to engage students in difficult dialogues around ethical issues. We describe a new course, Stem Cells and Society, in which students explore the basic biology of stem cell research and the controversy surrounding it. As part of the course, we highlight the nature of science, looking at the methods and norms within the scientific community. To gain a perspective on the current stem cell controversy, we examine the public debates in the 1970s surrounding in vitro fertilization, the stem cell initiative in Missouri, and the personal and religious viewpoints that have emerged relative to the stem cell debate. In the Stem Cells and Society course, students are challenged to develop and clarify their own personal positions concerning embryonic stem cell research. These positions are grounded in science, religion or personal philosophy, and law. PMID:19255139

  18. Effectiveness of a cloning and sequencing exercise on student learning with subsequent publication in the National Center for Biotechnology Information GenBank.

    PubMed

    Lau, Joann M; Robinson, David L

    2009-01-01

    With rapid advances in biotechnology and molecular biology, instructors are challenged to not only provide undergraduate students with hands-on experiences in these disciplines but also to engage them in the "real-world" scientific process. Two common topics covered in biotechnology or molecular biology courses are gene-cloning and bioinformatics, but to provide students with a continuous laboratory-based research experience in these techniques is difficult. To meet these challenges, we have partnered with Bio-Rad Laboratories in the development of the "Cloning and Sequencing Explorer Series," which combines wet-lab experiences (e.g., DNA extraction, polymerase chain reaction, ligation, transformation, and restriction digestion) with bioinformatics analysis (e.g., evaluation of DNA sequence quality, sequence editing, Basic Local Alignment Search Tool searches, contig construction, intron identification, and six-frame translation) to produce a sequence publishable in the National Center for Biotechnology Information GenBank. This 6- to 8-wk project-based exercise focuses on a pivotal gene of glycolysis (glyceraldehyde-3-phosphate dehydrogenase), in which students isolate, sequence, and characterize the gene from a plant species or cultivar not yet published in GenBank. Student achievement was evaluated using pre-, mid-, and final-test assessments, as well as with a survey to assess student perceptions. Student confidence with basic laboratory techniques and knowledge of bioinformatics tools were significantly increased upon completion of this hands-on exercise.

  19. Genetic and Genomic Toolbox of Zea mays

    PubMed Central

    Nannas, Natalie J.; Dawe, R. Kelly

    2015-01-01

    Maize has a long history of genetic and genomic tool development and is considered one of the most accessible higher plant systems. With a fully sequenced genome, a suite of cytogenetic tools, methods for both forward and reverse genetics, and characterized phenotype markers, maize is amenable to studying questions beyond plant biology. Major discoveries in the areas of transposons, imprinting, and chromosome biology came from work in maize. Moving forward in the post-genomic era, this classic model system will continue to be at the forefront of basic biological study. In this review, we outline the basics of working with maize and describe its rich genetic toolbox. PMID:25740912

  20. Medical Microbiology: Deficits and Remedies

    ERIC Educational Resources Information Center

    Gabridge, Michael G.

    1974-01-01

    Microbiology is a typical medical science in which basic information can have direct application. Yet, surveys and questionnaires of recent medical school graduates indicate a serious lack of retentiion in regard to basic biological science. (Author)

  1. Exploring undergraduates' understanding of photosynthesis using diagnostic question clusters.

    PubMed

    Parker, Joyce M; Anderson, Charles W; Heidemann, Merle; Merrill, John; Merritt, Brett; Richmond, Gail; Urban-Lurain, Mark

    2012-01-01

    We present a diagnostic question cluster (DQC) that assesses undergraduates' thinking about photosynthesis. This assessment tool is not designed to identify individual misconceptions. Rather, it is focused on students' abilities to apply basic concepts about photosynthesis by reasoning with a coordinated set of practices based on a few scientific principles: conservation of matter, conservation of energy, and the hierarchical nature of biological systems. Data on students' responses to the cluster items and uses of some of the questions in multiple-choice, multiple-true/false, and essay formats are compared. A cross-over study indicates that the multiple-true/false format shows promise as a machine-gradable format that identifies students who have a mixture of accurate and inaccurate ideas. In addition, interviews with students about their choices on three multiple-choice questions reveal the fragility of students' understanding. Collectively, the data show that many undergraduates lack both a basic understanding of the role of photosynthesis in plant metabolism and the ability to reason with scientific principles when learning new content. Implications for instruction are discussed.

  2. Exploring Undergraduates' Understanding of Photosynthesis Using Diagnostic Question Clusters

    PubMed Central

    Parker, Joyce M.; Anderson, Charles W.; Heidemann, Merle; Merrill, John; Merritt, Brett; Richmond, Gail; Urban-Lurain, Mark

    2012-01-01

    We present a diagnostic question cluster (DQC) that assesses undergraduates' thinking about photosynthesis. This assessment tool is not designed to identify individual misconceptions. Rather, it is focused on students' abilities to apply basic concepts about photosynthesis by reasoning with a coordinated set of practices based on a few scientific principles: conservation of matter, conservation of energy, and the hierarchical nature of biological systems. Data on students' responses to the cluster items and uses of some of the questions in multiple-choice, multiple-true/false, and essay formats are compared. A cross-over study indicates that the multiple-true/false format shows promise as a machine-gradable format that identifies students who have a mixture of accurate and inaccurate ideas. In addition, interviews with students about their choices on three multiple-choice questions reveal the fragility of students' understanding. Collectively, the data show that many undergraduates lack both a basic understanding of the role of photosynthesis in plant metabolism and the ability to reason with scientific principles when learning new content. Implications for instruction are discussed. PMID:22383617

  3. Structural Biology and Molecular Applications Research

    Cancer.gov

    Part of NCI's Division of Cancer Biology's research portfolio, research and development in this area focuses on enabling technologies, models, and methodologies to support basic and applied cancer research.

  4. Genomewide effects of peroxisome proliferator-activated receptor gamma in macrophages and dendritic cells--revealing complexity through systems biology.

    PubMed

    Cuaranta-Monroy, Ixchelt; Kiss, Mate; Simandi, Zoltan; Nagy, Laszlo

    2015-09-01

    Systems biology approaches have become indispensable tools in biomedical and basic research. These data integrating bioinformatic methods gained prominence after high-throughput technologies became available to investigate complex cellular processes, such as transcriptional regulation and protein-protein interactions, on a scale that had not been studied before. Immunology is one of the medical fields that systems biology impacted profoundly due to the plasticity of cell types involved and the accessibility of a wide range of experimental models. In this review, we summarize the most important recent genomewide studies exploring the function of peroxisome proliferator-activated receptor γ in macrophages and dendritic cells. PPARγ ChIP-seq experiments were performed in adipocytes derived from embryonic stem cells to complement the existing data sets and to provide comparators to macrophage data. Finally, lists of regulated genes generated from such experiments were analysed with bioinformatics and system biology approaches. We show that genomewide studies utilizing high-throughput data acquisition methods made it possible to gain deeper insights into the role of PPARγ in these immune cell types. We also demonstrate that analysis and visualization of data using network-based approaches can be used to identify novel genes and functions regulated by the receptor. The example of PPARγ in macrophages and dendritic cells highlights the crucial importance of systems biology approaches in establishing novel cellular functions for long-known signaling pathways. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  5. Engineering Education: A Clear Decision

    ERIC Educational Resources Information Center

    Strimel, Greg J.; Grubbs, Michael E.; Wells, John G.

    2017-01-01

    The core subjects in P-12 education have a common key characteristic that makes them stable over time. That characteristic is a steady content. For example, in the sciences, the basics of biology remain the same--the cell is the basic building block around which organisms are defined, characterized, structured, etc. Similarly, the basics of…

  6. Is basic science disappearing from medicine? The decline of biomedical research in the medical literature.

    PubMed

    Steinberg, Benjamin E; Goldenberg, Neil M; Fairn, Gregory D; Kuebler, Wolfgang M; Slutsky, Arthur S; Lee, Warren L

    2016-02-01

    Explosive growth in our understanding of genomics and molecular biology have fueled calls for the pursuit of personalized medicine, the notion of harnessing biologic variability to provide patient-specific care. This vision will necessitate a deep understanding of the underlying pathophysiology in each patient. Medical journals play a pivotal role in the education of trainees and clinicians, yet we suspected that the amount of basic science in the top medical journals has been in decline. We conducted an automated search strategy in PubMed to identify basic science articles and calculated the proportion of articles dealing with basic science in the highest impact journals for 8 different medical specialties from 1994 to 2013. We observed a steep decline (40-60%) in such articles over time in almost all of the journals examined. This rapid decline in basic science from medical journals is likely to affect practitioners' understanding of and interest in the basic mechanisms of disease and therapy. In this Life Sciences Forum, we discuss why this decline may be occurring and what it means for the future of science and medicine. © FASEB.

  7. Purification and Refolding of Overexpressed Human Basic Fibroblast Growth Factor in Escherichia coli

    PubMed Central

    Alibolandi, Mona; Mirzahoseini, Hasan

    2011-01-01

    This work describes the integration of expanded bed adsorption (EBA) and adsorptive protein refolding operations used to recover purified and biologically active human basic fibroblast growth factor from inclusion bodies expressed in E. coli. Insoluble overexpressed human basic fibroblast growth factor has been purified on CM Hyper Z matrix by expanded bed adsorption after isolation and solubilization in 8 M urea. The adsorption was made in expanded bed without clarification steps such as centrifugation. Column refolding was done by elimination of urea and elution with NaCl. The human basic fibroblast growth factor was obtained as a highly purified soluble monomer form with similar behavior in circular dichroism and fluorescence spectroscopy as native protein. A total of 92.52% of the available human basic fibroblast growth factor was recovered as biologically active and purified protein using the mentioned purification and refolding process. This resulted in the first procedure describing high-throughput purification and refolding of human basic fibroblast growth factor in one step and is likely to have the greatest benefit for proteins that tend to aggregate when refolded by dilution. PMID:21837279

  8. Basics of Biosafety

    NASA Technical Reports Server (NTRS)

    Wong, Willy

    2009-01-01

    This slide presentation reviews the basics of biosafety and the importance of assuring proper biosafety practices. The objectives of the presentation are to review regulations about biosafety, and the different biosafety levels; the biosafety facilities at Johnson Space Center; the usage and maintenance of the biosafety cabinet, the proper methods to handle biologically hazardous materials upon exposure, and the methods of cleanup in the event of a spill, and the training requirements that are mandated for personnel handling biologically hazardous materials.

  9. Neuroscience and education.

    PubMed

    Goswami, Usha

    2004-03-01

    Neuroscience is a relatively new discipline encompassing neurology, psychology and biology. It has made great strides in the last 100 years, during which many aspects of the physiology, biochemistry, pharmacology and structure of the vertebrate brain have been understood. Understanding of some of the basic perceptual, cognitive, attentional, emotional and mnemonic functions is also making progress, particularly since the advent of the cognitive neurosciences, which focus specifically on understanding higher level processes of cognition via imaging technology. Neuroimaging has enabled scientists to study the human brain at work in vivo, deepening our understanding of the very complex processes underpinning speech and language, thinking and reasoning, reading and mathematics. It seems timely, therefore, to consider how we might implement our increased understanding of brain development and brain function to explore educational questions.

  10. Lessons from Retinoblastoma: Implications for Cancer, Development, Evolution, and Regenerative Medicine.

    PubMed

    Dyer, Michael A

    2016-10-01

    Retinoblastoma is a rare childhood cancer of the developing retina, and studies on this orphan disease have led to fundamental discoveries in cancer biology. Retinoblastoma has also emerged as a model for translational research for pediatric solid tumors, which is particularly important as personalized medicine expands in oncology. Research on retinoblastomas has been combined with the exploration of retinal development and retinal degeneration to advance a new model of cell type-specific disease susceptibility termed 'cellular pliancy'. The concept can even be extended to species-specific regeneration. This review discusses the remarkable path of retinoblastoma research and how it has shaped the most current efforts in basic, translational, and clinical research in oncology and beyond. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Nonequilibrium description of de novo biogenesis and transport through Golgi-like cisternae

    NASA Astrophysics Data System (ADS)

    Sachdeva, Himani; Barma, Mustansir; Rao, Madan

    2016-12-01

    A central issue in cell biology is the physico-chemical basis of organelle biogenesis in intracellular trafficking pathways, its most impressive manifestation being the biogenesis of Golgi cisternae. At a basic level, such morphologically and chemically distinct compartments should arise from an interplay between the molecular transport and chemical maturation. Here, we formulate analytically tractable, minimalist models, that incorporate this interplay between transport and chemical progression in physical space, and explore the conditions for de novo biogenesis of distinct cisternae. We propose new quantitative measures that can discriminate between the various models of transport in a qualitative manner-this includes measures of the dynamics in steady state and the dynamical response to perturbations of the kind amenable to live-cell imaging.

  12. Linear ordered collagen scaffolds loaded with collagen-binding basic fibroblast growth factor facilitate recovery of sciatic nerve injury in rats.

    PubMed

    Ma, Fukai; Xiao, Zhifeng; Chen, Bing; Hou, Xianglin; Dai, Jianwu; Xu, Ruxiang

    2014-04-01

    Natural biological functional scaffolds, consisting of biological materials filled with promoting elements, provide a promising strategy for the regeneration of peripheral nerve defects. Collagen conduits have been used widely due to their excellent biological properties. Linear ordered collagen scaffold (LOCS) fibers are good lumen fillers that can guide nerve regeneration in an ordered direction. In addition, basic fibroblast growth factor (bFGF) is important in the recovery of nerve injury. However, the traditional method for delivering bFGF to the lesion site has no long-term effect because of its short half-life and rapid diffusion. Therefore, we fused a specific collagen-binding domain (CBD) peptide to the N-terminal of native basic fibroblast growth factor (NAT-bFGF) to retain bFGF on the collagen scaffolds. In this study, a natural biological functional scaffold was constructed using collagen tubes filled with collagen-binding bFGF (CBD-bFGF)-loaded LOCS to promote regeneration in a 5-mm rat sciatic nerve transection model. Functional evaluation, histological investigation, and morphometric analysis indicated that the natural biological functional scaffold retained more bFGF at the injury site, guided axon growth, and promoted nerve regeneration as well as functional restoration.

  13. Analysis of current density and specific absorption rate in biological tissue surrounding transcutaneous transformer for an artificial heart.

    PubMed

    Shiba, Kenji; Nukaya, Masayuki; Tsuji, Toshio; Koshiji, Kohji

    2008-01-01

    This paper reports on the current density and specific absorption rate (SAR) analysis of biological tissue surrounding an air-core transcutaneous transformer for an artificial heart. The electromagnetic field in the biological tissue is analyzed by the transmission line modeling method, and the current density and SAR as a function of frequency, output voltage, output power, and coil dimension are calculated. The biological tissue of the model has three layers including the skin, fat, and muscle. The results of simulation analysis show SARs to be very small at any given transmission conditions, about 2-14 mW/kg, compared to the basic restrictions of the International Commission on nonionizing radiation protection (ICNIRP; 2 W/kg), while the current density divided by the ICNIRP's basic restrictions gets smaller as the frequency rises and the output voltage falls. It is possible to transfer energy below the ICNIRP's basic restrictions when the frequency is over 250 kHz and the output voltage is under 24 V. Also, the parts of the biological tissue that maximized the current density differ by frequencies; in the low frequency is muscle and in the high frequency is skin. The boundary is in the vicinity of the frequency 600-1000 kHz.

  14. Holarchical Systems and Emotional Holons : Biologically-Inspired System Designs for Control of Autonomous Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey; Plice, Laura; Pisanich, Greg

    2003-01-01

    The BEES (Bio-inspired Engineering for Exploration Systems) for Mars project at NASA Ames Research Center has the goal of developing bio-inspired flight control strategies to enable aerial explorers for Mars scientific investigations. This paper presents a summary of our ongoing research into biologically inspired system designs for control of unmanned autonomous aerial vehicle communities for Mars exploration. First, we present cooperative design considerations for robotic explorers based on the holarchical nature of biological systems and communities. Second, an outline of an architecture for cognitive decision making and control of individual robotic explorers is presented, modeled after the emotional nervous system of cognitive biological systems. Keywords: Holarchy, Biologically Inspired, Emotional UAV Flight Control

  15. Methods for open innovation on a genome-design platform associating scientific, commercial, and educational communities in synthetic biology.

    PubMed

    Toyoda, Tetsuro

    2011-01-01

    Synthetic biology requires both engineering efficiency and compliance with safety guidelines and ethics. Focusing on the rational construction of biological systems based on engineering principles, synthetic biology depends on a genome-design platform to explore the combinations of multiple biological components or BIO bricks for quickly producing innovative devices. This chapter explains the differences among various platform models and details a methodology for promoting open innovation within the scope of the statutory exemption of patent laws. The detailed platform adopts a centralized evaluation model (CEM), computer-aided design (CAD) bricks, and a freemium model. It is also important for the platform to support the legal aspects of copyrights as well as patent and safety guidelines because intellectual work including DNA sequences designed rationally by human intelligence is basically copyrightable. An informational platform with high traceability, transparency, auditability, and security is required for copyright proof, safety compliance, and incentive management for open innovation in synthetic biology. GenoCon, which we have organized and explained here, is a competition-styled, open-innovation method involving worldwide participants from scientific, commercial, and educational communities that aims to improve the designs of genomic sequences that confer a desired function on an organism. Using only a Web browser, a participating contributor proposes a design expressed with CAD bricks that generate a relevant DNA sequence, which is then experimentally and intensively evaluated by the GenoCon organizers. The CAD bricks that comprise programs and databases as a Semantic Web are developed, executed, shared, reused, and well stocked on the secure Semantic Web platform called the Scientists' Networking System or SciNetS/SciNeS, based on which a CEM research center for synthetic biology and open innovation should be established. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Exploring Alignment of Community College Students for Preparedness and Achievement of Basic Skills

    ERIC Educational Resources Information Center

    Jeffcoat, Kendra; Weisblat, Irina A.; Bresciani, Marilee J.; Sly, Robert W.; Tucker, Mark; Herrin, Bridget; Cao, LiuHui

    2014-01-01

    This mixed-method study explored the alignment of expected student learning outcomes (SLOs) and expected student entrance skills, as stated within "course outlines of record" (CORs), for basic skills courses in one California community college district. Researchers evaluated consistencies and discrepancies in course alignment. There were…

  17. Fort Ord’s Merit-Reward System: A Contingency Management Program in Basic Combat Training,

    DTIC Science & Technology

    1979-01-01

    medicine colleague, Dr. Llewellyn Legters , that the recommendation emerged to develop and test a contingency management system for basic training. One...1965, 16, 438. 9Datel, W. E., & Legters , L. J. Reinforcement measurement in a social system. Journal of Biological Psychology, 1971, 13 (1), 33-38 13...ODatel, W. E., & Legters , L. J. The psychology of the Army recruit. Journal of Biological Psychology, 1970-71, 12, 34-40. l1Datel, W. E. Technical

  18. Basic and applied problems in developmental biology and immunobiology of cestode infections: Hymenolepis, Taenia and Echinococcus.

    PubMed

    Ito, A

    2015-02-01

    Differentiation and development of parasites, including longevity in host animals, are thought to be governed by host-parasite interactions. In this review, several topics on the developmental biology of cestode infections are discussed from immunobiological perspective with a focus on Hymenolepis, Taenia and Echinococcus infections. The basic premise of this review is that 'differentiation and development of cestodes' are somehow affected by host immune responses with an evolutionary history. © 2014 John Wiley & Sons Ltd.

  19. Basic Techniques in Mammalian Cell Tissue Culture.

    PubMed

    Phelan, Katy; May, Kristin M

    2016-11-01

    Cultured mammalian cells are used extensively in cell biology studies. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  20. Sex and the Biology Teacher

    ERIC Educational Resources Information Center

    Keller, Dolores Elaine

    1972-01-01

    Summarizes evidence that mammals are basically female, with masculine characteristics being imposed by hormonal changes in embryos or post-natally. Advocates the removal of male-dominant terminology in biological research and teaching. (AL)

  1. Infusing Outdoor Field Experiences into the Secondary Biology Curriculum.

    ERIC Educational Resources Information Center

    Owens, Ginny

    1984-01-01

    To offer students biological field experiences, teachers should use their own basic skills, be enthusiastic motivators, participate in community programs/courses/workshops to acquire additional skills/knowledge for outdoor biological education, plan outdoor excursions with safety considerations in mind, and use available resources for classroom…

  2. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data

    PubMed Central

    Kearse, Matthew; Moir, Richard; Wilson, Amy; Stones-Havas, Steven; Cheung, Matthew; Sturrock, Shane; Buxton, Simon; Cooper, Alex; Markowitz, Sidney; Duran, Chris; Thierer, Tobias; Ashton, Bruce; Meintjes, Peter; Drummond, Alexei

    2012-01-01

    Summary: The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Availability and implementation: Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl. Contact: peter@biomatters.com PMID:22543367

  3. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.

    PubMed

    Kearse, Matthew; Moir, Richard; Wilson, Amy; Stones-Havas, Steven; Cheung, Matthew; Sturrock, Shane; Buxton, Simon; Cooper, Alex; Markowitz, Sidney; Duran, Chris; Thierer, Tobias; Ashton, Bruce; Meintjes, Peter; Drummond, Alexei

    2012-06-15

    The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl.

  4. Anaerobic Digestion I. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Arasmith, E. E.

    This lesson is the first of a two-part series on anaerobic digestion. Topics discussed include the five basic functions of an anaerobic digester, basic theory of the biological processes involved, basic equipment necessary for digestion, and the products of digestion. The lesson includes an instructor's guide and student workbook. The instructor's…

  5. 78 FR 54665 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ...: Center for Scientific Review Special Emphasis Panel; Basic Biology of Neurological Disorders. Date..., Bethesda, MD 20892, 301-435- 1242, [email protected] . Name of Committee: Biological Chemistry and...

  6. Secure Encapsulation and Publication of Biological Services in the Cloud Computing Environment

    PubMed Central

    Zhang, Weizhe; Wang, Xuehui; Lu, Bo; Kim, Tai-hoon

    2013-01-01

    Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype system of the biological cloud is achieved. PMID:24078906

  7. Secure encapsulation and publication of biological services in the cloud computing environment.

    PubMed

    Zhang, Weizhe; Wang, Xuehui; Lu, Bo; Kim, Tai-hoon

    2013-01-01

    Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype system of the biological cloud is achieved.

  8. [Progress in synthetic biology of "973 Funding Program" in China].

    PubMed

    Chen, Guoqiang; Wang, Ying

    2015-06-01

    This paper reviews progresses made in China from 2011 in areas of "Synthetic Biology" supported by State Basic Research 973 Program. Till the end of 2014, 9 "synthetic biology" projects have been initiated with emphasis on "microbial manufactures" with the 973 Funding Program. Combined with the very recent launch of one project on "mammalian cell synthetic biology" and another on "plant synthetic biology", Chinese "synthetic biology" research reflects its focus on "manufactures" while not giving up efforts on "synthetic biology" of complex systems.

  9. A Diagnostic Assessment for Introductory Molecular and Cell Biology

    ERIC Educational Resources Information Center

    Shi, Jia; Wood, William B.; Martin, Jennifer M.; Guild, Nancy A.; Vicens, Quentin; Knight, Jennifer K.

    2010-01-01

    We have developed and validated a tool for assessing understanding of a selection of fundamental concepts and basic knowledge in undergraduate introductory molecular and cell biology, focusing on areas in which students often have misconceptions. This multiple-choice Introductory Molecular and Cell Biology Assessment (IMCA) instrument is designed…

  10. Outdoor Biology Instructional Strategies Trial Edition. Set I.

    ERIC Educational Resources Information Center

    Fairwell, Kay, Ed.; And Others

    The Outdoor Biology Instructional Strategies (OBIS) Trial Edition Set I contains 24 varied activities which make use of crafts, simulations, and basic investigative techniques to provide introductory learning experiences in outdoor biology for children aged 10 to 15. The individual water-resistant folio for each activity includes biological…

  11. A Study of Rubisco through Western Blotting and Tissue Printing Techniques

    ERIC Educational Resources Information Center

    Ma, Zhong; Cooper, Cynthia; Kim, Hyun-Joo; Janick-Buckner, Diane

    2009-01-01

    We describe a laboratory exercise developed for a cell biology course for second-year undergraduate biology majors. It was designed to introduce undergraduates to the basic molecular biology techniques of Western blotting and immunodetection coupled with the technique of tissue printing in detecting the presence, relative abundance, and…

  12. BASIC Simulation Programs; Volumes I and II. Biology, Earth Science, Chemistry.

    ERIC Educational Resources Information Center

    Digital Equipment Corp., Maynard, MA.

    Computer programs which teach concepts and processes related to biology, earth science, and chemistry are presented. The seven biology problems deal with aspects of genetics, evolution and natural selection, gametogenesis, enzymes, photosynthesis, and the transport of material across a membrane. Four earth science problems concern climates, the…

  13. Action Biology. Advanced Placement for the Second Year. First Edition.

    ERIC Educational Resources Information Center

    Davis, Mary Pitt

    This document provides biology experiments designed for students who have completed a first year biology course. This self contained laboratory booklet contains four sections. In section 1, "Instrumentation in the Study of Cells," discussion sections and suggestions for teacher demonstrations are provided. It also includes some basic materials…

  14. The next generation of training for Arabidopsis researchers: bioinformatics and quantitative biology

    USDA-ARS?s Scientific Manuscript database

    It has been more than 50 years since Arabidopsis (Arabidopsis thaliana) was first introduced as a model organism to understand basic processes in plant biology. A well-organized scientific community has used this small reference plant species to make numerous fundamental plant biology discoveries (P...

  15. Population biology of the forest pathogen Heterbasidion annosum:implications for forest management

    Treesearch

    M. Garbelotto; W.J. Otrosina; F.W. Cobb; T.D. Bruns

    1998-01-01

    Heterobasidion annosumranks as one of the most destructive pathogens in North American coniferous forests. Understanding the popula­tion biology of this fungus may facilitate un­derstanding not only the basic biology of the organism, but also the general patterns of disease development,...

  16. 78 FR 10186 - Center For Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... Committee: Center for Scientific Review Special Emphasis Panel; RFA: EY 13-001 Basic Behavioral Research on... Panel; Fellowships: Cell Biology, Developmental Biology and Bioengineering. Date: March 7, 2013. Time: 8...

  17. The Use of Pre-Lectures in a University Biology Course--Eliminating the Need for Prerequisites

    ERIC Educational Resources Information Center

    da Silva, Karen Burke; Hunter, Narelle

    2009-01-01

    First year biology students at Flinders University with no prior biology background knowledge fail at almost twice the rate as those with a background. To remedy this discrepancy we enabled students to attend a weekly series of pre-lectures aimed at providing basic biological concepts, thereby removing the need for students to complete a…

  18. Understanding water deficit stress-induced changes in the basic metabolism of higher plants - biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe.

    PubMed

    Shao, Hong-Bo; Chu, Li-Ye; Jaleel, C Abdul; Manivannan, P; Panneerselvam, R; Shao, Ming-An

    2009-01-01

    Water is vital for plant growth, development and productivity. Permanent or temporary water deficit stress limits the growth and distribution of natural and artificial vegetation and the performance of cultivated plants (crops) more than any other environmental factor. Productive and sustainable agriculture necessitates growing plants (crops) in arid and semiarid regions with less input of precious resources such as fresh water. For a better understanding and rapid improvement of soil-water stress tolerance in these regions, especially in the water-wind eroded crossing region, it is very important to link physiological and biochemical studies to molecular work in genetically tractable model plants and important native plants, and further extending them to practical ecological restoration and efficient crop production. Although basic studies and practices aimed at improving soil water stress resistance and plant water use efficiency have been carried out for many years, the mechanisms involved at different scales are still not clear. Further understanding and manipulating soil-plant water relationships and soil-water stress tolerance at the scales of ecology, physiology and molecular biology can significantly improve plant productivity and environmental quality. Currently, post-genomics and metabolomics are very important in exploring anti-drought gene resources in various life forms, but modern agriculturally sustainable development must be combined with plant physiological measures in the field, on the basis of which post-genomics and metabolomics have further practical prospects. In this review, we discuss physiological and molecular insights and effects in basic plant metabolism, drought tolerance strategies under drought conditions in higher plants for sustainable agriculture and ecoenvironments in arid and semiarid areas of the world. We conclude that biological measures are the bases for the solutions to the issues relating to the different types of sustainable development.

  19. Large Mammalian Animal Models of Heart Disease

    PubMed Central

    Camacho, Paula; Fan, Huimin; Liu, Zhongmin; He, Jia-Qiang

    2016-01-01

    Due to the biological complexity of the cardiovascular system, the animal model is an urgent pre-clinical need to advance our knowledge of cardiovascular disease and to explore new drugs to repair the damaged heart. Ideally, a model system should be inexpensive, easily manipulated, reproducible, a biological representative of human disease, and ethically sound. Although a larger animal model is more expensive and difficult to manipulate, its genetic, structural, functional, and even disease similarities to humans make it an ideal model to first consider. This review presents the commonly-used large animals—dog, sheep, pig, and non-human primates—while the less-used other large animals—cows, horses—are excluded. The review attempts to introduce unique points for each species regarding its biological property, degrees of susceptibility to develop certain types of heart diseases, and methodology of induced conditions. For example, dogs barely develop myocardial infarction, while dilated cardiomyopathy is developed quite often. Based on the similarities of each species to the human, the model selection may first consider non-human primates—pig, sheep, then dog—but it also depends on other factors, for example, purposes, funding, ethics, and policy. We hope this review can serve as a basic outline of large animal models for cardiovascular researchers and clinicians. PMID:29367573

  20. Fasting or caloric restriction for healthy aging.

    PubMed

    Anton, Stephen; Leeuwenburgh, Christiaan

    2013-10-01

    Aging is associated with a host of biological changes that contribute to a progressive decline in cognitive and physical function, ultimately leading to a loss of independence, and increased risk of mortality. To date, prolonged caloric restriction (i.e., a reduction in caloric intake without malnutrition) is the only non-genetic intervention that has consistently been found to extend both mean and maximal life span across a variety of species. Most individuals have difficulty sustaining prolonged caloric restriction, which has led to a search for alternative approaches that can produce similar to benefits as caloric restriction. A growing body of evidence indicates that fasting periods and intermittent fasting regimens in particular can trigger similar biological pathways as caloric restriction. For this reason, there is increasing scientific interest in further exploring the biological and metabolic effects of intermittent fasting periods, as well as whether long-term compliance may be improved by this type of dietary approach. This special will highlight the latest scientific findings related to the effects of both caloric restriction and intermittent fasting across various species including yeast, fruit flies, worms, rodents, primates, and humans. A specific emphasis is placed on translational research with findings from basic bench to bedside reviewed and practical clinical implications discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Linear scan voltammetric indirect determination of Al(III) by the catalytic cathodic response of norepinephrine at the hanging mercury drop electrode.

    PubMed

    Zhang, Fuping; Ji, Ming; Xu, Quan; Yang, Li; Bi, Shuping

    2005-09-01

    The biological effects of aluminum (Al) have received much attention in recent years. Al is of basic relevance as concern with its reactivity and bioavailability. In this paper, the electrochemical behaviors of norepinephrine (NE) in the absence and presence of Al(III) at the hanging mercury drop electrode have been studied and applied to the practical analysis. Highly selective catalytic cathodic peak of NE is yielded by linear scan voltammetry (LSV) at -1.32 V (vs. SCE). A linear relationship holds between the cathodic peak current and the Al(III) concentration. It has been successfully applied to the determination of Al(III) in real waters and synthetic biological samples with satisfying results, which are in accordance with those obtained by ICP-AES method. The electrochemical properties and the mechanisms of the peaks in the presence and absence of Al(III) have been explored. The results show that they are irreversible adsorptive hydrogen catalytic waves. These studies not only enrich the methods of determining Al, but also lay foundations of further understanding of the mechanisms of neurodementia.

  2. The rationale for fundamental research in space biology: Introduction and background

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W.; Krauss, Robert W.

    1993-01-01

    With the construction of Space Station Freedom, NASA will have available a new platform for experiments in space that promises many advantages over those already flown. Biologists are poised to take advantage of the greater space, the increased power, and especially the long duration of the station for a cascade of innovative experiments in fundamental science that are long overdue. The unique space environment will provide new dimensions for approaching some of the most challenging problems still facing modern biology. Solutions to basic questions about living systems, which may now be grown through many generations in space, will not only explain abnormalities already observed there, but will add to our understanding of how life functions on Earth. Much will be learned about evolution that has built us the way we are, but also about what it has in store for the Earth's species in the future. NASA must not lose this opportunity to contribute to the welfare of the peoples of the Earth while at the same time create knowledge that will enable human exploration of space in the decades ahead.

  3. Assessment of programs in space biology and medicine

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Over the past 30 or more years, the National Research Council Space Studies Board and its various committees have published hundreds of recommendations concerning life sciences research. Several particularly noteworthy themes appear consistently: (1) Balance - the need for a well-balanced research program in terms of ground versus flight, basic versus clinical, and internal versus extramural; (2) Excellence - because of the extremely limited number of flight opportunities (as well as their associated relative costs), the need for absolute excellence in the research that is conducted, in terms of topic, protocol, and investigator, and (3) Facilities - the single most important facility for life sciences research in space, an on-board, variable force centrifuge. In this first assessment report, the Committee on Space Biology and Medicine emphasizes that these long-standing themes remain as essential today as when first articulated. On the brink of the twenty-first century, the nation is contemplating the goal of human space exploration; consequently, the themes bear repeating. Each is a critical component of what will be necessary to successfully achieve such a goal.

  4. Robotic lunar exploration: Architectures, issues and options

    NASA Astrophysics Data System (ADS)

    Mankins, John C.; Valerani, Ernesto; Della Torre, Alberto

    2007-06-01

    The US ‘vision for space exploration’ articulated at the beginning of 2004 encompasses a broad range of human and robotic space missions, including missions to the Moon, Mars and destinations beyond. It establishes clear goals and objectives, yet sets equally clear budgetary ‘boundaries’ by stating firm priorities, including ‘tough choices’ regarding current major NASA programs. The new vision establishes as policy the goals of pursuing commercial and international collaboration in realizing future space exploration missions. Also, the policy envisions that advances in human and robotic mission technologies will play a key role—both as enabling and as a major public benefit that will result from implementing that vision. In pursuing future international space exploration goals, the exploration of the Moon during the coming decades represents a particularly appealing objective. The Moon provides a unique venue for exploration and discovery—including the science of the Moon (e.g., geological studies), science from the Moon (e.g., astronomical observatories), and science on the Moon (including both basic research, such as biological laboratory science, and applied research and development, such as the use of the Moon as a test bed for later exploration). The Moon may also offer long-term opportunties for utilization—including Earth observing applications and commercial developments. During the coming decade, robotic lunar exploration missions will play a particularly important role, both in their own right and as precursors to later, more ambitious human and robotic exploration and development efforts. The following paper discusses some of the issues and opportunities that may arise in establishing plans for future robotic lunar exploration. Particular emphasis is placed on four specific elements of future robotic infrastructure: Earth Moon in-space transportation systems; lunar orbiters; lunar descent and landing systems; and systems for long-range transport on the Moon.

