Sample records for explore climate change

  1. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  2. ExplorOcean H2O SOS: Help Heal the Ocean-Student Operated Solutions: Operation Climate Change

    NASA Astrophysics Data System (ADS)

    Weiss, N.; Wood, J. H.

    2016-12-01

    The ExplorOcean H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change, teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. During each session (in-class or after-school as a club), students build an understanding about how climate change impacts our oceans using resources provided by ExplorOcean (hands-on activities, presentations, multi-media). Through a student leadership model, students present lessons to each other, interweaving a deep learning of science, 21st century technology, communication skills, and leadership. After participating in learning experiences and activities related to 6 key climate change concepts: 1) Introduction to climate change, 2) Increased sea temperatures, 3) Ocean acidification, 4) Sea level rise, 5) Feedback mechanisms, and 6) Innovative solutions. H2O SOS- Operation Climate change participants select one focus issue and use it to design a multi-pronged campaign to increase awareness about this issue in their local community. The campaign includes social media, an interactive activity, and a visual component. All participating clubs that meet participation and action goals earn a field trip to ExplorOcean where they dive deeper into their selected issue through hands-on activities, real-world investigations, and interviews or presentations with experts. In addition to self-selected opportunities to showcase their focus issue, teams will participate in one of several key events identified by ExplorOcean, including ExplorOcean's annual World Oceans Day Expo.

  3. Recognizing and exploring the right questions with climate data: An example of better understanding ENSO in climate projections

    NASA Astrophysics Data System (ADS)

    Ammann, C. M.; Brown, B.; Kalb, C. P.; Bullock, R.; Buja, L.; Gutowski, W. J., Jr.; Halley-Gotway, J.; Kaatz, L.; Yates, D. N.

    2017-12-01

    Coordinated, multi-model climate change projection archives have already led to a flourishing of new climate impact applications. Collections and online tools for the computation of derived indicators have attracted many non-specialist users and decision-makers and facilitated for them the exploration of potential future weather and climate changes on their systems. Guided by a set of standardized steps and analyses, many can now use model output and determine basic model-based changes. But because each application and decision-context is different, the question remains if such a small collection of standardized tools can faithfully and comprehensively represent the critical physical context of change? We use the example of the El Niño - Southern Oscillation, the largest and most broadly recognized mode of variability in the climate system, to explore the difference in impact contexts between a quasi-blind, protocol-bound and a flexible, scientifically guided use of climate information. More use oriented diagnostics of the model-data as well as different strategies for getting data into decision environments are explored.

  4. Climate Change, Public Health, and Policy: A California Case Study.

    PubMed

    Ganesh, Chandrakala; Smith, Jason A

    2018-04-01

    Anthropogenic activity will bring immediate changes and disruptions to the global climate with accompanying health implications. Although policymakers and public health advocates are beginning to acknowledge the health implications of climate change, current policy approaches are lagging behind. We proposed that 4 key policy principles are critical to successful policymaking in this arena: mainstreaming, linking mitigation and adaptation policy, applying population perspectives, and coordination. We explored California's progress in addressing the public health challenges of climate change in the San Joaquin Valley as an example. We discussed issues of mental health and climate change, and used the San Joaquin Valley of California as an example to explore policy approaches to health issues and climate change. The California experience is instructive for other jurisdictions.

  5. Exploring the Climate Change, Migration and Conflict Nexus.

    PubMed

    Burrows, Kate; Kinney, Patrick L

    2016-04-22

    The potential link between climate change, migration, and conflict has been widely discussed and is increasingly viewed by policy makers as a security issue. However, considerable uncertainty remains regarding the role that climate variability and change play among the many drivers of migration and conflict. The overall objective of this paper is to explore the potential pathways linking climate change, migration and increased risk of conflict. We review the existing literature surrounding this issue and break the problem into two components: the links between climate change and migration, and those between migration and conflict. We found a large range of views regarding the importance of climate change as a driver for increasing rates of migration and subsequently of conflict. We argue that future research should focus not only on the climate-migration-conflict pathway but also work to understand the other pathways by which climate variability and change might exacerbate conflict. We conclude by proposing five questions to help guide future research on the link between climate change, migration, and conflict.

  6. Exploring the Climate Change, Migration and Conflict Nexus

    PubMed Central

    Burrows, Kate; Kinney, Patrick L.

    2016-01-01

    The potential link between climate change, migration, and conflict has been widely discussed and is increasingly viewed by policy makers as a security issue. However, considerable uncertainty remains regarding the role that climate variability and change play among the many drivers of migration and conflict. The overall objective of this paper is to explore the potential pathways linking climate change, migration and increased risk of conflict. We review the existing literature surrounding this issue and break the problem into two components: the links between climate change and migration, and those between migration and conflict. We found a large range of views regarding the importance of climate change as a driver for increasing rates of migration and subsequently of conflict. We argue that future research should focus not only on the climate-migration-conflict pathway but also work to understand the other pathways by which climate variability and change might exacerbate conflict. We conclude by proposing five questions to help guide future research on the link between climate change, migration, and conflict. PMID:27110806

  7. Exploring the implication of climate process uncertainties within the Earth System Framework

    NASA Astrophysics Data System (ADS)

    Booth, B.; Lambert, F. H.; McNeal, D.; Harris, G.; Sexton, D.; Boulton, C.; Murphy, J.

    2011-12-01

    Uncertainties in the magnitude of future climate change have been a focus of a great deal of research. Much of the work with General Circulation Models has focused on the atmospheric response to changes in atmospheric composition, while other processes remain outside these frameworks. Here we introduce an ensemble of new simulations, based on an Earth System configuration of HadCM3C, designed to explored uncertainties in both physical (atmospheric, oceanic and aerosol physics) and carbon cycle processes, using perturbed parameter approaches previously used to explore atmospheric uncertainty. Framed in the context of the climate response to future changes in emissions, the resultant future projections represent significantly broader uncertainty than existing concentration driven GCM assessments. The systematic nature of the ensemble design enables interactions between components to be explored. For example, we show how metrics of physical processes (such as climate sensitivity) are also influenced carbon cycle parameters. The suggestion from this work is that carbon cycle processes represent a comparable contribution to uncertainty in future climate projections as contributions from atmospheric feedbacks more conventionally explored. The broad range of climate responses explored within these ensembles, rather than representing a reason for inaction, provide information on lower likelihood but high impact changes. For example while the majority of these simulations suggest that future Amazon forest extent is resilient to the projected climate changes, a small number simulate dramatic forest dieback. This ensemble represents a framework to examine these risks, breaking them down into physical processes (such as ocean temperature drivers of rainfall change) and vegetation processes (where uncertainties point towards requirements for new observational constraints).

  8. Climate Change, Public Health, and Policy: A California Case Study

    PubMed Central

    Smith, Jason A.

    2018-01-01

    Anthropogenic activity will bring immediate changes and disruptions to the global climate with accompanying health implications. Although policymakers and public health advocates are beginning to acknowledge the health implications of climate change, current policy approaches are lagging behind. We proposed that 4 key policy principles are critical to successful policymaking in this arena: mainstreaming, linking mitigation and adaptation policy, applying population perspectives, and coordination. We explored California’s progress in addressing the public health challenges of climate change in the San Joaquin Valley as an example. We discussed issues of mental health and climate change, and used the San Joaquin Valley of California as an example to explore policy approaches to health issues and climate change. The California experience is instructive for other jurisdictions. PMID:29072936

  9. Real-Time Climate Simulations in the Interactive 3D Game Universe Sandbox ²

    NASA Astrophysics Data System (ADS)

    Goldenson, N. L.

    2014-12-01

    Exploration in an open-ended computer game is an engaging way to explore climate and climate change. Everyone can explore physical models with real-time visualization in the educational simulator Universe Sandbox ² (universesandbox.com/2), which includes basic climate simulations on planets. I have implemented a time-dependent, one-dimensional meridional heat transport energy balance model to run and be adjustable in real time in the midst of a larger simulated system. Universe Sandbox ² is based on the original game - at its core a gravity simulator - with other new physically-based content for stellar evolution, and handling collisions between bodies. Existing users are mostly science enthusiasts in informal settings. We believe that this is the first climate simulation to be implemented in a professionally developed computer game with modern 3D graphical output in real time. The type of simple climate model we've adopted helps us depict the seasonal cycle and the more drastic changes that come from changing the orbit or other external forcings. Users can alter the climate as the simulation is running by altering the star(s) in the simulation, dragging to change orbits and obliquity, adjusting the climate simulation parameters directly or changing other properties like CO2 concentration that affect the model parameters in representative ways. Ongoing visuals of the expansion and contraction of sea ice and snow-cover respond to the temperature calculations, and make it accessible to explore a variety of scenarios and intuitive to understand the output. Variables like temperature can also be graphed in real time. We balance computational constraints with the ability to capture the physical phenomena we wish to visualize, giving everyone access to a simple open-ended meridional energy balance climate simulation to explore and experiment with. The software lends itself to labs at a variety of levels about climate concepts including seasons, the Greenhouse effect, reservoirs and flows, albedo feedback, Snowball Earth, climate sensitivity, and model experiment design. Climate calculations are extended to Mars with some modifications to the Earth climate component, and could be used in lessons about the Mars atmosphere, and exploring scenarios of Mars climate history.

  10. Climate change: what competencies and which medical education and training approaches?

    PubMed

    Bell, Erica J

    2010-04-30

    Much research has been devoted to identifying healthcare needs in a climate-changing world. However, while there are now global and national policy statements about the importance of health workforce development for climate change, little has been published about what competencies might be demanded of practitioners in a climate-changing world. In such a context, this debate and discussion paper aims to explore the nature of key competencies and related opportunities for teaching climate change in medical education and training. Particular emphasis is made on preparation for practice in rural and remote regions likely to be greatly affected by climate change. The paper describes what kinds of competencies for climate change might be included in medical education and training. It explores which curricula, teaching, learning and assessment approaches might be involved. Rather than arguing for major changes to medical education and training, this paper explores well established precedents to offer practical suggestions for where a particular kind of literacy--eco-medical literacy--and related competencies could be naturally integrated into existing elements of medical education and training. The health effects of climate change have, generally, not yet been integrated into medical education and training systems. However, the necessary competencies could be taught by building on existing models, best practice and innovative traditions in medicine. Even in crowded curricula, climate change offers an opportunity to reinforce and extend understandings of how interactions between people and place affect health.

  11. Silvicultural decisionmaking in an uncertain climate future: a workshop-based exploration of considerations, strategies, and approaches

    Treesearch

    Maria K. Janowiak; Christopher W. Swanston; Linda M. Nagel; Christopher R. Webster; Brian J. Palik; Mark J. Twery; John B. Bradford; Linda R. Parker; Andrea T. Hille; Sheela M. Johnson

    2011-01-01

    Land managers across the country face the immense challenge of developing and applying appropriate management strategies as forests respond to climate change. We hosted a workshop to explore silvicultural strategies for addressing the uncertainties surrounding climate change and forest response in the northeastern and north-central United States. Outcomes of this...

  12. Successfully Integrating Climate Change Education into School System Curriculum

    NASA Astrophysics Data System (ADS)

    Scallion, M.

    2017-12-01

    Maryland's Eastern Shore is threatened by climate change driven sea level rise. By working with school systems, rather than just with individual teachers, educators can gain access to an entire grade level of students, assuring that all students, regardless of socioeconomic background or prior coursework have an opportunity to explore the climate issue and be part of crafting community level solutions for their communities. We will address the benefits of working with school system partners to achieve a successful integration of in-school and outdoor learning by making teachers and administrators part of the process. We will explore how, through the Maryland and Delaware Climate Change Education, Assessment, and Research Project, teachers, content supervisors and informal educators worked together to create a climate curriculum with local context that effectively meets Common Core and Next Generation Science Standards. Over the course of several weeks during the year, students engage in a series of in-class and field activities directly correlated with their science curriculum. Wetlands and birds are used as examples of the local wildlife and habitat being impacted by climate change. Through these lessons led by Pickering Creek Audubon Center educators and strengthened by material covered by classroom teachers, students get a thorough introduction to the mechanism of climate change, local impacts of climate change on habitats and wildlife, and actions they can take as a community to mitigate the effects of climate change. The project concludes with a habitat and carbon stewardship project that gives students and teachers a sense of hope as they tackle this big issue on a local scale. We'll explore how the MADE-CLEAR Informal Climate Change Education (ICCE) Community of Practice supports Delaware and Maryland environmental educators in collaboratively learning and expanding their programming on the complex issue of climate change. Participants will learn how to include climate change education as part of a larger ecological exploration, giving students and teachers local context to this global issue and memorable outdoor hands-on experiences and student driven adaptation projects.

  13. Global climate change implications for coastal and offshore oil and gas development

    USGS Publications Warehouse

    Burkett, V.

    2011-01-01

    The discussion and debate about climate change and oil and gas resource development has generally focused on how fossil fuel use affects the Earth's climate. This paper explores how the changing climate is likely to affect oil and gas operations in low-lying coastal areas and the outer continental shelf. Oil and gas production in these regions comprises a large sector of the economies of many energy producing nations. Six key climate change drivers in coastal and marine regions are characterized with respect to oil and gas development: changes in carbon dioxide levels and ocean acidity, air and water temperature, precipitation patterns, the rate of sea level rise, storm intensity, and wave regime. These key drivers have the potential to independently and cumulatively affect coastal and offshore oil and gas exploration, production, and transportation, and several impacts of climate change have already been observed in North America. ?? 2011.

  14. Melting in the Arctic: Preparing Now for Possibilities in the Future

    DTIC Science & Technology

    2016-04-04

    shipping, exploration, research, tourism , military patrols, and unfortunately the potential for conflict. So far, climate change, diplomacy, and economic...presence such as shipping, exploration, research, tourism , military patrols, and unfortunately the potential for conflict. So far, climate change...3 Tourism

  15. Losing the Lake: Simulations to Promote Gains in Student Knowledge and Interest about Climate Change

    ERIC Educational Resources Information Center

    Nussbaum, E. Michael; Owens, Marissa C.; Sinatra, Gale M.; Rehmat, Abeera P.; Cordova, Jacqueline R.; Ahmad, Sajjad; Harris, Fred C., Jr.; Dascalu, Sergiu M.

    2015-01-01

    Climate change literacy plays a key role in promoting sound political decisions and promoting sustainable consumption patterns. Based on evidence suggesting that student understanding and interest in climate change is best accomplished through studying local effects, we developed a simulation/game exploring the impact of climate change on the…

  16. The Parana paradox: can a model explain the decadal impacts of climate variability and land-cover change?

    NASA Astrophysics Data System (ADS)

    Lee, E.; Moorcroft, P. R.; Livino, A.; Briscoe, J.

    2013-12-01

    Since the 1970s, despite a decrease in rainfall, flow in the Parana river has increased. This paradox is explored using the Ecosystem Demography (ED) model. If there were no change in land cover, the modeled runoff decreased from the 1970s to the 2000s by 11.8% (with 1970 land cover) or 18.8% (with 2008 land cover). When the model is run holding climate constant, the decadal average of the modeled runoff increased by 24.4% (with the 1970s climate) or by 33.6% (with 2000s climate). When the model is run allowing both the actual climate and land-cover changes, the model gives an increase in the decadal average of runoff by 8.5%. This agrees well with 10.5% increase in the actual stream flow as measured at Itaipu. There are three main conclusions from this work. First, the ED model is able to explain a major, paradoxical, reality in the Parana basin. Second, it is necessary to take into account both climate and land use changes when exploring past or future changes in river flows. Third, the ED model, now coupled with a regional climate model (i.e., EDBRAMS), is a sound basis for exploring likely changes in river flows in major South American rivers.

  17. Social representations of climate change in Swedish lay focus groups: local or distant, gradual or catastrophic?

    PubMed

    Wibeck, Victoria

    2014-02-01

    This paper explores social representations of climate change, investigating how climate change is discussed by Swedish laypeople interacting in focus group interviews. The analysis focuses on prototypical examples and metaphors, which were key devices for objectifying climate change representations. The paper analyzes how the interaction of focus group participants with other speakers, ideas, arguments, and broader social representations shaped their representations of climate change. Climate change was understood as a global but distant issue with severe consequences. There was a dynamic tension between representations of climate change as a gradual vs. unpredictable process. Implications for climate change communication are discussed.

  18. Exploring Resilience of Canadian Rivers to Climate Change

    NASA Astrophysics Data System (ADS)

    Creed, I. F.; Paltsev, A.; Accatino, F.; Aldred, D. A.; Guo, J.; Lehner, B.; Ouellet Dallaire, C. O.

    2015-12-01

    Climate change is leading to a hydrological intensification (i.e., wet areas and periods are becoming wetter; dry areas and periods are becoming drier). Impacts of climate change across Canada will vary, and Canadians would benefit from insights as to where these impacts will occur and what these impacts will be in order to be in a position to effectively respond to these changes. Resilience is a term that is often used - and occasionally misused. We make the distinction between engineering resilience and ecological resilience. Engineering resilience assumes that a system may exist in only one stable equilibrium state, and measures the system's resistance to change. In contrast, ecological resilience assumes that a system may exist in multiple equilibrium states and measures the magnitude of change a system can absorb before shifting from one equilibrium state to another. We adopt the concept of engineering resilience and explore the ability of riverscapes (rivers and their watersheds) to maintain or quickly return to an equilibrium state in response to changing climatic conditions. We use the Budyko curve to examine interactions of climate and water yield in riverscapes across Canada. The Budyko curve describes the relationship between a riverscape's potential evapotranspiration (PET) and its actual evapotranspiration (AET) both normalized by precipitation (P) - i.e., the curve describes AET/P as a function of PET/P. We define elasticity is a measure of a system's ability to maintain this relationship consistent with the Budyko curve as climate changes (ratio of range of PET/P to range of AET/P between different climate periods). We classify each riverscape as resilient (elasticity > 1) or non-resilient (elasticity ≤ 1) in response to climate change - exploring both past and future climate change scenarios. This Budyko approach enables us to characterize the resilience of riverscapes, predict their vulnerability to climate change, and propose management measures that will enable societies to adapt to climate change.

  19. The Value of Linking Mitigation and Adaptation: A Case Study of Bangladesh

    NASA Astrophysics Data System (ADS)

    Ayers, Jessica M.; Huq, Saleemul

    2009-05-01

    There are two principal strategies for managing climate change risks: mitigation and adaptation. Until recently, mitigation and adaptation have been considered separately in both climate change science and policy. Mitigation has been treated as an issue for developed countries, which hold the greatest responsibility for climate change, while adaptation is seen as a priority for the South, where mitigative capacity is low and vulnerability is high. This conceptual divide has hindered progress against the achievement of the fundamental sustainable development challenges of climate change. Recent attention to exploring the synergies between mitigation and adaptation suggests that an integrated approach could go some way to bridging the gap between the development and adaptation priorities of the South and the need to achieve global engagement in mitigation. These issues are explored through a case study analysis of climate change policy and practice in Bangladesh. Using the example of waste-to-compost projects, a mitigation-adaptation-development nexus is demonstrated, as projects contribute to mitigation through reducing methane emissions; adaptation through soil improvement in drought-prone areas; and sustainable development, because poverty is exacerbated when climate change reduces the flows of ecosystem services. Further, linking adaptation to mitigation makes mitigation action more relevant to policymakers in Bangladesh, increasing engagement in the international climate change agenda in preparation for a post-Kyoto global strategy. This case study strengthens the argument that while combining mitigation and adaptation is not a magic bullet for climate policy, synergies, particularly at the project level, can contribute to the sustainable development goals of climate change and are worth exploring.

  20. The value of linking mitigation and adaptation: a case study of Bangladesh.

    PubMed

    Ayers, Jessica M; Huq, Saleemul

    2009-05-01

    There are two principal strategies for managing climate change risks: mitigation and adaptation. Until recently, mitigation and adaptation have been considered separately in both climate change science and policy. Mitigation has been treated as an issue for developed countries, which hold the greatest responsibility for climate change, while adaptation is seen as a priority for the South, where mitigative capacity is low and vulnerability is high. This conceptual divide has hindered progress against the achievement of the fundamental sustainable development challenges of climate change. Recent attention to exploring the synergies between mitigation and adaptation suggests that an integrated approach could go some way to bridging the gap between the development and adaptation priorities of the South and the need to achieve global engagement in mitigation. These issues are explored through a case study analysis of climate change policy and practice in Bangladesh. Using the example of waste-to-compost projects, a mitigation-adaptation-development nexus is demonstrated, as projects contribute to mitigation through reducing methane emissions; adaptation through soil improvement in drought-prone areas; and sustainable development, because poverty is exacerbated when climate change reduces the flows of ecosystem services. Further, linking adaptation to mitigation makes mitigation action more relevant to policymakers in Bangladesh, increasing engagement in the international climate change agenda in preparation for a post-Kyoto global strategy. This case study strengthens the argument that while combining mitigation and adaptation is not a magic bullet for climate policy, synergies, particularly at the project level, can contribute to the sustainable development goals of climate change and are worth exploring.

  1. Exploring Elementary Students' Understanding of Energy and Climate Change

    ERIC Educational Resources Information Center

    Boylan, Colin

    2008-01-01

    As environmental changes become a significant societal issue, elementary science curricula need to develop students' understanding about the key concepts of energy and climate change. For teachers, developing quality learning experiences involves establishing what their students' prior understanding about energy and climate change are. A survey…

  2. Reconstructing Student Conceptions of Climate Change; An Inquiry Approach

    NASA Astrophysics Data System (ADS)

    McClelland, J. Collin

    No other environmental issue today has as much potential to alter life on Earth as does global climate change. Scientific evidence continues to grow; indicating that climate change is occurring now, and that change is a result of human activities (National Research Council [NRC], 2010). The need for climate literacy in society has become increasingly urgent. Unfortunately, understanding the concepts necessary for climate literacy remains a challenge for most individuals. A growing research base has identified a number of common misconceptions people have about climate literacy concepts (Leiserowitz, Smith, & Marlon 2011; Shepardson, Niyogi, Choi, & Charusombat, 2009). However, few have explored this understanding in high school students. This sequential mixed methods study explored the changing conceptions of global climate change in 90 sophomore biology students through the course of their participation in an eight-week inquiry-based global climate change unit. The study also explored changes in students' attitudes over the course of the study unit, contemplating possible relationships between students' conceptual understanding of and attitudes toward global climate change. Phase I of the mixed methods study included quantitative analysis of pre-post content knowledge and attitude assessment data. Content knowledge gains were statistically significant and over 25% of students in the study shifted from an expressed belief of denial or uncertainty about global warming to one of belief in it. Phase II used an inductive approach to explore student attitudes and conceptions. Conceptually, very few students grew to a scientifically accurate understanding of the greenhouse effect or the relationship between global warming and climate change. However, they generally made progress in their conceptual understanding by adding more specific detail to explain their understanding. Phase III employed a case study approach with eight purposefully selected student cases, identifying five common conceptual and five common attitudebased themes. Findings suggest similar misconceptions revealed in prior research also occurred in this study group. Some examples include; connecting global warming to the hole in the ozone layer, and falsely linking unrelated environmental issues like littering to climate change. Data about students' conceptual understanding of energy may also have implications for education research curriculum development. Similar to Driver & While no statistical relationship between students' attitudes about global climate change and overall conceptual understanding emerged, some data suggested that climate change skeptics may perceive the concept of evidence differently than non-skeptics. One-way ANOVA data comparing skeptics with other students on evidence-based assessment items was significant. This study offers insights to teachers of potential barriers students face when trying to conceptualize global climate change concepts. More importantly it reinforces the idea that students generally find value in learning about global climate change in the classroom.

  3. The impact of climate change on America's forests

    Treesearch

    Linda A. Joyce; Richard Birdsey

    2000-01-01

    This report documents trends and impacts of climate change on America's forests as required by the Renewable Resources Planning Act of 1974. Recent research on the impact of climate and elevated atmospheric carbon dioxide on plant productivity is synthesized. Modeling analyses explore the potential impact of climate changes on forests, wood products, and carbon in...

  4. Using Climate Change Information in Large Scale Coastal Planning: Louisiana's 2017 Coastal Master Plan

    NASA Astrophysics Data System (ADS)

    Reed, D.

    2017-12-01

    The Louisiana coast has suffered severe land loss in recent decades as human activities have exacerbated the effects of natural stressors leading to catastrophic land loss and increased flood threats to coastal communities. Planning for the future requires a recognition of climate change but also leads to the challenge of understanding how different plausible future conditions influence the outcomes of restoration and protection actions. In coastal Louisiana, the $50 billion Coastal master Plan is legislatively required to be revisited every 5 years in order to ensure that plans for the future continue to be based on the best available, but constantly evolving, scientific information. For the 2017 iteration of the Coastal Master Plan, identification of the environmental scenarios to be explored began in 2014 and included both professional judgment regarding the most important drivers of future change, as well as climate change information derived during the National Climate Assessment. The number of scenarios to be explored was limited by both available resources and the need to make the findings accessible to stakeholders and policy makers. Plausible ranges were identified for key drivers of coastal landscape change, including climatic factors such as eustatic sea-level, precipitation and evapotranspiration. Sensitivity analysis was conducted to explore how the coastal landscape changed in response to combinations of values, allowed agency personnel to select three scenarios against which to test the effectiveness of different restoration and protection actions. The 2017 Coastal Master Plan was then developed by exploring the response of different actions to the scenarios, and how project costs also varied depending on future conditions. Such consideration of climate change in coastal planning at the state scale is facilitated by the availability of scientifically valid information on climate change, that has already been reviewed and sourced.

  5. National Security and Global Climate Change

    DTIC Science & Technology

    2008-01-01

    The uncertainty, confusion, and speculation about the causes, effects, and implications of global climate change (GCC) often paralyze serious...against scientific indications of global climate change , but to consider how it would pose challenges to national security, explore options for facing...generals and admirals, released a report concluding that projected climate change poses a serious threat to America’s national security. This article

  6. Can "Ozzie" the Ostrich Prepare the Public for Better Learning about Climate Change?

    NASA Astrophysics Data System (ADS)

    Chen, R. F.; Lustick, D. S.; Lohmeier, J.; Lockwood, L.

    2016-02-01

    Climate change is one of the most pressing societal issues today, and educators are struggling with how to inform people of all ages and backgrounds about the reality and relevance of climate change. ScienceToGo.org has designed 12 posters that were placed on the Boston subways over the course of 15 months. Surveys of T-riders suggest that Ozzie the Ostrich is highly recognizable, is non-threatening, and is connecting Boston with climate change impacts and solutions. We hypothesize that our advertising campaign not only raises awareness about climate change in Boston and engages the public in thinking and talking about climate change, but also prepares them for learning more about climate change in the future. By exposing students to the 12 posters, we think that fears associated with climate change are lessened, and that students are more willing to explore a variety of media (newspaper articles, internet postings, peer-reviewed journal articles, data, and graphs) compared to students that are not exposed to the posters. Students will complete an initial survey, be exposed (or not exposed) to Ozzie posters, asked to explore a variety of media related to climate change, then surveyed again. Finally, focus groups will be conducted to gain insights on how students interact about climate change with or without exposure to Ozzie. We are interested in learning if exposure to brief, engaging, and humorous advertising messages will change the way students learn about climate change. This presentation will present initial results of this study.

  7. Exploring Air-Climate-Energy Impacts with GCAM-USA

    EPA Science Inventory

    The Global Climate Assessment Model (GCAM) is a global integrated assessment model used for exploring future scenarios and examining strategies that address air pollution, climate change and energy (ACE) goals. My research focuseson integration of impact factors in GCAM-USA and a...

  8. Climate Change Education in Informal Settings: Using Boundary Objects to Frame Network Dissemination

    ERIC Educational Resources Information Center

    Steiner, Mary Ann

    2016-01-01

    This study of climate change education dissemination takes place in the context of a larger project where institutions in four cities worked together to develop a linked set of informal learning experiences about climate change. Each city developed an organizational network to explore new ways to connect urban audiences with climate change…

  9. How will biotic interactions influence climate change-induced range shifts?

    PubMed

    HilleRisLambers, Janneke; Harsch, Melanie A; Ettinger, Ailene K; Ford, Kevin R; Theobald, Elinore J

    2013-09-01

    Biotic interactions present a challenge in determining whether species distributions will track climate change. Interactions with competitors, consumers, mutualists, and facilitators can strongly influence local species distributions, but few studies assess how and whether these interactions will impede or accelerate climate change-induced range shifts. In this paper, we explore how ecologists might move forward on this question. We first outline the conditions under which biotic interactions can result in range shifts that proceed faster or slower than climate velocity and result in ecological surprises. Next, we use our own work to demonstrate that experimental studies documenting the strength of biotic interactions across large environmental gradients are a critical first step for understanding whether they will influence climate change-induced range shifts. Further progress could be made by integrating results from these studies into modeling frameworks to predict how or generalize when biotic interactions mediate how changing climates influence range shifts. Finally, we argue that many more case studies like those described here are needed to explore the importance of biotic interactions during climate change-induced range shifts. © 2013 New York Academy of Sciences.

  10. Singapore Students' Misconceptions of Climate Change

    ERIC Educational Resources Information Center

    Chang, Chew-Hung; Pascua, Liberty

    2016-01-01

    Climate change is an important theme in the investigation of human-environment interactions in geographic education. This study explored the nature of students' understanding of concepts and processes related to climate change. Through semi-structured interviews, data was collected from 27 Secondary 3 (Grade 9) students from Singapore. The data…

  11. The effects of climate downscaling technique and observational data set on modeled ecological responses

    Treesearch

    Afshin Pourmokhtarian; Charles T. Driscoll; John L. Campbell; Katharine Hayhoe; Anne M. K. Stoner

    2016-01-01

    Assessments of future climate change impacts on ecosystems typically rely on multiple climate model projections, but often utilize only one downscaling approach trained on one set of observations. Here, we explore the extent to which modeled biogeochemical responses to changing climate are affected by the selection of the climate downscaling method and training...

  12. Our Changing Climate: A Brand New Way to Study Climate Science

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Kauffman, C.; Geer, I.; Nugnes, K. A.; Mills, E. W.

    2014-12-01

    Earth's climate is inherently variable, but is currently changing at rates unprecedented in recent Earth history. Human activity plays a major role in this change and is projected to do so well into the future. This is the stance taken in Our Changing Climate, the brand new climate science ebook from the American Meteorological Society (AMS). Our Changing Climate investigates Earth's climate system, explores humans' impact on it, and identifies actions needed in response to climate change. Released in August 2014, Our Changing Climate is the result of a year's worth of intensive research and writing, incorporating the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the Third National Climate Assessment. To encourage additional exploration of climate science information, scientific literature, from which chapter content was derived, is cited at the conclusion of each chapter. In addition, Topic In Depth sections appear throughout each chapter and lead to more extensive information related to various topics. For example, a Topic In Depth in Chapter 11 describes the effect of climate extremes on ranching enterprises in Nebraska. Climate science is multi-disciplinary and therefore Our Changing Climate covers a breadth of topics. From understanding basic statistics and geospatial tools used to investigate Earth's climate system to examining the psychological and financial reasons behind climate change denial, the AMS believes that a multi-disciplinary approach is the most effective way to increase climate literacy. Our Changing Climate is part of the AMS Climate Studies course which is intended for undergraduate-level students. Other course materials include an eInvestigations Manual and access to the RealTime Climate Portal, both of which provide weekly activities corresponding to that week's chapter content. The RealTime Climate Portal also has links to climate data as well as societal interactions and climate policy websites to spur further interest. Faculty support materials are also provided. AMS Climate Studies has been licensed by 130 institutions since Fall 2010. Our Changing Climate reveals the impact that each of us has on the climate. With this understanding come choices and actions for a more sustainable future.

  13. The nexus of oil, conflict, and climate change vulnerability of pastoral communities in northwest Kenya

    NASA Astrophysics Data System (ADS)

    Schilling, J.; Locham, R.; Weinzierl, T.; Vivekananda, J.; Scheffran, J.

    2015-11-01

    Turkana, in northwest Kenya, is the country's poorest and least developed county. Pastoralism in Turkana is well adapted to the harsh climatic conditions, but an increase in drought frequency associated with global climate change and intensifying violent conflicts between pastoral groups poses significant challenges for local communities. The conflicts are especially violent in the border region between the Turkana and the Pokot communities. In this very region significant oil reserves have recently been found. The first aim of this paper is to analyse how the oil exploration affects the communities' vulnerability to climate change. Secondly, the paper explores the risk of the oil explorations creating new conflicts or aggravating existing ones. The primary method of the study is qualitative field research supplemented with a geo-spatial analysis of conflict data. The field research was conducted in October 2013 and April 2014 in three villages with different levels of engagement with the oil exploration. At the time of the research, oil exploration was expected close to Lokwamosing, while it had recently started in the vicinity of Lopii and had been ongoing for a longer time close to Nakukulas. The findings suggest that the oil exploration increases the community's vulnerability to climate change. Further, unmet community expectations for water, employment and development pose a significant risk for violent conflict between local communities and the operating oil company. Intercommunal conflict over water and land could increase as well.

  14. The climate change-infectious disease nexus: is it time for climate change syndemics?

    PubMed

    Heffernan, Claire

    2013-12-01

    Conceptualizing climate as a distinct variable limits our understanding of the synergies and interactions between climate change and the range of abiotic and biotic factors, which influence animal health. Frameworks such as eco-epidemiology and the epi-systems approach, while more holistic, view climate and climate change as one of many discreet drivers of disease. Here, I argue for a new paradigmatic framework: climate-change syndemics. Climate-change syndemics begins from the assumption that climate change is one of many potential influences on infectious disease processes, but crucially is unlikely to act independently or in isolation; and as such, it is the inter-relationship between factors that take primacy in explorations of infectious disease and climate change. Equally importantly, as climate change will impact a wide range of diseases, the frame of analysis is at the collective rather than individual level (for both human and animal infectious disease) across populations.

  15. Signal Trees: Communicating Attribution of Climate Change Impacts Through Causal Chain Illustrations

    NASA Astrophysics Data System (ADS)

    Cutting, H.

    2016-12-01

    Communicating the attribution of current climate change impacts is a key task for engagment with the general public, news media and policy makers, particularly as climate events unfold in real time. The IPCC WGII in AR5 validated the use of causal chain illustrations to depict attribution of individual climate change impacts. Climate Signals, an online digital platform for mapping and cataloging climate change impacts (launched in May of 2016), explores the use of such illustrations for communicating attribution. The Climate Signals project has developed semi-automated graphing software to produce custom attribution trees for numerous climate change events. This effort offers lessons for engagement of the general public and policy makers in the attribution of climate change impacts.

  16. Climate change impacts on high-elevation hydroelectricity in California

    NASA Astrophysics Data System (ADS)

    Madani, Kaveh; Guégan, Marion; Uvo, Cintia B.

    2014-03-01

    While only about 30% of California's usable water storage capacity lies at higher elevations, high-elevation (above 300 m) hydropower units generate, on average, 74% of California's in-state hydroelectricity. In general, high-elevation plants have small man-made reservoirs and rely mainly on snowpack. Their low built-in storage capacity is a concern with regard to climate warming. Snowmelt is expected to shift to earlier in the year, and the system may not be able to store sufficient water for release in high-demand periods. Previous studies have explored the climate warming effects on California's high-elevation hydropower by focusing on the supply side (exploring the effects of hydrological changes on generation and revenues) ignoring the warming effects on hydroelectricity demand and pricing. This study extends the previous work by simultaneous consideration of climate change effects on high-elevation hydropower supply and pricing in California. The California's Energy-Based Hydropower Optimization Model (EBHOM 2.0) is applied to evaluate the adaptability of California's high-elevation hydropower system to climate warming, considering the warming effects on hydroelectricity supply and pricing. The model's results relative to energy generation, energy spills, reservoir energy storage, and average shadow prices of energy generation and storage capacity expansion are examined and discussed. These results are compared with previous studies to emphasize the need to consider climate change effects on hydroelectricity demand and pricing when exploring the effects of climate change on hydropower operations.

  17. Incorporating Student Activities into Climate Change Education

    NASA Astrophysics Data System (ADS)

    Steele, H.; Kelly, K.; Klein, D.; Cadavid, A. C.

    2013-12-01

    Under a NASA grant, Mathematical and Geospatial Pathways to Climate Change Education, students at California State University, Northridge integrated Geographic Information Systems (GIS), remote sensing, satellite data technologies, and climate modelling into the study of global climate change under a Pathway for studying the Mathematics of Climate Change (PMCC). The PMCC, which is an interdisciplinary option within the BS in Applied Mathematical Sciences, consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for careers and Ph.D. programs in technical fields relevant to global climate change. Under this option students are exposed to the science, mathematics, and applications of climate change science through a variety of methods including hands-on experience with computer modeling and image processing software. In the Geography component of the program, ESRI's ArcGIS and ERDAS Imagine mapping, spatial analysis and image processing software were used to explore NASA satellite data to examine the earth's atmosphere, hydrosphere and biosphere in areas that are affected by climate change or affect climate. These technology tools were incorporated into climate change and remote sensing courses to enhance students' knowledge and understanding of climate change through hands-on application of image processing techniques to NASA data. Several sets of exercises were developed with specific learning objectives in mind. These were (1) to increase student understanding of climate change and climate change processes; (2) to develop student skills in understanding, downloading and processing satellite data; (3) to teach remote sensing technology and GIS through applications to climate change; (4) to expose students to climate data and methods they can apply to solve real world problems and incorporate in future research projects. In the Math and Physics components of the course, students learned about atmospheric circulation with applications of the Lorenz model, explored the land-sea breeze problem with the Dynamics and Thermodynamics Circulation Model (DTDM), and developed simple radiative transfer models. Class projects explored the effects of varying the content of CO2 and CH4 in the atmosphere, as well as the properties of paleoclimates in atmospheric simulations using EdGCM. Initial assessment of student knowledge, attitudes, and behaviors associated with these activities, particularly about climate change, was measured. Pre- and post-course surveys provided student perspectives about the courses and their learning about remote sensing and climate change concepts. Student performance on the tutorials and course projects evaluated students' ability to learn and apply their knowledge about climate change and skills with remote sensing to assigned problems or proposed projects of their choice. Survey and performance data illustrated that the exercises were successful in meeting their intended learning objectives as well as opportunities for further refinement and expansion.

  18. The future of fishes and fisheries in the changing oceans.

    PubMed

    Cheung, W W L

    2018-03-01

    This paper aims to highlight the risk of climate change on coupled marine human and natural systems and explore possible solutions to reduce such risk. Specifically, it explores some of the key responses of marine fish stocks and fisheries to climate change and their implications for human society. It highlights the importance of mitigating carbon emission and achieving the Paris Agreement in reducing climate risk on marine fish stocks and fisheries. Finally, it discusses potential opportunities for helping fisheries to reduce climate threats, through local adaptation. A research direction in fish biology and ecology is proposed that would help support the development of these potential solutions. © 2018 The Fisheries Society of the British Isles.

  19. Climate Change What We Know and What We Need to Learn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LLNL - University of California Television

    2008-05-01

    How is human activity changing the climate and what are the consequences? Is global warming the cause of more frequent droughts, stronger storms and less snow in the mountains? Lawrence Livermore National Laboratory Scientist Dave Bader explores what scientists know about climate change and the research tools used to study the climate. Series: Science on Saturday [10/2006] [Science] [Show ID: 11544

  20. Climate Change What We Know and What We Need to Learn

    ScienceCinema

    LLNL - University of California Television

    2017-12-09

    How is human activity changing the climate and what are the consequences? Is global warming the cause of more frequent droughts, stronger storms and less snow in the mountains? Lawrence Livermore National Laboratory Scientist Dave Bader explores what scientists know about climate change and the research tools used to study the climate. Series: Science on Saturday [10/2006] [Science] [Show ID: 11544

  1. Application of a stochastic weather generator to assess climate change impacts in a semi-arid climate: The Upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Forsythe, N.; Fowler, H. J.; Blenkinsop, S.; Burton, A.; Kilsby, C. G.; Archer, D. R.; Harpham, C.; Hashmi, M. Z.

    2014-09-01

    Assessing local climate change impacts requires downscaling from Global Climate Model simulations. Here, a stochastic rainfall model (RainSim) combined with a rainfall conditioned weather generator (CRU WG) have been successfully applied in a semi-arid mountain climate, for part of the Upper Indus Basin (UIB), for point stations at a daily time-step to explore climate change impacts. Validation of the simulated time-series against observations (1961-1990) demonstrated the models' skill in reproducing climatological means of core variables with monthly RMSE of <2.0 mm for precipitation and ⩽0.4 °C for mean temperature and daily temperature range. This level of performance is impressive given complexity of climate processes operating in this mountainous context at the boundary between monsoonal and mid-latitude (westerly) weather systems. Of equal importance the model captures well the observed interannual variability as quantified by the first and last decile of 30-year climatic periods. Differences between a control (1961-1990) and future (2071-2100) regional climate model (RCM) time-slice experiment were then used to provide change factors which could be applied within the rainfall and weather models to produce perturbed ‘future' weather time-series. These project year-round increases in precipitation (maximum seasonal mean change:+27%, annual mean change: +18%) with increased intensity in the wettest months (February, March, April) and year-round increases in mean temperature (annual mean +4.8 °C). Climatic constraints on the productivity of natural resource-dependent systems were also assessed using relevant indices from the European Climate Assessment (ECA) and indicate potential future risk to water resources and local agriculture. However, the uniformity of projected temperature increases is in stark contrast to recent seasonally asymmetrical trends in observations, so an alternative scenario of extrapolated trends was also explored. We conclude that interannual variability in climate will continue to have the dominant impact on water resources management whichever trajectory is followed. This demonstrates the need for sophisticated downscaling methods which can evaluate changes in variability and sequencing of events to explore climate change impacts in this region.

  2. Community ecology, climate change and ecohydrology in desert grassland and shrubland

    Treesearch

    Mathew Daniel Petrie

    2014-01-01

    This dissertation explores the climate, ecology and hydrology of Chihuahuan Desert ecosystems in the context of global climate change. In coming decades, the southwestern United States is projected to experience greater temperature-driven aridity, possible small decreases in annual precipitation, and a later onset of summer monsoon rainfall. These changes may have...

  3. Managing for multiple resources under climate change: national forests

    Treesearch

    Linda A. Joyce; Geoffrey M. Blate; Steven G. McNulty; Constance I. Millar; Susanne Moser; Ronald P. Neilson; David L. Peterson

    2009-01-01

    This study explores potential adaptation approaches in planning andmanagement that theUnited States Forest Servicemight adopt to help achieve its goals and objectives in the face of climate change. Availability of information, vulnerability of ecological and socio-economic systems, and uncertainties associated with climate change, as well as the interacting non-...

  4. Exploring the role of traditional ecological knowledge in climate change initiatives

    Treesearch

    Kirsten Vinyeta; Kathy Lynn

    2013-01-01

    Indigenous populations are projected to face disproportionate impacts as a result of climate change in comparison to nonindigenous populations. For this reason, many American Indian and Alaska Native tribes are identifying and implementing culturally appropriate strategies to assess climate impacts and adapt to projected changes. Traditional ecological knowledge (TEK...

  5. Seventh Graders' Ways of Reasoning in Evaluating and Generating Arguments about Climate Change Issues

    ERIC Educational Resources Information Center

    Choi, Soyoung

    2011-01-01

    The present study explored how seventh graders develop their understanding of climate change issues. Particularly, I focused on identifying students' ways of reasoning in evaluating and generating arguments. I also investigated whether students reason differently about climate change issues depending on the relevance of the issues to their daily…

  6. Responses to Climate Change: Exploring Organisational Learning across Internationally Networked Organisations for Development

    ERIC Educational Resources Information Center

    Boyd, Emily; Osbahr, Henny

    2010-01-01

    Drawing from the organisational learning and governance literature, this paper assesses four internationally networked governmental and non-governmental organisations in the UK addressing climate change. We analyse how those concerned understand the climate change crisis, what mechanisms are put in place to address information flows, and what…

  7. Climate change and environmentally responsible behavior on the Great Barrier Reef, Australia

    Treesearch

    Jee In Yoon; Gerard Kyle; Carena J. vanRiper; Stephen G. Sutton

    2012-01-01

    This study explored the relationship between Australians' perceptions of climate change, its impact on the Great Barrier Reef (GBR), and predictors of environmentally responsible behavior (ERB). Our hypothesized model suggested that general attitudes toward climate change, social pressure for engaging in ERBs (subjective norms), and perceived behavioral control (...

  8. Climate Change Course Impacts on the Individual, Their Future, and Interactions with Others

    ERIC Educational Resources Information Center

    Yanascavage, Christina

    2012-01-01

    This report explores the impacts a university climate change course has on those enrolled in the course. The research quantitatively measures and compares opinions, attitudes, and knowledge among groups, then qualitatively explores the responses of the group to identify course impacts. The results show reasons people enroll in the course, how they…

  9. Projecting Poverty at the Household Scale to Assess the Impact of Climate Change on Poor People

    NASA Astrophysics Data System (ADS)

    Hallegatte, S.; Rozenberg, J.

    2015-12-01

    This paper quantifies the potential impacts of climate change on poverty in 2030 and 2050, in 92 countries covering 90% of the developing world population. It accounts for the deep uncertainties that characterize future socio-economic evolutions and the lack of data regarding the condition and livelihood of poor people. It also considers many impacts of climate change, another source of uncertainty. We use a micro-simulation model based on household surveys and explore a wide range of uncertainties on future structural change, productivity growth or demographic changes. This results, for each country, in the creation of several hundred scenarios for future income growth and income distribution. We then explore the resulting space of possible futures and use scenario discovery techniques to identify the main drivers of inequalities and poverty reduction. We find that redistribution and structural change are powerful drivers of poverty and inequality reduction, except in low-income countries. In the poorest countries in Africa, reducing poverty cannot rely on redistribution but requires low population growth and productivity growth in agriculture. Once we have explored the space of possible outcomes for poverty and inequalities, we choose two representative scenarios of the best and worst cases and model the impacts of climate change in each of these two scenarios. Climate change impacts are modeled through 4 channels. First, climate change has an impact on labor productivity growth for people who work outside because of higher temperatures. Second, climate change has an impact on human capital because of more severe stunting in some places. Third, climate change has an impact on physical capital via more frequent natural disasters. Fourth, climate change has an impact on consumption because of changes in food prices. Impacts are very heterogeneous across countries and are mostly concentrated in African and South-East Asian countries. For high radiative forcing (RCP8.5), the impact of climate change on poverty is 6 times larger in the pessimistic scenario than in the optimistic scenario, illustrating how development and poverty reduction are powerful adaptation tools. Our results stress the urgency of achieving poverty eradication by 2030 in order to limit the negative impacts of climate change on the poor.

  10. Uncertainty in Climate Change Research: An Integrated Approach

    NASA Astrophysics Data System (ADS)

    Mearns, L.

    2017-12-01

    Uncertainty has been a major theme in research regarding climate change from virtually the very beginning. And appropriately characterizing and quantifying uncertainty has been an important aspect of this work. Initially, uncertainties were explored regarding the climate system and how it would react to future forcing. A concomitant area of concern was viewed in the future emissions and concentrations of important forcing agents such as greenhouse gases and aerosols. But, of course we know there are important uncertainties in all aspects of climate change research, not just that of the climate system and emissions. And as climate change research has become more important and of pragmatic concern as possible solutions to the climate change problem are addressed, exploring all the relevant uncertainties has become more relevant and urgent. More recently, over the past five years or so, uncertainties in impacts models, such as agricultural and hydrological models, have received much more attention, through programs such as AgMIP, and some research in this arena has indicated that the uncertainty in the impacts models can be as great or greater than that in the climate system. Still there remains other areas of uncertainty that remain underexplored and/or undervalued. This includes uncertainty in vulnerability and governance. Without more thoroughly exploring these last uncertainties, we likely will underestimate important uncertainties particularly regarding how different systems can successfully adapt to climate change . In this talk I will discuss these different uncertainties and how to combine them to give a complete picture of the total uncertainty individual systems are facing. And as part of this, I will discuss how the uncertainty can be successfully managed even if it is fairly large and deep. Part of my argument will be that large uncertainty is not the enemy, but rather false certainty is the true danger.

  11. Bringing the Science of Climate Change to Elementary Students with new Classroom Activities from Elementary GLOBE

    NASA Astrophysics Data System (ADS)

    Gardiner, L. S.; Hatheway, B.; Taylor, J.; Chambers, L. H.; Stanitski, D.

    2016-12-01

    To address the dearth of climate education resources at the elementary level, we have developed a new module of Elementary GLOBE to showcase the science of climate change for young learners. Elementary GLOBE builds K-4 student understanding of the science concepts and the practices of science research. At the heart of each Elementary GLOBE module is a fiction storybook, describing how three kids investigate a science question. Accompanying classroom activities allow students to explore the science concepts in the book in more depth and in a context appropriate for young learners. The book for the Elementary GLOBE climate module, "What in the World Is Happening to Our Climate?," is the account of an adventure to explore climate change, how it is affecting melting glacial ice and sea level rise, and how climate change is a problem that can be solved. Three hands-on activities, which will be presented at this session, allow students to explore the topics in greater depth including differences between weather and climate, how sea level rise affects coastal areas, and how they can shrink their carbon footprint to help address recent climate change. Each activity includes instructions for teachers, background information, and activity sheets for students, and is aligned to the Next Generation Science Standards and Common Core Math and Language Arts Standards. The storybook and activities were field tested in classrooms and reviewed by climate and Earth system scientists as well as elementary education and climate education specialists and educators to ensure scientific accuracy and clear explanations, and that the resources are age appropriate and reflect the needs of the climate education community. Other Elementary GLOBE modules include the science of seasonal change, water, soil, clouds, aerosols, and Earth as a system. All Elementary GLOBE educational resources are freely available online (www.globe.gov/elementaryglobe).

  12. Diving In To Sea Level Rise Using The Polar Explorer ';App'

    NASA Astrophysics Data System (ADS)

    Turrin, M.; Ryan, W. B.; Bell, R. E.; Pfirman, S. L.; Bell, B.; Porter, D. F.

    2013-12-01

    The vast majority of our lifetime is spent learning outside the classroom, yet the major emphasis in developing climate change instructional materials has been the traditional K16 school environment. The Polar Learning and Responding (PoLAR) project of the National Science Foundation supported Climate Change Education Partnership (CCEP) program chose to move beyond the classroom to focus on lifelong learners, in order to engage the adult population in building public understanding about climate change. Yet reaching individuals who make their own decisions about what and how they choose to learn requires a very different approach to developing educational materials. With an adult audience how we deliver content can be as critical as what we deliver. Using materials and platforms that are readily available and familiar to the user is important. With a significant segment of our time spent connected to smart phones and tablets, employing these platforms to deliver content makes sense. Whether at work, home or in transit, portable devices are critical companions and trusted tools in providing information on everything from the latest news to the daily weather. The world of Apps is equally as familiar to the adult user, so developing an engaging climate App for a portable device offers a successful strategy. The 'Polar Explorer - Sea Level Rise (SLR) App', is one of the new interactive products developed as part of the PoLAR project. Modeled after Columbia's Earth Observer App, a data exploration and data visualization tool, the Polar Explorer SLR App includes a wide range of real Earth data from ocean and atmospheric temperatures to depth of ice layers, underlying topography and human impacts. The Polar Explorer SLR App is grounded in the concept that scientists gain insights into climate change and climate processes through directly examining data. With some scaffolding, the public can gain similar insights using the same data. Structured to be 'question driven' the SLR App charts a range of ways to explore Earth climate data both spatially and temporally. 'What Makes Sea Level Change? How Much Ice Is There At the Poles? Has Sea Level Always Been Like This? How Fast Can Sea Level Change? Are the Ice Sheets Changing? Is There A Critical Tipping Point? What Can We Do?' Users can explore sea level using these pathways or their own queries, examining data that they can explore in a tactile way. Users can tap on any location on the maps to see the changing sea surface temperature, how much ice is stacked on Greenland, or how different the sea level was in the last ice age. The App is designed around a series of learning premises: ● Colorful data visualizations are rich learning tools, allowing the public to engage with previously inaccessible datasets ● Data exploration is inherently satisfying through a power and engagement that comes from users being able to directly interact with the data ● Interactivity with the data offers independent discovery rather than one-way communication ● Gestural motion and tactile exploration of data reinforces and cements learning Adults are today's decision makers and leaders and yet are often ignored in climate education. Providing them with materials such as the SLR App is an important step toward building public understanding about climate change.

  13. Binational climate change vulnerability assessment of migratory birds in the Great Lakes Basins: Tools and impediments.

    PubMed

    Rempel, Robert S; Hornseth, Megan L

    2017-01-01

    Climate change is a global concern, requiring international strategies to reduce emissions, however, climate change vulnerability assessments are often local in scope with assessment areas restricted to jurisdictional boundaries. In our study we explored tools and impediments to understanding and responding to the effects of climate change on vulnerability of migratory birds from a binational perspective. We apply and assess the utility of a Climate Change Vulnerability Index on 3 focal species using distribution or niche modeling frameworks. We use the distributional forecasts to explore possible changes to jurisdictional conservation responsibilities resulting from shifting distributions for: eastern meadowlark (Sturnella magna), wood thrush (Hylocichla mustelina), and hooded warbler (Setophaga citrina). We found the Climate Change Vulnerability Index to be a well-organized approach to integrating numerous lines of evidence concerning effects of climate change, and provided transparency to the final assessment of vulnerability. Under this framework, we identified that eastern meadowlark and wood thrush are highly vulnerable to climate change, but hooded warbler is less vulnerable. Our study revealed impediments to assessing and modeling vulnerability to climate change from a binational perspective, including gaps in data or modeling for climate exposure parameters. We recommend increased cross-border collaboration to enhance the availability and resources needed to improve vulnerability assessments and development of conservation strategies. We did not find evidence to suggest major shifts in jurisdictional responsibility for the 3 focal species, but results do indicate increasing responsibility for these birds in the Canadian Provinces. These Provinces should consider conservation planning to help ensure a future supply of necessary habitat for these species.

  14. Binational climate change vulnerability assessment of migratory birds in the Great Lakes Basins: Tools and impediments

    PubMed Central

    2017-01-01

    Climate change is a global concern, requiring international strategies to reduce emissions, however, climate change vulnerability assessments are often local in scope with assessment areas restricted to jurisdictional boundaries. In our study we explored tools and impediments to understanding and responding to the effects of climate change on vulnerability of migratory birds from a binational perspective. We apply and assess the utility of a Climate Change Vulnerability Index on 3 focal species using distribution or niche modeling frameworks. We use the distributional forecasts to explore possible changes to jurisdictional conservation responsibilities resulting from shifting distributions for: eastern meadowlark (Sturnella magna), wood thrush (Hylocichla mustelina), and hooded warbler (Setophaga citrina). We found the Climate Change Vulnerability Index to be a well-organized approach to integrating numerous lines of evidence concerning effects of climate change, and provided transparency to the final assessment of vulnerability. Under this framework, we identified that eastern meadowlark and wood thrush are highly vulnerable to climate change, but hooded warbler is less vulnerable. Our study revealed impediments to assessing and modeling vulnerability to climate change from a binational perspective, including gaps in data or modeling for climate exposure parameters. We recommend increased cross-border collaboration to enhance the availability and resources needed to improve vulnerability assessments and development of conservation strategies. We did not find evidence to suggest major shifts in jurisdictional responsibility for the 3 focal species, but results do indicate increasing responsibility for these birds in the Canadian Provinces. These Provinces should consider conservation planning to help ensure a future supply of necessary habitat for these species. PMID:28225817

  15. A study of the impacts of climate change scenarios on the plant hardiness zones of Albania

    USDA-ARS?s Scientific Manuscript database

    Maps of plant hardiness zones are useful tools for determining the extreme limits for the survival of plants. Exploration of projected climate change effects on hardiness zones can help identify areas most affected by climate change. Such studies are important in areas with high risks related to cli...

  16. Model-based scenario planning to develop climate change adaptation strategies for rare plant populations in grassland reserves

    Treesearch

    Laura Phillips-Mao; Susan M. Galatowitsch; Stephanie A. Snyder; Robert G. Haight

    2016-01-01

    Incorporating climate change into conservation decision-making at site and population scales is challenging due to uncertainties associated with localized climate change impacts and population responses to multiple interacting impacts and adaptation strategies. We explore the use of spatially explicit population models to facilitate scenario analysis, a conservation...

  17. Geography Teachers and Climate Change: Emotions about Consequences, Coping Strategies, and Views on Mitigation

    ERIC Educational Resources Information Center

    Hermans, Mikaela

    2016-01-01

    It has been indicated that teachers' emotions about climate change and their views on mitigation influence their instruction and students' engagement in mitigation actions. The aim of the study is to explore Finnish secondary geography teachers' emotions about the consequences of climate change, their strategies for coping with these emotions, and…

  18. Personal Epistemology across Cultures: Exploring Norwegian and Spanish University Students' Epistemic Beliefs about Climate Change

    ERIC Educational Resources Information Center

    Braten, Ivar; Gil, Laura; Stromso, Helge I.; Vidal-Abarca, Eduardo

    2009-01-01

    The primary aim was to explore and compare the dimensionality of personal epistemology with respect to climate change across the contexts of Norwegian and Spanish students. A second aim was to examine relationships between topic-specific epistemic beliefs and the variables of gender, topic knowledge, and topic interest in the two contexts.…

  19. Melting in the Arctic: Preparing Now for Possibilities in the Future

    DTIC Science & Technology

    2016-04-04

    shipping, exploration, research, tourism , military patrols, and unfortunately the potential for conflict. So far, climate change, diplomacy, and economic...presence such as shipping, exploration, research, tourism , military patrols, and unfortunately the potential for conflict. So far, climate change...Two, as well as the rest of the students, faculty, and staff, made this year a tremendous learning experience . ii

  20. Connecting Current Research on Climate and Snow with Individuals Who Care

    NASA Astrophysics Data System (ADS)

    Moore, C. E.; Denning, S.

    2015-12-01

    A growing body of research explores the effects of climate change on snow in the Southern Rocky Mountains. This research includes observing climate and weather patterns, modeling potential future winter climate and snowpack, and exploring how these changes will affect the ecosystems, people, and industries that rely on frozen reservoirs of seasonal snow. We review existing resources for non-scientists on this topic, and explain how climate and snow are changing in the Southern Rocky Mountains. The Southern Rockies urban corridor is home to a growing population of people who rely directly on snowmelt runoff for daily life, health, and prosperity. Many of these people also seek refuge from growing urbanization by escaping to the mountains. Meanwhile, high elevations in the Rockies are already experiencing noticeable effects of climate change. Individuals with personal connections to the mountains make a ready audience to receive accessible science communication grounded in current research. People who care about mountains may be inspired to join the conversation and take action in their own lives as they learn what is already changing and what they might expect to find in winters to come.

  1. When climate science became climate politics: British media representations of climate change in 1988.

    PubMed

    Jaspal, Rusi; Nerlich, Brigitte

    2014-02-01

    Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.

  2. Communicating Urban Climate Change

    NASA Astrophysics Data System (ADS)

    Snyder, S.; Crowley, K.; Horton, R.; Bader, D.; Hoffstadt, R.; Labriole, M.; Shugart, E.; Steiner, M.; Climate; Urban Systems Partnership

    2011-12-01

    While cities cover only 2% of the Earth's surface, over 50% of the world's people live in urban environments. Precisely because of their population density, cities can play a large role in reducing or exacerbating the global impact of climate change. The actions of cities could hold the key to slowing down climate change. Urban dwellers are becoming more aware of the need to reduce their carbon usage and to implement adaptation strategies. However, messaging around these strategies has not been comprehensive and adaptation to climate change requires local knowledge, capacity and a high level of coordination. Unless urban populations understand climate change and its impacts it is unlikely that cities will be able to successfully implement policies that reduce anthropogenic climate change. Informal and formal educational institutions in urban environments can serve as catalysts when partnering with climate scientists, educational research groups, and public policy makers to disseminate information about climate change and its impacts on urban audiences. The Climate and Urban Systems Partnership (CUSP) is an interdisciplinary network designed to assess and meet the needs and challenges of educating urban audiences about climate change. CUSP brings together organizations in Philadelphia, Pittsburgh, Queens, NY and Washington, DC to forge links with informal and formal education partners, city government, and policy makers. Together this network will create and disseminate learner-focused climate education programs and resources for urban audiences that, while distinct, are thematically and temporally coordinated, resulting in the communication of clear and consistent information and learning experiences about climate science to a wide public audience. Working at a community level CUSP will bring coordinated programming directly into neighborhoods presenting the issues of global climate change in a highly local context. The project is currently exploring a number of models for community programming and this session will present early results of these efforts while engaging participants in exploring approaches to connecting urban communities and their local concerns to the issues of global climate change.

  3. Readying health services for climate change: a policy framework for regional development.

    PubMed

    Bell, Erica

    2011-05-01

    Climate change presents the biggest threat to human health in the 21st century. However, many public health leaders feel ill equipped to face the challenges of climate change and have been unable to make climate change a priority in service development. I explore how to achieve a regionally responsive whole-of-systems approach to climate change in the key operational areas of a health service: service governance and culture, service delivery, workforce development, asset management, and financing. The relative neglect of implementation science means that policymakers need to be proactive about sourcing and developing models and processes to make health services ready for climate change. Health research funding agencies should urgently prioritize applied, regionally responsive health services research for a future of climate change.

  4. Readying Health Services for Climate Change: A Policy Framework for Regional Development

    PubMed Central

    2011-01-01

    Climate change presents the biggest threat to human health in the 21st century. However, many public health leaders feel ill equipped to face the challenges of climate change and have been unable to make climate change a priority in service development. I explore how to achieve a regionally responsive whole-of-systems approach to climate change in the key operational areas of a health service: service governance and culture, service delivery, workforce development, asset management, and financing. The relative neglect of implementation science means that policymakers need to be proactive about sourcing and developing models and processes to make health services ready for climate change. Health research funding agencies should urgently prioritize applied, regionally responsive health services research for a future of climate change. PMID:21421953

  5. Arctic: A Friend Acting Strangely

    Science.gov Websites

    frequent. Explore the Arctic's changing climate. Discover what these changes mean for the Arctic, its warming in the Arctic by exploring how changes have been observed and documented by scientists and polar

  6. Educating with Resilience in Mind: Addressing Climate Change in Post-Sandy New York City

    ERIC Educational Resources Information Center

    Dubois, Bryce; E. Krasny, Marianne

    2016-01-01

    How educators adapt their programs following a climate related disturbance can provide insights into potential climate education practices. Therefore, we used semi-structured interviews to explore changes in environmental education practice in NYC following Hurricane Sandy. Educators adopted new language to reflect funding opportunities and…

  7. Weighing the relative potential impacts of climate change and land-use change on an endangered bird.

    PubMed

    Bancroft, Betsy A; Lawler, Joshua J; Schumaker, Nathan H

    2016-07-01

    Climate change and land-use change are projected to be the two greatest drivers of biodiversity loss over the coming century. Land-use change has resulted in extensive habitat loss for many species. Likewise, climate change has affected many species resulting in range shifts, changes in phenology, and altered interactions. We used a spatially explicit, individual-based model to explore the effects of land-use change and climate change on a population of the endangered Red-cockaded Woodpecker (RCW; Picoides borealis). We modeled the effects of land-use change using multiple scenarios representing different spatial arrangements of new training areas for troops across Fort Benning. We used projected climate-driven changes in habitat and changes in reproductive output to explore the potential effects of climate change. We summarized potential changes in habitat based on the output of the dynamic vegetation model LPJ-GUESS, run for multiple climate change scenarios through the year 2100. We projected potential changes in reproduction based on an empirical relationship between spring precipitation and the mean number of successful fledglings produced per nest attempt. As modeled in our study, climate change had virtually no effect on the RCW population. Conversely, simulated effects of land-use change resulted in the loss of up to 28 breeding pairs by 2100. However, the simulated impacts of development depended on where the development occurred and could be completely avoided if the new training areas were placed in poor-quality habitat. Our results demonstrate the flexibility inherent in many systems that allows seemingly incompatible human land uses, such as development, and conservation actions to exist side by side.

  8. Exploring students' epistemological knowledge of models and modelling in science: results from a teaching/learning experience on climate change

    NASA Astrophysics Data System (ADS)

    Tasquier, Giulia; Levrini, Olivia; Dillon, Justin

    2016-03-01

    The scientific community has been debating climate change for over two decades. In the light of certain arguments put forward by the aforesaid community, the EU has recommended a set of innovative reforms to science teaching such as incorporating environmental issues into the scientific curriculum, thereby helping to make schools a place of civic education. However, despite these European recommendations, relatively little emphasis is still given to climate change within science curricula. Climate change, although potentially engaging for students, is a complex topic that poses conceptual difficulties and emotional barriers, as well as epistemological challenges. Whilst the conceptual and emotional barriers have already been the object of several studies, students' reactions to the epistemological issues raised by climate changes have so far been rarely explored in science education research and thus are the main focus of this paper. This paper describes a study concerning the implementation of teaching materials designed to focus on the epistemological role of 'models and the game of modelling' in science and particularly when dealing with climate change. The materials were implemented in a course of 15 hours (five 3-hour lessons) for a class of Italian secondary-school students (grade 11; 16-17 years old). The purpose of the study is to investigate students' reactions to the epistemological dimension of the materials, and to explore if and how the material enabled them to develop their epistemological knowledge on models.

  9. BASINS Climate Assessment Tool Tutorials

    EPA Pesticide Factsheets

    The BASINS Climate Assessment Tool (CAT) provides a flexible set of capabilities for exploring the potential effects of climate change on streamflow and water quality using different watershed models in BASINS.

  10. Climate Change and Water Resources Management: A Federal Perspective

    USGS Publications Warehouse

    Brekke, Levi D.; Kiang, Julie E.; Olsen, J. Rolf; Pulwarty, Roger S.; Raff, David A.; Turnipseed, D. Phil; Webb, Robert S.; White, Kathleen D.

    2009-01-01

    Many challenges, including climate change, face the Nation's water managers. The Intergovernmental Panel on Climate Change (IPCC) has provided estimates of how climate may change, but more understanding of the processes driving the changes, the sequences of the changes, and the manifestation of these global changes at different scales could be beneficial. Since the changes will likely affect fundamental drivers of the hydrological cycle, climate change may have a large impact on water resources and water resources managers. The purpose of this interagency report prepared by the U.S. Geological Survey (USGS), U.S. Army Corps of Engineers (USACE), Bureau of Reclamation (Reclamation), and National Oceanic and Atmospheric Administration (NOAA) is to explore strategies to improve water management by tracking, anticipating, and responding to climate change. This report describes the existing and still needed underpinning science crucial to addressing the many impacts of climate change on water resources management.

  11. Exploring the Role of Future Perspective in Predicting Turkish University Students' Beliefs about Global Climate Change

    ERIC Educational Resources Information Center

    Ates, Deniz; Teksöz, Gaye; Ertepinar, Hamide

    2017-01-01

    Recent studies indicate that limited understanding about causes and its potential impacts of climate change and fault beliefs by people across different countries of the world including Turkey is a real challenge. Acceptance of climate change as a real threat, believing its existence, and knowing causes and consequences are very significant for…

  12. Stream nitrate responses to hydrological forcing and climate change in northern forests of the USA (Invited)

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Campbell, J. L.; Shanley, J. B.; Pourmokhtarian, A.; Driscoll, C. T.; Boyer, E. W.

    2009-12-01

    There is a need to understand how climate variability and change affect nutrient delivery to surface waters. We analyzed long-term records of hydrochemical data to explore how the forms, concentrations, and loadings of nitrogen in forest streams throughout the northern USA vary with catchment wetness. We considered projected changes in growing season length and precipitation patterns to simulate future climate scenarios and to assess how stream nitrate loading responds to hydrological forcing under different climate change scenarios. At the Sleepers River Research Watershed in northeastern Vermont, model results suggest that stream nutrient loadings over the next century will respond to hydrological forcing during climate change that affects the amount of water that flows through the landscape. For example, growing season stream water yield (+20%) and nitrate loadings (+57%) increase in response to greater amounts of precipitation (+28%) during a warmer climate with a longer growing season (+43 days). We further explore these findings by presenting model results from a biogeochemical process model (PnET-BGC) to separate changes that are due to biogeochemical cycling and the effects of hydrological forcing. Our findings suggest that nitrogen cycling and transport will intensify during anthropogenic climate forcing, thereby affecting the timing and magnitude of annual stream nutrient loadings in northern forests of the USA.

  13. Changes in precipitation-streamflow transformation around the world: interdecadal variability and trends.

    NASA Astrophysics Data System (ADS)

    Saft, M.; Peel, M. C.; Andreassian, V.; Parajka, J.; Coxon, G.; Freer, J. E.; Woods, R. A.

    2017-12-01

    Accurate prediction of hydrologic response to potentially changing climatic forcing is a key current challenge in hydrology. Recent studies exploring decadal to multidecadal climate drying in the African Sahel and south-eastern and south-western Australia demonstrated that long dry periods also had an indirect cumulative impact on streamflow via altered catchment biophysical properties. As a result, hydrologic response to persisting change in climatic conditions, i.e. precipitation, cannot be confidently inferred from the hydrologic response to short-term interannual climate fluctuations of similar magnitude. This study aims to characterise interdecadal changes in precipitation-runoff conversion processes globally. The analysis is based on long continuous records from near-natural baseline catchments in North America, Europe, and Australia. We used several complimentary metrics characterising precipitation-runoff relationship to assess how partitioning changed over recent decades. First, we explore the hypothesis that during particularly dry or wet decades the precipitation elasticity of streamflow increases over what can be expected from inter-annual variability. We found this hypothesis holds for both wet and dry periods in some regions, but not everywhere. Interestingly, trend-like behaviour in the precipitation-runoff partitioning, unrelated to precipitation changes, offset the impact of persisting precipitation change in some regions. Therefore, in the second part of this study we explored longer-term trends in precipitation-runoff partitioning, and related them to climate and streamflow changes. We found significant changes in precipitation-runoff relationship around the world, which implies that runoff response to a given precipitation can vary over decades even in near-natural catchments. When significant changes occur, typically less runoff is generated for a given precipitation over time - even when precipitation is increasing. We discuss the consistency of the results and how the likely drivers differ between regions, and between water-limited and energy limited environments. We argue that when considering the impact of climatic change on hydrological systems we need to consider potential cumulative impacts of climatic shifts.

  14. Weather on Steroids: The Art of Climate Change Science.

    NASA Astrophysics Data System (ADS)

    Boudrias, M. A.; Gershunov, A.; Sizonenko, T.; Wiese, A.; Fox, H.

    2017-12-01

    There have been many different kinds of efforts to improve climate change literacy of diverse audiences in the past several years. The challenge has been to balance science content with audience-specific messaging that engages them in both rational and affective ways. In the San Diego Region, Climate Education Partners (CEP) has been working with business leaders, elected officials, tribal leaders, and other community leaders to develop a suite of programs and activities to enhance the channels of communication outside traditional settings. CEP has partnered with the La Jolla Historical Society and the Scripps Institution of Oceanography in a unique exhibition of art inspired by climate science, a project blending science and art to communicate the science of climate change in a new way and engage audiences more effectively. Weather on Steroids: the Art of Climate Change Science explores the question of consequences, challenges, and opportunities that arise from the changing climate on our planet. The exhibition merges the artistic and scientific to create a visual dialogue about the vexing problem of climate change, explores how weather variability affects the day-to-day life of local communities, and investigates Southern California vulnerability to climate change. Science serves as the inspiration for the creative responses from visual artists, who merge subjective images with empirical observation to reveal how climate variations upset the planet's balance with extreme weather impacts. Both the scientists and artists created didactic pages to explain their perspectives and each pair worked closely to incorporate the information into the creative piece so that the connection of each of 11 art installations to the science that inspired them is clear. By illuminating the reality of climate change, Weather on Steroids aspires to proactively stimulate public dialogue about one of the most important issues of our time.

  15. Reduction emissions from transport sector - EU action against climate change

    DOT National Transportation Integrated Search

    2009-08-01

    This paper explores and discusses the initiation and development of the EU's policies and strategies against climate change and the share experiences in the EU transport sector to reduce CO2 emission.

  16. Potential population-level effects of land-use change and climate change

    EPA Science Inventory

    Climate change and land-use change are poised to be two fo the largest drivers of biological changeover the next century. We explored the potential effects of these two forces on a population of Red-cockaded Woodpeckers (Picoides borealis) at Fort Benning in Georgia, USA. We us...

  17. On Dangerous Anthropogenic Interference and Climate Change Risk (Invited)

    NASA Astrophysics Data System (ADS)

    Mann, M. E.

    2009-12-01

    The United Nations Framework Convention on Climate Change (UNFCCC) commits signatory nations (which includes all major nations including the United States) to stabilizing greenhouse gas concentrations at levels short of Dangerous Anthropogenic Interference (“ DAI”) with the climate. To properly define DAI, one must take into account issues that are not only scientific, but, economic, political, and ethical in nature. Defining DAI is furthermore complicated by the inter-generational and regionally-disaggregated nature of the risks associated with climate change. In this talk, I will explore the nature of anthropogenic climate change risks and the notion of DAI.

  18. Climate Change in an IB PYP Classroom

    NASA Astrophysics Data System (ADS)

    da Costa, Ana

    2014-05-01

    Students in elementary school are inherently curious, which allows them to explore, experiment and investigate various themes, while also demonstrating the will to preserve the resources that surround them and take action to contribute to a better world. One of the units taught at International School Carinthia is "climate change" and its impacts on life on Earth. During this unit, grade 4 students conduct research to answer their own inquiries related to this topic. They investigate the different climate zones on our planet, examine why climate change happens, and discover how global warming and climate change are connected and its consequences on living beings.

  19. Creating Effective Dialogue Around Climate Change

    NASA Astrophysics Data System (ADS)

    Kiehl, J. T.

    2015-12-01

    Communicating climate change to people from diverse sectors of society has proven to be difficult in the United States. It is widely recognized that difficulties arise from a number of sources, including: basic science understanding, the psychologically affect laden content surrounding climate change, and the diversity of value systems that exist in our society. I explore ways of working with the affect that arises around climate change and describe specific methods to work with the resistance often encountered when communicating this important issue. The techniques I describe are rooted in psychology and group process and provide means for creating more effective narratives to break through the barriers to communicating climate change science. Examples are given from personal experiences in presenting climate change to diverse groups.

  20. Global climate change and US agriculture

    NASA Technical Reports Server (NTRS)

    Adams, Richard M.; Rosenzweig, Cynthia; Peart, Robert M.; Ritchie, Joe T.; Mccarl, Bruce A.

    1990-01-01

    Agricultural productivity is expected to be sensitive to global climate change. Models from atmospheric science, plant science, and agricultural economics are linked to explore this sensitivity. Although the results depend on the severity of climate change and the compensating effects of carbon dioxide on crop yields, the simulation suggests that irrigated acreage will expand and regional patterns of U.S. agriculture will shift. The impact of the U.S. economy strongly depends on which climate model is used.

  1. 'Changing climate, changing health, changing stories' profile: using an EcoHealth approach to explore impacts of climate change on inuit health.

    PubMed

    Harper, S L; Edge, V L; Cunsolo Willox, A

    2012-03-01

    Global climate change and its impact on public health exemplify the challenge of managing complexity and uncertainty in health research. The Canadian North is currently experiencing dramatic shifts in climate, resulting in environmental changes which impact Inuit livelihoods, cultural practices, and health. For researchers investigating potential climate change impacts on Inuit health, it has become clear that comprehensive and meaningful research outcomes depend on taking a systemic and transdisciplinary approach that engages local citizens in project design, data collection, and analysis. While it is increasingly recognised that using approaches that embrace complexity is a necessity in public health, mobilizing such approaches from theory into practice can be challenging. In 2009, the Rigolet Inuit Community Government in Rigolet, Nunatsiavut, Canada partnered with a transdisciplinary team of researchers, health practitioners, and community storytelling facilitators to create the Changing Climate, Changing Health, Changing Stories project, aimed at developing a multi-media participatory, community-run methodological strategy to gather locally appropriate and meaningful data to explore climate-health relationships. The goal of this profile paper is to describe how an EcoHealth approach guided by principles of transdisciplinarity, community participation, and social equity was used to plan and implement this climate-health research project. An overview of the project, including project development, research methods, project outcomes to date, and challenges encountered, is presented. Though introduced in this one case study, the processes, methods, and lessons learned are broadly applicable to researchers and communities interested in implementing EcoHealth approaches in community-based research.

  2. Simulating future climate and land-use impacts on at-risk species in parks and protected areas

    EPA Science Inventory

    Alpine and sagebrush ecosystems in the mountain west are under threat from climate change and development. The wolverine, fisher, greater sage-grouse,and pygmy rabbit are iconic at-risk species in the region. We explore the impacts of future climate and land-use change on these s...

  3. Exploring tree species colonization potentials using a spatially explicit simulation model: implications for four oaks under climate change

    Treesearch

    Anantha M. Prasad; Judith D. Gardiner; Louis R. Iverson; Stephen N. Matthews; Matthew Peters

    2013-01-01

    Climate change impacts tree species differentially by exerting unique pressures and altering their suitable habitats. We previously predicted these changes in suitable habitat for current and future climates using a species habitat model (DISTRIB) in the eastern United States. Based on the accuracy of the model, the species assemblages should eventually reflect the new...

  4. Textbooks of Doubt: Using Systemic Functional Analysis to Explore the Framing of Climate Change in Middle-School Science Textbooks

    ERIC Educational Resources Information Center

    Román, Diego; Busch, K. C.

    2016-01-01

    Middle school students are learning about climate change in large part through textbooks used in their classes. Therefore, it is crucial to understand how the language employed in these materials frames this topic. To this end, we used systemic functional analysis to study the language of the chapters related to climate change in four sixth grade…

  5. Climate change impact assessments on the water resources of India under extensive human interventions.

    PubMed

    Madhusoodhanan, C G; Sreeja, K G; Eldho, T I

    2016-10-01

    Climate change is a major concern in the twenty-first century and its assessments are associated with multiple uncertainties, exacerbated and confounded in the regions where human interventions are prevalent. The present study explores the challenges for climate change impact assessment on the water resources of India, one of the world's largest human-modified systems. The extensive human interventions in the Energy-Land-Water-Climate (ELWC) nexus significantly impact the water resources of the country. The direct human interventions in the landscape may surpass/amplify/mask the impacts of climate change and in the process also affect climate change itself. Uncertainties in climate and resource assessments add to the challenge. Formulating coherent resource and climate change policies in India would therefore require an integrated approach that would assess the multiple interlinkages in the ELWC nexus and distinguish the impacts of global climate change from that of regional human interventions. Concerted research efforts are also needed to incorporate the prominent linkages in the ELWC nexus in climate/earth system modelling.

  6. Interactions between tectonics, climate and vegetation during the Cretaceous. A context for the diversification of Angiosperms.

    NASA Astrophysics Data System (ADS)

    Sepulchre, Pierre; Chaboureau, Anne-Claire; Donnadieu, Yannick; Franc, Alain; Ladant, Jean-Baptiste

    2017-04-01

    It has long been thought that the Angiosperms diversification occurred within a context of warmer-than-present and equable climate during the Cretaceous. However, during the last decade, the view of a uniformely warm Cretaceous climate has been challenged both by paleoclimate proxies and numerical simulations. Among the processes likely affecting climate during this time, atmospheric pCO2 and tectonics appear to be pivotal to drive temperature and precipitation changes, while the feedbacks from vegetation cover changes on the hydrological cycles remain to be explored. Here we attempt to provide a review of the main studies exploring climate-vegetation interactions during the Cretaceous. Then we present climate simulations aiming at quantifying the impact of landmasses redistribution on climate and vegetation distribution from 225 Ma to 70 Ma. In our simulations, the Pangea breakup triggers the decrease of arid belts from the Triassic to the Cretaceous and a subsequent onset of humid conditions during the late Cretaceous. Positioning angiosperm-bearing fossil sites on our paleo-bioclimatic maps confirm that the rise of flowering plants occured within a context of changing climate. With additional simulations in which we modified physiological parameterizations of the vegetation, we explore the combined impact of paleogeography and shift to angiosperms-dominated land surfaces on climate at the regional and global scales. This gives us the opportunity to test earlier ideas that the angiosperms takeover could have benefited from a positive feedback induced by their particular transpiration capacities.

  7. Climate Change and Risks to National Security

    NASA Astrophysics Data System (ADS)

    Titley, D.

    2017-12-01

    Climate change impacts national security in three ways: through changes in the operating environments of the military; by increasing risks to security infrastructure, specifically bases and training ranges; and by exacerbating and accelerating the risks of state collapse and conflict in regions that are already fragile and unstable. Additionally there will be unique security challenges in the Arctic as sea-ice melts out and human activities increase across multiple dimensions. Military forces will also likely see increased demand for Humanitarian Assistance and Disaster Relief resulting from a combination of increased human population, rising sea-level, and potentially stronger and wetter storms. The talk will explore some of the lesser known aspects of these changes, examine selected climate-driven 'wild cards' that have the potential to disrupt regional and global security, and explore how migration in the face of a changing climate may heighten security issues. I will assess the positions U.S. executive and legislative branches with respect to climate & security, and how those positions have evolved since the November 2016 election, sometimes in counter-intuitive ways. The talk will close with some recommended courses of action the security enterprise can take to manage this climate risk.

  8. Effects of temperature change on mussel, Mytilus.

    PubMed

    Zippay, Mackenzie L; Helmuth, Brian

    2012-09-01

    An increasing body of research has demonstrated the often idiosyncratic responses of organisms to climate-related factors, such as increases in air, sea and land surface temperatures, especially when coupled with non-climatic stressors. This argues that sweeping generalizations about the likely impacts of climate change on organisms and ecosystems are likely less valuable than process-based explorations that focus on key species and ecosystems. Mussels in the genus Mytilus have been studied for centuries, and much is known of their physiology and ecology. Like other intertidal organisms, these animals may serve as early indicators of climate change impacts. As structuring species, their survival has cascading impacts on many other species, making them ecologically important, in addition to their economic value as a food source. Here, we briefly review the categories of information available on the effects of temperature change on mussels within this genus. Although a considerable body of information exists about the genus in general, knowledge gaps still exist, specifically in our ability to predict how specific populations are likely to respond to the effects of multiple stressors, both climate and non-climate related, and how these changes are likely to result in ecosystem-level responses. Whereas this genus provides an excellent model for exploring the effects of climate change on natural and human-managed ecosystems, much work remains if we are to make predictions of likely impacts of environmental change on scales that are relevant to climate adaptation. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  9. Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change.

    PubMed

    Diamond, Sarah E

    2017-02-01

    How will organisms respond to climate change? The rapid changes in global climate are expected to impose strong directional selection on fitness-related traits. A major open question then is the potential for adaptive evolutionary change under these shifting climates. At the most basic level, evolutionary change requires the presence of heritable variation and natural selection. Because organismal tolerances of high temperature place an upper bound on responding to temperature change, there has been a surge of research effort on the evolutionary potential of upper thermal tolerance traits. Here, I review the available evidence on heritable variation in upper thermal tolerance traits, adopting a biogeographic perspective to understand how heritability of tolerance varies across space. Specifically, I use meta-analytical models to explore the relationship between upper thermal tolerance heritability and environmental variability in temperature. I also explore how variation in the methods used to obtain these thermal tolerance heritabilities influences the estimation of heritable variation in tolerance. I conclude by discussing the implications of a positive relationship between thermal tolerance heritability and environmental variability in temperature and how this might influence responses to future changes in climate. © 2016 New York Academy of Sciences.

  10. Climate change collaboration among natural resource management agencies: lessons learned from two US regions

    USGS Publications Warehouse

    Lemieux, Christopher J.; Thompson, Jessica; Slocombe, D. Scott; Schuster, Rudy

    2015-01-01

    It has been argued that regional collaboration can facilitate adaptation to climate change impacts through integrated planning and management. In an attempt to understand the underlying institutional factors that either support or contest this assumption, this paper explores the institutional factors influencing adaptation to climate change at the regional scale, where multiple public land and natural resource management jurisdictions are involved. Insights from two mid-western US case studies reveal that several challenges to collaboration persist and prevent fully integrative multi-jurisdictional adaptation planning at a regional scale. We propose that some of these challenges, such as lack of adequate time, funding and communication channels, be reframed as opportunities to build interdependence, identify issue-linkages and collaboratively explore the nature and extent of organisational trade-offs with respect to regional climate change adaptation efforts. Such a reframing can better facilitate multi-jurisdictional adaptation planning and management of shared biophysical resources generally while simultaneously enhancing organisational capacity to mitigate negative effects and take advantage of potentially favourable future conditions in an era characterised by rapid climate change.

  11. Nation-building policies in Timor-Leste: disaster risk reduction, including climate change adaptation.

    PubMed

    Mercer, Jessica; Kelman, Ilan; do Rosario, Francisco; de Deus de Jesus Lima, Abilio; da Silva, Augusto; Beloff, Anna-Maija; McClean, Alex

    2014-10-01

    Few studies have explored the relationships between nation-building, disaster risk reduction and climate change adaptation. Focusing on small island developing states, this paper examines nation-building in Timor-Leste, a small island developing state that recently achieved independence. Nation-building in Timor-Leste is explored in the context of disaster risk reduction, which necessarily includes climate change adaptation. The study presents a synopsis of Timor-Leste's history and its nation-building efforts as well as an overview of the state of knowledge of disaster risk reduction including climate change adaptation. It also offers an analysis of significant gaps and challenges in terms of vertical and horizontal governance, large donor presence, data availability and the integration of disaster risk reduction and climate change adaptation for nation-building in Timor-Leste. Relevant and applicable lessons are provided from other small island developing states to assist Timor-Leste in identifying its own trajectory out of underdevelopment while it builds on existing strengths. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.

  12. A Web-Based Modelling Platform for Interactive Exploration of Regional Responses to Global Change

    NASA Astrophysics Data System (ADS)

    Holman, I.

    2014-12-01

    Climate change adaptation is a complex human-environmental problem that is framed by the uncertainty in impacts and the adaptation choices available, but is also bounded by real-world constraints such as future resource availability and environmental and institutional capacities. Educating the next generation of informed decision-makers that will be able to make knowledgeable responses to global climate change impacts requires them to have access to information that is credible, accurate, easy to understand, and appropriate. However, available resources are too often produced by inaccessible models for scenario simulations chosen by researchers hindering exploration and enquiry. This paper describes the interactive exploratory web-based CLIMSAVE Integrated Assessment (IA) Platform (www.climsave.eu/iap) that aims to democratise climate change impacts, adaptation and vulnerability modelling. The regional version of the Platform contain linked simulation models (of the urban, agriculture, forestry, water and biodiversity sectors), probabilistic climate scenarios and socio-economic scenarios, that enable users to select their inputs (climate and socioeconomic), rapidly run the models using their input variable settings and view their chosen outputs. The interface of the CLIMSAVE IA Platform is designed to facilitate a two-way iterative process of dialogue and exploration of "what if's" to enable a wide range of users to improve their understanding surrounding impacts, adaptation responses and vulnerability of natural resources and ecosystem services under uncertain futures. This paper will describe the evolution of the Platform and demonstrate how using its holistic framework (multi sector / ecosystem service; cross-sectoral, climate and socio-economic change) will help to assist learning around the challenging concepts of responding to global change.

  13. Climate Change and Infectious Disease Risk in Western Europe: A Survey of Dutch Expert Opinion on Adaptation Responses and Actors

    PubMed Central

    Akin, Su-Mia; Martens, Pim; Huynen, Maud M.T.E.

    2015-01-01

    There is growing evidence of climate change affecting infectious disease risk in Western Europe. The call for effective adaptation to this challenge becomes increasingly stronger. This paper presents the results of a survey exploring Dutch expert perspectives on adaptation responses to climate change impacts on infectious disease risk in Western Europe. Additionally, the survey explores the expert sample’s prioritization of mitigation and adaptation, and expert views on the willingness and capacity of relevant actors to respond to climate change. An integrated view on the causation of infectious disease risk is employed, including multiple (climatic and non-climatic) factors. The results show that the experts consider some adaptation responses as relatively more cost-effective, like fostering interagency and community partnerships, or beneficial to health, such as outbreak investigation and response. Expert opinions converge and diverge for different adaptation responses. Regarding the prioritization of mitigation and adaptation responses expert perspectives converge towards a 50/50 budgetary allocation. The experts consider the national government/health authority as the most capable actor to respond to climate change-induced infectious disease risk. Divergence and consensus among expert opinions can influence adaptation policy processes. Further research is necessary to uncover prevailing expert perspectives and their roots, and compare these. PMID:26295247

  14. Climate Change and Infectious Disease Risk in Western Europe: A Survey of Dutch Expert Opinion on Adaptation Responses and Actors.

    PubMed

    Akin, Su-Mia; Martens, Pim; Huynen, Maud M T E

    2015-08-18

    There is growing evidence of climate change affecting infectious disease risk in Western Europe. The call for effective adaptation to this challenge becomes increasingly stronger. This paper presents the results of a survey exploring Dutch expert perspectives on adaptation responses to climate change impacts on infectious disease risk in Western Europe. Additionally, the survey explores the expert sample's prioritization of mitigation and adaptation, and expert views on the willingness and capacity of relevant actors to respond to climate change. An integrated view on the causation of infectious disease risk is employed, including multiple (climatic and non-climatic) factors. The results show that the experts consider some adaptation responses as relatively more cost-effective, like fostering interagency and community partnerships, or beneficial to health, such as outbreak investigation and response. Expert opinions converge and diverge for different adaptation responses. Regarding the prioritization of mitigation and adaptation responses expert perspectives converge towards a 50/50 budgetary allocation. The experts consider the national government/health authority as the most capable actor to respond to climate change-induced infectious disease risk. Divergence and consensus among expert opinions can influence adaptation policy processes. Further research is necessary to uncover prevailing expert perspectives and their roots, and compare these.

  15. Process model simulations of the divergence effect

    NASA Astrophysics Data System (ADS)

    Anchukaitis, K. J.; Evans, M. N.; D'Arrigo, R. D.; Smerdon, J. E.; Hughes, M. K.; Kaplan, A.; Vaganov, E. A.

    2007-12-01

    We explore the extent to which the Vaganov-Shashkin (VS) model of conifer tree-ring formation can explain evidence for changing relationships between climate and tree growth over recent decades. The VS model is driven by daily environmental forcing (temperature, soil moisture, and solar radiation), and simulates tree-ring growth cell-by-cell as a function of the most limiting environmental control. This simplified representation of tree physiology allows us to examine using a selection of case studies whether instances of divergence may be explained in terms of changes in limiting environmental dependencies or transient climate change. Identification of model-data differences permits further exploration of the effects of tree-ring standardization, atmospheric composition, and additional non-climatic factors.

  16. Communicating the Connection between Climate Change and Heat Health

    EPA Pesticide Factsheets

    Explore how public health and environmental professionals can effectively communicate and leverage the connections among climate change, the heat island effect, and public health to raise awareness among the public and to promote progress on these issues.

  17. Climate Science and the Responsibilities of Fossil Fuel Companies for Climate Damages and Adaptation

    NASA Astrophysics Data System (ADS)

    Frumhoff, P. C.; Ekwurzel, B.

    2017-12-01

    Policymakers in several jurisdictions are now considering whether fossil fuel companies might bear some legal responsibility for climate damages and the costs of adaptation to climate change potentially traceable to the emissions from their marketed products. Here, we explore how scientific research, outreach and direct engagement with industry leaders and shareholders have informed and may continue to inform such developments. We present the results of new climate model research quantifying the contribution of carbon dioxide and methane emissions traced to individual fossil fuel companies to changes in global temperature and sea level; explore the impact of such research and outreach on both legal and broader societal consideration of company responsibility; and discuss the opportunities and challenges for scientists to engage in further work in this area.

  18. Climate Sensitivity Controls Uncertainty in Future Terrestrial Carbon Sink

    NASA Astrophysics Data System (ADS)

    Schurgers, Guy; Ahlström, Anders; Arneth, Almut; Pugh, Thomas A. M.; Smith, Benjamin

    2018-05-01

    For the 21st century, carbon cycle models typically project an increase of terrestrial carbon with increasing atmospheric CO2 and a decrease with the accompanying climate change. However, these estimates are poorly constrained, primarily because they typically rely on a limited number of emission and climate scenarios. Here we explore a wide range of combinations of CO2 rise and climate change and assess their likelihood with the climate change responses obtained from climate models. Our results demonstrate that the terrestrial carbon uptake depends critically on the climate sensitivity of individual climate models, representing a large uncertainty of model estimates. In our simulations, the terrestrial biosphere is unlikely to become a strong source of carbon with any likely combination of CO2 and climate change in the absence of land use change, but the fraction of the emissions taken up by the terrestrial biosphere will decrease drastically with higher emissions.

  19. Predicting ecological responses in a changing ocean: the effects of future climate uncertainty.

    PubMed

    Freer, Jennifer J; Partridge, Julian C; Tarling, Geraint A; Collins, Martin A; Genner, Martin J

    2018-01-01

    Predicting how species will respond to climate change is a growing field in marine ecology, yet knowledge of how to incorporate the uncertainty from future climate data into these predictions remains a significant challenge. To help overcome it, this review separates climate uncertainty into its three components (scenario uncertainty, model uncertainty, and internal model variability) and identifies four criteria that constitute a thorough interpretation of an ecological response to climate change in relation to these parts (awareness, access, incorporation, communication). Through a literature review, the extent to which the marine ecology community has addressed these criteria in their predictions was assessed. Despite a high awareness of climate uncertainty, articles favoured the most severe emission scenario, and only a subset of climate models were used as input into ecological analyses. In the case of sea surface temperature, these models can have projections unrepresentative against a larger ensemble mean. Moreover, 91% of studies failed to incorporate the internal variability of a climate model into results. We explored the influence that the choice of emission scenario, climate model, and model realisation can have when predicting the future distribution of the pelagic fish, Electrona antarctica . Future distributions were highly influenced by the choice of climate model, and in some cases, internal variability was important in determining the direction and severity of the distribution change. Increased clarity and availability of processed climate data would facilitate more comprehensive explorations of climate uncertainty, and increase in the quality and standard of marine prediction studies.

  20. Niche overlap of competing carnivores across climatic gradients and the conservation implications of climate change at geographic range margins

    Treesearch

    William J. Zielinski; Jody M. Tucker; Kerry M. Rennie

    2017-01-01

    There is considerable interest in factors controlling “warm-edge” limits – the lower elevation and latitudinal edges of a species' range. Understanding whether conservation measures can mitigate anticipated change in climate requires consideration of future climate as well as species interactions. We explored niche relations of martens and fishers at their...

  1. VULNERABILITY OF ECOSYSTEMS OF THE MID-ATLANTIC REGION, USA, TO CLIMATIC CHANGE

    EPA Science Inventory

    Changes in the distribution of vegetation in the mid-Atlantic region of the United States were explored for two climate-change scenarios. The equilibrium vegetation ecology (EVE) model was used to project the distribution of life forms and to combine these into biomes for a doubl...

  2. Impacts of Future Climate, Emission, and Land Use Changes on Aerosols and Air Quality over the Continental

    EPA Science Inventory

    Changes in climate, emission, and land use in the U.S. over the next century are imminent. The response of geologic, biogenic, and anthropogenic aerosol to interactions between these changes, however, are more uncertain and difficult to quantify. To explore these interactions, ...

  3. Infectious Diseases, Urbanization and Climate Change: Challenges in Future China.

    PubMed

    Tong, Michael Xiaoliang; Hansen, Alana; Hanson-Easey, Scott; Cameron, Scott; Xiang, Jianjun; Liu, Qiyong; Sun, Yehuan; Weinstein, Philip; Han, Gil-Soo; Williams, Craig; Bi, Peng

    2015-09-07

    China is one of the largest countries in the world with nearly 20% of the world's population. There have been significant improvements in economy, education and technology over the last three decades. Due to substantial investments from all levels of government, the public health system in China has been improved since the 2003 severe acute respiratory syndrome (SARS) outbreak. However, infectious diseases still remain a major population health issue and this may be exacerbated by rapid urbanization and unprecedented impacts of climate change. This commentary aims to explore China's current capacity to manage infectious diseases which impair population health. It discusses the existing disease surveillance system and underscores the critical importance of strengthening the system. It also explores how the growing migrant population, dramatic changes in the natural landscape following rapid urbanization, and changing climatic conditions can contribute to the emergence and re-emergence of infectious disease. Continuing research on infectious diseases, urbanization and climate change may inform the country's capacity to deal with emerging and re-emerging infectious diseases in the future.

  4. Climate Change Education Today in K-12: What's Happening in the Earth and Space Science Classroom?

    NASA Astrophysics Data System (ADS)

    Holzer, M. A.; National Earth Science Teachers Association

    2011-12-01

    Climate change is a highly interdisciplinary topic, involving not only multiple fields of science, but also social science and the humanities. There are many aspects of climate change science that make it particularly well-suited for exploration in the K-12 setting, including opportunities to explore the unifying processes of science such as complex systems, models, observations, change and evolution. Furthermore, this field of science offers the opportunity to observe the nature of science in action - including how scientists develop and improve their understanding through research and debate. Finally, climate change is inherently highly relevant to students - indeed, students today will need to deal with the consequences of the climate change. The science of climate change is clearly present in current science education standards, both at the National level as well as in the majority of states. Nonetheless, a significant number of teachers across the country report difficulties addressing climate change in the classroom. The National Earth Science Teachers Association has conducted several surveys of Earth and space science educators across the country over the past several years on a number of issues, including their needs and concerns, including their experience of external influences on what they teach. While the number of teachers that report external pressures to not teach climate change science are in the minority (and less than the pressure to not teach evolution and related topics), our results suggest that this pressure against climate change science in the K-12 classroom has grown over the past several years. Some teachers report being threatened by parents, being encouraged by administrators to not teach the subject, and a belief that the "two sides" of climate change should be taught. Survey results indicate that teachers in religious or politically-conservative districts are more likely to report difficulties in teaching about climate change than in other areas of the country. This presentation will provide an overview of our most recent survey results on climate change education in the K-12 Earth and space science classroom, including highlighting some of the strategies that teachers are using to bring this critically important area of science to their students.

  5. The Mekong at climatic crossroads: Lessons from the geological past.

    PubMed

    Penny, Dan

    2008-05-01

    The wetlands of the lower Mekong River Basin are ecologically and socioeconomically significant, but they are threatened by predicted climatic change. The likely response of wetland ecosystems to altered flooding regimes and surface-water chemistry is unknown in detail and difficult to model. One way of exploring the impact of climate change on wetland ecosystems is to utilize proxy environmental data that reveal patterns of change over geological time. In recent years, the coverage and resolution of proxy climatic data have improved markedly in the region. Recent evidence of the South China Sea transgression into southern and central Cambodia and paleobotanical evidence from the Tonle Sap ("Great Lake") and elsewhere allow us to explore how periods of higher-than-present sea level and increased monsoon rainfall in the past have impacted the wetland ecology of the lower Mekong River Basin.

  6. Linking Indigenous Knowledge and Observed Climate Change Studies

    NASA Technical Reports Server (NTRS)

    Alexander, Chief Clarence; Bynum, Nora; Johnson, Liz; King, Ursula; Mustonen, Tero; Neofotis, Peter; Oettle, Noel; Rosenzweig, Cynthia; Sakakibara, Chie; Shadrin, Chief Vyacheslav; hide

    2010-01-01

    We present indigenous knowledge narratives and explore their connections to documented temperature and other climate changes and observed climate change impact studies. We then propose a framework for enhancing integration of these indigenous narratives of observed climate change with global assessments. Our aim is to contribute to the thoughtful and respectful integration of indigenous knowledge with scientific data and analysis, so that this rich body of knowledge can inform science, and so that indigenous and traditional peoples can use the tools and methods of science for the benefit of their communities if they choose to do so. Enhancing ways of understanding such connections are critical as the Intergovernmental Panel on Climate Change Fifth Assessment process gets underway.

  7. The GCRP Climate Health Assessment: From Scientific Literature to Climate Health Literacy

    NASA Astrophysics Data System (ADS)

    Crimmins, A. R.; Balbus, J. M.

    2016-12-01

    As noted by the new report from the US GCRP, the Impacts of Climate Change on Human Health in the United States: A Scientific Assessment, climate change is a significant threat to the health of the American people. Despite a growing awareness of the significance of climate change in general among Americans, however, recognition of the health significance of climate change is lacking. Not only are the general public and many climate scientists relatively uninformed about the myriad health implications of climate change; health professionals, including physicians and nurses, are in need of enhanced climate literacy. This presentation will provide an overview of the new GCRP Climate Health Assessment, introducing the audience to the systems thinking that underlies the assessment of health impacts, and reviewing frameworks that tie climate and earth systems phenomena to human vulnerability and health. The impacts on health through changes in temperature, precipitation, severity of weather extremes and climate variability, and alteration of ecosystems and phenology will be explored. The process of developing the assessment report will be discussed in the context of raising climate and health literacy within the federal government.

  8. Livestock Helminths in a Changing Climate: Approaches and Restrictions to Meaningful Predictions

    PubMed Central

    Fox, Naomi J.; Marion, Glenn; Davidson, Ross S.; White, Piran C. L.; Hutchings, Michael R.

    2012-01-01

    Simple Summary Parasitic helminths represent one of the most pervasive challenges to livestock, and their intensity and distribution will be influenced by climate change. There is a need for long-term predictions to identify potential risks and highlight opportunities for control. We explore the approaches to modelling future helminth risk to livestock under climate change. One of the limitations to model creation is the lack of purpose driven data collection. We also conclude that models need to include a broad view of the livestock system to generate meaningful predictions. Abstract Climate change is a driving force for livestock parasite risk. This is especially true for helminths including the nematodes Haemonchus contortus, Teladorsagia circumcincta, Nematodirus battus, and the trematode Fasciola hepatica, since survival and development of free-living stages is chiefly affected by temperature and moisture. The paucity of long term predictions of helminth risk under climate change has driven us to explore optimal modelling approaches and identify current bottlenecks to generating meaningful predictions. We classify approaches as correlative or mechanistic, exploring their strengths and limitations. Climate is one aspect of a complex system and, at the farm level, husbandry has a dominant influence on helminth transmission. Continuing environmental change will necessitate the adoption of mitigation and adaptation strategies in husbandry. Long term predictive models need to have the architecture to incorporate these changes. Ultimately, an optimal modelling approach is likely to combine mechanistic processes and physiological thresholds with correlative bioclimatic modelling, incorporating changes in livestock husbandry and disease control. Irrespective of approach, the principal limitation to parasite predictions is the availability of active surveillance data and empirical data on physiological responses to climate variables. By combining improved empirical data and refined models with a broad view of the livestock system, robust projections of helminth risk can be developed. PMID:26486780

  9. Hotspots of climate change impacts in sub-Saharan Africa and implications for adaptation and development.

    PubMed

    Müller, Christoph; Waha, Katharina; Bondeau, Alberte; Heinke, Jens

    2014-08-01

    Development efforts for poverty reduction and food security in sub-Saharan Africa will have to consider future climate change impacts. Large uncertainties in climate change impact assessments do not necessarily complicate, but can inform development strategies. The design of development strategies will need to consider the likelihood, strength, and interaction of climate change impacts across biosphere properties. We here explore the spread of climate change impact projections and develop a composite impact measure to identify hotspots of climate change impacts, addressing likelihood and strength of impacts. Overlapping impacts in different biosphere properties (e.g. flooding, yields) will not only claim additional capacity to respond, but will also narrow the options to respond and develop. Regions with severest projected climate change impacts often coincide with regions of high population density and poverty rates. Science and policy need to propose ways of preparing these areas for development under climate change impacts. © 2014 John Wiley & Sons Ltd.