  5. Christine English | NREL

    Science.gov Websites

    Hydrogenases: New Frontiers in Basic and Applied Studies for Biological and Synthetic H2 Production. Dalton Histone H3 in S-Phase. Journal of Biological Chemistry, 12, 1334-1340. English, C.M., Adkins, M.W

  6. Molecular basis of angiosperm tree architecture

    USDA-ARS?s Scientific Manuscript database

    The shoot architecture of trees greatly impacts orchard and forest management methods. Amassing greater knowledge of the molecular genetics behind tree form can benefit these industries as well as contribute to basic knowledge of plant developmental biology. This review covers basic components of ...

  7. Urban Outdoor Education

    ERIC Educational Resources Information Center

    Daugs, Donald R.

    1978-01-01

    Suggests that survival consciousness has made it imperative that all people have a knowledge of basic biology and ecological relationships. Shows how the urban teacher can utilize the school grounds and buildings to help students gain such basic understanding of the natural environment. (Author/RK)

  8. The National Informal STEM Education Network

    Science.gov Websites

    Evaluation and Research Kits Explore Science: Earth & Space toolkit Building with Biology Kit Explore 2018 toolkits now available for download. Download the 2018 Digital Toolkit! Building with Biology ACTIVITY KIT Building with Biology Conversations and activities about synthetic biology; this emerging

  9. Development and Assessment of a Horizontally Integrated Biological Sciences Course Sequence for Pharmacy Education

    PubMed Central

    Wright, Nicholas J.D.; Alston, Gregory L.

    2015-01-01

    Objective. To design and assess a horizontally integrated biological sciences course sequence and to determine its effectiveness in imparting the foundational science knowledge necessary to successfully progress through the pharmacy school curriculum and produce competent pharmacy school graduates. Design. A 2-semester course sequence integrated principles from several basic science disciplines: biochemistry, molecular biology, cellular biology, anatomy, physiology, and pathophysiology. Each is a 5-credit course taught 5 days per week, with 50-minute class periods. Assessment. Achievement of outcomes was determined with course examinations, student lecture, and an annual skills mastery assessment. The North American Pharmacist Licensure Examination (NAPLEX) results were used as an indicator of competency to practice pharmacy. Conclusion. Students achieved course objectives and program level outcomes. The biological sciences integrated course sequence was successful in providing students with foundational basic science knowledge required to progress through the pharmacy program and to pass the NAPLEX. The percentage of the school’s students who passed the NAPLEX was not statistically different from the national percentage. PMID:26430276

  10. African American Men, Identity, and Participation in Adult Basic Education and Literacy Programs. Research Brief #6

    ERIC Educational Resources Information Center

    Drayton, Brendaly; Prins, Esther

    2011-01-01

    Although the national graduation rate for African American males is only 47% (Schott Foundation for Public Education, 2010), few studies have explored their experiences in adult basic and literacy education (ABEL) programs. This study draws on prior research to explore the relationship between literacy and identity and its potential for…

  11. A Course in Biophysics: An Integration of Physics, Chemistry, and Biology

    ERIC Educational Resources Information Center

    Giancoli, Douglas C.

    1971-01-01

    Describes an interdisciplinary course for advanced undergraduates in the physical and biological sciences. The goal is to understand a living cell from the most basic standpoint possible. The ideas of physics, chemistry, and molecular biology are all essential to the course, which leads to a unified view of the sciences. (PR)

  12. Rotating Biological Contactors (RBC's). Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Zickefoose, Charles S.

    This student manual provides the textual material for a unit on rotating biological contactors (RBC's). Topic areas considered include: (1) flow patterns of water through RBC installations; (2) basic concepts (shaft and stage); (3) characteristics of biomass; (4) mechanical features (bearings, mechanical drive systems, and air drive systems); (5)…

  13. BIOPS Interactive: An e-Learning Platform Focused on Protein Structure and DNA

    ERIC Educational Resources Information Center

    Pontelli, Enrico; Pinto, Jorge; Qin, Xiaoxiao; He, Jing; Bevan, David; MacCuish, Norah; MacCuish, John; Chapman, Mitch; Moreland, David

    2009-01-01

    One of the difficulties in teaching basic molecular biology concepts to the students with little biological background is the lack of hands-on exercises that combines the challenges of the concepts with visualization and immediate feedback. BIOPS Interactive is a web-based interactive learning environment for molecular biology that complements…

  14. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    The Neural Development Section (NDS) headed by Dr. Lino Tessarollo has an open postdoctoral fellow position. The candidate should have a background in neurobiology and basic expertise in molecular biology, cell biology, immunoistochemistry and biochemistry.  Experience in confocal analysis is desired. The NDS study the biology of neurotrophin and Trk receptors function by

  15. Ludwig von Bertalanffy's Organismic View on the Theory of Evolution

    PubMed Central

    Drack, Manfred

    2015-01-01

    Ludwig von Bertalanffy was a key figure in the advancement of theoretical biology. His early considerations already led him to recognize the necessity of considering the organism as a system, as an organization of parts and processes. He termed the resulting research program organismic biology, which he extended to all basic questions of biology and almost all areas of biology, hence also to the theory of evolution. This article begins by outlining the rather unknown (because often written in German) research of Bertalanffy in the field of theoretical biology. The basics of the organismic approach are then described. This is followed by Bertalanffy's considerations on the theory of evolution, in which he used methods from theoretical biology and then introduced his own, organismic, view on evolution, leading to the demand for finding laws of evolution. Finally, his view on the concept of homology is presented. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 77–90, 2015. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution published by Wiley Periodicals, Inc. PMID:25727202

  16. Problem areas in the use of the firefly luciferase assay for bacterial detection

    NASA Technical Reports Server (NTRS)

    Picciolo, G. L.; Chappelle, E. W.; Knust, E. A.; Tuttle, S. A.; Curtis, C. A.

    1975-01-01

    By purifying the firefly luciferase extract and adding all necessary chemicals but ATP in excess, an assay for ATP was performed by measuring the amount of light produced when a sample containing soluble ATP is added to the luciferase reaction mixture. Instrumentation, applications, and basic characteristics of the luciferase assay are presented. Effect of the growth medium and length of time grown in this medium on ATP per viable E. coli values is shown in graphic form, along with an ATP concentration curve showing relative light units versus ATP injected. Reagent functions and concentration methods are explored. Efforts to develop a fast automatable system to detect the presence of bacteria in biological fluids, especially urine, resulted in the optimization of procedures for use with different types of samples.

  17. A Perspective on the Global Pandemic of Waterborne Disease.

    PubMed

    Ford, Timothy E; Hamner, Steve

    2015-05-29

    Waterborne diseases continue to take a heavy toll on the global community, with developing nations, and particularly young children carrying most of the burden of morbidity and mortality. Starting with the historical context, this article explores some of the reasons why this burden continues today, despite our advances in public health over the past century or so. While molecular biology has revolutionized our abilities to define the ecosystems and etiologies of waterborne pathogens, control remains elusive. Lack of basic hygiene and sanitation, and failing infrastructure, remain two of the greatest challenges in the global fight against waterborne disease. Emerging risks continue to be the specter of multiple drug resistance and the ease with which determinants of virulence appear to be transmitted between strains of pathogens, both within and outside the human host.

  18. [Advances on biomechanics and kinematics of sprain of ankle joint].

    PubMed

    Zhao, Yong; Wang, Gang

    2015-04-01

    Ankle sprains are orthopedic clinical common disease, accounting for joint ligament sprain of the first place. If treatment is not timely or appropriate, the joint pain and instability maybe develop, and even bone arthritis maybe develop. The mechanism of injury of ankle joint, anatomical basis has been fully study at present, and the diagnostic problem is very clear. Along with the development of science and technology, biological modeling and three-dimensional finite element, three-dimensional motion capture system,digital technology study, electromyographic signal study were used for the basic research of sprain of ankle. Biomechanical and kinematic study of ankle sprain has received adequate attention, combined with the mechanism research of ankle sprain,and to explore the the biomechanics and kinematics research progress of the sprain of ankle joint.

  19. Assessment of Knowledge of Participants on Basic Molecular Biology Techniques after 5-Day Intensive Molecular Biology Training Workshops in Nigeria

    ERIC Educational Resources Information Center

    Yisau, J. I.; Adagbada, A. O.; Bamidele, T.; Fowora, M.; Brai, B. I. C.; Adebesin, O.; Bamidele, M.; Fesobi, T.; Nwaokorie, F. O.; Ajayi, A.; Smith, S. I.

    2017-01-01

    The deployment of molecular biology techniques for diagnosis and research in Nigeria is faced with a number of challenges, including the cost of equipment and reagents coupled with the dearth of personnel skilled in the procedures and handling of equipment. Short molecular biology training workshops were conducted at the Nigerian Institute of…

  20. The Second Annual Symposium of the NASA Specialized Center of Research and Training (NSCORT) in Gravitational Biology.

    PubMed

    Spooner, B S

    1993-04-01

    The second annual meeting of the NSCORT in Gravitational Biology was held at Kansas State University on September 29-October 1, 1992. Symposium presentations at the meeting included ones on basic gravitational cellular and developmental biology, spaceflight hardware for biological studies, studies on Space Shuttle, and special talks on Space Station Freedom and on life support systems.

  1. A Comprehensive Experiment for Molecular Biology: Determination of Single Nucleotide Polymorphism in Human REV3 Gene Using PCR-RFLP

    ERIC Educational Resources Information Center

    Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui

    2017-01-01

    Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of…

  2. The Second Annual Symposium of the NASA Specialized Center of Research and Training (NSCORT) in Gravitational Biology

    NASA Technical Reports Server (NTRS)

    Spooner, B. S.

    1993-01-01

    The second annual meeting of the NSCORT in Gravitational Biology was held at Kansas State University on September 29-October 1, 1992. Symposium presentations at the meeting included ones on basic gravitational cellular and developmental biology, spaceflight hardware for biological studies, studies on Space Shuttle, and special talks on Space Station Freedom and on life support systems.

  3. The history of the Memory of Water.

    PubMed

    Thomas, Yolène

    2007-07-01

    'Homeopathic dilutions' and 'Memory of Water' are two expressions capable of turning a peaceful and intelligent person into a violently irrational one,' as Michel Schiff points out in the introduction of his book 'The Memory of Water'. The idea of the memory of water arose in the laboratory of Jacques Benveniste in the late 1980s and 20 years later the debate is still ongoing even though an increasing number of scientists report they have confirmed the basic results. This paper, first provides a brief historical overview of the context of the high dilution experiments then moves on to digital biology. One working hypothesis was that molecules can communicate with each other, exchanging information without being in physical contact and that at least some biological functions can be mimicked by certain energetic modes characteristics of a given molecule. These considerations informed exploratory research which led to the speculation that biological signaling might be transmissible by electromagnetic means. Around 1991, the transfer of specific molecular signals to sensitive biological systems was achieved using an amplifier and electromagnetic coils. In 1995, a more sophisticated procedure was established to record, digitize and replay these signals using a multimedia computer. From a physical and chemical perspective, these experiments pose a riddle, since it is not clear what mechanism can sustain such 'water memory' of the exposure to molecular signals. From a biological perspective, the puzzle is what nature of imprinted effect (water structure) can impact biological function. Also, the far-reaching implications of these observations require numerous and repeated experimental tests to rule out overlooked artifacts. Perhaps more important is to have the experiments repeated by other groups and with other models to explore the generality of the effect. In conclusion, we will present some of this emerging independent experimental work.

  4. Comparison of Model Calculations of Biological Damage from Exposure to Heavy Ions with Measurements

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Hada, Megumi; Cucinotta, Francis A.; Wu, Honglu

    2014-01-01

    The space environment consists of a varying field of radiation particles including high-energy ions, with spacecraft shielding material providing the major protection to astronauts from harmful exposure. Unlike low-LET gamma or X rays, the presence of shielding does not always reduce the radiation risks for energetic charged-particle exposure. Dose delivered by the charged particle increases sharply at the Bragg peak. However, the Bragg curve does not necessarily represent the biological damage along the particle path since biological effects are influenced by the track structures of both primary and secondary particles. Therefore, the ''biological Bragg curve'' is dependent on the energy and the type of the primary particle and may vary for different biological end points. Measurements of the induction of micronuclei (MN) have made across the Bragg curve in human fibroblasts exposed to energetic silicon and iron ions in vitro at two different energies, 300 MeV/nucleon and 1 GeV/nucleon. Although the data did not reveal an increased yield of MN at the location of the Bragg peak, the increased inhibition of cell progression, which is related to cell death, was found at the Bragg peak location. These results are compared to the calculations of biological damage using a stochastic Monte-Carlo track structure model, Galactic Cosmic Ray Event-based Risk Model (GERM) code (Cucinotta, et al., 2011). The GERM code estimates the basic physical properties along the passage of heavy ions in tissue and shielding materials, by which the experimental set-up can be interpreted. The code can also be used to describe the biophysical events of interest in radiobiology, cancer therapy, and space exploration. The calculation has shown that the severely damaged cells at the Bragg peak are more likely to go through reproductive death, the so called "overkill".

  5. Altered cell function in microgravity

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, Millie

    1991-01-01

    The paper overviews published results from investigations of changes in basic biological parameters taking place as a result of spaceflight exposure. These include changes in the rates of the DNA, mRNA, and protein biosyntheses; changes in the growth rate of an organism; and alterations in the cytoskeleton structure, differentiation, hormone accumulation, and collagen matrix secretion. These results, obtained both in complex biological organisms and on cultured cells, suggest that a basic cellular function is influenced and changed by microgravity. Many of the above mentioned changes are also found to take place in aging cells.

  6. Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth.

    PubMed

    Karouia, Fathi; Peyvan, Kianoosh; Pohorille, Andrew

    2017-11-15

    Space biotechnology is a nascent field aimed at applying tools of modern biology to advance our goals in space exploration. These advances rely on our ability to exploit in situ high throughput techniques for amplification and sequencing DNA, and measuring levels of RNA transcripts, proteins and metabolites in a cell. These techniques, collectively known as "omics" techniques have already revolutionized terrestrial biology. A number of on-going efforts are aimed at developing instruments to carry out "omics" research in space, in particular on board the International Space Station and small satellites. For space applications these instruments require substantial and creative reengineering that includes automation, miniaturization and ensuring that the device is resistant to conditions in space and works independently of the direction of the gravity vector. Different paths taken to meet these requirements for different "omics" instruments are the subjects of this review. The advantages and disadvantages of these instruments and technological solutions and their level of readiness for deployment in space are discussed. Considering that effects of space environments on terrestrial organisms appear to be global, it is argued that high throughput instruments are essential to advance (1) biomedical and physiological studies to control and reduce space-related stressors on living systems, (2) application of biology to life support and in situ resource utilization, (3) planetary protection, and (4) basic research about the limits on life in space. It is also argued that carrying out measurements in situ provides considerable advantages over the traditional space biology paradigm that relies on post-flight data analysis. Published by Elsevier Inc.

  7. New experimental research stand SVICKA neutron field analysis using neutron activation detector technique

    NASA Astrophysics Data System (ADS)

    Varmuza, Jan; Katovsky, Karel; Zeman, Miroslav; Stastny, Ondrej; Haysak, Ivan; Holomb, Robert

    2018-04-01

    Knowledge of neutron energy spectra is very important because neutrons with various energies have a different material impact or a biological tissue impact. This paper presents basic results of the neutron flux distribution inside the new experimental research stand SVICKA which is located at Brno University of Technology in Brno, Czech Republic. The experiment also focused on the investigation of the sandwich biological shielding quality that protects staff against radiation effects. The set of indium activation detectors was used to the investigation of neutron flux distribution. The results of the measurement provide basic information about the neutron flux distribution inside all irradiation channels and no damage or cracks are present in the experimental research stand biological shielding.

  8. Facial expressions of emotion are not culturally universal.

    PubMed

    Jack, Rachael E; Garrod, Oliver G B; Yu, Hui; Caldara, Roberto; Schyns, Philippe G

    2012-05-08

    Since Darwin's seminal works, the universality of facial expressions of emotion has remained one of the longest standing debates in the biological and social sciences. Briefly stated, the universality hypothesis claims that all humans communicate six basic internal emotional states (happy, surprise, fear, disgust, anger, and sad) using the same facial movements by virtue of their biological and evolutionary origins [Susskind JM, et al. (2008) Nat Neurosci 11:843-850]. Here, we refute this assumed universality. Using a unique computer graphics platform that combines generative grammars [Chomsky N (1965) MIT Press, Cambridge, MA] with visual perception, we accessed the mind's eye of 30 Western and Eastern culture individuals and reconstructed their mental representations of the six basic facial expressions of emotion. Cross-cultural comparisons of the mental representations challenge universality on two separate counts. First, whereas Westerners represent each of the six basic emotions with a distinct set of facial movements common to the group, Easterners do not. Second, Easterners represent emotional intensity with distinctive dynamic eye activity. By refuting the long-standing universality hypothesis, our data highlight the powerful influence of culture on shaping basic behaviors once considered biologically hardwired. Consequently, our data open a unique nature-nurture debate across broad fields from evolutionary psychology and social neuroscience to social networking via digital avatars.

  9. Tendon basic science: Development, repair, regeneration, and healing.

    PubMed

    Andarawis-Puri, Nelly; Flatow, Evan L; Soslowsky, Louis J

    2015-06-01

    Tendinopathy and tendon rupture are common and disabling musculoskeletal conditions. Despite the prevalence of these injuries, a limited number of investigators are conducting fundamental, basic science studies focused on understanding processes governing tendinopathies and tendon healing. Development of effective therapeutics is hindered by the lack of fundamental guiding data on the biology of tendon development, signal transduction, mechanotransduction, and basic mechanisms underlying tendon pathogenesis and healing. To propel much needed progress, the New Frontiers in Tendon Research Conference, co-sponsored by NIAMS/NIH, the Orthopaedic Research Society, and the Icahn School of Medicine at Mount Sinai, was held to promote exchange of ideas between tendon researchers and basic science experts from outside the tendon field. Discussed research areas that are underdeveloped and represent major hurdles to the progress of the field will be presented in this review. To address some of these outstanding questions, conference discussions and breakout sessions focused on six topic areas (Cell Biology and Mechanics, Functional Extracellular Matrix, Development, Mechano-biology, Scarless Healing, and Mechanisms of Injury and Repair), which are reviewed in this special issue and briefly presented in this review. Review articles in this special issue summarize the progress in the field and identify essential new research directions. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. Facial expressions of emotion are not culturally universal

    PubMed Central

    Jack, Rachael E.; Garrod, Oliver G. B.; Yu, Hui; Caldara, Roberto; Schyns, Philippe G.

    2012-01-01

    Since Darwin’s seminal works, the universality of facial expressions of emotion has remained one of the longest standing debates in the biological and social sciences. Briefly stated, the universality hypothesis claims that all humans communicate six basic internal emotional states (happy, surprise, fear, disgust, anger, and sad) using the same facial movements by virtue of their biological and evolutionary origins [Susskind JM, et al. (2008) Nat Neurosci 11:843–850]. Here, we refute this assumed universality. Using a unique computer graphics platform that combines generative grammars [Chomsky N (1965) MIT Press, Cambridge, MA] with visual perception, we accessed the mind’s eye of 30 Western and Eastern culture individuals and reconstructed their mental representations of the six basic facial expressions of emotion. Cross-cultural comparisons of the mental representations challenge universality on two separate counts. First, whereas Westerners represent each of the six basic emotions with a distinct set of facial movements common to the group, Easterners do not. Second, Easterners represent emotional intensity with distinctive dynamic eye activity. By refuting the long-standing universality hypothesis, our data highlight the powerful influence of culture on shaping basic behaviors once considered biologically hardwired. Consequently, our data open a unique nature–nurture debate across broad fields from evolutionary psychology and social neuroscience to social networking via digital avatars. PMID:22509011

  11. Communication: Beyond the Basics: Other Communication Levels.

    ERIC Educational Resources Information Center

    Gratz, J. E.; Gratz, Elizabeth

    1979-01-01

    In addition to the basic communication skills of reading, writing, listening, and speaking, the authors suggest five other levels of communication to help teachers expand students' horizons: kinetic and symbolic; mental; extraterrestrial, biological, and technological; imagery; and perceptual. Each level is briefly discussed. (MF)

  12. SigWin-detector: a Grid-enabled workflow for discovering enriched windows of genomic features related to DNA sequences.

    PubMed

    Inda, Márcia A; van Batenburg, Marinus F; Roos, Marco; Belloum, Adam S Z; Vasunin, Dmitry; Wibisono, Adianto; van Kampen, Antoine H C; Breit, Timo M

    2008-08-08

    Chromosome location is often used as a scaffold to organize genomic information in both the living cell and molecular biological research. Thus, ever-increasing amounts of data about genomic features are stored in public databases and can be readily visualized by genome browsers. To perform in silico experimentation conveniently with this genomics data, biologists need tools to process and compare datasets routinely and explore the obtained results interactively. The complexity of such experimentation requires these tools to be based on an e-Science approach, hence generic, modular, and reusable. A virtual laboratory environment with workflows, workflow management systems, and Grid computation are therefore essential. Here we apply an e-Science approach to develop SigWin-detector, a workflow-based tool that can detect significantly enriched windows of (genomic) features in a (DNA) sequence in a fast and reproducible way. For proof-of-principle, we utilize a biological use case to detect regions of increased and decreased gene expression (RIDGEs and anti-RIDGEs) in human transcriptome maps. We improved the original method for RIDGE detection by replacing the costly step of estimation by random sampling with a faster analytical formula for computing the distribution of the null hypothesis being tested and by developing a new algorithm for computing moving medians. SigWin-detector was developed using the WS-VLAM workflow management system and consists of several reusable modules that are linked together in a basic workflow. The configuration of this basic workflow can be adapted to satisfy the requirements of the specific in silico experiment. As we show with the results from analyses in the biological use case on RIDGEs, SigWin-detector is an efficient and reusable Grid-based tool for discovering windows enriched for features of a particular type in any sequence of values. Thus, SigWin-detector provides the proof-of-principle for the modular e-Science based concept of integrative bioinformatics experimentation.

  13. Exploring biology with small organic molecules

    PubMed Central

    Stockwell, Brent R.

    2011-01-01

    Small organic molecules have proven to be invaluable tools for investigating biological systems, but there is still much to learn from their use. To discover and to use more effectively new chemical tools to understand biology, strategies are needed that allow us to systematically explore ‘biological-activity space’. Such strategies involve analysing both protein binding of, and phenotypic responses to, small organic molecules. The mapping of biological-activity space using small molecules is akin to mapping the stars — uncharted territory is explored using a system of coordinates that describes where each new feature lies. PMID:15602550

  14. From CBA to Precautionary Appraisal: Practical Responses to Intractable Problems.

    PubMed

    Stirling, Andrew; Coburn, Josie

    2018-01-01

    The purpose of this essay is to critically review the design of methods for ethically robust forms of technology appraisal in the regulation of research and innovation in synthetic biology. It will focus, in particular, on the extent to which cost-benefit analysis offers a basis for informing decisions about which technological pathways to pursue and which to discourage. A further goal is to consider what (if anything) the precautionary principle might offer in enabling better decisions. And this, in turn, raises questions about why mention of precaution can excite accusations of unscientific bias or irrational, "anti-innovation" extremism. What does the polarized debate tell us about the politics around synthetic biology? In seeking more rigorous, timely, and practical ways to govern these remarkable new technologies, what might we be missing? The sophistication, diversity, and scope of synthetic biology may seem to make it a rather idiosyncratic area for exploring these general issues. It may seem to be a special case, with the bewildering pace of change amplifying the difficulties. But at root, some of the trickiest issues are just specific instances of familiar and long-standing conundrums in the governance of science and technology. The basic challenge is how to weigh up, for a wide range of potential options, the various pros and cons, as viewed from divergent perspectives, and find a way to justify the best course of action on behalf of society as a whole. This is the central problem addressed by a number of techniques in CBA. On the face of it, synthetic biology seems to present just one more application of these well-established and self-confident prescriptive methods. But there do emerge several obstinate, even prohibitive, difficulties for CBA. Although they are well acknowledged by the scholarly literature on and around this topic, they are often sidelined in practice. Yet all are central to the case for applying the concept of precaution to a field like synthetic biology. This essay will briefly explore multicriteria mapping, an appraisal method for exploring contrasting perspectives on emerging technologies, as one practical way to address them. The essay focuses on MCM, not because it presents any sort of panacea for appraisal, but because it is illustrative of the concrete implications of precaution. Setting out even just one among potentially many practical alternative methods at least refutes the last-ditch argument that CBA is the only operational choice. © 2018 The Hastings Center.

  15. Exploration of an E-Learning Model to Foster Critical Thinking on Basic Science Concepts during Work Placements

    ERIC Educational Resources Information Center

    de Leng, Bas A.; Dolmans, Diana H. J. M.; Jobsis, Rijn; Muijtjens, Arno M. M.; van der Vleuten, Cees P. M.

    2009-01-01

    We designed an e-learning model to promote critical thinking about basic science topics in online communities of students during work placements in higher education. To determine the effectiveness and efficiency of the model we explored the online discussions in two case studies. We evaluated the quantity of the interactions by looking at…

  16. Exploring Equality through Creative Methods of Learning in Adult Literacy: Findings from a Peace Funded Project

    ERIC Educational Resources Information Center

    Mark, Rob

    2008-01-01

    The Literacy and Equality in Irish Society (LEIS) Project is an example of a project which used alternative non-text methodologies to help literacy and basic education learners explore and understand how inequalities in society have impacted on their lives. The project focused on inequalities, shifting the emphasis in literacy and basic skills…

  17. Can Basic Research on Children and Families Be Useful for the Policy Process?

    ERIC Educational Resources Information Center

    Moore, Kristin A.

    Based on the assumption that basic science is the crucial building block for technological and biomedical progress, this paper examines the relevance for public policy of basic demographic and behavioral sciences research on children and families. The characteristics of basic research as they apply to policy making are explored. First, basic…

  18. Biological Treatment of Drinking Water: Applications, Advantages and Disadvantages

    EPA Science Inventory

    The fundamentals of biological treatment are presented to an audience of state drinking water regulators. The presentation covers definitions, applications, the basics of bacterial metabolism, a discussion of treatment options, and the impact that implementation of these options...

  19. Cancer Biology

    ERIC Educational Resources Information Center

    Dominiecki, Mary E.

    2004-01-01

    University of Colorado's Virtual Student Fellowship available at and developed by Bakemeier, Richard F. This website is designed to give students applying for a fellowship an overview of basic topics in biology and how they are used by cancer researchers to develop new treatments.

  20. Strategic alliance as a competitive tactics for biological-pharmacy industry.

    PubMed

    Liu, Chuanming; Wang, Ling; Qi, Ershi

    2005-01-01

    Biological-pharmacy industry refers to biotechnology companies and pharmacy makers. Because of the uncertainty and time-lag in the field of biological-pharmacy, the former is confronted with lacking of capital and the later is faced with improving technique-innovation and product-exploitation. This paper analyzes basic operation principle of strategic alliance, and related strategies are also put forward for biological-pharmacy enterprise to carry out.

  1. Genetic Screening: A Unique Game of Survival

    ERIC Educational Resources Information Center

    Kurvink, Karen; Bowser, Jessica

    2004-01-01

    A creative learning game that helps students reinforce basic genetic information and facilitate the identification and understanding of the more subtle issues is presented. The basic framework of the game was conceived by a business major taking non-biology major course 'heredity and society-intertwining legacy.

  2. [Exploration on method and strategy of Gegen decoction from its novel application in primary dysmenorrhea].

    PubMed

    Chai, Cheng-Zhi; Yu, Bo-Yang

    2018-06-01

    Many classical prescriptions still have superior clinical values nowadays, and their modern studies also have far-reaching scientific research demonstration values. Gegen decoction, a representative prescription for common cold due to wind-cold, can treat primary dysmenorrhea due to cold and dampness, characterized by continuous administration without recurrence. It is not only in accordance with the principle of homotherapy for heteropathy, but also demonstrates the unique feature of traditional Chinese medicine of relieving the primary and secondary symptoms simultaneously. This article aimed to discuss the method and strategy of Gegen decoction study based on the discovery of its novel application in treatment of primary dysmenorrhea and previous research progress of our group. It was assumed that modern medicine and biology studies, as well as chemical research based on biological activity should be used for reference. Principal active ingredients (groups) in Gegen decoction could be accurately and effectively identified, and its possible mechanism in treatment of primary dysmenorrhea could be eventually elucidated as well. Simultaneously, the theoretical and clinical advantages of traditional Chinese medicine were explored in this paper, focusing on the compatibility characteristics of Gegen decoction. The research hypothesis showed the necessity of following the characteristics and advantages of traditional Chinese medicine in the modern research and reflected the importance of basic research based on the clinical efficacy, expecting to provide some ideas and methods for reference for further modern studies of classical prescriptions. Copyright© by the Chinese Pharmaceutical Association.

  3. Some resonances between Eastern thought and Integral Biomathics in the framework of the WLIMES formalism for modeling living systems.

    PubMed

    Simeonov, Plamen L; Ehresmann, Andrée C

    2017-12-01

    Forty-two years ago, Capra published "The Tao of Physics" (Capra, 1975). In this book (page 17) he writes: "The exploration of the atomic and subatomic world in the twentieth century has …. necessitated a radical revision of many of our basic concepts" and that, unlike 'classical' physics, the sub-atomic and quantum "modern physics" shows resonances with Eastern thoughts and "leads us to a view of the world which is very similar to the views held by mystics of all ages and traditions." This article stresses an analogous situation in biology with respect to a new theoretical approach for studying living systems, Integral Biomathics (IB), which also exhibits some resonances with Eastern thought. Stepping on earlier research in cybernetics 1 and theoretical biology, 2 IB has been developed since 2011 by over 100 scientists from a number of disciplines who have been exploring a substantial set of theoretical frameworks. From that effort, the need for a robust core model utilizing advanced mathematics and computation adequate for understanding the behavior of organisms as dynamic wholes was identified. At this end, the authors of this article have proposed WLIMES (Ehresmann and Simeonov, 2012), a formal theory for modeling living systems integrating both the Memory Evolutive Systems (Ehresmann and Vanbremeersch, 2007) and the Wandering Logic Intelligence (Simeonov, 2002b). Its principles will be recalled here with respect to their resonances to Eastern thought. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Using a "Primer Unit" in an Introductory Biology Course: "A Soft Landing"

    ERIC Educational Resources Information Center

    Marbach-Ad, Gili; Ribke, Melina; Gershoni, Jonathan M.

    2006-01-01

    This study aimed to facilitate students' entrance to an introductory cell biology course for biology majors. The most prominent difficulty in this introductory course, is students' poor background-knowledge, such as a lack of understanding of very basic concepts and terms, and the huge differences in students' background knowledge. In order to…

  5. "Sickle Cell Anemia: Tracking down a Mutation": An Interactive Learning Laboratory That Communicates Basic Principles of Genetics and Cellular Biology

    ERIC Educational Resources Information Center

    Jarrett, Kevin; Williams, Mary; Horn, Spencer; Radford, David; Wyss, J. Michael

    2016-01-01

    "Sickle cell anemia: tracking down a mutation" is a full-day, inquiry-based, biology experience for high school students enrolled in genetics or advanced biology courses. In the experience, students use restriction endonuclease digestion, cellulose acetate gel electrophoresis, and microscopy to discover which of three putative patients…

  6. Low Budget Biology 3: A Collection of Low Cost Labs and Activities.

    ERIC Educational Resources Information Center

    Wartski, Bert; Wartski, Lynn Marie

    This document contains biology labs, demonstrations, and activities that use low budget materials. The goal is to get students involved in the learning process by experiencing biology. Each lab has a teacher preparation section which outlines the purpose of the lab, some basic information, a list of materials , and how to prepare the different…

  7. A Theme-Based Approach to Teaching Nonmajors Biology: Helping Students Connect Biology to Their Lives

    ERIC Educational Resources Information Center

    Chaplin, Susan B.; Manske, Jill M.

    2005-01-01

    This article describes the curriculum for a highly student-centered human biology course constructed around a series of themes that enables the integration of the same basic paradigms found in a traditional survey lecture course without sacrificing essential content. The theme-based model enhances student interest, ability to integrate knowledge,…

  8. Th1/Th2 Cytokines: An Easy Model to Study Gene Expression in Immune Cells

    ERIC Educational Resources Information Center

    Moran, Jose M.; Gonzalez-Polo, Rosa A.; Soler, German; Fuentes, Jose M.

    2006-01-01

    This report describes a laboratory exercise that was incorporated into a Cell Biology and Molecular Biology advanced course. The exercise was made for a class size with eight students and was designed to reinforce the understanding of basic molecular biology techniques. Students used the techniques of reverse transcription and arginase activity…

  9. Do Social Ties Affect Our Health? Exploring the Biology of Relationships

    MedlinePlus

    ... Do Social Ties Affect Our Health? Exploring the Biology of Relationships En español Send us your comments ... neighbors, or others, social connections can influence our biology and well-being. Wide-ranging research suggests that ...

  10. Can Genetics and Genomics Nursing Competencies Be Successfully Taught in a Prenursing Microbiology Course?

    PubMed Central

    Shuster, Michèle

    2011-01-01

    In recognition of the entry into the era of personalized medicine, a new set of genetics and genomics competencies for nurses was introduced in 2006. Since then, there have been a number of reports about the critical importance of these competencies for nursing practices and about the challenges of addressing these competencies in the preservice (basic science) nursing curriculum. At least one suggestion has been made to infuse genetics and genomics throughout the basic science curriculum for prenursing students. Based on this call and a review of the competencies, this study sought to assess the impact of incorporation of genetics and genomics content into a prenursing microbiology course. Broadly, two areas that address the competencies were incorporated into the course: 1) the biological basis and implications of genetic diversity and 2) the technological aspects of assessing genetic diversity in bacteria and viruses. These areas address how genetics and genomics contribute to healthcare, including diagnostics and selection of treatment. Analysis of learning gains suggests that genetics and genomics content can be learned as effectively as microbiology content in this setting. Future studies are needed to explore the most effective ways to introduce genetics and genomics technology into the prenursing curriculum. PMID:21633070

  11. Advances in basic and clinical immunology in 2006.

    PubMed

    Chinen, Javier; Shearer, William T

    2007-08-01

    This article reviews the progress in the field of basic and clinical immunology in 2006, focusing on the articles published in the Journal. The role of Toll-like receptors in the immune response was explored in detail in several articles. The knowledge gained in these investigations is being used to develop strategies that enhance the immunogenicity of vaccines to prevent infectious diseases and to have an immunomodulatory effect on allergic diseases. Other components of the innate immunity reported on were the recognition of allergens with lipid-derived motifs by CD1d-restricted T cells and the role of dendritic cells in the development of an allergic response. More than 120 primary immunodeficiencies were defined at a molecular level, and biological agents such as TNF-alpha antagonists and IFN-alpha were shown to have therapeutic use. New anti-HIV drugs that block cell entry were proven to be effective, thus offering alternative therapies to respond to the development of multidrug-resistant HIV strains. The modern understanding of immunologic concepts is helping to elucidate the mechanisms of defense against viruses, bacteria, and parasites; as a result, strategies to improve management and prevention continue to emerge.