  10. Adaptation to climate change--exploring the potential of locally adapted breeds.

    PubMed

    Hoffmann, Irene

    2013-06-01

    The livestock sector and agriculture as a whole face unprecedented challenges to increase production while improving the environment. On the basis of a literature review, the paper first discusses challenges related to climate change, food security and other drivers of change in livestock production. On the basis of a recent discourse in ecology, a framework for assessing livestock species' and breeds' vulnerability to climate change is presented. The second part of the paper draws on an analysis of data on breed qualities obtained from the Food and Agriculture Organization's Domestic Animal Diversity Information System (DAD-IS) to explore the range of adaptation traits present in today's breed diversity. The analysis produced a first mapping of a range of ascribed adaptation traits of national breed populations. It allowed to explore what National Coordinators understand by 'locally adapted' and other terms that describe general adaptation, to better understand the habitat, fodder and temperature range of each species and to shed light on the environments in which targeted search for adaptation traits could focus.

  11. Data Visualization and Analysis for Climate Studies using NASA Giovanni Online System

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Leptoukh, Gregory; Lloyd, Steven

    2008-01-01

    With many global earth observation systems and missions focused on climate systems and the associated large volumes of observational data available for exploring and explaining how climate is changing and why, there is an urgent need for climate services. Giovanni, the NASA GES DISC Interactive Online Visualization ANd ANalysis Infrastructure, is a simple to use yet powerful tool for analysing these data for research on global warming and climate change, as well as for applications to weather. air quality, agriculture, and water resources,

  12. Changing Family Habits: A Case Study into Climate Change Mitigation Behavior in Families

    ERIC Educational Resources Information Center

    Leger, Michel T.; Pruneau, Diane

    2012-01-01

    A case-study methodology was used to explore the process of change as experienced by 3 suburban families in an attempt to incorporate climate change mitigation behavior into their day to day life. Cross-case analysis of the findings revealed the emergence of three major conceptual themes associated with behavior adoption: collectively applied…

  13. Factors Influencing Smallholder Farmers' Climate Change Perceptions: A Study from Farmers in Ethiopia

    NASA Astrophysics Data System (ADS)

    Habtemariam, Lemlem Teklegiorgis; Gandorfer, Markus; Kassa, Getachew Abate; Heissenhuber, Alois

    2016-08-01

    Factors influencing climate change perceptions have vital roles in designing strategies to enrich climate change understanding. Despite this, factors that influence smallholder farmers' climate change perceptions have not yet been adequately studied. As many of the smallholder farmers live in regions where climate change is predicted to have the most negative impact, their climate change perception is of particular interest. In this study, based on data collected from Ethiopian smallholder farmers, we assessed farmers' perceptions and anticipations of past and future climate change. Furthermore, the factors influencing farmers' climate change perceptions and the relation between farmers' perceptions and available public climate information were assessed. Our findings revealed that a majority of respondents perceive warming temperatures and decreasing rainfall trends that correspond with the local meteorological record. Farmers' perceptions about the past climate did not always reflect their anticipations about the future. A substantial number of farmers' anticipations of future climate were less consistent with climate model projections. The recursive bivariate probit models employed to explore factors affecting different categories of climate change perceptions illustrate statistical significance for explanatory variables including location, gender, age, education, soil fertility status, climate change information, and access to credit services. The findings contribute to the literature by providing evidence not just on farmers' past climate perceptions but also on future climate anticipations. The identified factors help policy makers to provide targeted extension and advisory services to enrich climate change understanding and support appropriate farm-level climate change adaptations.

  14. Factors Influencing Smallholder Farmers' Climate Change Perceptions: A Study from Farmers in Ethiopia.

    PubMed

    Habtemariam, Lemlem Teklegiorgis; Gandorfer, Markus; Kassa, Getachew Abate; Heissenhuber, Alois

    2016-08-01

    Factors influencing climate change perceptions have vital roles in designing strategies to enrich climate change understanding. Despite this, factors that influence smallholder farmers' climate change perceptions have not yet been adequately studied. As many of the smallholder farmers live in regions where climate change is predicted to have the most negative impact, their climate change perception is of particular interest. In this study, based on data collected from Ethiopian smallholder farmers, we assessed farmers' perceptions and anticipations of past and future climate change. Furthermore, the factors influencing farmers' climate change perceptions and the relation between farmers' perceptions and available public climate information were assessed. Our findings revealed that a majority of respondents perceive warming temperatures and decreasing rainfall trends that correspond with the local meteorological record. Farmers' perceptions about the past climate did not always reflect their anticipations about the future. A substantial number of farmers' anticipations of future climate were less consistent with climate model projections. The recursive bivariate probit models employed to explore factors affecting different categories of climate change perceptions illustrate statistical significance for explanatory variables including location, gender, age, education, soil fertility status, climate change information, and access to credit services. The findings contribute to the literature by providing evidence not just on farmers' past climate perceptions but also on future climate anticipations. The identified factors help policy makers to provide targeted extension and advisory services to enrich climate change understanding and support appropriate farm-level climate change adaptations.

  15. Social Climate Science: A New Vista for Psychological Science.

    PubMed

    Pearson, Adam R; Schuldt, Jonathon P; Romero-Canyas, Rainer

    2016-09-01

    The recent Paris Agreement to limit greenhouse gas emissions, adopted by 195 nations at the 2015 United Nations Climate Change Conference, signaled unprecedented commitment by world leaders to address the human social aspects of climate change. Indeed, climate change increasingly is recognized by scientists and policymakers as a social issue requiring social solutions. However, whereas psychological research on intrapersonal and some group-level processes (e.g., political polarization of climate beliefs) has flourished, research into other social processes-such as an understanding of how nonpartisan social identities, cultural ideologies, and group hierarchies shape public engagement on climate change-has received substantially less attention. In this article, we take stock of current psychological approaches to the study of climate change to explore what is "social" about climate change from the perspective of psychology. Drawing from current interdisciplinary perspectives and emerging empirical findings within psychology, we identify four distinct features of climate change and three sets of psychological processes evoked by these features that are fundamentally social and shape both individual and group responses to climate change. Finally, we consider how a more nuanced understanding of the social underpinnings of climate change can stimulate new questions and advance theory within psychology. © The Author(s) 2016.

  16. Lens on Climate Change (LOCC) - Engaging Secondary Students in Climate Science through Videography

    NASA Astrophysics Data System (ADS)

    Gold, A. U.; Oonk, D. J.; Smith, L. K.; Sullivan, S. B.; Boykoff, M.; Osnes, B.

    2014-12-01

    The impact of climate change is often discussed using examples from Polar Regions such as decreasing polar bear populations but significant changes are happening to local climates around the world. Climate change is often perceived as happening elsewhere, evoking a sense that others have to take action to mitigate climate change. Learning about climate change is very tangible for students when it addresses impacts they can observe close to their home. The Lens on Climate Change (LOCC) program engaged Colorado middle and high school students in producing short videos about climate change topics in Colorado, specifically ones that are impacting students' lives and their local community. Participating schools were located in rural, suburban and urban Colorado many of which have diverse student populations and high Free and Reduced Lunch rates. Project staff recruited university graduate and undergraduate student to mentor the students in their research and video production. With the help of these mentors, ten student groups selected and researched climate topics, interviewed science experts from local research institutes and produced short videos. The program aimed at engaging students in self-motivated researching and learning about a climate topic. Furthermore, it served as a way to spark students' interest in a career in science by matching them with college students for the program duration and bringing them to the University of Colorado campus for a final screening event, for many of students their first visit to a college campus. The LOCC middle and high school student groups were in addition paired with undergraduate student groups enrolled in a college course that explores climate change through artistic compositions. The undergraduate students were tasked to develop a companion video based only on a brief prompt from the secondary students. Both student videos were screened back-to-back at a final screening. The LOCC project's goal was to connect secondary students, who would otherwise not have the opportunity, with college life and the scientific community. Our evaluation results showed that the process of video production was a powerful tool for the students to explore and learn about climate change topics. Students and teachers appreciated the unique approach to learning.

  17. Climate change projections of heat stress in Europe: From meteorological variables to impacts on productivity

    NASA Astrophysics Data System (ADS)

    Casanueva, Ana; Kotlarski, Sven; Liniger, Mark A.

    2017-04-01

    Future climate change is likely to have important impacts in many socio-economic sectors. In particular, higher summer temperatures or more prolonged heat waves may be responsible for health problems and productivity losses related to heat stress, especially affecting people exposed to such situations (e.g. working under outside settings or in non-acclimatized workplaces). Heat stress on the body under work load and consequently their productivity loss can be described through heat stress indices that are based on multiple meteorological parameters such as temperature, humidity, wind and radiation. Exploring the changes of these variables under a warmer climate is of prime importance for the Impacts, Adaptation and Vulnerability communities. In particular, the H2020 project HEAT-SHIELD aims at analyzing the impact of climate change on heat stress in strategic industries in Europe (manufacturing, construction, transportation, tourism and agriculture) within an inter-sectoral framework (climate scientists, biometeorologists, physiologists and stakeholders). In the present work we explore present and future heat stress over Europe using an ensemble of the state-of-the-art RCMs from the EURO-CORDEX initiative. Since RCMs cannot be directly used in impact studies due to their partly substantial biases, a standard bias correction method (empirical quantile mapping) is applied to correct the individual variables that are then used to derive heat stress indices. The objectives of this study are twofold, 1) to test the ability of the separately bias corrected variables to reproduce the main characteristics of heat stress indices in present climate conditions and 2) to explore climate change projections of heat stress indices. We use the wet bulb globe temperature (WBGT) as primary heat stress index, considering two different versions for indoor (or in the shade, based on temperature and humidity conditions) and outdoor settings (including also wind and radiation). The WBGT is the most widely used heat stress index for working people and can be easily interpreted by means of ISO standards. Within the HEAT-SHIELD project, climate change projections of the WBGT will be used to assess the impact of climate change on workers' health and productivity.

  18. Climate change and climate variability: personal motivation for adaptation and mitigation

    PubMed Central

    2011-01-01

    Background Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. Methods In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM) as a conceptual frame and analyzed through logistic regressions and path analysis. Results Of 771 individuals surveyed, 81% (n = 622) acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility), Odds Ratio (OR) = 2.4 (95% Confidence Interval (CI): 1.4 - 4.0), endanger their life (perceived severity), OR = 1.9 (95% CI: 1.1 - 3.1), or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2 - 3.5). Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4 - 3.1) or plan, OR = 2.2 (95% CI: 1.5 -3.2) for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1 - 2.4) or an emergency plan OR = 1.5 (95%CI: 1.0 - 2.2). Conclusions Motivation for voluntary mitigation is mostly dependent on perceived susceptibility to threats and severity of climate change or climate variability impacts, whereas adaptation is largely dependent on the availability of information relevant to climate change. Thus, the climate change discourse could be framed from a health perspective to motivate behaviour change. PMID:21600004

  19. Climate change and climate variability: personal motivation for adaptation and mitigation.

    PubMed

    Semenza, Jan C; Ploubidis, George B; George, Linda A

    2011-05-21

    Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM) as a conceptual frame and analyzed through logistic regressions and path analysis. Of 771 individuals surveyed, 81% (n = 622) acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility), Odds Ratio (OR) = 2.4 (95% Confidence Interval (CI): 1.4-4.0), endanger their life (perceived severity), OR = 1.9 (95% CI: 1.1-3.1), or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2-3.5). Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4-3.1) or plan, OR = 2.2 (95% CI: 1.5-3.2) for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1-2.4) or an emergency plan OR = 1.5 (95%CI: 1.0-2.2). Motivation for voluntary mitigation is mostly dependent on perceived susceptibility to threats and severity of climate change or climate variability impacts, whereas adaptation is largely dependent on the availability of information relevant to climate change. Thus, the climate change discourse could be framed from a health perspective to motivate behaviour change.

  20. Nurses' perceptions of climate and environmental issues: a qualitative study.

    PubMed

    Anåker, Anna; Nilsson, Maria; Holmner, Åsa; Elf, Marie

    2015-08-01

    The aim of this study was to explore nurses' perceptions of climate and environmental issues and examine how nurses perceive their role in contributing to the process of sustainable development. Climate change and its implications for human health represent an increasingly important issue for the healthcare sector. According to the International Council of Nurses Code of Ethics, nurses have a responsibility to be involved and support climate change mitigation and adaptation to protect human health. This is a descriptive, explorative qualitative study. Nurses (n = 18) were recruited from hospitals, primary care and emergency medical services; eight participated in semi-structured, in-depth individual interviews and 10 participated in two focus groups. Data were collected from April-October 2013 in Sweden; interviews were transcribed verbatim and analysed using content analysis. Two main themes were identified from the interviews: (i) an incongruence between climate and environmental issues and nurses' daily work; and (ii) public health work is regarded as a health co-benefit of climate change mitigation. While being green is not the primary task in a lifesaving, hectic and economically challenging context, nurses' perceived their profession as entailing responsibility, opportunities and a sense of individual commitment to influence the environment in a positive direction. This study argues there is a need for increased awareness of issues and methods that are crucial for the healthcare sector to respond to climate change. Efforts to develop interventions should explore how nurses should be able to contribute to the healthcare sector's preparedness for and contributions to sustainable development. © 2015 The Authors. Journal of Advanced Nursing published by John Wiley & Sons Ltd.

  1. Exploring eco-hydrological consequences of the Amazonian ecosystems under climate and land-use changes in the 21st century

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Castanho, A. D.; Moghim, S.; Bras, R. L.; Coe, M. T.; Costa, M. H.; Levine, N. M.; Longo, M.; McKnight, S.; Wang, J.; Moorcroft, P. R.

    2012-12-01

    Deforestation and drought have imposed regional-scale perturbations onto Amazonian ecosystems and are predicted to cause larger negative impacts on the Amazonian ecosystems and associated regional carbon dynamics in the 21st century. However, global climate models (GCMs) vary greatly in their projections of future climate change in Amazonia, giving rise to uncertainty in the expected fate of the Amazon over the coming century. In this study, we explore the possible eco-hydrological consequences of the Amazonian ecosystems under projected climate and land-use changes in the 21st century using two state-of-the-art terrestrial ecosystem models—Ecosystem Demography Model 2.1(ED2.1) and Integrated Biosphere Simulator model (IBIS)—driven by three representative, bias-corrected climate projections from three IPCC GCMs (NCARPCM1, NCARCCSM3 and HadCM3), coupled with two land-use change scenarios (a business-as-usual and a strict governance scenario). We also analyze the relative roles of climate change, CO2 fertilization, land-use change and fire in driving the projected composition and structure of the Amazonian ecosystems. Our results show that CO2 fertilization enhances vegetation productivity and above-ground biomass (AGB) in the region, while land-use change and fire cause AGB loss and the replacement of forests by the savanna-like vegetation. The impacts of climate change depend strongly on the direction and severity of projected precipitation changes in the region. In particular, when intensified water stress is superimposed on unregulated deforestation, both ecosystem models predict large-scale dieback of Amazonian rainforests.

  2. Deterioration and modification of the biosphere leading to irreversible climatic change of the global ecosystem

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The level, intensity, nature and impact of man's activities upon weather and climatic changes are explored. It is shown that industrialization leads to increased CO2 levels, atmospheric dust content and land surfaces changes. This in turn causes global climatic interactions which results in a general cooling trend. Global cooperation is advocated to stem environmental degradation and weather pattern interruption by the use of corrective mechanisms.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lilley, Art; Pandey, Bikash; Karstad, Elsen

    The document explores the linkages between renewable energy, poverty alleviation, sustainable development, and climate change in developing countries. In particular, the paper places emphasis on biomass-based energy systems. Biomass energy has a number of unique attributes that make it particularly suitable to climate change mitigation and community development applications.

  4. Global forest sector modeling: application to some impacts of climate change

    Treesearch

    Joseph Buongiorno

    2016-01-01

    This paper explored the potential long-term effects of a warming climate on the global wood sector, based on Way and Oren's synthesis (Tree Physiology 30,669-688) indicating positive responses of tree growth to higher temperature in boreal and temperative climates, and negative responses in the topics. Changes in forest productivity were introduced in the Global...

  5. Vulnerability Assessments in Support of the Climate Ready ...

    EPA Pesticide Factsheets

    As part of the Climate Ready Estuaries (CRE) program, the Global Change Research Program (GCRP) in the National Center for Environmental Assessment, Office of Research and Development at the U.S. Environmental Protection Agency has prepared this draft report exploring a new methodology for climate change vulnerability assessments using San Francisco Bay’s salt marsh and mudflat ecosystems as a demonstration. N/A

  6. Reading an Analogy Can Cause the Illusion of Comprehension

    ERIC Educational Resources Information Center

    Jaeger, Allison J.; Wiley, Jennifer

    2015-01-01

    This study explored students' ability to evaluate their learning from a multimedia inquiry unit about the causes of global climate change. Participants were 90 sixth grade students from four science classrooms. Students were provided with a text describing the causes of climate change as well as graphs showing average global temperature changes.…

  7. Vulnerability Assessments in Support of the Climate Ready ...

    EPA Pesticide Factsheets

    As part of the Climate Ready Estuaries (CRE) program, the Global Change Research Program (GCRP) in the National Center for Environmental Assessment, Office of Research and Development at the U.S. Environmental Protection Agency has prepared a report exploring a new methodology for climate change vulnerability assessments using Massachusetts Bays’ salt marsh ecosystem as a demonstration. The aim is to synthesize place-based information on the potential implications of climate change for key ecosystem processes in each estuary, in a form that will enable managers to undertake management adaptation planning.

  8. Climate impacts on hydropower and consequences for global electricity supply investment needs

    DOE PAGES

    Turner, Sean W. D.; Hejazi, Mohamad; Kim, Son H.; ...

    2017-11-15

    Climate change is projected to increase hydropower generation in some parts of the world and decrease it in others. Here we explore the possible consequences of these impacts for the electricity supply sector at the global scale. Regional hydropower projections are developed by forcing a coupled global hydrological and dam model with downscaled, bias-corrected climate realizations. Consequent impacts on power sector composition and associated emissions and investment costs are explored using the Global Change Assessment Model (GCAM). We find that climate-driven changes in hydropower generation may shift power demands onto and away from carbon intensive technologies. This then causes significantlymore » altered power sector CO 2 emissions in several hydro-dependent regions, although the net global impact is modest. For drying regions, we estimate a global, cumulative investment need of approximately one trillion dollars (±$500 billion) this century to make up for deteriorated hydropower generation caused by climate change. Total investments avoided are of a similar magnitude across regions projected to experience increased precipitation. Investment risks and opportunities are concentrated in hydro-dependent countries for which significant climate change is expected. Various countries throughout the Balkans, Latin America and Southern Africa are most vulnerable, whilst Norway, Canada, and Bhutan emerge as clear beneficiaries.« less

  9. Exploring climate change vulnerability across sectors and scenarios using indicators of impacts and coping capacity.

    PubMed

    Dunford, R; Harrison, P A; Jäger, J; Rounsevell, M D A; Tinch, R

    Addressing climate change vulnerability requires an understanding of both the level of climate impacts and the capacity of the exposed population to cope. This study developed a methodology for allowing users to explore vulnerability to changes in ecosystem services as a result of climatic and socio-economic changes. It focuses on the vulnerability of Europe across multiple sectors by combining the outputs of a regional integrated assessment (IA) model, the CLIMSAVE IA Platform, with maps of coping capacity based on the five capitals approach. The presented methodology enables stakeholder-derived socio-economic futures to be represented within a quantitative integrated modelling framework in a way that changes spatially and temporally with the socio-economic storyline. Vulnerability was mapped for six key ecosystem services in 40 combined climate and socio-economic scenarios. The analysis shows that, whilst the north and west of Europe are generally better placed to cope with climate impacts than the south and east, coping could be improved in all areas. Furthermore, whilst the lack of coping capacity in dystopian scenarios often leads to greater vulnerability, there are complex interactions between sectors that lead to patterns of vulnerability that vary spatially, with scenario and by sector even within the more utopian futures.

  10. Climate impacts on hydropower and consequences for global electricity supply investment needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Sean W. D.; Hejazi, Mohamad; Kim, Son H.

    Climate change is projected to increase hydropower generation in some parts of the world and decrease it in others. Here we explore the possible consequences of these impacts for the electricity supply sector at the global scale. Regional hydropower projections are developed by forcing a coupled global hydrological and dam model with downscaled, bias-corrected climate realizations. Consequent impacts on power sector composition and associated emissions and investment costs are explored using the Global Change Assessment Model (GCAM). We find that climate-driven changes in hydropower generation may shift power demands onto and away from carbon intensive technologies. This then causes significantlymore » altered power sector CO 2 emissions in several hydro-dependent regions, although the net global impact is modest. For drying regions, we estimate a global, cumulative investment need of approximately one trillion dollars (±$500 billion) this century to make up for deteriorated hydropower generation caused by climate change. Total investments avoided are of a similar magnitude across regions projected to experience increased precipitation. Investment risks and opportunities are concentrated in hydro-dependent countries for which significant climate change is expected. Various countries throughout the Balkans, Latin America and Southern Africa are most vulnerable, whilst Norway, Canada, and Bhutan emerge as clear beneficiaries.« less

  11. School Climate Reports from Norwegian Teachers: A Methodological and Substantive Study.

    ERIC Educational Resources Information Center

    Kallestad, Jan Helge; Olweus, Dan; Alsaker, Francoise

    1998-01-01

    Explores methodological and substantive issues relating to school climate, using a dataset derived from 42 Norwegian schools at two points of time and a standard definition of organizational climate. Identifies and analyzes four school-climate dimensions. Three dimensions (collegial communication, orientation to change, and teacher influence over…

  12. Moving beyond a knowledge deficit perspective to understand climate action by youth

    NASA Astrophysics Data System (ADS)

    Busch, K. C.

    2016-12-01

    This presentation reports on an experiment testing two framings of uncertainty on students' intent to take action to mitigate climate change. Additionally, to explore possible mechanisms involved in the choice of taking mitigating action, several factors highlighted within behavior theory literature were measured to create a theoretical model for youth's choice to take mitigating action. The factors explored were: knowledge, certainty, affect, efficacy, and social norms. The experiment was conducted with 453 middle and high school students within the Bay Area. Findings indicated that these students did hold a basic understanding of the causes and effects of climate change. They were worried and felt negatively about the topic. They felt somewhat efficacious about their personal ability to mitigate climate change. The students reported that they associated with people who were more likely to think climate change was real and caused by humans. Students also reported that they often take part in private pro-environmental behaviors such as using less electricity. When asked to respond freely to a question about what think about climate change, participants described the negative effects of human-caused climate change on Earth systems at the global scale and as a current phenomenon. The results of the experiment showed that while the text portraying climate change with high uncertainty did affect student's own certainty and their perception of scientists' certainty, it did not affect behavioral intention. This result can be explained through regression analysis. It was found that efficacy and social norms were direct determinants of pro-environmental behaviors. The cognitive variables - knowledge and certainty - and the psychological variable - affect - were not significant predictors of pro-environmental behavior. The implications for this study are that while students hold basic understanding of the causes and effects of climate change, this understanding lacks personal relevance. Another implication of this study is that if we wish to have action-taking as an outcome of climate change education efforts, then the learning activities should include components to address efficacy and social norms.

  13. The next generation of scenarios for climate change research and assessment.

    PubMed

    Moss, Richard H; Edmonds, Jae A; Hibbard, Kathy A; Manning, Martin R; Rose, Steven K; van Vuuren, Detlef P; Carter, Timothy R; Emori, Seita; Kainuma, Mikiko; Kram, Tom; Meehl, Gerald A; Mitchell, John F B; Nakicenovic, Nebojsa; Riahi, Keywan; Smith, Steven J; Stouffer, Ronald J; Thomson, Allison M; Weyant, John P; Wilbanks, Thomas J

    2010-02-11

    Advances in the science and observation of climate change are providing a clearer understanding of the inherent variability of Earth's climate system and its likely response to human and natural influences. The implications of climate change for the environment and society will depend not only on the response of the Earth system to changes in radiative forcings, but also on how humankind responds through changes in technology, economies, lifestyle and policy. Extensive uncertainties exist in future forcings of and responses to climate change, necessitating the use of scenarios of the future to explore the potential consequences of different response options. To date, such scenarios have not adequately examined crucial possibilities, such as climate change mitigation and adaptation, and have relied on research processes that slowed the exchange of information among physical, biological and social scientists. Here we describe a new process for creating plausible scenarios to investigate some of the most challenging and important questions about climate change confronting the global community.

  14. Persistence and diversification of the Holarctic shrew, Sorex tundrensis (Family Soricidae), in response to climate change

    USGS Publications Warehouse

    Hope, Andrew G.; Waltari, Eric; Fedorov, Vadim B.; Goropashnaya, Anna V.; Talbot, Sandra; Cook, Joseph A.

    2011-01-01

    Environmental processes govern demography, species movements, community turnover and diversification and yet in many respects these dynamics are still poorly understood at high latitudes. We investigate the combined effects of climate change and geography through time for a widespread Holarctic shrew, Sorex tundrensis. We include a comprehensive suite of closely related outgroup taxa and three independent loci to explore phylogeographic structure and historical demography. We then explore the implications of these findings for other members of boreal communities. The tundra shrew and its sister species, the Tien Shan shrew (Sorex asper), exhibit strong geographic population structure across Siberia and into Beringia illustrating local centres of endemism that correspond to Late Pleistocene refugia. Ecological niche predictions for both current and historical distributions indicate a model of persistence through time despite dramatic climate change. Species tree estimation under a coalescent process suggests that isolation between populations has been maintained across timeframes deeper than the periodicity of Pleistocene glacial cycling. That some species such as the tundra shrew have a history of persistence largely independent of changing climate, whereas other boreal species shifted their ranges in response to climate change, highlights the dynamic processes of community assembly at high latitudes.

  15. Climate impacts on hydropower and consequences for global electricity supply investment needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Sean W. D.; Hejazi, Mohamad; Kim, Son H.

    Recent progress in global scale hydrological and dam modeling has allowed for the study of climate change impacts on global hydropower production. Here we explore the possible consequences of these impacts for the electricity supply sector. Regional hydropower projections are developed for two emissions scenarios by forcing a coupled global hydrological and dam model with downscaled, bias-corrected climate realizations derived from sixteen general circulation models. Consequent impacts on power sector composition and associated emissions and investment costs are explored using the Global Change Assessment Model (GCAM). Changes in hydropower generation resulting from climate change can shift power demands onto andmore » away from carbon intensive technologies, resulting in significant impacts on power sector CO2 emissions for certain world regions—primarily those located in Latin America, as well as Canada and parts of Europe. Reduced impacts of climate change on hydropower production under a low emissions scenario coincide with increased costs of marginal power generating capacity—meaning impacts on power sector investment costs are similar for high and low emissions scenarios. Individual countries where impacts on investment costs imply significant risks or opportunities are identified.« less

  16. Persistence and diversification of the Holarctic shrew, Sorex tundrensis (Family Soricidae), in response to climate change

    USGS Publications Warehouse

    Hope, Andrew G.; Waltari, Eric; Fedorov, V.B.; Goropashnaya, A.V.; Talbot, Sandra; Cook, Joseph A.

    2014-01-01

    Environmental processes govern demography, species movements, community turnover and diversification and yet in many respects these dynamics are still poorly understood at high latitudes. We investigate the combined effects of climate change and geography through time for a widespread Holarctic shrew, Sorex tundrensis. We include a comprehensive suite of closely related outgroup taxa and three independent loci to explore phylogeographic structure and historical demography. We then explore the implications of these findings for other members of boreal communities. The tundra shrew and its sister species, the Tien Shan shrew (Sorex asper), exhibit strong geographic population structure across Siberia and into Beringia illustrating local centres of endemism that correspond to Late Pleistocene refugia. Ecological niche predictions for both current and historical distributions indicate a model of persistence through time despite dramatic climate change. Species tree estimation under a coalescent process suggests that isolation between populations has been maintained across timeframes deeper than the periodicity of Pleistocene glacial cycling. That some species such as the tundra shrew have a history of persistence largely independent of changing climate, whereas other boreal species shifted their ranges in response to climate change, highlights the dynamic processes of community assembly at high latitudes.

  17. Air-climate-energy investigations with a state-level Integrated Assessment Model: GCAM-USA

    EPA Science Inventory

    The Global Change Assessment Model (GCAM) is a global integrated assessment model used for exploring future scenarios and examining strategies that address air pollution, climate change, and energy goals.  GCAM includes technology-rich representations of the energy, transportatio...

  18. Evaluating the effects of climate change on US agricultural systems: sensitivity to regional impact and trade expansion scenarios

    NASA Astrophysics Data System (ADS)

    Baker, Justin S.; Havlík, Petr; Beach, Robert; Leclère, David; Schmid, Erwin; Valin, Hugo; Cole, Jefferson; Creason, Jared; Ohrel, Sara; McFarland, James

    2018-06-01

    Agriculture is one of the sectors that is expected to be most significantly impacted by climate change. There has been considerable interest in assessing these impacts and many recent studies investigating agricultural impacts for individual countries and regions using an array of models. However, the great majority of existing studies explore impacts on a country or region of interest without explicitly accounting for impacts on the rest of the world. This approach can bias the results of impact assessments for agriculture given the importance of global trade in this sector. Due to potential impacts on relative competitiveness, international trade, global supply, and prices, the net impacts of climate change on the agricultural sector in each region depend not only on productivity impacts within that region, but on how climate change impacts agricultural productivity throughout the world. In this study, we apply a global model of agriculture and forestry to evaluate climate change impacts on US agriculture with and without accounting for climate change impacts in the rest of the world. In addition, we examine scenarios where trade is expanded to explore the implications for regional allocation of production, trade volumes, and prices. To our knowledge, this is one of the only attempts to explicitly quantify the relative importance of accounting for global climate change when conducting regional assessments of climate change impacts. The results of our analyses reveal substantial differences in estimated impacts on the US agricultural sector when accounting for global impacts vs. US-only impacts, particularly for commodities where the United States has a smaller share of global production. In addition, we find that freer trade can play an important role in helping to buffer regional productivity shocks.

  19. Impacts of Climate Change on Biofuels Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melillo, Jerry M.

    2014-04-30

    The overall goal of this research project was to improve and use our biogeochemistry model, TEM, to simulate the effects of climate change and other environmental changes on the production of biofuel feedstocks. We used the improved version of TEM that is coupled with the economic model, EPPA, a part of MIT’s Earth System Model, to explore how alternative uses of land, including land for biofuels production, can help society meet proposed climate targets. During the course of this project, we have made refinements to TEM that include development of a more mechanistic plant module, with improved ecohydrology and considerationmore » of plant-water relations, and a more detailed treatment of soil nitrogen dynamics, especially processes that add or remove nitrogen from ecosystems. We have documented our changes to TEM and used the model to explore the effects on production in land ecosystems, including changes in biofuels production.« less

  20. Large storage operations under climate change: expanding uncertainties and evolving tradeoffs

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Anghileri, Daniela; Castelletti, Andrea; Vu, Phuong Nam; Soncini-Sessa, Rodolfo

    2016-03-01

    In a changing climate and society, large storage systems can play a key role for securing water, energy, and food, and rebalancing their cross-dependencies. In this letter, we study the role of large storage operations as flexible means of adaptation to climate change. In particular, we explore the impacts of different climate projections for different future time horizons on the multi-purpose operations of the existing system of large dams in the Red River basin (China-Laos-Vietnam). We identify the main vulnerabilities of current system operations, understand the risk of failure across sectors by exploring the evolution of the system tradeoffs, quantify how the uncertainty associated to climate scenarios is expanded by the storage operations, and assess the expected costs if no adaptation is implemented. Results show that, depending on the climate scenario and the time horizon considered, the existing operations are predicted to change on average from -7 to +5% in hydropower production, +35 to +520% in flood damages, and +15 to +160% in water supply deficit. These negative impacts can be partially mitigated by adapting the existing operations to future climate, reducing the loss of hydropower to 5%, potentially saving around 34.4 million US year-1 at the national scale. Since the Red River is paradigmatic of many river basins across south east Asia, where new large dams are under construction or are planned to support fast growing economies, our results can support policy makers in prioritizing responses and adaptation strategies to the changing climate.

  1. Climate change and coastal vulnerability assessment: Scenarios for integrated assessment

    USGS Publications Warehouse

    Nicholls, R.J.; Wong, P.P.; Burkett, V.; Woodroffe, C.D.; Hay, J.

    2008-01-01

    Coastal vulnerability assessments still focus mainly on sea-level rise, with less attention paid to other dimensions of climate change. The influence of non-climatic environmental change or socio-economic change is even less considered, and is often completely ignored. Given that the profound coastal changes of the twentieth century are likely to continue through the twenty-first century, this is a major omission, which may overstate the importance of climate change, and may also miss significant interactions of climate change with other non-climate drivers. To better support climate and coastal management policy development, more integrated assessments of climatic change in coastal areas are required, including the significant non-climatic changes. This paper explores the development of relevant climate and non-climate drivers, with an emphasis on the non-climate drivers. While these issues are applicable within any scenario framework, our ideas are illustrated using the widely used SRES scenarios, with both impacts and adaptation being considered. Importantly, scenario development is a process, and the assumptions that are made about future conditions concerning the coast need to be explicit, transparent and open to scientific debate concerning their realism and likelihood. These issues are generic across other sectors. ?? Integrated Research System for Sustainability Science and Springer 2008.

  2. Who speaks for the climate? Considering `expert' and `authorized' claims-makers in the media (Invited)

    NASA Astrophysics Data System (ADS)

    Boykoff, M.

    2010-12-01

    In this presentation, I analyze representations of climate change in traditional and new/social media, and examine contextual elements as well as journalistic pressures that contribute to how claims-makers become ‘experts’ and/or ‘authorities’ as well as how climate-related information becomes ‘news’. These considerations seek to help make sense of how/why particular climate-related discourses find traction in traditional and new/social media, while others remain muffled or silent. In so doing, I explore how power flows through culture, politics, and society, constructing knowledge, norms, conventions and (un)truths about variegated dimensions of climate change via processes of media portrayals. I interrogate how (un)authorized voices in mass media shape claims on ‘truth’ about various facets of present day climate challenges. I argue that these significantly meld our individual and collective ‘ways of knowing’ about climate change, and in turn, vitally shape our ongoing material and social practices. The contested and complex elements explored here contribute critically to cultural interpretations via citizen perceptions and deliberations for action, as media practices stitch together formal science and policy with everyday activities in the public sphere.

  3. The integrated effects of future climate and hydrologic uncertainty on sustainable flood risk management

    NASA Astrophysics Data System (ADS)

    Steinschneider, S.; Wi, S.; Brown, C. M.

    2013-12-01

    Flood risk management performance is investigated within the context of integrated climate and hydrologic modeling uncertainty to explore system robustness. The research question investigated is whether structural and hydrologic parameterization uncertainties are significant relative to other uncertainties such as climate change when considering water resources system performance. Two hydrologic models are considered, a conceptual, lumped parameter model that preserves the water balance and a physically-based model that preserves both water and energy balances. In the conceptual model, parameter and structural uncertainties are quantified and propagated through the analysis using a Bayesian modeling framework with an innovative error model. Mean climate changes and internal climate variability are explored using an ensemble of simulations from a stochastic weather generator. The approach presented can be used to quantify the sensitivity of flood protection adequacy to different sources of uncertainty in the climate and hydrologic system, enabling the identification of robust projects that maintain adequate performance despite the uncertainties. The method is demonstrated in a case study for the Coralville Reservoir on the Iowa River, where increased flooding over the past several decades has raised questions about potential impacts of climate change on flood protection adequacy.

  4. Commonalities between Disaster and Climate Change Risks for Health: A Theoretical Framework.

    PubMed

    Banwell, Nicola; Rutherford, Shannon; Mackey, Brendan; Street, Roger; Chu, Cordia

    2018-03-16

    Disasters and climate change have significant implications for human health worldwide. Both climate change and the climate-sensitive hazards that result in disasters, are discussed in terms of direct and indirect impacts on health. A growing body of literature has argued for the need to link disaster risk reduction and climate change adaptation. However, there is limited articulation of the commonalities between these health impacts. Understanding the shared risk pathways is an important starting point for developing joint strategies for adapting to, and reducing, health risks. Therefore, this article discusses the common aspects of direct and indirect health risks of climate change and climate-sensitive disasters. Based on this discussion a theoretical framework is presented for understanding these commonalities. As such, this article hopes to extend the current health impact frameworks and provide a platform for further research exploring opportunities for linked adaptation and risk reduction strategies.

  5. Commonalities between Disaster and Climate Change Risks for Health: A Theoretical Framework

    PubMed Central

    Banwell, Nicola; Rutherford, Shannon; Mackey, Brendan; Street, Roger; Chu, Cordia

    2018-01-01

    Disasters and climate change have significant implications for human health worldwide. Both climate change and the climate-sensitive hazards that result in disasters, are discussed in terms of direct and indirect impacts on health. A growing body of literature has argued for the need to link disaster risk reduction and climate change adaptation. However, there is limited articulation of the commonalities between these health impacts. Understanding the shared risk pathways is an important starting point for developing joint strategies for adapting to, and reducing, health risks. Therefore, this article discusses the common aspects of direct and indirect health risks of climate change and climate-sensitive disasters. Based on this discussion a theoretical framework is presented for understanding these commonalities. As such, this article hopes to extend the current health impact frameworks and provide a platform for further research exploring opportunities for linked adaptation and risk reduction strategies. PMID:29547592

  6. Climate Change Effects on Respiratory Health: Implications for Nursing.

    PubMed

    George, Maureen; Bruzzese, Jean-Marie; Matura, Lea Ann

    2017-11-01

    Greenhouse gases are driving climate change. This article explores the adverse health effects of climate change on a particularly vulnerable population: children and adults with respiratory conditions. This review provides a general overview of the effects of increasing temperatures, extreme weather, desertification, and flooding on asthma, chronic obstructive lung disease, and respiratory infections. We offer suggestions for future research to better understand climate change hazards, policies to support prevention and mitigation efforts targeting climate change, and clinical actions to reduce individual risk. Climate change produces a number of changes to the natural and built environments that may potentially increase respiratory disease prevalence, morbidity, and mortality. Nurses might consider focusing their research efforts on reducing the effects of greenhouse gases and in directing policy to mitigate the harmful effects of climate change. Nurses can also continue to direct educational and clinical actions to reduce risks for all populations, but most importantly, for our most vulnerable groups. While advancements have been made in understanding the impact of climate change on respiratory health, nurses can play an important role in reducing the deleterious effects of climate change. This will require a multipronged approach of research, policy, and clinical action. © 2017 Sigma Theta Tau International.

  7. Communicating Ocean Acidification and Climate Change to Public Audiences Using Scientific Data, Interactive Exploration Tools, and Visual Narratives

    NASA Astrophysics Data System (ADS)

    Miller, M. K.; Rossiter, A.; Spitzer, W.

    2016-12-01

    The Exploratorium, a hands-on science museum, explores local environmental conditions of San Francisco Bay to connect audiences to the larger global implications of ocean acidification and climate change. The work is centered in the Fisher Bay Observatory at Pier 15, a glass-walled gallery sited for explorations of urban San Francisco and the Bay. Interactive exhibits, high-resolution data visualizations, and mediated activities and conversations communicate to public audiences the impacts of excess carbon dioxide in the atmosphere and ocean. Through a 10-year education partnership with NOAA and two environmental literacy grants funded by its Office of Education, the Exploratorium has been part of two distinct but complementary strategies to increase climate literacy beyond traditional classroom settings. We will discuss two projects that address the ways complex scientific information can be transformed into learning opportunities for the public, providing information citizens can use for decision-making in their personal lives and their communities. The Visualizing Change project developed "visual narratives" that combine scientific visualizations and other images with story telling about the science and potential solutions of climate impacts on the ocean. The narratives were designed to engage curiosity and provide the public with hopeful and useful information to stimulate solutions-oriented behavior rather than to communicate despair about climate change. Training workshops for aquarium and museum docents prepare informal educators to use the narratives and help them frame productive conversations with the pubic. The Carbon Networks project, led by the Exploratorium, uses local and Pacific Rim data to explore the current state of climate change and ocean acidification. The Exploratorium collects and displays local ocean and atmosphere data as a member of the Central and Northern California Ocean Observing System and as an observing station for NOAA's Pacific Marine Environment Lab's carbon buoy network. Other Carbon Network partners, the Pacific Science Center and Waikiki Aquarium, also have access to local carbon data from NOAA. The project collectively explores the development of hands-on activities, teaching resources, and workshops for museum educators and classroom teachers.

  8. Climate Solutions Presentations on Science On a Sphere (SOS) and SOS Explorer achieve acceptance of Climate Science among Policymakers as well as the Public: US National Academy of Sciences Symposium/Open House Example

    NASA Astrophysics Data System (ADS)

    Sievering, H.

    2015-12-01

    The outcomes of climate science are inherently rife with discussions of dire consequences for humans that leave many listeners feeling helpless and hopeless. We have found that a focus on clean energy solutions, without reference to dirty energy, substantially reduces (may even eliminate) the negativity associated with sea level rise, extreme weather and other climate change presentations. US audiences respond well to discussion of California's clean energy transformation with solar, wind, geothermal and water power together now approaching 25% of total energy supply for the world's sixth largest economy. For both policymakers and the general public, a "positive climate change" presentation does not generally suffice on its own. Clear visual display of climate science information is essential. We have found the Science On a Sphere (SOS) National Oceanic and Atmospheric Administration science education tool, to be exceptional in this regard. Further, broad dissemination is possible given the SOS network consists of over 120 sites in 23 countries. The new SOS Explorer system, an advanced science education tool, can readily utilize the over 500 available SOS data sets. We have recently developed an arctic amplification and mid-latitude climate change impacts program for the upcoming US National Academy of Sciences' Arctic Matters Symposium/Open House. This SOS and SOS Explorer education program will be described with emphasis on the climate solutions incorporated into this module targeted at US policymakers and invited open house public.

  9. Novel Tools for Climate Change Learning and Responding in Earth Science Education

    NASA Astrophysics Data System (ADS)

    Sparrow, Elena; Brunacini, Jessica; Pfirman, Stephanie

    2015-04-01

    Several innovative, polar focused activities and tools including a polar hub website (http://thepolarhub.org) have been developed for use in formal and informal earth science or STEM education by the Polar Learning and Responding (PoLAR) Climate Change Education Partnership (consisting of climate scientists, experts in the learning sciences and education practitioners). In seeking to inform understanding of and response to climate change, these tools and activities range from increasing awareness to informing decisions about climate change, from being used in classrooms (by undergraduate students as well as by pre-college students or by teachers taking online climate graduate courses) to being used in the public arena (by stakeholders, community members and the general public), and from using low technology (card games such as EcoChains- Arctic Crisis, a food web game or SMARTIC - Strategic Management of Resources in Times of Change, an Arctic marine spatial planning game) to high technology (Greenify Network - a mobile real world action game that fosters sustainability and allows players to meaningfully address climate change in their daily lives, or the Polar Explorer Data Visualization Tablet App that allows individuals to explore data collected by scientists and presented for the everyday user through interactive maps and visualizations, to ask questions and go on an individualized tour of polar regions and their connections to the rest of the world). Games are useful tools in integrative and applied learning, in gaining practical and intellectual skills, and in systems thinking. Also, as part of the PoLAR Partnership, a Signs of the Land Climate Change Camp was collaboratively developed and conducted, that can be used as a model for engaging and representing indigenous communities in the co-production of climate change knowledge, communication tools and solutions building. Future camps are planned with Alaska Native Elders, educators including classroom teachers, natural resource managers, community members, leaders, and climate scientists as participants.

  10. Why do some people do "more" to mitigate climate change than others? Exploring heterogeneity in psycho-social associations.

    PubMed

    Ortega-Egea, José Manuel; García-de-Frutos, Nieves; Antolín-López, Raquel

    2014-01-01

    The urgency of climate change mitigation calls for a profound shift in personal behavior. This paper investigates psycho-social correlates of extra mitigation behavior in response to climate change, while also testing for potential (unobserved) heterogeneity in European citizens' decision-making. A person's extra mitigation behavior in response to climate change is conceptualized--and differentiated from common mitigation behavior--as some people's broader and greater levels of behavioral engagement (compared to others) across specific self-reported mitigation actions and behavioral domains. Regression analyses highlight the importance of environmental psychographics (i.e., attitudes, motivations, and knowledge about climate change) and socio-demographics (especially country-level variables) in understanding extra mitigation behavior. By looking at the data through the lens of segmentation, significant heterogeneity is uncovered in the associations of attitudes and knowledge about climate change--but not in motivational or socio-demographic links--with extra mitigation behavior in response to climate change, across two groups of environmentally active respondents. The study has implications for promoting more ambitious behavioral responses to climate change, both at the individual level and across countries.

  11. Climate Change? When? Where?

    ERIC Educational Resources Information Center

    Boon, Helen

    2009-01-01

    Regional Australian students were surveyed to explore their understanding and knowledge of the greenhouse effect, ozone depletion and climate change. Results were compared with a parallel study undertaken in 1991 in a regional UK city. The comparison was conducted to investigate whether more awareness and understanding of these issues is…

  12. Ice Core Investigations

    ERIC Educational Resources Information Center

    Krim, Jessica; Brody, Michael

    2008-01-01

    What can glaciers tell us about volcanoes and atmospheric conditions? How does this information relate to our understanding of climate change? Ice Core Investigations is an original and innovative activity that explores these types of questions. It brings together popular science issues such as research, climate change, ice core drilling, and air…

  13. Beaufort Sea Methane Hydrate Exploration: Energy and Climate Change

    DTIC Science & Technology

    2011-05-27

    2 Diesel Engine /Shaft 6,000 hp Continuous 1 Gas Turbine/Shaft 20,000 hp Continuous 25,000 hp demand boost 16 APPENDIX 2 : Science team and...Archive (3 ml) ICP, 3 ml total alkalinity (1 ml) nutrients (7 ml) cations Ca , Mg, Na, K, Sr ( 2 ml) δ 18 O (1ml) 26 APPENDIX 7: Porewater...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/ 6110 --11-9330 Beaufort Sea Methane Hydrate Exploration: Energy and Climate Change May 27

  14. Simulating streamflow in ungauged basins under a changing climate: The importance of landscape characteristics

    NASA Astrophysics Data System (ADS)

    Teutschbein, Claudia; Grabs, Thomas; Laudon, Hjalmar; Karlsen, Reinert H.; Bishop, Kevin

    2018-06-01

    In this paper we explored how landscape characteristics such as topography, geology, soils and land cover influence the way catchments respond to changing climate conditions. Based on an ensemble of 15 regional climate models bias-corrected with a distribution-mapping approach, present and future streamflow in 14 neighboring and rather similar catchments in Northern Sweden was simulated with the HBV model. We established functional relationships between a range of landscape characteristics and projected changes in streamflow signatures. These were then used to analyze hydrological consequences of physical perturbations in a hypothetically ungauged basin in a climate change context. Our analysis showed a strong connection between the forest cover extent and the sensitivity of different components of a catchment's hydrological regime to changing climate conditions. This emphasizes the need to redefine forestry goals and practices in advance of climate change-related risks and uncertainties.

  15. Livestock Helminths in a Changing Climate: Approaches and Restrictions to Meaningful Predictions.

    PubMed

    Fox, Naomi J; Marion, Glenn; Davidson, Ross S; White, Piran C L; Hutchings, Michael R

    2012-03-06

    Climate change is a driving force for livestock parasite risk. This is especially true for helminths including the nematodes Haemonchus contortus, Teladorsagia circumcincta, Nematodirus battus, and the trematode Fasciola hepatica, since survival and development of free-living stages is chiefly affected by temperature and moisture. The paucity of long term predictions of helminth risk under climate change has driven us to explore optimal modelling approaches and identify current bottlenecks to generating meaningful predictions. We classify approaches as correlative or mechanistic, exploring their strengths and limitations. Climate is one aspect of a complex system and, at the farm level, husbandry has a dominant influence on helminth transmission. Continuing environmental change will necessitate the adoption of mitigation and adaptation strategies in husbandry. Long term predictive models need to have the architecture to incorporate these changes. Ultimately, an optimal modelling approach is likely to combine mechanistic processes and physiological thresholds with correlative bioclimatic modelling, incorporating changes in livestock husbandry and disease control. Irrespective of approach, the principal limitation to parasite predictions is the availability of active surveillance data and empirical data on physiological responses to climate variables. By combining improved empirical data and refined models with a broad view of the livestock system, robust projections of helminth risk can be developed.

  16. Infectious Diseases, Urbanization and Climate Change: Challenges in Future China

    PubMed Central

    Tong, Michael Xiaoliang; Hansen, Alana; Hanson-Easey, Scott; Cameron, Scott; Xiang, Jianjun; Liu, Qiyong; Sun, Yehuan; Weinstein, Philip; Han, Gil-Soo; Williams, Craig; Bi, Peng

    2015-01-01

    China is one of the largest countries in the world with nearly 20% of the world’s population. There have been significant improvements in economy, education and technology over the last three decades. Due to substantial investments from all levels of government, the public health system in China has been improved since the 2003 severe acute respiratory syndrome (SARS) outbreak. However, infectious diseases still remain a major population health issue and this may be exacerbated by rapid urbanization and unprecedented impacts of climate change. This commentary aims to explore China’s current capacity to manage infectious diseases which impair population health. It discusses the existing disease surveillance system and underscores the critical importance of strengthening the system. It also explores how the growing migrant population, dramatic changes in the natural landscape following rapid urbanization, and changing climatic conditions can contribute to the emergence and re-emergence of infectious disease. Continuing research on infectious diseases, urbanization and climate change may inform the country’s capacity to deal with emerging and re-emerging infectious diseases in the future. PMID:26371017

  17. The effects of climate-change-induced drought and freshwater wetlands

    USGS Publications Warehouse

    Middleton, B.A.; Kleinebecker, Till; Middleton, B.A.

    2012-01-01

    Drought cycles in wetlands may become more frequent and severe in the future, with consequences for wetland distribution and function. According to the Intergovernmental Panel on Climate Change (Intergovernmental Panel on Climate Change [IPCC], Managing the risks of extreme events and disasters to advance climate change adaptation, 2012. Online: http://ipcc-wg2.gov/SREX/images/uploads/SREX-All_FINAL.pdf, climate-change is likely to affect precipitation and evapotranspiration patterns so that the world’s wetlands may have more frequent episodes of extreme flooding and drought. This chapter contributes to a worldwide view of how wetland processes may be affected by these predicted changes in climate. Specifically, the occurrence of drought may increase, and that increase may affect the critical processes that sustain biodiversity in wetlands. We include specific examples that explore the effects of drought and other climate-change factors on wetland function in various parts of the world. In a concluding section we discuss management strategies for climate-change in wetlands. The synthesis of information in this chapter will contribute to a better understanding of how climate-change-induced drought may affect the function and distribution of wetlands in the future.

  18. Implications of cumulative GHG Emissions to Climate, Society and Ecosystems in California

    NASA Astrophysics Data System (ADS)

    Cayan, D. R.; Franco, G.; Pierce, D. W.

    2016-12-01

    We investigate simulations conducted for the ongoing Climate Change Assessments in California. In this presentation, we explore implications of global climate change threshold targets on temperature, precipitation, sea level rise, snow pack, and extreme events including heat waves, wildfire and coastal flooding in California. A set of regional models driven by an ensemble of global climate change futures from 4th and 5th IPCC Assessment GCMs indicate how California's climate and thus its hydrological systems, coast and wildlands respond to increasing atmospheric greenhouse gas concentrations at levels that produce global warming of 1.5°C and beyond. Differing global greenhouse gas emissions scenarios would produce strongly diverging results after mid-21st Century, as emphasized by the suite of modeled regional climate measures. The results demonstrate that global emissions can be used, independent of emissions pathway (but not entirely and not for all climate and impact measures), to estimate physical changes at the local and regional levels in the State. These relationships are explored to re-interpret prior studies that were based on the SRES emission scenarios along with the current suite of RCP scenarios. In addition, because historical emissions are above what was envisioned for the RCPs, and since the 2015 Conference of Parties implies a departure from the RCPs, consideration of cumulative CO2 emissions provides a useful tool for contextualizing historical emissions and expected outcomes from COP21. Climate policy implications are described, including climate adaptation guidance that California entities are required or encouraged to follow.

  19. The Effects of Climate Change on Cardiac Health.

    PubMed

    De Blois, Jonathan; Kjellstrom, Tord; Agewall, Stefan; Ezekowitz, Justin A; Armstrong, Paul W; Atar, Dan

    2015-01-01

    The earth's climate is changing and increasing ambient heat levels are emerging in large areas of the world. An important cause of this change is the anthropogenic emission of greenhouse gases. Climate changes have a variety of negative effects on health, including cardiac health. People with pre-existing medical conditions such as cardiovascular disease (including heart failure), people carrying out physically demanding work and the elderly are particularly vulnerable. This review evaluates the evidence base for the cardiac health consequences of climate conditions, with particular reference to increasing heat exposure, and it also explores the potential further implications. © 2015 S. Karger AG, Basel.

  20. Exploring Local Approaches to Communicating Global Climate Change Information

    NASA Astrophysics Data System (ADS)

    Stevermer, A. J.

    2002-12-01

    Expected future climate changes are often presented as a global problem, requiring a global solution. Although this statement is accurate, communicating climate change science and prospective solutions must begin at local levels, each with its own subset of complexities to be addressed. Scientific evaluation of local changes can be complicated by large variability occurring over small spatial scales; this variability hinders efforts both to analyze past local changes and to project future ones. The situation is further encumbered by challenges associated with scientific literacy in the U.S., as well as by pressing economic difficulties. For people facing real-life financial and other uncertainties, a projected ``1.4 to 5.8 degrees Celsius'' rise in global temperature is likely to remain only an abstract concept. Despite this lack of concreteness, recent surveys have found that most U.S. residents believe current global warming science, and an even greater number view the prospect of increased warming as at least a ``somewhat serious'' problem. People will often be able to speak of long-term climate changes in their area, whether observed changes in the amount of snow cover in winter, or in the duration of extreme heat periods in summer. This work will explore the benefits and difficulties of communicating climate change from a local, rather than global, perspective, and seek out possible strategies for making less abstract, more concrete, and most importantly, more understandable information available to the public.

  1. Climate Variability, Climate Change and Social Vulnerability in the Semi-arid Tropics

    NASA Astrophysics Data System (ADS)

    Ribot, Jesse C.; Rocha Magalhaes, Antonio; Panagides, Stahis

    1996-06-01

    Climate changes can trigger events that lead to mass migration, hunger, and even famine. Rather than focus on the impacts that result from climatic fluctuations, the authors look at the underlying conditions that cause social vulnerability. Once we understand why individuals, households, nations, and regions are vulnerable, and how they have buffered themselves against climatic and environmental shifts, then present and future vulnerability can be redressed. By using case studies from across the globe, the authors explore past experiences with climate variability, and the likely effects of--and the possible policy responses to--the types of climatic events that global warming might bring.

  2. Influences of Regional Climate Change on Air Quality Across the Continental U.S. Projected from Downscaling IPCC AR5 Simulations. Chapter 2

    NASA Technical Reports Server (NTRS)

    Nolte, Christopher; Otte, Tanya; Pinder, Robert; Bowden, J.; Herwehe, J.; Faluvegi, Gregory; Shindell, Drew

    2013-01-01

    Projecting climate change scenarios to local scales is important for understanding, mitigating, and adapting to the effects of climate change on society and the environment. Many of the global climate models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture regional-scale changes in temperatures and precipitation. We use a regional climate model (RCM) to dynamically downscale the GCM's large-scale signal to investigate the changes in regional and local extremes of temperature and precipitation that may result from a changing climate. In this paper, we show preliminary results from downscaling the NASA/GISS ModelE IPCC AR5 Representative Concentration Pathway (RCP) 6.0 scenario. We use the Weather Research and Forecasting (WRF) model as the RCM to downscale decadal time slices (1995-2005 and 2025-2035) and illustrate potential changes in regional climate for the continental U.S. that are projected by ModelE and WRF under RCP6.0. The regional climate change scenario is further processed using the Community Multiscale Air Quality modeling system to explore influences of regional climate change on air quality.

  3. Merger of three modeling approaches to assess potential effects of climate change on trees in the eastern United States

    Treesearch

    Louis R. Iverson; Anantha M. Prasad; Stephen N. Matthews; Matthew P. Peters

    2010-01-01

    Climate change will likely cause impacts that are species specific and significant; modeling is critical to better understand potential changes in suitable habitat. We use empirical, abundance-based habitat models utilizing decision tree-based ensemble methods to explore potential changes of 134 tree species habitats in the eastern United States (http://www.nrs.fs.fed....

  4. Educating for Hope in Troubled Times: Climate Change and the Transition to a Post-Carbon Future

    ERIC Educational Resources Information Center

    Hicks, David

    2014-01-01

    This book explores three global issues--climate change, peak oil and the limits to growth. It sets out the facts about the inevitable yet still largely unknown changes, and examines the feelings and attitudes the coming changes engender. It offers teachers ways to engage with vital but too often avoided issues, and to share success stories and…

  5. Bioethics and Climate Change: A Response to Macpherson and Valles.

    PubMed

    Resnik, David B

    2016-10-01

    Two articles published in Bioethics recently have explored the ways that bioethics can contribute to the climate change debate. Cheryl Cox Macpherson argues that bioethicists can play an important role in the climate change debate by helping the public to better understand the values at stake and the trade-offs that must be made in individual and social choices, and Sean Valles claims that bioethicists can contribute to the debate by framing the issues in terms of the public health impacts of climate change. While Macpherson and Valles make valid points concerning a potential role for bioethics in the climate change debate, it is important to recognize that much more than ethical analysis and reflection will be needed to significantly impact public attitudes and government policies. © 2016 John Wiley & Sons Ltd.

  6. Spatio-Temporal Pattern Analysis for Regional Climate Change Using Mathematical Morphology

    NASA Astrophysics Data System (ADS)

    Das, M.; Ghosh, S. K.

    2015-07-01

    Of late, significant changes in climate with their grave consequences have posed great challenges on humankind. Thus, the detection and assessment of climatic changes on a regional scale is gaining importance, since it helps to adopt adequate mitigation and adaptation measures. In this paper, we have presented a novel approach for detecting spatio-temporal pattern of regional climate change by exploiting the theory of mathematical morphology. At first, the various climatic zones in the region have been identified by using multifractal cross-correlation analysis (MF-DXA) of different climate variables of interest. Then, the directional granulometry with four different structuring elements has been studied to detect the temporal changes in spatial distribution of the identified climatic zones in the region and further insights have been drawn with respect to morphological uncertainty index and Hurst exponent. The approach has been evaluated with the daily time series data of land surface temperature (LST) and precipitation rate, collected from Microsoft Research - Fetch Climate Explorer, to analyze the spatio-temporal climatic pattern-change in the Eastern and North-Eastern regions of India throughout four quarters of the 20th century.

  7. Research strategies for addressing uncertainties

    USGS Publications Warehouse

    Busch, David E.; Brekke, Levi D.; Averyt, Kristen; Jardine, Angela; Welling, Leigh; Garfin, Gregg; Jardine, Angela; Merideth, Robert; Black, Mary; LeRoy, Sarah

    2013-01-01

    Research Strategies for Addressing Uncertainties builds on descriptions of research needs presented elsewhere in the book; describes current research efforts and the challenges and opportunities to reduce the uncertainties of climate change; explores ways to improve the understanding of changes in climate and hydrology; and emphasizes the use of research to inform decision making.

  8. FEASIBILITY STUDY OF CLIMATE CHANGE IMPACTS ON NITROGEN IN CAPE COD EMBAYMENTS

    EPA Science Inventory

    The objective of this study is to explore the feasibility of studying potential effects of climate change on impairments resulting from nitrogen loadings in the salt water embayments of Cape Cod. The report includes a recommended plan for studying these impacts, an estimate of t...

  9. Perceptions and Practices of Culturally Relevant Science Teaching in American Indian Classrooms

    ERIC Educational Resources Information Center

    Nam, Younkyeong; Roehrig, Gillian; Kern, Anne; Reynolds, Bree

    2013-01-01

    This study explores the perceptions of culturally relevant science teaching of 35 teachers of American Indian students. These teachers participated in professional development designed to help them better understand climate change science content and teaching climate change using both Western science and traditional and cultural knowledge. Teacher…

  10. In-Service Teachers' Attitudes, Knowledge and Classroom Teaching of Global Climate Change

    ERIC Educational Resources Information Center

    Liu, Shiyu; Roehrig, Gillian; Bhattacharya, Devarati; Varma, Keisha

    2015-01-01

    This study explores in-service teachers' attitudes and knowledge about a pressing environmental issue, "global climate change" (GCC), and how these may relate to their classroom teaching. In this work, nineteen teachers from Native American communities attended a professional development workshop that focused on enhancing their…

  11. The Interplay of Climate Change and Air Pollution on Health.

    PubMed

    Orru, H; Ebi, K L; Forsberg, B

    2017-12-01

    Air pollution significantly affects health, causing up to 7 million premature deaths annually with an even larger number of hospitalizations and days of sick leave. Climate change could alter the dispersion of primary pollutants, particularly particulate matter, and intensify the formation of secondary pollutants, such as near-surface ozone. The purpose of the review is to evaluate the recent evidence on the impacts of climate change on air pollution and air pollution-related health impacts and identify knowledge gaps for future research. Several studies modelled future ozone and particulate matter concentrations and calculated the resulting health impacts under different climate scenarios. Due to climate change, ozone- and fine particle-related mortalities are expected to increase in most studies; however, results differ by region, assumed climate change scenario and other factors such as population and background emissions. This review explores the relationships between climate change, air pollution and air pollution-related health impacts. The results highly depend on the climate change scenario used and on projections of future air pollution emissions, with relatively high uncertainty. Studies primarily focused on mortality; projections on the effects on morbidity are needed.

  12. Rising CO2, Climate Change, and Public Health: Exploring the Links to Plant Biology

    PubMed Central

    Ziska, Lewis H.; Epstein, Paul R.; Schlesinger, William H.

    2009-01-01

    Background Although the issue of anthropogenic climate forcing and public health is widely recognized, one fundamental aspect has remained underappreciated: the impact of climatic change on plant biology and the well-being of human systems. Objectives We aimed to critically evaluate the extant and probable links between plant function and human health, drawing on the pertinent literature. Discussion Here we provide a number of critical examples that range over various health concerns related to plant biology and climate change, including aerobiology, contact dermatitis, pharmacology, toxicology, and pesticide use. Conclusions There are a number of clear links among climate change, plant biology, and public health that remain underappreciated by both plant scientists and health care providers. We demonstrate the importance of such links in our understanding of climate change impacts and provide a list of key questions that will help to integrate plant biology into the current paradigm regarding climate change and human health. PMID:19270781

  13. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies.

    PubMed

    Radchuk, Viktoriia; Turlure, Camille; Schtickzelle, Nicolas

    2013-01-01

    As ectothermic organisms, butterflies have widely been used as models to explore the predicted impacts of climate change. However, most studies explore only one life stage; to our best knowledge, none have integrated the impact of temperature on the vital rates of all life stages for a species of conservation concern. Besides, most population viability analysis models for butterflies are based on yearly population growth rate, precluding the implementation and assessment of important climate change scenarios, where climate change occurs mainly, or differently, during some seasons. Here, we used a combination of laboratory and field experiments to quantify the impact of temperature on all life stages of a vulnerable glacial relict butterfly. Next, we integrated these impacts into an overall population response using a deterministic periodic matrix model and explored the impact of several climate change scenarios. Temperature positively affected egg, pre-diapause larva and pupal survival, and the number of eggs laid by a female; only the survival of overwintering larva was negatively affected by an increase in temperature. Despite the positive impact of warming on many life stages, population viability was reduced under all scenarios, with predictions of much shorter times to extinction than under the baseline (current temperature situation) scenario. Indeed, model predictions were the most sensitive to changes in survival of overwintering larva, the only stage negatively affected by warming. A proper consideration of every stage of the life cycle is important when designing conservation guidelines in the light of climate change. This is in line with the resource-based habitat view, which explicitly refers to the habitat as a collection of resources needed for all life stages of the species. We, therefore, encourage adopting a resource-based habitat view for population viability analysis and development of conservation guidelines for butterflies, and more generally, other organisms. Life stages that are cryptic or difficult to study should not be forsaken as they may be key determinants in the overall response to climate change, as we found with overwintering Boloria eunomia larvae. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  14. Change Ahead: Transient Scenarios for Long-term Water Management

    NASA Astrophysics Data System (ADS)

    Haasnoot, Marjolijn; Beersma, Jules; Schellekens, Jaap

    2013-04-01

    While the use of an ensemble of transient scenarios is common in climate change studies, they are rarely used in water management studies. Present planning studies on long-term water management often use a few plausible futures for one or two projection years, ignoring the dynamic aspect of adaptation through the interaction between the water system and society. Over the course of time society experiences, learns and adapts to changes and events, making policy responses part of a plausible future, and thus the success of a water management strategy. Exploring transient scenarios and policy options over time can support decision making on water management strategies in an uncertain and changing environment. We have developed and applied such a method, called exploring adaptation pathways (Haasnoot et al., 2012; Haasnoot et al., 2011). This method uses multiple realisations of transient scenarios to assess the efficacy of policy actions over time. In case specified objectives are not achieved anymore, an adaptation tipping point (Kwadijk et al., 2010) is reached. After reaching a tipping point, additional actions are needed to reach the objectives. As a result, a pathway emerges. In this presentation we describe the development of transient scenarios for long term water management, and how these scenarios can be used for long term water management under uncertainty. We illustrate this with thought experiments, and results from computational modeling experiment for exploring adaptation pathways in the lower Rhine delta. The results and the thought experiments show, among others, that climate variability is at least just as important as climate change for taking decisions in water management. References Haasnoot, M., Middelkoop, H., Offermans, A., Beek, E., Deursen, W.A.v. (2012) Exploring pathways for sustainable water management in river deltas in a changing environment. Climatic Change 115, 795-819. Haasnoot, M., Middelkoop, H., van Beek, E., van Deursen, W.P.A. (2011) A Method to Develop Sustainable Water Management Strategies for an Uncertain Future. Sustainable Development 19, 369-381. Kwadijk, J.C.J., Haasnoot, M., Mulder, J.P.M., Hoogvliet, M.M.C., Jeuken, A.B.M., van der Krogt, R.A.A., van Oostrom, N.G.C., Schelfhout, H.A., van Velzen, E.H., van Waveren, H., de Wit, M.J.M. (2010) Using adaptation tipping points to prepare for climate change and sea level rise: a case study in the Netherlands. Wiley Interdisciplinary Reviews: Climate Change 1, 729-740.

  15. Ocean Sciences Sequence for Grades 6-8: Climate Change Curriculum Developed Through a Collaboration Between Scientists and Educators

    NASA Astrophysics Data System (ADS)

    Halversen, C.; Weiss, E. L.; Pedemonte, S.

    2016-02-01

    Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, few high quality curriculum materials exist that address climate change in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8: The Ocean-Atmosphere Connection and Climate Change (OSS) addresses this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. OSS was developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified curriculum development team. Scientists were active partners throughout the entire development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. The goal was to focus strategically and effectively on core concepts within ocean and climate sciences that students should understand. OSS was designed in accordance with the latest research from the learning sciences and provides numerous opportunities for students to develop facility with science practices by "doing" science.Through hands-on activities, technology, informational readings, and embedded assessments, OSS deeply addresses a significant number of standards from the Next Generation Science Standards and is being used by many teachers as they explore the shifts required by NGSS. It also aligns with the Ocean Literacy and Climate Literacy Frameworks. OSS comprises 33 45-minute sessions organized into three thematic units, each driven by an exploratory question: (1) How do the ocean and atmosphere interact?; (2) How does carbon flow through the ocean, land, and atmosphere?; and (3) What are the causes and effects of climate change? The curriculum deliberately explores the ocean and climate as global systems and challenges students to use scientific evidence to make explanations about climate change.

  16. How Are Fishing Patterns and Fishing Communities Responding to Climate Change? A Test Case from the Northwest Atlantic

    NASA Astrophysics Data System (ADS)

    Young, T.; Fuller, E.; Coleman, K.; Provost, M.; Pinsky, M. L.; St Martin, K.

    2016-02-01

    We know climate is changing and fish are moving in response to those changes. But we understand less about how harvesters are responding to these changes in fish distribution and the ramifications of those changes for fishing communities. Ecological and evolutionary theory suggests that organisms must move, adapt, or die in response to environmental changes, and a related frame may be relevant for human harvesters in the face of climate change. Furthermore, research suggests that there may be a portfolio effect: a wider diversity of catch may buffer harvesters from some effects of climate change. To get at these questions, we explored changes in fishing patterns among commercial fishing communities in the northeast US from 1997-2014 using NOAA-collected logbook data. We found that communities using more mobile gear (large trawl vessels) demonstrated a greater range of latitudinal shift than communities using any other gear. Latitudinal shift was also inversely related to species diversity of catch and port latitude in those communities: southern communities that caught few species shifted dramatically northward, and northern communities that caught many species did not demonstrate marked latitudinal shifts. Those communities that demonstrated larger latitudinal shifts also demonstrated smaller changes in catch composition than their more stationary counterparts. We also found that vessels are indeed leaving many, but not all, fisheries in this region. These results suggest that harvesters are moving, adapting, and leaving fisheries, and that there does appear to be a portfolio effect, with catch diversity mediating some of these responses. While these changes in fishing patterns cannot all be directly attributed to climate change per se, marine fishes in this region are shifting north rapidly, as is expected under climate change. This study provides a valuable test case for exploring the potential ramifications of climate change on coastal socio-ecological systems.

  17. Team climate at Antarctic research stations 1996-2000: leadership matters.

    PubMed

    Schmidt, Lacey L; Wood, JoAnna; Lugg, Desmond J

    2004-08-01

    The popular assumption is that extreme environments induce a climate of hostility, incompatibility, and tension by intensifying differences and disagreements among team members. Team members' perceptions of team climate are likely to change over time in an extreme environment, and thus team climate should be considered as a dynamic outcome variable resulting from multiple factors. In order to explore team climate as a dynamic outcome, we explored whether variables at multiple levels of analysis contributed to team climate over time for teams living and working in Antarctica. Data for this study were collected from volunteers involved in Australian National Antarctic Research Expeditions conducted from 1996 to 2000. Multilevel analysis was used to partition and estimate the variance in team climate and to explore factors explaining variance at the group/team, individual, and weekly levels. Most of the variance in perceptions of team climate was at the individual level (57%). Team climate had less variance at the group level (16%) and at the weekly level (26%). Results indicated that perceived leadership effectiveness was significantly related to team climate. Perceived leadership effectiveness accounted for an estimated 77% of the group level variance, which equated to 14% of the overall variance in team climate. Our results suggest that exploring the characteristics and behaviors that constitute effective leadership would contribute to a more complete and useful picture of team climate, as well as guide selection research.

  18. The causality analysis of climate change and large-scale human crisis

    PubMed Central

    Zhang, David D.; Lee, Harry F.; Wang, Cong; Li, Baosheng; Pei, Qing; Zhang, Jane; An, Yulun

    2011-01-01

    Recent studies have shown strong temporal correlations between past climate changes and societal crises. However, the specific causal mechanisms underlying this relation have not been addressed. We explored quantitative responses of 14 fine-grained agro-ecological, socioeconomic, and demographic variables to climate fluctuations from A.D. 1500–1800 in Europe. Results show that cooling from A.D. 1560–1660 caused successive agro-ecological, socioeconomic, and demographic catastrophes, leading to the General Crisis of the Seventeenth Century. We identified a set of causal linkages between climate change and human crisis. Using temperature data and climate-driven economic variables, we simulated the alternation of defined “golden” and “dark” ages in Europe and the Northern Hemisphere during the past millennium. Our findings indicate that climate change was the ultimate cause, and climate-driven economic downturn was the direct cause, of large-scale human crises in preindustrial Europe and the Northern Hemisphere. PMID:21969578

  19. The causality analysis of climate change and large-scale human crisis.

    PubMed

    Zhang, David D; Lee, Harry F; Wang, Cong; Li, Baosheng; Pei, Qing; Zhang, Jane; An, Yulun

    2011-10-18

    Recent studies have shown strong temporal correlations between past climate changes and societal crises. However, the specific causal mechanisms underlying this relation have not been addressed. We explored quantitative responses of 14 fine-grained agro-ecological, socioeconomic, and demographic variables to climate fluctuations from A.D. 1500-1800 in Europe. Results show that cooling from A.D. 1560-1660 caused successive agro-ecological, socioeconomic, and demographic catastrophes, leading to the General Crisis of the Seventeenth Century. We identified a set of causal linkages between climate change and human crisis. Using temperature data and climate-driven economic variables, we simulated the alternation of defined "golden" and "dark" ages in Europe and the Northern Hemisphere during the past millennium. Our findings indicate that climate change was the ultimate cause, and climate-driven economic downturn was the direct cause, of large-scale human crises in preindustrial Europe and the Northern Hemisphere.

  20. A problem-oriented approach to understanding adaptation: lessons learnt from Alpine Shire, Victoria Australia.

    NASA Astrophysics Data System (ADS)

    Roman, Carolina

    2010-05-01

    Climate change is gaining attention as a significant strategic issue for localities that rely on their business sectors for economic viability. For businesses in the tourism sector, considerable research effort has sought to characterise the vulnerability to the likely impacts of future climate change through scenarios or ‘end-point' approaches (Kelly & Adger, 2000). Whilst useful, there are few demonstrable case studies that complement such work with a ‘start-point' approach that seeks to explore contextual vulnerability (O'Brien et al., 2007). This broader approach is inclusive of climate change as a process operating within a biophysical system and allows recognition of the complex interactions that occur in the coupled human-environmental system. A problem-oriented and interdisciplinary approach was employed at Alpine Shire, in northeast Victoria Australia, to explore the concept of contextual vulnerability and adaptability to stressors that include, but are not limited to climatic change. Using a policy sciences approach, the objective was to identify factors that influence existing vulnerabilities and that might consequently act as barriers to effective adaptation for the Shire's business community involved in the tourism sector. Analyses of results suggest that many threats, including the effects climate change, compete for the resources, strategy and direction of local tourism management bodies. Further analysis of conditioning factors revealed that many complex and interacting factors define the vulnerability and adaptive capacity of the Shire's tourism sector to the challenges of global change, which collectively have more immediate implications for policy and planning than long-term future climate change scenarios. An approximation of the common interest, i.e. enhancing capacity in business acumen amongst tourism operators, would facilitate adaptability and sustainability through the enhancement of social capital in this business community. Kelly, P. M., & Adger, W. N. (2000). Theory and practice in assessing vulnerability to climatic change and facilitating adaptation. Climatic Change, 47, 325-352. O'Brien, K., Eriksen, S., Nygaard, L. P., & Schjolden, A. (2007). Why different interpretations of vulnerability matter in climate change discourses. Climate Policy, 7, 73-88.

  1. Global climate change, war, and population decline in recent human history

    PubMed Central

    Zhang, David D.; Brecke, Peter; Lee, Harry F.; He, Yuan-Qing; Zhang, Jane

    2007-01-01

    Although scientists have warned of possible social perils resulting from climate change, the impacts of long-term climate change on social unrest and population collapse have not been quantitatively investigated. In this study, high-resolution paleo-climatic data have been used to explore at a macroscale the effects of climate change on the outbreak of war and population decline in the preindustrial era. We show that long-term fluctuations of war frequency and population changes followed the cycles of temperature change. Further analyses show that cooling impeded agricultural production, which brought about a series of serious social problems, including price inflation, then successively war outbreak, famine, and population decline successively. The findings suggest that worldwide and synchronistic war–peace, population, and price cycles in recent centuries have been driven mainly by long-term climate change. The findings also imply that social mechanisms that might mitigate the impact of climate change were not significantly effective during the study period. Climate change may thus have played a more important role and imposed a wider ranging effect on human civilization than has so far been suggested. Findings of this research may lend an additional dimension to the classic concepts of Malthusianism and Darwinism. PMID:18048343

  2. Global climate change, war, and population decline in recent human history.

    PubMed

    Zhang, David D; Brecke, Peter; Lee, Harry F; He, Yuan-Qing; Zhang, Jane

    2007-12-04

    Although scientists have warned of possible social perils resulting from climate change, the impacts of long-term climate change on social unrest and population collapse have not been quantitatively investigated. In this study, high-resolution paleo-climatic data have been used to explore at a macroscale the effects of climate change on the outbreak of war and population decline in the preindustrial era. We show that long-term fluctuations of war frequency and population changes followed the cycles of temperature change. Further analyses show that cooling impeded agricultural production, which brought about a series of serious social problems, including price inflation, then successively war outbreak, famine, and population decline successively. The findings suggest that worldwide and synchronistic war-peace, population, and price cycles in recent centuries have been driven mainly by long-term climate change. The findings also imply that social mechanisms that might mitigate the impact of climate change were not significantly effective during the study period. Climate change may thus have played a more important role and imposed a wider ranging effect on human civilization than has so far been suggested. Findings of this research may lend an additional dimension to the classic concepts of Malthusianism and Darwinism.

  3. Malaria and global change: Insights, uncertainties and possible surprises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, P.H.; Steel, A.

    Malaria may change with global change. Indeed, global change may affect malaria risk and malaria epidemiology. Malaria risk may change in response to a greenhouse warming; malaria epidemiology, in response to the social, economic, and political developments which a greenhouse warming may trigger. To date, malaria receptivity and epidemiology futures have been explored within the context of equilibrium studies. Equilibrium studies of climate change postulate an equilibrium present climate (the starting point) and a doubled-carbon dioxide climate (the end point), simulate conditions in both instances, and compare the two. What happens while climate changes, i.e., between the starting point andmore » the end point, is ignored. The present paper focuses on malaria receptivity and addresses what equilibrium studies miss, namely transient malaria dynamics.« less

  4. Persistence and diversification of the Holarctic shrew, Sorex tundrensis (Family Soricidae), in response to climate change

    USGS Publications Warehouse

    Hope, A.G.; Waltari, Eric; Fedorov, V.B.; Goropashnaya, A.V.; Talbot, S.L.; Cook, J.A.

    2011-01-01

    Environmental processes govern demography, species movements, community turnover and diversification and yet in many respects these dynamics are still poorly understood at high latitudes. We investigate the combined effects of climate change and geography through time for a widespread Holarctic shrew, Sorex tundrensis. We include a comprehensive suite of closely related outgroup taxa and three independent loci to explore phylogeographic structure and historical demography. We then explore the implications of these findings for other members of boreal communities. The tundra shrew and its sister species, the Tien Shan shrew (Sorex asper), exhibit strong geographic population structure across Siberia and into Beringia illustrating local centres of endemism that correspond to Late Pleistocene refugia. Ecological niche predictions for both current and historical distributions indicate a model of persistence through time despite dramatic climate change. Species tree estimation under a coalescent process suggests that isolation between populations has been maintained across timeframes deeper than the periodicity of Pleistocene glacial cycling. That some species such as the tundra shrew have a history of persistence largely independent of changing climate, whereas other boreal species shifted their ranges in response to climate change, highlights the dynamic processes of community assembly at high latitudes. ?? 2011 Blackwell Publishing Ltd.

  5. If You Change Yourself, the World Changes: The Effect of Exhibition on Preservice Science Teachers' Views about Global Climate Change

    ERIC Educational Resources Information Center

    Aksüt, Pelin; Dogan, Nihal; Bahar, Mehmet

    2016-01-01

    Although learning can occur in many environments e.g. science museum or zoo, some studies reported that teachers are prone to avoid outdoor activities since they lack of field trip training. For that reason; this study aims to explore the effect of the exhibition on preservice science teachers' views about global climate change (GCC) as well as…

  6. Valuing Precaution in Climate Change Policy Analysis (Invited)

    NASA Astrophysics Data System (ADS)

    Howarth, R. B.

    2010-12-01

    The U.N. Framework Convention on Climate Change calls for stabilizing greenhouse gas concentrations to prevent “dangerous anthropogenic interference” (DAI) with the global environment. This treaty language emphasizes a precautionary approach to climate change policy in a setting characterized by substantial uncertainty regarding the timing, magnitude, and impacts of climate change. In the economics of climate change, however, analysts often work with deterministic models that assign best-guess values to parameters that are highly uncertain. Such models support a “policy ramp” approach in which only limited steps should be taken to reduce the future growth of greenhouse gas emissions. This presentation will explore how uncertainties related to (a) climate sensitivity and (b) climate-change damages can be satisfactorily addressed in a coupled model of climate-economy dynamics. In this model, capping greenhouse gas concentrations at ~450 ppm of carbon dioxide equivalent provides substantial net benefits by reducing the risk of low-probability, catastrophic impacts. This result formalizes the intuition embodied in the DAI criterion in a manner consistent with rational decision-making under uncertainty.

  7. The Climate Resilience Toolkit: Central gateway for risk assessment and resilience planning at all governance scales

    NASA Astrophysics Data System (ADS)

    Herring, D.; Lipschultz, F.

    2016-12-01

    As people and organizations grapple with a changing climate amid a range of other factors simultaneously shifting, there is a need for credible, legitimate & salient scientific information in useful formats. In addition, an assessment framework is needed to guide the process of planning and implementing projects that allow communities and businesses to adapt to specific changing conditions, while also building overall resilience to future change. We will discuss how the U.S. Climate Resilience Toolkit (CRT) can improve people's ability to understand and manage their climate-related risks and opportunities, and help them make their communities and businesses more resilient. In close coordination with the U.S. Climate Data Initiative, the CRT is continually evolving to offer actionable authoritative information, relevant tools, and subject matter expertise from across the U.S. federal government in one easy-to-use location. The Toolkit's "Climate Explorer" is designed to help people understand potential climate conditions over the course of this century. It offers easy access to downloadable maps, graphs, and data tables of observed and projected temperature, precipitation and other decision-relevant climate variables dating back to 1950 and out to 2100. Since climate is only one of many changing factors affecting decisions about the future, it also ties climate information to a wide range of relevant variables to help users explore vulnerabilities and impacts. New topic areas have been added, such as "Fisheries," "Regions," and "Built Environment" sections that feature case studies and personal experiences in making adaptation decisions. A curated "Reports" section is integrated with semantic web capabilities to help users locate the most relevant information sources. As part of the USGCRP's sustained assessment process, the CRT is aligning with other federal activities, such as the upcoming 4th National Climate Assessment.

  8. The Girls on Ice program: Improving perceptions of climate change and environmental stewardship by exploring a glacier landscape

    NASA Astrophysics Data System (ADS)

    Young, J. C.; Conner, L.; Pettit, E. C.

    2017-12-01

    Girls on Ice is a unique, free, science and mountaineering experience for underserved girls aged 16 to 18. Each year, two teams of nine girls spend eight days on a remote Alaska or Washington glacier to learn about glaciology, climate change, and alpine ecology (as well as mountaineering, art and leadership). During the program, the girls live on, explore and study a glacier and the visibly climate change-altered landscape that surrounds it, through both instructor-led modules and scientific field studies the girls design themselves. Time spent on the glacier means witnessing rivers of meltwater running off the surface, climbing 300 m uphill to where the glacier last sat 150 years ago, and learning how scientists monitor the glacier's retreat. Previous studies have shown that pro-environmental behavior in youth is strongly influenced by having significant life experiences outdoors, and that engagement of citizens in a climate change-impacted landscape is emerging as a powerful way to connect people to environment and to motivate environmental action. Given the significant life experience provided by our unique wilderness format, and the interactions with a rapidly changing glacier landscape, this study examines how participation in Girls on Ice impacts the 16 to 18 year-old participants' perceptions of climate change, as well as their sense of environmental identity. We use mixed qualitative and quantitative methods, including pre- and post-program questionnaires, an in-program focus group discussion, end-of-program interviews, and early and late in-program concept (node-link) mapping exercises. Preliminary results from qualitative data show a shift in many girls' perceptions of climate change towards being motivated to act to combat it, with particular reference to glaciers as a key component prompting that shift. Ultimately, this study aims to demonstrate the value of tenets of environmental and outdoor education theory, namely significant life experiences and interactions with climate change-impacted landscapes, for motivating greater climate change awareness and mitigation behavior in youth.

  9. 'The Lived Experience of Climate Changé: An Interdisciplinary and Competence-Based Masters Track Using Open Educational Resources and Virtual Mobility

    NASA Astrophysics Data System (ADS)

    Abbott, Dina; de Kraker, Joop; Pérez, Paquita; van Scheltinga, Catharien Terwisscha; Willems, Patrick; Wilson, Gordon

    Drawing on the authors' involvement in a European Union Erasmus project, this paper explores a new holistic approach to climate change education which uses as a source of active/social learning and knowledge construction the diversity of different disciplinary and sectoral approaches. We further argue for a corresponding pedagogy based on developing transboundary competences where the communicative engagement across space and time, and between diverse perspectives and standpoints, is ICT-enabled. Meeting these challenges is a normative goal, not only for this expanded interdisciplinary approach to climate change education, but also for a global resolution of the climate change issue itself.

  10. Applying a Comprehensive Contextual Climate Change Vulnerability Framework to New Zealand's Tourism Industry.

    PubMed

    Hopkins, Debbie

    2015-03-01

    Conceptualisations of 'vulnerability' vary amongst scholarly communities, contributing to a wide variety of applications. Research investigating vulnerability to climate change has often excluded non-climatic changes which may contribute to degrees of vulnerability perceived or experienced. This paper introduces a comprehensive contextual vulnerability framework which incorporates physical, social, economic and political factors which could amplify or reduce vulnerability. The framework is applied to New Zealand's tourism industry to explore its value in interpreting a complex, human-natural environment system with multiple competing vulnerabilities. The comprehensive contextual framework can inform government policy and industry decision making, integrating understandings of climate change within the broader context of internal and external social, physical, economic, and institutional stressors.

  11. The Need to Introduce System Thinking in Teaching Climate Change

    ERIC Educational Resources Information Center

    Roychoudhury, Anita; Shepardson, Daniel P.; Hirsch, Andrew; Niyogi, Devdutta; Mehta, Jignesh; Top, Sara

    2017-01-01

    Research related to teaching climate change, system thinking, current reform in science education, and the research on reform-oriented assessment indicate that we need to explore student understanding in greater detail instead of only testing for an incremental gain in disciplinary knowledge. Using open-ended items we assessed details in student…

  12. Carrion--It's What's for Dinner: Wolves Reduce the Impact of Climate Change

    ERIC Educational Resources Information Center

    Consitble, Juanita M.; Sandro, Luke H.; Lee, Richard E., Jr.

    2008-01-01

    The restoration of wolves to Yellowstone National park after a 7-year absence created a natural experiment on the ecological effects of top predators. In this activity, students use mathematical models to explore how carrion from wolf kills can reduce negative effects of climate change on scavengers in the park.

  13. Climate Change? Who Knows? A Comparison of Secondary Students and Pre-Service Teachers

    ERIC Educational Resources Information Center

    Boon, Helen J.

    2010-01-01

    In the context of recently published academic discrepancies between Queensland students and students from other Australian states, final year pre-service teachers were surveyed to explore their understanding and knowledge of climate change. Their responses were compared to those of secondary students to discern any significant gains in knowledge…

  14. Greening Australia's public health system: the role of public hospitals in responding to climate change.

    PubMed

    Primozic, Lauren

    2010-05-01

    Climate change is one of the most important social, economic, ecological and ethical issues of the 21st century. The effects of climate change on human health are now widely accepted as a genuine threat and the Australian Government has initiated policy and legislative responses. In addition, in the 2009-2010 budget the Australian Government has committed A$64 billion to public health and hospital reform. But will this Commonwealth funding support--and should it support--the government's high-profile climate change policy? Does Commonwealth funding translate to an obligation to support Commonwealth policies? This article explores the role of public hospitals as champions and role models of the Australian Government's climate change policy and how this might be done without detracting from the primary purpose of public hospital funding: improving patient care.

  15. Representing climate change on public service television: A case study.

    PubMed

    Debrett, Mary

    2017-05-01

    Publicly funded broadcasters with a track record in science programming would appear ideally placed to represent climate change to the lay public. Free from the constraints of vested interests and the economic imperative, public service providers are better equipped to represent the scientific, social and economic aspects of climate change than commercial media, where ownership conglomeration, corporate lobbyists and online competition have driven increasingly tabloid coverage with an emphasis on controversy. This prime-time snapshot of the Australian Broadcasting Corporation's main television channel explores how the structural/rhetorical conventions of three established public service genres - a science programme, a documentary and a live public affairs talk show - impact on the representation of anthropogenic climate change. The study findings note implications for public trust, and discuss possibilities for innovation in the interests of better public understanding of climate change.

  16. Climate change and children's health--a call for research on what works to protect children.

    PubMed

    Xu, Zhiwei; Sheffield, Perry E; Hu, Wenbiao; Su, Hong; Yu, Weiwei; Qi, Xin; Tong, Shilu

    2012-09-10

    Climate change is affecting and will increasingly influence human health and wellbeing. Children are particularly vulnerable to the impact of climate change. An extensive literature review regarding the impact of climate change on children's health was conducted in April 2012 by searching electronic databases PubMed, Scopus, ProQuest, ScienceDirect, and Web of Science, as well as relevant websites, such as IPCC and WHO. Climate change affects children's health through increased air pollution, more weather-related disasters, more frequent and intense heat waves, decreased water quality and quantity, food shortage and greater exposure to toxicants. As a result, children experience greater risk of mental disorders, malnutrition, infectious diseases, allergic diseases and respiratory diseases. Mitigation measures like reducing carbon pollution emissions, and adaptation measures such as early warning systems and post-disaster counseling are strongly needed. Future health research directions should focus on: (1) identifying whether climate change impacts on children will be modified by gender, age and socioeconomic status; (2) refining outcome measures of children's vulnerability to climate change; (3) projecting children's disease burden under climate change scenarios; (4) exploring children's disease burden related to climate change in low-income countries; and (5) identifying the most cost-effective mitigation and adaptation actions from a children's health perspective.

  17. The Influence of Drivers and Barriers on Urban Adaptation and Mitigation Plans—An Empirical Analysis of European Cities

    PubMed Central

    Reckien, Diana; Flacke, Johannes

    2015-01-01

    Cities are recognised as key players in global adaptation and mitigation efforts because the majority of people live in cities. However, in Europe, which is highly urbanized and one of the most advanced regions in terms of environmental policies, there is considerable diversity in the regional distribution, ambition and scope of climate change responses. This paper explores potential factors contributing to such diversity in 200 large and medium-sized cities across 11 European countries. We statistically investigate institutional, socio-economic, environmental and vulnerability characteristics of cities as potential drivers of or barriers to the development of urban climate change plans. Our results show that factors such as membership of climate networks, population size, GDP per capita and adaptive capacity act as drivers of mitigation and adaptation plans. By contrast, factors such as the unemployment rate, warmer summers, proximity to the coast and projected exposure to future climate impacts act as barriers. We see that, overall, it is predominantly large and prosperous cities that engage in climate planning, while vulnerable cities and those at risk of severe climate impacts in the future are less active. Our analysis suggests that climate change planning in European cities is not proactive, i.e. not significantly influenced by anticipated future impacts. Instead, we found that the current adaptive capacity of a city significantly relates to climate planning. Along with the need to further explore these relations, we see a need for more economic and institutional support for smaller and less resourceful cities and those at high risk from climate change impacts in the future. PMID:26317420

  18. The Influence of Drivers and Barriers on Urban Adaptation and Mitigation Plans-An Empirical Analysis of European Cities.

    PubMed

    Reckien, Diana; Flacke, Johannes; Olazabal, Marta; Heidrich, Oliver

    2015-01-01

    Cities are recognised as key players in global adaptation and mitigation efforts because the majority of people live in cities. However, in Europe, which is highly urbanized and one of the most advanced regions in terms of environmental policies, there is considerable diversity in the regional distribution, ambition and scope of climate change responses. This paper explores potential factors contributing to such diversity in 200 large and medium-sized cities across 11 European countries. We statistically investigate institutional, socio-economic, environmental and vulnerability characteristics of cities as potential drivers of or barriers to the development of urban climate change plans. Our results show that factors such as membership of climate networks, population size, GDP per capita and adaptive capacity act as drivers of mitigation and adaptation plans. By contrast, factors such as the unemployment rate, warmer summers, proximity to the coast and projected exposure to future climate impacts act as barriers. We see that, overall, it is predominantly large and prosperous cities that engage in climate planning, while vulnerable cities and those at risk of severe climate impacts in the future are less active. Our analysis suggests that climate change planning in European cities is not proactive, i.e. not significantly influenced by anticipated future impacts. Instead, we found that the current adaptive capacity of a city significantly relates to climate planning. Along with the need to further explore these relations, we see a need for more economic and institutional support for smaller and less resourceful cities and those at high risk from climate change impacts in the future.

  19. Leveraging federal science data and tools to help communities & business build climate resilience

    NASA Astrophysics Data System (ADS)

    Herring, D.

    2016-12-01

    Decision-makers in every sector and region of the United States are seeking actionable science-based information to help them understand and manage their climate-related risks. Translating data, tools and information from the domain of climate science to the domains of municipal, social, and economic decision-making raises complex questions—e.g., how to communicate causes and impacts of climate variability and change; how to show projections of plausible future climate scenarios; how to characterize and quantify vulnerabilities, risks, and opportunities facing communities and businesses; and how to make and implement "win-win" adaptation plans. These are the types of challenges being addressed by a public-private partnership of federal agencies, academic institutions, non-governmental organizations, and private businesses that are contributing to the development of the U.S. Climate Resilience Toolkit (toolkit.climate.gov), a new website designed to help people build resilience to extreme events caused by both natural climate variability and long-term climate change. The site's Climate Explorer is designed to help people understand potential climate conditions over the course of this century. It offers easy access to downloadable maps, graphs, and data tables of observed and projected temperature, precipitation and other decision-relevant climate variables dating back to 1950 and out to 2100. Of course, climate change is only one of many variables affecting decisions about the future so the Toolkit also ties climate information to a wide range of other relevant tools and information to help users to explore their vulnerabilities and risks. In this session, we will describe recent enhancements to the Toolkit, lessons learned from user engagements, and evidence that our approach of coupling scientific information with actionable decision-making processes is helping Americans build resilience to climate-related impacts.

  20. A Climate Change Risk and Resilience Assessment Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Lisa

    This presentation summarizes a site-specific climate resilience planning process applied at two different U.S. Department of Energy sites, in Colorado and along the Gulf Coast that federal site managers can use to identify and analyze potential climate-related risks and explore resilience options to minimize those risks.

  1. Application of an Integrated Assessment Model with state-level resolution for examining strategies for addressing air, climate and energy goals

    EPA Science Inventory

    The Global Climate Assessment Model (GCAM) is a global integrated assessment model used for exploring future scenarios and examining strategies that address air pollution, climate change, and energy goals. GCAM includes technology-rich representations of the energy, transportati...

  2. SimilarityExplorer: A visual inter-comparison tool for multifaceted climate data

    Treesearch

    J. Poco; A. Dasgupta; Y. Wei; W. Hargrove; C. Schwalm; R. Cook; E. Bertini; C. Silva

    2014-01-01

    Inter-comparison and similarity analysis to gauge consensus among multiple simulation models is a critical visualization problem for understanding climate change patterns. Climate models, specifically, Terrestrial Biosphere Models (TBM) represent time and space variable ecosystem processes, for example, simulations of photosynthesis and respiration, using algorithms...

  3. Effective Teacher Practice on the Plausibility of Human-Induced Climate Change

    NASA Astrophysics Data System (ADS)

    Niepold, F.; Sinatra, G. M.; Lombardi, D.

    2013-12-01

    Climate change education programs in the United States seek to promote a deeper understanding of the science of climate change, behavior change and stewardship, and support informed decision making by individuals, organizations, and institutions--all of which are summarized under the term 'climate literacy.' The ultimate goal of climate literacy is to enable actors to address climate change, both in terms of stabilizing and reducing emissions of greenhouse gases, but also an increased capacity to prepare for the consequences and opportunities of climate change. However, the long-term nature of climate change and the required societal response involve the changing students' ideas about controversial scientific issues which presents unique challenges for educators (Lombardi & Sinatra, 2010; Sinatra & Mason, 2008). This session will explore how the United States educational efforts focus on three distinct, but related, areas: the science of climate change, the human-climate interaction, and using climate education to promote informed decision making. Each of these approaches are represented in the Atlas of Science Literacy (American Association for the Advancement of Science, 2007) and in the conceptual framework for science education developed at the National Research Council (NRC) in 2012. Instruction to develop these fundamental thinking skills (e.g., critical evaluation and plausibility reappraisal) has been called for by the Next Generation Science Standards (NGSS) (Achieve, 2013), an innovative and research based way to address climate change education within the decentralized U.S. education system. However, the promise of the NGSS is that students will have more time to build mastery on the subjects, but the form of that instructional practice has been show to be critical. Research has show that effective instructional activities that promote evaluation of evidence improve students' understanding and acceptance toward the scientifically accepted model of human-induced climate change (Lombardi, Sinatra, & Nussbaum, 2013). This study and many others show the critical role instructional practice plays in the development of a climate literate nation. Climate change communication faces many challenges, but federal agencies, civil society, and individuals have invested in numerous initiatives to develop a climate-literate citizenry. In the NRC Report America's Climate Choices the authors find that 'climate change is difficult to understand by its very nature,' however, 'education and communication are among the most powerful tools the nation has to bring hidden hazards to public attention, understanding, and action.' This session will explore how the federal science mission agencies and their partners are working to harness these tools and use the best available research to develop programs and partnership that build on the promise of the NGSS. When citizens have knowledge of the causes, likelihood, and severity of climate impacts, as well as of the range, cost, and efficacy of options to adapt to impacts, they are more prepared to effectively address the risks and opportunities

  4. Delays in Reducing Waterborne and Water-related Infectious Diseases in China under Climate Change

    DOE PAGES

    Hodges, Maggie; Belle, Jessica; Carlton, Elizabeth; ...

    2014-11-02

    Despite China’s rapid progress improving water, sanitation and hygiene (WSH) infrastructure and access, in 2011, 471 million people lacked access to improved sanitation, and 401 million people lacked access to household piped water. Infectious diseases are sensitive to changes in climate, particularly temperature, and WSH conditions. To explore possible impacts of climate change on these diseases in China in 2020 and 2030, we coupled estimates of the temperature sensitivity of diarrheal disease and three vector-borne diseases, temperature projections from global climate models using four emissions pathways, WSH-infrastructure development scenarios and projected demographic changes. By 2030, the projected impacts would delaymore » China’s historically rapid progress toward reducing the burden of WSH-attributable infectious disease by 8-85 months. This developmental delay provides a key summary measure of the impact of climate change in China, and in other societies undergoing rapid social, economic, and environmental change.« less

  5. Delays in Reducing Waterborne and Water-related Infectious Diseases in China under Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodges, Maggie; Belle, Jessica; Carlton, Elizabeth

    Despite China’s rapid progress improving water, sanitation and hygiene (WSH) infrastructure and access, in 2011, 471 million people lacked access to improved sanitation, and 401 million people lacked access to household piped water. Infectious diseases are sensitive to changes in climate, particularly temperature, and WSH conditions. To explore possible impacts of climate change on these diseases in China in 2020 and 2030, we coupled estimates of the temperature sensitivity of diarrheal disease and three vector-borne diseases, temperature projections from global climate models using four emissions pathways, WSH-infrastructure development scenarios and projected demographic changes. By 2030, the projected impacts would delaymore » China’s historically rapid progress toward reducing the burden of WSH-attributable infectious disease by 8-85 months. This developmental delay provides a key summary measure of the impact of climate change in China, and in other societies undergoing rapid social, economic, and environmental change.« less

  6. Mars Exploration Rover Field Observations of Impact Craters at Gusev Crater and Meridiani Planum and Implications for Climate Change

    NASA Technical Reports Server (NTRS)

    Golombek, M.; Grant, J. A.; Crumpler, L. S.

    2005-01-01

    The Mars Exploration Rovers have provided a field geologist's perspective of impact craters in various states of degradation along their traverses at Gusev crater and Meridiani Planum. This abstract will describe the craters observed and changes to the craters that constrain the erosion rates and the climate [l]. Changes to craters on the plains of Gusev argue for a dry and desiccating environment since the Late Hesperian in contrast to the wet and likely warm environment in the Late Noachian at Meridiani in which the sulfate evaporites were deposited in salt-water playas or sabkhas.

  7. Climate and land cover effects on the temperature of Puget Sound streams: Assessment of Climate and Land Use Impacts on Stream Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Qian; Sun, Ning; Yearsley, John

    We apply an integrated hydrology-stream temperature modeling system, DHSVM-RBM, to examine the response of the temperature of the major streams draining to Puget Sound to land cover and climate change. We first show that the model construct is able to reconstruct observed historic streamflow and stream temperature variations at a range of time scales. We then explore the relative effect of projected future climate and land cover change, including riparian vegetation, on streamflow and stream temperature. Streamflow in summer is likely to decrease as the climate warms especially in snowmelt-dominated and transient river basins despite increased streamflow in their lowermore » reaches associated with urbanization. Changes in streamflow also result from changes in land cover, and changes in stream shading result from changes in riparian vegetation, both of which influence stream temperature. However, we find that the effect of riparian vegetation changes on stream temperature is much greater than land cover change over the entire basin especially during summer low flow periods. Furthermore, while future projected precipitation change will have relatively modest effects on stream temperature, projected future air temperature increases will result in substantial increases in stream temperature especially in summer. These summer stream temperature increases will be associated both with increasing air temperature, and projected decreases in low flows. We find that restoration of riparian vegetation could mitigate much of the projected summer stream temperature increases. We also explore the contribution of riverine thermal loadings to the heat balance of Puget Sound, and find that the riverine contribution is greatest in winter, when streams account for up to 1/8 of total thermal inputs (averaged from December through February), with larger effects in some sub-basins. We project that the riverine impact on thermal inputs to Puget Sound will become greater with both urbanization and climate change in winter but become smaller in summer due to climate change.« less

  8. Hydrogeologic influence on changes in snowmelt runoff with climate warming: Numerical experiments on a mid-elevation catchment in the Sierra Nevada, USA

    Treesearch

    S.M. Jepsen; T.C. Harmon; M.W. Meadows; C.T. Hunsaker

    2016-01-01

    The role of hydrogeology in mediating long-term changes in mountain streamflow, resulting from reduced snowfall in a potentially warmer climate, is currently not well understood. We explore this by simulating changes in stream discharge and evapotranspiration from a mid-elevation, 1-km2 catchment in the southern Sierra Nevada of California (USA)...