  12. SOME GEOCHEMICAL METHODS OF URANIUM EXPLORATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Illsley, C.T.; Bills, C.W.; Pollock, J.W.

    Geochemical research and development projects were carried on to provide basic information which may be applied to exploration or general studies of uranium geology. The applications and limitations of various aspects of geochemistry to uranium geological problems are considerd. Modifications of existing analytical techniques were made and tested in the laboratory and in the field. These include rapid quantitative determination of unranium in water, soil and peat, and of trace amounts of sulfate and phosphate in water. Geochemical anomaly'' has been defined as a significant departure from the average abundance background of an element where the distribution has not beenmore » disturbed by mineralization. The detection and significance of geocthemical anomalies are directly related to the mobility of the element being sought in the zone of weathering. Mobility of uranium is governed by complex physical, chemical, and biological factors. For uranium anomalies in surface materils, the chemicaly factors affecting mobility are the most sigificant. The effects of pH, solubility, coprecipitution, adsorption complexion, or compound formation are discussed in relation to anomalies detected in water, soil, and stream sediments. (auth)« less

  13. Student- and faculty-reported importance of science prerequisites for osteopathic medical school: a survey-based study.

    PubMed

    Binstock, Judith; Junsanto-Bahri, Tipsuda

    2014-04-01

    The relevance of current standard medical school science prerequisites is being reexamined. (1) To identify which science prerequisites are perceived to best prepare osteopathic medical students for their basic science and osteopathic manipulative medicine (OMM) coursework and (2) to determine whether science prerequisites for osteopathic medical school should be modified. Preclinical osteopathic medical students and their basic science and OMM faculty from 3 colleges of osteopathic medicine were surveyed about the importance of specific science concepts, laboratories, and research techniques to medical school coursework. Participants chose responses on a 5-point scale, with 1 indicating "strongly disagree" or "not important" and 5 indicating "strongly agree" or "extremely important." Participants were also surveryed on possible prerequisite modifications. Student responses (N=264) to the general statement regarding prerequisites were "neutral" for basic science coursework and "disagree" for OMM coursework, with mean (standard deviation [SD]) scores of 3.37 (1.1) and 2.68 (1.2), respectively. Faculty responses (N=49) were similar, with mean (SD) scores of 3.18 (1.1) for basic science coursework and 2.67 (1.2) for OMM coursework. Student mean (SD) scores were highest for general biology for basic science coursework (3.93 [1.1]) and physics for OMM coursework (2.5 [1.1]). Student mean (SD) scores were lowest for physics for basic science coursework (1.79 [1.2]) and organic chemistry for OMM coursework (1.2 [0.7]). Both basic science and OMM faculty rated general biology highest in importance (mean [SD] scores, 3.73 [0.9] and 4.22 [1.0], respectively). Students and faculty rated biochemistry high in importance for basic science coursework (mean [SD] scores of 3.66 [1.2] and 3.32 [1.2], respectively). For basic science coursework, students and faculty rated most laboratories as "important," with the highest mean (SD) ratings for general anatomy (students, 3.66 [1.5]; faculty, 3.72 [1.1]) and physiology (students, 3.56 [1.7]; faculty, 3.61 [1.1]). For their OMM coursework, students rated only general anatomy and physiology laboratories as "important" (mean [SD] scores, 3.22 [1.8] and 2.61 [1.6], respectively), whereas OMM faculty rated all laboratories as "important" (mean scores, >3). Both student and faculty respondents rated research techniques higher in importance for basic science coursework than for OMM coursework. For prerequisite modifications, all respondents indicated "no change" for biology and "reduce content" for organic chemistry and physics. All respondents favored adding physiology and biochemistry as prerequisites. General biology and laboratory were the only standard prerequisites rated as "important." Research techniques were rated as "important" for basic science coursework only. Physiology and biochemistry were identified as possible additions to prerequisites. It may be necessary for colleges of osteopathic medicine to modify science prerequisites to reflect information that is pertinent to their curricula.

  14. The Increasing Urgency for Standards in Basic Biological Research

    PubMed Central

    Freedman, Leonard P.; Inglese, James

    2016-01-01

    Research advances build upon the validity and reproducibility of previously published data and findings. Yet irreproducibility in basic biological and preclinical research is pervasive in both academic and commercial settings. Lack of reproducibility has led to invalidated research breakthroughs, retracted papers, and aborted clinical trials. Concerns and requirements for transparent, reproducible, and translatable research are accelerated by the rapid growth of “post-publication peer review,” open access publishing, and data sharing that facilitate the identification of irreproducible data/studies; they are magnified by the explosion of high-throughput technologies, genomics, and other data-intensive disciplines. Collectively, these changes and challenges are decreasing the effectiveness of traditional research quality mechanisms and are contributing to unacceptable—and unsustainable—levels of irreproducibility. The global oncology and basic biological research communities can no longer tolerate or afford widespread irreproducible research. This article discusses (1) how irreproducibility in preclinical research can ultimately be traced to an absence of a unifying life science standards framework, and (2) makes an urgent case for the expanded development and use of consensus-based standards to both enhance reproducibility and drive innovations in cancer research. PMID:25035389

  15. Ethical Considerations and Planetary Protection for Future Space Exploration - Starting with the Basics

    NASA Astrophysics Data System (ADS)

    Race, Margaret

    2012-07-01

    As COSPAR scientists deliberate what types of frameworks and policy approaches may be applicable to future activities by various sectors in space exploration, it also needs to consider the challenging question of what ethical values and foundations should be used in dealing with life, objects and activities in outer space. A 2010 COSPAR Workshop Report on Ethical Considerations for Planetary Protection in Space Exploration recommended that it is appropriate to maintain the existing PP policy aimed at scientific concerns even as we begin to explore various practical approaches to future contamination avoidance policies. It is also appropriate to examine in parallel the ethical considerations applicable to potential indigenous extraterrestrial life, non-living extraterrestrial features and environments, and planned uses and activities involving diverse life from Earth. Since numerous sectors have begun to propose activities raising varied ethical concerns (e.g., protection and management on the moon, strip mining, space synthetic biology, space code of conduct, and commercial space transport), it is timely to initiate serious international discussions about the appropriate ethical foundations and questions applicable to future space exploration. Plans are underway for convening interdisciplinary work groups to explore and deliberate on the values (e.g., intrinsic and instrumental) and ethical foundations that are appropriate for use in deliberations involving potential indigenous extraterrestrial life and the different classes of target objects and environments in our solar system. More than ever, information on bioethics, environmental ethics and geoethics will provide helpful guidance and foundational approaches of relevance to future policy deliberations that seek to go beyond science protection per se.

  16. Microfluidic tools for cell biological research

    PubMed Central

    Velve-Casquillas, Guilhem; Le Berre, Maël; Piel, Matthieu; Tran, Phong T.

    2010-01-01

    Summary Microfluidic technology is creating powerful tools for cell biologists to control the complete cellular microenvironment, leading to new questions and new discoveries. We review here the basic concepts and methodologies in designing microfluidic devices, and their diverse cell biological applications. PMID:21152269

  17. Kansas Students Enjoy Summertime "Mountain Ventures"

    ERIC Educational Resources Information Center

    Highfill, Kenneth M.

    1974-01-01

    Describes an elective biology program offered at Lawrence High School (Kansas) that emphasizes basic field biology, ecology, conservation, camping, first aid, mountaineering, and map reading. Groups of students spend two weeks in the Rocky Mountains developing knowledge and skills in these areas. (JR)

  18. Methods in molecular biology: plant cytogenetics

    USDA-ARS?s Scientific Manuscript database

    Cytogenetic studies have contributed greatly to our understanding of genetics, biology, reproduction, and evolution. From early studies in basic chromosome behavior the field has expanded enabling whole genome analysis to the manipulation of chromosomes and their organization. This book covers a ran...

  19. Anaerobic Digestion and its Applications

    EPA Science Inventory

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  20. Optometry Basic Science Curricula: Current Status.

    ERIC Educational Resources Information Center

    Berman, Morris S.

    1991-01-01

    A national survey of optometry schools (n=10) concerning the status of basic biological science instruction provides insight into manpower, curriculum, learning resources, and budgetary support currently available. Results indicate that major changes must occur and that a national effort will be needed to support them. (Author/MSE)

  1. Characteristics of Knowledge Interconnectedness in Teaching

    ERIC Educational Resources Information Center

    Antonijevic, Radovan

    2006-01-01

    The subject of the paper presents establishing basic characteristics, forms and levels of knowledge interconnectedness in teaching, especially in mathematics and biology teaching. The analysis was realized by considering basic theoretical views in this field, as well as by establishing features and levels of knowledge interconnectedness in the…

  2. A Converter from the Systems Biology Markup Language to the Synthetic Biology Open Language.

    PubMed

    Nguyen, Tramy; Roehner, Nicholas; Zundel, Zach; Myers, Chris J

    2016-06-17

    Standards are important to synthetic biology because they enable exchange and reproducibility of genetic designs. This paper describes a procedure for converting between two standards: the Systems Biology Markup Language (SBML) and the Synthetic Biology Open Language (SBOL). SBML is a standard for behavioral models of biological systems at the molecular level. SBOL describes structural and basic qualitative behavioral aspects of a biological design. Converting SBML to SBOL enables a consistent connection between behavioral and structural information for a biological design. The conversion process described in this paper leverages Systems Biology Ontology (SBO) annotations to enable inference of a designs qualitative function.

  3. From bedside to blackboard: the benefits of teaching molecular biology within a medical context.

    PubMed

    Sitaraman, Ramakrishnan

    2012-01-01

    Courses in molecular biology are part of practically every degree program in medicine and the life sciences. Historically, many basic discoveries in this field have resulted from investigations by doctors into the nature of diseases. This essay suggests that medical educators deliberately incorporate such material, whether historical or contemporaneous, into their molecular and cell biology courses. An example of such usage, an early report of the detection of bacteriophage activity on pathogenic bacteria, is discussed in detail. Such an approach can potentially narrow the perceived gap between "basic" and "applied" science. As medicine is so intimately and obviously linked with human welfare, this also provides an avenue for educators to discuss issues of scientific integrity and ethics within a "pure science" course.

  4. Zebrafish (Danio rerio): A Potential Model for Toxinological Studies.

    PubMed

    Vargas, Rafael Antonio; Sarmiento, Karen; Vásquez, Isabel Cristina

    2015-10-01

    Zebrafish are an emerging basic biomedical research model that has multiple advantages compared with other research models. Given that biotoxins, such as toxins, poisons, and venoms, represent health hazards to animals and humans, a low-cost biological model that is highly sensitive to biotoxins is useful to understand the damage caused by such agents and to develop biological tests to prevent and reduce the risk of poisoning in potential cases of bioterrorism or food contamination. In this article, a narrative review of the general aspects of zebrafish as a model in basic biomedical research and various studies in the field of toxinology that have used zebrafish as a biological model are presented. This information will provide useful material to beginner students and researchers who are interested in developing toxinological studies with the zebrafish model.

  5. New Skills for a New Economy: Adult Education's Key Role in Sustaining Economic Growth and Expanding Opportunity.

    ERIC Educational Resources Information Center

    Comings, John; Sum, Andrew; Uvin, Johan

    The role of adult education in sustaining economic growth and expanding opportunity in Massachusetts was explored. The analysis focused on the new basic skills needed for a new economy, groups lacking the new basic skills, the demand for adult basic education (ABE), funding for ABE, building basic skills through adult education, ABE's costs and…

  6. Basic life support knowledge of first-year university students from Brazil.

    PubMed

    Santos, S V; Margarido, M R R A; Caires, I S; Santos, R A N; Souza, S G; Souza, J M A; Martimiano, R R; Dutra, C S K; Palha, P; Zanetti, A C G; Pazin-Filho, A

    2015-12-01

    We aimed to evaluate knowledge of first aid among new undergraduates and whether it is affected by their chosen course. A questionnaire was developed to assess knowledge of how to activate the Mobile Emergency Attendance Service - MEAS (Serviço de Atendimento Móvel de Urgência; SAMU), recognize a pre-hospital emergency situation and the first aid required for cardiac arrest. The students were also asked about enrolling in a first aid course. Responses were received from 1038 of 1365 (76.04%) new undergraduates. The questionnaires were completed in a 2-week period 1 month after the beginning of classes. Of the 1038 respondents (59.5% studying biological sciences, 11.6% physical sciences, and 28.6% humanities), 58.5% knew how to activate the MEAS/SAMU (54.3% non-biological vs 61.4% biological, P=0.02), with an odds ratio (OR)=1.39 (95%CI=1.07-1.81) regardless of age, sex, origin, having a previous degree or having a relative with cardiac disease. The majority could distinguish emergency from non-emergency situations. When faced with a possible cardiac arrest, 17.7% of the students would perform chest compressions (15.5% non-biological vs 19.1% biological first-year university students, P=0.16) and 65.2% would enroll in a first aid course (51.1% non-biological vs 74.7% biological, P<0.01), with an OR=2.61 (95%CI=1.98-3.44) adjusted for the same confounders. Even though a high percentage of the students recognized emergency situations, a significant proportion did not know the MEAS/SAMU number and only a minority had sufficient basic life support skills to help with cardiac arrest. A significant proportion would not enroll in a first aid course. Biological first-year university students were more prone to enroll in a basic life support course.

  7. bc-GenExMiner 3.0: new mining module computes breast cancer gene expression correlation analyses.

    PubMed

    Jézéquel, Pascal; Frénel, Jean-Sébastien; Campion, Loïc; Guérin-Charbonnel, Catherine; Gouraud, Wilfried; Ricolleau, Gabriel; Campone, Mario

    2013-01-01

    We recently developed a user-friendly web-based application called bc-GenExMiner (http://bcgenex.centregauducheau.fr), which offered the possibility to evaluate prognostic informativity of genes in breast cancer by means of a 'prognostic module'. In this study, we develop a new module called 'correlation module', which includes three kinds of gene expression correlation analyses. The first one computes correlation coefficient between 2 or more (up to 10) chosen genes. The second one produces two lists of genes that are most correlated (positively and negatively) to a 'tested' gene. A gene ontology (GO) mining function is also proposed to explore GO 'biological process', 'molecular function' and 'cellular component' terms enrichment for the output lists of most correlated genes. The third one explores gene expression correlation between the 15 telomeric and 15 centromeric genes surrounding a 'tested' gene. These correlation analyses can be performed in different groups of patients: all patients (without any subtyping), in molecular subtypes (basal-like, HER2+, luminal A and luminal B) and according to oestrogen receptor status. Validation tests based on published data showed that these automatized analyses lead to results consistent with studies' conclusions. In brief, this new module has been developed to help basic researchers explore molecular mechanisms of breast cancer. DATABASE URL: http://bcgenex.centregauducheau.fr

  8. Producing a Mouse Model to Explore the Linkages Between Tocopherol Biology and Prostate Cancer

    DTIC Science & Technology

    2005-07-01

    Edwards, Prostate cancer and supplementation with alpha-tocopherol and beta -carotene: incidence and mortality in a controlled trial. J Natl Cancer ...1-0153 TITLE: Producing a Mouse Model to Explore the Linkages Between Tocopherol Biology and Prostate Cancer ...TITLE AND SUBTITLE Producing a Mouse Model to Explore the Linkages Between Tocopherol 5a. CONTRACT NUMBER Biology and Prostate Cancer 5b. GRANT

  9. Teaching microbiology to undergraduate students in the humanities and the social sciences.

    PubMed

    Oren, Aharon

    2015-10-01

    This paper summarizes my experiences teaching a 28-hour course on the bacterial world for undergraduate students in the humanities and the social sciences at the Hebrew University of Jerusalem. This course was offered in the framework of a program in which students must obtain credit points for courses offered by other faculties to broaden their education. Most students had little biology in high school and had never been exposed to the basics of chemistry. Using a historical approach, highlighting the work of pioneers such as van Leeuwenhoek, Koch, Fleming, Pasteur, Winogradsky and Woese, I covered a broad area of general, medical, environmental and evolutionary microbiology. The lectures included basic concepts of organic and inorganic chemistry necessary to understand the principles of fermentations and chemoautotrophy, and basic molecular biology to explain biotechnology using transgenic microorganisms and molecular phylogeny. Teaching the basics of microbiology to intelligent students lacking any background in the natural sciences was a rewarding experience. Some students complained that, in spite of my efforts, basic concepts of chemistry remained beyond their understanding. But overall the students' evaluation showed that the course had achieved its goal. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. A Method for Decomposition of the Basic Reaction of Biological Macromolecules into Exponential Components

    NASA Astrophysics Data System (ADS)

    Barabash, Yu. M.; Lyamets, A. K.

    2016-12-01

    The structural and dynamical properties of biological macromolecules under non-equilibrium conditions determine the kinetics of their basic reaction to external stimuli. This kinetics is multiexponential in nature. This is due to the operation of various subsystems in the structure of macromolecules, as well as the effect of the basic reaction on the structure of macromolecules. The situation can be interpreted as a manifestation of the stationary states of macromolecules, which are represented by monoexponential components of the basic reaction (Monod-Wyman-Changeux model) Monod et al. (J Mol Cell Biol 12:88-118, 1965). The representation of multiexponential kinetics of the basic reaction in the form of a sum of exponential functions (A(t)={sum}_{i=1}^n{a}_i{e}^{-{k}_it}) is a multidimensional optimization problem. To solve this problem, a gradient method of optimization with software determination of the amount of exponents and reasonable calculation time is developed. This method is used to analyze the kinetics of photoinduced electron transport in the reaction centers (RC) of purple bacteria and the fluorescence induction in the granum thylakoid membranes which share a common function of converting light energy.

  11. Using Fossil Shark Teeth to Illustrate Evolution and Introduce Basic Geologic Concepts in a High School Biology Classroom

    NASA Astrophysics Data System (ADS)

    Agnew, J. G.; Nunn, J. A.

    2007-12-01

    Shell Foundation sponsors a program at Louisiana State University called Shell Undergraduate Recruitment and Geoscience Education (SURGE). The purpose of SURGE is to help local high school science teachers incorporate geology into their classrooms by providing resources and training. As part of this program, a workshop for high school biology teachers was held at Louisiana State University in Baton Rouge on June 3-5, 2007. We had the teachers do a series of activities on fossil shark teeth to illustrate evolution and introduce basic earth science concepts such as geologic time, superposition, and faunal succession and provided the teachers with lesson plans and materials. As an example, one of our exercises explores the evolution of the megatoothed shark lineage leading to Carcharocles megalodon, the largest predatory shark in history with teeth up to 17 cm long. Megatoothed shark teeth make excellent evolutionary subjects because they have a good fossil record and show continuous transitions in morphology from the Eocene to Pliocene. Our activity follows the learning cycle model. We take advantage of the curiosity of sharks shared by most people, and allow students to explore the variations among different shark teeth and explain the causes of those variations. The objectives of this exercise are to have the students: 1) sort fossil shark teeth into biologically reasonable species; 2) form hypotheses about evolutionary relationships among fossil shark teeth; and 3) describe and interpret evolutionary trends in the fossil Megatoothed lineage. To do the activity, students are divided into groups of 2-3 and given a shuffled set of 72 shark tooth cards with different images of megatoothed shark teeth. They are instructed to group the shark tooth cards into separate species of sharks. After sorting the cards, students are asked to consider the evolutionary relationships among their species and arrange their species chronologically according to the species first appearance in the fossil record. This is followed by a group discussion of each group's predictions. Next students are given photographs of teeth from different megatoothed sharks, and a geologic time scale with the sharks stratigraphic ranges. Students are asked to describe evolutionary trends in the fossil megatoothed lineage and formulate several hypotheses to explain the observed evolutionary trends. The exercise is concluded with a discussion of the environmental and biotic events occurring between the Eocene and Miocene epochs that may have caused the evolutionary changes in the megatoothed shark's teeth.

  12. Biological Weapons Attribution: A Primer

    DTIC Science & Technology

    2007-06-01

    attacks are very difficult: (1) the nature of biological weapons, (2) the unique restrictions the international environment places on BW attribution, and...provides a basic epistemological framework for analysis for successful BW attribution, detailing the nature , methods, and limits of current BW...difficult: (1) the nature of biological weapons, (2) the unique restrictions the international environment places on BW attribution, and (3) the

  13. "Toward High School Biology": Helping Middle School Students Understand Chemical Reactions and Conservation of Mass in Nonliving and Living Systems

    ERIC Educational Resources Information Center

    Herrmann-Abell, Cari F.; Koppal, Mary; Roseman, Jo Ellen

    2016-01-01

    Modern biology has become increasingly molecular in nature, requiring students to understand basic chemical concepts. Studies show, however, that many students fail to grasp ideas about atom rearrangement and conservation during chemical reactions or the application of these ideas to biological systems. To help provide students with a better…

  14. Biology: A Secondary School Syllabus with Major Emphasis on Fundamental Concepts. 1976 Reprint.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of General Education Curriculum Development.

    This syllabus, which has evolved from the New York State Experimental Biology program, includes a basic core and six optional extended areas designed to be interesting and meaningful to the types of students currently taking the Regents Examination in Biology. The seven core unit topics are: (1) The Study of Life; (2) Maintenance in Animals; (3)…

  15. Integrating pharmacology topics in high school biology and chemistry classes improves performance

    NASA Astrophysics Data System (ADS)

    Schwartz-Bloom, Rochelle D.; Halpin, Myra J.

    2003-11-01

    Although numerous programs have been developed for Grade Kindergarten through 12 science education, evaluation has been difficult owing to the inherent problems conducting controlled experiments in the typical classroom. Using a rigorous experimental design, we developed and tested a novel program containing a series of pharmacology modules (e.g., drug abuse) to help high school students learn basic principles in biology and chemistry. High school biology and chemistry teachers were recruited for the study and they attended a 1-week workshop to learn how to integrate pharmacology into their teaching. Working with university pharmacology faculty, they also developed classroom activities. The following year, teachers field-tested the pharmacology modules in their classrooms. Students in classrooms using the pharmacology topics scored significantly higher on a multiple choice test of basic biology and chemistry concepts compared with controls. Very large effect sizes (up to 1.27 standard deviations) were obtained when teachers used as many as four modules. In addition, biology students increased performance on chemistry questions and chemistry students increased performance on biology questions. Substantial gains in achievement may be made when high school students are taught science using topics that are interesting and relevant to their own lives.

  16. Integration of Basic Sciences in Health's Courses

    ERIC Educational Resources Information Center

    Azzalis, L. A.; Giavarotti, L.; Sato, S. N.; Barros, N. M. T.; Junqueira, V. B. C.; Fonseca, F. L. A.

    2012-01-01

    Concepts from disciplines such as Biochemistry, Genetics, Cellular and Molecular Biology are essential to the understanding and treatment of an elevated number of illnesses, but often they are studied separately, with no integration between them. This article proposes a model for basic sciences integration based on problem-based learning (PBL) and…

  17. Mechano-biological Coupling of Cellular Responses to Microgravity

    NASA Astrophysics Data System (ADS)

    Long, Mian; Wang, Yuren; Zheng, Huiqiong; Shang, Peng; Duan, Enkui; Lü, Dongyuan

    2015-11-01

    Cellular response to microgravity is a basic issue in space biological sciences as well as space physiology and medicine. It is crucial to elucidate the mechano-biological coupling mechanisms of various biological organisms, since, from the principle of adaptability, all species evolved on the earth must possess the structure and function that adapts their living environment. As a basic element of an organism, a cell usually undergoes mechanical and chemical remodeling to sense, transmit, transduce, and respond to the alteration of gravitational signals. In the past decades, new computational platforms and experimental methods/techniques/devices are developed to mimic the biological effects of microgravity environment from the viewpoint of biomechanical approaches. Mechanobiology of plant gravisensing in the responses of statolith movements along the gravity vector and the relevant signal transduction and molecular regulatory mechanisms are investigated at gene, transcription, and protein levels. Mechanotransduction of bone or immune cell responses and stem cell development and tissue histogenesis are elucidated under microgravity. In this review, several important issues are briefly discussed. Future issues on gravisensing and mechanotransducing mechanisms are also proposed for ground-based studies as well as space missions.

  18. Tissue engineering: state of the art in oral rehabilitation

    PubMed Central

    SCHELLER, E. L.; KREBSBACH, P. H.; KOHN, D. H.

    2009-01-01

    SUMMARY More than 85% of the global population requires repair or replacement of a craniofacial structure. These defects range from simple tooth decay to radical oncologic craniofacial resection. Regeneration of oral and craniofacial tissues presents a formidable challenge that requires synthesis of basic science, clinical science and engineering technology. Identification of appropriate scaffolds, cell sources and spatial and temporal signals (the tissue engineering triad) is necessary to optimize development of a single tissue, hybrid organ or interface. Furthermore, combining the understanding of the interactions between molecules of the extracellular matrix and attached cells with an understanding of the gene expression needed to induce differentiation and tissue growth will provide the design basis for translating basic science into rationally developed components of this tissue engineering triad. Dental tissue engineers are interested in regeneration of teeth, oral mucosa, salivary glands, bone and periodontium. Many of these oral structures are hybrid tissues. For example, engineering the periodontium requires growth of alveolar bone, cementum and the periodontal ligament. Recapitulation of biological development of hybrid tissues and interfaces presents a challenge that exceeds that of engineering just a single tissue. Advances made in dental interface engineering will allow these tissues to serve as model systems for engineering other tissues or organs of the body. This review will begin by covering basic tissue engineering principles and strategic design of functional biomaterials. We will then explore the impact of biomaterials design on the status of craniofacial tissue engineering and current challenges and opportunities in dental tissue engineering. PMID:19228277

  19. Tissue engineering: state of the art in oral rehabilitation.

    PubMed

    Scheller, E L; Krebsbach, P H; Kohn, D H

    2009-05-01

    More than 85% of the global population requires repair or replacement of a craniofacial structure. These defects range from simple tooth decay to radical oncologic craniofacial resection. Regeneration of oral and craniofacial tissues presents a formidable challenge that requires synthesis of basic science, clinical science and engineering technology. Identification of appropriate scaffolds, cell sources and spatial and temporal signals (the tissue engineering triad) is necessary to optimize development of a single tissue, hybrid organ or interface. Furthermore, combining the understanding of the interactions between molecules of the extracellular matrix and attached cells with an understanding of the gene expression needed to induce differentiation and tissue growth will provide the design basis for translating basic science into rationally developed components of this tissue engineering triad. Dental tissue engineers are interested in regeneration of teeth, oral mucosa, salivary glands, bone and periodontium. Many of these oral structures are hybrid tissues. For example, engineering the periodontium requires growth of alveolar bone, cementum and the periodontal ligament. Recapitulation of biological development of hybrid tissues and interfaces presents a challenge that exceeds that of engineering just a single tissue. Advances made in dental interface engineering will allow these tissues to serve as model systems for engineering other tissues or organs of the body. This review will begin by covering basic tissue engineering principles and strategic design of functional biomaterials. We will then explore the impact of biomaterials design on the status of craniofacial tissue engineering and current challenges and opportunities in dental tissue engineering.

  20. Recent advances in H-phosphonate chemistry. Part 1. H-phosphonate esters: synthesis and basic reactions.

    PubMed

    Sobkowski, Michal; Kraszewski, Adam; Stawinski, Jacek

    2015-01-01

    This review covers recent progress in the preparation of H-phosphonate mono- and diesters, basic studies on mechanistic and stereochemical aspects of this class of phosphorus compounds, and their fundamental chemistry in terms of transformation of P-H bonds into P-heteroatom bonds. Selected recent applications of H-phosphonate derivatives in basic organic phosphorus chemistry and in the synthesis of biologically important phosphorus compounds are also discussed.

  1. Radiological Dispersion Devices and Basic Radiation Science

    ERIC Educational Resources Information Center

    Bevelacqua, Joseph John

    2010-01-01

    Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous…

  2. Service Learning in a Basic Writing Class: A Best Case Scenario

    ERIC Educational Resources Information Center

    Pine, Nancy

    2008-01-01

    This article explores the particular challenges and possibilities of service learning pedagogy for basic writers. Because a number of scholars of service learning and basic writing (Adler-Kassner, Arca, and Kraemer) are concerned primarily with developing underprepared students' academic literacies, I investigated how the students in a service…

  3. Unified Deep Learning Architecture for Modeling Biology Sequence.

    PubMed

    Wu, Hongjie; Cao, Chengyuan; Xia, Xiaoyan; Lu, Qiang

    2017-10-09

    Prediction of the spatial structure or function of biological macromolecules based on their sequence remains an important challenge in bioinformatics. When modeling biological sequences using traditional sequencing models, characteristics, such as long-range interactions between basic units, the complicated and variable output of labeled structures, and the variable length of biological sequences, usually lead to different solutions on a case-by-case basis. This study proposed the use of bidirectional recurrent neural networks based on long short-term memory or a gated recurrent unit to capture long-range interactions by designing the optional reshape operator to adapt to the diversity of the output labels and implementing a training algorithm to support the training of sequence models capable of processing variable-length sequences. Additionally, the merge and pooling operators enhanced the ability to capture short-range interactions between basic units of biological sequences. The proposed deep-learning model and its training algorithm might be capable of solving currently known biological sequence-modeling problems through the use of a unified framework. We validated our model on one of the most difficult biological sequence-modeling problems currently known, with our results indicating the ability of the model to obtain predictions of protein residue interactions that exceeded the accuracy of current popular approaches by 10% based on multiple benchmarks.

  4. Self-Assembly of 3D DNA Crystals Containing a Torsionally Stressed Component

    DOE PAGES

    Hernandez, Carina; Birktoft, Jens J.; Ohayon, Yoel P.; ...

    2017-10-05

    There is an increasing appreciation for structural diversity of DNA that is of interest to both DNA nanotechnology and basic biology. Here, we have explored how DNA responds to torsional stress by building on a previously reported two-turn DNA tensegrity triangle and demonstrating that we could introduce an extra nucleotide pair (np) into the original sequence without affecting assembly and crystallization. The extra np imposes a significant torsional stress, which is accommodated by global changes throughout the B-DNA duplex and the DNA lattice. Furthermore, the work reveals a near-atomic structure of naked DNA under a torsional stress of approximately 14%,more » and thus provides an example of DNA distortions that occur without a requirement for either an external energy source or the free energy available from protein or drug binding.« less

  5. Human physiology in space

    NASA Technical Reports Server (NTRS)

    Vernikos, J.

    1996-01-01

    The universality of gravity (1 g) in our daily lives makes it difficult to appreciate its importance in morphology and physiology. Bone and muscle support systems were created, cellular pumps developed, neurons organised and receptors and transducers of gravitational force to biologically relevant signals evolved under 1g gravity. Spaceflight provides the only microgravity environment where systematic experimentation can expand our basic understanding of gravitational physiology and perhaps provide new insights into normal physiology and disease processes. These include the surprising extent of our body's dependence on perceptual information, and understanding the effect and importance of forces generated within the body's weightbearing structures such as muscle and bones. Beyond this exciting prospect is the importance of this work towards opening the solar system for human exploration. Although both appear promising, we are only just beginning to taste what lies ahead.

  6. Self-Assembly of 3D DNA Crystals Containing a Torsionally Stressed Component.

    PubMed

    Hernandez, Carina; Birktoft, Jens J; Ohayon, Yoel P; Chandrasekaran, Arun Richard; Abdallah, Hatem; Sha, Ruojie; Stojanoff, Vivian; Mao, Chengde; Seeman, Nadrian C

    2017-11-16

    There is an increasing appreciation for structural diversity of DNA that is of interest to both DNA nanotechnology and basic biology. Here, we have explored how DNA responds to torsional stress by building on a previously reported two-turn DNA tensegrity triangle and demonstrating that we could introduce an extra nucleotide pair (np) into the original sequence without affecting assembly and crystallization. The extra np imposes a significant torsional stress, which is accommodated by global changes throughout the B-DNA duplex and the DNA lattice. The work reveals a near-atomic structure of naked DNA under a torsional stress of approximately 14%, and thus provides an example of DNA distortions that occur without a requirement for either an external energy source or the free energy available from protein or drug binding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Research progress on combat trauma treatment in cold regions.

    PubMed

    Wang, Hui-Shan; Han, Jin-Song

    2014-01-01

    Cold regions are a special combat environment in which low temperatures have a great impact on human metabolism and other vital functions, including the nervous, motion, cardiovascular, circulatory, respiratory, and urinary systems; consequently, low temperatures often aggravate existing trauma, leading to high mortality rates if rapid and appropriate treatment is not provided. Hypothermia is an independent risk factor of fatality following combat trauma; therefore, proactive preventative measures are needed to reduce the rate of mortality. After summarizing the basic research on battlefield environments and progress in the prevention and treatment of trauma, this article concludes that current treatment and prevention measures for combat trauma in cold regions are inadequate. Future molecular biology studies are needed to elucidate the mechanisms and relevant cell factors underlying bodily injury caused by cold environment, a research goal will also allow further exploration of corresponding treatments.

  8. Intrinsic dimensionality predicts the saliency of natural dynamic scenes.

    PubMed

    Vig, Eleonora; Dorr, Michael; Martinetz, Thomas; Barth, Erhardt

    2012-06-01

    Since visual attention-based computer vision applications have gained popularity, ever more complex, biologically inspired models seem to be needed to predict salient locations (or interest points) in naturalistic scenes. In this paper, we explore how far one can go in predicting eye movements by using only basic signal processing, such as image representations derived from efficient coding principles, and machine learning. To this end, we gradually increase the complexity of a model from simple single-scale saliency maps computed on grayscale videos to spatiotemporal multiscale and multispectral representations. Using a large collection of eye movements on high-resolution videos, supervised learning techniques fine-tune the free parameters whose addition is inevitable with increasing complexity. The proposed model, although very simple, demonstrates significant improvement in predicting salient locations in naturalistic videos over four selected baseline models and two distinct data labeling scenarios.

  9. Self-Assembly of 3D DNA Crystals Containing a Torsionally Stressed Component

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Carina; Birktoft, Jens J.; Ohayon, Yoel P.