  9. A Survey of Registered Dietitians’ Concern and Actions Regarding Climate Change in the United States

    PubMed Central

    Hawkins, Irana W.; Balsam, Alan L.; Goldman, Robert

    2015-01-01

    Dietary choices are a tool to reduce greenhouse gas emissions. While registered dietitians are on the front lines of food and nutrition recommendations, it is unclear how many are concerned with climate change and take action in practice in the United States. We explored concern about climate change among registered dietitians, and identified factors that may influence practice-related behaviors. Our study population included a random sample of all registered dietitians credentialed in the United States. Primary data were gathered using a cross-sectional survey. Of the 570 survey responses, 75% strongly agreed or agreed that climate change is an important issue while 34% strongly agreed or agreed that dietitians should play a major role in climate change mitigation strategies. Thirty-eight percent engaged in activities that promoted diet as a climate change mitigation strategy. Vegetarian (p = 0.002) and vegan dietitians (p = 0.007) were significantly more likely than non-vegetarian and non-vegan dietitians to engage in activities that promoted diet as a climate change mitigation strategy. Overall, concern for climate change among dietitians varied significantly by the region of the country in which the dietitian resided, and awareness that animal products are implicated in climate change. Registered dietitians in the United States are concerned with climate change. However, there is a discrepancy between concern and practice-based actions. These results suggest the need for educational and experiential opportunities connecting climate change mitigation to dietetics practice. PMID:26217666

  10. Climate Projections and Uncertainty Communication.

    PubMed

    Joslyn, Susan L; LeClerc, Jared E

    2016-01-01

    Lingering skepticism about climate change might be due in part to the way climate projections are perceived by members of the public. Variability between scientists' estimates might give the impression that scientists disagree about the fact of climate change rather than about details concerning the extent or timing. Providing uncertainty estimates might clarify that the variability is due in part to quantifiable uncertainty inherent in the prediction process, thereby increasing people's trust in climate projections. This hypothesis was tested in two experiments. Results suggest that including uncertainty estimates along with climate projections leads to an increase in participants' trust in the information. Analyses explored the roles of time, place, demographic differences (e.g., age, gender, education level, political party affiliation), and initial belief in climate change. Implications are discussed in terms of the potential benefit of adding uncertainty estimates to public climate projections. Copyright © 2015 Cognitive Science Society, Inc.

  11. Local climatic adaptation in a widespread microorganism.

    PubMed

    Leducq, Jean-Baptiste; Charron, Guillaume; Samani, Pedram; Dubé, Alexandre K; Sylvester, Kayla; James, Brielle; Almeida, Pedro; Sampaio, José Paulo; Hittinger, Chris Todd; Bell, Graham; Landry, Christian R

    2014-02-22

    Exploring the ability of organisms to locally adapt is critical for determining the outcome of rapid climate changes, yet few studies have addressed this question in microorganisms. We investigated the role of a heterogeneous climate on adaptation of North American populations of the wild yeast Saccharomyces paradoxus. We found abundant among-strain variation for fitness components across a range of temperatures, but this variation was only partially explained by climatic variation in the distribution area. Most of fitness variation was explained by the divergence of genetically distinct groups, distributed along a north-south cline, suggesting that these groups have adapted to distinct climatic conditions. Within-group fitness components were correlated with climatic conditions, illustrating that even ubiquitous microorganisms locally adapt and harbour standing genetic variation for climate-related traits. Our results suggest that global climatic changes could lead to adaptation to new conditions within groups, or changes in their geographical distributions.

  12. Canadian boreal forest greening and browning trends: an analysis of biogeographic patterns and the relative roles of disturbance versus climate drivers

    NASA Astrophysics Data System (ADS)

    Sulla-Menashe, Damien; Woodcock, Curtis E.; Friedl, Mark A.

    2018-01-01

    Recent studies have used satellite-derived normalized difference vegetation index (NDVI) time series to explore geographic patterns in boreal forest greening and browning. A number of these studies indicate that boreal forests are experiencing widespread browning, and have suggested that these patterns reflect decreases in forest productivity induced by climate change. Here we use NDVI time series from Landsat, which has much higher quality and spatial resolution than imagery used in most previous studies, to characterize biogeographic patterns in greening and browning across Canada’s boreal forest and to explore the drivers behind observed trends. Our results show that the majority of NDVI changes in Canada’s boreal forest reflect disturbance-recovery dynamics not climate change impacts, that greening and browning trends outside of disturbed forests are consistent with expected ecological responses to regional changes in climate, and that observed NDVI changes are geographically limited and relatively small in magnitude. By examining covariance between changes in NDVI and temperature and precipitation in locations not affected by disturbance, our results isolate and characterize the nature and magnitude of greening and browning directly associated with climate change. Consistent with biogeographic theory, greening and browning unrelated to disturbance tended to be located in ecotones near boundaries of the boreal forest bioclimatic envelope. We observed greening to be most prevalent in Eastern Canada, which is more humid, and browning to be most prevalent in Western Canada, where forests are more prone to moisture stress. We conclude that continued long-term climate change has the potential to significantly alter the character and function of Canada’s boreal forest, but recent changes have been modest and near-term impacts are likely to be focused in or near ecotones.

  13. A Case Study: Climate Change Decision Support for the Apalachicola, Chattahoochee, Flint Basins

    NASA Astrophysics Data System (ADS)

    Day, G. N.; McMahon, G.; Friesen, N.; Carney, S.

    2011-12-01

    Riverside Technology, inc. has developed a Climate Change Decision Support System (DSS) to provide water managers with a tool to explore a range of current Global Climate Model (GCM) projections to evaluate their potential impacts on streamflow and the reliability of future water supplies. The system was developed as part of a National Oceanic and Atmospheric Administration (NOAA) Small Business Innovation Research (SBIR) project. The DSS uses downscaled GCM data as input to small-scale watershed models to produce time series of projected undepleted streamflow for various emission scenarios and GCM simulations. Until recently, water managers relied on historical streamflow data for water resources planning. In many parts of the country, great effort has been put into estimating long-term historical undepleted streamflow accounting for regulation, diversions, and return flows to support planning and water rights administration. In some cases, longer flow records have been constructed using paleohydrologic data in an attempt to capture climate variability beyond what is evident during the observed historical record. Now, many water managers are recognizing that historical data may not be representative of an uncertain climate future, and they have begun to explore the use of climate projections in their water resources planning. The Climate Change DSS was developed to support water managers in planning by accounting for both climate variability and potential climate change. In order to use the information for impact analysis, the projected streamflow time series can be exported and substituted for the historical streamflow data traditionally applied in their system operations models for water supply planning. This paper presents a case study in which climate-adjusted flows are coupled with the U.S. Army Corps of Engineers (USACE) ResSim model for the Apalachicola, Chattahoochee, and Flint (ACF) River basins. The study demonstrates how climate scenarios can be used with existing or proposed operating rules to explore the range of potential climate impacts on lake levels, drought trigger frequency, hydropower generation, and low-flow statistics. Initial system implementation of the Climate Change DSS was focused in the State of Colorado working with water supply agencies in the Front Range to assess local water supply vulnerability to climate change. To facilitate national implementation, the system capitalizes on National Weather Service (NWS) watershed models currently used for operational river forecasting. These models are well calibrated and available for the entire country. The system has been extended to include the ACF and the Sacramento River basins because of the importance of the water resources in these basins. Plans are now being made to expand coverage to include the Baltimore-Washington, D.C. water supply area. The DSS is operational and publicly available (www.climatechangedss.com).

  14. Climate Twins - a tool to explore future climate impacts by assessing real world conditions: Exploration principles, underlying data, similarity conditions and uncertainty ranges

    NASA Astrophysics Data System (ADS)

    Loibl, Wolfgang; Peters-Anders, Jan; Züger, Johann

    2010-05-01

    To achieve public awareness and thorough understanding about expected climate changes and their future implications, ways have to be found to communicate model outputs to the public in a scientifically sound and easily understandable way. The newly developed Climate Twins tool tries to fulfil these requirements via an intuitively usable web application, which compares spatial patterns of current climate with future climate patterns, derived from regional climate model results. To get a picture of the implications of future climate in an area of interest, users may click on a certain location within an interactive map with underlying future climate information. A second map depicts the matching Climate Twin areas according to current climate conditions. In this way scientific output can be communicated to the public which allows for experiencing climate change through comparison with well-known real world conditions. To identify climatic coincidence seems to be a simple exercise, but the accuracy and applicability of the similarity identification depends very much on the selection of climate indicators, similarity conditions and uncertainty ranges. Too many indicators representing various climate characteristics and too narrow uncertainty ranges will judge little or no area as regions with similar climate, while too little indicators and too wide uncertainty ranges will address too large regions as those with similar climate which may not be correct. Similarity cannot be just explored by comparing mean values or by calculating correlation coefficients. As climate change triggers an alteration of various indicators, like maxima, minima, variation magnitude, frequency of extreme events etc., the identification of appropriate similarity conditions is a crucial question to be solved. For Climate Twins identification, it is necessary to find a right balance of indicators, similarity conditions and uncertainty ranges, unless the results will be too vague conducting a useful Climate Twins regions search. The Climate Twins tool works actually comparing future climate conditions of a certain source area in the Greater Alpine Region with current climate conditions of entire Europe and the neighbouring southern as well south-eastern areas as target regions. A next version will integrate web crawling features for searching information about climate-related local adaptations observed today in the target region which may turn out as appropriate solution for the source region under future climate conditions. The contribution will present the current tool functionally and will discuss which indicator sets, similarity conditions and uncertainty ranges work best to deliver scientifically sound climate comparisons and distinct mapping results.

  15. An adaptation strategy of sandland peasants in Yogyakarta toward climate change

    NASA Astrophysics Data System (ADS)

    Rusdiyana, E.; Suminah

    2018-03-01

    This study aims to explore and describe the adaptation strategies of sandland peasants toward climate change. Qualitative research method was employed and the data were collected through observation. In addition, the recording of the data, interview and the validity of data were determined by triangulation of sources. The results of the research showed that the adaptation strategies of sandland peasants toward climate change were; (1) the adjustment of crop varieties, (2) the utilization of productive crops as wind breaking, and (3) the irrigation system using “sumur panthek”.

  16. Energy Balance, Climate, and Life \\-- Work of M. Budyko

    NASA Astrophysics Data System (ADS)

    Cahalan, R. F.

    2003-12-01

    This talk will review the work of Mikhail I. Budyko, author of "Climate and Life" and many other works, who died recently at the age of 81 in St. Petersburg, Russia. He directed the Division for Climate Change Research at the State Hydrological Institute. We will explore Budyko's work in clarifying the role of energy balance in determining planetary climate, and the role of climate in regulating Earth's biosphere.

  17. Energy Balance, Climate, and Life - Work of M. Budyko

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.

    2004-01-01

    This talk will review the work of Mikhail I. Budyko, author of "Climate and Life" and many other works, who died recently at age 81, in St Petersburg, Russia. He directed the Division for Climate Change Research at the State Hydrological Institute. We will explore Budyko's work in clarifying the role of energy balance in determining planetary climate, and the role of climate in regulating Earth s biosphere.

  18. Climate change and indigenous peoples: A synthesis of current impacts and experiences

    USGS Publications Warehouse

    Norton-Smith, Kathryn; Lynn, Kathy; Chief, Karletta; Cozetto, Karen; Donatuto, Jamie; Hiza, Margaret; Kruger, Linda; Maldonado, Julie; Viles, Carson; Whyte, Kyle P.

    2016-01-01

    A growing body of literature examines the vulnerability, risk, resilience, and adaptation of indigenous peoples to climate change. This synthesis of literature brings together research pertaining to the impacts of climate change on sovereignty, culture, health, and economies that are currently being experienced by Alaska Native and American Indian tribes and other indigenous communities in the United States. The knowledge and science of how climate change impacts are affecting indigenous peoples contributes to the development of policies, plans, and programs for adapting to climate change and reducing greenhouse gas emissions. This report defines and describes the key frameworks that inform indigenous understandings of climate change impacts and pathways for adaptation and mitigation, namely, tribal sovereignty and self-determination, culture and cultural identity, and indigenous community health indicators. It also provides a comprehensive synthesis of climate knowledge, science, and strategies that indigenous communities are exploring, as well as an understanding of the gaps in research on these issues. This literature synthesis is intended to make a contribution to future efforts such as the 4th National Climate Assessment, while serving as a resource for future research, tribal and agency climate initiatives, and policy development.

  19. An ecophysiological perspective on likely giant panda habitat responses to climate change.

    PubMed

    Zhang, Yuke; Mathewson, Paul D; Zhang, Qiongyue; Porter, Warren P; Ran, Jianghong

    2018-04-01

    Threatened and endangered species are more vulnerable to climate change due to small population and specific geographical distribution. Therefore, identifying and incorporating the biological processes underlying a species' adaptation to its environment are important for determining whether they can persist in situ. Correlative models are widely used to predict species' distribution changes, but generally fail to capture the buffering capacity of organisms. Giant pandas (Ailuropoda melanoleuca) live in topographically complex mountains and are known to avoid heat stress. Although many studies have found that climate change will lead to severe habitat loss and threaten previous conservation efforts, the mechanisms underlying panda's responses to climate change have not been explored. Here, we present a case study in Daxiangling Mountains, one of the six Mountain Systems that giant panda distributes. We used a mechanistic model, Niche Mapper, to explore what are likely panda habitat response to climate change taking physiological, behavioral and ecological responses into account, through which we map panda's climatic suitable activity area (SAA) for the first time. We combined SAA with bamboo forest distribution to yield highly suitable habitat (HSH) and seasonal suitable habitat (SSH), and their temporal dynamics under climate change were predicted. In general, SAA in the hottest month (July) would reduce 11.7%-52.2% by 2070, which is more moderate than predicted bamboo habitat loss (45.6%-86.9%). Limited by the availability of bamboo and forest, panda's suitable habitat loss increases, and only 15.5%-68.8% of current HSH would remain in 2070. Our method of mechanistic modeling can help to distinguish whether habitat loss is caused by thermal environmental deterioration or food loss under climate change. Furthermore, mechanistic models can produce robust predictions by incorporating ecophysiological feedbacks and minimizing extrapolation into novel environments. We suggest that a mechanistic approach should be incorporated into distribution predictions and conservation planning. © 2017 John Wiley & Sons Ltd.

  20. Using decadal climate prediction to characterize and manage changing drought and flood risks in Colorado

    NASA Astrophysics Data System (ADS)

    Lazrus, H.; Done, J.; Morss, R. E.

    2017-12-01

    A new branch of climate science, known as decadal prediction, seeks to predict the time-varying trajectory of climate over the next 3-30 years and not just the longer-term trends. Decadal predictions bring climate information into the time horizon of decision makers, particularly those tasked with managing water resources and floods whose master planning is often on the timescale of decades. Information from decadal predictions may help alleviate some aspects of vulnerability by helping to inform decisions that reduce drought and flood exposure and increase adaptive capacities including preparedness, response, and recovery. This presentation will highlight an interdisciplinary project - involving atmospheric and social scientists - on the development of decadal climate information and its use in decision making. The presentation will explore the skill and utility of decadal drought and flood prediction along Colorado's Front Range, an area experiencing rapid population growth and uncertain climate variability and climate change impacts. Innovative statistical and dynamical atmospheric modeling techniques explore the extent to which Colorado precipitation can be predicted on decadal scales using remote Pacific Ocean surface temperature patterns. Concurrently, stakeholder interviews with flood managers in Colorado are being used to explore the potential utility of decadal climate information. Combining the modeling results with results from the stakeholder interviews shows that while there is still significant uncertainty surrounding precipitation on decadal time scales, relevant and well communicated decadal information has potential to be useful for drought and flood management.

  1. Scenarios for coastal vulnerability assessment

    USGS Publications Warehouse

    Nicholls, Robert J.; Woodroffe, Colin D.; Burkett, Virginia; Hay, John; Wong, Poh Poh; Nurse, Leonard; Wolanski, Eric; McLusky, Donald S.

    2011-01-01

    Coastal vulnerability assessments tend to focus mainly on climate change and especially on sea-level rise. Assessment of the influence of nonclimatic environmental change or socioeconomic change is less well developed and these drivers are often completely ignored. Given that the most profound coastal changes of the twentieth century due to nonclimate drivers are likely to continue through the twenty-first century, this is a major omission. It may result in not only overstating the importance of climate change but also overlooking significant interactions of climate change and other drivers. To support the development of policies relating to climate change and coastal management, integrated assessments of climatic change in coastal areas are required, including the effects of all the relevant drivers. This chapter explores the development of scenarios (or "plausible futures") of relevant climate and nonclimate drivers that can be used for coastal analysis, with an emphasis on the nonclimate drivers. It shows the importance of analyzing the impacts of climate change and sea-level rise in a broader context of coastal change and all its drivers. This will improve the analysis of impacts, key vulnerabilities, and adaptation needs and, hence, inform climate and coastal policy. Stakeholder engagement is important in the development of scenarios, and the underlying assumptions need to be explicit, transparent, and open to scientific debate concerning their uncertainties/realism and likelihood.

  2. Projected climate change impacts and short term predictions on staple crops in Sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Mereu, V.; Spano, D.; Gallo, A.; Carboni, G.

    2013-12-01

    Agriculture in Sub-Saharan Africa (SSA) drives the economy of many African countries and it is mainly rain-fed agriculture used for subsistence. Increasing temperatures, changed precipitation patterns and more frequent droughts may lead to a substantial decrease of crop yields. The projected impacts of future climate change on agriculture are expected to be significant and extensive in the SSA due to the shortening of the growing seasons and the increasing of water-stress risk. Differences in Agro-Ecological Zones and geographical characteristics of SSA influence the diverse impacts of climate change, which can greatly differ across the continent and within countries. The vulnerability of African Countries to climate change is aggravated by the low adaptive capacity of the continent, due to the increasing of its population, the widespread poverty, and other social factors. In this contest, the assessment of climate change impact on agricultural sector has a particular interest to stakeholder and policy makers, in order to identify specific agricultural sectors and Agro-Ecological Zones that could be more vulnerable to changes in climatic conditions and to develop the most appropriate policies to cope with these threats. For these reasons, the evaluation of climate change impacts for key crops in SSA was made exploring climate uncertainty and focusing on short period monitoring, which is particularly useful for food security and risk management analysis. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT-CSM are tools that allow to simulate physiological process of crop growth, development and production, by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were used, after a parameterization phase, to evaluate climate change impacts on crop phenology and production. Multiple combinations of soils and climate conditions, crop management and varieties were considered for the different Agro-Ecological Zones. The climate impact was assessed using future climate prediction, statistically and/or dynamically downscaled, for specific areas. Direct and indirect effects of different CO2 concentrations projected for the future periods were separately explored to estimate their effects on crops. Several adaptation strategies (e.g., introduction of full irrigation, shift of the ordinary sowing/planting date, changes in the ordinary fertilization management) were also evaluated with the aim to reduce the negative impact of climate change on crop production. The results of the study, analyzed at local, AEZ and country level, will be discussed.

  3. Why Do Some People Do “More” to Mitigate Climate Change than Others? Exploring Heterogeneity in Psycho-Social Associations

    PubMed Central

    Ortega-Egea, José Manuel; García-de-Frutos, Nieves; Antolín-López, Raquel

    2014-01-01

    The urgency of climate change mitigation calls for a profound shift in personal behavior. This paper investigates psycho-social correlates of extra mitigation behavior in response to climate change, while also testing for potential (unobserved) heterogeneity in European citizens' decision-making. A person's extra mitigation behavior in response to climate change is conceptualized—and differentiated from common mitigation behavior—as some people's broader and greater levels of behavioral engagement (compared to others) across specific self-reported mitigation actions and behavioral domains. Regression analyses highlight the importance of environmental psychographics (i.e., attitudes, motivations, and knowledge about climate change) and socio-demographics (especially country-level variables) in understanding extra mitigation behavior. By looking at the data through the lens of segmentation, significant heterogeneity is uncovered in the associations of attitudes and knowledge about climate change—but not in motivational or socio-demographic links—with extra mitigation behavior in response to climate change, across two groups of environmentally active respondents. The study has implications for promoting more ambitious behavioral responses to climate change, both at the individual level and across countries. PMID:25191841

  4. Connecting Spatial Literacy and Climate Literacy Using a Place-Based GIS Approach in a Collaborative Online Educational Setting

    NASA Astrophysics Data System (ADS)

    Low, R.; Boger, R. A.; Mandryk, C. A.

    2014-12-01

    On-line learning is already revolutionizing higher education, and emerging cloud-based Geographic Information System (GIS) capabilities are poised to revolutionize the acquisition and sharing of spatial knowledge in a variety of fields. In this project, we deployed ESRI's ArcGIS Online in an on-line course environment to provide a place-based quantitative exploration of the impacts of environmental changes specifically related to climate change. As spatial thinking is not necessarily transferrable from one domain to another, we hypothesized that combining spatial literacy and climate change domain knowledge would transform student conceptions and mental models of climate change in measurable ways. To this end, we adapted and employed existing instruments for pre- post testing of general pattern recognition, interpretation, and spatial transformational skills, as well as climate system content knowledge and attitudes. A collaborative on-line course platform offered to students from University of Nebraska, Lincoln and from City College of New York (CUNY) colleges, Brooklyn and Lehman, brought to the discussion distinct urban and rural perspectives, which were the basis of place-based climate, water and food explorations in the course. The course has been offered 3 times in a shared LMS over the past 3 years. Participants in the most recent iteration of the course demonstrated statistically significant improvements in spatial skills, but they did not show the expected statistically significant improvement overall in climate knowledge that we see in other online courses where climate change literacy is the sole focus of the course. Ongoing research by our team shows strong correlation between active peer engagement in online discussions and student learning outcomes. Student-initiated discussions in the GIS-based climate change courses revealed a shift away from discussing the climate change science and a focus on technology and analyzing the spatial products created using GIS. As we improve the effectiveness of this course, we will be developing interventions in the discussion board activities that we hypothesize will increase the effectiveness of climate knowledge construction in future iterations.

  5. Media coverage of climate change in Russia: governmental bias and climate silence.

    PubMed

    Poberezhskaya, Marianna

    2015-01-01

    This paper explores which actors and factors influence media coverage of climate change in Russia. It does this by analysing the coverage of three events by five Russian national newspapers (Komsomol'skaya pravda, Rossiyskaya gazeta, Izvestiya, Kommersant and Sovetskaya Rossiya). The three events are the Kyoto Conference in 1997, the Copenhagen Conference in 2009 and the Russian heat-wave of 2010. This paper concludes that regardless of the ownership structure of the newspapers or their dependence on advertising, there is little difference in quantity and quality of overall coverage on climate change. With most newspapers relying on Russian officials as information sources, almost none criticise or question Russian climate policy. Furthermore, the article concludes that, in Russia, the omission of climate change issues from discussion in national newspapers becomes a greater problem than biased coverage, as the lack of commentary decidedly prevents these issues from entering the public debate. © The Author(s) 2014.

  6. Network Connectedness, Sense of Community, and Risk Perception of Climate Change Professionals in the Pacific Islands Region

    NASA Astrophysics Data System (ADS)

    Corlew, L. K.; Keener, V. W.; Finucane, M.

    2013-12-01

    The Pacific Regional Integrated Sciences and Assessments (Pacific RISA) Program conducted social network analysis research of climate change professionals (broadly defined) who are from or work in Hawaii and the U.S.-Affiliated Pacific Islands (USAPI) region. This study is supported by the National Oceanic and Atmospheric Administration (NOAA) and the Pacific Islands Climate Science Center (PICSC) to address an identified need for a resource that quantifies the region's collaborative network of climate change professionals, and that supports the further development of cross-regional and inter-sectoral collaborations for future research and adaptation activities. A survey was distributed to nearly 1,200 people who are from and/or work in climate change related fields in the region. The Part One Survey questions (not confidential) created a preferential attachment network by listing major players in Hawaii and the USAPI, with additional open fields to identify important contacts in the greater professional network. Participants (n=340) identified 975 network contacts and frequency of communications (weekly, monthly, seasonally, yearly, at least once ever). Part Two Survey questions (confidential, n=302) explored climate change risk perceptions, Psychological Sense of Community (PSOC), sense of control over climate change impacts, sense of responsibility to act, policy beliefs and preferences regarding climate change actions, concern and optimism scales about specific impacts, and demographic information. Graphical representations of the professional network are being developed for release in September 2013 as a free online tool to promote and assist collaboration building among climate professionals in the region. The graphs are partitioned according to network 'hubs' (high centrality), participant location, and profession to clearly identify network strengths and opportunities for future collaborations across spatial and professional boundaries. For additional analyses, scores are assigned for participant degree centrality, betweenness centrality, and Eigenvector centrality from the Part One Survey, as well as PSOC, control, responsibility, risk perceptions, concern, optimism, and policy preferences from the Part Two Survey. Statistical interaction analyses explore factors motivating connectedness within the network, as well as climate change research and adaptation needs and priorities of participants.

  7. Land-Use and Climate : first results from the LUCID experiments ; implications for experimental design in IPCC-AR5

    NASA Astrophysics Data System (ADS)

    de Noblet, N.; Pitman, A.; Participants, Lucid

    2009-04-01

    The project "Land-Use and Climate, IDentification of robust impacts" (LUCID) was conceived under the auspices of IGBP-iLEAPS and GEWEX-GLASS, to address the robustness of 'local' and possible remote impacts of land-use induced land-cover changes (LCC). LUCID explores, using methodologies that major climate modelling groups recognise, those impacts of LCC that are robust - that is, above the noise generated by model variability and consistent across a suite of climate models. To start with, seven climate models were run, in ensemble mode (5 realisations per 31-years long experiment), with prescribed observed sea-surface temperatures (SSTs) and sea ice extent (SIc). Pre-industrial and present-day simulations were used to explore the impacts of biogeophysical impacts of human-induced land cover change. The imposed LCC perturbation led to statistically significant changes in latent heat flux and near-surface temperature over the regions of land cover change, but few significant changes in precipitation. Our results show no common remote impacts of land cover change. They also highlight a dilemma for both historical hind-casts and future projections; land cover change is regionally important, but it is not feasible within the time frame of the next IPCC (AR5) assessment to implement this change commonly across multiple models. Further analysis are in progress and will be presented to identify the continental regions where changes in LCC may have been more important than the combined changes in SSTs, SIc and CO2 between the pre-industrial times and nowadays.

  8. Exploring recent and projected climate change in a steep monsoonal catchment in the middle Himalaya through innovative synthesis of local observations, gridded datasets and community engagement

    NASA Astrophysics Data System (ADS)

    Forsythe, Nathan; Pritchard, Davis; Tiwari, Prakash; Fowler, Hayley; Kumaun, Bhagwati

    2016-04-01

    Under the auspices of an "Innovation Partnerships" programme research exchange grant jointly funded by the India Department of Science and Technology and the British Council, Kumaun University and Newcastle University have been collaboratively exploring the recorded historical and projected future climate change implications for a case study catchment, the Ramgad river, in the Kumaon Lesser Himalaya (Uttarakhand state, India). This work weaves together diverse research strands with the aim of producing a coherent thorough characterisation of the impacts of recent/on-going and likely climate evolution on local communities. Participatory research activities in multiple villages in the case study catchment have yielded a consistent narrative of changes posed by the increasingly erratic monsoonal rainfall as well as upward displacement and replacement crops in their historical elevation ranges due to temperature change. Multi-decadal climate records from both local observations and global meteorological records reveal a more complex picture with strong seasonal asymmetry of changes in both temperature and precipitation: a) trend analysis shows mild weakening of the early phase (May, July) but strengthen in the later stages (August, September); b) temperature trends show much stronger warming in late winter and early spring (February to April) than the rest of the year with additional asymmetry in both sign and magnitude of change between individual components (Tmax, Tmin) of the diurnal temperature cycle. On-going research seeks to associate this asymmetry with causal mechanisms (cloud radiative effect, atmospheric circulation). Analysis of historical records will provide the basis for validation and assessment of individual regional climate model projections from the CORDEX South Asia domain ensemble. For the terraced agricultural communities of the Kumaon Himalaya, the most directly consequential effects of climate variability and change are impacts on crop yields which impact both livelihoods (household revenue) and food security. Thus another research strand focuses use of remote sensing vegetation data products (MODIS MOD13Q1 and Landsat NDVI) to derive both locally relevant land cover classes differentiating natural vegetation from cropped areas as well as assessing vegetation response to climate anomalies (precipitation, temperature). These responses, characterised from observations over the past decade, will be considered in terms of both historical climate records and projected climate change. The ultimate aim of this collaborative project is to report all of these findings to the local communities through appropriate media and in comprehensible terms in order to enable participatory exploration of potential adaptation pathways to improve local resilience and sustainability.

  9. The Climate is A-Changin': Teaching Civic Competence for a Sustainable Climate

    NASA Technical Reports Server (NTRS)

    Harris, Carolyn A.; Kharecha, Pushker; Goble, Pam; Goble, Ryan

    2016-01-01

    A central aim of social studies curriculum is to prepare young people for making "informed and reasoned decisions for the public good" concerning consequential problems like global climate change. By developing students' "vision of a good society" and exploring what actions and policies move our society in this direction, social studies teachers have an important role in preparing students for a world undergoing enormous environmental change. This article discusses elementary curriculum connections between building students' knowledge and understanding about "their community, nation and world" and global climate change. It also suggests ideas for building civic competency and climate literacy while creating opportunities for students to practice high-value skills like "data collection and analysis, collaboration, decision-making and problem-solving."

  10. Interactive Ice Sheet Flowline Model for High School and College Students

    NASA Astrophysics Data System (ADS)

    Stearns, L. A.; Rezvanbehbahani, S.; Shankar, S.

    2017-12-01

    Teaching about climate and climate change is conceptually challenging. While teaching tools and lesson plans are rapidly evolving to help teachers and students improve their understanding of climate processes, there are very few tools targeting ice sheet and glacier dynamics. We have built an interactive ice sheet model that allows students to explore how Antarctic glaciers respond to different climate perturbations. Interactive models offer advantages that are hard to obtain in traditional classroom settings; users can systematically investigate hypothetical situations, explore the effects of modifying systems, and repeatedly observe how systems interrelate. As a result, this project provides a much-needed bridge between the data and models used by the scientific community and students in high school and college. We target our instructional and assessment activities to three high school and college students with the overall aim of increasing understanding of ice sheet dynamics and the different ways that ice sheets are impacted by climate change, while also improving their fundamental math skills.

  11. Designing climate-smart conservation: guidance and case studies.

    PubMed

    Hansen, Lara; Hoffman, Jennifer; Drews, Carlos; Mielbrecht, Eric

    2010-02-01

    To be successful, conservation practitioners and resource managers must fully integrate the effects of climate change into all planning projects. Some conservation practitioners are beginning to develop, test, and implement new approaches that are designed to deal with climate change. We devised four basic tenets that are essential in climate-change adaptation for conservation: protect adequate and appropriate space, reduce nonclimate stresses, use adaptive management to implement and test climate-change adaptation strategies, and work to reduce the rate and extent of climate change to reduce overall risk. To illustrate how this approach applies in the real world, we explored case studies of coral reefs in the Florida Keys; mangrove forests in Fiji, Tanzania, and Cameroon; sea-level rise and sea turtles in the Caribbean; tigers in the Sundarbans of India; and national planning in Madagascar. Through implementation of these tenets conservation efforts in each of these regions can be made more robust in the face of climate change. Although these approaches require reconsidering some traditional approaches to conservation, this new paradigm is technologically, economically, and intellectually feasible.

  12. The fate of Amazonian ecosystems over the coming century arising from changes in climate, atmospheric CO2, and land use.

    PubMed

    Zhang, Ke; de Almeida Castanho, Andrea D; Galbraith, David R; Moghim, Sanaz; Levine, Naomi M; Bras, Rafael L; Coe, Michael T; Costa, Marcos H; Malhi, Yadvinder; Longo, Marcos; Knox, Ryan G; McKnight, Shawna; Wang, Jingfeng; Moorcroft, Paul R

    2015-02-20

    There is considerable interest in understanding the fate of the Amazon over the coming century in the face of climate change, rising atmospheric CO 2 levels, ongoing land transformation, and changing fire regimes within the region. In this analysis, we explore the fate of Amazonian ecosystems under the combined impact of these four environmental forcings using three terrestrial biosphere models (ED2, IBIS, and JULES) forced by three bias-corrected IPCC AR4 climate projections (PCM1, CCSM3, and HadCM3) under two land-use change scenarios. We assess the relative roles of climate change, CO 2 fertilization, land-use change, and fire in driving the projected changes in Amazonian biomass and forest extent. Our results indicate that the impacts of climate change are primarily determined by the direction and severity of projected changes in regional precipitation: under the driest climate projection, climate change alone is predicted to reduce Amazonian forest cover by an average of 14%. However, the models predict that CO 2 fertilization will enhance vegetation productivity and alleviate climate-induced increases in plant water stress, and, as a result, sustain high biomass forests, even under the driest climate scenario. Land-use change and climate-driven changes in fire frequency are predicted to cause additional aboveground biomass loss and reductions in forest extent. The relative impact of land use and fire dynamics compared to climate and CO 2 impacts varies considerably, depending on both the climate and land-use scenario, and on the terrestrial biosphere model used, highlighting the importance of improved quantitative understanding of all four factors - climate change, CO 2 fertilization effects, fire, and land use - to the fate of the Amazon over the coming century. © 2015 John Wiley & Sons Ltd.

  13. The Stimuli-Actions-Effects-Responses (SAER)-framework for exploring perceived relationships between private and public climate change adaptation in agriculture.

    PubMed

    Mitter, Hermine; Schönhart, Martin; Larcher, Manuela; Schmid, Erwin

    2018-03-01

    Empirical findings on actors' roles and responsibilities in the climate change adaptation process are rare even though cooperation between private and public actors is perceived important to foster adaptation in agriculture. We therefore developed the framework SAER (Stimuli-Actions-Effects-Responses) to investigate perceived relationships between private and public climate change adaptation in agriculture at regional scale. In particular, we explore agricultural experts' perceptions on (i) climatic and non-climatic factors stimulating private adaptation, (ii) farm adaption actions, (iii) potential on-farm and off-farm effects from adaptation, and (iv) the relationships between private and public adaptation. The SAER-framework is built on a comprehensive literature review and empirical findings from semi-structured interviews with agricultural experts from two case study regions in Austria. We find that private adaptation is perceived as incremental, systemic or transformational. It is typically stimulated by a mix of bio-physical and socio-economic on-farm and off-farm factors. Stimulating factors related to climate change are perceived of highest relevance for systemic and transformational adaptation whereas already implemented adaptation is mostly perceived to be incremental. Perceived effects of private adaptation are related to the environment, weather and climate, quality and quantity of agricultural products as well as human, social and economic resources. Our results also show that public adaptation can influence factors stimulating private adaptation as well as adaptation effects through the design and development of the legal, policy and organizational environment as well as the provision of educational, informational, financial, and technical infrastructure. Hence, facilitating existing and new collaborations between private and public actors may enable farmers to adapt effectively to climate change. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Accounting for health in climate change policies: a case study of Fiji.

    PubMed

    Morrow, Georgina; Bowen, Kathryn

    2014-01-01

    Climate change is expected to affect the health of most populations in the coming decades, having the greatest impact on the poorest and most disadvantaged people in the world. The Pacific islands, including Fiji, are particularly vulnerable to the effects of climate change. The three major health impacts of climate change in Fiji explored in this study were dengue fever, diarrhoeal disease, and malnutrition, as they each pose a significant threat to human health. The aim of this study was to investigate to what extent the Fiji National Climate Change Policy, and a selection of relevant sectoral policies, account for these human health effects of climate change. The study employed a three-pronged policy analysis to evaluate: 1) the content of the Fijian National Climate Change Policy and to what extent health was incorporated within this; 2) the context within which the policy was developed; 3) the relevant processes; and 4) the actors involved. A selection of relevant sectoral policies were also analysed to assess the extent to which these included climate change and health considerations. The policy analysis showed that these three health impacts of climate change were only considered to a minor extent, and often indirectly, in both the Fiji National Climate Change Policy and the corresponding National Climate Change Adaptation Strategy, as well as the Public Health Act. Furthermore, supporting documents in relevant sectors including water and agriculture made no mention of climate change and health impacts. The projected health impacts of climate change should be considered as part of reviewing the Fiji National Climate Change Policy and National Climate Change Adaptation Strategy, and the Public Health Act. In the interest of public health, this should include strategies for combating dengue fever, malnutrition, and water-borne disease. Related sectoral policies in water and agriculture should also be revised to consider climate change and its impact on human health. Approaches to include health aspects of climate change within sectoral and climate change specific policies should be encouraged, via a number of mechanisms, such as the Health in All Policies approach. Future research could support the Fiji health sector in developing climate change and health programmes.

  15. 76 FR 77467 - Endangered and Threatened Species; Initiation of Status Review for Ribbon Seal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... management on ribbon seals; (2) Information on the effects of climate change and sea ice change on the...) Information on the effects of other potential threat factors, including oil and gas exploration and... concern about threats to this species' habitat from climate warming and loss of sea ice. The Petitioner...

  16. Forest Resilience, Biodiversity, and Climate Change

    Treesearch

    I. Thompson; B. Mackey; S. McNulty; A. Mosseler

    2009-01-01

    This paper reviews the concepts of ecosystem resilience, resistance, and stability in forests and their relationship to biodiversity, with particular reference to climate change. The report is a direct response to a request by the ninth meeting of the Conference of the Parties to the CBD, in decision IX/51, to explore the links between biodiversity, forest ecosystem...

  17. Shifting the Narrative: Child-Led Responses to Climate Change and Disasters in El Salvador and the Philippines

    ERIC Educational Resources Information Center

    Tanner, Thomas

    2010-01-01

    Children and young people are commonly treated in the climate change and disasters literature as victims of natural events requiring protection by adults. This article critiques that narrative, drawing on examples from the Philippines and El Salvador that explore how children's groups have responded to such issues through child-centred…

  18. Climate Change Communication by a Research Institute: Experiences, Successes, and Challenges from a North European Perspective

    ERIC Educational Resources Information Center

    Lyytimäki, Jari; Nygrén, Nina A.; Ala-Ketola, Ulla; Pellinen, Sirpa; Ruohomäki, Virpi; Inkinen, Aino

    2013-01-01

    Communicating about climate change is challenging not only because of the multidisciplinary and complex nature of the issue itself and multiple policy options related to mitigation and adaptation, but also because of the plenitude of potential communication methods coupled with limited resources for communication. This article explores climate…

  19. Climate Change and Costs: Investigating Students' Reasoning on Nature and Economic Development

    ERIC Educational Resources Information Center

    Sternang, Li; Lundholm, Cecilia

    2012-01-01

    The tensions between environmental protection and economic growth are critical to future well-being, and it is therefore important to understand how young people conceptualize these tensions. The aim of the present study is to explore students' solutions to the dilemma of economic development and mitigating climate change, with regard to societal…

  20. Vulnerability-based evaluation of water supply design under climate change

    NASA Astrophysics Data System (ADS)

    Umit Taner, Mehmet; Ray, Patrick; Brown, Casey

    2015-04-01

    Long-lived water supply infrastructures are strategic investments in the developing world, serving the purpose of balancing water deficits compounded by both population growth and socio-economic development. Robust infrastructure design under climate change is compelling, and often addressed by focusing on the outcomes of climate model projections ('scenario-led' planning), or by identifying design options that are less vulnerable to a wide range of plausible futures ('vulnerability-based' planning). Decision-Scaling framework combines these two approaches by first applying a climate stress test on the system to explore vulnerabilities across many traces of the future, and then employing climate projections to inform the decision-making process. In this work, we develop decision scaling's nascent risk management concepts further, directing actions on vulnerabilities identified during the climate stress test. In the process, we present a new way to inform climate vulnerability space using climate projections, and demonstrate the use of multiple decision criteria to guide to a final design recommendation. The concepts are demonstrated for a water supply project in the Mombasa Province of Kenya, planned to provide domestic and irrigation supply. Six storage design capacities (from 40 to 140 million cubic meters) are explored through a stress test, under a large number climate traces representing both natural climate variability and plausible climate changes. Design outcomes are simulated over a 40-year planning period with a coupled hydrologic-water resources systems model and using standard reservoir operation rules. Resulting performance is expressed in terms of water supply reliability and economic efficiency. Ensemble climate projections are used for assigning conditional likelihoods to the climate traces using a statistical distance measure. The final design recommendations are presented and discussed for the decision criteria of expected regret, satisficing, and conditional value-at-risk (CVaR).

  1. The effects of land use change and precipitation change on direct runoff in Wei River watershed, China.

    PubMed

    Dong, Leihua; Xiong, Lihua; Lall, Upmanu; Wang, Jiwu

    2015-01-01

    The principles and degrees to which land use change and climate change affect direct runoff generation are distinctive. In this paper, based on the MODIS data of land use in 1992 and 2003, the impacts of land use and climate change are explored using the Soil Conservation Service Curve Number (SCS-CN) method under two defined scenarios. In the first scenario, the precipitation is assumed to be constant, and thus the consequence of land use change could be evaluated. In the second scenario, the condition of land use is assumed to be constant, so the influence only induced by climate change could be assessed. Combining the conclusions of two scenarios, the effects of land use and climate change on direct runoff volume can be separated. At last, it is concluded: for the study basin, the land use types which have the greatest effect on direct runoff generation are agricultural land and water body. For the big sub basins, the effect of land use change is generally larger than that of climate change; for middle and small sub basins, most of them suffer more from land use change than from climate change.

  2. Heating up Climate Literacy Education: Understanding Teachers' and Students' Motivational and Affective Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Sinatra, G. M.

    2011-12-01

    Changing students' ideas about controversial scientific issues, such as human-induced climate change, presents unique challenges for educators (Lombardi & Sinatra, 2010; Sinatra & Mason, 2008). First, climate science is complex and requires "systems thinking," or the ability to think and reason abstractly about emergent systems (Goldstone & Sakamoto, 2003). Appreciating the intricacies of complex systems and emergent processes has proven challenging for students (Chi, 2005). In addition to these challenges, there are specific misconceptions that may lead thinking astray on the issue of global climate change, such as the distinction between weather and climate (Lombardi & Sinatra, 2010). As an example, when students are asked about their views on climate change, they often recall individual storm events or very cold periods and use their personal experiences and recollections of short-term temperature fluctuations to assess whether the planet is warming. Beyond the conceptual difficulties, controversial topics offer another layer of challenge. Such topics are often embedded in complex socio-cultural and political contexts, have a high degree of uncertainty, and may be perceived by individuals as in conflict with their personal or religious beliefs (Levinson, 2006, Sinatra, Kardash, Taasoobshirazi, & Lombardi, 2011). Individuals are often committed to their own views on socio-scientific issues and this commitment may serve as a motivation to actively resist new ideas (Dole & Sinatra, 1998). Individuals may also have strong emotions associated with their misconceptions (Broughton, Pekrun, & Sinatra, 2011). Negative emotions, misconceptions, and resistance do not make a productive combination for learning. Further, teachers who find human-induced climate change implausible have been shown to hold negative emotions about having to teach about climate change (Lombardi & Sinatra, in preparation), which could affect how they present the topic to students. In this presentation, findings from a research program exploring the role of "hot constructs" such as motivation and emotion in teaching and learning about climate change will be shared. In these studies, we have explored constructs such as emotions, misconceptions, plausibility perceptions, understanding deep time, and dispositions towards uncertainty. Results from four studies will be highlighted. In the first study, we demonstrated that comfort with ambiguity and a willingness to think deeply about issues predicted both change in attitudes towards climate change and expressed willingness to take mitigative action in college students (Sinatra, et al. 2011). In another study with college students, we demonstrated that knowledge of deep time and plausibility perceptions of human-induced climate change were related to students' understanding of weather and climate distinctions (Lombardi & Sinatra, 2010). In a study with graduate education students, we found that misconceptions about climate change were associated with strong emotions (Broughton, et al., 2011). With practicing teachers we have found that emotions, specifically anger and hopelessness, were significant predictors of plausibility perceptions of human-induced climate change (Lombardi & Sinatra, in preparation). The implications for climate change education of the findings will be discussed.

  3. Knowledge exchange for climate adaptation planning in western North America

    NASA Astrophysics Data System (ADS)

    Garfin, Gregg; Orr, Barron

    2015-04-01

    In western North America, the combination of sustained drought, rapid ecosystem changes, and land use changes associated with urban population growth has motivated concern among ecosystem managers about the implications of future climate changes for the landscapes which they manage. Through literature review, surveys, and workshop discussions, we assess the process of moving from concern, to planning, to action, with an emphasis on questions, such as: What are the roles of boundary organizations in facilitating knowledge exchange? Which practices lead to effective interactions between scientists, decision-makers, and knowledge brokers? While there is no "one size fits all" science communication method, the co-production of science and policy by research scientists, science translators, and decision-makers, as co-equals, is a resource intensive, but effective practice for moving adaptation planning forward. Constructive approaches make use of alliances with early adopters and opinion leaders, and make strong communication links between predictions, impacts and solutions. Resource managers need information on the basics of regional climate variability and global climate change, region-specific projections of climate changes and impacts, frank discussion of uncertainties, and opportunities for candid exploration of these topics with peers and subject experts. Research scientists play critical roles in adaptation planning discussions, because they assist resource managers in clarifying the cascade of interactions leading to potential impacts and, importantly, because decision-makers want to hear the information straight from the scientists conducting the research, which bolsters credibility. We find that uncertainty, formerly a topic to avoided, forms the foundation for constructive progress in adaptation planning. Candid exploration of the array of uncertainties, including those due to modeling, institutional, policy and economic factors, with practitioners, science translators, and subject experts, stimulates constructive thinking on adaptation strategies. Discussion support to explore multiple future scenarios and research nuances advances the discussion beyond "uncertainty paralysis."

  4. When and How Does Psychological Voice Climate Influence Individual Change Readiness? The Mediating Role of Normative Commitment and the Moderating Role of Work Engagement

    PubMed Central

    Lee, Chun-Hsien; Wang, Mei-Ling; Liu, Min-Shi

    2017-01-01

    This research explores the linking mechanisms and conditional processes underlying the relationship between psychological voice climate and individual change readiness. In accordance with the social identity theory, we argued that normative commitment would mediate the relationship between psychological voice climate and individual change readiness; furthermore, work engagement would moderate the proposed indirect effect. Two-wave survey data were collected from 187 full-time employees in a government-owned institute of research and development and were adopted for moderated mediation analysis. The results showed that normative commitment mediates the relationship between psychological voice climate and individual change readiness. Furthermore, work engagement strengthens the effect of psychological voice climate on individual change readiness in an indirect manner via normative commitment. Based on the findings, the theoretical implications and practical suggestions were discussed. PMID:29062294

  5. Chasing our tails: psychological, institutional and societal paradoxes in natural resource management, sustainability, and climate change in Australia.

    PubMed

    Browne, A L; Bishop, B J

    2011-06-01

    Natural Resource Management (NRM) and Ecologically Sustainable Development (ESD) have been guiding frameworks in Australia for a number of decades. Recently, NRM and ESD have become central to climate change mitigation. In this paper, we explore the psychological paradoxes that function within climate change settings, with particular attention devoted to the way that research and development reinforces these paradoxes by advocating for participatory forms of inquiry. Paradox emerges in NRM at psychological, institutional, and organisational levels. Paradoxes are also features of different forms of democracy such as neoliberal and participatory democracy. Although NRM, ESD and climate change are often conceptualised as distinct issue domains, these policy areas are fundamentally interconnected in both theory and in practice. This interconnection between these policy and research settings, reflections on paradox, and the experience of incorporating community psychology into the paradoxical settings of NRM and climate change are captured in this paper.

  6. When and How Does Psychological Voice Climate Influence Individual Change Readiness? The Mediating Role of Normative Commitment and the Moderating Role of Work Engagement.

    PubMed

    Lee, Chun-Hsien; Wang, Mei-Ling; Liu, Min-Shi

    2017-01-01

    This research explores the linking mechanisms and conditional processes underlying the relationship between psychological voice climate and individual change readiness. In accordance with the social identity theory, we argued that normative commitment would mediate the relationship between psychological voice climate and individual change readiness; furthermore, work engagement would moderate the proposed indirect effect. Two-wave survey data were collected from 187 full-time employees in a government-owned institute of research and development and were adopted for moderated mediation analysis. The results showed that normative commitment mediates the relationship between psychological voice climate and individual change readiness. Furthermore, work engagement strengthens the effect of psychological voice climate on individual change readiness in an indirect manner via normative commitment. Based on the findings, the theoretical implications and practical suggestions were discussed.

  7. Ecosystem vulnerability to climate change in the southeastern United States

    USGS Publications Warehouse

    Cartwright, Jennifer M.; Costanza, Jennifer

    2016-08-11

    Two recent investigations of climate-change vulnerability for 19 terrestrial, aquatic, riparian, and coastal ecosystems of the southeastern United States have identified a number of important considerations, including potential for changes in hydrology, disturbance regimes, and interspecies interactions. Complementary approaches using geospatial analysis and literature synthesis integrated information on ecosystem biogeography and biodiversity, climate projections, vegetation dynamics, soil and water characteristics, anthropogenic threats, conservation status, sea-level rise, and coastal flooding impacts. Across a diverse set of ecosystems—ranging in size from dozens of square meters to thousands of square kilometers—quantitative and qualitative assessments identified types of climate-change exposure, evaluated sensitivity, and explored potential adaptive capacity. These analyses highlighted key gaps in scientific understanding and suggested priorities for future research. Together, these studies help create a foundation for ecosystem-level analysis of climate-change vulnerability to support effective biodiversity conservation in the southeastern United States.

  8. Long-term forest management and climate effects on streamflow

    Treesearch

    Shelby G. Laird; C.R. Ford; S.H. Laseter; J.M. Vose

    2011-01-01

    Long-term watershed studies are a powerful tool for examining interactions among management activities, streamflow, and climatic variability. Understanding these interactions is critical for exploring the potential of forest management to adapt to or mitigate against the effects of climate change. The Coweeta Hydrologic Laboratory, located in North Carolina, USA, is a...

  9. Changes in School Climate in a Long-Term Perspective

    ERIC Educational Resources Information Center

    Kallestad, Jan Helge

    2010-01-01

    In a previous report five school climate instruments were explored (1983 and 1985), and four scales were regarded as meaningful climate measures according to suggested criteria. These scales were re-inspected in the present study (1997 and 1998) by analyses of internal consistency, estimates of reliability (unit and aggregated reliability), and…

  10. Emerging migration flows in a changing climate in dryland Africa

    NASA Astrophysics Data System (ADS)

    Kniveton, Dominic R.; Smith, Christopher D.; Black, Richard

    2012-06-01

    Fears of the movement of large numbers of people as a result of changes in the environment were first voiced in the 1980s (ref. ). Nearly thirty years later the numbers likely to migrate as a result of the impacts of climate change are still, at best, guesswork. Owing to the high prevalence of rainfed agriculture, many livelihoods in sub-Saharan African drylands are particularly vulnerable to changes in climate. One commonly adopted response strategy used by populations to deal with the resulting livelihood stress is migration. Here, we use an agent-based model developed around the theory of planned behaviour to explore how climate and demographic change, defined by the ENSEMBLES project and the United Nations Statistics Division of the Department of Economic and Social Affairs, combine to influence migration within and from Burkina Faso. The emergent migration patterns modelled support framing the nexus of climate change and migration as a complex adaptive system. Using this conceptual framework, we show that the extent of climate-change-related migration is likely to be highly nonlinear and the extent of this nonlinearity is dependent on population growth; therefore supporting migration policy interventions based on both demographic and climate change adaptation.

  11. Whole-farm models to quantify greenhouse gas emissions and their potential use for linking climate change mitigation and adaptation in temperate grassland ruminant-based farming systems.

    PubMed

    Del Prado, A; Crosson, P; Olesen, J E; Rotz, C A

    2013-06-01

    The farm level is the most appropriate scale for evaluating options for mitigating greenhouse gas (GHG) emissions, because the farm represents the unit at which management decisions in livestock production are made. To date, a number of whole farm modelling approaches have been developed to quantify GHG emissions and explore climate change mitigation strategies for livestock systems. This paper analyses the limitations and strengths of the different existing approaches for modelling GHG mitigation by considering basic model structures, approaches for simulating GHG emissions from various farm components and the sensitivity of GHG outputs and mitigation measures to different approaches. Potential challenges for linking existing models with the simulation of impacts and adaptation measures under climate change are explored along with a brief discussion of the effects on other ecosystem services.

  12. Developing Capacity for Cities to Adapt to a Changing Climate-a Case Study in Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Sands, R.; Groves, D. G.; Nason, M.; Pandya, R.

    2016-12-01

    The City of Boulder in Colorado has undertaken many progressive climate-related initiatives, from signing the Kyoto protocol to passing a Climate Action Tax. But as the city prepared to launch its Climate Commitment document and lead a community process, it realized that one critical group that had not been fully engaged in the process was its own staff. It became clear that for organizational change to occur and for the city to meet its goals, city staff needed to develop a deeper understanding of the importance of the climate goals while also learning better how to use these goals to guide their long-term planning. In early 2016, the city launched a year-long "Climate Leaders" initiative which comprised of a series of workshops that brought together over 70 staff members with climate scientists and experts in climate adaptation planning. The first two workshops, billed as Climate 101 and 201, reviewed the best available scientific information about climate threats and potential impacts, and worked with participants to understand how climate changes could affect diverse city functions. These interactive workshops also explored ways to help city staff feel comfortable preparing for a significantly different climate and discussed ways to communicate this information to the public. From there the group split into two tracks. A "mitigation" track focused on the ways in which Boulder could meet its aggressive emissions reduction targets. The "adaptation" track developed integrated scenarios for citywide planning to highlight Boulder's vulnerability to climate change and guide adaptation planning. Bringing these two conversations together is helping city staff to explore critical linkages between mitigation and adaptation, develop common messages to build community support for climate action, and inform comprehensive climate resiliency planning. We will describe how Boulder successfully partnered with scientists and planning experts to program a year of interactive workshops to bring diverse city staff into the climate action process. We will share outcomes from the development of the integrated climate scenarios vulnerability assessment and adaptation planning. Lastly we will share key lessons learned that will be valuable to other cities and jurisdictions engaging in similar climate action.

  13. Climate change, urbanization, and optimal long-term floodplain protection

    NASA Astrophysics Data System (ADS)

    Zhu, Tingju; Lund, Jay R.; Jenkins, Marion W.; Marques, Guilherme F.; Ritzema, Randall S.

    2007-06-01

    This paper examines levee-protected floodplains and economic aspects of adaptation to increasing long-term flood risk due to urbanization and climate change. The lower American River floodplain in the Sacramento, California, metropolitan area is used as an illustration to explore the course of optimal floodplain protection decisions over long periods. A dynamic programming model is developed and suggests economically desirable adaptations for floodplain levee systems given simultaneous changes in flood climate and urban land values. Economic engineering optimization analyses of several climate change and urbanization scenarios are made. Sensitivity analyses consider assumptions about future values of floodplain land and damageable property along with the discount rate. Methodological insights and policy lessons are drawn from modeling results, reflecting the joint effects and relationships that climate, economic costs, and regional economic growth can have on floodplain levee planning decisions.

  14. Ecosystem service provision in a changing Europe: adapting to the impacts of combined climate and socio-economic change.

    PubMed

    Dunford, Robert W; Smith, Alison C; Harrison, Paula A; Hanganu, Diana

    Future patterns of European ecosystem services provision are likely to vary significantly as a result of climatic and socio-economic change and the implementation of adaptation strategies. However, there is little research in mapping future ecosystem services and no integrated assessment approach to map the combined impacts of these drivers. Map changing patterns in ecosystem services for different European futures and (a) identify the role of driving forces; (b) explore the potential influence of different adaptation options. The CLIMSAVE integrated assessment platform is used to map spatial patterns in services (food, water and timber provision, atmospheric regulation, biodiversity existence/bequest, landscape experience and land use diversity) for a number of combined climatic and socio-economic scenarios. Eight adaptation strategies are explored within each scenario. Future service provision (particularly water provision) will be significantly impacted by climate change. Socio-economic changes shift patterns of service provision: more dystopian societies focus on food provision at the expense of other services. Adaptation options offer significant opportunities, but may necessitate trade-offs between services, particularly between agriculture- and forestry-related services. Unavoidable trade-offs between regions (particularly South-North) are also identified in some scenarios. Coordinating adaptation across regions and sectors will be essential to ensure that all needs are met: a factor that will become increasingly pressing under dystopian futures where inter-regional cooperation breaks down. Integrated assessment enables exploration of interactions and trade-offs between ecosystem services, highlighting the importance of taking account of complex cross-sectoral interactions under different future scenarios of planning adaptation responses.

  15. Scaling the Problem: How Commercial Interests Have Influenced the U.S. Dialogue on Climate Change

    NASA Astrophysics Data System (ADS)

    Goldman, G. T.; Rogerson, P.

    2012-12-01

    In recent years, corporations and their affiliates have played an increasing role in the national conversation on climate change, with companies weighing in not only on policy debates but also participating in discussions around climate science. A few of these companies in particular have been tremendously influential in dictating how the public understands, or misunderstands, climate science and how the national discourse on climate policy has progressed, or not progressed. To better understand this corporate involvement, we explored the roles that major corporate actors have played during a key time period in 2009 and 2010 when several important climate change policy proposals were being actively debated in the United States. Analyzing multiple venues in which companies engaged in discussion of climate change with different audiences—including the government, shareholders, and the public—we assess the degree to which commercial interests have helped or hindered a science-based public discourse on climate policy in the past decade. Discussion will focus especially on corporations' use of third party organizations, including industry trade groups, think tanks, and others, to exert influence on climate-related policy without accountability.

  16. On the role of ozone feedback in the ENSO amplitude response under global warming.

    PubMed

    Nowack, Peer J; Braesicke, Peter; Luke Abraham, N; Pyle, John A

    2017-04-28

    The El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean is of key importance to global climate and weather. However, state-of-the-art climate models still disagree on the ENSO's response under climate change. The potential role of atmospheric ozone changes in this context has not been explored before. Here we show that differences between typical model representations of ozone can have a first-order impact on ENSO amplitude projections in climate sensitivity simulations. The vertical temperature gradient of the tropical middle-to-upper troposphere adjusts to ozone changes in the upper troposphere and lower stratosphere, modifying the Walker circulation and consequently tropical Pacific surface temperature gradients. We show that neglecting ozone changes thus results in a significant increase in the number of extreme ENSO events in our model. Climate modeling studies of the ENSO often neglect changes in ozone. We therefore highlight the need to understand better the coupling between ozone, the tropospheric circulation, and climate variability.

  17. Reviewing Bayesian Networks potentials for climate change impacts assessment and management: A multi-risk perspective.

    PubMed

    Sperotto, Anna; Molina, José-Luis; Torresan, Silvia; Critto, Andrea; Marcomini, Antonio

    2017-11-01

    The evaluation and management of climate change impacts on natural and human systems required the adoption of a multi-risk perspective in which the effect of multiple stressors, processes and interconnections are simultaneously modelled. Despite Bayesian Networks (BNs) are popular integrated modelling tools to deal with uncertain and complex domains, their application in the context of climate change still represent a limited explored field. The paper, drawing on the review of existing applications in the field of environmental management, discusses the potential and limitation of applying BNs to improve current climate change risk assessment procedures. Main potentials include the advantage to consider multiple stressors and endpoints in the same framework, their flexibility in dealing and communicate with the uncertainty of climate projections and the opportunity to perform scenario analysis. Some limitations (i.e. representation of temporal and spatial dynamics, quantitative validation), however, should be overcome to boost BNs use in climate change impacts assessment and management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models.

    PubMed

    Keith, David A; Akçakaya, H Resit; Thuiller, Wilfried; Midgley, Guy F; Pearson, Richard G; Phillips, Steven J; Regan, Helen M; Araújo, Miguel B; Rebelo, Tony G

    2008-10-23

    Species responses to climate change may be influenced by changes in available habitat, as well as population processes, species interactions and interactions between demographic and landscape dynamics. Current methods for assessing these responses fail to provide an integrated view of these influences because they deal with habitat change or population dynamics, but rarely both. In this study, we linked a time series of habitat suitability models with spatially explicit stochastic population models to explore factors that influence the viability of plant species populations under stable and changing climate scenarios in South African fynbos, a global biodiversity hot spot. Results indicate that complex interactions between life history, disturbance regime and distribution pattern mediate species extinction risks under climate change. Our novel mechanistic approach allows more complete and direct appraisal of future biotic responses than do static bioclimatic habitat modelling approaches, and will ultimately support development of more effective conservation strategies to mitigate biodiversity losses due to climate change.

  19. Public Health Nurses’ Knowledge and Attitudes Regarding Climate Change

    PubMed Central

    Chaudry, Rosemary V.; Mac Crawford, John

    2011-01-01

    Background: Climate change affects human health, and health departments are urged to act to reduce the severity of these impacts. Yet little is known about the perspective of public health nurses—the largest component of the public health workforce—regarding their roles in addressing health impacts of climate change. Objectives: We determined the knowledge and attitudes of public health nurses concerning climate change and the role of public health nursing in divisions of health departments in addressing health-related impacts of climate change. Differences by demographic subgroups were explored. Methods: An online survey was distributed to nursing directors of U.S. health departments (n = 786) with Internet staff directories. Results: Respondents (n = 176) were primarily female, white public health nursing administrators with ≥ 5 years of experience. Approximately equal percentages of respondents self-identified as having moderate, conservative, and liberal political views. Most agreed that the earth has experienced climate change and that climate change is somewhat controllable. Respondents identified an average of 5 of the 12 listed health-related impacts of climate change, but the modal response was zero impact. Public health nursing was perceived as having responsibility to address health-related impacts of climate change but lacking the ability to address these impacts. Conclusions: Public health nurses view the environment as under threat and see a role for nursing divisions in addressing health effects of climate change. However, they recognize the limited resources and personnel available to devote to this endeavor. PMID:22128069

  20. Assessing environmental attributes and effects of climate change on Sphagnum peatland distributions in North America using single- and multi-species models.

    PubMed

    Oke, Tobi A; Hager, Heather A

    2017-01-01

    The fate of Northern peatlands under climate change is important because of their contribution to global carbon (C) storage. Peatlands are maintained via greater plant productivity (especially of Sphagnum species) than decomposition, and the processes involved are strongly mediated by climate. Although some studies predict that warming will relax constraints on decomposition, leading to decreased C sequestration, others predict increases in productivity and thus increases in C sequestration. We explored the lack of congruence between these predictions using single-species and integrated species distribution models as proxies for understanding the environmental correlates of North American Sphagnum peatland occurrence and how projected changes to the environment might influence these peatlands under climate change. Using Maximum entropy and BIOMOD modelling platforms, we generated single and integrated species distribution models for four common Sphagnum species in North America under current climate and a 2050 climate scenario projected by three general circulation models. We evaluated the environmental correlates of the models and explored the disparities in niche breadth, niche overlap, and climate suitability among current and future models. The models consistently show that Sphagnum peatland distribution is influenced by the balance between soil moisture deficit and temperature of the driest quarter-year. The models identify the east and west coasts of North America as the core climate space for Sphagnum peatland distribution. The models show that, at least in the immediate future, the area of suitable climate for Sphagnum peatland could expand. This result suggests that projected warming would be balanced effectively by the anticipated increase in precipitation, which would increase Sphagnum productivity.

  1. Assessing environmental attributes and effects of climate change on Sphagnum peatland distributions in North America using single- and multi-species models

    PubMed Central

    Oke, Tobi A.; Hager, Heather A.

    2017-01-01

    The fate of Northern peatlands under climate change is important because of their contribution to global carbon (C) storage. Peatlands are maintained via greater plant productivity (especially of Sphagnum species) than decomposition, and the processes involved are strongly mediated by climate. Although some studies predict that warming will relax constraints on decomposition, leading to decreased C sequestration, others predict increases in productivity and thus increases in C sequestration. We explored the lack of congruence between these predictions using single-species and integrated species distribution models as proxies for understanding the environmental correlates of North American Sphagnum peatland occurrence and how projected changes to the environment might influence these peatlands under climate change. Using Maximum entropy and BIOMOD modelling platforms, we generated single and integrated species distribution models for four common Sphagnum species in North America under current climate and a 2050 climate scenario projected by three general circulation models. We evaluated the environmental correlates of the models and explored the disparities in niche breadth, niche overlap, and climate suitability among current and future models. The models consistently show that Sphagnum peatland distribution is influenced by the balance between soil moisture deficit and temperature of the driest quarter-year. The models identify the east and west coasts of North America as the core climate space for Sphagnum peatland distribution. The models show that, at least in the immediate future, the area of suitable climate for Sphagnum peatland could expand. This result suggests that projected warming would be balanced effectively by the anticipated increase in precipitation, which would increase Sphagnum productivity. PMID:28426754

  2. Mitigation/adaptation and health: health policymaking in the global response to climate change and implications for other upstream determinants.

    PubMed

    Wiley, Lindsay F

    2010-01-01

    The time is ripe for innovation in global health governance if we are to achieve global health and development objectives in the face of formidable challenges. Integration of global health concerns into the law and governance of other, related disciplines should be given high priority. This article explores opportunities for health policymaking in the global response to climate change. Climate change and environmental degradation will affect weather disasters, food and water security, infectious disease patterns, and air pollution. Although scientific research has pointed to the interdependence of the global environment and human health, policymakers have been slow to integrate their approaches to environmental and health concerns. A robust response to climate change will require improved integration on two fronts: health concerns must be given higher priority in the response to climate change and threats associated with climate change and environmental degradation must be more adequately addressed by global health law and governance. The mitigation/adaptation response paradigm developing within and beyond the United Nations Framework Convention on Climate Change provides a useful framework for thinking about global health law and governance with respect to climate change, environmental degradation, and possibly other upstream determinants of health as well. © 2010 American Society of Law, Medicine & Ethics, Inc.

  3. Climate change, food, water and population health in China.

    PubMed

    Tong, Shilu; Berry, Helen L; Ebi, Kristie; Bambrick, Hilary; Hu, Wenbiao; Green, Donna; Hanna, Elizabeth; Wang, Zhiqiang; Butler, Colin D

    2016-10-01

    Anthropogenic climate change appears to be increasing the frequency, duration and intensity of extreme weather events. Such events have already had substantial impacts on socioeconomic development and population health. Climate change's most profound impacts are likely to be on food, health systems and water. This paper explores how climate change will affect food, human health and water in China. Projections indicate that the overall effects of climate change, land conversion and reduced water availability could reduce Chinese food production substantially - although uncertainty is inevitable in such projections. Climate change will probably have substantial impacts on water resources - e.g. changes in rainfall patterns and increases in the frequencies of droughts and floods in some areas of China. Such impacts would undoubtedly threaten population health and well-being in many communities. In the short-term, population health in China is likely to be adversely affected by increases in air temperatures and pollution. In the medium to long term, however, the indirect impacts of climate change - e.g. changes in the availability of food, shelter and water, decreased mental health and well-being and changes in the distribution and seasonality of infectious diseases - are likely to grow in importance. The potentially catastrophic consequences of climate change can only be avoided if all countries work together towards a substantial reduction in the emission of so-called greenhouse gases and a substantial increase in the global population's resilience to the risks of climate variability and change.

  4. Simulated discharge trends indicate robustness of hydrological models in a changing climate

    NASA Astrophysics Data System (ADS)

    Addor, Nans; Nikolova, Silviya; Seibert, Jan

    2016-04-01

    Assessing the robustness of hydrological models under contrasted climatic conditions should be part any hydrological model evaluation. Robust models are particularly important for climate impact studies, as models performing well under current conditions are not necessarily capable of correctly simulating hydrological perturbations caused by climate change. A pressing issue is the usually assumed stationarity of parameter values over time. Modeling experiments using conceptual hydrological models revealed that assuming transposability of parameters values in changing climatic conditions can lead to significant biases in discharge simulations. This raises the question whether parameter values should to be modified over time to reflect changes in hydrological processes induced by climate change. Such a question denotes a focus on the contribution of internal processes (i.e., catchment processes) to discharge generation. Here we adopt a different perspective and explore the contribution of external forcing (i.e., changes in precipitation and temperature) to changes in discharge. We argue that in a robust hydrological model, discharge variability should be induced by changes in the boundary conditions, and not by changes in parameter values. In this study, we explore how well the conceptual hydrological model HBV captures transient changes in hydrological signatures over the period 1970-2009. Our analysis focuses on research catchments in Switzerland undisturbed by human activities. The precipitation and temperature forcing are extracted from recently released 2km gridded data sets. We use a genetic algorithm to calibrate HBV for the whole 40-year period and for the eight successive 5-year periods to assess eventual trends in parameter values. Model calibration is run multiple times to account for parameter uncertainty. We find that in alpine catchments showing a significant increase of winter discharge, this trend can be captured reasonably well with constant parameter values over the whole reference period. Further, preliminary results suggest that some trends in parameter values do not reflect changes in hydrological processes, as reported by others previously, but instead might stem from a modeling artifact related to the parameterization of evapotranspiration, which is overly sensitive to temperature increase. We adopt a trading-space-for-time approach to better understand whether robust relationships between parameter values and forcing can be established, and to critically explore the rationale behind time-dependent parameter values in conceptual hydrological models.

  5. It's A Gassy World: Middle School Students Investigate Climate Change

    NASA Astrophysics Data System (ADS)

    Romano, C.

    2016-12-01

    When middle school students are asked about our changing earth system, their responses likely include terms like global warming, climate change, and greenhouse gases. However, many students struggle to understand how it all fits together, and sometimes they hear conflicting information or myths about climate change. This activity allows students to explore the impacts of warming oceans and oceans' absorption of carbon dioxide (CO2) through a student planned and carried out investigation that begins with a pre-laboratory engagement and exploration piece, includes a laboratory component, and concludes with an explanation where students analyze their data and interpret their results through the claim-evidence-reasoning framework. It's a Gassy World was developed with three-dimensional instruction in mind to introduce middle school students to the relationship between warming oceans and changes in carbon dioxide (CO2) absorption in the oceans. Students explore disciplinary core ideas in the Earth and Space Sciences discipline of the Next Generation Science Standards (NGSS) using crosscutting concepts and science and engineering practices. Specifically, students study CO2 as a greenhouse gas and the effect of increased atmospheric CO2 levels on global climate change by planning and carrying out their own investigations. We structured this activity in a 5E format that can take place in four to five days during a climate change unit. After piloting this activity in over 20 formal classrooms and with 5 informal education groups, we have seen how It's a Gassy World helps support inquiry in the classroom and allows students to experience crosscutting concepts and science and engineering practices in NGSS. We found that students were engaged and actively learning throughout the activity. Student work and pilot teacher feedback indicated that, through this activity, many students increased their understanding of CO2 as a greenhouse gas and recognized that warmer oceans will absorb less CO2, resulting in more CO2 in the atmosphere.

  6. Human ecology and climate change: People and resources in the Far North

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, D.L.; Johnson, D.R.

    1995-12-31

    This book is a collection of papers from a workshop held in October 1993 that explore and develop further ideas about the impacts of climate change on the people and ecosystems of the Far North. Included are researchers and managers from atmospheric sciences, anthropology, sociology, rural economics, northern latitude mammal and fisheries biology, and governmental and management strategies. The book discusses the range of interrelationships that will have to be addressed as natural cycles or anthropogenic causes affect global climate patterns.

  7. Predicting the Impacts of Climate Change on Central American Agriculture

    NASA Astrophysics Data System (ADS)

    Winter, J. M.; Ruane, A. C.; Rosenzweig, C.

    2011-12-01

    Agriculture is a vital component of Central America's economy. Poor crop yields and harvest reliability can produce food insecurity, malnutrition, and conflict. Regional climate models (RCMs) and agricultural models have the potential to greatly enhance the efficiency of Central American agriculture and water resources management under both current and future climates. A series of numerical experiments was conducted using Regional Climate Model Version 3 (RegCM3) and the Weather Research and Forecasting Model (WRF) to evaluate the ability of RCMs to reproduce the current climate of Central America and assess changes in temperature and precipitation under multiple future climate scenarios. Control simulations were thoroughly compared to a variety of observational datasets, including local weather station data, gridded meteorological data, and high-resolution satellite-based precipitation products. Future climate simulations were analyzed for both mean shifts in climate and changes in climate variability, including extreme events (droughts, heat waves, floods). To explore the impacts of changing climate on maize, bean, and rice yields in Central America, RCM output was used to force the Decision Support System for Agrotechnology Transfer Model (DSSAT). These results were synthesized to create climate change impacts predictions for Central American agriculture that explicitly account for evolving distributions of precipitation and temperature extremes.

  8. Put a Frame on It: Contextualizing Climate Change for Museum Visitors

    NASA Astrophysics Data System (ADS)

    Canning, Katharine

    Public opinion polls continue to show that Americans are divided---particularly along political and ideological lines---on whether climate change is real and warrants immediate action. Those in the natural and social sciences have recognized that effective communication is key to closing the gap that exists between scientific and public understanding on this issue. A body of social science research on climate change communication has emerged within the last decade. This field has identified strategies for climate change communicators and educators, emphasizing the importance of framing climate change issues in ways that help it resonate with a wider range of public concerns and values in order to develop a shared belief regarding the necessity of action. Museum exhibits and programs on climate change that were developed within the last five years are likely to have benefitted from this body of work. This qualitative research seeks to examine and analyze the various ways museums in the United States are communicating about climate change related issues to the public. Three case studies of museum exhibits on climate change issues were examined. The scope and purpose of climate change communication in museums, the specific messages that museums are choosing to communicate, and how those messages are being framed for public audiences were explored through these case studies. The findings suggest that museums are considering their audience when framing messages about climate change and have used work from the climate change communication field to inform message development. In particular, museums are making climate change issues more relevant by emphasizing social, economic, and human health concerns, and are considering strategies to counteract fear-fatigue and empower visitors to take action.

  9. Monitoring and Modeling the Tibetan Plateau's climate system and its impact on East Asia.

    PubMed

    Ma, Yaoming; Ma, Weiqiang; Zhong, Lei; Hu, Zeyong; Li, Maoshan; Zhu, Zhikun; Han, Cunbo; Wang, Binbin; Liu, Xin

    2017-03-13

    The Tibetan Plateau is an important water source in Asia. As the "Third Pole" of the Earth, the Tibetan Plateau has significant dynamic and thermal effects on East Asian climate patterns, the Asian monsoon process and atmospheric circulation in the Northern Hemisphere. However, little systematic knowledge is available regarding the changing climate system of the Tibetan Plateau and the mechanisms underlying its impact on East Asia. This study was based on "water-cryosphere-atmosphere-biology" multi-sphere interactions, primarily considering global climate change in relation to the Tibetan Plateau -East Asia climate system and its mechanisms. This study also analyzed the Tibetan Plateau to clarify global climate change by considering multi-sphere energy and water processes. Additionally, the impacts of climate change in East Asia and the associated impact mechanisms were revealed, and changes in water cycle processes and water conversion mechanisms were studied. The changes in surface thermal anomalies, vegetation, local circulation and the atmospheric heat source on the Tibetan Plateau were studied, specifically, their effects on the East Asian monsoon and energy balance mechanisms. Additionally, the relationships between heating mechanisms and monsoon changes were explored.

  10. Monitoring and Modeling the Tibetan Plateau’s climate system and its impact on East Asia

    PubMed Central

    Ma, Yaoming; Ma, Weiqiang; Zhong, Lei; Hu, Zeyong; Li, Maoshan; Zhu, Zhikun; Han, Cunbo; Wang, Binbin; Liu, Xin

    2017-01-01

    The Tibetan Plateau is an important water source in Asia. As the “Third Pole” of the Earth, the Tibetan Plateau has significant dynamic and thermal effects on East Asian climate patterns, the Asian monsoon process and atmospheric circulation in the Northern Hemisphere. However, little systematic knowledge is available regarding the changing climate system of the Tibetan Plateau and the mechanisms underlying its impact on East Asia. This study was based on “water-cryosphere-atmosphere-biology” multi-sphere interactions, primarily considering global climate change in relation to the Tibetan Plateau -East Asia climate system and its mechanisms. This study also analyzed the Tibetan Plateau to clarify global climate change by considering multi-sphere energy and water processes. Additionally, the impacts of climate change in East Asia and the associated impact mechanisms were revealed, and changes in water cycle processes and water conversion mechanisms were studied. The changes in surface thermal anomalies, vegetation, local circulation and the atmospheric heat source on the Tibetan Plateau were studied, specifically, their effects on the East Asian monsoon and energy balance mechanisms. Additionally, the relationships between heating mechanisms and monsoon changes were explored. PMID:28287648

  11. Climate Change and Crop Exposure to Adverse Weather: Changes to Frost Risk and Grapevine Flowering Conditions.

    PubMed

    Mosedale, Jonathan R; Wilson, Robert J; Maclean, Ilya M D

    2015-01-01

    The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions.

  12. Climate Change and Crop Exposure to Adverse Weather: Changes to Frost Risk and Grapevine Flowering Conditions

    PubMed Central

    Mosedale, Jonathan R.; Wilson, Robert J.; Maclean, Ilya M. D.

    2015-01-01

    The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions. PMID:26496127

  13. Food Crops Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Butler, E.; Huybers, P.

    2009-12-01

    Projections of future climate show a warming world and heterogeneous changes in precipitation. Generally, warming temperatures indicate a decrease in crop yields where they are currently grown. However, warmer climate will also open up new areas at high latitudes for crop production. Thus, there is a question whether the warmer climate with decreased yields but potentially increased growing area will produce a net increase or decrease of overall food crop production. We explore this question through a multiple linear regression model linking temperature and precipitation to crop yield. Prior studies have emphasised temporal regression which indicate uniformly decreased yields, but neglect the potentially increased area opened up for crop production. This study provides a compliment to the prior work by exploring this spatial variation. We explore this subject with a multiple linear regression model from temperature, precipitation and crop yield data over the United States. The United States was chosen as the training region for the model because there are good crop data available over the same time frame as climate data and presumably the yield from crops in the United States is optimized with respect to potential yield. We study corn, soybeans, sorghum, hard red winter wheat and soft red winter wheat using monthly averages of temperature and precipitation from NCEP reanalysis and yearly yield data from the National Agriculture Statistics Service for 1948-2008. The use of monthly averaged temperature and precipitation, which neglect extreme events that can have a significant impact on crops limits this study as does the exclusive use of United States agricultural data. The GFDL 2.1 model under a 720ppm CO2 scenario provides temperature and precipitation fields for 2040-2100 which are used to explore how the spatial regions available for crop production will change under these new conditions.

  14. A National Road Map to a Climate Literate Society: Advancing Climate Literacy by Coordinating Federal Climate Change Educational Programs (Invited)

    NASA Astrophysics Data System (ADS)

    Niepold, F.; Karsten, J. L.

    2009-12-01

    Over the 21st century, climate scientists expect Earth's temperature to continue increasing, very likely more than it did during the 20th century. Two anticipated results are rising global sea level and increasing frequency and intensity of heat waves, droughts, and floods. [IPCC 2007, USGCRP 2009] These changes will affect almost every aspect of human society, including economic prosperity, human and environmental health, and national security. Climate change will bring economic and environmental challenges as well as opportunities, and citizens who have an understanding of climate science will be better prepared to respond to both. Society needs citizens who understand the climate system and know how to apply that knowledge in their careers and in their engagement as active members of their communities. Climate change will continue to be a significant element of public discourse. Understanding the essential principles of climate science will enable all people to assess news stories and contribute to their everyday conversations as informed citizens. Key to our nations response to climate change will be a Climate Literate society that understands their influence on climate and climate’s influence on them and society. In order to ensure the nation increases its literacy, the Climate Literacy: Essential Principles of Climate Science document has been endorsed by the 13 Federal agencies that make up the US Global Change Research Program (http://globalchange.gov/resources/educators/climate-literacy) and twenty-four other science and educational institutions. This session will explore the coordinated efforts by the federal agencies and partner organizations to ensure a climate literate society. "Climate Literacy: The Essential Principles of Climate Sciences: A Guide for Individuals and Communities" produced by the U.S. Global Change Research Program in March 2009

  15. Climate change, food, water and population health in China

    PubMed Central

    Berry, Helen L; Ebi, Kristie; Bambrick, Hilary; Hu, Wenbiao; Green, Donna; Hanna, Elizabeth; Wang, Zhiqiang; Butler, Colin D

    2016-01-01

    Abstract Anthropogenic climate change appears to be increasing the frequency, duration and intensity of extreme weather events. Such events have already had substantial impacts on socioeconomic development and population health. Climate change’s most profound impacts are likely to be on food, health systems and water. This paper explores how climate change will affect food, human health and water in China. Projections indicate that the overall effects of climate change, land conversion and reduced water availability could reduce Chinese food production substantially – although uncertainty is inevitable in such projections. Climate change will probably have substantial impacts on water resources – e.g. changes in rainfall patterns and increases in the frequencies of droughts and floods in some areas of China. Such impacts would undoubtedly threaten population health and well-being in many communities. In the short-term, population health in China is likely to be adversely affected by increases in air temperatures and pollution. In the medium to long term, however, the indirect impacts of climate change – e.g. changes in the availability of food, shelter and water, decreased mental health and well-being and changes in the distribution and seasonality of infectious diseases – are likely to grow in importance. The potentially catastrophic consequences of climate change can only be avoided if all countries work together towards a substantial reduction in the emission of so-called greenhouse gases and a substantial increase in the global population’s resilience to the risks of climate variability and change. PMID:27843166

  16. Dialogic Action in Climate Change Discussions: An International Study of High School Students in China, New Zealand, Norway and the United States

    ERIC Educational Resources Information Center

    Arya, Diana J.; Parker, Jessica K.

    2015-01-01

    Global efforts to prepare young developing minds for solving current and future challenges of climate change have advocated interdisciplinary, issues-based instructional approaches in order to transform traditional models of science education as delivering conceptual facts (UNESCO, 2014). This study is an exploration of the online interactions in…

  17. From dominance to detente in the face of climate change: Agreements beyond boundaries with indigenous nations

    Treesearch

    Linda Moon Stumpff

    2011-01-01

    This paper explores frameworks for expanding agreements between indigenous peoples, governments, and partner organizations to conserve and restore wild and protected areas impacted by climate change. From the Indigenous Peoples Treaty Project to the expansion of Federal nation to nation consultation with Tribes in the United States, new initiatives create models for...

  18. Exploring the role of fire, succession, climate, and weather on landscape dynamics using comparative modeling

    Treesearch

    Robert E. Keane; Geoffrey J. Cary; Mike D. Flannigan; Russell A. Parsons; Ian D. Davies; Karen J. King; Chao Li; Ross A. Bradstock; Malcolm Gill

    2013-01-01

    An assessment of the relative importance of vegetation change and disturbance as agents of landscape change under current and future climates would (1) provide insight into the controls of landscape dynamics, (2) help inform the design and development of coarse scale spatially explicit ecosystem models such as Dynamic Global Vegetation Models (DGVMs), and (3) guide...

  19. UV radiation in the melanoma capital of the world: What makes New Zealand so different?

    NASA Astrophysics Data System (ADS)

    McKenzie, Richard

    2017-02-01

    To better understand New Zealand's high rates of skin cancer, the UV climate of New Zealand is discussed in relation to other locations, and the factors contributing to geographical differences in UV are explored. Historical and projected future changes in UV are discussed in the context of what would have happened without implementation of the Montreal Protocol to protect the ozone layer. The effects of interactions due to future climate change are also discussed. Finally, the effects of our unique UV climate on human health are discussed briefly; along with changing public advice.

  20. Despite available habitat at range edge, yellow-cedar migration is punctuated with a past pulse tied to colder conditions

    Treesearch

    John Krapek; Paul E. Hennon; David V. D' Amore; Brian Buma

    2017-01-01

    Aim: To explore the recent (past ~1,000 year) migration history of yellow-cedar (Callitropsis nootkatensis), a climate-threatened tree, which appears to lag behind its potential climatic niche at a leading northern range edge, and infer its continued migration potential under changing climate. Location:...

  1. Chapter 15. Climate Change and Paleoecology: New Contexts for Restoration Ecology

    Treesearch

    Constance I. Millar; Linda B. Brubaker

    2006-01-01

    In this chapter, we explore linkages between two fields that have been little acquainted yet have much to say to one another: restoration ecology and climatology. The limited discourse between these fields is surprising. In the last two decades there have been significant theoretical breakthroughs and a proliferation of research on historical climate and climate-...

  2. Lichen communities as climate indicators in the U.S. Pacific States.

    Treesearch

    Robert J. Smith; Sarah Jovan; Bruce McCune

    2017-01-01

    Epiphytic lichens are bioindicators of climate, air quality, and other forest conditions and may reveal how forests will respond to global changes in the U.S. Pacific States of Alaska, Washington, Oregon, and California. We explored climate indication with lichen communities surveyed by using both the USDA Forest Service Forest Inventory and Analysis (FIA) and Alaska...

  3. The Pacific Northwest's Climate Impacts Group: Climate Science in the Public Interest

    NASA Astrophysics Data System (ADS)

    Mantua, N.; Snover, A.

    2006-12-01

    Since its inception in 1995, the University of Washington's Climate Impacts Group (CIG) (funded under NOAA's Regional Integrated Science and Assessments (RISA) Program) has become the leader in exploring the impacts of climate variability and climate change on natural and human systems in the U.S. Pacific Northwest (PNW), specifically climate impacts on water, forest, fish and coastal resource systems. The CIG's research provides PNW planners, decision makers, resource managers, local media, and the general public with valuable knowledge of ways in which the region's key natural resources are vulnerable to changes in climate, and how this vulnerability can be reduced. The CIG engages in climate science in the public interest, conducting original research on the causes and consequences of climate variability and change for the PNW and developing forecasts and decision support tools to support the use of this information in federal, state, local, tribal, and private sector resource management decisions. The CIG's focus on the intersection of climate science and public policy has placed the CIG nationally at the forefront of regional climate impacts assessment and integrated analysis.

  4. Reducing School Violence: School-Based Curricular Programs and School Climate

    ERIC Educational Resources Information Center

    Greene, Michael B.

    2008-01-01

    This article examines two different, but interrelated approaches to reduce school violence: school-based curricular programs and efforts to change school climate. The state of the research for each is reviewed and the relationship between them is explored.

  5. Simulation of Land-Cover Change in Taipei Metropolitan Area under Climate Change Impact

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Ching; Huang, Thomas C. C.

    2014-02-01

    Climate change causes environment change and shows up on land covers. Through observing the change of land use, researchers can find out the trend and potential mechanism of the land cover change. Effective adaptation policies can affect pattern of land cover change and may decrease the risks of climate change impacts. By simulating land use dynamics with scenario settings, this paper attempts to explore the relationship between climate change and land-cover change through efficient adaptation polices. It involves spatial statistical model in estimating possibility of land-cover change, cellular automata model in modeling land-cover dynamics, and scenario analysis in response to adaptation polices. The results show that, without any control, the critical eco-areas, such as estuarine areas, will be destroyed and people may move to the vulnerable and important economic development areas. In the other hand, under the limited development condition for adaptation, people migration to peri-urban and critical eco-areas may be deterred.

  6. A new scenario framework for climate change research: The concept of Shared Climate Policy Assumptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriegler, Elmar; Edmonds, James A.; Hallegatte, Stephane

    2014-04-01

    The paper presents the concept of shared climate policy assumptions as an important element of the new scenario framework. Shared climate policy assumptions capture key climate policy dimensions such as the type and scale of mitigation and adaptation measures. They are not specified in the socio-economic reference pathways, and therefore introduce an important third dimension to the scenario matrix architecture. Climate policy assumptions will have to be made in any climate policy scenario, and can have a significant impact on the scenario description. We conclude that a meaningful set of shared climate policy assumptions is useful for grouping individual climatemore » policy analyses and facilitating their comparison. Shared climate policy assumptions should be designed to be policy relevant, and as a set to be broad enough to allow a comprehensive exploration of the climate change scenario space.« less

  7. Exploring the response of net primary productivity variations to urban expansion and climate change: a scenario analysis for Guangdong Province in China.

    PubMed

    Pei, Fengsong; Li, Xia; Liu, Xiaoping; Lao, Chunhua; Xia, Gengrui

    2015-03-01

    Urban land development alters landscapes and carbon cycle, especially net primary productivity (NPP). Despite projections that NPP is often reduced by urbanization, little is known about NPP changes under future urban expansion and climate change conditions. In this paper, terrestrial NPP was calculated by using Biome-BGC model. However, this model does not explicitly address urban lands. Hence, we proposed a method of NPP-fraction to detect future urban NPP, assuming that the ratio of real NPP to potential NPP for urban cells remains constant for decades. Furthermore, NPP dynamics were explored by integrating the Biome-BGC and the cellular automata (CA), a widely used method for modeling urban growth. Consequently, urban expansion, climate change and their associated effects on the NPP were analyzed for the period of 2010-2039 using Guangdong Province in China as a case study. In addition, four scenarios were designed to reflect future conditions, namely baseline, climate change, urban expansion and comprehensive scenarios. Our analyses indicate that vegetation NPP in urban cells may increase (17.63 gC m(-2) year(-1)-23.35 gC m(-2) year(-1)) in the climate change scenario. However, future urban expansion may cause some NPP losses of 241.61 gC m(-2) year(-1), decupling the NPP increase of the climate change factor. Taking into account both climate change and urban expansion, vegetation NPP in urban area may decrease, minimally at a rate of 228.54 gC m(-2) year(-1) to 231.74 gC m(-2) year(-1). Nevertheless, they may account for an overall NPP increase of 0.78 TgC year(-1) to 1.28 TgC year(-1) in the whole province. All these show that the provincial NPP increase from climate change may offset the NPP decrease from urban expansion. Despite these results, it is of great significance to regulate reasonable expansion of urban lands to maintain carbon balance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Engaging Key Stakeholders in Climate Change: A Community-Based Project for Youth-Led Participatory Climate Action

    NASA Astrophysics Data System (ADS)

    Trott, Carlie D.

    Few studies have examined how youth think about, and take action on climate change and far fewer have sought to facilitate their engagement using participatory methods. This dissertation evaluated the impacts of Science, Camera, Action! (SCA), a novel after-school program that combined climate change education with participatory action through photovoice. The specific aims of this study were to: (1) Evaluate the impacts of SCA on youth participants' climate change knowledge, attitudes, and behaviors; (2) Examine how SCA participation served to empower youth agency; and (3) Explore SCA's influence on youths' science engagement. Participants were 55 youths (ages 10 to 12) across three Boys and Girls Club sites in Northern Colorado. SCA's Science component used interactive activities to demonstrate the interrelationships between Earth's changing climate, ecosystems, and sustainable actions within communities. Photovoice, SCA's Camera component, was used to explore youths' climate change perspectives and to identify opportunities for their active engagement. Finally, SCA's Action component aimed to cultivate youth potential as agents of change in their families and communities through the development and implementation of youth-led action projects. Action projects included local policy advocacy, a tree-planting campaign, a photo gallery opening, development of a website, and the establishment of a Boys and Girls Club community garden. To evaluate SCA impacts, a combination of survey and focus group methods were used. Following the program, youth demonstrated increased knowledge of the scientific and social dimensions of the causes and consequences of climate change, as well as its solutions through human action. Though participants expressed a mix of positive (e.g., hope) and negative (e.g., sadness) emotions about climate change, they left the program with an increased sense of respect for nature, an enhanced sense of environmental responsibility, and a greater sense of urgency towards the need for climate change action. Further, participants reported increased engagement in personal pro-environmental behaviors, an enhanced sense of agency in the context of climate change, and provided strong evidence of their role as agents of change in family and community contexts. Through SCA, participants gained a deeper appreciation for science (e.g., in school, careers, and society) and reported increased interest, participation, confidence, and performance in school science. Findings contribute to the vast and growing psychology literature on climate change perceptions and action, and from the understudied perspective of youth. Through a combination of innovative methods and interactive projects, the youth in this study gained a number of psychosocial and educational benefits, while tangibly contributing to the sustainable transformation of their families and communities. Findings of this dissertation have implications for educational programs, youth organizing, and interventions aimed to strengthen youths' active engagement with critical social and scientific issues that impact their lives.

  9. Impacts Of Global/Regional Climate Changes On Environment And Health: Need For Integrated Research And Education Collaboration (Invited)

    NASA Astrophysics Data System (ADS)

    Tuluri, F.

    2013-12-01

    The realization of long term changes in climate in research community has to go beyond the comfort zone through climate literacy in academics. Higher education on climate change is the platform to bring together the otherwise disconnected factors such as effective discovery, decision making, innovation, interdisciplinary collaboration, Climate change is a complex process that may be due to natural internal processes within the climate system, or to variations in natural or anthropogenic (human-driven) external forcing. Global climate change indicates a change in either the mean state of the climate or in its variability, persisting for several decades or longer. This includes changes in average weather conditions on Earth, such as a change in average global temperature, as well as changes in how frequently regions experience heat waves, droughts, floods, storms, and other extreme weather. It is important to examine the effects of climate variations on human health and disorders in order to take preventive measures. Similarly, the influence of climate changes on animal management practices, pests and pest management systems, and high value crops such as citrus and vegetables is also equally important for investigation. New genetic agricultural varieties must be explored, and pilot studies should examine biotechnology transfer. Recent climate model improvements have resulted in an enhanced ability to simulate many aspects of climate variability and extremes. However, they are still characterized by systematic errors and limitations in accurately simulating more precisely regional climate conditions. The present situations warrant developing climate literacy on the synergistic impacts of environmental change, and improve development, testing and validation of integrated stress impacts through computer modeling. In the present study we present a detailed study of the current status on the impacts of global/regional climate changes on environment and health with a view to highlighting the need for integrated research and education collaboration at national and global level.

  10. Emergence, reductionism and landscape response to climate change

    NASA Astrophysics Data System (ADS)

    Harrison, Stephan; Mighall, Tim

    2010-05-01

    Predicting landscape response to external forcing is hampered by the non-linear, stochastic and contingent (ie dominated by historical accidents) forcings inherent in landscape evolution. Using examples from research carried out in southwest Ireland we suggest that non-linearity in landform evolution is likely to be a strong control making regional predictions of landscape response to climate change very difficult. While uncertainties in GCM projections have been widely explored in climate science much less attention has been directed by geomorphologists to the uncertainties in landform evolution under conditions of climate change and this problem may be viewed within the context of philosophical approaches to reductionsim and emergence. Understanding the present and future trajectory of landform change may also guide us to provide an enhanced appreciation of how landforms evolved in the past.

  11. Slow Response or No Response? Distinguishing Non-Climatic Range Limits from Demographic Inertia

    NASA Astrophysics Data System (ADS)

    Hillerislambers, J.; Anderegg, L. D. L.; Breckheimer, I.; Ford, K.; Kroiss, S.

    2016-12-01

    One of the greatest challenges ecologists face is forecasting how species distributions will respond to climate change. In general, species distributions have moved polewards and upslope with recent climate change (i.e. range shifts), supporting the assumption that range limits are climatically determined. However, studies also document a surprising number of species whose distributions have remained unchanged in the last 50-100 years, despite significant warming during that time period. This apparent lack of response to warming can arise for species whose range limits are determined by factors other than climate (e.g. species interactions) OR for long-lived, slow-growing, and/or dispersal-limited species whose range shifts are unable to keep pace with rapid climate change. Unfortunately, while these two possibilities are often difficult to distinguish, they have very different implications for the long-term viability of the species in question. Here, we use extensive demographic data for long-lived and slow-growing conifers collected across a large climatic gradient at Mount Rainier (WA, USA) to explore A) evidence for climatically determined range limits and B) the rate at which altitudinal distributions could shift in response to climate change in the region. In doing so, we highlight some of the complications we face in identifying whether species will be sensitive or resilient to climate change.

  12. Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China

    PubMed Central

    Zhang, Ling; Nan, Zhuotong; Xu, Yi; Li, Shuo

    2016-01-01

    Land use change and climate variability are two key factors impacting watershed hydrology, which is strongly related to the availability of water resources and the sustainability of local ecosystems. This study assessed separate and combined hydrological impacts of land use change and climate variability in the headwater region of a typical arid inland river basin, known as the Heihe River Basin, northwest China, in the recent past (1995–2014) and near future (2015–2024), by combining two land use models (i.e., Markov chain model and Dyna-CLUE) with a hydrological model (i.e., SWAT). The potential impacts in the near future were explored using projected land use patterns and hypothetical climate scenarios established on the basis of analyzing long-term climatic observations. Land use changes in the recent past are dominated by the expansion of grassland and a decrease in farmland; meanwhile the climate develops with a wetting and warming trend. Land use changes in this period induce slight reductions in surface runoff, groundwater discharge and streamflow whereas climate changes produce pronounced increases in them. The joint hydrological impacts are similar to those solely induced by climate changes. Spatially, both the effects of land use change and climate variability vary with the sub-basin. The influences of land use changes are more identifiable in some sub-basins, compared with the basin-wide impacts. In the near future, climate changes tend to affect the hydrological regimes much more prominently than land use changes, leading to significant increases in all hydrological components. Nevertheless, the role of land use change should not be overlooked, especially if the climate becomes drier in the future, as in this case it may magnify the hydrological responses. PMID:27348224

  13. Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China.

    PubMed

    Zhang, Ling; Nan, Zhuotong; Xu, Yi; Li, Shuo

    2016-01-01

    Land use change and climate variability are two key factors impacting watershed hydrology, which is strongly related to the availability of water resources and the sustainability of local ecosystems. This study assessed separate and combined hydrological impacts of land use change and climate variability in the headwater region of a typical arid inland river basin, known as the Heihe River Basin, northwest China, in the recent past (1995-2014) and near future (2015-2024), by combining two land use models (i.e., Markov chain model and Dyna-CLUE) with a hydrological model (i.e., SWAT). The potential impacts in the near future were explored using projected land use patterns and hypothetical climate scenarios established on the basis of analyzing long-term climatic observations. Land use changes in the recent past are dominated by the expansion of grassland and a decrease in farmland; meanwhile the climate develops with a wetting and warming trend. Land use changes in this period induce slight reductions in surface runoff, groundwater discharge and streamflow whereas climate changes produce pronounced increases in them. The joint hydrological impacts are similar to those solely induced by climate changes. Spatially, both the effects of land use change and climate variability vary with the sub-basin. The influences of land use changes are more identifiable in some sub-basins, compared with the basin-wide impacts. In the near future, climate changes tend to affect the hydrological regimes much more prominently than land use changes, leading to significant increases in all hydrological components. Nevertheless, the role of land use change should not be overlooked, especially if the climate becomes drier in the future, as in this case it may magnify the hydrological responses.

  14. Crop-climate relationships of cereals in Greece and the impacts of recent climate trends

    NASA Astrophysics Data System (ADS)

    Mavromatis, Theodoros

    2015-05-01

    Notwithstanding technological developments, agricultural production is still affected by uncontrollable factors, such weather and climate. Within this context, the present study aims at exploring the relative influence of growing season climate on the yields of major cereals (hard and soft wheat, maize, and barley) on a regional scale in Greece. To this end, crop-climate relationships and the impacts of climate trends over the period 1978-2005 were explored using linear regression and change point analysis (CPA). Climate data used include maximum (Tx) and minimum temperature (Tn), diurnal temperature range (Tr), precipitation (Prec), and solar radiation (Rad). Temperature effects were the most substantial. Yields reduced by 1.8-7.1 %/°C with increasing Tx and by 1.4-6.1 %/°C with decreasing Tr. The warming trends of Tn caused bilateral yield effects (from -3.7 to 8.4 %/°C). The fewer significantly increasing Rad and decreasing Prec anomalies were associated with larger yield decreases (within the range of 2.2 % MJ/m2/day (for maize) to 4.9 % MJ/m2/day (for hard wheat)) and smaller yield increases (from 0.04 to 1.4 %/mm per decade), respectively. Wheat and barley—the most vulnerable cereals—were most affected by the trends of extreme temperatures and least by Tr. On the contrary, solar radiation has proven to be the least affecting climate variable on all cereals. Despite the similarity in the direction of crop responses with both analyses, yield changes were much more substantial in the case of CPA analysis. In conclusion, regional climate change has affected Greek cereal productivity, in a few, but important for cereal production, regions. The results of this study are expected to be valuable in anticipating the effects of weather/climate on other warm regions worldwide, where the upper temperature limit for some cereals and further changes in climate may push them past suitability for their cultivation.

  15. The predictive state: Science, territory and the future of the Indian climate.

    PubMed

    Mahony, Martin

    2014-02-01

    Acts of scientific calculation have long been considered central to the formation of the modern nation state, yet the transnational spaces of knowledge generation and political action associated with climate change seem to challenge territorial modes of political order. This article explores the changing geographies of climate prediction through a study of the ways in which climate change is rendered knowable at the national scale in India. The recent controversy surrounding an erroneous prediction of melting Himalayan glaciers by the Intergovernmental Panel on Climate Change provides a window onto the complex and, at times, antagonistic relationship between the Panel and Indian political and scientific communities. The Indian reaction to the error, made public in 2009, drew upon a national history of contestation around climate change science and corresponded with the establishment of a scientific assessment network, the Indian Network for Climate Change Assessment, which has given the state a new platform on which to bring together knowledge about the future climate. I argue that the Indian Network for Climate Change Assessment is indicative of the growing use of regional climate models within longer traditions of national territorial knowledge-making, allowing a rescaling of climate change according to local norms and practices of linking scientific knowledge to political action. I illustrate the complex co-production of the epistemic and the normative in climate politics, but also seek to show how co-productionist understandings of science and politics can function as strategic resources in the ongoing negotiation of social order. In this case, scientific rationalities and modes of environmental governance contribute to the contested epistemic construction of territory and the evolving spatiality of the modern nation state under a changing climate.