    There is an increasing appreciation for structural diversity of DNA that is of interest to both DNA nanotechnology and basic biology. Here, we have explored how DNA responds to torsional stress by building on a previously reported two-turn DNA tensegrity triangle and demonstrating that we could introduce an extra nucleotide pair (np) into the original sequence without affecting assembly and crystallization. The extra np imposes a significant torsional stress, which is accommodated by global changes throughout the B-DNA duplex and the DNA lattice. Furthermore, the work reveals a near-atomic structure of naked DNA under a torsional stress of approximately 14%,more » and thus provides an example of DNA distortions that occur without a requirement for either an external energy source or the free energy available from protein or drug binding.« less

  10. The change in aggressiveness of neoplasms with age.

    PubMed

    Ershler, W B

    1987-01-01

    With aging, tumors occur more frequently. The "malignant" characteristics of tumors (ie, rapid growth and metastases), however, appear to be less prominent in the elderly. In experimental tumor models, similar observations have been recorded. The reason for this phenomenon could be that tumors (ie, malignant cells) are different in different-aged hosts. Alternatively, host features such as the fibrotic, angiogenic, or immune response may be altered by the aging process and may render the host "soil" less fertile for "malignant" tumor growth. Indeed, experimental evidence has supported the importance of each of these host features. The significance of the exploration and eventual understanding of the age-related change in tumor behavior extends beyond clinical geriatric medicine; it may, in fact, involve the very unraveling of some of the basic biology of both tumor control and the aging process itself.

  11. Structured models of infectious disease: inference with discrete data

    PubMed Central

    Metcalf, C.J.E.; Lessler, J.; Klepac, P.; Morice, A.; Grenfell, B.T.; Bjørnstad, O.N.

    2014-01-01

    The usage of structured population models can make substantial contributions to public health, particularly for infections where clinical outcomes vary over age. There are three theoretical challenges in implementing such analyses: i) developing an appropriate framework that models both demographic and epidemiological transitions; ii) parameterizing the framework, where parameters may be based on data ranging from the biological course of infection, basic patterns of human demography, specific characteristics of population growth, and details of vaccination regimes implemented; and iii) evaluating public health strategies in the face of changing human demography. We illustrate the general approach by developing a model of rubella in Costa Rica. The demographic profile of this infection is a crucial aspect of its public health impact, and we use a transient perturbation analysis to explore the impact of changing human demography on immunization strategies implemented. PMID:22178687

  12. The Effects of Motivation on Student Performance on Science Assessments

    NASA Astrophysics Data System (ADS)

    Glenn, Tina Heard

    Academic achievement of public school students in the United States has significantly fallen behind other countries. Students' lack of knowledge of, or interest in, basic science and math has led to fewer graduates of science, technology, engineering, and math-related fields (STEM), a factor that may affect their career success and will certainly affect the numbers in the workforce who are prepared for some STEM jobs. Drawing from self-determination theory and achievement theory, the purpose of this correlational study was to determine whether there were significant relationships between high school academic performance in science classes, motivations (self-efficacy, self-regulation, and intrinsic and extrinsic goal orientation), and academic performance in an introductory online college biology class. Data were obtained at 2 points in time from a convenience multiethnic sample of adult male ( n =16) and female (n = 49) community college students in the southeast United States. Correlational analyses indicated no statistically significant relationships for intrinsic or extrinsic goal orientation, self-efficacy, or self-regulation with high school science mean-GPA nor college biology final course grade. However, high school academic performance in science classes significantly predicted college performance in an entry-level online biology class. The implications of positive social change include knowledge useful for educational institutions to explore additional factors that may motivate students to enroll in science courses, potentially leading to an increase in scientific knowledge and STEM careers.

  13. An Agar-Based Method for Plating Marine Protozoan Parasites of the Genus Perkinsus.

    PubMed

    Cold, Emma R; Freyria, Nastasia J; Martínez Martínez, Joaquín; Fernández Robledo, José A

    2016-01-01

    The genus Perkinsus includes protozoan parasites of mollusks responsible for losses in the aquaculture industry and hampering the recovery of natural shellfish beds worldwide, and they are a key taxon for understanding intracellular parasitism adaptations. The ability to propagate the parasite in liquid media, in the absence of the host, has been crucial for improving understanding of its biology; however, alternative techniques to grow the parasite are needed to explore other basic aspects of the Perkinsus spp. biology. We optimized a DME: Ham's F12-5% FBS- containing solid agar medium for plating Perkinsus marinus. This solid medium supported trophozoite propagation both by binary fission and schizogony. Colonies were visible to the naked eye 17 days after plating. We tested the suitability of this method for several applications, including the following: 1) Subcloning P. marinus isolates: single discrete P. marinus colonies were obtained from DME: Ham's F12-5% FBS- 0.75% agar plates, which could be further propagated in liquid medium; 2) Subcloning engineered Perkinsus mediterraneus MOE[MOE]: GFP by streaking cultures on plates; 3) Chemical susceptibility: Infusing the DME: Ham's F12-5% FBS- 0.75% agar plates with triclosan resulted in inhibition of the parasite propagation in a dose-dependent manner. Altogether, our plating method has the potential for becoming a key tool for investigating diverse aspects of Perkinsus spp. biology, developing new molecular tools, and for biotechnological applications.

  14. Changes in operational procedures to improve spaceflight experiments in plant biology in the European Modular Cultivation System

    NASA Astrophysics Data System (ADS)

    Kiss, John Z.; Aanes, Gjert; Schiefloe, Mona; Coelho, Liz H. F.; Millar, Katherine D. L.; Edelmann, Richard E.

    2014-03-01

    The microgravity environment aboard orbiting spacecraft has provided a unique laboratory to explore topics in basic plant biology as well as applied research on the use of plants in bioregenerative life support systems. Our group has utilized the European Modular Cultivation System (EMCS) aboard the International Space Station (ISS) to study plant growth, development, tropisms, and gene expression in a series of spaceflight experiments. The most current project performed on the ISS was termed Seedling Growth-1 (SG-1) which builds on the previous TROPI (for tropisms) experiments performed in 2006 and 2010. Major technical and operational changes in SG-1 (launched in March 2013) compared to the TROPI experiments include: (1) improvements in lighting conditions within the EMCS to optimize the environment for phototropism studies, (2) the use of infrared illumination to provide high-quality images of the seedlings, (3) modifications in procedures used in flight to improve the focus and overall quality of the images, and (4) changes in the atmospheric conditions in the EMCS incubator. In SG-1, a novel red-light-based phototropism in roots and hypocotyls of seedlings that was noted in TROPI was confirmed and now can be more precisely characterized based on the improvements in procedures. The lessons learned from sequential experiments in the TROPI hardware provide insights to other researchers developing space experiments in plant biology.

  15. The Disk Instability Model for SU UMa systems - a Comparison of the Thermal-Tidal Model and Plain Vanilla Model

    NASA Astrophysics Data System (ADS)

    Cannizzo, John K.

    2017-01-01

    We utilize the time dependent accretion disk model described by Ichikawa & Osaki (1992) to explore two basic ideas for the outbursts in the SU UMa systems, Osaki's Thermal-Tidal Model, and the basic accretion disk limit cycle model. We explore a range in possible input parameters and model assumptions to delineate under what conditions each model may be preferred.

  16. Plant Content in the National Science Education Standards

    ERIC Educational Resources Information Center

    Hershey, David R.

    2005-01-01

    The National Science Education Standards (NSES) provides few resources for teaching about plants. To assure students understand and appreciate plants, the author advocates teaching about plants as a basic biological concept, avoiding animal chauvinism in biology coursework, correcting pseudoscience and anthropomorphisms about plants, and making…

  17. APPLICATION OF GENOMIC AND PROTEOMIC INDICATORS TO CHARACTERIZE EXPOSURE OF AQUATIC ORGANISMS TO ENVIRONMENTAL CONTAMINANTS

    EPA Science Inventory

    Advances in molecular biological methods are continually being brought to bear on human health research, from a basic understanding of systems biology to identification of toxicity pathways for environmental stressors and to correlations of molecular indicators with physiological...

  18. Theory of light transfer in food and biological materials

    USDA-ARS?s Scientific Manuscript database

    In this chapter, we first define the basic radiometric quantities that are needed for describing light propagation in food and biological materials. Radiative transfer theory is then derived, according to the principle of the conservation of energy. Because the radiative transfer theory equation is ...

  19. Biological effects of exposure to magnetic resonance imaging: an overview

    PubMed Central

    Formica, Domenico; Silvestri, Sergio

    2004-01-01

    The literature on biological effects of magnetic and electromagnetic fields commonly utilized in magnetic resonance imaging systems is surveyed here. After an introduction on the basic principles of magnetic resonance imaging and the electric and magnetic properties of biological tissues, the basic phenomena to understand the bio-effects are described in classical terms. Values of field strengths and frequencies commonly utilized in these diagnostic systems are reported in order to allow the integration of the specific literature on the bio-effects produced by magnetic resonance systems with the vast literature concerning the bio-effects produced by electromagnetic fields. This work gives an overview of the findings about the safety concerns of exposure to static magnetic fields, radio-frequency fields, and time varying magnetic field gradients, focusing primarily on the physics of the interactions between these electromagnetic fields and biological matter. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts, international safety guidelines are also cited. PMID:15104797

  20. Computation of repetitions and regularities of biologically weighted sequences.

    PubMed

    Christodoulakis, M; Iliopoulos, C; Mouchard, L; Perdikuri, K; Tsakalidis, A; Tsichlas, K

    2006-01-01

    Biological weighted sequences are used extensively in molecular biology as profiles for protein families, in the representation of binding sites and often for the representation of sequences produced by a shotgun sequencing strategy. In this paper, we address three fundamental problems in the area of biologically weighted sequences: (i) computation of repetitions, (ii) pattern matching, and (iii) computation of regularities. Our algorithms can be used as basic building blocks for more sophisticated algorithms applied on weighted sequences.

  1. The Value of Humans in the Biological Exploration of Space

    NASA Astrophysics Data System (ADS)

    Cockell, C. S.

    2004-06-01

    Regardless of the discovery of life on Mars, or of "no apparent life" on Mars, the questions that follow will provide a rich future for biological exploration. Extraordinary pattern recognition skills, decadal assimilation of data and experience, and rapid sample acquisition are just three of the characteristics that make humans the best means we have to explore the biological potential of Mars and other planetary surfaces. I make the case that instead of seeing robots as in conflict, or even in support, of human exploration activity, from the point of view of scientific data gathering and analysis, we should view humans as the most powerful robots we have, thus removing the separation that dogs discussions on the exploration of space. The narrow environmental requirements of humans, although imposing constraints on the life support systems required, is more than compensated for by their capabilities in biological exploration. I support this view with an example of the "Christmas present effect," a simple demonstration of human data and pattern recognition capabilities.

  2. The excitability of plant cells: with a special emphasis on characean internodal cells

    NASA Technical Reports Server (NTRS)

    Wayne, R.

    1994-01-01

    This review describes the basic principles of electrophysiology using the generation of an action potential in characean internodal cells as a pedagogical tool. Electrophysiology has proven to be a powerful tool in understanding animal physiology and development, yet it has been virtually neglected in the study of plant physiology and development. This review is, in essence, a written account of my personal journey over the past five years to understand the basic principles of electrophysiology so that I can apply them to the study of plant physiology and development. My formal background is in classical botany and cell biology. I have learned electrophysiology by reading many books on physics written for the lay person and by talking informally with many patient biophysicists. I have written this review for the botanist who is unfamiliar with the basics of membrane biology but would like to know that she or he can become familiar with the latest information without much effort. I also wrote it for the neurophysiologist who is proficient in membrane biology but knows little about plant biology (but may want to teach one lecture on "plant action potentials"). And lastly, I wrote this for people interested in the history of science and how the studies of electrical and chemical communication in physiology and development progressed in the botanical and zoological disciplines.

  3. Exploring the Factors Related to Acceptance of Evolutionary Theory among Turkish Preservice Biology Teachers: Toward a More Informative Conceptual Ecology for Biological Evolution

    ERIC Educational Resources Information Center

    Deniz, Hasan; Donnelly, Lisa A.; Yilmaz, Irfan

    2008-01-01

    In this study, using multiple regression analysis, we aimed to explore the factors related to acceptance of evolutionary theory among preservice Turkish biology teachers using conceptual ecology for biological evolution as a theoretical lens. We aimed to determine the extent to which we can account for the variance in acceptance of evolutionary…

  4. NANOPARTICLES AND THEIR APPLICATIONS IN CELL AND MOLECULAR BIOLOGY

    PubMed Central

    Wang, Edina C.; Wang, Andrew Z.

    2013-01-01

    Nanoparticles can be engineered with distinctive compositions, sizes, shapes, and surface chemistries to enable novel techniques in a wide range of biological applications. The unique properties of nanoparticles and their behavior in biological milieu also enable exciting and integrative approaches to studying fundamental biological questions. This review will provide an overview of various types of nanoparticles and concepts of targeting nanoparticles. We will also discuss the advantages and recent applications of using nanoparticles as tools for drug delivery, imaging, sensing, and for the understanding of basic biological processes. PMID:24104563

  5. A Compatibility Assessment and Comparison of the Flame Resistant Chemical-Biological (CB) Overgarment with the Standard ’A’ CB Overgarment.

    DTIC Science & Technology

    1982-01-01

    Overgarment-Dynamics .............. .19 TABLES 1. Basic Anthropometry .......... ...................... 3 2. Flame Resistant CB Overgarment Test...participants (TPs) during this evaluation. Basic anthropometry of these subjects is given in Table I. TABLE 1 Basic Anthropometry Mean SD Maximum...5 S H L XL 39 H L XL XXL 43 L XL XXL XXL The areas considered were ease of doffing and donning, compatibility with prescribed clothing and field

  6. Characterization of fiber-forming peptides and proteins by means of atomic force microscopy.

    PubMed

    Creasey, Rhiannon G; Gibson, Christopher T; Voelcker, Nicolas H

    2012-05-01

    The atomic force microscope (AFM) is widely used in biological sciences due to its ability to perform imaging experiments at high resolution in a physiological environment, without special sample preparation such as fixation or staining. AFM is unique, in that it allows single molecule information of mechanical properties and molecular recognition to be gathered. This review sets out to identify methodological applications of AFM for characterization of fiber-forming proteins and peptides. The basics of AFM operation are detailed, with in-depth information for any life scientist to get a grasp on AFM capabilities. It also briefly describes antibody recognition imaging and mapping of nanomechanical properties on biological samples. Subsequently, examples of AFM application to fiber-forming natural proteins, and fiber-forming synthetic peptides are given. Here, AFM is used primarily for structural characterization of fibers in combination with other techniques, such as circular dichroism and fluorescence spectroscopy. More recent developments in antibody recognition imaging to identify constituents of protein fibers formed in human disease are explored. This review, as a whole, seeks to encourage the life scientists dealing with protein aggregation phenomena to consider AFM as a part of their research toolkit, by highlighting the manifold capabilities of this technique.

  7. Gene editing tools: state-of-the-art and the road ahead for the model and non-model fishes.

    PubMed

    Barman, Hirak Kumar; Rasal, Kiran Dashrath; Chakrapani, Vemulawada; Ninawe, A S; Vengayil, Doyil T; Asrafuzzaman, Syed; Sundaray, Jitendra K; Jayasankar, Pallipuram

    2017-10-01

    Advancements in the DNA sequencing technologies and computational biology have revolutionized genome/transcriptome sequencing of non-model fishes at an affordable cost. This has led to a paradigm shift with regard to our heightened understandings of structure-functional relationships of genes at a global level, from model animals/fishes to non-model large animals/fishes. Whole genome/transcriptome sequencing technologies were supplemented with the series of discoveries in gene editing tools, which are being used to modify genes at pre-determined positions using programmable nucleases to explore their respective in vivo functions. For a long time, targeted gene disruption experiments were mostly restricted to embryonic stem cells, advances in gene editing technologies such as zinc finger nuclease, transcriptional activator-like effector nucleases and CRISPR (clustered regulatory interspaced short palindromic repeats)/CRISPR-associated nucleases have facilitated targeted genetic modifications beyond stem cells to a wide range of somatic cell lines across species from laboratory animals to farmed animals/fishes. In this review, we discuss use of different gene editing tools and the strategic implications in fish species for basic and applied biology research.

  8. The potential of a dielectrophoresis activated cell sorter (DACS) as a next generation cell sorter

    NASA Astrophysics Data System (ADS)

    Lee, Dongkyu; Hwang, Bohyun; Kim, Byungkyu

    2016-12-01

    Originally introduced by H. A. Pohl in 1951, dielectrophoretic (DEP) force has been used as a striking tool for biological particle manipulation (or separation) for the last few decades. In particular, dielectrophoresis activated cell sorters (DACSes) have been developed for applications in various biomedical fields. These applications include cell replacement therapy, drug screening and medical diagnostics. Since a DACS does not require a specific bio-marker, it is able to function as a biological particle sorting tool with numerous configurations for various cells [e.g. red blood cells (RBCs), white blood cells (WBCs), circulating tumor cells, leukemia cells, breast cancer cells, bacterial cells, yeast cells and sperm cells]. This article explores current DACS capabilities worldwide, and it also looks at recent developments intended to overcome particular limitations. First, the basic theories are reviewed. Then, representative DACSes based on DEP trapping, traveling wave DEP systems, DEP field-flow fractionation and DEP barriers are introduced, and the strong and weak points of each DACS are discussed. Finally, for the purposes of commercialization, prerequisites regarding throughput, efficiency and recovery rates are discussed in detail through comparisons with commercial cell sorters (e.g. fluorescent activated and magnetic activated cell sorters).

  9. Recent advances in automated protein design and its future challenges.

    PubMed

    Setiawan, Dani; Brender, Jeffrey; Zhang, Yang

    2018-04-25

    Protein function is determined by protein structure which is in turn determined by the corresponding protein sequence. If the rules that cause a protein to adopt a particular structure are understood, it should be possible to refine or even redefine the function of a protein by working backwards from the desired structure to the sequence. Automated protein design attempts to calculate the effects of mutations computationally with the goal of more radical or complex transformations than are accessible by experimental techniques. Areas covered: The authors give a brief overview of the recent methodological advances in computer-aided protein design, showing how methodological choices affect final design and how automated protein design can be used to address problems considered beyond traditional protein engineering, including the creation of novel protein scaffolds for drug development. Also, the authors address specifically the future challenges in the development of automated protein design. Expert opinion: Automated protein design holds potential as a protein engineering technique, particularly in cases where screening by combinatorial mutagenesis is problematic. Considering solubility and immunogenicity issues, automated protein design is initially more likely to make an impact as a research tool for exploring basic biology in drug discovery than in the design of protein biologics.

  10. Mechanisms of radiation interaction with DNA: Potential implications for radiation protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-01-01

    The Office of Health and Environmental Research (OHER) of the US Department of Energy conducts a broad multidisciplinary research program which includes basic biophysics, biophysical chemistry, molecular and cellular biology as well as experimental animal studies and opportunistic human studies. This research is directed at understanding how low levels of radiation of various qualities produce the spectrum of biological effects that are seen for such exposures. This workshop was entitled ''Mechanisms of Radiation Interaction with DNA: Potential Implications for Radiation Protection.'' It ws jointly sponsored by the Department of Energy and the Commission of European Communities. The aim of themore » workshop was to review the base of knowledge in the area of mechanisms of radiation action at the DNA level, and to explore ways in which this information can be applied to the development of scientifically sound concepts and procedures for use in the field of radiation protection. The overview of research provided by this multidisciplinary group will be helpful to the Office in program planning. This report includes a summary of the presentations, extended abstracts, the meeting agenda, research recommendations, and a list of participants. Individual papers are processed separately for the data base.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Studer, Anthony

    Current pressures on the global food supply have accelerated the urgency for a second green revolution using novel and sustainable approaches to increase crop yield and efficiency. This proposal outlines experiments to address fundamental questions regarding the biology of C 4 photosynthesis, the method of carbon fixation utilized by the most productive food, feed and bioenergy crops. Carbonic anhydrase (CA) has been implicated in multiple cellular functions including nitrogen metabolism, water use efficiency, and photosynthesis. CA catalyzes the first dedicated step in C 4 photosynthesis, the hydration of CO 2 into bicarbonate, and is potentially rate limiting in C 4more » grasses. Using insertional mutagenesis, we have generated CA mutants in maize, and propose the characterization of these mutants using phenotypic, physiological, and transcriptomic profiling to assay the plant’s response to altered CA activity. In addition, florescent protein tagging experiments will be employed to study the subcellular localization of CA paralogs, providing critical data for modeling carbon fixation in C 4 plants. Finally, I propose parallel experiments in Setaria viridis to explore its relevance as model C 4 grass. Using a multifaceted approach, this proposal addresses important questions in basic biology, as well as the need for translation research in response to looming global food challenges.« less

  12. Building dialogues between clinical and biomedical research through cross-species collaborations.

    PubMed

    Chao, Hsiao-Tuan; Liu, Lucy; Bellen, Hugo J

    2017-10-01

    Today, biomedical science is equipped with an impressive array of technologies and genetic resources that bolster our basic understanding of fundamental biology and enhance the practice of modern medicine by providing clinicians with a diverse toolkit to diagnose, prognosticate, and treat a plethora of conditions. Many significant advances in our understanding of disease mechanisms and therapeutic interventions have arisen from fruitful dialogues between clinicians and biomedical research scientists. However, the increasingly specialized scientific and medical disciplines, globalization of science and technology, and complex datasets often hinder the development of effective interdisciplinary collaborations between clinical medicine and biomedical research. The goal of this review is to provide examples of diverse strategies to enhance communication and collaboration across diverse disciplines. First, we discuss examples of efforts to foster interdisciplinary collaborations at institutional and multi-institutional levels. Second, we explore resources and tools for clinicians and research scientists to facilitate effective bi-directional dialogues. Third, we use our experiences in neurobiology and human genetics to highlight how communication between clinical medicine and biomedical research lead to effective implementation of cross-species model organism approaches to uncover the biological underpinnings of health and disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Dizeez: An Online Game for Human Gene-Disease Annotation

    PubMed Central

    Loguercio, Salvatore; Good, Benjamin M.; Su, Andrew I.

    2013-01-01

    Structured gene annotations are a foundation upon which many bioinformatics and statistical analyses are built. However the structured annotations available in public databases are a sparse representation of biological knowledge as a whole. The rate of biomedical data generation is such that centralized biocuration efforts struggle to keep up. New models for gene annotation need to be explored that expand the pace at which we are able to structure biomedical knowledge. Recently, online games have emerged as an effective way to recruit, engage and organize large numbers of volunteers to help address difficult biological challenges. For example, games have been successfully developed for protein folding (Foldit), multiple sequence alignment (Phylo) and RNA structure design (EteRNA). Here we present Dizeez, a simple online game built with the purpose of structuring knowledge of gene-disease associations. Preliminary results from game play online and at scientific conferences suggest that Dizeez is producing valid gene-disease annotations not yet present in any public database. These early results provide a basic proof of principle that online games can be successfully applied to the challenge of gene annotation. Dizeez is available at http://genegames.org. PMID:23951102

  14. Substrate specificity of human protein arginine methyltransferase 7 (PRMT7): the importance of acidic residues in the double E loop.

    PubMed

    Feng, You; Hadjikyriacou, Andrea; Clarke, Steven G

    2014-11-21

    Protein arginine methyltransferase 7 (PRMT7) methylates arginine residues on various protein substrates and is involved in DNA transcription, RNA splicing, DNA repair, cell differentiation, and metastasis. The substrate sequences it recognizes in vivo and the enzymatic mechanism behind it, however, remain to be explored. Here we characterize methylation catalyzed by a bacterially expressed GST-tagged human PRMT7 fusion protein with a broad range of peptide and protein substrates. After confirming its type III activity generating only ω-N(G)-monomethylarginine and its distinct substrate specificity for RXR motifs surrounded by basic residues, we performed site-directed mutagenesis studies on this enzyme, revealing that two acidic residues within the double E loop, Asp-147 and Glu-149, modulate the substrate preference. Furthermore, altering a single acidic residue, Glu-478, on the C-terminal domain to glutamine nearly abolished the activity of the enzyme. Additionally, we demonstrate that PRMT7 has unusual temperature dependence and salt tolerance. These results provide a biochemical foundation to understanding the broad biological functions of PRMT7 in health and disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Getting Back to Basics (& Acidics)

    ERIC Educational Resources Information Center

    Rhodes, Sam

    2006-01-01

    This article describes a few novel acid-base experiments intended to introduce students to the basic concepts of acid-base chemistry and provide practical examples that apply directly to the study of biology and the human body. Important concepts such as the reaction between carbon dioxide and water, buffers and protein denaturation, are covered.…

  16. Standard First Aid Training Course. Naval Education and Training Command Rate Training Manual.

    ERIC Educational Resources Information Center

    Naval Education and Training Command, Washington, DC.

    This first aid manual is designed to serve as basic first aid instructional materials for all nonmedical naval personnel. Chapters are included on the following topics: basic life support, hemorrhage, shock, wounds, injuries, drug abuse, poisoning, common medical emergencies, NBC (nuclear, biological, chemical) agent casualties, and rescue and…

  17. The poverty-related neglected diseases: Why basic research matters.

    PubMed

    Hotez, Peter J

    2017-11-01

    Together, malaria and the neglected tropical diseases (NTDs) kill more than 800,000 people annually, while creating long-term disability in millions more. International support for mass drug administration, bed nets, and other preventive measures has resulted in huge public health gains, while support for translational research is leading to the development of some new neglected disease drugs, diagnostics, and vaccines. However, funding for basic science research has not kept up, such that we are missing opportunities to create a more innovative pipeline of control tools for parasitic and related diseases. There is an urgent need to expand basic science approaches for neglected diseases, especially in the areas of systems biology and immunology; ecology, evolution, and mathematical biology; functional and comparative OMICs; gene editing; expanded use of model organisms; and a new single-cell combinatorial indexing RNA sequencing approach. The world's poor deserve access to innovation for neglected diseases. It should be considered a fundamental human right.

  18. Job-Related Basic Skills: Cases and Conclusions.

    ERIC Educational Resources Information Center

    Sticht, Thomas G.; Mikulecky, Larry

    This monograph describes the job-related basic skills requirements of the work force and explores ways of developing and improving the reading, writing, and computational abilities of workers. The paper first examines trends that are influencing the demand for basic skills, such as the decline in youth population and the increase in service and…

  19. Cognitive Modifiability of Children with Developmental Disabilities: A Multicentre Study Using Feuerstein's Instrumental Enrichment-Basic Program

    ERIC Educational Resources Information Center

    Kozulin, A.; Lebeer, J.; Madella-Noja, A.; Gonzalez, F.; Jeffrey, I.; Rosenthal, N.; Koslowsky, M.

    2010-01-01

    The study aimed at exploring the effectiveness of cognitive intervention with the new "Instrumental Enrichment Basic" program (IE-basic), based on Feuerstein's theory of structural cognitive modifiability that contends that a child's cognitive functioning can be significantly modified through mediated learning intervention. The IE-basic…

  20. Relations between Policy for Medical Teaching and Basic Need Satisfaction in Teaching

    ERIC Educational Resources Information Center

    Engbers, Rik; Fluit, Cornelia R. M. G.; Bolhuis, Sanneke; Sluiter, Roderick; Stuyt, Paul M. J.; Laan, Roland F. J. M.

    2015-01-01

    Policy initiatives that aim to elevate the position of medical teaching to that of medical research could influence the satisfaction of three basic psychological needs related to motivation for medical teaching. To explore relations between the satisfaction of three basic psychological needs towards medical teaching and two policy initiatives for…

  1. Exploring the Past. "A Senior Literacy Model." Final Report.

    ERIC Educational Resources Information Center

    Greater Erie Community Action Committee, PA.

    A program of basic language/writing skills was designed to enhance the literacy levels of 24 multicultural seniors, aged 65 or older, who were recruited from senior centers throughout Erie County, Pennsylvania. Computer literacy and basic word processing skills were taught along with basic language/writing skills in a nonthreatening learning…

  2. Issues in Basic Skills Assessment and Placement in the California Community Colleges

    ERIC Educational Resources Information Center

    Academic Senate for California Community Colleges, 2004

    2004-01-01

    When the Academic Senate for California Community Colleges compiled best practices for serving basic skills students in 2002-2003, assessment practices were notably absent. In this paper, problems with current assessment and placement practices with regards to basic skills are explored. The paper begins with a review of the matriculation process…

  3. Biology Education in the United States: The Unfinished Century.

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    2002-01-01

    Adresses five themes basic to biology education: (1) increased recognition of advances in the science of learning; (2) implementation of scientific ideas and technological innovations; (3) incorporation of science- and technology-related issues; (4) elaboration of global perspectives; and (5) professional community and civil discourse. (MM)

  4. Teaching Molecular Biology with Microcomputers.

    ERIC Educational Resources Information Center

    Reiss, Rebecca; Jameson, David

    1984-01-01

    Describes a series of computer programs that use simulation and gaming techniques to present the basic principles of the central dogma of molecular genetics, mutation, and the genetic code. A history of discoveries in molecular biology is presented and the evolution of these computer assisted instructional programs is described. (MBR)

  5. ASPECTS OF BASIC REPRODUCTIVE BIOLOGY AND ENDOCRINOLOGY IN THE FATHEAD MINNOW (PIMEPHALES PROMELAS)

    EPA Science Inventory

    The fathead minnow has been proposed as a model species for assessing the adverse effects of endocrine-disrupting chemicals (EDCs) on reproduction and development. The purpose of these studies was to develop baseline reproductive biology and endocrinology data for this species to...

  6. Reaching for Excellence.

    ERIC Educational Resources Information Center

    Wright, Emmett L.; Perna, Jack A.

    1992-01-01

    Presents the four program goals for biology set forth in the National Science Teacher Association's "A Focus on Excellence: Biology Revisited" to (1) address biosphere, human society, and individual needs; (2) encourage students to experience, understand, and appreciate of natural systems; (3) apply the basic concept of the biosphere; and (4)…

  7. 76 FR 372 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... 7770, Bethesda, MD 20892, (301) 435- 0684, [email protected] . Name of Committee: Oncology 1--Basic..., Bethesda, MD 20892, 301-495- 1718, [email protected] . Name of Committee: Biological Chemistry and Macromolecular Biophysics Integrated Review Group; Synthetic and Biological Chemistry B Study Section. Date...

  8. Lessons from Interspecies Mammalian Chimeras.

    PubMed

    Suchy, Fabian; Nakauchi, Hiromitsu

    2017-10-06

    As chimeras transform from beasts of Greek mythology into tools of contemporary bioscience, secrets of developmental biology and evolutionary divergence are being revealed. Recent advances in stem cell biology and interspecies chimerism have generated new models with extensive basic and translational applications, including generation of transplantable, patient-specific organs.

  9. Exploring cognitive integration of basic science and its effect on diagnostic reasoning in novices.

    PubMed

    Lisk, Kristina; Agur, Anne M R; Woods, Nicole N

    2016-06-01

    Integration of basic and clinical science knowledge is increasingly being recognized as important for practice in the health professions. The concept of 'cognitive integration' places emphasis on the value of basic science in providing critical connections to clinical signs and symptoms while accounting for the fact that clinicians may not spontaneously articulate their use of basic science knowledge in clinical reasoning. In this study we used a diagnostic justification test to explore the impact of integrated basic science instruction on novices' diagnostic reasoning process. Participants were allocated to an integrated basic science or clinical science training group. The integrated basic science group was taught the clinical features along with the underlying causal mechanisms of four musculoskeletal pathologies while the clinical science group was taught only the clinical features. Participants completed a diagnostic accuracy test immediately after initial learning, and one week later a diagnostic accuracy and justification test. The results showed that novices who learned the integrated causal mechanisms had superior diagnostic accuracy and better understanding of the relative importance of key clinical features. These findings further our understanding of cognitive integration by providing evidence of the specific changes in clinical reasoning when basic and clinical sciences are integrated during learning.

  10. Zika Virus: The Agent and Its Biology, With Relevance to Pathology.

    PubMed

    Medin, Carey L; Rothman, Alan L

    2017-01-01

    Once obscure, Zika virus (ZIKV) has attracted significant medical and scientific attention in the past year because of large outbreaks associated with the recent introduction of this virus into the Western hemisphere. In particular, the occurrence of severe congenital infections and cases of Guillain-Barré syndrome has placed this virus squarely in the eyes of clinical and anatomic pathologists. This review article provides a basic introduction to ZIKV, its genetics, its structural characteristics, and its biology. A multidisciplinary effort will be essential to establish clinicopathologic correlations of the basic virology of ZIKV in order to advance development of diagnostics, therapeutics, and vaccines.

  11. Biophotonics: Optical Science and Engineering for the 21st Century

    NASA Astrophysics Data System (ADS)

    Shen, Xun; van Wijk, Roeland

    It is now well established that all living systems emit a weak but permanent photon flux in the visible and ultraviolet range. This biophoton emission is correlated with many, if not all, biological and physiological functions. There are indications of a hitherto-overlooked information channel within the living system. Biophotons may trigger chemical reactivity in cells, growth control, differentiation and intercellular communication, i.e. biological rhythms. The basic experimental and theoretical framework as well as the technical problems and the wide field of applications in the biotechnical, biomedical engineering, engineering, medicine, pharmacology, environmental science and basic science fields are presented in this book.

  12. Biologically important compounds in synfuels processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, B R; Ho, C; Griest, W H

    1980-01-01

    Crude products, by-products and wastes from synfuel processes contain a broad spectrum of chemical compounds - many of which are active in biological systems. Discerning which compound classes are most important is necessary in order to establish effective control over release or exposure. Polycyclic aromatic hydrocarbons (PAH), multialkylated PAH, primary aromatic amines and N-heterocyclic PAH are significant contributors to the overall mutagenic activities of a large number of materials examined. Ames test data show that the basic, primary aromatic amine fraction is the most active. PAHs, multialkylated PAHs and N-heterocyclic PAHs are all components of the neutral fraction. In nearlymore » all cases, the neutral fractions contribute the largest portion of the mutagenic activity, while the basic primary aromatic amine fractions have the highest specific activity. Neutral fractions are usually the largest (wt %) whereas the total basic fractions are small by comparison; thus, the overall greater contribution of the neutral fraction to the mutagenic activity of most samples. Biologically active constituents are isolated in preparative scale amounts from complex mixtures utilizing combinations of liquid-liquid extraction and various liquid chromatographic column-eluant combinations. Fractions are characterized using a combination of spectroscopic techniques and gas chromatography/mass spectrometry.« less

  13. Generative mechanistic explanation building in undergraduate molecular and cellular biology

    NASA Astrophysics Data System (ADS)

    Southard, Katelyn M.; Espindola, Melissa R.; Zaepfel, Samantha D.; Bolger, Molly S.

    2017-09-01

    When conducting scientific research, experts in molecular and cellular biology (MCB) use specific reasoning strategies to construct mechanistic explanations for the underlying causal features of molecular phenomena. We explored how undergraduate students applied this scientific practice in MCB. Drawing from studies of explanation building among scientists, we created and applied a theoretical framework to explore the strategies students use to construct explanations for 'novel' biological phenomena. Specifically, we explored how students navigated the multi-level nature of complex biological systems using generative mechanistic reasoning. Interviews were conducted with introductory and upper-division biology students at a large public university in the United States. Results of qualitative coding revealed key features of students' explanation building. Students used modular thinking to consider the functional subdivisions of the system, which they 'filled in' to varying degrees with mechanistic elements. They also hypothesised the involvement of mechanistic entities and instantiated abstract schema to adapt their explanations to unfamiliar biological contexts. Finally, we explored the flexible thinking that students used to hypothesise the impact of mutations on multi-leveled biological systems. Results revealed a number of ways that students drew mechanistic connections between molecules, functional modules (sets of molecules with an emergent function), cells, tissues, organisms and populations.