  16. The resilience of postglacial hunter-gatherers to abrupt climate change.

    PubMed

    Blockley, Simon; Candy, Ian; Matthews, Ian; Langdon, Pete; Langdon, Cath; Palmer, Adrian; Lincoln, Paul; Abrook, Ashley; Taylor, Barry; Conneller, Chantal; Bayliss, Alex; MacLeod, Alison; Deeprose, Laura; Darvill, Chris; Kearney, Rebecca; Beavan, Nancy; Staff, Richard; Bamforth, Michael; Taylor, Maisie; Milner, Nicky

    2018-05-01

    Understanding the resilience of early societies to climate change is an essential part of exploring the environmental sensitivity of human populations. There is significant interest in the role of abrupt climate events as a driver of early Holocene human activity, but there are very few well-dated records directly compared with local climate archives. Here, we present evidence from the internationally important Mesolithic site of Star Carr showing occupation during the early Holocene, which is directly compared with a high-resolution palaeoclimate record from neighbouring lake beds. We show that-once established-there was intensive human activity at the site for several hundred years when the community was subject to multiple, severe, abrupt climate events that impacted air temperatures, the landscape and the ecosystem of the region. However, these results show that occupation and activity at the site persisted regardless of the environmental stresses experienced by this society. The Star Carr population displayed a high level of resilience to climate change, suggesting that postglacial populations were not necessarily held hostage to the flickering switch of climate change. Instead, we show that local, intrinsic changes in the wetland environment were more significant in determining human activity than the large-scale abrupt early Holocene climate events.

  17. Impact of Rice Paddy Areas Decrease on Local Climate over Taiwan

    NASA Astrophysics Data System (ADS)

    Lo, M. H.; Wen, W. H.; Chen, C. C.

    2014-12-01

    Agricultural irrigation practice is one of the important anthropogenic processes in the land surface modeling. Irrigation can decrease local surface temperature with alternating surface energy partitioning. Rice paddy is the major food crop in Asian monsoon region and rice is grown under flooded conditions during the growing season; hence, the rice paddy can be considered as an open water body, which has more impacts on the surface energy budget than other cropland does. In this study, we explore how the rice paddy area changes affect Taiwan's regional climate from both observational data and numerical modeling exercise. The Weather Research and Forecasting (WRF) model is utilized to explore impacts of rice paddy area changes on the regional climate, and energy and water budget changes. In addition, temperature datasets from six automatic weather stations in the northern Taiwan and two stations in the southern Taiwan are analyzed in this study to explore how the Daily Temperature Range (DTR) changes with the decreased rice paddy areas. Previous studies show that due to the urban heat island effect, aerosol direct and indirect effects, and global warming, the DTR has decreased in the past 4 decades observed from most of the weather stations around Taiwan. However, the declined rice paddy area may increase the DTR with higher Bowen ratio during the daytime. Preliminary results show that DTR is decreased in weather stations near the urban area, but increased in weather stations near fallow areas in the past 20 years. It shows that different land use changes may have opposite impacts on local and regional climate.

  18. Accounting for health in climate change policies: a case study of Fiji

    PubMed Central

    Morrow, Georgina; Bowen, Kathryn

    2014-01-01

    Background Climate change is expected to affect the health of most populations in the coming decades, having the greatest impact on the poorest and most disadvantaged people in the world. The Pacific islands, including Fiji, are particularly vulnerable to the effects of climate change. Objective The three major health impacts of climate change in Fiji explored in this study were dengue fever, diarrhoeal disease, and malnutrition, as they each pose a significant threat to human health. The aim of this study was to investigate to what extent the Fiji National Climate Change Policy, and a selection of relevant sectoral policies, account for these human health effects of climate change. Design The study employed a three-pronged policy analysis to evaluate: 1) the content of the Fijian National Climate Change Policy and to what extent health was incorporated within this; 2) the context within which the policy was developed; 3) the relevant processes; and 4) the actors involved. A selection of relevant sectoral policies were also analysed to assess the extent to which these included climate change and health considerations. Results The policy analysis showed that these three health impacts of climate change were only considered to a minor extent, and often indirectly, in both the Fiji National Climate Change Policy and the corresponding National Climate Change Adaptation Strategy, as well as the Public Health Act. Furthermore, supporting documents in relevant sectors including water and agriculture made no mention of climate change and health impacts. Conclusions The projected health impacts of climate change should be considered as part of reviewing the Fiji National Climate Change Policy and National Climate Change Adaptation Strategy, and the Public Health Act. In the interest of public health, this should include strategies for combating dengue fever, malnutrition, and water-borne disease. Related sectoral policies in water and agriculture should also be revised to consider climate change and its impact on human health. Approaches to include health aspects of climate change within sectoral and climate change specific policies should be encouraged, via a number of mechanisms, such as the Health in All Policies approach. Future research could support the Fiji health sector in developing climate change and health programmes. PMID:24836442

  19. Issues in subsurface exploration of ice sheets

    NASA Technical Reports Server (NTRS)

    French, L.; Carsey, F.; Zimmerman, W.

    2000-01-01

    Exploration of the deep subsurface ice sheets of Earth, Mars, Europa, and Titan has become a major consideration in addressing scientific objectives in climate change, extremophile biology, exobiology,chemical weathering, planetary evolution and ice dynamics.

  20. Informal Education and Climate Change: An Example From The Miami Science Museum

    NASA Astrophysics Data System (ADS)

    Delaughter, J.

    2007-12-01

    The Miami Science Museum recently took part in the National Conversation on Climate Action, held on October 4, 2007. This nationwide event encouraged members of the general public to explore local climate policy options. It provided an opportunity for citizens to discuss the issues and science of climate change with experts and policy makers, as well as neighbors and friends. During the day, the Miami Science Museum hosted a variety of events with something for everyone. Local school groups played DECIDE games and competed to find the most "treasure" in trash. Members and visitors were encouraged to leave their mark by posting comments and ideas about climate change. A "Gates of Change" exhibit provided dramatic visual indication of the effects of climate change and sea level rise. And a special "Meet the scientists" forum allowed the general public to discuss the facts and fictions of climate change with experts from Miami University's Rosenstiel School of Marine and Atmospheric Science. This activity was part of the Association of Science and Technology Centers' (ASTC) International action on Global Warming (IGLO) program. ASTC is the largest association of public science venues, and has 540 member institutions in 40 countries.

  1. The Climate Change Consortium of Wales (C3W)

    NASA Astrophysics Data System (ADS)

    Hendry, K. R.; Reis, J.; Hall, I. R.

    2011-12-01

    In response to the complexity and multidisciplinary nature of climate change research, the Climate Change Consortium of Wales (C3W) was formed in 2009 by the Welsh universities of Aberystwyth, Bangor, Cardiff and Swansea. Initially funded by Welsh Government, through the Higher Education Funding Council for Wales, the Countryside Council for Wales and the universities, C3W aims to bring together climate change researchers from a wide range of disciplines to explore scientific and sociological drivers, impacts and implications at local, national and international scale. The specific aims are to i) improve our fundamental understanding of the causes, nature, timing and consequences of climate change on Planet Earth's environment and on humanity, and ii) to reconfigure climate research in Wales as a recognisable centre of excellence on the world stage. In addition to improving the infrastructure for climate change research, we aim to improve communication, networking, collaborative research, and multidisciplinary data assimilation within and between the Welsh universities, and other UK and international institutions. Furthermore, C3W aims to apply its research by actively contributing towards national policy development, business development and formal and informal education activities within and beyond Wales.

  2. Contributions to Future Stratospheric Climate Change: An Idealized Chemistry-Climate Model Sensitivity Study

    NASA Technical Reports Server (NTRS)

    Hurwitz, M. M.; Braesicke, P.; Pyle, J. A.

    2010-01-01

    Within the framework of an idealized model sensitivity study, three of the main contributors to future stratospheric climate change are evaluated: increases in greenhouse gas concentrations, ozone recovery, and changing sea surface temperatures (SSTs). These three contributors are explored in combination and separately, to test the interactions between ozone and climate; the linearity of their contributions to stratospheric climate change is also assessed. In a simplified chemistry-climate model, stratospheric global mean temperature is most sensitive to CO2 doubling, followed by ozone depletion, then by increased SSTs. At polar latitudes, the Northern Hemisphere (NH) stratosphere is more sensitive to changes in CO2, SSTs and O3 than is the Southern Hemisphere (SH); the opposing responses to ozone depletion under low or high background CO2 concentrations, as seen with present-day SSTs, are much weaker and are not statistically significant under enhanced SSTs. Consistent with previous studies, the strength of the Brewer-Dobson circulation is found to increase in an idealized future climate; SSTs contribute most to this increase in the upper troposphere/lower stratosphere (UT/LS) region, while CO2 and ozone changes contribute most in the stratosphere and mesosphere.

  3. Crop yield response to climate change varies with crop spatial distribution pattern

    DOE PAGES

    Leng, Guoyong; Huang, Maoyi

    2017-05-03

    The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less

  4. Crop yield response to climate change varies with crop spatial distribution pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong; Huang, Maoyi

    The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less

  5. Scientific Uncertainties in Climate Change Detection and Attribution Studies

    NASA Astrophysics Data System (ADS)

    Santer, B. D.

    2017-12-01

    It has been claimed that the treatment and discussion of key uncertainties in climate science is "confined to hushed sidebar conversations at scientific conferences". This claim is demonstrably incorrect. Climate change detection and attribution studies routinely consider key uncertainties in observational climate data, as well as uncertainties in model-based estimates of natural variability and the "fingerprints" in response to different external forcings. The goal is to determine whether such uncertainties preclude robust identification of a human-caused climate change fingerprint. It is also routine to investigate the impact of applying different fingerprint identification strategies, and to assess how detection and attribution results are impacted by differences in the ability of current models to capture important aspects of present-day climate. The exploration of the uncertainties mentioned above will be illustrated using examples from detection and attribution studies with atmospheric temperature and moisture.

  6. Amplification or suppression: Social networks and the climate change-migration association in rural Mexico.

    PubMed

    Nawrotzki, Raphael J; Riosmena, Fernando; Hunter, Lori M; Runfola, Daniel M

    2015-11-01

    Increasing rates of climate migration may be of economic and national concern to sending and destination countries. It has been argued that social networks - the ties connecting an origin and destination - may operate as "migration corridors" with the potential to strongly facilitate climate change-related migration. This study investigates whether social networks at the household and community levels amplify or suppress the impact of climate change on international migration from rural Mexico. A novel set of 15 climate change indices was generated based on daily temperature and precipitation data for 214 weather stations across Mexico. Employing geostatistical interpolation techniques, the climate change values were linked to 68 rural municipalities for which sociodemographic data and detailed migration histories were available from the Mexican Migration Project. Multi-level discrete-time event-history models were used to investigate the effect of climate change on international migration between 1986 and 1999. At the household level, the effect of social networks was approximated by comparing the first to the last move, assuming that through the first move a household establishes internal social capital. At the community level, the impact of social capital was explored through interactions with a measure of the proportion of adults with migration experience. The results show that rather than amplifying , social capital may suppress the sensitivity of migration to climate triggers, suggesting that social networks could facilitate climate change adaptation in place.

  7. Dangerous news: media decision making about climate change risk.

    PubMed

    Smith, Joe

    2005-12-01

    This article explores the role of broadcast news media decision makers in shaping public understanding and debate of climate change risks. It locates the media within a "tangled web" of communication and debate between sources, media, and publics. The article draws on new qualitative research in the British context. The main body of it focuses on media source strategies, on climate change storytelling in news, and the "myth of detachment" sustained by many news decision makers. The empirical evidence, gathered between 1997 and 2004, is derived primarily from recordings and notes drawn from a series of seminars that has brought together equal numbers of BBC news and television decision makers and environment/development specialists. The seminars have created a rare space for extended dialogue between media and specialist perspectives on the communication of complex climate change science and policy. While the article acknowledges the distinctive nature of the BBC as a public sector broadcaster, the evidence confirms and extends current understanding of the career of climate change within the media more broadly. The working group discussions have explored issues arising out of how stories are sourced and, in the context of competitive and time-pressured newsrooms, shaped and presented in short news pieces. Particularly significant is the disjuncture between ways of talking about uncertainty within science and policy discourse and media constructions of objectivity, truth, and balance. The article concludes with a summary of developments in media culture, technology, and practice that are creating opportunities for enhanced public understanding and debate of climate change risks. It also indicates the need for science and policy communities to be more active critics and sources of news.

  8. Burden Sharing with Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Tavoni, M.; van Vuuren, D.; De Cian, E.; Marangoni, G.; Hof, A.

    2014-12-01

    Efficiency and equity have been at the center of the climate change policy making since the very first international environmental agreements on climate change, though over time how to implement these principles has taken different forms. Studies based on Integrated Assessment Models have also shown that the economic effort of achieving a 2 degree target in a cost-effective way would differ widely across regions (Tavoni et al. 2013) because of diverse economic and energy structure, baseline emissions, energy and carbon intensity. Policy instruments, such as a fully-fledged, global emission trading schemes can be used to pursuing efficiency and equity at the same time but the literature has analyzed the compensations required to redistribute only mitigation costs. However, most of these studies have neglected the potential impacts of climate change. In this paper we use two integrated assessment models -FAIR and WITCH- to explore the 2°C policy space when accounting for climate change impacts. Impacts are represented via two different reduced forms equations, which despite their simplicity allows us exploring the key sensitivities- Our results show that in a 2 degree stabilization scenarios residual damages remain significant (see Figure 1) and that if you would like to compensate those as part of an equal effort scheme - this would lead to a different allocation than focusing on a mitigation based perspective only. The residual damages and adaptation costs are not equally distributed - and while we do not cover the full uncertainty space - with 2 different models and 2 sets of damage curves we are still able to show quite similar results in terms of vulnerable regions and the relative position of the different scenarios. Therefore, accounting for the residual damages and the associated adaptation costs on top of the mitigation burden increases and redistributes the full burden of total climate change.

  9. Flood events across the North Atlantic region - past development and future perspectives

    NASA Astrophysics Data System (ADS)

    Matti, Bettina; Dieppois, Bastien; Lawler, Damian; Dahlke, Helen E.; Lyon, Steve W.

    2016-04-01

    Flood events have a large impact on humans, both socially and economically. An increase in winter and spring flooding across much of northern Europe in recent years opened up the question of changing underlying hydro-climatic drivers of flood events. Predicting the manifestation of such changes is difficult due to the natural variability and fluctuations in northern hydrological systems caused by large-scale atmospheric circulations, especially under altered climate conditions. Improving knowledge on the complexity of these hydrological systems and their interactions with climate is essential to be able to determine drivers of flood events and to predict changes in these drivers under altered climate conditions. This is particularly true for the North Atlantic region where both physical catchment properties and large-scale atmospheric circulations have a profound influence on floods. This study explores changes in streamflow across North Atlantic region catchments. An emphasis is placed on high-flow events, namely the timing and magnitude of past flood events, and selected flood percentiles were tested for stationarity by applying a flood frequency analysis. The issue of non-stationarity of flood return periods is important when linking streamflow to large-scale atmospheric circulations. Natural fluctuations in these circulations are found to have a strong influence on the outcome causing natural variability in streamflow records. Long time series and a multi-temporal approach allows for determining drivers of floods and linking streamflow to large-scale atmospheric circulations. Exploring changes in selected hydrological signatures consistency was found across much of the North Atlantic region suggesting a shift in flow regime. The lack of an overall regional pattern suggests that how catchments respond to changes in climatic drivers is strongly influenced by their physical characteristics. A better understanding of hydrological response to climate drivers is essential for example for forecasting purposes.

  10. Climate Change and the Impact on Respiratory and Allergic Disease: 2018.

    PubMed

    Demain, Jeffrey G

    2018-03-24

    The purpose of this paper is to review allergic respiratory disease related to indoor and outdoor exposures and to examine the impact of known and projected changes in climate. The global burden of disease directly attributed to climate change is very difficult to measure and becomes more challenging when the capacity of humans to adapt to these changes is taken into consideration. Allergic respiratory disease, such as asthma, is quite heterogenous, though closely associated with environmental and consequently immunologic interaction. Where is the tipping point? Our climate has been measurably changing for the past 100 years. It may indeed be the most significant health threat of the twenty-first century, and consequently tackling climate change may be the greatest health opportunity. The impacts of climate change on human health are varied and coming more into focus. Direct effects, such as heatwaves, severe weather, drought, and flooding, are apparent and frequently in the news. Indirect or secondary effects, such as changes in ecosystems and the impact on health, are less obvious. It is these changes in ecosystems that may have the greatest impact on allergic and respiratory diseases. This review will explore some ways that climate change, current and predicted, influences respiratory disease. Discussion will focus on changing pollen patterns, damp buildings with increased mold exposure, air pollution, and heat stress.

  11. Smart climate ensemble exploring approaches: the example of climate impacts on air pollution in Europe.

    NASA Astrophysics Data System (ADS)

    Lemaire, Vincent; Colette, Augustin; Menut, Laurent

    2016-04-01

    Because of its sensitivity to weather patterns, climate change will have an impact on air pollution so that, in the future, a climate penalty could jeopardize the expected efficiency of air pollution mitigation measures. A common method to assess the impact of climate on air quality consists in implementing chemistry-transport models forced by climate projections. However, at present, such impact assessment lack multi-model ensemble approaches to address uncertainties because of the substantial computing cost. Therefore, as a preliminary step towards exploring large climate ensembles with air quality models, we developed an ensemble exploration technique in order to point out the climate models that should be investigated in priority. By using a training dataset from a deterministic projection of climate and air quality over Europe, we identified the main meteorological drivers of air quality for 8 regions in Europe and developed statistical models that could be used to estimate future air pollutant concentrations. Applying this statistical model to the whole EuroCordex ensemble of climate projection, we find a climate penalty for six subregions out of eight (Eastern Europe, France, Iberian Peninsula, Mid Europe and Northern Italy). On the contrary, a climate benefit for PM2.5 was identified for three regions (Eastern Europe, Mid Europe and Northern Italy). The uncertainty of this statistical model challenges limits however the confidence we can attribute to associated quantitative projections. This technique allows however selecting a subset of relevant regional climate model members that should be used in priority for future deterministic projections to propose an adequate coverage of uncertainties. We are thereby proposing a smart ensemble exploration strategy that can also be used for other impacts studies beyond air quality.

  12. Visualizing interconnections among climate risks

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Yokohata, T.; Nishina, K.; Takahashi, K.; Emori, S.; Kiguchi, M.; Iseri, Y.; Honda, Y.; Okada, M.; Masaki, Y.; Yamamoto, A.; Shigemitsu, M.; Yoshimori, M.; Sueyoshi, T.; Hanasaki, N.; Ito, A.; Sakurai, G.; Iizumi, T.; Nishimori, M.; Lim, W. H.; Miyazaki, C.; Kanae, S.; Oki, T.

    2015-12-01

    It is now widely recognized that climate change is affecting various sectors of the world. Climate change impact on one sector may spread out to other sectors including those seemingly remote, which we call "interconnections of climate risks". While a number of climate risks have been identified in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), there has been no attempt to explore their interconnections comprehensively. Here we present a first and most exhaustive visualization of climate risks drawn based on a systematic literature survey. Our risk network diagrams depict that changes in the climate system impact natural capitals (terrestrial water, crop, and agricultural land) as well as social infrastructures, influencing the socio-economic system and ultimately our access to food, water, and energy. Our findings suggest the importance of incorporating climate risk interconnections into impact and vulnerability assessments and call into question the widely used damage function approaches, which address a limited number of climate change impacts in isolation. Furthermore, the diagram is useful to educate decision makers, stakeholders, and general public about cascading risks that can be triggered by the climate change. Socio-economic activities today are becoming increasingly more inter-dependent because of the rapid technological progress, urbanization, and the globalization among others. Equally complex is the ecosystem that is susceptible to climate change, which comprises interwoven processes affecting one another. In the context of climate change, a number of climate risks have been identified and classified according to regions and sectors. These reports, however, did not fully address the inter-relations among risks because of the complexity inherent in this issue. Climate risks may ripple through sectors in the present inter-dependent world, posing a challenge ahead of us to maintain the resilience of the system. It is therefore imperative to improve our understanding on how climate change may induce a chain of impacts. Our study is a first step toward this goal by mapping out climate risks and their cause-effect relationships based on current literature.

  13. The past as prelude to the future for understanding 21st-Century climate effects on Rocky Mountain trout

    Treesearch

    Daniel J. Isaak; Clint C. Muhlfeld; Andrew S. Todd; Robert Al-Chokhachy; James Roberts; Jeffrey L. Kershner; Kurt D. Fausch; Steven W. Hostetler

    2012-01-01

    Bioclimatic models predict large reductions in native trout across the Rocky Mountains in the 21st century but lack details about how changes will occur. Through five case histories across the region, we explore how a changing climate has been affecting streams and the potential consequences for trout. Monitoring records show trends in temperature and hydrographs...

  14. Rethinking climate change adaptation and place through a situated pathways framework: A case study from the Big Hole Valley, USA

    Treesearch

    Daniel J. Murphy; Laurie Yung; Carina Wyborn; Daniel R. Williams

    2017-01-01

    This paper critically examines the temporal and spatial dynamics of adaptation in climate change science and explores how dynamic notions of 'place' elucidate novel ways of understanding community vulnerability and adaptation. Using data gathered from a narrative scenario-building process carried out among communities of the Big Hole Valley in Montana, the...

  15. Exploring Students' Epistemological Knowledge of Models and Modelling in Science: Results from a Teaching/Learning Experience on Climate Change

    ERIC Educational Resources Information Center

    Tasquier, Giulia; Levrini, Olivia; Dillon, Justin

    2016-01-01

    The scientific community has been debating climate change for over two decades. In the light of certain arguments put forward by the aforesaid community, the EU has recommended a set of innovative reforms to science teaching such as incorporating environmental issues into the scientific curriculum, thereby helping to make schools a place of civic…

  16. Hope and Climate Change: The Importance of Hope for Environmental Engagement among Young People

    ERIC Educational Resources Information Center

    Ojala, Maria

    2012-01-01

    Although many young people think climate change is an important societal issue, studies indicate that pessimism is quite common. Finding ways to instill hope could therefore be seen as vital. However, is hope positively related to engagement or is it only a sign of illusory optimism? The aim of the study was to explore if hope concerning climate…

  17. Overview of the Special Issue: A Multi-Model Framework to ...

    EPA Pesticide Factsheets

    The Climate Change Impacts and Risk Analysis (CIRA) project establishes a new multi-model framework to systematically assess the impacts, economic damages, and risks from climate change in the United States. The primary goal of this framework to estimate how climate change impacts and damages in the United States are avoided or reduced due to global greenhouse gas (GHG) emissions mitigation scenarios. Scenarios are designed to explore key uncertainties around the measurement of these changes. The modeling exercise presented in this Special Issue includes two integrated assessment models and 15 sectoral models encompassing six broad impacts sectors - water resources, electric power, infrastructure, human health, ecosystems, and forests. Three consistent emissions scenarios are used to analyze the benefits of global GHG mitigation targets: a reference and two policy scenarios, with total radiative forcing in 2100 of 10.0W/m2, 4.5W/m2, and 3.7W/m2. A range of climate sensitivities, climate models, natural variability measures, and structural uncertainties of sectoral models are examined to explore the implications of key uncertainties. This overview paper describes the motivations, goals, design, and academic contribution of the CIRA modeling exercise and briefly summarizes the subsequent papers in this Special Issue. A summary of results across impact sectors is provided showing that: GHG mitigation provides benefits to the United States that increase over

  18. The Fate of Amazonian Ecosystems over the Coming Century Arising from Changes in Climate, Atmospheric CO2 and Land-use

    NASA Astrophysics Data System (ADS)

    Moorcroft, P. R.; Zhang, K.; Castanho, A. D. D. A.; Galbraith, D.; Moghim, S.; Levine, N. M.; Bras, R. L.; Coe, M. T.; Costa, M. H.; Malhi, Y.; Longo, M.; Knox, R. G.; McKnight, S. L.; Wang, J.

    2014-12-01

    There is considerable interest and uncertainty regarding the expected fate of the Amazon over the coming century in face of the combined impacts of climate change, rising atmospheric CO2 levels, and on-going land transformation in the region. In this analysis, we explore the fate of Amazonian ecosystems under projected climate, CO2 and land-use change in the 21st century using three state-of-the-art terrestrial biosphere models (ED2, IBIS, and JULES) driven by three representative, bias-corrected GCM climate projections (PCM1, CCSM3, and HadCM3) under the SRES A2 scenario, coupled with two land-use change scenarios. We assess the relative roles of climate change, CO2 fertilization, land-use change, and fire in driving the projected changes in Amazonian biomass and forest extent. Our results indicate that the impacts of climate change depend strongly on the direction and severity of projected changes in precipitation regimes within the region: under the driest climate projection, climate change alone is predicted to reduce Amazonian forest cover by an average of 14%; however, the models predict that CO2 fertilization will enhance vegetation productivity and alleviate climate-induced increases in plant water stress, and as a result sustain high biomass forests, even under the driest climate scenario. Land-use change and changes in fire frequency are predicted cause additional aboveground live biomass loss and changes in forest extent. The relative impact of land-use and fire dynamics versus the impacts of climate and CO2 on the Amazon varies considerably, depending on both the climate and land-use scenarios used and on the terrestrial biosphere model, highlighting the importance of improved understanding of all four factors -- future climate, CO2 fertilization effects, fire and land-use -- to the fate of the Amazon over the coming century.

  19. Combining state-and-transition simulations and species distribution models to anticipate the effects of climate change

    USGS Publications Warehouse

    Miller, Brian W.; Frid, Leonardo; Chang, Tony; Piekielek, N. B.; Hansen, Andrew J.; Morisette, Jeffrey T.

    2015-01-01

    State-and-transition simulation models (STSMs) are known for their ability to explore the combined effects of multiple disturbances, ecological dynamics, and management actions on vegetation. However, integrating the additional impacts of climate change into STSMs remains a challenge. We address this challenge by combining an STSM with species distribution modeling (SDM). SDMs estimate the probability of occurrence of a given species based on observed presence and absence locations as well as environmental and climatic covariates. Thus, in order to account for changes in habitat suitability due to climate change, we used SDM to generate continuous surfaces of species occurrence probabilities. These data were imported into ST-Sim, an STSM platform, where they dictated the probability of each cell transitioning between alternate potential vegetation types at each time step. The STSM was parameterized to capture additional processes of vegetation growth and disturbance that are relevant to a keystone species in the Greater Yellowstone Ecosystem—whitebark pine (Pinus albicaulis). We compared historical model runs against historical observations of whitebark pine and a key disturbance agent (mountain pine beetle, Dendroctonus ponderosae), and then projected the simulation into the future. Using this combination of correlative and stochastic simulation models, we were able to reproduce historical observations and identify key data gaps. Results indicated that SDMs and STSMs are complementary tools, and combining them is an effective way to account for the anticipated impacts of climate change, biotic interactions, and disturbances, while also allowing for the exploration of management options.

  20. Linking Student Achievement and Teacher Science Content Knowledge about Climate Change: Ensuring the Nations 3 Million Teachers Understand the Science through an Electronic Professional Development System

    NASA Astrophysics Data System (ADS)

    Niepold, F.; Byers, A.

    2009-12-01

    The scientific complexities of global climate change, with wide-ranging economic and social significance, create an intellectual challenge that mandates greater public understanding of climate change research and the concurrent ability to make informed decisions. The critical need for an engaged, science literate public has been repeatedly emphasized by multi-disciplinary entities like the Intergovernmental Panel on Climate Change (IPCC), the National Academies (Rising Above the Gathering Storm report), and the interagency group responsible for the recently updated Climate Literacy: The Essential Principles of Climate Science. There is a clear need for an American public that is climate literate and for K-12 teachers confident in teaching relevant science content. A key goal in the creation of a climate literate society is to enhance teachers’ knowledge of global climate change through a national, scalable, and sustainable professional development system, using compelling climate science data and resources to stimulate inquiry-based student interest in science, technology, engineering, and mathematics (STEM). This session will explore innovative e-learning technologies to address the limitations of one-time, face-to-face workshops, thereby adding significant sustainability and scalability. The resources developed will help teachers sift through the vast volume of global climate change information and provide research-based, high-quality science content and pedagogical information to help teachers effectively teach their students about the complex issues surrounding global climate change. The Learning Center is NSTA's e-professional development portal to help the nations teachers and informal educators learn about the scientific complexities of global climate change through research-based techniques and is proven to significantly improve teacher science content knowledge.

  1. High-Resolution Climate Data Visualization through GIS- and Web-based Data Portals

    NASA Astrophysics Data System (ADS)

    WANG, X.; Huang, G.

    2017-12-01

    Sound decisions on climate change adaptation rely on an in-depth assessment of potential climate change impacts at regional and local scales, which usually requires finer resolution climate projections at both spatial and temporal scales. However, effective downscaling of global climate projections is practically difficult due to the lack of computational resources and/or long-term reference data. Although a large volume of downscaled climate data has been make available to the public, how to understand and interpret the large-volume climate data and how to make use of the data to drive impact assessment and adaptation studies are still challenging for both impact researchers and decision makers. Such difficulties have become major barriers preventing informed climate change adaptation planning at regional scales. Therefore, this research will explore new GIS- and web-based technologies to help visualize the large-volume regional climate data with high spatiotemporal resolutions. A user-friendly public data portal, named Climate Change Data Portal (CCDP, http://ccdp.network), will be established to allow intuitive and open access to high-resolution regional climate projections at local scales. The CCDP offers functions of visual representation through geospatial maps and data downloading for a variety of climate variables (e.g., temperature, precipitation, relative humidity, solar radiation, and wind) at multiple spatial resolutions (i.e., 25 - 50 km) and temporal resolutions (i.e., annual, seasonal, monthly, daily, and hourly). The vast amount of information the CCDP encompasses can provide a crucial basis for assessing impacts of climate change on local communities and ecosystems and for supporting better decision making under a changing climate.

  2. Enabling Climate Science Investigations by Students Using Cryosphere Climate Data Records (CDRs)

    NASA Astrophysics Data System (ADS)

    Ledley, T. S.; Youngman, B.; Meier, W.; Bardar, E.

    2010-12-01

    The polar regions are particularly sensitive to changes in the climate system, and as such changes can be recognized there first. Scientists make use of this to help them develop and execute research programs that will deepen and expand our understanding of the climate system. However, the same cryosphere CDRs collected by scientists are a useful and reliable resource for helping students investigate and discover the manifestations and implications of global climate change. We have developed a number of avenues to facilitate the use of cryosphere CDRs in educational contexts. These include the Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet), DataSheets (http://serc.carleton.edu/usingdata/browse_sheets.html), and Cryosphere-EarthLabs (http://serc.carleton.edu/dev/earthlabs/cryosphere). The EET is an online resource comprised of “chapters”, each of which focuses on a specific Earth science dataset and data analysis tool. Chapters provide step-by-step instructions for accessing the dataset and analysis tool, putting the data into the tool, and conducting an analysis around a specific scientific concept or issue. There are a number of EET chapters that utilize cryosphere CDRs. The EET chapter “Whither Arctic Sea Ice?” uses ~30 years of Arctic sea ice extent images and image processing software to study changes in sea ice extent. “Is Greenland Melting?” uses ice thickness data, ice melting extents and weather station data to examine the changes in the Greenland Ice Sheet. Other EET chapters that utilize cryosphere CDRs include “Using NASA NEO and ImageJ to Explore the Role of Snow Cover in Shaping Climate” and “Envisioning Climate Change Using a Global Climate Model.” In addition to creating these activities to facilitate the use of cryosphere CDRs we have also created DataSheets for these CDRs. DataSheets are educationally relevant human readable metadata about a dataset that provide both the scientific background information about the dataset as well as the topics and skills that can be taught using the dataset. DataSheets enable an educator to make effective use of a dataset outside the context of an educational activity. A DataSheet created for the sea ice index used in the “Whither Arctic Sea Ice? EET chapter is “Exploring Sea Ice Data From Satellites.” An EarthLabs module is a suite of 7-9 labs intended to be the laboratory component of a high-school capstone Earth and Space Science course. The Cryosphere-EarthLabs module focuses on sea ice to help students deepen their understanding of change over time in the climate system on multiple and embedded time scales. The module contains hands-on activities and investigations using online cryosphere CDRs to help students understand the how sea ice forms and varies, how the cryosphere changes, and the causes of those changes on time scales ranging from the seasonal to ice age time scales. In this presentation we will examine the EET and EarthLabs resources that help educators and students explore climate change using cryosphere CDRs; examine the DataSheets for these datasets; and describe how your cryosphere CDRs can be made available through these resources.

  3. Vulnerability of US thermoelectric power generation to climate change when incorporating state-level environmental regulations

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Hejazi, Mohamad; Li, Hongyi; Forman, Barton; Zhang, Xiao

    2017-08-01

    Previous modelling studies suggest that thermoelectric power generation is vulnerable to climate change, whereas studies based on historical data suggest the impact will be less severe. Here we explore the vulnerability of thermoelectric power generation in the United States to climate change by coupling an Earth system model with a thermoelectric power generation model, including state-level representation of environmental regulations on thermal effluents. We find that the impact of climate change is lower than in previous modelling estimates due to an inclusion of a spatially disaggregated representation of environmental regulations and provisional variances that temporarily relieve power plants from permit requirements. More specifically, our results indicate that climate change alone may reduce average generating capacity by 2-3% by the 2060s, while reductions of up to 12% are expected if environmental requirements are enforced without waivers for thermal variation. Our work highlights the significance of accounting for legal constructs and underscores the effects of provisional variances in addition to environmental requirements.

  4. Global climate change: Social and economic research issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, M.; Snow, J.; Jacobson, H.

    This workshop was designed to bring together a group of scholars, primarily from the social sciences, to explore research that might help in dealing with global climate change. To illustrate the state of present understanding, it seemed useful to focus this workshop on three broad questions that are involved in coping with climate change. These are: (1) How can the anticipated economic costs and benefits of climate change be identified; (2) How can the impacts of climate change be adjusted to or avoided; (3) What previously studied models are available for institutional management of the global environment? The resulting discussionsmore » may (1) identify worthwhile avenues for further social science research, (2) help develop feedback for natural scientists about research information from this domain needed by social scientists, and (3) provide policymakers with the sort of relevant research information from the social science community that is currently available. Individual papers are processed separately for the database.« less

  5. Using physiology to understand climate-driven changes in disease and their implications for conservation.

    PubMed

    Rohr, Jason R; Raffel, Thomas R; Blaustein, Andrew R; Johnson, Pieter T J; Paull, Sara H; Young, Suzanne

    2013-01-01

    Controversy persists regarding the contributions of climate change to biodiversity losses, through its effects on the spread and emergence of infectious diseases. One of the reasons for this controversy is that there are few mechanistic studies that explore the links among climate change, infectious disease, and declines of host populations. Given that host-parasite interactions are generally mediated by physiological responses, we submit that physiological models could facilitate the prediction of how host-parasite interactions will respond to climate change, and might offer theoretical and terminological cohesion that has been lacking in the climate change-disease literature. We stress that much of the work on how climate influences host-parasite interactions has emphasized changes in climatic means, despite a hallmark of climate change being changes in climatic variability and extremes. Owing to this gap, we highlight how temporal variability in weather, coupled with non-linearities in responses to mean climate, can be used to predict the effects of climate on host-parasite interactions. We also discuss the climate variability hypothesis for disease-related declines, which posits that increased unpredictable temperature variability might provide a temporary advantage to pathogens because they are smaller and have faster metabolisms than their hosts, allowing more rapid acclimatization following a temperature shift. In support of these hypotheses, we provide case studies on the role of climatic variability in host population declines associated with the emergence of the infectious diseases chytridiomycosis, withering syndrome, and malaria. Finally, we present a mathematical model that provides the scaffolding to integrate metabolic theory, physiological mechanisms, and large-scale spatiotemporal processes to predict how simultaneous changes in climatic means, variances, and extremes will affect host-parasite interactions. However, several outstanding questions remain to be answered before investigators can accurately predict how changes in climatic means and variances will affect infectious diseases and the conservation status of host populations.

  6. Learning and Risk Exposure in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Moore, F.

    2015-12-01

    Climate change is a gradual process most apparent over long time-scales and large spatial scales, but it is experienced by those affected as changes in local weather. Climate change will gradually push the weather people experience outside the bounds of historic norms, resulting in unprecedented and extreme weather events. However, people do have the ability to learn about and respond to a changing climate. Therefore, connecting the weather people experience with their perceptions of climate change requires understanding how people infer the current state of the climate given their observations of weather. This learning process constitutes a first-order constraint on the rate of adaptation and is an important determinant of the dynamic adjustment costs associated with climate change. In this paper I explore two learning models that describe how local weather observations are translated into perceptions of climate change: an efficient Bayesian learning model and a simpler rolling-mean heuristic. Both have a period during which the learner's beliefs about the state of the climate are different from its true state, meaning the learner is exposed to a different range of extreme weather outcomes then they are prepared for. Using the example of surface temperature trends, I quantify this additional exposure to extreme heat events under both learning models and both RCP 8.5 and 2.6. Risk exposure increases for both learning models, but by substantially more for the rolling-mean learner. Moreover, there is an interaction between the learning model and the rate of climate change: the inefficient rolling-mean learner benefits much more from the slower rates of change under RCP 2.6 then the Bayesian. Finally, I present results from an experiment that suggests people are able to learn about a trending climate in a manner consistent with the Bayesian model.

  7. Investigating the Sensitivity of Streamflow and Water Quality to Climate Change and Urbanization in 20 U.S. Watersheds

    NASA Astrophysics Data System (ADS)

    Johnson, T. E.; Weaver, C. P.; Butcher, J.; Parker, A.

    2011-12-01

    Watershed modeling was conducted in 20 large (15,000-60,000 km2), U.S. watersheds to address gaps in our knowledge of the sensitivity of U.S. streamflow, nutrient (N and P) and sediment loading to potential future climate change, and methodological challenges associated with integrating existing tools (e.g., climate models, watershed models) and datasets to address these questions. Climate change scenarios are based on dynamically downscaled (50x50 km2) output from four of the GCMs used in the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment Report for the period 2041-2070 archived by the North American Regional Climate Change Assessment Program (NARCCAP). To explore the potential interaction of climate change and urbanization, model simulations also include urban and residential development scenarios for each of the 20 study watersheds. Urban and residential development scenarios were acquired from EPA's national-scale Integrated Climate and Land Use Scenarios (ICLUS) project. Watershed modeling was conducted using the Hydrologic Simulation Program-FORTRAN (HSPF) and Soil and Water Assessment Tool (SWAT) models. Here we present a summary of results for 5 of the study watersheds; the Minnesota River, the Susquehanna River, the Apalachicola-Chattahoochee-Flint, the Salt/Verde/San Pedro, and the Willamette River Basins. This set of results provide an overview of the response to climate change in different regions of the U.S., the different sensitivities of different streamflow and water quality endpoints, and illustrate a number of methodological issues including the sensitivities and uncertainties associated with use of different watershed models, approaches for downscaling climate change projections, and interaction between climate change and other forcing factors, specifically urbanization and changes in atmospheric CO2 concentration.

  8. An ill wind? Climate change, migration, and health.

    PubMed

    McMichael, Celia; Barnett, Jon; McMichael, Anthony J

    2012-05-01

    Climate change is projected to cause substantial increases in population movement in coming decades. Previous research has considered the likely causal influences and magnitude of such movements and the risks to national and international security. There has been little research on the consequences of climate-related migration and the health of people who move. In this review, we explore the role that health impacts of climate change may play in population movements and then examine the health implications of three types of movements likely to be induced by climate change: forcible displacement by climate impacts, resettlement schemes, and migration as an adaptive response. This risk assessment draws on research into the health of refugees, migrants, and people in resettlement schemes as analogs of the likely health consequences of climate-related migration. Some account is taken of the possible modulation of those health risks by climate change. Climate-change-related migration is likely to result in adverse health outcomes, both for displaced and for host populations, particularly in situations of forced migration. However, where migration and other mobility are used as adaptive strategies, health risks are likely to be minimized, and in some cases there will be health gains. Purposeful and timely policy interventions can facilitate the mobility of people, enhance well-being, and maximize social and economic development in both places of origin and places of destination. Nevertheless, the anticipated occurrence of substantial relocation of groups and communities will underscore the fundamental seriousness of human-induced climate change.

  9. Developing a Toolkit for Model Evaluation Using Speleothem Isotope Data

    NASA Astrophysics Data System (ADS)

    Comas-Bru, L.; Deininger, M.; Harrison, S.

    2017-12-01

    Speleothems can provide high-resolution records of changes in both climate and atmospheric composition. These records have the potential to be used to document regional changes in mean climate and climate variability on annual to centennial timescales. They can also be used to refine our understanding of regional changes in climate forcings, such as dust and volcanic aerosols, through time. Many climate models now explicitly include isotopic tracers, and thus the isotopic records from speleothems can be used for model evaluation. Previous attempts to compile speleothem data have not provided a globally-comprehensive synthesis, nor have they provided assessments of measurement, chronological or interpretation uncertainties. SISAL (Speleothem Isotopes Synthesis and Analysis) is a new community-based working groupsponsored by Past Global Changes (PAGES) to synthesise the 500+speleothem isotopic records available globallyand develop a public-accessdatabase, that can be used both to explore past climate changes and in model evaluation. This presentation will showcase preliminary syntheses for the Last Glacial Maximum (21 ka), the mid-Holocene (6 ka) and the Last Millennium (850-1850 CE).

  10. Patterns and biases of climate change threats in the IUCN Red List.

    PubMed

    Trull, Nicholas; Böhm, Monika; Carr, Jamie

    2018-02-01

    International Union for Conservation of Nature (IUCN) Red List assessments rely on published data and expert inputs, and biases can be introduced where underlying definitions and concepts are ambiguous. Consideration of climate change threat is no exception, and recently numerous approaches to assessing the threat of climate change to species have been developed. We explored IUCN Red List assessments of amphibians and birds to determine whether species listed as threatened by climate change display distinct patterns in terms of habitat occupied and additional nonclimatic threats faced. We compared IUCN Red List data with a published data set of species' biological and ecological traits believed to infer high vulnerability to climate change and determined whether distributions of climate change-threatened species on the IUCN Red List concur with those of climate change-threatened species identified with the trait-based approach and whether species possessing these traits are more likely to have climate change listed as a threat on the IUCN Red List. Species in some ecosystems (e.g., grassland, shrubland) and subject to particular threats (e.g., invasive species) were more likely to have climate change as a listed threat. Geographical patterns of climate change-threatened amphibians and birds on the IUCN Red List were incongruent with patterns of global species richness and patterns identified using trait-based approaches. Certain traits were linked to increases or decreases in the likelihood of a species being threatened by climate change. Broad temperature tolerance of a species was consistently related to an increased likelihood of climate change threat, indicating counterintuitive relationships in IUCN assessments. To improve the robustness of species assessments of the vulnerability or extinction risk associated with climate change, we suggest IUCN adopt a more cohesive approach whereby specific traits highlighted by our results are considered in Red List assessments. To achieve this and to strengthen the climate change-vulnerability assessments approach, it is necessary to identify and implement logical avenues for further research into traits that make species vulnerable to climate change (including population-level threats). © 2017 Society for Conservation Biology.

  11. Climate change-contaminant interactions in marine food webs: Toward a conceptual framework.

    PubMed

    Alava, Juan José; Cheung, William W L; Ross, Peter S; Sumaila, U Rashid

    2017-10-01

    Climate change is reshaping the way in which contaminants move through the global environment, in large part by changing the chemistry of the oceans and affecting the physiology, health, and feeding ecology of marine biota. Climate change-associated impacts on structure and function of marine food webs, with consequent changes in contaminant transport, fate, and effects, are likely to have significant repercussions to those human populations that rely on fisheries resources for food, recreation, or culture. Published studies on climate change-contaminant interactions with a focus on food web bioaccumulation were systematically reviewed to explore how climate change and ocean acidification may impact contaminant levels in marine food webs. We propose here a conceptual framework to illustrate the impacts of climate change on contaminant accumulation in marine food webs, as well as the downstream consequences for ecosystem goods and services. The potential impacts on social and economic security for coastal communities that depend on fisheries for food are discussed. Climate change-contaminant interactions may alter the bioaccumulation of two priority contaminant classes: the fat-soluble persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), as well as the protein-binding methylmercury (MeHg). These interactions include phenomena deemed to be either climate change dominant (i.e., climate change leads to an increase in contaminant exposure) or contaminant dominant (i.e., contamination leads to an increase in climate change susceptibility). We illustrate the pathways of climate change-contaminant interactions using case studies in the Northeastern Pacific Ocean. The important role of ecological and food web modeling to inform decision-making in managing ecological and human health risks of chemical pollutants contamination under climate change is also highlighted. Finally, we identify the need to develop integrated policies that manage the ecological and socioeconomic risk of greenhouse gases and marine pollutants. © 2017 John Wiley & Sons Ltd.

  12. Impacts of land cover transitions on surface temperature in China based on satellite observations

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhen; Liang, Shunlin

    2018-02-01

    China has experienced intense land use and land cover changes during the past several decades, which have exerted significant influences on climate change. Previous studies exploring related climatic effects have focused mainly on one or two specific land use changes, or have considered all land use and land cover change types together without distinguishing their individual impacts, and few have examined the physical processes of the mechanism through which land use changes affect surface temperature. However, in this study, we considered satellite-derived data of multiple land cover changes and transitions in China. The objective was to obtain observational evidence of the climatic effects of land cover transitions in China by exploring how they affect surface temperature and to what degree they influence it through the modification of biophysical processes, with an emphasis on changes in surface albedo and evapotranspiration (ET). To achieve this goal, we quantified the changes in albedo, ET, and surface temperature in the transition areas, examined their correlations with temperature change, and calculated the contributions of different land use transitions to surface temperature change via changes in albedo and ET. Results suggested that land cover transitions from cropland to urban land increased land surface temperature (LST) during both daytime and nighttime by 0.18 and 0.01 K, respectively. Conversely, the transition of forest to cropland tended to decrease surface temperature by 0.53 K during the day and by 0.07 K at night, mainly through changes in surface albedo. Decreases in both daytime and nighttime LST were observed over regions of grassland to forest transition, corresponding to average values of 0.44 and 0.20 K, respectively, predominantly controlled by changes in ET. These results highlight the necessity to consider the individual climatic effects of different land cover transitions or conversions in climate research studies. This short-term analysis of land cover transitions in China means our estimates should represent local temperature effects. Changes in ET and albedo explained <60% of the variation in LST change caused by land cover transitions; thus, additional factors that affect surface climate need consideration in future studies.

  13. Considering Students' Out-of-School Lives and Values in Designing Learning Environments for Climate Change

    NASA Astrophysics Data System (ADS)

    Walsh, E.; Tsurusaki, B.

    2012-12-01

    What are the implications of social controversy for the teaching and learning of climate change science? How do the political dimensions of this controversy affect learners' attitudes towards and reasoning about climate change and climate science? Case studies from a pilot enactment of an ecological impacts of climate change curriculum explore these questions by describing how five high school students' understandings of climate change science developed at the intersection of political and scientific values, attitudes, and ways of knowing. Case studies combine qualitative, ethnographic methods including interviews and classroom video observations with quantitative pre/post-assessments of student conceptual understandings and weekly surveys of student engagement. Data indicate that students had initial perceptions of climate change informed by the media and their families—both supporting and rejecting the scientific consensus—that influenced how they engaged with the scientific evidence. While students who were initially antagonistic to anthropogenic climate change did develop conceptual understandings of the scientific evidence for human-influences on climate change, this work was challenging and at times frustrating for them. These case studies demonstrate the wide range of initial attitudes and understandings that students bring to the study of climate change. They also demonstrate that it is possible to make significant shifts in students' understandings of climate change science, even in students who were initially resistant to the idea of anthropogenic climate change. Finally, multiple case studies discuss ways that the learning that occurred in the classroom crossed out of the classroom into the students' homes and family talk. This work highlights how learners' pathways are shaped not only by their developing understanding of the scientific evidence but also by the political and social influences that learners navigate across the contexts of their lives. It underscores the need to understand and support students as they interact with climate change across the contexts of their lives.

  14. Past and future climatic changes in the Mediterranean area under various global warming scenarios

    NASA Astrophysics Data System (ADS)

    Guiot, Joel

    2016-04-01

    Past climatic changes and their impacts on the natural vegetation can be used as a reference for the climatic changes projected by ensembles of climate models for the 21st century. The study of the Holocene shows that he Mediterranean has known several precipitation falls equivalent to what is projected for the end of the 21st century. These droughts were often correlated with the decline or collapse of Mediterranean civilisations, particularly in the eastern Basin. Nevertheless, while the past droughts were not characterized by particularly high temperature, future temperature increase will more or less significant according to the scenario. This will much intensify the water deficit for natural and artificial ecosystems. As a consequence, the projected climatic change can be considered as unprecedented during the last 10,000 years. We explore how they compare with the various scenarios corresponding to a 1.5°C, 2°C and 3°C global warming according to the pre-industrial mean temperature, and we will determine the degree of dissimilarity of the Mediterranean climate under these global thresholds according to the long term climate variability.

  15. Building an ensemble of climate scenarios for decision-making in hydrology: benefits, pitfalls and uncertainties

    NASA Astrophysics Data System (ADS)

    Braun, Marco; Chaumont, Diane

    2013-04-01

    Using climate model output to explore climate change impacts on hydrology requires several considerations, choices and methods in the post treatment of the datasets. In the effort of producing a comprehensive data base of climate change scenarios for over 300 watersheds in the Canadian province of Québec, a selection of state of the art procedures were applied to an ensemble comprising 87 climate simulations. The climate data ensemble is based on global climate simulations from the Coupled Model Intercomparison Project - Phase 3 (CMIP3) and regional climate simulations from the North American Regional Climate Change Assessment Program (NARCCAP) and operational simulations produced at Ouranos. Information on the response of hydrological systems to changing climate conditions can be derived by linking climate simulations with hydrological models. However, the direct use of raw climate model output variables as drivers for hydrological models is limited by issues such as spatial resolution and the calibration of hydro models with observations. Methods for downscaling and bias correcting the data are required to achieve seamless integration of climate simulations with hydro models. The effects on the results of four different approaches to data post processing were explored and compared. We present the lessons learned from building the largest data base yet for multiple stakeholders in the hydro power and water management sector in Québec putting an emphasis on the benefits and pitfalls in choosing simulations, extracting the data, performing bias corrections and documenting the results. A discussion of the sources and significance of uncertainties in the data will also be included. The climatological data base was subsequently used by the state owned hydro power company Hydro-Québec and the Centre d'expertise hydrique du Québec (CEHQ), the provincial water authority, to simulate future stream flows and analyse the impacts on hydrological indicators. While this submission focuses on the production of climatic scenarios for application in hydrology, the submission « The (cQ)2 project: assessing watershed scale hydrological changes for the province of Québec at the 2050 horizon, a collaborative framework » by Catherine Guay describes how Hydro-Québec and CEHQ put the data into use.

  16. Limits of pastoral adaptation to permafrost regions caused by climate change among the Sakha people in the middle basin of Lena River

    NASA Astrophysics Data System (ADS)

    Takakura, Hiroki

    2016-09-01

    This article focuses on the pastoral practices of the Sakha people in eastern Siberia to explore the impact of climate change on human livelihood in permafrost regions. Sakha use grassland resources in river terraces and the alaas thermokarst landscape for cattle-horse husbandry. Although they practice a different form of subsistence than other indigenous arctic peoples, such as hunter - gatherers or reindeer herders, the adaptation of Sakha has been relatively resilient in the past 600-800 years. Recent climate change, however, could change this situation. According to hydrologists, increased precipitation is now observed in eastern Siberia, which has resulted in the increase of permafrost thawing, causing forests to die. Moreover, local meteorologists report an increase of flooding in local rivers. How do these changes affect the local pastoral adaptation? While describing recent uses of grassland resource by local people, and their perception of climate change through anthropological field research, I investigated the subtle characteristics of human-environment interactions in pastoral adaptation, in order to identify the limits of adaptation in the face of climate change.