  14. Micro-electromembrane extraction across free liquid membranes. Extractions of basic drugs from undiluted biological samples.

    PubMed

    Kubáň, Pavel; Boček, Petr

    2014-04-11

    This contribution describes properties and utilization of free liquid membranes (FLMs) in micro-electromembrane extraction (μ-EME) of analytes from samples with complex matrices. An FLM was formed as a plug of a selected organic solvent, 1-ethyl-2-nitrobenezene (ENB) or 2-nitrophenyloctyl ether, in a narrow bore polymeric tubing and was sandwiched between a plug of aqueous donor and aqueous acceptor solution. The FLM acted as a phase interface that enabled selective transfer of analytes from donor into acceptor solution. Acceptor solution after μ-EME was analysed by capillary electrophoresis (CE). Fundamental characteristics of FLMs were depicted and discussed by presenting experimental data on their performance for various basic operational parameters, such as composition and volume of donor/acceptor solution, applied extraction voltage, thickness of FLM and extraction time. Positively charged basic drugs (nortriptyline, haloperidol and loperamide) and their solutions in water, urine and blood serum served as model samples. It was shown that FLMs may offer fast, efficient and selective pretreatment of crude biological samples providing that basic operational parameters of μ-EME are set properly. At optimised conditions, basic drugs in 1.5μL of a biological sample were transferred across 1.5μL of FLM (ENB) into 1.5μL of acceptor solution in about 5min at an extraction voltage of 100V. Repeatability values of μ-EMEs and CE-UV analyses of the three basic drugs were better than 7.7% for peak areas, recoveries ranged between 19 and 52% and linear relationship was obtained for analytical signal vs. concentration in 1-50mgL(-1) range (r(2) better than 0.996). Limits of detection, defined as 3×S/N, were below 1mgL(-1) for all examined matrices. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Using Restriction Mapping to Teach Basic Skills in the Molecular Biology Lab

    ERIC Educational Resources Information Center

    Walsh, Lauren; Shaker, Elizabeth; De Stasio, Elizabeth A.

    2007-01-01

    Digestion of DNA with restriction enzymes, calculation of volumes and concentrations of reagents for reactions, and the separation of DNA fragments by agarose gel electrophoresis are common molecular biology techniques that are best taught through repetition. The following open-ended, investigative laboratory exercise in plasmid restriction…

  16. Teaching the Ethics of Biology.

    ERIC Educational Resources Information Center

    Johansen, Carol K.; Harris, David E.

    2000-01-01

    Points out the challenges of educating students about bioethics and the limited training of many biologists on ethics. Discusses the basic principles of ethics and ethical decision making as applied to biology. Explains the models of ethical decision making that are often difficult for students to determine where to begin analyzing. (Contains 28…

  17. Quantifying Ecology: Constructing Life History Tables

    ERIC Educational Resources Information Center

    Balgopal, Meena M.; Ode, Paul J.

    2009-01-01

    In the biology community there has been a call for integrating lessons on population growth rate and the human population crisis into biology classrooms. Ecologists fear that students do not understand the relationship between the magnitude of the human population growth and Earth's carrying capacity, as well as some basic ecological concepts. The…

  18. Seth M. Noone | NREL

    Science.gov Websites

    Education M.S., Biomedical Basic Science, Department of Biochemistry and Molecular Genetics, University of Interaction with Histones H3 and H4," Molecular and Cellular Biology (2013) "The Lysine 48 and Cerevisiae," Molecular and Cellular Biology (2007) View all NREL Publications for Seth M. Noone

  19. Biologically Predisposed Learning and Selective Associations in Amygdalar Neurons

    ERIC Educational Resources Information Center

    Chung, Ain; Barot, Sabiha K.; Kim, Jeansok J.; Bernstein, Ilene L.

    2011-01-01

    Modern views on learning and memory accept the notion of biological constraints--that the formation of association is not uniform across all stimuli. Yet cellular evidence of the encoding of selective associations is lacking. Here, conditioned stimuli (CSs) and unconditioned stimuli (USs) commonly employed in two basic associative learning…

  20. Undergraduate HBCU Student Summer Training Program for Developing Nanomedicines to Treat Prostate Cancers

    DTIC Science & Technology

    2017-10-01

    pancreatic cancer cells. 3. Sequoyah Bennett Sequoyah worked in the lab of Dr. Surinder Batra, Department of Biochemistry and Molecular Biology , College...the lab of Dr. Kaustubh Datta, Department of Biochemistry and Molecular Biology at the University of Nebraska Medical Center. During that time, Ciera...following the therapeutic intervention or prostate cancer. Furthermore, she learned the basic cell culture and molecular biology techniques. (2016) 1

  1. The Prevalent Rate of Problem-Solving Approach in Teaching Mathematics in Ghanaian Basic Schools

    ERIC Educational Resources Information Center

    Nyala, Joseph; Assuah, Charles; Ayebo, Abraham; Tse, Newel

    2016-01-01

    Stakeholders of mathematics education decry the rate at which students' performance are falling below expectation; they call for a shift to practical methods of teaching the subject in Ghanaian basic schools. The study explores the extent to which Ghanaian basic school mathematics teachers use problem-solving approach in their lessons. The…

  2. Contract Award on Initial Proposals

    DTIC Science & Technology

    1988-09-30

    3 2. Competition in Contracting Act ... ......... 6 3. Federal Property and Administrative Services Act 10 B. Basic Rules for Award Without...Discussions Before CICA . 11 C. Basic Rules for Award Without Discussions After Passage of CICA .......... ........................ ... 12 D. Award...controlled by statute. This chapter will explore those statutes and their antecedents. The basic rules for awarding contracts without discussions

  3. Do Zoo Visitors Need Zoology Knowledge to Understand Conservation Messages? An Exploration of the Public Understanding of Animal Biology and of the Conservation of Biodiversity in a Zoo Setting

    ERIC Educational Resources Information Center

    Dove, Tracy; Byrne, Jenny

    2014-01-01

    This study explores the current knowledge and understanding about animal biology of zoo visitors and investigates whether knowledge of animal biology influences the ability of people to understand how human activity affects biodiversity. Zoos can play a role in the development of scientific literacy in the fields of animal biology and biodiversity…

  4. Symmetry compression method for discovering network motifs.

    PubMed

    Wang, Jianxin; Huang, Yuannan; Wu, Fang-Xiang; Pan, Yi

    2012-01-01

    Discovering network motifs could provide a significant insight into systems biology. Interestingly, many biological networks have been found to have a high degree of symmetry (automorphism), which is inherent in biological network topologies. The symmetry due to the large number of basic symmetric subgraphs (BSSs) causes a certain redundant calculation in discovering network motifs. Therefore, we compress all basic symmetric subgraphs before extracting compressed subgraphs and propose an efficient decompression algorithm to decompress all compressed subgraphs without loss of any information. In contrast to previous approaches, the novel Symmetry Compression method for Motif Detection, named as SCMD, eliminates most redundant calculations caused by widespread symmetry of biological networks. We use SCMD to improve three notable exact algorithms and two efficient sampling algorithms. Results of all exact algorithms with SCMD are the same as those of the original algorithms, since SCMD is a lossless method. The sampling results show that the use of SCMD almost does not affect the quality of sampling results. For highly symmetric networks, we find that SCMD used in both exact and sampling algorithms can help get a remarkable speedup. Furthermore, SCMD enables us to find larger motifs in biological networks with notable symmetry than previously possible.

  5. An introduction to the molecular basics of aryl hydrocarbon receptor biology.

    PubMed

    Abel, Josef; Haarmann-Stemmann, Thomas

    2010-11-01

    Depending on their chemical structure and properties, environmental chemicals and other xenobiotics that enter the cell can affect cellular function by either nonselective binding to cellular macromolecules or by interference with cellular receptors, which would initiate a more defined cell biological response. One of these intracellular chemosensor molecules is the aryl hydrocarbon receptor (AhR), a transcription factor of the bHLH/PAS family that is known to mediate the biochemical and toxic effects of dioxins, polyaromatic hydrocarbons and related compounds. Numerous investigations have revealed that the AhR is not only a master regulator of drug metabolism activated by anthropogenic chemicals, but is also triggered by natural and endogenous ligands and can influence cell biological endpoints such as growth and differentiation. Cutting-edge research has identified new intriguing functions of the AhR, such as during proteasomal degradation of steroid hormone receptors, the cellular UVB stress response and the differentiation of certain T-cell subsets. In this review we provide both a survey of the fundamental basics of AhR biology and an insight into new functional aspects of AhR signaling to further stimulate research on this intriguing transcription factor at the interface between toxicology, cell biology and immunology.

  6. At the Edge of Translation – Materials to Program Cells for Directed Differentiation

    PubMed Central

    Arany, Praveen R; Mooney, David J

    2010-01-01

    The rapid advancement in basic biology knowledge, especially in the stem cell field, has created new opportunities to develop biomaterials capable of orchestrating the behavior of transplanted and host cells. Based on our current understanding of cellular differentiation, a conceptual framework for the use of materials to program cells in situ is presented, namely a domino versus a switchboard model, to highlight the use of single versus multiple cues in a controlled manner to modulate biological processes. Further, specific design principles of material systems to present soluble and insoluble cues that are capable of recruiting, programming and deploying host cells for various applications are presented. The evolution of biomaterials from simple inert substances used to fill defects, to the recent development of sophisticated material systems capable of programming cells in situ is providing a platform to translate our understanding of basic biological mechanisms to clinical care. PMID:20860763

  7. Natural Environment Exploration Approach: The Case Study in Department of Biology, Universitas Negeri Semarang

    ERIC Educational Resources Information Center

    Alimah, Siti; Susilo, Herawati; Amin, Moh

    2016-01-01

    The study reports the evaluation and analysis of the implementation of the Nature Environment Exploration approach in the Department of Biology, Universitas Negeri Semarang State University. The method used was survey method. The results showed that the implementation of the Nature Environment Exploration approach was still far from optimal…

  8. Why Flies? Inexpensive Public Engagement Exercises to Explain the Value of Basic Biomedical Research on "Drosophila melanogaster"

    ERIC Educational Resources Information Center

    Pulver, Stefan R.; Cognigni, Paola; Denholm, Barry; Fabre, Caroline; Gu, Wendy X. W.; Linneweber, Gerit; Prieto-Godino, Lucia; Urbancic, Vasja; Zwart, Maarten; Miguel-Aliaga, Irene

    2011-01-01

    Invertebrate model organisms are powerful systems for uncovering conserved principles of animal biology. Despite widespread use in scientific communities, invertebrate research is often severely undervalued by laypeople. Here, we present a set of simple, inexpensive public outreach exercises aimed at explaining to the public why basic research on…

  9. Xenobiology: State-of-the-Art, Ethics, and Philosophy of New-to-Nature Organisms.

    PubMed

    Schmidt, Markus; Pei, Lei; Budisa, Nediljko

    The basic chemical constitution of all living organisms in the context of carbon-based chemistry consists of a limited number of small molecules and polymers. Until the twenty-first century, biology was mainly an analytical science and has now reached a point where it merges with engineering science, paving the way for synthetic biology. One of the objectives of synthetic biology is to try to change the chemical compositions of living cells, that is, to create an artificial biological diversity, which in turn fosters a new sub-field of synthetic biology, xenobiology. In particular, the genetic code in living systems is based on highly standardized chemistry composed of the same "letters" or nucleotides as informational polymers (DNA, RNA) and the 20 amino acids which serve as basic building blocks for proteins. The universality of the genetic code enables not only vertical gene transfer within the same species but also horizontal gene transfer across biological taxa, which require a high degree of standardization and interconnectivity. Although some minor alterations of the standard genetic code are found in nature (e.g., proteins containing non-conical amino acids exist in nature, and some organisms use alternated coding systems), all structurally deep chemistry changes within living systems are generally lethal, making the creation of artificial biological system an extremely difficult challenge.In this context, one of the great challenges for bioscience is the development of a strategy for expanding the standard basic chemical repertoire of living cells. Attempts to alter the meaning of the genetic information stored in DNA as an informational polymer by changing the chemistry of the polymer (i.e., xeno-nucleic acids) or by changes in the genetic code have already yielded successful results. In the future this should enable the partial or full redirection of the biological information flow to generate "new" version(s) of the genetic code derived from the "old" biological world.In addition to the scientific challenges, the attempt to increase biochemical diversity also raises important ethical and philosophical issues. Although promotors of this branch of synthetic biology highlight the many potential applications to come (e.g., novel tools for diagnostics and fighting infection diseases), such developments could also bring risks affecting social, political, and other structures of nearly all societies.

  10. Biological Life Support Technologies: Commercial Opportunities

    NASA Technical Reports Server (NTRS)

    Nelson, Mark (Editor); Soffen, Gerald (Editor)

    1990-01-01

    The papers from the workshop on Biological Life Support Technologies: Commercial Opportunities are presented. The meeting attracted researchers in environmental and bioregenerative systems. The role of biological support technologies was evaluated in the context of the global environmental challenge on Earth and the space exploration initiative, with its goal of a permanent space station, lunar base, and Mars exploration.

  11. Exploring Pedagogical Content Knowledge of Biology Graduate Teaching Assistants through Their Participation in Lesson Study

    ERIC Educational Resources Information Center

    Lampley, Sandra A.; Gardner, Grant E.; Barlow, Angela T.

    2018-01-01

    Graduate teaching assistants (GTAs) are responsible for teaching the majority of biology undergraduate laboratory sections, although many feel underprepared to do so. This study explored the impact of biology GTA participation in a professional development model known as lesson study. Using a case study methodology with multiple qualitative data…

  12. Exploring Biology: A "Vision and Change" Disciplinary First-Year Seminar Improves Academic Performance in Introductory Biology

    ERIC Educational Resources Information Center

    Wienhold, Caroline J.; Branchaw, Janet

    2018-01-01

    The transition to college is challenging for most students, especially those who aspire to major in the science, technology, engineering, or mathematics disciplines, in which introductory courses can be large and instruction less than optimal. This paper describes a novel, disciplinary first-year seminar (FYS) course, Exploring Biology, designed…

  13. Exploring the MACH Model's Potential as a Metacognitive Tool to Help Undergraduate Students Monitor Their Explanations of Biological Mechanisms

    ERIC Educational Resources Information Center

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2016-01-01

    When undergraduate biology students learn to explain biological mechanisms, they face many challenges and may overestimate their understanding of living systems. Previously, we developed the MACH model of four components used by expert biologists to explain mechanisms: Methods, Analogies, Context, and How. This study explores the implementation of…

  14. Basic emotion processing and the adolescent brain: Task demands, analytic approaches, and trajectories of changes.

    PubMed

    Del Piero, Larissa B; Saxbe, Darby E; Margolin, Gayla

    2016-06-01

    Early neuroimaging studies suggested that adolescents show initial development in brain regions linked with emotional reactivity, but slower development in brain structures linked with emotion regulation. However, the increased sophistication of adolescent brain research has made this picture more complex. This review examines functional neuroimaging studies that test for differences in basic emotion processing (reactivity and regulation) between adolescents and either children or adults. We delineated different emotional processing demands across the experimental paradigms in the reviewed studies to synthesize the diverse results. The methods for assessing change (i.e., analytical approach) and cohort characteristics (e.g., age range) were also explored as potential factors influencing study results. Few unifying dimensions were found to successfully distill the results of the reviewed studies. However, this review highlights the potential impact of subtle methodological and analytic differences between studies, need for standardized and theory-driven experimental paradigms, and necessity of analytic approaches that are can adequately test the trajectories of developmental change that have recently been proposed. Recommendations for future research highlight connectivity analyses and non-linear developmental trajectories, which appear to be promising approaches for measuring change across adolescence. Recommendations are made for evaluating gender and biological markers of development beyond chronological age. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. T1ρ magnetic resonance: basic physics principles and applications in knee and intervertebral disc imaging.

    PubMed

    Wáng, Yì-Xiáng J; Zhang, Qinwei; Li, Xiaojuan; Chen, Weitian; Ahuja, Anil; Yuan, Jing

    2015-12-01

    T1ρ relaxation time provides a new contrast mechanism that differs from T1- and T2-weighted contrast, and is useful to study low-frequency motional processes and chemical exchange in biological tissues. T1ρ imaging can be performed in the forms of T1ρ-weighted image, T1ρ mapping and T1ρ dispersion. T1ρ imaging, particularly at low spin-lock frequency, is sensitive to B0 and B1 inhomogeneity. Various composite spin-lock pulses have been proposed to alleviate the influence of field inhomogeneity so as to reduce the banding-like spin-lock artifacts. T1ρ imaging could be specific absorption rate (SAR) intensive and time consuming. Efforts to address these issues and speed-up data acquisition are being explored to facilitate wider clinical applications. This paper reviews the T1ρ imaging's basic physic principles, as well as its application for cartilage imaging and intervertebral disc imaging. Compared to more established T2 relaxation time, it has been shown that T1ρ provides more sensitive detection of proteoglycan (PG) loss at early stages of cartilage degeneration. T1ρ has also been shown to provide more sensitive evaluation of annulus fibrosis (AF) degeneration of the discs.

  16. T1ρ magnetic resonance: basic physics principles and applications in knee and intervertebral disc imaging

    PubMed Central

    Zhang, Qinwei; Li, Xiaojuan; Chen, Weitian; Ahuja, Anil; Yuan, Jing

    2015-01-01

    T1ρ relaxation time provides a new contrast mechanism that differs from T1- and T2-weighted contrast, and is useful to study low-frequency motional processes and chemical exchange in biological tissues. T1ρ imaging can be performed in the forms of T1ρ-weighted image, T1ρ mapping and T1ρ dispersion. T1ρ imaging, particularly at low spin-lock frequency, is sensitive to B0 and B1 inhomogeneity. Various composite spin-lock pulses have been proposed to alleviate the influence of field inhomogeneity so as to reduce the banding-like spin-lock artifacts. T1ρ imaging could be specific absorption rate (SAR) intensive and time consuming. Efforts to address these issues and speed-up data acquisition are being explored to facilitate wider clinical applications. This paper reviews the T1ρ imaging’s basic physic principles, as well as its application for cartilage imaging and intervertebral disc imaging. Compared to more established T2 relaxation time, it has been shown that T1ρ provides more sensitive detection of proteoglycan (PG) loss at early stages of cartilage degeneration. T1ρ has also been shown to provide more sensitive evaluation of annulus fibrosis (AF) degeneration of the discs. PMID:26807369

  17. Basic emotion processing and the adolescent brain: Task demands, analytic approaches, and trajectories of changes

    PubMed Central

    Del Piero, Larissa B.; Saxbe, Darby E.; Margolin, Gayla

    2016-01-01

    Early neuroimaging studies suggested that adolescents show initial development in brain regions linked with emotional reactivity, but slower development in brain structures linked with emotion regulation. However, the increased sophistication of adolescent brain research has made this picture more complex. This review examines functional neuroimaging studies that test for differences in basic emotion processing (reactivity and regulation) between adolescents and either children or adults. We delineated different emotional processing demands across the experimental paradigms in the reviewed studies to synthesize the diverse results. The methods for assessing change (i.e., analytical approach) and cohort characteristics (e.g., age range) were also explored as potential factors influencing study results. Few unifying dimensions were found to successfully distill the results of the reviewed studies. However, this review highlights the potential impact of subtle methodological and analytic differences between studies, need for standardized and theory-driven experimental paradigms, and necessity of analytic approaches that are can adequately test the trajectories of developmental change that have recently been proposed. Recommendations for future research highlight connectivity analyses and nonlinear developmental trajectories, which appear to be promising approaches for measuring change across adolescence. Recommendations are made for evaluating gender and biological markers of development beyond chronological age. PMID:27038840

  18. An integrated biochemistry and genetics outreach program designed for elementary school students.

    PubMed

    Ross, Eric D; Lee, Sarah K; Radebaugh, Catherine A; Stargell, Laurie A

    2012-02-01

    Exposure to genetic and biochemical experiments typically occurs late in one's academic career. By the time students have the opportunity to select specialized courses in these areas, many have already developed negative attitudes toward the sciences. Given little or no direct experience with the fields of genetics and biochemistry, it is likely that many young people rule these out as potential areas of study or career path. To address this problem, we developed a 7-week (~1 hr/week) hands-on course to introduce fifth grade students to basic concepts in genetics and biochemistry. These young students performed a series of investigations (ranging from examining phenotypic variation, in vitro enzymatic assays, and yeast genetic experiments) to explore scientific reasoning through direct experimentation. Despite the challenging material, the vast majority of students successfully completed each experiment, and most students reported that the experience increased their interest in science. Additionally, the experiments within the 7-week program are easily performed by instructors with basic skills in biological sciences. As such, this program can be implemented by others motivated to achieve a broader impact by increasing the accessibility of their university and communicating to a young audience a positive impression of the sciences and the potential for science as a career.

  19. Gravity-Dependent Combustion and Fluids Research - From Drop Towers to Aircraft to the ISS

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Singh, Bhim S.; Kohl, Fred J.

    2007-01-01

    Driven by the need for knowledge related to the low-gravity environment behavior of fluids in liquid fuels management, thermal control systems and fire safety for spacecraft, NASA embarked on a decades long research program to understand, accommodate and utilize the relevant phenomena. Beginning in the 1950s, and continuing through to today, drop towers and aircraft were used to conduct an ever broadening and increasingly sophisticated suite of experiments designed to elucidate the underlying gravity-dependent physics that drive these processes. But the drop towers and aircraft afford only short time periods of continuous low gravity. Some of the earliest rocket test flights and manned space missions hosted longer duration experiments. The relatively longer duration low-g times available on the space shuttle during the 1980s and 1990s enabled many specialized experiments that provided unique data for a wide range of science and engineering disciplines. Indeed, a number of STS-based Spacelab missions were dedicated solely to basic and applied microgravity research in the biological, life and physical sciences. Between 1980 and 2000, NASA implemented a vigorous Microgravity Science Program wherein combustion science and fluid physics were major components. The current era of space stations from the MIR to the International Space Station have opened up a broad range of opportunities and facilities that are now available to support both applied research for technologies that will help to enable the future exploration missions and for a continuation of the non-exploration basic research that began over fifty years ago. The ISS-based facilities of particular value to the fluid physics and combustion/fire safety communities are the Fluids and Combustion Facility Combustion Integrated Rack and the Fluids Integrated Rack.

  20. Is the use of sentient animals in basic research justifiable?

    PubMed Central

    2010-01-01

    Animals can be used in many ways in science and scientific research. Given that society values sentient animals and that basic research is not goal oriented, the question is raised: "Is the use of sentient animals in basic research justifiable?" We explore this in the context of funding issues, outcomes from basic research, and the position of society as a whole on using sentient animals in research that is not goal oriented. We conclude that the use of sentient animals in basic research cannot be justified in light of society's priorities. PMID:20825676

  1. Is the use of sentient animals in basic research justifiable?

    PubMed

    Greek, Ray; Greek, Jean

    2010-09-08

    Animals can be used in many ways in science and scientific research. Given that society values sentient animals and that basic research is not goal oriented, the question is raised: "Is the use of sentient animals in basic research justifiable?" We explore this in the context of funding issues, outcomes from basic research, and the position of society as a whole on using sentient animals in research that is not goal oriented. We conclude that the use of sentient animals in basic research cannot be justified in light of society's priorities.

  2. Detection of high molecular weight proteins by MALDI imaging mass spectrometry.

    PubMed

    Mainini, Veronica; Bovo, Giorgio; Chinello, Clizia; Gianazza, Erica; Grasso, Marco; Cattoretti, Giorgio; Magni, Fulvio

    2013-06-01

    MALDI imaging mass spectrometry (IMS) is a unique technology to explore the spatial distribution of biomolecules directly on tissues. It allows the in situ investigation of a large number of small proteins and peptides. Detection of high molecular weight proteins through MALDI IMS still represents an important challenge, as it would allow the direct investigation of the distribution of more proteins involved in biological processes, such as cytokines, enzymes, neuropeptide precursors and receptors. In this work we compare the traditional method performed with sinapinic acid with a comparable protocol using ferulic acid as the matrix. Data show a remarkable increase of signal acquisition in the mass range of 20k to 150k Th. Moreover, we report molecular images of biomolecules above 70k Th, demonstrating the possibility of expanding the application of this technology both in clinical investigations and basic science.

  3. On the analysis of competitive displacement in dengue disease transmission

    NASA Astrophysics Data System (ADS)

    Wijaya, Karunia P.; Nuraini, Nuning; Soewono, Edy; Handayani, Dewi

    2014-03-01

    We study a host-vector model involving the interplay of competitive displacement mechanism in a specific DENV serotype, both in human blood and mosquito blood. Using phylogenetic analysis, world virologists investigate the severe manifestations of dengue fever caused by the displacements within weakly virulent pathogens (native strains) by more virulent pathogens (invasive strains) in one serotype. We construct SIR model for human and SI model for mosquito to explore the key determinants of those displacements. Analysis of nonnegativity and boundedness of the solution as well as the basic reproduction number (R0) are taken into account for verifying the model into biological meaningfulness. To generate predictions of the outcomes of control strategies, we derive an optimal control model which involves two control apparatus: fluid infusion (for human) and fumigation (for vector). Numerical results show the dynamics of host-vector in an observation period, both under control and without control.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Larson MD

    This project funded since 1986 serves as a core project for cancer research throughout MSKCC, producing key radiotracers as well as basic knowledge about thel physics of radiation decay and imaging, for nuclear medicine applications to cancer diagnosis and therapy. In recent years this research application has broadened to include experiments intended to lead to an improved understanding of cancer biology and into the discovery and testing of new cancer drugs. Advances in immune based radiotargeting form the basis for this project. Both antibody and cellular based immune targeting methods have been explored. The multi-step targeting methodologies (MST) developed bymore » NeoRex (Seattle,Washington), have been adapted for use with positron emitting isotopes and PET allowing the quantification and optimization of targeted delivery. In addition, novel methods for radiolabeling immune T-cells with PET tracers have advanced our ability to track these cells of prolonged period of time.« less

  5. Evidence for methane in Martian meteorites

    PubMed Central

    Blamey, Nigel J. F.; Parnell, John; McMahon, Sean; Mark, Darren F.; Tomkinson, Tim; Lee, Martin; Shivak, Jared; Izawa, Matthew R. M.; Banerjee, Neil R.; Flemming, Roberta L.

    2015-01-01

    The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity. PMID:26079798

  6. Exploring the role of pendant amines in transition metal complexes for the reduction of N2 to hydrazine and ammonia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Papri; Prokopchuk, Demyan E.; Mock, Michael T.

    2017-03-01

    This review examines the synthesis and acid reactivity of transition metal dinitrogen complexes bearing diphosphine ligands containing pendant amine groups in the second coordination sphere. This manuscript is a review of the work performed in the Center for Molecular Electrocatalysis. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences. EPR studies on Fe were performed using EMSL, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located atmore » PNNL. Computational resources were provided by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for the U.S. DOE.« less

  7. Biomineralization of calcium carbonates and their engineered applications: a review

    PubMed Central

    Dhami, Navdeep K.; Reddy, M. Sudhakara; Mukherjee, Abhijit

    2013-01-01

    Microbially induced calcium carbonate precipitation (MICCP) is a naturally occurring biological process in which microbes produce inorganic materials as part of their basic metabolic activities. This technology has been widely explored and promising with potential in various technical applications. In the present review, the detailed mechanism of production of calcium carbonate biominerals by ureolytic bacteria has been discussed along with role of bacteria and the sectors where these biominerals are being used. The applications of bacterially produced carbonate biominerals for improving the durability of buildings, remediation of environment (water and soil), sequestration of atmospheric CO2 filler material in rubbers and plastics etc. are discussed. The study also sheds light on benefits of bacterial biominerals over traditional agents and also the issues that lie in the path of successful commercialization of the technology of microbially induced calcium carbonate precipitation from lab to field scale. PMID:24194735

  8. Resveratrol and cancer: Challenges for clinical translation

    PubMed Central

    Singh, Chandra K.; Ndiaye, Mary A.; Ahmad, Nihal

    2014-01-01

    Significant work has been done towards identifying the health-beneficial effects of the grape antioxidant resveratrol in a variety of bioassay- and disease- models, with much research being focused on its possible application to cancer management. Despite the large number of preclinical studies dealing with different aspects of the biological effects of resveratrol, it’s translation to clinics is far from reality due to a variety of challenges. In this review, we discuss the issues and questions associated with resveratrol becoming an effective in vivo anticancer drug, from basic metabolic issues to the problems faced by incomplete understanding of the mechanism(s) of action in the body. We also explore efforts taken by researchers, both public and private, to contend with some of these issues. By examining the published data and previous clinical trials, we have attempted to identify the problems and issues that hinder the clinical translation of resveratrol for cancer management. PMID:25446990

  9. From the EEL to the EGO: psychoanalysis and the remnants of Freud's early scientific practice.

    PubMed

    Wieser, Martin

    2013-01-01

    While numerous historiographical works have been written to shed light on Freud's early theoretical education in biology, physiology, and medicine and on the influence of that education on psychoanalysis, this paper approaches Freud's basic comprehension of science and methodology by focusing on his early research practice in physiology and neuranatomy. This practice, taking place in the specific context of Ernst Brücke's physiological laboratory in Vienna, was deeply concerned with problems of visuality and the revelation of hidden organic structures by use of proper preparation techniques and optical instruments. The paper explores the connection between such visualizing practices, shaped by a physiological context as they were, and Freud's later convictions of the scientific status of psychoanalysis and the function of its method as means to unveil the concealed structure of the "psychical apparatus". © 2013 Wiley Periodicals, Inc.

  10. Evidence for methane in Martian meteorites.

    PubMed

    Blamey, Nigel J F; Parnell, John; McMahon, Sean; Mark, Darren F; Tomkinson, Tim; Lee, Martin; Shivak, Jared; Izawa, Matthew R M; Banerjee, Neil R; Flemming, Roberta L

    2015-06-16

    The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity.

  11. LaURGE: Louisiana Undergraduate Recruitment and Geoscience Education

    NASA Astrophysics Data System (ADS)

    Nunn, J. A.; Agnew, J.

    2009-12-01

    NSF and the Shell Foundation sponsor a program called Louisiana Undergraduate Recruitment and Geoscience Education (LaURGE). Goals of LaURGE are: 1) Interweave geoscience education into the existing curriculum; 2) Provide teachers with lesson plans that promote interest in geoscience, critical thinking by students, and are consistent with current knowledge in geoscience; and 3) Provide teachers with supplies that make these lessons the highlights of the course. Biology workshops were held at LSU in Baton Rouge and Centenary College in Shreveport in July 2009. 25 teachers including 5 African-Americans attended the workshops. Teachers were from public and private schools in seven different parishes. Teacher experience ranged from 3 years to 40 years. Courses impacted are Biology, Honors Biology, AP Biology, and Environmental Science. The workshops began with a field trip to Mississippi to collect fossil shark teeth and create a virtual field trip. After the field trip, teachers do a series of activities on fossil shark teeth to illustrate evolution and introduce basic concepts such as geologic time, superposition, and faunal succession. Teachers were also given a $200 budget from which to select fossils for use in their classrooms. One of our exercises explores the evolution of the megatoothed shark lineage leading to Carcharocles megalodon, the largest predatory shark in history with teeth up to 17 cm long. Megatoothed shark teeth have an excellent fossil record and show continuous transitions in morphology from the Eocene to Pliocene. We take advantage of the curiosity of sharks shared by most people, and allow teachers to explore the variations among different shark teeth and to explain the causes of those variations. Objectives are to have teachers (and their students): 1) sort fossil shark teeth into biologically reasonable species; 2) form hypotheses about evolutionary relationships; and 3) describe and interpret evolutionary trends in the fossil Megatoothed lineage. The exercise concludes with discussion of the environmental and biotic events occurring between the Eocene and Miocene epochs that may have caused evolutionary changes in the megatooth shark’s teeth. Other topics covered include radiometric age dating, biogeochemical cycles, and human impact on the carbon and sulfur cycles. Pretests and posttests were administered to assess effectiveness of the program as well as identify teacher misconceptions. This information will be used in future workshops. NSF funding will allow the biology workshops to be repeated in 2010. In addition, a new workshop for physics teachers will be introduced in 2010.

  12. Astrobiology: A Roadmap for Charting Life in the Universe

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincezi, D. (Technical Monitor)

    2002-01-01

    Astrobiology is the study of the origin, evolution and distribution of life in the universe. It provides a biological perspective to many areas of NASA research. It links such endeavors as the search for habitable planets, exploration missions to Mars and the outer Solar System, efforts to understand the origins and early evolution of life, and charting the potential of life to adapt to future challenges, both on Earth and in space. Astrobiology addresses the following three basic questions, which have been asked in some form for generations. How does life begin and evolve? Does life exist elsewhere in the universe? What is future of life on Earth and beyond? The NASA Astrobiology Roadmap provides guidance for research and technology development across several NASA Enterprises: Space Science, Earth Science, and the Human Exploration and Development of Space. The Roadmap is formulated in terms of eight Science Goals that outline key domains of investigation that might require perhaps decades of effort to consolidate. For each of these goals, Science Objectives outline more specific high priority near-term efforts for the next three to five years. These twenty objectives will be integrated with NASA strategic planning.

  13. Stress response physiology of thermophiles.

    PubMed

    Ranawat, Preeti; Rawat, Seema

    2017-04-01

    Thermo (or hyperthermo) philic microorganisms are ubiquitous having a wide range of habitats from freshly fallen snow to pasteurized milk to geothermal areas like hot springs. The variations in physicochemical conditions, viz., temperature, pH, nutrient availability and light intensity in the habitats always pose stress conditions for the inhabitants leading to slow growth or cell death. The industrial processes used for harvesting secondary metabolites such as enzymes, toxins and organic acids also create stressed environments for thermophiles. The production of DNA-binding proteins, activation of reactive oxygen species detoxification system, compatible solute accumulation, expression of heat shock proteins and alterations in morphology are a few examples of physiological changes demonstrated by these microscopic lifeforms in stress. These microorganisms exhibit complex genetic and physiological changes to minimize, adapt to and repair damage caused by extreme environmental disturbances. These changes are termed as 'stress responses' which enable them to stabilize their homeostasis. The exploration of important thermophilic factors would pave the way in engineering the microbial strains for various biotechnological applications. This review article presents a picture of physiological responses of thermophiles against various stress conditions as their mechanisms to respond to stress make them model organisms to further explore them for basic and applied biology purposes.

  14. Regenerative patterning in Swarm Robots: mutual benefits of research in robotics and stem cell biology.

    PubMed

    Rubenstein, Michael; Sai, Ying; Chuong, Cheng-Ming; Shen, Wei-Min

    2009-01-01

    This paper presents a novel perspective of Robotic Stem Cells (RSCs), defined as the basic non-biological elements with stem cell like properties that can self-reorganize to repair damage to their swarming organization. Self here means that the elements can autonomously decide and execute their actions without requiring any preset triggers, commands, or help from external sources. We develop this concept for two purposes. One is to develop a new theory for self-organization and self-assembly of multi-robots systems that can detect and recover from unforeseen errors or attacks. This self-healing and self-regeneration is used to minimize the compromise of overall function for the robot team. The other is to decipher the basic algorithms of regenerative behaviors in multi-cellular animal models, so that we can understand the fundamental principles used in the regeneration of biological systems. RSCs are envisioned to be basic building elements for future systems that are capable of self-organization, self-assembly, self-healing and self-regeneration. We first discuss the essential features of biological stem cells for such a purpose, and then propose the functional requirements of robotic stem cells with properties equivalent to gene controller, program selector and executor. We show that RSCs are a novel robotic model for scalable self-organization and self-healing in computer simulations and physical implementation. As our understanding of stem cells advances, we expect that future robots will be more versatile, resilient and complex, and such new robotic systems may also demand and inspire new knowledge from stem cell biology and related fields, such as artificial intelligence and tissue engineering.

  15. Regenerative patterning in Swarm Robots: mutual benefits of research in robotics and stem cell biology

    PubMed Central

    RUBENSTEIN, MICHAEL; SAI, YING; CHUONG, CHENG-MING; SHEN, WEI-MIN

    2010-01-01

    This paper presents a novel perspective of Robotic Stem Cells (RSCs), defined as the basic non-biological elements with stem cell like properties that can self-reorganize to repair damage to their swarming organization. “Self” here means that the elements can autonomously decide and execute their actions without requiring any preset triggers, commands, or help from external sources. We develop this concept for two purposes. One is to develop a new theory for self-organization and self-assembly of multi-robots systems that can detect and recover from unforeseen errors or attacks. This self-healing and self-regeneration is used to minimize the compromise of overall function for the robot team. The other is to decipher the basic algorithms of regenerative behaviors in multi-cellular animal models, so that we can understand the fundamental principles used in the regeneration of biological systems. RSCs are envisioned to be basic building elements for future systems that are capable of self-organization, self-assembly, self-healing and self-regeneration. We first discuss the essential features of biological stem cells for such a purpose, and then propose the functional requirements of robotic stem cells with properties equivalent to gene controller, program selector and executor. We show that RSCs are a novel robotic model for scalable self-organization and self-healing in computer simulations and physical implementation. As our understanding of stem cells advances, we expect that future robots will be more versatile, resilient and complex, and such new robotic systems may also demand and inspire new knowledge from stem cell biology and related fields, such as artificial intelligence and tissue engineering. PMID:19557691

  16. Exploring and Analyzing Climate Variations Online by Using MERRA-2 data at GES DISC

    NASA Astrophysics Data System (ADS)

    Shen, S.; Ostrenga, D.; Vollmer, B.; Kempler, S.

    2016-12-01

    NASA Giovanni (Geospatial Interactive Online Visualization ANd aNalysis Infrastructure) (http://giovanni.sci.gsfc.nasa.gov/giovanni/) is a web-based data visualization and analysis system developed by the Goddard Earth Sciences Data and Information Services Center (GES DISC). Current data analysis functions include Lat-Lon map, time series, scatter plot, correlation map, difference, cross-section, vertical profile, and animation etc. The system enables basic statistical analysis and comparisons of multiple variables. This web-based tool facilitates data discovery, exploration and analysis of large amount of global and regional remote sensing and model data sets from a number of NASA data centers. Recently, long term global assimilated atmospheric, land, and ocean data have been integrated into the system that enables quick exploration and analysis of climate data without downloading, and preprocessing the data. Example data include climate reanalysis from NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) which provides data beginning 1980 to present; land data from NASA Global Land Data Assimilation System (GLDAS) which assimilates data from 1948 to 2012; as well as ocean biological data from NASA Ocean Biogeochemical Model (NOBM) which assimilates data from 1998 to 2012. This presentation, using surface air temperature, precipitation, ozone, and aerosol, etc. from MERRA-2, demonstrates climate variation analysis with Giovanni at selected regions.

  17. Exploring and Analyzing Climate Variations Online by Using NASA MERRA-2 Data at GES DISC

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Ostrenga, Dana M.; Vollmer, Bruce E.; Kempler, Steven J.

    2016-01-01

    NASA Giovanni (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) (http:giovanni.sci.gsfc.nasa.govgiovanni) is a web-based data visualization and analysis system developed by the Goddard Earth Sciences Data and Information Services Center (GES DISC). Current data analysis functions include Lat-Lon map, time series, scatter plot, correlation map, difference, cross-section, vertical profile, and animation etc. The system enables basic statistical analysis and comparisons of multiple variables. This web-based tool facilitates data discovery, exploration and analysis of large amount of global and regional remote sensing and model data sets from a number of NASA data centers. Long term global assimilated atmospheric, land, and ocean data have been integrated into the system that enables quick exploration and analysis of climate data without downloading, preprocessing, and learning data. Example data include climate reanalysis data from NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) which provides data beginning in 1980 to present; land data from NASA Global Land Data Assimilation System (GLDAS), which assimilates data from 1948 to 2012; as well as ocean biological data from NASA Ocean Biogeochemical Model (NOBM), which provides data from 1998 to 2012. This presentation, using surface air temperature, precipitation, ozone, and aerosol, etc. from MERRA-2, demonstrates climate variation analysis with Giovanni at selected regions.

  18. High pressure in bioscience and biotechnology: pure science encompassed in pursuit of value.

    PubMed

    Hayashi, Rikimaru

    2002-03-25

    A fundamental factors, pressure (P), is indispensable to develop and support applications in the field of bioscience and biotechnology. This short sentence describes an example how high pressure bioscience and biotechnology, which started from applied science, stimulates challenges of basic science and pure science in the biology-related fields including not only food science, medicine, and pharmacology but also biochemistry, molecular biology, cell biology, physical chemistry, and engineering.

  19. Biological imaging with coherent Raman scattering microscopy: a tutorial

    PubMed Central

    Alfonso-García, Alba; Mittal, Richa; Lee, Eun Seong; Potma, Eric O.

    2014-01-01

    Abstract. Coherent Raman scattering (CRS) microscopy is gaining acceptance as a valuable addition to the imaging toolset of biological researchers. Optimal use of this label-free imaging technique benefits from a basic understanding of the physical principles and technical merits of the CRS microscope. This tutorial offers qualitative explanations of the principles behind CRS microscopy and provides information about the applicability of this nonlinear optical imaging approach for biological research. PMID:24615671

  20. Human papillomavirus molecular biology.

    PubMed

    Harden, Mallory E; Munger, Karl

    Human papillomaviruses are small DNA viruses with a tropism for squamous epithelia. A unique aspect of human papillomavirus molecular biology involves dependence on the differentiation status of the host epithelial cell to complete the viral lifecycle. A small group of these viruses are the etiologic agents of several types of human cancers, including oral and anogenital tract carcinomas. This review focuses on the basic molecular biology of human papillomaviruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Using Osteoclast Differentiation as a Model for Gene Discovery in an Undergraduate Cell Biology Laboratory

    ERIC Educational Resources Information Center

    Birnbaum, Mark J.; Picco, Jenna; Clements, Meghan; Witwicka, Hanna; Yang, Meiheng; Hoey, Margaret T.; Odgren, Paul R.

    2010-01-01

    A key goal of molecular/cell biology/biotechnology is to identify essential genes in virtually every physiological process to uncover basic mechanisms of cell function and to establish potential targets of drug therapy combating human disease. This article describes a semester-long, project-oriented molecular/cellular/biotechnology laboratory…

  2. Effects of temperature on the life history parameters of Anoplophora Glabripennis (Coleoptera: Cerambycidae)

    Treesearch

    Melody A. Keena; Paul M. Moore; Steve M. Ulanecki

    2003-01-01

    There is a critical need for information on the basic biology of the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), to provide the biological basis for predicting developmental phenology in order to optimize the timing of exclusion and eradication treatments and to predict attack rates under different environmental conditions. In...

  3. A personal account of the development of modern biological research in Portugal.

    PubMed

    De Sousa, Maria

    2009-01-01

    Portugal celebrated in 2006 its first 20 years of the formal introduction of the practice of external evaluation of research proposals in the national funding system. Accounts of changes in numbers of publications, citations, numbers of research projects funded and budget figures can be found in Government Reports (www.oces.mctes.pt.). An offshoot of the decisive and firm implementation of that practice in what was to become the Health Sciences was that the area became an attractor for young researchers in the basic biological sciences, namely, molecular, cellular and developmental biology. Reciprocally, the entry of basic biological scientists into medically oriented groups totally changed the landscape, the soil, the seeding, the cross-fertilization and the flowering of biomedical research in the country. This paper is a personal account of the experience of a scientist who was asked by the then President of the National Research Council, Jose Mariano Gago to co-ordinate the introduction of external evaluation of research projects and research institutes in the Health Sciences in Portugal between 1986 and 1997.

  4. A Feasibility Study of Computer Assisted Instruction in US Army Basic Electronics Training. Final Report.

    ERIC Educational Resources Information Center

    International Business Machines Corp., Gaithersburg, MD. Federal Systems Div.

    A study of computer-assisted instruction (CAI) for US Army basic electronics training at the US Army Signal Center and School establishes the feasibility of CAI as a training technique. Three aspects of CAI are considered: effectiveness, efficiency, and applicability of CAI to basic electronics training. The study explores the effectiveness of the…

  5. Related Factors of the Influence on Mental Symptoms of the Recruits in the Basic Military Training

    ERIC Educational Resources Information Center

    Hong-zheng, Li; Mei-ying, Lei; Dong-hai Zhao; Li-qiong, Zhao; Geng, Liu; Hong-kui, Zhou; Mei, Qin; Jie-feng, Li; Jian, Wen; Pin-de, Huang; Yi, Li; Chuang, Wang; Zhou-ran, Wang

    2012-01-01

    The objective of the study is to explore the psychosocial characteristics of recruits for mental health education during the basic military training. A total of 1,366 male recruits were assessed during the basic military training. The psychosocial characteristics, such as effects of LE (life events), mental symptoms, personality trait coping style…

  6. Strategy for Promoting the Equitable Development of Basic Education in Underdeveloped Counties as Seen from Cili County

    ERIC Educational Resources Information Center

    Shihua, Peng; Rihui, Tan

    2009-01-01

    Employing statistical analysis, this study has made a preliminary exploration of promoting the equitable development of basic education in underdeveloped counties through the case study of Cili county. The unequally developed basic education in the county has been made clear, the reasons for the inequitable education have been analyzed, and,…

  7. Is Sustainability Achievable? Exploring the Limits of Sustainability with Model Systems

    EPA Science Inventory

    Successful implementation of sustainability ideas in ecosystem management requires a basic understanding of the often nonlinear and non-intuitive relationships amongst different dimensions of sustainability, particularly the systemwide implications of human actions. This basic un...

  8. Exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology.

    PubMed

    Ojima, Iwao

    2013-07-05

    Over the last three decades, my engagement in "fluorine chemistry" has evolved substantially because of the multidisciplinary nature of the research programs. I began my research career as a synthetic chemist in organometallic chemistry and homogeneous catalysis directed toward organic synthesis. Then, I was brought into a very unique world of "fluorine chemistry" in the end of 1970s. I started exploring the interface of fluorine chemistry and transition metal homogeneous catalysis first, which was followed by amino acids, peptides, and peptidomimetics for medicinal chemistry. Since then, I have been exploring the interfaces of fluorine chemistry and multidisciplinary fields of research involving medicinal chemistry, chemical biology, cancer biology, and molecular imaging. This perspective intends to cover my fruitful endeavor in the exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology in a chronological order to show the evolution of my research interest and strategy.

  9. Exploration of Fluorine Chemistry at the Multidisciplinary Interface of Chemistry and Biology

    PubMed Central

    Ojima, Iwao

    2013-01-01

    Over the last three decades, my engagement in “fluorine chemistry” has evolved substantially, because of the multidisciplinary nature of the research programs. I began my research career as a synthetic chemist in organometallic chemistry and homogeneous catalysis directed toward organic synthesis. Then, I was brought into a very unique world of “fluorine chemistry” in the end of 1970s. I started exploring the interface of fluorine chemistry and transition metal homogeneous catalysis first, which was followed by amino acids, peptides, and peptidomimetics for medicinal chemistry. Since then, I have been exploring the interfaces of fluorine chemistry and multidisciplinary fields of research involving medicinal chemistry, chemical biology, cancer biology and molecular imaging. This perspective intends to cover my fruitful endeavor in the exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology in a chronological order to show the evolution of my research interest and strategy. PMID:23614876

  10. Centro de Biologia Molecular "Severo Ochoa": a center for basic research into Alzheimer's disease.

    PubMed

    Avila, Jesus; Hernandez, Felix; Wandosell, Francisco; Lucas, Jose J; Esteban, Jose A; Ledesma, M Dolores; Bullido, Maria J

    2010-01-01

    One important aspect of studies carried out at the Center for Molecular Biology "Severo Ochoa" is focused on basic aspects of Alzheimer's disease, mainly the search for suitable therapeutic targets for this disorder. Several groups at the Center are involved in these studies, and, in this spotlight, the work they are carrying out will be described.

  11. Triatominae Biochemistry Goes to School: Evaluation of a Novel Tool for Teaching Basic Biochemical Concepts of Chagas Disease Vectors

    ERIC Educational Resources Information Center

    Cunha, Leonardo Rodrigues; de Oliveria Cudischevitch, Cecília; Carneiro, Alan Brito; Macedo, Gustavo Bartholomeu; Lannes, Denise; da Silva-Neto, Mário Alberto Cardoso

    2014-01-01

    We evaluate a new approach to teaching the basic biochemistry mechanisms that regulate the biology of Triatominae, major vectors of "Trypanosoma cruzi," the causative agent of Chagas disease. We have designed and used a comic book, "Carlos Chagas: 100 years after a hero's discovery" containing scientific information obtained by…

  12. A basic helix-loop-helix transcription factor, PhFBH4, regulates flower senescence by modulating ethylene biosynthesis pathway in petunia

    USDA-ARS?s Scientific Manuscript database

    The basic helix-loop-helix (bHLH) transcription factors (TFs) play important roles in regulating multiple biological processes in plants. However, there are few reports about the function of bHLHs in flower senescence. In this study, a bHLH TF, PhFBH4, was found to be dramatically upregulated during...

  13. Memory of Gender and Gait Direction from Biological Motion: Gender Fades Away but Directions Stay

    ERIC Educational Resources Information Center

    Poom, Leo

    2012-01-01

    The delayed discrimination methodology has been used to demonstrate a high-fidelity nondecaying visual short-term memory (VSTM) for so-called preattentive basic features. In the current Study, I show that the nondecaying high VSTM precision is not restricted to basic features by using the same method to measure memory precision for gait direction…

  14. Enantioselective separation of biologically active basic compounds in ultra-performance supercritical fluid chromatography.

    PubMed

    Geryk, Radim; Kalíková, Květa; Schmid, Martin G; Tesařová, Eva

    2016-08-17

    The enantioseparation of basic compounds represent a challenging task in modern SFC. Therefore this work is focused on development and optimization of fast SFC methods suitable for enantioseparation of 27 biologically active basic compounds of various structures. The influences of the co-solvent type as well as different mobile phase additives on retention, enantioselectivity and enantioresolution were investigated. Obtained results confirmed that the mobile phase additives, especially bases (or the mixture of base and acid), improve peak shape and enhance enantioresolution. The best results were achieved with isopropylamine or the mixture of isopropylamine and trifluoroacetic acid as additives. In addition, the effect of temperature and back pressure were evaluated to optimize the enantioseparation process. The immobilized amylose-based chiral stationary phase, i.e. tris(3,5-dimethylphenylcarbamate) derivative of amylose proved to be useful tool for the enantioseparation of a broad spectrum of chiral bases. The chromatographic conditions that yielded baseline enantioseparations of all tested compounds were discovered. The presented work can serve as a guide for simplifying the method development for enantioseparation of basic racemates in SFC. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berres, Anne Sabine

    This slide presentation describes basic topological concepts, including topological spaces, homeomorphisms, homotopy, betti numbers. Scalar field topology explores finding topological features and scalar field visualization, and vector field topology explores finding topological features and vector field visualization.

  16. Distinguishing Error from Chaos in Ecological Time Series

    NASA Astrophysics Data System (ADS)

    Sugihara, George; Grenfell, Bryan; May, Robert M.

    1990-11-01

    Over the years, there has been much discussion about the relative importance of environmental and biological factors in regulating natural populations. Often it is thought that environmental factors are associated with stochastic fluctuations in population density, and biological ones with deterministic regulation. We revisit these ideas in the light of recent work on chaos and nonlinear systems. We show that completely deterministic regulatory factors can lead to apparently random fluctuations in population density, and we then develop a new method (that can be applied to limited data sets) to make practical distinctions between apparently noisy dynamics produced by low-dimensional chaos and population variation that in fact derives from random (high-dimensional)noise, such as environmental stochasticity or sampling error. To show its practical use, the method is first applied to models where the dynamics are known. We then apply the method to several sets of real data, including newly analysed data on the incidence of measles in the United Kingdom. Here the additional problems of secular trends and spatial effects are explored. In particular, we find that on a city-by-city scale measles exhibits low-dimensional chaos (as has previously been found for measles in New York City), whereas on a larger, country-wide scale the dynamics appear as a noisy two-year cycle. In addition to shedding light on the basic dynamics of some nonlinear biological systems, this work dramatizes how the scale on which data is collected and analysed can affect the conclusions drawn.

  17. An Agar-Based Method for Plating Marine Protozoan Parasites of the Genus Perkinsus

    PubMed Central

    Cold, Emma R.; Freyria, Nastasia J.; Martínez Martínez, Joaquín; Fernández Robledo, José A.

    2016-01-01

    The genus Perkinsus includes protozoan parasites of mollusks responsible for losses in the aquaculture industry and hampering the recovery of natural shellfish beds worldwide, and they are a key taxon for understanding intracellular parasitism adaptations. The ability to propagate the parasite in liquid media, in the absence of the host, has been crucial for improving understanding of its biology; however, alternative techniques to grow the parasite are needed to explore other basic aspects of the Perkinsus spp. biology. We optimized a DME: Ham’s F12–5% FBS- containing solid agar medium for plating Perkinsus marinus. This solid medium supported trophozoite propagation both by binary fission and schizogony. Colonies were visible to the naked eye 17 days after plating. We tested the suitability of this method for several applications, including the following: 1) Subcloning P. marinus isolates: single discrete P. marinus colonies were obtained from DME: Ham’s F12–5% FBS– 0.75% agar plates, which could be further propagated in liquid medium; 2) Subcloning engineered Perkinsus mediterraneus MOE[MOE]: GFP by streaking cultures on plates; 3) Chemical susceptibility: Infusing the DME: Ham’s F12–5% FBS– 0.75% agar plates with triclosan resulted in inhibition of the parasite propagation in a dose-dependent manner. Altogether, our plating method has the potential for becoming a key tool for investigating diverse aspects of Perkinsus spp. biology, developing new molecular tools, and for biotechnological applications. PMID:27149378

  18. Population-expression models of immune response

    NASA Astrophysics Data System (ADS)

    Stromberg, Sean P.; Antia, Rustom; Nemenman, Ilya

    2013-06-01

    The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable.

  19. Understanding Classrooms through Social Network Analysis: A Primer for Social Network Analysis in Education Research.

    PubMed

    Grunspan, Daniel Z; Wiggins, Benjamin L; Goodreau, Steven M

    2014-01-01

    Social interactions between students are a major and underexplored part of undergraduate education. Understanding how learning relationships form in undergraduate classrooms, as well as the impacts these relationships have on learning outcomes, can inform educators in unique ways and improve educational reform. Social network analysis (SNA) provides the necessary tool kit for investigating questions involving relational data. We introduce basic concepts in SNA, along with methods for data collection, data processing, and data analysis, using a previously collected example study on an undergraduate biology classroom as a tutorial. We conduct descriptive analyses of the structure of the network of costudying relationships. We explore generative processes that create observed study networks between students and also test for an association between network position and success on exams. We also cover practical issues, such as the unique aspects of human subjects review for network studies. Our aims are to convince readers that using SNA in classroom environments allows rich and informative analyses to take place and to provide some initial tools for doing so, in the process inspiring future educational studies incorporating relational data. © 2014 D. Z. Grunspan et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Drosophila Genetic Resource and Stock Center; The National BioResource Project.

    PubMed

    Yamamoto, Masa-Toshi

    2010-01-01

    The fruit fly, Drosophila melanogaster, is not categorized as a laboratory animal, but it is recognised as one of the most important model organisms for basic biology, life science, and biomedical research. This tiny fly continues to occupy a core place in genetics and genomic approaches to studies of biology and medicine. The basic principles of genetics, including the variations of phenotypes, mutations, genetic linkage, meiotic chromosome segregation, chromosome aberrations, recombination, and precise mapping of genes by genetic as well as cytological means, were all derived from studies of Drosophila. Recombinant DNA technology was developed in the 1970s and Drosophila DNA was the first among multicellular organisms to be cloned. It provided a detailed characterization of genes in combination of classical cytogenetic data. Drosophila thus became the pioneering model organism for various fields of life science research into multicellular organisms. Here, I briefly describe the history of Drosophila research and provide a few examples of the application of the abundant genetic resources of Drosophila to basic biology and medical investigations. A Japanese national project, the National BioResource Project (NBRP) for collection, maintainance, and provision of Drosophila resources, that is well known and admired by researchers in other countries as an important project, is also briefly described.

  1. Office of Biological and Physical Research: Overview Transitioning to the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Crouch, Roger

    2004-01-01

    Viewgraphs on NASA's transition to its vision for space exploration is presented. The topics include: 1) Strategic Directives Guiding the Human Support Technology Program; 2) Progressive Capabilities; 3) A Journey to Inspire, Innovate, and Discover; 4) Risk Mitigation Status Technology Readiness Level (TRL) and Countermeasures Readiness Level (CRL); 5) Biological And Physical Research Enterprise Aligning With The Vision For U.S. Space Exploration; 6) Critical Path Roadmap Reference Missions; 7) Rating Risks; 8) Current Critical Path Roadmap (Draft) Rating Risks: Human Health; 9) Current Critical Path Roadmap (Draft) Rating Risks: System Performance/Efficiency; 10) Biological And Physical Research Enterprise Efforts to Align With Vision For U.S. Space Exploration; 11) Aligning with the Vision: Exploration Research Areas of Emphasis; 12) Code U Efforts To Align With The Vision For U.S. Space Exploration; 13) Types of Critical Path Roadmap Risks; and 14) ISS Human Support Systems Research, Development, and Demonstration. A summary discussing the vision for U.S. space exploration is also provided.

  2. Membrane Fluidity Changes, A Basic Mechanism of Interaction of Gravity with Cells?

    NASA Astrophysics Data System (ADS)

    Kohn, Florian; Hauslage, Jens; Hanke, Wolfgang

    2017-10-01

    All life on earth has been established under conditions of stable gravity of 1g. Nevertheless, in numerous experiments the direct gravity dependence of biological processes has been shown on all levels of organization, from single molecules to humans. According to the underlying mechanisms a variety of questions, especially about gravity sensation of single cells without specialized organelles or structures for gravity sensing is being still open. Biological cell membranes are complex structures containing mainly lipids and proteins. Functional aspects of such membranes are usually attributed to membrane integral proteins. This is also correct for the gravity dependence of cells and organisms which is well accepted since long for a wide range of biological systems. However, it is as well established that parameters of the lipid matrix are directly modifying the function of proteins. Thus, the question must be asked, whether, and how far plain lipid membranes are affected by gravity directly. In principle it can be said that up to recently no real basic mechanism for gravity perception in single cells has been presented or verified. However, it now has been shown that as a basic membrane parameter, membrane fluidity, is significantly dependent on gravity. This finding might deliver a real basic mechanism for gravity perception of living organisms on all scales. In this review we summarize older and more recent results to demonstrate that the finding of membrane fluidity being gravity dependent is consistent with a variety of published laboratory experiments. We additionally point out to the consequences of these recent results for research in the field life science under space condition.

  3. Soil awareness raising - activities in schools and for the general public in Austria

    NASA Astrophysics Data System (ADS)

    Huber, Sigbert; Birli, Barbara; Schwarz, Sigrid; Tulipan, Monika; Berthold, Helene; Englisch, Michael; Foldal, Cecilie

    2017-04-01

    Too few people know just how important soil really is and how to manage it properly. This is why a number of activities have been launched by the Austrian Soil Science Society and its members to provide basic soil information to "non-soil experts" promoting the various services soil provides for society and raising awareness as to what each individual can do to protect and manage soil. Environment Agency Austria and Umweltdachverband [1] have developed teaching material based on the principles of "Education for Sustainable Development". These booklets provide basic knowledge about soil combined with appealing and creative tasks. These tasks were developed to fit into biology or geography courses as well as into other courses such as mathematics, language training, chemistry, history, informatics, etc. Pupils and students may actively explore soil properties, soil formation, soil functions and soil organisms in the course of workshops (called "Boden macht Schule") in schools and in kindergartens [2],[3]. Key elements are the identification of soil animals, creative tasks and experiments appropriate to the pupils' age showing soiĺs ability to clean and retain water. The workshops for kindergartens revolve around feeling the soil texture, exploring soil biota and drawing. A special challenge for students is the Soil Orientation Run, a combination of physical effort, testing onés own soil knowledge and cooperating as a team. At the Vienna Zzoo many people get in touch with soil and its properties during the Vienna species conservation days. 2017 a new soil trail with 13 boards will open in Vienna, focusing on the genesis, geology, biology and important functions of the Viennese urban soil. A team of 10 scientists worked on the implementation of this soil trail which will raise soil awareness of the citizens and visitors of Vienna. The Soil Awareness Guide as a tool of the Austrian Soil Platform shows activities and materials to raise awareness in Austria. Due to these activities up to now several thousand people were able to get an idea of the importance of soil for our life. By asking children to discuss these topics with their parents, we hope to reach also todaýs decision makers and land users while teaching those of tomorrow. Footnotes: [1] http://www.umweltdachverband.at/ [2] https://bodenschutz.wordpress.com/ [3] http://www.umweltbundesamt.at/umweltsituation/boden/schule/

  4. Mechanical properties of biological specimens explored by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kasas, S.; Longo, G.; Dietler, G.

    2013-04-01

    The atomic force microscope is a widely used surface scanning apparatus capable of reconstructing at a nanometric scale resolution the 3D morphology of biological samples. Due to its unique sensitivity, it is now increasingly used as a force sensor, to characterize the mechanical properties of specimens with a similar lateral resolution. This unique capability has produced, in the last years, a vast increase in the number of groups that have exploited the versatility and sensitivity of the instrument to explore the nanomechanics of various samples in the fields of biology, microbiology and medicine. In this review we outline the state of the art in this field, reporting the most interesting recent works involving the exploration of the nanomechanical properties of various biological samples.

  5. The synaptic maintenance problem: membrane recycling, Ca2+ homeostasis and late onset degeneration

    PubMed Central

    2013-01-01

    Most neurons are born with the potential to live for the entire lifespan of the organism. In addition, neurons are highly polarized cells with often long axons, extensively branched dendritic trees and many synaptic contacts. Longevity together with morphological complexity results in a formidable challenge to maintain synapses healthy and functional. This challenge is often evoked to explain adult-onset degeneration in numerous neurodegenerative disorders that result from otherwise divergent causes. However, comparably little is known about the basic cell biological mechanisms that keep normal synapses alive and functional in the first place. How the basic maintenance mechanisms are related to slow adult-onset degeneration in different diseasesis largely unclear. In this review we focus on two basic and interconnected cell biological mechanisms that are required for synaptic maintenance: endomembrane recycling and calcium (Ca2+) homeostasis. We propose that subtle defects in these homeostatic processes can lead to late onset synaptic degeneration. Moreover, the same basic mechanisms are hijacked, impaired or overstimulated in numerous neurodegenerative disorders. Understanding the pathogenesis of these disorders requires an understanding of both the initial cause of the disease and the on-going changes in basic maintenance mechanisms. Here we discuss the mechanisms that keep synapses functional over long periods of time with the emphasis on their role in slow adult-onset neurodegeneration. PMID:23829673

  6. The application of biological motion research: biometrics, sport, and the military.

    PubMed

    Steel, Kylie; Ellem, Eathan; Baxter, David

    2015-02-01

    The body of research that examines the perception of biological motion is extensive and explores the factors that are perceived from biological motion and how this information is processed. This research demonstrates that individuals are able to use relative (temporal and spatial) information from a person's movement to recognize factors, including gender, age, deception, emotion, intention, and action. The research also demonstrates that movement presents idiosyncratic properties that allow individual discrimination, thus providing the basis for significant exploration in the domain of biometrics and social signal processing. Medical forensics, safety garments, and victim selection domains also have provided a history of research on the perception of biological motion applications; however, a number of additional domains present opportunities for application that have not been explored in depth. Therefore, the purpose of this paper is to present an overview of the current applications of biological motion-based research and to propose a number of areas where biological motion research, specific to recognition, could be applied in the future.

  7. Fundamentals of microfluidic cell culture in controlled microenvironments†

    PubMed Central

    Young, Edmond W. K.; Beebe, David J.

    2010-01-01

    Microfluidics has the potential to revolutionize the way we approach cell biology research. The dimensions of microfluidic channels are well suited to the physical scale of biological cells, and the many advantages of microfluidics make it an attractive platform for new techniques in biology. One of the key benefits of microfluidics for basic biology is the ability to control parameters of the cell microenvironment at relevant length and time scales. Considerable progress has been made in the design and use of novel microfluidic devices for culturing cells and for subsequent treatment and analysis. With the recent pace of scientific discovery, it is becoming increasingly important to evaluate existing tools and techniques, and to synthesize fundamental concepts that would further improve the efficiency of biological research at the microscale. This tutorial review integrates fundamental principles from cell biology and local microenvironments with cell culture techniques and concepts in microfluidics. Culturing cells in microscale environments requires knowledge of multiple disciplines including physics, biochemistry, and engineering. We discuss basic concepts related to the physical and biochemical microenvironments of the cell, physicochemical properties of that microenvironment, cell culture techniques, and practical knowledge of microfluidic device design and operation. We also discuss the most recent advances in microfluidic cell culture and their implications on the future of the field. The goal is to guide new and interested researchers to the important areas and challenges facing the scientific community as we strive toward full integration of microfluidics with biology. PMID:20179823

  8. Interactome Networks and Human Disease

    PubMed Central

    Vidal, Marc; Cusick, Michael E.; Barabási, Albert-László

    2011-01-01

    Complex biological systems and cellular networks may underlie most genotype to phenotype relationships. Here we review basic concepts in network biology, discussing different types of interactome networks and the insights that can come from analyzing them. We elaborate on why interactome networks are important to consider in biology, how they can be mapped and integrated with each other, what global properties are starting to emerge from interactome network models, and how these properties may relate to human disease. PMID:21414488

  9. 2016 Summer Series - Vytas SunSpiral - SUPERBall: A Biologically Inspired Robot for Planetary Exploration

    NASA Image and Video Library

    2016-06-14

    Nature is a major source of inspiration for robotics and aerospace engineering, giving rise to biologically inspired structures. Tensegrity robots mimic a structure similar to muscles and bones to produce a robust three-dimensional skeletal structure that is able to adapt. Vytas SunSpiral will present his work on biologically inspired robotics for advancing NASA space exploration missions.

  10. Cell-free biology: exploiting the interface between synthetic biology and synthetic chemistry

    PubMed Central

    Harris, D. Calvin; Jewett, Michael C.

    2014-01-01

    Just as synthetic organic chemistry once revolutionized the ability of chemists to build molecules (including those that did not exist in nature) following a basic set of design rules, cell-free synthetic biology is beginning to provide an improved toolbox and faster process for not only harnessing but also expanding the chemistry of life. At the interface between chemistry and biology, research in cell-free synthetic systems is proceeding in two different directions: using synthetic biology for synthetic chemistry and using synthetic chemistry to reprogram or mimic biology. In the coming years, the impact of advances inspired by these approaches will make possible the synthesis of non-biological polymers having new backbone compositions, new chemical properties, new structures, and new functions. PMID:22483202

  11. The Role of Synthetic Biology in NASA's Missions

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    The time has come to for NASA to exploit synthetic biology in pursuit of its missions, including aeronautics, earth science, astrobiology and most notably, human exploration. Conversely, NASA advances the fundamental technology of synthetic biology as no one else can because of its unique expertise in the origin of life and life in extreme environments, including the potential for alternate life forms. This enables unique, creative "game changing" advances. NASA's requirement for minimizing upmass in flight will also drive the field toward miniaturization and automation. These drivers will greatly increase the utility of synthetic biology solutions for military, health in remote areas and commercial purposes. To this end, we have begun a program at NASA to explore the use of synthetic biology in NASA's missions, particular space exploration. As part of this program, we began hosting an iGEM team of undergraduates drawn from Brown and Stanford Universities to conduct synthetic biology research at NASA Ames Research Center. The 2011 team (http://2011.igem.org/Team:Brown-Stanford) produced an award-winning project on using synthetic biology as a basis for a human Mars settlement.

  12. Exploring Work-Based Foundation Skills in the ABLE Classroom. Instructional Activities and Resources for the Adult Learner [and] Supplemental Handouts for Modules. Version 1.2.

    ERIC Educational Resources Information Center

    Carman, Priscilla; Van Horn, Barbara; Hamilton, KayLynn; Williams, Mary Kay

    This guide contains activities and resources to help adult learners develop the work-based foundation skills and knowledge areas included on the Foundation Skills Framework wheel (Institute for the Study of Adult Literacy 2000). Its four sections (basic employability skills, basic workplace knowledge, basic workplace skills, and lifelong learning…

  13. Dietary customs and food availability shape the preferences for basic tastes: A cross-cultural study among Polish, Tsimane' and Hadza societies.

    PubMed

    Sorokowska, Agnieszka; Pellegrino, Robert; Butovskaya, Marina; Marczak, Michalina; Niemczyk, Agnieszka; Huanca, Tomas; Sorokowski, Piotr

    2017-09-01

    Biological significance of food components suggests that preferences for basic tastes should be similar across cultures. On the other hand, cultural factors play an important role in diet and can consequently influence individual preference for food. To date, very few studies have compared basic tastes preferences among populations of very diverse environmental and cultural conditions, and research rather did not involve traditional populations for whom the biological significance of different food components might be the most pronounced. Hence, our study focused on basic taste preferences in three populations, covering a broad difference in diet due to environmental and cultural conditions, market availability, dietary habits and food acquirement: 1) a modern society (Poles, n = 200), 2) forager-horticulturalists from Amazon/Bolivia (Tsimane', n = 138), and 3) hunter-gatherers from Tanzania (Hadza, n = 85). The preferences for basic tastes were measured with sprays containing supra-threshold levels of sweet, sour, bitter, salty, and umami taste solutions. We observed several interesting differences between participating societies. We found that Tsimane' and Polish participants liked the sweet taste more than other tastes, while Hadza participants liked salty and sour tastes more than the remaining tastes. Further, Polish people found bitter taste particularly aversive, which was not observed in the traditional societies. Interestingly, no cross-cultural differences were observed for relative liking of umami taste - it was rated closely to neutral by members of all participating societies. Additionally, Hadza showed a pattern to like basic tastes that are more common to their current diet than societies with access to different food sources. These findings demonstrate the impact of diet and market availability on preference for basic tastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine.

    PubMed

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W; Cai, Jiye

    2014-11-07

    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In this review, we attempt to summarize the characteristics of these advanced techniques for use in the in situ single molecule imaging of cell membranes. We believe that this work will help to promote the technological and methodological developments of super-resolution techniques for the single molecule imaging of cell membranes and help researchers better understand which technique is most suitable for their future exploring of membrane biomolecules; ultimately promoting further developments in cell biology, immunology and medicine.

  15. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine

    NASA Astrophysics Data System (ADS)

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W.; Cai, Jiye

    2014-10-01

    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In this review, we attempt to summarize the characteristics of these advanced techniques for use in the in situ single molecule imaging of cell membranes. We believe that this work will help to promote the technological and methodological developments of super-resolution techniques for the single molecule imaging of cell membranes and help researchers better understand which technique is most suitable for their future exploring of membrane biomolecules; ultimately promoting further developments in cell biology, immunology and medicine.

  16. Managing biodiversity for a competitive ecotourism industry in tropical developing countries: New opportunities in biological fields

    NASA Astrophysics Data System (ADS)

    Hakim, Luchman

    2017-11-01

    Managing biodiversity for sustainable and competitive ecotourism destinations requires a basic understanding of the principles of biology, which are poorly understood in tropical developing countries, including Indonesia. This paper describes the current status of tourism in Indonesia, identifies environment and biodiversity vulnerability in tourism destinations, and explores the challenges of the biological field in supporting ecotourism development. This review found that tourism, especially nature-based and ecotourism, has grown significantly in Indonesia, and the contribution of Indonesian biodiversity has been identified as significant. Threats to biodiversity, however, are found in nature-based tourism destinations. Issues related to pollution, exotic plant species invasion, habitat changes and degradation, habitat loss, and wildlife disturbance are widely reported, indicating the importance of such issues in destination management. Pollution is found in both terrestrial and aquatic ecosystems. Water pollution is an important issue among lakes and rivers. To date, there are few assessments of the impact of tourism activities on aquatic ecosystems, resulting in the management of aquatic ecosystems facing numerous difficulties. These studies identify the invasive plants found, which become a crucial problem in many nature-based tourism destinations, and which significantly contribute to a reduction in the existence of many flora-fauna in a wild habitat. Habitat changes and degradation are mostly influenced by tourism infrastructure development. Massive infrastructure development often leads to habitat loss, which is a crucial step in local biodiversity extinction. Increasing and uncontrolled visitor behaviors influence animal behavior changes, which is recognized as a dangerous phenomenon affecting animal survival in the future. An agenda for future integrative biological research is needed to improve resource management, to increase sustainability and the competitiveness of the tourism industry in Indonesia.

  17. Can all heritable biology really be reduced to a single dimension?

    PubMed

    Babbitt, Gregory A; Coppola, Erin E; Alawad, Mohammed A; Hudson, André O

    2016-03-10

    A long-held presupposition in the field of bioinformatics holds that genetic, and now even epigenetic 'information' can be abstracted from the physicochemical details of the macromolecular polymers in which it resides. It is perhaps rather ironic that this basic conjecture originated upon the first observations of DNA structure itself. This static model of DNA led very quickly to the conclusion that only the nucleobase sequence itself is rich enough in molecular complexity to replicate a complex biology. This idea has been pervasive throughout genomic science, higher education and popular culture ever since; to the point that most of us would accept it unquestioningly as fact. What is more alarming is that this conjecture is driving a significant portion of the technological development in modern genomics towards methods strongly rooted in DNA sequencing, thereby reducing a dynamic multi-dimensional biology into single-dimensional forms of data. Evidence countering this central tenet of bioinformatics has been quietly mounting over many decades, prompting some to propose that the genome must be studied from the perspective of its molecular reality, rather than as a body of information to be represented symbolically. Here, we explore the epistemological boundary between bioinformatics and molecular biology, and warn against an 'overtly' bioinformatic perspective. We review a selection of new bioinformatic methods that move beyond sequence-based approaches to include consideration of databased three dimensional structures. However, we also note that these hybrid methods still ignore the most important element of gene function when attempting to improve outcomes; the fourth dimension of molecular dynamics over time. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Regenerative Engineering and Bionic Limbs.

    PubMed

    James, Roshan; Laurencin, Cato T

    2015-03-01

    Amputations of the upper extremity are severely debilitating, current treatments support very basic limb movement, and patients undergo extensive physiotherapy and psychological counselling. There is no prosthesis that allows the amputees near-normal function. With increasing number of amputees due to injuries sustained in accidents, natural calamities and international conflicts, there is a growing requirement for novel strategies and new discoveries. Advances have been made in technological, material and in prosthesis integration where researchers are now exploring artificial prosthesis that integrate with the residual tissues and function based on signal impulses received from the residual nerves. Efforts are focused on challenging experts in different disciplines to integrate ideas and technologies to allow for the regeneration of injured tissues, recording on tissue signals and feed-back to facilitate responsive movements and gradations of muscle force. A fully functional replacement and regenerative or integrated prosthesis will rely on interface of biological process with robotic systems to allow individual control of movement such as at the elbow, forearm, digits and thumb in the upper extremity. Regenerative engineering focused on the regeneration of complex tissue and organ systems will be realized by the cross-fertilization of advances over the past thirty years in the fields of tissue engineering, nanotechnology, stem cell science, and developmental biology. The convergence of toolboxes crated within each discipline will allow interdisciplinary teams from engineering, science, and medicine to realize new strategies, mergers of disparate technologies, such as biophysics, smart bionics, and the healing power of the mind. Tackling the clinical challenges, interfacing the biological process with bionic technologies, engineering biological control of the electronic systems, and feed-back will be the important goals in regenerative engineering over the next two decades.

  19. Natural products in modern life science.

    PubMed

    Bohlin, Lars; Göransson, Ulf; Alsmark, Cecilia; Wedén, Christina; Backlund, Anders

    2010-06-01

    With a realistic threat against biodiversity in rain forests and in the sea, a sustainable use of natural products is becoming more and more important. Basic research directed against different organisms in Nature could reveal unexpected insights into fundamental biological mechanisms but also new pharmaceutical or biotechnological possibilities of more immediate use. Many different strategies have been used prospecting the biodiversity of Earth in the search for novel structure-activity relationships, which has resulted in important discoveries in drug development. However, we believe that the development of multidisciplinary incentives will be necessary for a future successful exploration of Nature. With this aim, one way would be a modernization and renewal of a venerable proven interdisciplinary science, Pharmacognosy, which represents an integrated way of studying biological systems. This has been demonstrated based on an explanatory model where the different parts of the model are explained by our ongoing research. Anti-inflammatory natural products have been discovered based on ethnopharmacological observations, marine sponges in cold water have resulted in substances with ecological impact, combinatory strategy of ecology and chemistry has revealed new insights into the biodiversity of fungi, in depth studies of cyclic peptides (cyclotides) has created new possibilities for engineering of bioactive peptides, development of new strategies using phylogeny and chemography has resulted in new possibilities for navigating chemical and biological space, and using bioinformatic tools for understanding of lateral gene transfer could provide potential drug targets. A multidisciplinary subject like Pharmacognosy, one of several scientific disciplines bridging biology and chemistry with medicine, has a strategic position for studies of complex scientific questions based on observations in Nature. Furthermore, natural product research based on intriguing scientific questions in Nature can be of value to increase the attraction for young students in modern life science.

  20. Regenerative Engineering and Bionic Limbs

    PubMed Central

    James, Roshan; Laurencin, Cato T.

    2015-01-01

    Amputations of the upper extremity are severely debilitating, current treatments support very basic limb movement, and patients undergo extensive physiotherapy and psychological counselling. There is no prosthesis that allows the amputees near-normal function. With increasing number of amputees due to injuries sustained in accidents, natural calamities and international conflicts, there is a growing requirement for novel strategies and new discoveries. Advances have been made in technological, material and in prosthesis integration where researchers are now exploring artificial prosthesis that integrate with the residual tissues and function based on signal impulses received from the residual nerves. Efforts are focused on challenging experts in different disciplines to integrate ideas and technologies to allow for the regeneration of injured tissues, recording on tissue signals and feed-back to facilitate responsive movements and gradations of muscle force. A fully functional replacement and regenerative or integrated prosthesis will rely on interface of biological process with robotic systems to allow individual control of movement such as at the elbow, forearm, digits and thumb in the upper extremity. Regenerative engineering focused on the regeneration of complex tissue and organ systems will be realized by the cross-fertilization of advances over the past thirty years in the fields of tissue engineering, nanotechnology, stem cell science, and developmental biology. The convergence of toolboxes crated within each discipline will allow interdisciplinary teams from engineering, science, and medicine to realize new strategies, mergers of disparate technologies, such as biophysics, smart bionics, and the healing power of the mind. Tackling the clinical challenges, interfacing the biological process with bionic technologies, engineering biological control of the electronic systems, and feed-back will be the important goals in regenerative engineering over the next two decades. PMID:25983525

  1. Building confidence: an exploration of nurses undertaking a postgraduate biological science course.

    PubMed

    Van Wissen, Kim; McBride-Henry, Karen

    2010-01-01

    This study aimed to explore the impact of studying biological science at a postgraduate level and how this impacted on nursing practice. The term biological sciences in this research encompasses elements of physiology, genetics, biochemistry and pathophysiology. A qualitative research study was designed, that involved the dissemination of a pre- and post-course semi-structured questionnaire for a biological science course, as part of a Master of Nursing programme at a New Zealand University, thus exploring the impact of undertaking a postgraduate biological sciences course. The responses were analysed into themes, based on interpretive concepts. The primary themes revealed improvement in confidence as: confidence in communication, confidence in linking nursing theoretical knowledge to practice and confidence in clinical nursing knowledge. This study highlights the need to privilege clinically-derived nursing knowledge, and that confidence in this nursing knowledge and clinical practice can be instilled through employing the model of theory-guided practice.

  2. Using RNAi in C. "elegans" to Demonstrate Gene Knockdown Phenotypes in the Undergraduate Biology Lab Setting

    ERIC Educational Resources Information Center

    Roy, Nicole M.

    2013-01-01

    RNA interference (RNAi) is a powerful technology used to knock down genes in basic research and medicine. In 2006 RNAi technology using "Caenorhabditis elegans" ("C. elegans") was awarded the Nobel Prize in medicine and thus students graduating in the biological sciences should have experience with this technology. However,…

  3. Order & Diversity in the Living World: Teaching Taxonomy & Systematics in Schools.

    ERIC Educational Resources Information Center

    Crisci, Jorge V.; And Others

    The world faces two converging crises, a lack of biological literacy and a rapid increase in environmental degradation. In order to insure a secure and safe environment for future generations of organisms, all humans must be taught the basic biological and physical processes that sustain life. This project seeks to fill the chasm in the general…

  4. Characterization of the "CCR5" Chemokine Receptor Gene

    ERIC Educational Resources Information Center

    Thomas, John C.

    2004-01-01

    The life cycle of retroviruses is an essential topic of modern cell biology instruction. Furthermore, the process of HIV viral entry into the cell is a question of great interest in basic and clinical biology. This paper describes how students can easily recover their own DNA, amplify a portion of the "CCR5" chemokine receptor gene, characterize…

  5. Understanding a Basic Biological Process: Expert and Novice Models of Science.

    ERIC Educational Resources Information Center

    Kindfield, A. C. H.

    1994-01-01

    Reports on the meiosis models utilized by five individuals at each of three levels of expertise in genetics as each reasoned about this process in an individual interview setting. Results revealed a set of biologically correct features common to all individuals' models as well as a variety of model flaws (i.e., meiosis misunderstandings) which are…

  6. Chapter 02: Basic wood biology—Anatomy for identification

    Treesearch

    Alex Wiedenhoeft

    2011-01-01

    Before the topics of using a hand lens, preparing wood for observation, and understanding the characters used in wood identification can be tackled, a general introduction to the biology of wood must be undertaken. The woods in commercial trade in Central America come almost exclusively from trees, so the discussion of wood biology is restricted to trees here, though...

  7. Nesting biology of Lesser Canada Geese, Branta canadensis parvipes, along the Tanana River, Alaska

    Treesearch

    Craig R. Ely; John M. Pearce; Roger W. Ruess

    2008-01-01

    Lesser Canada Geese (Brania canadensis parvipes) are widespread throughout interior regions of Alaska and Canada, yet there have been no published studies documenting basic aspects of their nesting biology. We conducted a study to determine reproductive parameters of Lesser Canada Geese nesting along the Tanana River near the city of Fairbanks, in...

  8. Learning Biology through Research Papers: A Stimulus for Question-Asking by High-School Students

    ERIC Educational Resources Information Center

    Brill, Gilat; Yarden, Anat

    2003-01-01

    Question-asking is a basic skill, required for the development of scientific thinking. However, the way in which science lessons are conducted does not usually stimulate question-asking by students. To make students more familiar with the scientific inquiry process, we developed a curriculum in developmental biology based on research papers…

  9. A Model System for the Study of Gene Expression in the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Hargadon, Kristian M.

    2016-01-01

    The flow of genetic information from DNA to RNA to protein, otherwise known as the "central dogma" of biology, is one of the most basic and overarching concepts in the biological sciences. Nevertheless, numerous studies have reported student misconceptions at the undergraduate level of this fundamental process of gene expression. This…

  10. Influence of Previous Knowledge, Language Skills and Domain-Specific Interest on Observation Competency

    ERIC Educational Resources Information Center

    Kohlhauf, Lucia; Rutke, Ulrike; Neuhaus, Birgit

    2011-01-01

    Many epoch-making biological discoveries (e.g. Darwinian Theory) were based upon observations. Nevertheless, observation is often regarded as "just looking" rather than a basic scientific skill. As observation is one of the main research methods in biological sciences, it must be considered as an independent research method and systematic practice…

  11. Using Primary Literature in an Undergraduate Assignment: Demonstrating Connections among Cellular Processes

    ERIC Educational Resources Information Center

    Yeong, Foong May

    2015-01-01

    Learning basic cell biology in an essential module can be daunting to second-year undergraduates, given the depth of information that is provided in major molecular and cell biology textbooks. Moreover, lectures on cellular pathways are organised into sections, such that at the end of lectures, students might not see how various processes are…

  12. The Crossroads between Biology and Mathematics: The Scientific Method as the Basics of Scientific Literacy

    ERIC Educational Resources Information Center

    Karsai, Istvan; Kampis, George

    2010-01-01

    Biology is changing and becoming more quantitative. Research is creating new challenges that need to be addressed in education as well. New educational initiatives focus on combining laboratory procedures with mathematical skills, yet it seems that most curricula center on a single relationship between scientific knowledge and scientific method:…

  13. Demonstration of the Principles of Restriction Endonuclease Cleavage Reactions Using Thermostable Bfl I from "Anoxybacillus Flavithermus"

    ERIC Educational Resources Information Center

    Sharma, Prince; D'Souza, David R.; Bhandari, Deepali; Parashar, Vijay; Capalash, Neena

    2003-01-01

    Restriction enzymes are basic tools in recombinant DNA technology. To shape the molecular biology experiments, the students must know how to work with these molecular scissors. Here, we describe an integrated set of experiments, introduced in the "Advances in Molecular Biology and Biotechnology" postgraduate course, which covers the important…

  14. The biology of human immunodeficiency virus infection.

    PubMed

    Kotler, Donald P

    2004-08-01

    The aim of this article is to review the basic biology of infection with HIV-1 and the development of the acquired immunodeficiency syndrome. The discussion will include epidemiology, general description of the retroviruses, pathogenesis of the immune deficiency, clinical consequences, treatment, and treatment outcomes. Aspects of the infection that affect protein and energy balance will be identified.

  15. Microscopy Images as Interactive Tools in Cell Modeling and Cell Biology Education

    ERIC Educational Resources Information Center

    Araujo-Jorge, Tania C.; Cardona, Tania S.; Mendes, Claudia L. S.; Henriques-Pons, Andrea; Meirelles, Rosane M. S.; Coutinho, Claudia M. L. M.; Aguiar, Luiz Edmundo V.; Meirelles, Maria de Nazareth L.; de Castro, Solange L.; Barbosa, Helene S.; Luz, Mauricio R. M. P.

    2004-01-01

    The advent of genomics, proteomics, and microarray technology has brought much excitement to science, both in teaching and in learning. The public is eager to know about the processes of life. In the present context of the explosive growth of scientific information, a major challenge of modern cell biology is to popularize basic concepts of…

  16. One Period of Exploration with the Squid.

    ERIC Educational Resources Information Center

    Bradley, James V.; Ng, Andrew

    1997-01-01

    Presents a lab that can be offered after students have learned the basic anatomy and physiology of the various phyla, the primary objective of which is to explore and apply their acquired knowledge to a new situation. Involves exploring the anatomy and life-style of the squid. (JRH)

  17. Analysis of current density and specific absorption rate in biological tissue surrounding an air-core type of transcutaneous transformer for an artificial heart.

    PubMed

    Shiba, Kenji; Nukaya, Masayuki; Tsuji, Toshio; Koshiji, Kohji

    2006-01-01

    This paper reports on the specific absorption rate (SAR) and the current density analysis of biological tissue surrounding an air-core type of transcutaneous transformer for an artificial heart. The electromagnetic field in the biological tissue surrounding the transformer was analyzed by the transmission-line modeling method, and the SAR and current density as a function of frequency (200k-1 MHz) for a transcutaneous transmission of 20 W were calculated. The model's biological tissue has three layers including the skin, fat and muscle. As a result, the SAR in the vicinity of the transformer is sufficiently small and the normalized SAR value, which is divided by the ICNIRP's basic restriction, is 7 x 10(-3) or less. On the contrary, the current density is slightly in excess of the ICNIRP's basic restrictions as the frequency falls and the output voltage rises. Normalized current density is from 0.2 to 1.2. In addition, the layer in which the current's density is maximized depends on the frequency, the muscle in the low frequency (<700 kHz) and the skin in the high frequency (>700 kHz). The result shows that precision analysis taking into account the biological properties is very important for developing the transcutaneous transformer for TAH.

  18. Basic Science Research and the Protection of Human Research Participants

    NASA Astrophysics Data System (ADS)

    Eiseman, Elisa

    2001-03-01

    Technological advances in basic biological research have been instrumental in recent biomedical discoveries, such as in the understanding and treatment of cancer, HIV/AIDS, and heart disease. However, many of these advances also raise several new ethical challenges. For example, genetic research may pose no physical risk beyond that of obtaining the initial blood sample, yet it can pose significant psychological and economic risks to research participants, such as stigmatization, discrimination in insurance and employment, invasion of privacy, or breach of confidentiality. These harms may occur even when investigators do not directly interact with the person whose DNA they are studying. Moreover, this type of basic research also raises broader questions, such as what is the definition of a human subject, and what kinds of expertise do Institutional Review Boards (IRBs) need to review the increasingly diverse types of research made possible by these advances in technology. The National Bioethics Advisory Commission (NBAC), a presidentially appointed federal advisory committee, has addressed these and other ethical, scientific and policy issues that arise in basic science research involving human participants. Two of its six reports, in particular, have proposed recommendations in this regard. "Research Involving Human Biological Materials: Ethical and Policy Guidance" addresses the basic research use of human tissues, cells and DNA and the protection of human participants in this type of research. In "Ethical and Policy Issues in the Oversight of Human Research" NBAC proposes a definition of research involving human participants that would apply to all scientific disciplines, including physical, biological, and social sciences, as well as the humanities and related professions, such as business and law. Both of these reports make it clear that the protection of research participants is key to conducting ethically sound research. By ensuring that all participants in research are protected and by educating everyone involved in research with human participants, including the public, investigators, IRB members, institutions, and federal agencies, NBAC’s goal is to develop guidelines by which important basic research can proceed while making sure that the rights and welfare of human research participants are not compromised.

  19. Concepts for the clinical use of stem cells in equine medicine

    PubMed Central

    Koch, Thomas G.; Berg, Lise C.; Betts, Dean H.

    2008-01-01

    Stem cells from various tissues hold great promise for their therapeutic use in horses, but so far efficacy or proof-of-principle has not been established. The basic characteristics and properties of various equine stem cells remain largely unknown, despite their increasingly widespread experimental and empirical commercial use. A better understanding of equine stem cell biology and concepts is needed in order to develop and evaluate rational clinical applications in the horse. Controlled, well-designed studies of the basic biologic characteristics and properties of these cells are needed to move this new equine research field forward. Stem cell research in the horse has exciting equine specific and comparative perspectives that will most likely benefit the health of horses and, potentially, humans. PMID:19119371

  20. Population Disparities in Mental Health: Insights From Cultural Neuroscience

    PubMed Central

    Blizinsky, Katherine D.

    2013-01-01

    By 2050, nearly 1 in 5 Americans (19%) will be an immigrant, including Hispanics, Blacks, and Asians, compared to the 1 in 8 (12%) in 2005. They will vary in the extent to which they are at risk for mental health disorders. Given this increase in cultural diversity within the United States and costly population health disparities across cultural groups, it is essential to develop a more comprehensive understanding of how culture affects basic psychological and biological mechanisms. We examine these basic mechanisms that underlie population disparities in mental health through cultural neuroscience. We discuss the challenges to and opportunities for cultural neuroscience research to determine sociocultural and biological factors that confer risk for and resilience to mental health disorders across the globe. PMID:23927543

  1. Establishment, maintenance and in vitro and in vivo applications of primary human glioblastoma multiforme (GBM) xenograft models for translational biology studies and drug discovery.

    PubMed

    Carlson, Brett L; Pokorny, Jenny L; Schroeder, Mark A; Sarkaria, Jann N

    2011-03-01

    Development of clinically relevant tumor model systems for glioblastoma multiforme (GBM) is important for advancement of basic and translational biology. One model that has gained wide acceptance in the neuro-oncology community is the primary xenograft model. This model entails the engraftment of patient tumor specimens into the flank of nude mice and subsequent serial passage of these tumors in the flank of mice. These tumors are then used to establish short-term explant cultures or intracranial xenografts. This unit describes detailed procedures for establishment, maintenance, and utilization of a primary GBM xenograft panel for the purpose of using them as tumor models for basic or translational studies.

  2. Population disparities in mental health: insights from cultural neuroscience.

    PubMed

    Chiao, Joan Y; Blizinsky, Katherine D

    2013-10-01

    By 2050, nearly 1 in 5 Americans (19%) will be an immigrant, including Hispanics, Blacks, and Asians, compared to the 1 in 8 (12%) in 2005. They will vary in the extent to which they are at risk for mental health disorders. Given this increase in cultural diversity within the United States and costly population health disparities across cultural groups, it is essential to develop a more comprehensive understanding of how culture affects basic psychological and biological mechanisms. We examine these basic mechanisms that underlie population disparities in mental health through cultural neuroscience. We discuss the challenges to and opportunities for cultural neuroscience research to determine sociocultural and biological factors that confer risk for and resilience to mental health disorders across the globe.

  3. Bone grafts, bone substitutes and orthobiologics

    PubMed Central

    Roberts, Timothy T.; Rosenbaum, Andrew J.

    2012-01-01

    The biology of fracture healing is better understood than ever before, with advancements such as the locking screw leading to more predictable and less eventful osseous healing. However, at times one’s intrinsic biological response, and even concurrent surgical stabilization, is inadequate. In hopes of facilitating osseous union, bone grafts, bone substitutes and orthobiologics are being relied on more than ever before. The osteoinductive, osteoconductive and osteogenic properties of these substrates have been elucidated in the basic science literature and validated in clinical orthopaedic practice. Furthermore, an industry built around these items is more successful and in demand than ever before. This review provides a comprehensive overview of the basic science, clinical utility and economics of bone grafts, bone substitutes and orthobiologics. PMID:23247591

  4. [The discussion of the infiltrative model of mathematical knowledge to genetics teaching].

    PubMed

    Liu, Jun; Luo, Pei-Gao

    2011-11-01

    Genetics, the core course of biological field, is an importance major-basic course in curriculum of many majors related with biology. Due to strong theoretical and practical as well as abstract of genetics, it is too difficult to study on genetics for many students. At the same time, mathematics is one of the basic courses in curriculum of the major related natural science, which has close relationship with the establishment, development and modification of genetics. In this paper, to establish the intrinsic logistic relationship and construct the integral knowledge network and to help students improving the analytic, comprehensive and logistic abilities, we applied some mathematical infiltrative model genetic knowledge in genetics teaching, which could help students more deeply learn and understand genetic knowledge.

  5. Machine learning for Big Data analytics in plants.

    PubMed

    Ma, Chuang; Zhang, Hao Helen; Wang, Xiangfeng

    2014-12-01

    Rapid advances in high-throughput genomic technology have enabled biology to enter the era of 'Big Data' (large datasets). The plant science community not only needs to build its own Big-Data-compatible parallel computing and data management infrastructures, but also to seek novel analytical paradigms to extract information from the overwhelming amounts of data. Machine learning offers promising computational and analytical solutions for the integrative analysis of large, heterogeneous and unstructured datasets on the Big-Data scale, and is gradually gaining popularity in biology. This review introduces the basic concepts and procedures of machine-learning applications and envisages how machine learning could interface with Big Data technology to facilitate basic research and biotechnology in the plant sciences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Quantum dots in bio-imaging: Revolution by the small

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arya, Harinder; Kaul, Zeenia; Wadhwa, Renu

    2005-04-22

    Visual analysis of biomolecules is an integral avenue of basic and applied biological research. It has been widely carried out by tagging of nucleotides and proteins with traditional fluorophores that are limited in their application by features such as photobleaching, spectral overlaps, and operational difficulties. Quantum dots (QDs) are emerging as a superior alternative and are poised to change the world of bio-imaging and further its applications in basic and applied biology. The interdisciplinary field of nanobiotechnology is experiencing a revolution and QDs as an enabling technology have become a harbinger of this hybrid field. Within a decade, research onmore » QDs has evolved from being a pure science subject to the one with high-end commercial applications.« less

  7. Exploring the Alignment of the Intended and Implemented Curriculum through Teachers' Interpretation: A Case Study of A-Level Biology Practical Work

    ERIC Educational Resources Information Center

    Phaeton, Mukaro Joe; Stears, Michèle

    2017-01-01

    The research reported on here is part of a larger study exploring the alignment of the intended, implemented and attained curriculum with regard to practical work in the Zimbabwean A-level Biology curriculum. In this paper we focus on the alignment between the intended and implemented A-Level Biology curriculum through the lens of teachers'…

  8. Clinical applications of low-intensity pulsed ultrasound and its potential role in urology

    PubMed Central

    Lin, Guiting; Lei, Hongen; Lue, Tom F.; Guo, Yinglu

    2016-01-01

    Low-intensity pulsed ultrasound (LIPUS) is a form of ultrasound that delivered at a much lower intensity (<3 W/cm2) than traditional ultrasound energy and output in the mode of pulse wave, and it is typically used for therapeutic purpose in rehabilitation medicine. LIPUS has minimal thermal effects due to its low intensity and pulsed output mode, and its non-thermal effects which is normally claimed to induce therapeutic changes in tissues attract most researchers’ attentions. LIPUS have been demonstrated to have a rage of biological effects on tissues, including promoting bone-fracture healing, accelerating soft-tissue regeneration, inhibiting inflammatory responses and so on. Recent studies showed that biological effects of LIPUS in healing morbid body tissues may be mainly associated with the upregulation of cell proliferation through activation of integrin receptors and Rho/ROCK/Src/ERK signaling pathway, and with promoting multilineage differentiation of mesenchyme stem/progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway. Hopefully, LIPUS may become an effective clinical procedure for the treatment of urological diseases, such as chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), erectile dysfunction (ED), and stress urinary incontinence (SUI) in the field of urology. It still needs an intense effort for basic-science and clinical investigators to explore the biomedical applications of ultrasound. PMID:27141455

  9. A procedure for classifying textural facies in gravel‐bed rivers

    USGS Publications Warehouse

    Buffington, John M.; Montgomery, David R.

    1999-01-01

    Textural patches (i.e., grain‐size facies) are commonly observed in gravel‐bed channels and are of significance for both physical and biological processes at subreach scales. We present a general framework for classifying textural patches that allows modification for particular study goals, while maintaining a basic degree of standardization. Textures are classified using a two‐tier system of ternary diagrams that identifies the relative abundance of major size classes and subcategories of the dominant size. An iterative procedure of visual identification and quantitative grain‐size measurement is used. A field test of our classification indicates that it affords reasonable statistical discrimination of median grain size and variance of bed‐surface textures. We also explore the compromise between classification simplicity and accuracy. We find that statistically meaningful textural discrimination requires use of both tiers of our classification. Furthermore, we find that simplified variants of the two‐tier scheme are less accurate but may be more practical for field studies which do not require a high level of textural discrimination or detailed description of grain‐size distributions. Facies maps provide a natural template for stratifying other physical and biological measurements and produce a retrievable and versatile database that can be used as a component of channel monitoring efforts.

  10. Aquatic ecosystem protection and restoration: Advances in methods for assessment and evaluation

    USGS Publications Warehouse

    Bain, M.B.; Harig, A.L.; Loucks, D.P.; Goforth, R.R.; Mills, K.E.

    2000-01-01

    Many methods and criteria are available to assess aquatic ecosystems, and this review focuses on a set that demonstrates advancements from community analyses to methods spanning large spatial and temporal scales. Basic methods have been extended by incorporating taxa sensitivity to different forms of stress, adding measures linked to system function, synthesizing multiple faunal groups, integrating biological and physical attributes, spanning large spatial scales, and enabling simulations through time. These tools can be customized to meet the needs of a particular assessment and ecosystem. Two case studies are presented to show how new methods were applied at the ecosystem scale for achieving practical management goals. One case used an assessment of biotic structure to demonstrate how enhanced river flows can improve habitat conditions and restore a diverse fish fauna reflective of a healthy riverine ecosystem. In the second case, multitaxonomic integrity indicators were successful in distinguishing lake ecosystems that were disturbed, healthy, and in the process of restoration. Most methods strive to address the concept of biological integrity and assessment effectiveness often can be impeded by the lack of more specific ecosystem management objectives. Scientific and policy explorations are needed to define new ways for designating a healthy system so as to allow specification of precise quality criteria that will promote further development of ecosystem analysis tools.

  11. Fundamentals of nutrigenetics and nutrigenomics.

    PubMed

    Bouchard, Claude; Ordovas, Jose M

    2012-01-01

    This volume of Progress in Molecular Biology and Translational Science is devoted to the exciting and promising field of nutrigenetics and nutrigenomics. The introductory chapter defines the basic concepts necessary for the interpretation of the material covered in the remainder of the volume. Emphasis is on the concept of personalized nutrition and its likely role in public health and disease prevention, as well as in therapeutics. Nutrigenetics refers to the role of DNA sequence variation in the responses to nutrients, whereas nutrigenomics is the study of the role of nutrients in gene expression. This research is predicated on the assumption that there are individual differences in responsiveness to acute or repeated exposures to a given nutrient or combination of nutrients. Throughout human history, diet has affected the expression of genes, resulting in phenotypes that are able to successfully respond to environmental challenges and that allow better exploitation of food resources. These adaptations have been key to human growth and development. Technological advances have made it possible to investigate not only specific genes but also to explore in unbiased designs the whole genome-wide complement of DNA sequence variants or transcriptome. These advances provide an opportunity to establish the foundation for incorporating biological individuality into dietary recommendations, with significant therapeutic potential. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Introduction to Vocations: Building Occupational Exploration at the Middle School Level.

    ERIC Educational Resources Information Center

    Rutgers, The State Univ., New Brunswick, NJ. Dept. of Vocational-Technical Education.

    This handbook uses the 15 occupational clusters for infusing career exploration into an existing school curriculum for sixth-, seventh-, and eighth-grade students. Each grade's program explores designated occupational clusters through the basic curriculum of language arts, mathematics, science, social studies, art, music, and physical education. A…

  13. Southeast Asian Career Exploration Program.

    ERIC Educational Resources Information Center

    Podolske, Mel

    This set of competency-based learning modules consists of four career exploration modules and three science modules for use with adults with limited English proficiency. The four career exploration models contain activities designed to introduce students to career opportunities and basic job skills and safety procedures in the following fields:…

  14. On the Optimum Architecture of the Biologically Inspired Hierarchical Temporal Memory Model Applied to the Hand-Written Digit Recognition

    NASA Astrophysics Data System (ADS)

    Štolc, Svorad; Bajla, Ivan

    2010-01-01

    In the paper we describe basic functions of the Hierarchical Temporal Memory (HTM) network based on a novel biologically inspired model of the large-scale structure of the mammalian neocortex. The focus of this paper is in a systematic exploration of possibilities how to optimize important controlling parameters of the HTM model applied to the classification of hand-written digits from the USPS database. The statistical properties of this database are analyzed using the permutation test which employs a randomization distribution of the training and testing data. Based on a notion of the homogeneous usage of input image pixels, a methodology of the HTM parameter optimization is proposed. In order to study effects of two substantial parameters of the architecture: the patch size and the overlap in more details, we have restricted ourselves to the single-level HTM networks. A novel method for construction of the training sequences by ordering series of the static images is developed. A novel method for estimation of the parameter maxDist based on the box counting method is proposed. The parameter sigma of the inference Gaussian is optimized on the basis of the maximization of the belief distribution entropy. Both optimization algorithms can be equally applied to the multi-level HTM networks as well. The influences of the parameters transitionMemory and requestedGroupCount on the HTM network performance have been explored. Altogether, we have investigated 2736 different HTM network configurations. The obtained classification accuracy results have been benchmarked with the published results of several conventional classifiers.

  15. Multiple correlation analyses revealed complex relationship between DNA methylation and mRNA expression in human peripheral blood mononuclear cells.

    PubMed

    Xie, Fang-Fei; Deng, Fei-Yan; Wu, Long-Fei; Mo, Xing-Bo; Zhu, Hong; Wu, Jian; Guo, Yu-Fan; Zeng, Ke-Qin; Wang, Ming-Jun; Zhu, Xiao-Wei; Xia, Wei; Wang, Lan; He, Pei; Bing, Peng-Fei; Lu, Xin; Zhang, Yong-Hong; Lei, Shu-Feng

    2018-01-01

    DNA methylation is an important regulator on the mRNA expression. However, a genome-wide correlation pattern between DNA methylation and mRNA expression in human peripheral blood mononuclear cells (PBMCs) is largely unknown. The comprehensive relationship between mRNA and DNA methylation was explored by using four types of correlation analyses and a genome-wide methylation-mRNA expression quantitative trait locus (eQTL) analysis in PBMCs in 46 unrelated female subjects. An enrichment analysis was performed to detect biological function for the detected genes. Single pair correlation coefficient (r T1 ) between methylation level and mRNA is moderate (-0.63-0.62) in intensity, and the negative and positive correlations are nearly equal in quantity. Correlation analysis on each gene (T4) found 60.1% genes showed correlations between mRNA and gene-based methylation at P < 0.05 and more than 5.96% genes presented very strong correlation (R T4  > 0.8). Methylation sites have regulation effects on mRNA expression in eQTL analysis, with more often observations in region of transcription start site (TSS). The genes under significant methylation regulation both in correlation analysis and eQTL analysis tend to cluster to the categories (e.g., transcription, translation, regulation of transcription) that are essential for maintaining the basic life activities of cells. Our findings indicated that DNA methylation has predictive regulation effect on mRNA with a very complex pattern in PBMCs. The results increased our understanding on correlation of methylation and mRNA and also provided useful clues for future epigenetic studies in exploring biological and disease-related regulatory mechanisms in PBMC.

  16. Insect seasonality: circle map analysis of temperature-driven life cycles.

    PubMed

    Powell, James A; Logan, Jesse A

    2005-05-01

    Maintaining an adaptive seasonality, with life cycle events occurring at appropriate times of year and in synchrony with cohorts and ephemeral resources, is a basic ecological requisite for many cold-blooded organisms. There are many mechanisms for synchronizing developmental milestones, such as egg laying (oviposition), egg hatching, cocoon opening, and the emergence of adults. These are often irreversible, specific to particular life stages, and include diapause, an altered physiological state which can be reversed by some synchronizing environmental cue (e.g. photoperiod). However, many successful organisms display none of these mechanisms for maintaining adaptive seasonality. In this paper, we briefly review the mathematical relationship between environmental temperatures and developmental timing and discuss the consequences of viewing these models as circle maps from the cycle of yearly oviposition dates and temperatures to oviposition dates for subsequent generations. Of particular interest biologically are life cycles which are timed to complete in exactly 1 year, or univoltine cycles. Univoltinism, associated with reproductive success for many temperate species, is related to stable fixed points of the developmental circle map. Univoltine fixed points are stable and robust in broad temperature bands, but lose stability suddenly to maladaptive cycles at the edges of these bands. Adaptive seasonality may therefore break down with little warning with constantly increasing or decreasing temperature change, as in scenarios for global warming. These ideas are illustrated and explored in the context of Mountain Pine Beetle (Dendroctonus ponderosae Hopkins) occurring in the marginal thermal habitat of central Idaho's Rocky Mountains. Applications of these techniques have not been widely explored by the applied math community, but are likely to provide great insight into the response of biological systems to climate change.

  17. Intellectual property rights, standards and data exchange in systems biology: Reflections from the IP Expert Meeting at the University of Luxembourg, 8-9 October 2015, ERASysAPP - ERA-Net for Systems Biology Applications.

    PubMed

    van Zimmeren, Esther; Rutz, Berthold; Minssen, Timo

    2016-12-01

    Intellectual property rights (IPRs) have become a key concern for researchers and industry in basically all high-tech sectors. IPRs regularly figure prominently in scientific journals and at scientific conferences and lead to dedicated workshops to increase the awareness and "IPR savviness" of scientists. In 2015, Biotechnology Journal published a report from an expert meeting on "Synthetic Biology & Intellectual Property Rights" organized by the Danish Agency for Science, Technology and Innovation sponsored by the European Research Area Network (ERA-Net) in Synthetic Biology (ERASynBio), in which we provided a number of recommendations for a variety of stakeholders [1]. The current article offers some deeper reflections about the interface between IPRs, standards and data exchange in systems biology (SysBio) resulting from an Expert Meeting funded by another ERA-Net, ERASysAPP. The meeting brought together experts and stakeholders (e.g. scientists, company representatives, officials from public funding organizations) in SysBio from different European countries. Despite the different profiles of the stakeholders at the meeting and the variety of interests, many concerns and opinions were shared. In case particular views were expressed by a specific type of stakeholder, this will be explicitly mentioned in the text. In this article, we explore a number of particularly relevant issues that were discussed at the meeting and offer some recommendations. SysBio involves the study of biological systems at a so-called systems level. This is not a new concept in the life sciences - many former approaches in physiology, enzymology and other scientific disciplines have already taken a systemic view of selected biological subjects. Yet, SysBio has gained strong interest within the past 10 to 15 years. One predominant reason and a critical prerequisite for this success story being that the relevant scientific methodologies and research tools have become far more powerful and accurate. Remarkable technical progress allows scientists to generate, collect, display and analyse quantitative and qualitative data on biological processes and activities in much greater volumes, velocity, variety and veracity. The skilful integration of multiple heterogeneous data sets allows scientists to model and predict biological processes. SysBio's interdisciplinary nature requires data, models and other research assets to be formatted and described in standard ways to enable exchange and reuse of high quality data [2]. This allows a more effective utilisation of the enormous potential that rests in "big data" analysis. Finally, SysBio is often closely linked to or provides the foundation for Synthetic Biology (SynBio). Standardization and data exchange in SysBio may result in challenges and opportunities related to IPRs. The aim of this article is to raise awareness on these issues within the SysBio scientific community and to stimulate exploration of different strategies for dealing with IPRs in order to optimize access to and use of valuable research results. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. [Some aspects of animal-to-human approximation of low frequency electromagnetic field exposure conditions].

    PubMed

    Vasin, A L

    2003-01-01

    Appropriateness of representation of a biological object surface as an equipotential surface has been proved for conditions of a quasistatic exposure to EMF of frequencies lower than 1 MHz. The conditions, at which a self capacitance of a biological object is its basic electrical parameter, have been considered. A factor of animal-to-human approximation of low-frequency EMF exposure conditions was estimated on the basis of equal dose loading in biological objects of different geometric sizes.

  19. Gravitational biology on the space station

    NASA Technical Reports Server (NTRS)

    Keefe, J. R.; Krikorian, A. D.

    1983-01-01

    The current status of gravitational biology is summarized, future areas of required basic research in earth-based and spaceflight projects are presented, and potential applications of gravitational biology on a space station are demonstrated. Topics covered include vertebrate reproduction, prenatal/postnatal development, a review of plant space experiments, the facilities needed for growing plants, gravimorphogenesis, thigmomorphogenesis, centrifuges, maintaining a vivarium, tissue culture, and artificial human organ generation. It is proposed that space stations carrying out these types of long-term research be called the National Space Research Facility.

  20. Basic Biological Concepts: What Should the World's Children Know? Proceedings from the International Union of Biological Sciences and the Commission for Biological Education (IUBS/CBE) Symposium (Colorado Springs, Colorado, August 30-September 5, 1992).

    ERIC Educational Resources Information Center

    McWethy, Patricia J., Ed.

    Science is not a phenomenon restricted to one group of people. Instead it is something that is experienced by all, though often its form is unrecognized. Because science is experienced by many, one would expect that different groups of people would share common experiences in science. In an effort to determine whether there are similarities in…

  1. The social model of disability: dichotomy between impairment and disability.

    PubMed

    Anastasiou, Dimitris; Kauffman, James M

    2013-08-01

    The rhetoric of the social model of disability is presented, and its basic claims are critiqued. Proponents of the social model use the distinction between impairment and disability to reduce disabilities to a single social dimension-social oppression. They downplay the role of biological and mental conditions in the lives of disabled people. Consequences of denying biological and mental realities involving disabilities are discussed. People will benefit most by recognizing both the biological and the social dimensions of disabilities.

  2. Expression and Purification of Recombinant Human Basic Fibroblast Growth Factor Fusion Proteins and Their Uses in Human Stem Cell Culture.

    PubMed

    Imsoonthornruksa, Sumeth; Pruksananonda, Kamthorn; Parnpai, Rangsun; Rungsiwiwut, Ruttachuk; Ketudat-Cairns, Mariena

    2015-01-01

    To reduce the cost of cytokines and growth factors in stem cell research, a simple method for the production of soluble and biological active human basic fibroblast growth factor (hbFGF) fusion protein in Escherichia coli was established. Under optimal conditions, approximately 60-80 mg of >95% pure hbFGF fusion proteins (Trx-6xHis-hbFGF and 6xHis-hbFGF) were obtained from 1 liter of culture broth. The purified hbFGF proteins, both with and without the fusion tags, were biologically active, which was confirmed by their ability to stimulate proliferation of NIH3T3 cells. The fusion proteins also have the ability to support several culture passages of undifferentiated human embryonic stem cells and induce pluripotent stem cells. This paper describes a low-cost and uncomplicated method for the production and purification of biologically active hbFGF fusion proteins. © 2015 S. Karger AG, Basel.

  3. Basic Energy Science | NREL

    Science.gov Websites

    scientific understanding-of molecular, nanoscale, semiconductor, and biological materials, systems, and molecular, nanoscale, and semiconductor systems to capture, control, and convert solar radiation with high

  4. Basic Writing and the Conflict over Language

    ERIC Educational Resources Information Center

    Fox, Tom

    2015-01-01

    David Bleich's exploration of language conflicts in the university in "The Materiality of Language: Gender, Politics, and the University" helps explain the ongoing struggle over basic writing as between two radically different understandings of language. Progressive educators and writing teachers see language as rhetorical and…

  5. Cochran Q test with Turbo BASIC.

    PubMed

    Seuc, A H

    1995-01-01

    A microcomputer program written in Turbo BASIC for the sequential application of the Cochran Q test is given. A clinical application where the test is used in order to explore the structure of the agreement between observers is also presented. A program listing is available on request.

  6. Basic Auditory Processing and Developmental Dyslexia in Chinese

    ERIC Educational Resources Information Center

    Wang, Hsiao-Lan Sharon; Huss, Martina; Hamalainen, Jarmo A.; Goswami, Usha

    2012-01-01

    The present study explores the relationship between basic auditory processing of sound rise time, frequency, duration and intensity, phonological skills (onset-rime and tone awareness, sound blending, RAN, and phonological memory) and reading disability in Chinese. A series of psychometric, literacy, phonological, auditory, and character…

  7. Petri net modelling of biological networks.

    PubMed

    Chaouiya, Claudine

    2007-07-01

    Mathematical modelling is increasingly used to get insights into the functioning of complex biological networks. In this context, Petri nets (PNs) have recently emerged as a promising tool among the various methods employed for the modelling and analysis of molecular networks. PNs come with a series of extensions, which allow different abstraction levels, from purely qualitative to more complex quantitative models. Noteworthily, each of these models preserves the underlying graph, which depicts the interactions between the biological components. This article intends to present the basics of the approach and to foster the potential role PNs could play in the development of the computational systems biology.

  8. Engineering Ultimate Self-Protection in Autonomic Agents for Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy; Hinchey, Mike

    2005-01-01

    NASA's Exploration Initiative (EI) will push space exploration missions to the limit. Future missions will be required to be self-managing as well as self-directed, in order to meet the challenges of human and robotic space exploration. We discuss security and self protection in autonomic agent based-systems, and propose the ultimate self-protection mechanism for such systems-self-destruction. Like other metaphors in Autonomic Computing, this is inspired by biological systems, and is the analog of biological apoptosis. Finally, we discus the role it might play in future NASA space exploration missions.

  9. Engineering scalable biological systems

    PubMed Central

    2010-01-01

    Synthetic biology is focused on engineering biological organisms to study natural systems and to provide new solutions for pressing medical, industrial and environmental problems. At the core of engineered organisms are synthetic biological circuits that execute the tasks of sensing inputs, processing logic and performing output functions. In the last decade, significant progress has been made in developing basic designs for a wide range of biological circuits in bacteria, yeast and mammalian systems. However, significant challenges in the construction, probing, modulation and debugging of synthetic biological systems must be addressed in order to achieve scalable higher-complexity biological circuits. Furthermore, concomitant efforts to evaluate the safety and biocontainment of engineered organisms and address public and regulatory concerns will be necessary to ensure that technological advances are translated into real-world solutions. PMID:21468204

  10. Introducing Basic Molecular Biology to Turkish Rural and Urban Primary School Children via Hands-on PCR and Gel Electrophoresis Activities

    ERIC Educational Resources Information Center

    Selli, Cigdem; Yildirim, Gokce; Kaymak, Aysegul; Karacicek, Bilge; Ogut, Deniz; Gungor, Turkan; Erem, Erdem; Ege, Mehmet; Bümen, Nilay; Tosun, Metiner

    2014-01-01

    This study includes the results of a 2-day education project titled "Molecular Biology Laboratory Summer School, MoBiLYO." The project was held at a University Research Center by scientists from Department of Pharmacology and graduate students. The project was composed of introductory lectures, model construction, DNA isolation,…

  11. Middle/High School Students in the Research Laboratory: A Summer Internship Program Emphasizing the Interdisciplinary Nature of Biology

    ERIC Educational Resources Information Center

    McMiller, Tracee; Lee, Tameshia; Saroop, Ria; Green, Tyra; Johnson, Casonya M.

    2006-01-01

    We describe an eight-week summer Young Scientist in Training (YSIT) internship program involving middle and high school students. This program exposed students to current basic research in molecular genetics, while introducing or reinforcing principles of the scientific method and demonstrating the uses of mathematics and chemistry in biology. For…

  12. The Importance of Pupils' Interests and Out-of-School Experiences in Planning Biology Lessons

    ERIC Educational Resources Information Center

    Uitto, Anna; Juuti, Kalle; Lavonen, Jari; Meisalo, Veijo

    2008-01-01

    How to make learning more interesting is a basic challenge for school education. In this Finnish study, the international ROSE questionnaire was used to survey, during spring of 2003, the relationship between interest in biology and out-of-school experiences for 3626 ninth-grade pupils. Interest and experience factors were extracted by using the…

  13. Grocery Store Genetics: A PCR-Based Genetics Lab that Links Genotype to Phenotype

    ERIC Educational Resources Information Center

    Briju, Betsy J.; Wyatt, Sarah E.

    2015-01-01

    Instructors often present Mendelian genetics and molecular biology separately. As a result, students often fail to connect the two topics in a tangible manner. We have adopted a simple experiment to help link these two important topics in a basic biology course, using red and white onions bought from a local grocery store. A lack of red coloration…

  14. Cooperative Project To Develop a Database of Discipline-Specific Workbook Exercises for Agricultural and Biological Engineering, Entomology, and Biological Sciences Courses.

    ERIC Educational Resources Information Center

    Ellsbury, Susan H.; And Others

    A two-part text, "Science Resources: A Self-Paced Instructional Workbook," was designed to provide science students at Mississippi State University with: (1) instruction on basic library usage and reference tools common to most scientific disciplines; (2) materials adapted to specific disciplines; and (3) services available to them from the…

  15. The Benefits of Mouse Keeping--An Empirical Study on Students' Flow and Intrinsic Motivation in Biology Lessons

    ERIC Educational Resources Information Center

    Meyer, Annika; Klingenberg, Konstantin; Wilde, Matthias

    2016-01-01

    Contact with living animals is an exceptional possibility within biology education to facilitate an intense immersion into the study topic and even allow for a flow experience (Csikszentmihalyi 2000). Further, it might affect the perceptions of the students' basic needs for autonomy and competence and thereby their quality of motivation (Deci and…

  16. Molecular Biology Masterclasses--Developing Practical Skills and Building Links with Higher Education in Years 12/13

    ERIC Educational Resources Information Center

    Hooley, Paul; Cooper, Phillippa; Skidmore, Nick

    2008-01-01

    A one day practical course in molecular biology skills suitable for year 12/13 students is described. Colleagues from partner schools and colleges were trained by university staff in basic techniques and then collaborated in the design of a course suitable for their own students. Participants carried out a transformation of "E.coli"…

  17. Genome annotation in a community college cell biology lab.

    PubMed

    Beagley, C Timothy

    2013-01-01

    The Biology Department at Salt Lake Community College has used the IMG-ACT toolbox to introduce a genome mapping and annotation exercise into the laboratory portion of its Cell Biology course. This project provides students with an authentic inquiry-based learning experience while introducing them to computational biology and contemporary learning skills. Additionally, the project strengthens student understanding of the scientific method and contributes to student learning gains in curricular objectives centered around basic molecular biology, specifically, the Central Dogma. Importantly, inclusion of this project in the laboratory course provides students with a positive learning environment and allows for the use of cooperative learning strategies to increase overall student success. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  18. ePlant and the 3D data display initiative: integrative systems biology on the world wide web.

    PubMed

    Fucile, Geoffrey; Di Biase, David; Nahal, Hardeep; La, Garon; Khodabandeh, Shokoufeh; Chen, Yani; Easley, Kante; Christendat, Dinesh; Kelley, Lawrence; Provart, Nicholas J

    2011-01-10

    Visualization tools for biological data are often limited in their ability to interactively integrate data at multiple scales. These computational tools are also typically limited by two-dimensional displays and programmatic implementations that require separate configurations for each of the user's computing devices and recompilation for functional expansion. Towards overcoming these limitations we have developed "ePlant" (http://bar.utoronto.ca/eplant) - a suite of open-source world wide web-based tools for the visualization of large-scale data sets from the model organism Arabidopsis thaliana. These tools display data spanning multiple biological scales on interactive three-dimensional models. Currently, ePlant consists of the following modules: a sequence conservation explorer that includes homology relationships and single nucleotide polymorphism data, a protein structure model explorer, a molecular interaction network explorer, a gene product subcellular localization explorer, and a gene expression pattern explorer. The ePlant's protein structure explorer module represents experimentally determined and theoretical structures covering >70% of the Arabidopsis proteome. The ePlant framework is accessed entirely through a web browser, and is therefore platform-independent. It can be applied to any model organism. To facilitate the development of three-dimensional displays of biological data on the world wide web we have established the "3D Data Display Initiative" (http://3ddi.org).

  19. Interactions of platinum metals and their complexes in biological systems.

    PubMed Central

    LeRoy, A F

    1975-01-01

    Platinum-metal oxidation catalysts are to be introduced in exhaust systems of many 1975 model-year automobiles in the U.S. to meet Clean Air Act standards. Small quantities of finely divided catalyst have been found issuing from prototype systems; platinum and palladium compounds may be found also. Although platinum exhibits a remarkable resistance to oxidation and chemical attack, it reacts chemically under some conditions producing coordination complex compounds. Palladium reacts more readily than platinum. Some platinum-metal complexes interact with biological systems as bacteriostatic, bacteriocidal, viricidal, and immunosuppressive agents. Workers chronically exposed to platinum complexes often develop asthma-like respiratory distress and skin reactions called platinosis. Platinum complexes used alone and in combination therapy with other drugs have recently emerged as effective agents in cancer chemotherapy. Understanding toxic and favorable interactions of metal species with living organisms requires basic information on quantities and chemical characteristics of complexes at trace concentrations in biological materials. Some basic chemical kinetic and thermodynamic data are presented to characterize the chemical behavior of the complex cis-[Pt(NH3)2Cl2] used therapeutically. A brief discussion of platinum at manogram levels in biological tissue is discussed. PMID:50943

  20. Predictors of student success in entry-level science courses

    NASA Astrophysics Data System (ADS)

    Singh, Mamta K.

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and their relationships to student achievement. However, the literature contains little information that specifically addresses student biology content knowledge skills (basics and higher order thinking skills) and identifies factors that affect students' success in entry-level college science courses. These gate-keeping courses require detailed evaluation if the goal of an institution is to increase students' performance and success in these courses. These factors are, in fact, a stepping stone for increasing the number of graduates in Science, Technology, Engineering, and Mathematics (STEM) majors. The present study measured students' biology content knowledge and investigated students' performance and success in college biology, chemistry, and physics entry-level courses. Seven variables---gender, ethnicity, high school Grade Point Average (GPA), high school science, college major, school financial aid support, and work hours were used as independent variables and course final performance as a dichotomous dependent variable. The sample comprised voluntary student participants in entry-level science courses. The study attempted to explore eight research questions. Content knowledge assessments, demographic information analysis, multiple regression analysis, and binary logistic regression analysis were used to address research questions. The results suggested that high school GPA was a consistently good predictor of students' performance and success in entry-level science courses. Additionally, high school chemistry was a significant predictor variable for student success in entry-level biology and chemistry courses. Similarly, students' performance and success in entry-level physics courses were influenced by high school physics. Finally, the study developed student success equation with high school GAP and high school chemistry as good predictors of students' success in entry-level science courses.

  1. Reading Disability: A Human Approach to Learning. Third Edition, Revised & Expanded.

    ERIC Educational Resources Information Center

    Roswell, Florence G.; Natchez, Gladys

    This book organizes the subject of reading disability under the following headings: basic considerations, diagnosis, and treatment. Chapters under the basic-considerations heading explore the causes and neurological and psychological bases of reading disability and psychotherapeutic principles in remedial reading instruction. Two chapters…

  2. Motivation in Education.

    ERIC Educational Resources Information Center

    Ray, Nancy L.

    This paper presents basic principles and theories of motivation, attempts to provide a better understanding of the concept, and explores the role motivation plays in learning. Basic theories of motivation are reviewed including: Freud's belief in motivation by the id, unconscious forces, and sexual stages; Jung and Adler's belief that people are…

  3. Students' Perceptions of Their Connectedness in the Community College Basic Public Speaking Course

    ERIC Educational Resources Information Center

    Glaser, Hollis F.; Bingham, Shereen

    2009-01-01

    This study explores what classroom behaviors and activities in the basic speech course contribute to student connectedness. The results indicate that student encouragement, humor, honesty, interactive exercises and individual speeches, can help student bonding and motivation, and impacts their overall college experience.

  4. The Basic Principles of FDG-PET/CT Imaging.

    PubMed

    Basu, Sandip; Hess, Søren; Nielsen Braad, Poul-Erik; Olsen, Birgitte Brinkmann; Inglev, Signe; Høilund-Carlsen, Poul Flemming

    2014-10-01

    Positron emission tomography (PET) imaging with 2-[(18)F]fluoro-2-deoxy-D-glucose (FDG) forms the basis of molecular imaging. FDG-PET imaging is a multidisciplinary undertaking that requires close interdisciplinary collaboration in a broad team comprising physicians, technologists, secretaries, radio-chemists, hospital physicists, molecular biologists, engineers, and cyclotron technicians. The aim of this review is to provide a brief overview of important basic issues and considerations pivotal to successful patient examinations, including basic physics, instrumentation, radiochemistry, molecular and cell biology, patient preparation, normal distribution of tracer, and potential interpretive pitfalls. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. The Graduate Training Programme "Molecular Imaging for the Analysis of Gene and Protein Expression": A Case Study with an Insight into the Participation of Universities of Applied Sciences

    ERIC Educational Resources Information Center

    Hafner, Mathias

    2008-01-01

    Cell biology and molecular imaging technologies have made enormous progress in basic research. However, the transfer of this knowledge to the pharmaceutical drug discovery process, or even therapeutic improvements for disorders such as neuronal diseases, is still in its infancy. This transfer needs scientists who can integrate basic research with…

  6. Environmental microbiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, R.

    1992-01-01

    This book covers issues ranging from global climate changes to biocontrol of plant diseases. Many of its contributions stress how new technologies in areas such as molecular biology and environmental engineering expand understanding and applications of basic concepts in environmental microbiology. Articles in the book are in three basic subject areas: effects of environmental contamination on the role of microbes in geochemical cycling of the major elements, pathogens in the environment, and microbial activities in environmental management.

  7. Discrete virus infection model of hepatitis B virus.

    PubMed

    Zhang, Pengfei; Min, Lequan; Pian, Jianwei

    2015-01-01

    In 1996 Nowak and his colleagues proposed a differential equation virus infection model, which has been widely applied in the study for the dynamics of hepatitis B virus (HBV) infection. Biological dynamics may be described more practically by discrete events rather than continuous ones. Using discrete systems to describe biological dynamics should be reasonable. Based on one revised Nowak et al's virus infection model, this study introduces a discrete virus infection model (DVIM). Two equilibriums of this model, E1 and E2, represents infection free and infection persistent, respectively. Similar to the case of the basic virus infection model, this study deduces a basic virus reproductive number R0 independing on the number of total cells of an infected target organ. A proposed theorem proves that if the basic virus reproductive number R0<1 then the virus free equilibrium E1 is locally stable. The DVIM is more reasonable than an abstract discrete susceptible-infected-recovered model (SIRS) whose basic virus reproductive number R0 is relevant to the number of total cells of the infected target organ. As an application, this study models the clinic HBV DNA data of a patient who was accepted via anti-HBV infection therapy with drug lamivudine. The results show that the numerical simulation is good in agreement with the clinic data.

  8. Cleft Palate-Craniofacial Journal 50th anniversary editorial board commentary: anatomy, basic sciences, and genetics--then and now.

    PubMed

    Mooney, Mark P; Cooper, Gregory M; Marazita, Mary L

    2014-05-01

    To celebrate the 50th year of the Cleft Palate-Craniofacial Journal we look back to where we started in 1964 and where we are now, and we speculate about directions for the future in a "Then and Now" editorial series. This editorial examines changing trends and perspectives in anatomical, basic science, and genetic studies published in this 50-year interval. In volume 1 there were 45 total papers, seven (16%) of which were peer-reviewed basic science and genetic articles published: four in anatomy, three in craniofacial biology, and none in genetics. In contrast, in volume 50, of 113 articles there were 47 (42%) peer-reviewed basic science and genetic articles published: 30 in anatomy, five in craniofacial biology, and 12 in genetics. Topical analysis of published manuscripts then and now reveal that similar topics in anatomy and craniofacial biology are still being researched today (e.g., phenotypic variability, optimal timing of surgery, presurgical orthopedics, bone grafting); whereas, most of the more recent papers use advanced technology to address old questions. In contrast, genetic publications have clearly increased in frequency during the last 50 years, which parallels advances in the field during this time. However, all of us have noticed that the more "cutting-edge" papers in these areas are not being submitted for publication to the journal, but instead to discipline-specific journals. Concerted efforts are therefore indicated to attract and publish these cutting-edge papers in order to keep the Cleft Palate-Craniofacial Journal in the forefront of orofacial cleft and craniofacial anomaly research and to provide a valuable service to American Cleft Palate-Craniofacial Association members.

  9. Integrating Computer Spreadsheet Modeling into a Microeconomics Curriculum: Principles to Managerial.

    ERIC Educational Resources Information Center

    Clark, Joy L.; Hegji, Charles E.

    1997-01-01

    Notes that using spreadsheets to teach microeconomics principles enables learning by doing in the exploration of basic concepts. Introduction of increasingly complex topics leads to exploration of theory and managerial decision making. (SK)

  10. Your Glucose Meter

    MedlinePlus

    ... Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco ... 164KB) En Español Basic Facts 7 Tips for Testing Your Blood Sugar and Caring for Your Meter ...

  11. Visualisations as a Means for Exploring Academics' Teacher Identities

    ERIC Educational Resources Information Center

    Nevgi, Anne; Löfström, Erika

    2014-01-01

    Academics' teacher identities is a relatively little explored area. This paper explores this through an analysis of drawings by academics. The data consist of 90 drawings. The participants are academics who have attended basic courses in university pedagogy. The drawings were content analysed. In the drawings, the academics expressed themselves as…

  12. Physical phenomena and the microgravity response

    NASA Technical Reports Server (NTRS)

    Todd, Paul

    1989-01-01

    The living biological cell is not a sack of Newtonian fluid containing systems of chemical reactions at equilibrium. It is a kinetically driven system, not a thermodynamically driven system. While the cell as a whole might be considered isothermal, at the scale of individual macromolecular events there is heat generated, and presumably sharp thermal gradients exist at the submicron level. Basic physical phenomena to be considered when exploring the cell's response to inertial acceleration include particle sedimentation, solutal convection, motility electrokinetics, cytoskeletal work, and hydrostatic pressure. Protein crystal growth experiments, for example, illustrate the profound effects of convection currents on macromolecular assembly. Reaction kinetics in the cell vary all the way from diffusion-limited to life-time limited. Transport processes vary from free diffusion, to facilitated and active transmembrane transport, to contractile-protein-driven motility, to crystalline immobilization. At least four physical states of matter exist in the cell: aqueous, non-aqueous, immiscible-aqueous, and solid. Levels of order vary from crystalline to free solution. The relative volumes of these states profoundly influence the cell's response to inertial acceleration. Such subcellular phenomena as stretch-receptor activation, microtubule re-assembly, synaptic junction formation, chemotactic receptor activation, and statolith sedimentation were studied recently with respect to both their basic mechanisms and their responsiveness to inertial acceleration. From such studies a widespread role of cytoskeletal organization is becoming apparent.

  13. Stem cell research and policy in India: current scenario and future perspective.

    PubMed

    Sharma, Alka

    2009-01-01

    Stem cell research is an exciting area of biomedical research, with potential to advance cell biology, and other new modalities of treatment for many untreatable diseases. The potential resides in the ability of these cells to develop into many different cell types in the body. In India, efforts are being made on several fronts to promote this area in an integrated way. The main features of the strategy are: explore the full potential of adult and embryonic stem cells (ESCs) through basic and translational research; generate patient specific human ESC lines; enhance creation of animal models for pre-clinical studies; virtual network of Centres; creation institutions; generation of well trained manpower; build partnership with large companies in path-breaking areas; promote closer interactions amongst basic scientists, clinical researchers and the industry. Newer initiatives include: establishment of a dedicated institute for stem cell science and regenerative medicine with its translational units; GMP and clean room facilities in medical schools; creation of a system for multi-centric clinical studies using autologous adult stem cells; national and international training courses for providing training to the students and the young scientists in the both embryonic and adult stem cells; and formulation of guidelines to conduct stem cell research in a responsible and ethically sensitive manner in the country. The core capacity must be nurtured and built to create the required critical mass to have impact.

  14. Molecular aspects of magnetic resonance imaging and spectroscopy.

    PubMed

    Boesch, C

    1999-01-01

    Magnetic resonance imaging (MRI) is a well known diagnostic tool in radiology that produces unsurpassed images of the human body, in particular of soft tissue. However, the medical community is often not aware that MRI is an important yet limited segment of magnetic resonance (MR) or nuclear magnetic resonance (NMR) as this method is called in basic science. The tremendous morphological information of MR images sometimes conceal the fact that MR signals in general contain much more information, especially on processes on the molecular level. NMR is successfully used in physics, chemistry, and biology to explore and characterize chemical reactions, molecular conformations, biochemical pathways, solid state material, and many other applications that elucidate invisible characteristics of matter and tissue. In medical applications, knowledge of the molecular background of MRI and in particular MR spectroscopy (MRS) is an inevitable basis to understand molecular phenomenon leading to macroscopic effects visible in diagnostic images or spectra. This review shall provide the necessary background to comprehend molecular aspects of magnetic resonance applications in medicine. An introduction into the physical basics aims at an understanding of some of the molecular mechanisms without extended mathematical treatment. The MR typical terminology is explained such that reading of original MR publications could be facilitated for non-MR experts. Applications in MRI and MRS are intended to illustrate the consequences of molecular effects on images and spectra.

  15. Findings

    MedlinePlus

    ... Issue All Issues Explore Findings by Topic Cell Biology Cellular Structures, Functions, Processes, Imaging, Stress Response Chemistry ... Glycobiology, Synthesis, Natural Products, Chemical Reactions Computers in Biology Bioinformatics, Modeling, Systems Biology, Data Visualization Diseases Cancer, ...

  16. Application of artificial intelligence to the management of urological cancer.

    PubMed

    Abbod, Maysam F; Catto, James W F; Linkens, Derek A; Hamdy, Freddie C

    2007-10-01

    Artificial intelligence techniques, such as artificial neural networks, Bayesian belief networks and neuro-fuzzy modeling systems, are complex mathematical models based on the human neuronal structure and thinking. Such tools are capable of generating data driven models of biological systems without making assumptions based on statistical distributions. A large amount of study has been reported of the use of artificial intelligence in urology. We reviewed the basic concepts behind artificial intelligence techniques and explored the applications of this new dynamic technology in various aspects of urological cancer management. A detailed and systematic review of the literature was performed using the MEDLINE and Inspec databases to discover reports using artificial intelligence in urological cancer. The characteristics of machine learning and their implementation were described and reports of artificial intelligence use in urological cancer were reviewed. While most researchers in this field were found to focus on artificial neural networks to improve the diagnosis, staging and prognostic prediction of urological cancers, some groups are exploring other techniques, such as expert systems and neuro-fuzzy modeling systems. Compared to traditional regression statistics artificial intelligence methods appear to be accurate and more explorative for analyzing large data cohorts. Furthermore, they allow individualized prediction of disease behavior. Each artificial intelligence method has characteristics that make it suitable for different tasks. The lack of transparency of artificial neural networks hinders global scientific community acceptance of this method but this can be overcome by neuro-fuzzy modeling systems.

  17. Reducing Inequities by Linking Basic Research and Political Action

    ERIC Educational Resources Information Center

    Mehan, Hugh

    2012-01-01

    In this comment, on Terri McCarty's Presidential Address, I focus on her dynamic approach to investigation that contributes to a vibrant and constructively critical exploration of the place of basic research, critical policy analysis, and activism in the anthropology of education and the social sciences more broadly.

  18. Coach Autonomy Support, Basic Need Satisfaction, and Intrinsic Motivation of Paralympic Athletes

    ERIC Educational Resources Information Center

    Banack, Hailey R.; Sabiston, Catherine M.; Bloom, Gordon A.

    2011-01-01

    The purpose of the present study, grounded in self-determination theory, was to explore the relationship between Paralympic athletes' perceptions of autonomy-supportive coach behavior, basic psychological needs, and intrinsic motivation to know, accomplish, and experience stimulation. One hundred thirteen Canadian Paralympic athletes completed an…

  19. The Social Contract and the African American Elderly.

    ERIC Educational Resources Information Center

    Madison, Anna

    1992-01-01

    Explores whether or not vulnerable African-American elderly have a basic right to protection under the social contract that binds members of society as equal partners in a compact guaranteeing all members basic rights. A social justice perspective places these citizens among those who qualify for public support. (SLD)

  20. Embedded Information Literacy in the Basic Oral Communication Course: From Conception through Assessment

    ERIC Educational Resources Information Center

    Weaver, Kari D.; Pier, Penni M.

    2010-01-01

    This article explores the process of embedding information literacy into a basic oral communication course. Discussion includes student performance as an impetus for change, collaborative course design between the oral communication teaching team and instructional librarians, and assessment initiatives. Suggestions for future collaborative work…

Top