  17. "What Controls the Structure and Stability of the Ocean Meridional Overturning Circulation: Implications for Abrupt Climate Change?"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorov, Alexey

    2013-11-23

    The central goal of this research project is to understand the properties of the ocean meridional overturning circulation (MOC) – a topic critical for understanding climate variability and stability on a variety of timescales (from decadal to centennial and longer). Specifically, we have explored various factors that control the MOC stability and decadal variability in the Atlantic and the ocean thermal structure in general, including the possibility abrupt climate change. We have also continued efforts on improving the performance of coupled ocean-atmosphere GCMs.

  18. Public Inaccuracy in Meta-perceptions of Climate Change

    NASA Astrophysics Data System (ADS)

    Swim, J.; Fraser, J.

    2012-12-01

    Public perceptions of climate change and meta-perceptions of the public and climate scientist's perceptions of climate change were assessed to benchmark the National Network for Climate Change Interpretation's impacts. Meta-perceptions are important to examine because they can have implications for willingness to take action to address climate change. For instance, recent research suggests a tendency to misperceive that there is disagreement among climate scientists is predictive of lack of support for climate change policies. Underestimating public concern about climate change could also be problematic: it could lead individuals to withdraw from personal efforts to reduce impact and engage others in discussions about climate change. Presented results will demonstrate that respondents in a national survey underestimated the percent of the public who were very concerned, concerned or cautious about climate change and overestimated the extent others were disengaged, doubted, or non-believers. They underestimated the percent of the public who likely believed that humans caused climate change and overestimate the percent that believed climate change was not happening nor human induced. Finally, they underestimated the percent of the public that believed climate change threatened ocean health. The results also explore sources of misperceptions. First, correlates with TV viewing habits suggest that inaccuracy is a result of too little attention to network news, with one exception: Greater attention to FOX among doubters reduced accuracy. Second, adding to other evidence that basic cognitive heuristics (such as availability heuristic) influence perceptions of climate change, we show that that false consensus effects account for meta-perceptions of the public and climate scientists beliefs. The false consensus effect, in combination with underestimating concern among the public, results in those most concerned about climate change and those who believe it to be human caused to be more accurate in their meta-perceptions than their disbelieving counterparts. Yet, even this group underestimates the public's concern about climate change and the presence of the false consensus effect suggests that greater accuracy is not a result of greater knowledge about other's beliefs but rather a result of personal cognitive or motivational biases counteracting a general trend toward underestimating the general public's concern. We conclude that there is need to inform the public about wide-spread agreement that human caused climate change and its impacts on oceans is believed by the majority of the public and to increase the public's confidence in climate scientist agreement about the existence, causes, and impacts of climate change.; Perceptions and metaperceptions of concern about climate change

  19. Knowledge of and attitudes toward climate change and its effects on health among nursing students: A multi-Arab country study.

    PubMed

    Felicilda-Reynaldo, Rhea Faye D; Cruz, Jonas Preposi; Alshammari, Farhan; Obaid, Khamees B; Rady, Hanan Ebrahim Abd El Aziz; Qtait, Mohammad; Alquwez, Nahed; Colet, Paolo C

    2018-04-01

    Climate change and its impact on health continues to receive inadequate attention in the nursing literature, especially in the Arab region. This study explored the knowledge of and attitudes toward climate change and its effect on health among nursing students from four Arab countries. A cross-sectional study was conducted among a convenience sample of 1,059 baccalaureate nursing students from four Arab countries using the New Ecological Paradigm scale and an adapted questionnaire. The findings indicate an average range of attitude toward the environment, with country of residence, type of community, academic-year level, and climate change related variables as significant factors influencing students' attitudes. A moderate level of knowledge about the potential health related impacts of climate change was revealed. Students from Saudi Arabia and Palestinian Territory reported a significantly higher level of knowledge than Egyptian and Iraqi students. Most of the respondents reported that all identified health related effects of climate change have already increased, while more than two-thirds reported that each of the health-related impacts would increase within the next 20 years. The findings underscore the need for more coverage of topics related to climate change and its health-related impacts in nursing education curricula in Arab countries. © 2017 Wiley Periodicals, Inc.

  20. Making the Earth to Life Connection Using Climate Change

    NASA Astrophysics Data System (ADS)

    Haine, D. B.; Berbeco, M.

    2016-12-01

    From ocean acidification to changes in air quality to shifts in the range of disease vectors, there are many opportunities for educators to make the earth science to life science connection by incorporating the impacts of climate change on organisms and entire ecosystems and by describing how living organisms impact climate. NCSE's study in Science found that 86% of life science teachers are teaching climate, but few admit they have any formal climate science training. This session will introduce activities we developed that utilize the 2014 National Climate Assessment, data visualizations, technology tools and models to allow students to explore the evidence that climate change is impacting life. Translating the NCA into classroom activities is an approach that becomes more pertinent with the advent of the Next Generation Science Standards (NGSS). Using the NCA and the NGSS we demonstrate strategies for weaving the concept of climate change into an already packed life science curriculum by enhancing rather than displacing content and ultimately promoting integration of science and engineering practices into instruction. Since the fall of 2014 we have engaged approximately 200 K-12 educators at local, state, regional and national teacher professional development events. Here we will summarize what we have learned from science teachers about how they address life science impacts of climate change and we will summarize evaluation data to inform future efforts to engage life science educators in light of the recent USGCRP Climate and Health Assessment and the upcoming 4th National Climate Assessment.

  1. The international politics of geoengineering: The feasibility of Plan B for tackling climate change

    PubMed Central

    Corry, Olaf

    2017-01-01

    Geoengineering technologies aim to make large-scale and deliberate interventions in the climate system possible. A typical framing is that researchers are exploring a ‘Plan B’ in case mitigation fails to avert dangerous climate change. Some options are thought to have the potential to alter the politics of climate change dramatically, yet in evaluating whether they might ultimately reduce climate risks, their political and security implications have so far not been given adequate prominence. This article puts forward what it calls the ‘security hazard’ and argues that this could be a crucial factor in determining whether a technology is able, ultimately, to reduce climate risks. Ideas about global governance of geoengineering rely on heroic assumptions about state rationality and a generally pacific international system. Moreover, if in a climate engineered world weather events become something certain states can be made directly responsible for, this may also negatively affect prospects for ‘Plan A’, i.e. an effective global agreement on mitigation. PMID:29386754

  2. Feedbacks between climate change and biosphere integrity

    NASA Astrophysics Data System (ADS)

    Lade, Steven; Anderies, J. Marty; Donges, Jonathan; Steffen, Will; Rockström, Johan; Richardson, Katherine; Cornell, Sarah; Norberg, Jon; Fetzer, Ingo

    2017-04-01

    The terrestrial and marine biospheres sink substantial fractions of human fossil fuel emissions. How the biosphere's capacity to sink carbon depends on biodiversity and other measures of biosphere integrity is however poorly understood. Here, we (1): review assumptions from literature regarding the relationships between the carbon cycle and the terrestrial and marine biospheres; and (2) explore the consequences of these different assumptions for climate feedbacks using the stylised carbon cycle model PB-INT. We find that: terrestrial biodiversity loss could significantly dampen climate-carbon cycle feedbacks; direct biodiversity effects, if they exist, could rival temperature increases from low-emission trajectories; and the response of the marine biosphere is critical for longer term climate change. Simple, low-dimensional climate models such as PB-INT can help assess the importance of still unknown or controversial earth system processes such as biodiversity loss for climate feedbacks. This study constitutes the first detailed study of the interactions between climate change and biosphere integrity, two of the 'planetary boundaries'.

  3. Arctic climate response to geoengineering with stratospheric sulfate aerosols

    NASA Astrophysics Data System (ADS)

    McCusker, K. E.; Battisti, D. S.; Bitz, C. M.

    2010-12-01

    Recent warming and record summer sea-ice area minimums have spurred expressions of concern for arctic ecosystems, permafrost, and polar bear populations, among other things. Geoengineering by stratospheric sulfate aerosol injections to deliberately cancel the anthropogenic temperature rise has been put forth as a possible solution to restoring Arctic (and global) climate to modern conditions. However, climate is particularly sensitive in the northern high latitudes, responding easily to radiative forcing changes. To that end, we explore the extent to which tropical injections of stratospheric sulfate aerosol can accomplish regional cancellation in the Arctic. We use the Community Climate System Model version 3 global climate model to execute simulations with combinations of doubled CO2 and imposed stratospheric sulfate burdens to investigate the effects on high latitude climate. We further explore the sensitivity of the polar climate to ocean dynamics by running a suite of simulations with and without ocean dynamics, transiently and to equilibrium respectively. We find that, although annual, global mean temperature cancellation is accomplished, there is over-cooling on land in Arctic summer, but residual warming in Arctic winter, which is largely due to atmospheric circulation changes. Furthermore, the spatial extent of these features and their concurrent impacts on sea-ice properties are modified by the inclusion of ocean dynamical feedbacks.

  4. Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China

    DOE PAGES

    Ye, Qing; Yang, Xiaoguang; Dai, Shuwei; ...

    2015-06-05

    Here, we discuss that rice is one of the main crops grown in southern China. Global climate change has significantly altered the local water availability and temperature regime for rice production. In this study, we explored the influence of climate change on suitable rice cropping areas, rice cropping systems and crop water requirements (CWRs) during the growing season for historical (from 1951 to 2010) and future (from 2011 to 2100) time periods. The results indicated that the land areas suitable for rice cropping systems shifted northward and westward from 1951 to 2100 but with different amplitudes.

  5. Learning Across Time Scales: Science, Policy, Management, and Communication

    NASA Astrophysics Data System (ADS)

    Stewart, M. M.

    2002-05-01

    This presentation will draw together common themes raised in the session and discuss lessons learned across time scales and their implications for managers and policy makers concerned with both climate change and variability. Session themes will be examined in the context of the upcoming World Summit on Sustainable Development (WSSD) and considered as opportunities for linking climate change policy discussions with lessons learned from the study of adaptation on seasonal to interannual time scales. The presentation will raise questions about future research directions, discuss recommendations for promoting learning across time scales, and explore options for better communicating the links between climate change and variability.

  6. Predicting the Impact of Climate Change on Threatened Species in UK Waters

    PubMed Central

    Jones, Miranda C.; Dye, Stephen R.; Fernandes, Jose A.; Frölicher, Thomas L.; Pinnegar, John K.; Warren, Rachel; Cheung, William W. L.

    2013-01-01

    Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina). PMID:23349829

  7. Predicting the impact of climate change on threatened species in UK waters.

    PubMed

    Jones, Miranda C; Dye, Stephen R; Fernandes, Jose A; Frölicher, Thomas L; Pinnegar, John K; Warren, Rachel; Cheung, William W L

    2013-01-01

    Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina).

  8. Migration in the context of vulnerability and adaptation to climate change: insights from analogues

    PubMed Central

    McLeman, Robert A.; Hunter, Lori M.

    2011-01-01

    Migration is one of the variety of ways by which human populations adapt to environmental changes. The study of migration in the context of anthropogenic climate change is often approached using the concept of vulnerability and its key functional elements: exposure, system sensitivity, and adaptive capacity. This article explores the interaction of climate change and vulnerability through review of case studies of dry-season migration in the West African Sahel, hurricane-related population displacements in the Caribbean basin, winter migration of ‘snowbirds’ to the US Sun-belt, and 1930s drought migration on the North American Great Plains. These examples are then used as analogues for identifying general causal, temporal, and spatial dimensions of climate migration, along with potential considerations for policy-making and future research needs. PMID:22022342

  9. Sustainable development through a gendered lens: climate change adaptation and disaster risk reduction.

    PubMed

    Lewis, Nancy D

    2016-03-01

    The UN General Assembly has just adopted the post 2015 Sustainable Development Agenda articulated in the 17 Sustainable Development Goals (SDGs). Achieving the SDGs will be furthered by the closer integration of the climate change adaptation (CCA) and disaster risk reduction (DRR) agendas. Gender provides us a valuable portal for considering this integration. Acknowledging that gender relaters to both women and men and that men and women experience climate variability and disasters differently, in this paper the role of women in both CCA and DRR is explored, shifting the focus from women as vulnerable victims to women as critical agents for change with respect to climate change mitigation and adaptation and reduction of disaster risks. Appropriately targeted interventions can also empower women and contribute to more just and inclusive sustainable development.

  10. The Response of Different Audiences to Place-based Communication about the Role of Climate Change in Extreme Weather Events

    NASA Astrophysics Data System (ADS)

    Halperin, A.; Walton, P.

    2015-12-01

    As the science of extreme event attribution grows, there is an increasing need to understand how the public responds to this type of climate change communication. Extreme event attribution has the unprecedented potential to locate the effects of climate change in the here and now, but there is little information about how different facets of the public might respond to these local framings of climate change. Drawing on theories of place attachment and psychological distance, this paper explores how people with different beliefs and values shift their willingness to mitigate and adapt to climate change in response to local or global communication of climate change impacts. Results will be presented from a recent survey of over 600 Californians who were each presented with one of three experimental conditions: 1) a local framing of the role of climate change in the California drought 2) a global framing of climate change and droughts worldwide, or 3) a control condition of no text. Participants were categorized into groups based on their prior beliefs about climate change according to the Six Americas classification scheme (Leiserowitz et al., 2011). The results from the survey in conjunction with qualitative results from follow-up interviews shed insight into the importance of place in communicating climate change for people in each of the Six Americas. Additional results examine the role of gender and political affiliation in mediating responses to climate change communication. Despite research that advocates unequivocally for local framing of climate change, this study offers a more nuanced perspective of under which circumstances extreme event attribution might be an effective tool for changing behaviors. These results could be useful for scientists who wish to gain a better understanding of how their event attribution research is perceived or for educators who want to target their message to audiences where it could have the most impact.

  11. Integrating Climate Change into Habitat Conservation Plans Under the U.S. Endangered Species Act

    NASA Astrophysics Data System (ADS)

    Bernazzani, Paola; Bradley, Bethany A.; Opperman, Jeffrey J.

    2012-06-01

    Habitat Conservation Plans (HCPs) under the Endangered Species Act (ESA) are an important mechanism for the acquisition of land and the management of terrestrial and aquatic ecosystems. HCPs have become a vital means of protecting endangered and threatened species and their habitats throughout the United States, particularly on private land. The scientific consensus that climate is changing and that these changes will impact the viability of species has not been incorporated into the conservation strategies of recent HCPs, rendering plans vulnerable biologically. In this paper we review the regulatory context for incorporating climate change into HCPs and analyze the extent to which climate change is linked to management actions in a subset of large HCPs. We conclude that most current plans do not incorporate climate change into conservation actions, and so we provide recommendations for integrating climate change into the process of HCP development and implementation. These recommendations are distilled from the published literature as well as the practice of conservation planning and are structured to the specific needs of HCP development and implementation. We offer nine recommendations for integrating climate change into the HCP process: (1) identify species at-risk from climate change, (2) explore new strategies for reserve design, (3) increase emphasis on corridors, linkages, and connectivity, (4) develop anticipatory adaptation measures, (5) manage for diversity, (6) consider assisted migration, (7) include climate change in scenarios of water management, (8) develop future-oriented management actions, and (9) increase linkages between the conservation strategy and adaptive management/monitoring programs.

  12. Integrating climate change into habitat conservation plans under the U.S. endangered species act.

    PubMed

    Bernazzani, Paola; Bradley, Bethany A; Opperman, Jeffrey J

    2012-06-01

    Habitat Conservation Plans (HCPs) under the Endangered Species Act (ESA) are an important mechanism for the acquisition of land and the management of terrestrial and aquatic ecosystems. HCPs have become a vital means of protecting endangered and threatened species and their habitats throughout the United States, particularly on private land. The scientific consensus that climate is changing and that these changes will impact the viability of species has not been incorporated into the conservation strategies of recent HCPs, rendering plans vulnerable biologically. In this paper we review the regulatory context for incorporating climate change into HCPs and analyze the extent to which climate change is linked to management actions in a subset of large HCPs. We conclude that most current plans do not incorporate climate change into conservation actions, and so we provide recommendations for integrating climate change into the process of HCP development and implementation. These recommendations are distilled from the published literature as well as the practice of conservation planning and are structured to the specific needs of HCP development and implementation. We offer nine recommendations for integrating climate change into the HCP process: (1) identify species at-risk from climate change, (2) explore new strategies for reserve design, (3) increase emphasis on corridors, linkages, and connectivity, (4) develop anticipatory adaptation measures, (5) manage for diversity, (6) consider assisted migration, (7) include climate change in scenarios of water management, (8) develop future-oriented management actions, and (9) increase linkages between the conservation strategy and adaptive management/monitoring programs.

  13. Two Challenges to Communicating Climate Science

    NASA Astrophysics Data System (ADS)

    Oreskes, N.; Evans, J. H.; Feng, J.

    2011-12-01

    Climate scientists have been frustrated by the persistence of public opinion at odds with established scientific evidence about anthropogenic climate change. Traditionally, scientists have attributed the gap between scientific knowledge and public perception to scientific illiteracy, which could be remedied by a better and more abundant supply of well-communicated scientific information. Social scientific research, however, illustrates that this "deficit model" is insufficient to explain the current state of affairs: many individuals who reject the conclusions of climate scientists are highly educated, and some evidence suggests that, among certain demographics, more educated people are more likely than less educated ones to reject climate science. This talk explores two possible sources of resistance to, or outright rejection of, scientific conclusions about climate change: 1) the effects of long-standing organized efforts to challenge climate science and the credibility of climate scientists; 2) conservative Protestant religious beliefs concerning how factual claims about the earth are determined and how their significance is judged.

  14. Using physiology to understand climate-driven changes in disease and their implications for conservation

    PubMed Central

    Rohr, Jason R.; Raffel, Thomas R.; Blaustein, Andrew R.; Johnson, Pieter T. J.; Paull, Sara H.; Young, Suzanne

    2013-01-01

    Controversy persists regarding the contributions of climate change to biodiversity losses, through its effects on the spread and emergence of infectious diseases. One of the reasons for this controversy is that there are few mechanistic studies that explore the links among climate change, infectious disease, and declines of host populations. Given that host–parasite interactions are generally mediated by physiological responses, we submit that physiological models could facilitate the prediction of how host–parasite interactions will respond to climate change, and might offer theoretical and terminological cohesion that has been lacking in the climate change–disease literature. We stress that much of the work on how climate influences host–parasite interactions has emphasized changes in climatic means, despite a hallmark of climate change being changes in climatic variability and extremes. Owing to this gap, we highlight how temporal variability in weather, coupled with non-linearities in responses to mean climate, can be used to predict the effects of climate on host–parasite interactions. We also discuss the climate variability hypothesis for disease-related declines, which posits that increased unpredictable temperature variability might provide a temporary advantage to pathogens because they are smaller and have faster metabolisms than their hosts, allowing more rapid acclimatization following a temperature shift. In support of these hypotheses, we provide case studies on the role of climatic variability in host population declines associated with the emergence of the infectious diseases chytridiomycosis, withering syndrome, and malaria. Finally, we present a mathematical model that provides the scaffolding to integrate metabolic theory, physiological mechanisms, and large-scale spatiotemporal processes to predict how simultaneous changes in climatic means, variances, and extremes will affect host–parasite interactions. However, several outstanding questions remain to be answered before investigators can accurately predict how changes in climatic means and variances will affect infectious diseases and the conservation status of host populations. PMID:27293606

  15. Pre-service teacher professional development on climate change: Assessment of workshop success and influence of prior knowledge

    NASA Astrophysics Data System (ADS)

    Veron, D. E.; Ad-Marbach, G.; Fox-Lykens, R.; Ozbay, G.; Sezen-Barrie, A.; Wolfson, J.

    2017-12-01

    As states move to adopt the next generation science standards, in-service teachers are being provided with professional development that introduces climate change content and best practices for teaching climate change in the classroom. However, research has shown that it is challenging to bring this information into the higher education curriculum in education courses for pre-service teachers due to curricular and programming constraints. Over two years, the Maryland and Delaware Climate Change Assessment and Research (MADE-CLEAR) project explored a professional development approach for pre-service teachers which employed paired workshops that resulted in participant-developed lesson plans based on climate change content. The workshops were designed to provide pre-service teachers with climate change content related to the carbon cycle and to model a variety of techniques and activities for presenting this information in the classroom. Lesson plans were developed between the first and second workshop, presented at the second workshop and discussed with peers and in-service teachers, and then revised in response to feedback from the second workshop. Participant climate change content knowledge was assessed before the first workshop, and after the final revision of the lesson plan was submitted to the MADE-CLEAR team. Climate content knowledge was also assessed using the same survey for additional pre-service teacher groups who did not participate in the professional development. Results show that while the paired workshop approach increased climate content knowledge, the amount of improvement varied depending on the participants' prior knowledge in climate change content. In addition, some alternate conceptions of climate change were not altered by participant involvement in the professional development approach. Revised lesson plans showed understanding of underlying climate change impacts and demonstrated awareness of appropriate techniques for introducing this complex topic. These findings will be useful to those planning pre-service teacher professional development on climate change in the future.

  16. Exploring the spatiotemporal drivers of malaria elimination in Europe.

    PubMed

    Zhao, Xia; Smith, David L; Tatem, Andrew J

    2016-03-04

    Europe once had widespread malaria, but today it is free from endemic transmission. Changing land use, agricultural practices, housing quality, urbanization, climate change, and improved healthcare are among the many factors thought to have played a role in the declines of malaria seen, but their effects and relative contributions have rarely been quantified. Spatial datasets on changes in climate, wealth, life expectancy, urbanization, and land use trends over the past century were combined with datasets depicting the reduction in malaria transmission across 31 European countries, and the relationships were explored. Moreover, the conditions in current malaria-eliminating countries were compared with those in Europe at the time of declining transmission and elimination to assess similarities. Indicators relating to socio-economic improvements such as wealth, life expectancy and urbanization were strongly correlated with the decline of malaria in Europe, whereas those describing climatic and land use changes showed weaker relationships. Present-day malaria-elimination countries have now arrived at similar socio-economic indicator levels as European countries at the time malaria elimination was achieved, offering hope for achievement of sustainable elimination.

  17. Exploring tropical forest vegetation dynamics using the FATES model

    NASA Astrophysics Data System (ADS)

    Koven, C. D.; Fisher, R.; Knox, R. G.; Chambers, J.; Kueppers, L. M.; Christoffersen, B. O.; Davies, S. J.; Dietze, M.; Holm, J.; Massoud, E. C.; Muller-Landau, H. C.; Powell, T.; Serbin, S.; Shuman, J. K.; Walker, A. P.; Wright, S. J.; Xu, C.

    2017-12-01

    Tropical forest vegetation dynamics represent a critical climate feedback in the Earth system, which is poorly represented in current global modeling approaches. We discuss recent progress on exploring these dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a demographic vegetation model for the CESM and ACME ESMs. We will discuss benchmarks of FATES predictions for forest structure against inventory sites, sensitivity of FATES predictions of size and age structure to model parameter uncertainty, and experiments using the FATES model to explore PFT competitive dynamics and the dynamics of size and age distributions in responses to changing climate and CO2.

  18. Path Dependence of Regional Climate Change

    NASA Astrophysics Data System (ADS)

    Herrington, Tyler; Zickfeld, Kirsten

    2013-04-01

    Path dependence of the climate response to CO2 forcing has been investigated from a global mean perspective, with evidence suggesting that long-term global mean temperature and precipitation changes are proportional to cumulative CO2 emissions, and independent of emissions pathway. Little research, however, has been done on path dependence of regional climate changes, particularly in areas that could be affected by tipping points. Here, we utilize the UVic Earth System Climate Model version 2.9, an Earth System Model of Intermediate Complexity. It consists of a 3-dimensional ocean general circulation model, coupled with a dynamic-thermodynamic sea ice model, and a thermodynamic energy-moisture balance model of the atmosphere. This is then coupled with a terrestrial carbon cycle model and an ocean carbon-cycle model containing an inorganic carbon and marine ecosystem component. Model coverage is global with a zonal resolution of 3.6 degrees and meridional resolution of 1.8 degrees. The model is forced with idealized emissions scenarios across five cumulative emission groups (1300 GtC, 2300 GtC, 3300 GtC, 4300 GtC, and 5300 GtC) to explore the path dependence of (and the possibility of hysteresis in) regional climate changes. Emission curves include both fossil carbon emissions and emissions from land use changes, and span a variety of peak and decline scenarios with varying emission rates, as well as overshoot and instantaneous pulse scenarios. Tipping points being explored include those responsible for the disappearance of summer Arctic sea-ice, the irreversible melt of the Greenland Ice Sheet, the collapse of the Atlantic Thermohaline Circulation, and the dieback of the Amazonian Rainforest. Preliminary results suggest that global mean climate change after cessation of CO2 emissions is independent of the emissions pathway, only varying with total cumulative emissions, in accordance with results from earlier studies. Forthcoming analysis will investigate path dependence of regional climate change. Some evidence exists to support the idea of hysteresis in the Greenland Ice Sheet, and since tipping points represent non-linear elements of the climate system, we suspect that the other tipping points might also show path dependence.

  19. Polar Bears or People? Exploring Ways in Which Teachers Frame Climate Change in the Classroom

    ERIC Educational Resources Information Center

    Busch, K. C.

    2016-01-01

    Not only will young adults bear the brunt of the effects of climate change, but they are also the ones who will be required to take action-to mitigate and to adapt. Framing, as both a theory and an analytic method, has been used to understand how language in the media can affect the audience's concern and intention to act. The theory and the…

  20. Integrating geological archives and climate models for the mid-Pliocene warm period.

    PubMed

    Haywood, Alan M; Dowsett, Harry J; Dolan, Aisling M

    2016-02-16

    The mid-Pliocene Warm Period (mPWP) offers an opportunity to understand a warmer-than-present world and assess the predictive ability of numerical climate models. Environmental reconstruction and climate modelling are crucial for understanding the mPWP, and the synergy of these two, often disparate, fields has proven essential in confirming features of the past and in turn building confidence in projections of the future. The continual development of methodologies to better facilitate environmental synthesis and data/model comparison is essential, with recent work demonstrating that time-specific (time-slice) syntheses represent the next logical step in exploring climate change during the mPWP and realizing its potential as a test bed for understanding future climate change.

  1. Integrating geological archives and climate models for the mid-Pliocene warm period

    PubMed Central

    Haywood, Alan M.; Dowsett, Harry J.; Dolan, Aisling M.

    2016-01-01

    The mid-Pliocene Warm Period (mPWP) offers an opportunity to understand a warmer-than-present world and assess the predictive ability of numerical climate models. Environmental reconstruction and climate modelling are crucial for understanding the mPWP, and the synergy of these two, often disparate, fields has proven essential in confirming features of the past and in turn building confidence in projections of the future. The continual development of methodologies to better facilitate environmental synthesis and data/model comparison is essential, with recent work demonstrating that time-specific (time-slice) syntheses represent the next logical step in exploring climate change during the mPWP and realizing its potential as a test bed for understanding future climate change. PMID:26879640

  2. Demanding stories: television coverage of sustainability, climate change and material demand

    PubMed Central

    2017-01-01

    This paper explores the past, present and future role of broadcasting, above all via the medium of television, in shaping how societies talk, think about and act on climate change and sustainability issues. The paper explores these broad themes via a focus on the important but relatively neglected issue of material demand and opportunities for its reduction. It takes the outputs and decision-making of one of the world's most influential broadcasters, the BBC, as its primary focus. The paper considers these themes in terms of stories, touching on some of the broader societal frames of understanding into which they can be grouped. Media decision-makers and producers from a range of genres frequently return to the centrality of ‘story’ in the development, commissioning and production of an idea. With reference to specific examples of programming, and drawing on interviews with media practitioners, the paper considers the challenges of generating broadcast stories that can inspire engagement in issues around climate change, and specifically material demand. The concluding section proposes actions and approaches that might help to establish material demand reduction as a prominent way of thinking about climate change and environmental issues more widely. This article is part of the themed issue ‘Material demand reduction’. PMID:28461439

  3. The complex relationship between personal sense of connection to animals and self-reported proenvironmental behaviors by zoo visitors.

    PubMed

    Grajal, Alejandro; Luebke, Jerry F; Kelly, Lisa-Anne DeGregoria; Matiasek, Jennifer; Clayton, Susan; Karazsia, Bryan T; Saunders, Carol D; Goldman, Susan R; Mann, Michael E; Stanoss, Ricardo

    2017-04-01

    The global biodiversity crisis requires an engaged citizenry that provides collective support for public policies and recognizes the consequences of personal consumption decisions. Understanding the factors that affect personal engagement in proenvironmental behaviors is essential for the development of actionable conservation solutions. Zoos and aquariums may be some of the only places where many people can explore their relations with wild animals and proenvironmental behaviors. Using a moderated-mediation analysis of a survey of U.S. zoo and aquarium visitors (n = 3588), we explored the relationship between the sense of connection to animals and self-reported engagement in proenvironmental behaviors related to climate change and how this relationship is affected by certainty that climate change is happening, level of concern about climate change, and perceptions of effectiveness in personally addressing climate change. We found a significant, directional relationship between sense of connection to animals and self-reported proenvironmental behaviors. Political inclination within the conservative to liberal spectrum did not affect the relationship. We conclude that a personal sense of connection to animals may provide a foundation for educational and communication strategies to enhance involvement in proenvironmental actions. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  4. Providing a Scientific Foundation in Climate Studies for Non-Science Majors

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Geer, I. W.; Moran, J. M.; Weinbeck, R. S.; Mills, E. W.; Lambert, J.; Blair, B. A.; Hopkins, E. J.; O'Neill, K. L.; Hyre, H. R.; Nugnes, K. A.; Moses, M. N.

    2010-12-01

    Climate change has become a politically charged topic, creating the necessity for a scientifically literate population. Therefore, the American Meteorological Society (AMS), in partnership with NASA, has produced an introductory level, climate science course that engages students, allows for course flexibility, and boosts scientific knowledge about climate. This course shares NASA’s goal of observing, understanding, and modeling the Earth system, to discover how it is changing, to better predict change, and to understand the consequences for life. In Spring 2010, AMS Climate Studies was piloted to determine the most effective method to foster an understanding of some of the more difficult concepts of climate science. This study was offered as part of the NASA grant. This presentation will report the results of that study. Faculty and students from fourteen colleges and universities throughout the country evaluated the course using pre- and post-test questions, which included multiple choice and short answer questions, weekly course content evaluations, and an extensive post-course evaluation. The large majority of participating teachers rated the overall course, scientific content, internet delivery, and study materials as ‘good’, the most positive response available. Feedback from faculty members as well as suggestions from NASA reviewers were used to enhance the final version of the textbook and Investigations Manual for the Fall 2010 academic semester. Following the proven course work of AMS Weather and AMS Ocean Studies, AMS Climate Studies is a turnkey package utilizing both printed and online materials. It covers topics such as the water in Earth’s climate system, paleoclimates, along with climate change and public policy. The Investigations include 30 complimentary lab-style activities including the Conceptual Energy Model, which explores the flow of energy from space to Earth. Additionally, the course website features Current Climate Studies where students use real-world data and up-to-the-minute information regarding recent climate events. AMS Climate Studies can be presented in traditional, online, or blended environments, as best suites the instructor, student, and institution. By exploring the Earth’s climate as part of a larger Earth system, AMS Climate Studies will serve as a great primer in preparing students to become responsible, scientifically-literate participants in discussions of climate science and climate change. It maintains a strong focus on the fundamental science while still addressing many of the societal impacts that draw the attention of today’s students. AMS Climate Studies is available for full implementation at institutions nationwide.

  5. Abrupt climate change: can society cope?

    PubMed

    Hulme, Mike

    2003-09-15

    Consideration of abrupt climate change has generally been incorporated neither in analyses of climate-change impacts nor in the design of climate adaptation strategies. Yet the possibility of abrupt climate change triggered by human perturbation of the climate system is used to support the position of both those who urge stronger and earlier mitigative action than is currently being contemplated and those who argue that the unknowns in the Earth system are too large to justify such early action. This paper explores the question of abrupt climate change in terms of its potential implications for society, focusing on the UK and northwest Europe in particular. The nature of abrupt climate change and the different ways in which it has been defined and perceived are examined. Using the example of the collapse of the thermohaline circulation (THC), the suggested implications for society of abrupt climate change are reviewed; previous work has been largely speculative and has generally considered the implications only from economic and ecological perspectives. Some observations about the implications from a more social and behavioural science perspective are made. If abrupt climate change simply implies changes in the occurrence or intensity of extreme weather events, or an accelerated unidirectional change in climate, the design of adaptation to climate change can proceed within the existing paradigm, with appropriate adjustments. Limits to adaptation in some sectors or regions may be reached, and the costs of appropriate adaptive behaviour may be large, but strategy can develop on the basis of a predicted long-term unidirectional change in climate. It would be more challenging, however, if abrupt climate change implied a directional change in climate, as, for example, may well occur in northwest Europe following a collapse of the THC. There are two fundamental problems for society associated with such an outcome: first, the future changes in climate currently being anticipated and prepared for may reverse and, second, the probability of such a scenario occurring remains fundamentally unknown. The implications of both problems for climate policy and for decision making have not been researched. It is premature to argue therefore that abrupt climate change - in the sense referred to here - imposes unacceptable costs on society or the world economy, represents a catastrophic impact of climate change or constitutes a dangerous change in climate that should be avoided at all reasonable cost. We conclude by examining the implications of this contention for future research and policy formation.

  6. Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates

    PubMed Central

    Garcia, Raquel A; Burgess, Neil D; Cabeza, Mar; Rahbek, Carsten; Araújo, Miguel B

    2012-01-01

    Africa is predicted to be highly vulnerable to 21st century climatic changes. Assessing the impacts of these changes on Africa's biodiversity is, however, plagued by uncertainties, and markedly different results can be obtained from alternative bioclimatic envelope models or future climate projections. Using an ensemble forecasting framework, we examine projections of future shifts in climatic suitability, and their methodological uncertainties, for over 2500 species of mammals, birds, amphibians and snakes in sub-Saharan Africa. To summarize a priori the variability in the ensemble of 17 general circulation models, we introduce a consensus methodology that combines co-varying models. Thus, we quantify and map the relative contribution to uncertainty of seven bioclimatic envelope models, three multi-model climate projections and three emissions scenarios, and explore the resulting variability in species turnover estimates. We show that bioclimatic envelope models contribute most to variability, particularly in projected novel climatic conditions over Sahelian and southern Saharan Africa. To summarize agreements among projections from the bioclimatic envelope models we compare five consensus methodologies, which generally increase or retain projection accuracy and provide consistent estimates of species turnover. Variability from emissions scenarios increases towards late-century and affects southern regions of high species turnover centred in arid Namibia. Twofold differences in median species turnover across the study area emerge among alternative climate projections and emissions scenarios. Our ensemble of projections underscores the potential bias when using a single algorithm or climate projection for Africa, and provides a cautious first approximation of the potential exposure of sub-Saharan African vertebrates to climatic changes. The future use and further development of bioclimatic envelope modelling will hinge on the interpretation of results in the light of methodological as well as biological uncertainties. Here, we provide a framework to address methodological uncertainties and contextualize results.

  7. Limits to global and Australian temperature change this century based on expert judgment of climate sensitivity

    NASA Astrophysics Data System (ADS)

    Grose, Michael R.; Colman, Robert; Bhend, Jonas; Moise, Aurel F.

    2017-05-01

    The projected warming of surface air temperature at the global and regional scale by the end of the century is directly related to emissions and Earth's climate sensitivity. Projections are typically produced using an ensemble of climate models such as CMIP5, however the range of climate sensitivity in models doesn't cover the entire range considered plausible by expert judgment. Of particular interest from a risk-management perspective is the lower impact outcome associated with low climate sensitivity and the low-probability, high-impact outcomes associated with the top of the range. Here we scale climate model output to the limits of expert judgment of climate sensitivity to explore these limits. This scaling indicates an expanded range of projected change for each emissions pathway, including a much higher upper bound for both the globe and Australia. We find the possibility of exceeding a warming of 2 °C since pre-industrial is projected under high emissions for every model even scaled to the lowest estimate of sensitivity, and is possible under low emissions under most estimates of sensitivity. Although these are not quantitative projections, the results may be useful to inform thinking about the limits to change until the sensitivity can be more reliably constrained, or this expanded range of possibilities can be explored in a more formal way. When viewing climate projections, accounting for these low-probability but high-impact outcomes in a risk management approach can complement the focus on the likely range of projections. They can also highlight the scale of the potential reduction in range of projections, should tight constraints on climate sensitivity be established by future research.

  8. Beyond Climate Scenarios: Advancing from Changes in the Mean to a Better Understanding of Physical Processes to Enhance Stakeholder Engagement

    NASA Astrophysics Data System (ADS)

    Yates, D. N.; Kaatz, L.; Ammann, C. M.

    2017-12-01

    Great strides have been made within the climate sciences community to make Global Climate Model (GCM) output and their results as meaningful as possible to the broad community of stakeholders that might benefit from this information. Regardless of these good intentions, the fact remains that most data from GCMs are viewed as being highly uncertain and thus not actionable for water resources planning. The most common use of GCM data is informing projected future climate by use of a mean change, primarily for temperature, given the generally greater confidence in this variable. In contrast, precipitation is viewed as highly uncertain, primarily because it has not validated well against observed precipitation climatologies at local and regional levels. Simple perturbations to historical mean temperature and precipitation sequences are not as complex as using direct GCM outputs and have fewer analytical requirements. Mean climate change information can still give valuable information to water managers, providing meaningful insights and sign posts into future vulnerabilities and is an approach that is arguably deemed more actionable. These temperature and precipitation sign posts can be monitored and used as indicators when certain actions become necessary and/or until there are improvements in actionable climate science information. Recent advances in regional climate modeling (RCM), particularly those run at very high resolution and are cloud resolving, show promise in advancing our understanding of the interaction among climate variables at the regional level. Thus, in addition to exploring how changes in the mean climate (e.g. 2oC warming) might impact a water system, this bottom-up approach makes use of carefully constructed regional climate experiments that are conducted, for example, under conditions of a warmer atmosphere that can hold more moisture. One can then explore what happens to, for example, rain-snow partitioning at various elevations across a snow dominated basin, what happens to coastal rainfall intensities when ocean temperatures are warmer in the early spring, or how might the daily temperature differential (tmin/max) change?

  9. Effect of clinical vignettes on senior medical students' opinions of climate change.

    PubMed

    Prasad, Vinay; Thistlethwaite, William; Dale, William

    2011-06-01

    The consequences of climate change directly threaten human health. Some have argued that, as such, doctors have a special duty to solve climate change. Despite such recommendations, to our knowledge, there has been no previous work documenting physician attitudes on climate change, or the stability of those opinions. We invited 523 fourth-year medical students to a survey asking their opinion on climate change and their opinion regarding one of two fictional medical vignettes. In the vignettes, which are analogous to the climate change issue, students decide whether to discontinue a drug that may be adversely affecting laboratory values. In the climate change question, students are asked whether the United States should take efforts to discontinue the use of fossil fuels. Students are randomized to the order in which they receive the questions. Ninety-five percent (95% CI 89.1%-100%) of students initially asked about climate change feel the United States should take steps to curb carbon dioxide emissions, while only 73% (95% CI 57.5%-89.2%) of students respond similarly if first given an analogous patient vignette. Conversely, in all cases where a fictional medical vignette follows the climate change question, students are more likely to cease using a potentially harmful agent (66% CI 53.5%-71.8% vs. 52% CI 43.3%-67.1%). Our results suggest that student physician attitudes to climate change are mutable. Priming students into "medical mode" may alter their opinions on the scientific merit of nonmedical issues, and may be a vestige of a hidden medical curriculum. Further studies should explore the interrelationship between other sociopolitical beliefs and medical decision making.

  10. Efficient design based on perturbed parameter ensembles to identify plausible and diverse variants of a model for climate change projections

    NASA Astrophysics Data System (ADS)

    Karmalkar, A.; Sexton, D.; Murphy, J.

    2017-12-01

    We present exploratory work towards developing an efficient strategy to select variants of a state-of-the-art but expensive climate model suitable for climate projection studies. The strategy combines information from a set of idealized perturbed parameter ensemble (PPE) and CMIP5 multi-model ensemble (MME) experiments, and uses two criteria as basis to select model variants for a PPE suitable for future projections: a) acceptable model performance at two different timescales, and b) maintaining diversity in model response to climate change. We demonstrate that there is a strong relationship between model errors at weather and climate timescales for a variety of key variables. This relationship is used to filter out parts of parameter space that do not give credible simulations of historical climate, while minimizing the impact on ranges in forcings and feedbacks that drive model responses to climate change. We use statistical emulation to explore the parameter space thoroughly, and demonstrate that about 90% can be filtered out without affecting diversity in global-scale climate change responses. This leads to identification of plausible parts of parameter space from which model variants can be selected for projection studies.

  11. Exploring uncertainty of Amazon dieback in a perturbed parameter Earth system ensemble.

    PubMed

    Boulton, Chris A; Booth, Ben B B; Good, Peter

    2017-12-01

    The future of the Amazon rainforest is unknown due to uncertainties in projected climate change and the response of the forest to this change (forest resiliency). Here, we explore the effect of some uncertainties in climate and land surface processes on the future of the forest, using a perturbed physics ensemble of HadCM3C. This is the first time Amazon forest changes are presented using an ensemble exploring both land vegetation processes and physical climate feedbacks in a fully coupled modelling framework. Under three different emissions scenarios, we measure the change in the forest coverage by the end of the 21st century (the transient response) and make a novel adaptation to a previously used method known as "dry-season resilience" to predict the long-term committed response of the forest, should the state of the climate remain constant past 2100. Our analysis of this ensemble suggests that there will be a high chance of greater forest loss on longer timescales than is realized by 2100, especially for mid-range and low emissions scenarios. In both the transient and predicted committed responses, there is an increasing uncertainty in the outcome of the forest as the strength of the emissions scenarios increases. It is important to note however, that very few of the simulations produce future forest loss of the magnitude previously shown under the standard model configuration. We find that low optimum temperatures for photosynthesis and a high minimum leaf area index needed for the forest to compete for space appear to be precursors for dieback. We then decompose the uncertainty into that associated with future climate change and that associated with forest resiliency, finding that it is important to reduce the uncertainty in both of these if we are to better determine the Amazon's outcome. © 2017 John Wiley & Sons Ltd.

  12. Impacts of land use, restoration, and climate change on tropical peat carbon stocks in the twenty-first century: implications for climate mitigation

    Treesearch

    Matthew W. Warren; Steve Frolking; Zhaohua Dai; Sofyan Kurnianto

    2016-01-01

    The climate mitigation potential of tropical peatlands has gained increased attention as Southeast Asian peatlands are being deforested, drained and burned at very high rates, causing globally significant carbon dioxide (CO2) emissions to the atmosphere. We used a process-based dynamic tropical peatland model to explore peat carbon (C) dynamics...

  13. Forecasted Impact of Climate Change on Infectious Disease and Health Security in Hawaii by 2050.

    PubMed

    Canyon, Deon V; Speare, Rick; Burkle, Frederick M

    2016-12-01

    Climate change is expected to cause extensive shifts in the epidemiology of infectious and vector-borne diseases. Scenarios on the effects of climate change typically attribute altered distribution of communicable diseases to a rise in average temperature and altered incidence of infectious diseases to weather extremes. Recent evaluations of the effects of climate change on Hawaii have not explored this link. It may be expected that Hawaii's natural geography and robust water, sanitation, and health care infrastructure renders residents less vulnerable to many threats that are the focus on smaller, lesser developed, and more vulnerable Pacific islands. In addition, Hawaii's communicable disease surveillance and response system can act rapidly to counter increases in any disease above baseline and to redirect resources to deal with changes, particularly outbreaks due to exotic pathogens. The evidence base examined in this article consistently revealed very low climate sensitivity with respect to infectious and mosquito-borne diseases. A community resilience model is recommended to increase adaptive capacity for all possible climate change impacts rather an approach that focuses specifically on communicable diseases. (Disaster Med Public Health Preparedness. 2016;10:797-804).

  14. Effects of changing climate on European stream invertebrate communities: A long-term data analysis.

    PubMed

    Jourdan, Jonas; O'Hara, Robert B; Bottarin, Roberta; Huttunen, Kaisa-Leena; Kuemmerlen, Mathias; Monteith, Don; Muotka, Timo; Ozoliņš, Dāvis; Paavola, Riku; Pilotto, Francesca; Springe, Gunta; Skuja, Agnija; Sundermann, Andrea; Tonkin, Jonathan D; Haase, Peter

    2018-04-15

    Long-term observations on riverine benthic invertebrate communities enable assessments of the potential impacts of global change on stream ecosystems. Besides increasing average temperatures, many studies predict greater temperature extremes and intense precipitation events as a consequence of climate change. In this study we examined long-term observation data (10-32years) of 26 streams and rivers from four ecoregions in the European Long-Term Ecological Research (LTER) network, to investigate invertebrate community responses to changing climatic conditions. We used functional trait and multi-taxonomic analyses and combined examinations of general long-term changes in communities with detailed analyses of the impact of different climatic drivers (i.e., various temperature and precipitation variables) by focusing on the response of communities to climatic conditions of the previous year. Taxa and ecoregions differed substantially in their response to climate change conditions. We did not observe any trend of changes in total taxonomic richness or overall abundance over time or with increasing temperatures, which reflects a compensatory turnover in the composition of communities; sensitive Plecoptera decreased in response to warmer years and Ephemeroptera increased in northern regions. Invasive species increased with an increasing number of extreme days which also caused an apparent upstream community movement. The observed changes in functional feeding group diversity indicate that climate change may be associated with changes in trophic interactions within aquatic food webs. These findings highlight the vulnerability of riverine ecosystems to climate change and emphasize the need to further explore the interactive effects of climate change variables with other local stressors to develop appropriate conservation measures. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Glacial-interglacial climate changes recorded by debris flow fan deposits, Owens Valley, California

    NASA Astrophysics Data System (ADS)

    D'Arcy, Mitch; Roda-Boluda, Duna C.; Whittaker, Alexander C.

    2017-08-01

    It is hotly debated whether and how climate changes are recorded by terrestrial stratigraphy. Basin sediments produced by catchment-alluvial fan systems may record past climate over a variety of timescales, and could offer unique information about how climate controls sedimentation. Unfortunately, there are fundamental uncertainties about how climatic variables such as rainfall and temperature translate into sedimentological signals. Here, we examine 35 debris flow fan surfaces in Owens Valley, California, that record deposition throughout the past 125,000 years, during which climate has varied significantly. We show that the last full glacial-interglacial cycle is recorded with high fidelity by the grain size distributions of the debris flow deposits. These flows transported finer sediment during the cooler glacial climate, and became systematically coarser-grained as the climate warmed and dried. We explore the physical mechanisms that might explain this signal, and rule out changes in sediment supply through time. Instead, we propose that grain size records past changes in storm intensity, which is responsible for debris flow initiation in this area and is decoupled from average rainfall rates. This is supported by an exponential Clausius-Clapeyron-style scaling between grain size and temperature, and also reconciles with climate dynamics and the initiation of debris flows. The fact that these alluvial fans exhibit a strong, sustained sensitivity to orbital climate changes sheds new light on how eroding landscapes and their sedimentary products respond to climatic forcing. Finally, our findings highlight the importance of threshold-controlled events, such as storms and debris flows, in driving erosion and sedimentation at the Earth's surface in response to climate change.

  16. Farmers' Perceived Risks of Climate Change and Influencing Factors: A Study in the Mekong Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Le Dang, Hoa; Li, Elton; Nuberg, Ian; Bruwer, Johan

    2014-08-01

    Many countries are confronting climate change that threatens agricultural production and farmers' lives. Farmers' perceived risks of climate change and factors influencing those perceived risks are critical to their adaptive behavior and well-planned adaptation strategies. However, there is limited understanding of these issues. In this paper, we attempt to quantitatively measure farmers' perceived risks of climate change and explore the influences of risk experience, information, belief in climate change, and trust in public adaptation to those perceived risks. Data are from structured interviews with 598 farmers in the Mekong Delta. The study shows that perceived risks to production, physical health, and income dimensions receive greater priority while farmers pay less attention to risks to happiness and social relationships. Experiences of the events that can be attributed to climate change increase farmers' perceived risks. Information variables can increase or decrease perceived risks, depending on the sources of information. Farmers who believe that climate change is actually happening and influencing their family's lives, perceive higher risks in most dimensions. Farmers who think that climate change is not their concern but the government's, perceive lower risks to physical health, finance, and production. As to trust in public adaptation, farmers who believe that public adaptive measures are well co-ordinated, perceive lower risks to production and psychology. Interestingly, those who believe that the disaster warning system is working well, perceive higher risks to finance, production, and social relationships. Further attention is suggested for the quality, timing, and channels of information about climate change and adaptation.

  17. Farmers' perceived risks of climate change and influencing factors: a study in the Mekong Delta, Vietnam.

    PubMed

    Le Dang, Hoa; Li, Elton; Nuberg, Ian; Bruwer, Johan

    2014-08-01

    Many countries are confronting climate change that threatens agricultural production and farmers' lives. Farmers' perceived risks of climate change and factors influencing those perceived risks are critical to their adaptive behavior and well-planned adaptation strategies. However, there is limited understanding of these issues. In this paper, we attempt to quantitatively measure farmers' perceived risks of climate change and explore the influences of risk experience, information, belief in climate change, and trust in public adaptation to those perceived risks. Data are from structured interviews with 598 farmers in the Mekong Delta. The study shows that perceived risks to production, physical health, and income dimensions receive greater priority while farmers pay less attention to risks to happiness and social relationships. Experiences of the events that can be attributed to climate change increase farmers' perceived risks. Information variables can increase or decrease perceived risks, depending on the sources of information. Farmers who believe that climate change is actually happening and influencing their family's lives, perceive higher risks in most dimensions. Farmers who think that climate change is not their concern but the government's, perceive lower risks to physical health, finance, and production. As to trust in public adaptation, farmers who believe that public adaptive measures are well co-ordinated, perceive lower risks to production and psychology. Interestingly, those who believe that the disaster warning system is working well, perceive higher risks to finance, production, and social relationships. Further attention is suggested for the quality, timing, and channels of information about climate change and adaptation.

  18. Integrating research tools to support the management of social-ecological systems under climate change

    USGS Publications Warehouse

    Miller, Brian W.; Morisette, Jeffrey T.

    2014-01-01

    Developing resource management strategies in the face of climate change is complicated by the considerable uncertainty associated with projections of climate and its impacts and by the complex interactions between social and ecological variables. The broad, interconnected nature of this challenge has resulted in calls for analytical frameworks that integrate research tools and can support natural resource management decision making in the face of uncertainty and complex interactions. We respond to this call by first reviewing three methods that have proven useful for climate change research, but whose application and development have been largely isolated: species distribution modeling, scenario planning, and simulation modeling. Species distribution models provide data-driven estimates of the future distributions of species of interest, but they face several limitations and their output alone is not sufficient to guide complex decisions for how best to manage resources given social and economic considerations along with dynamic and uncertain future conditions. Researchers and managers are increasingly exploring potential futures of social-ecological systems through scenario planning, but this process often lacks quantitative response modeling and validation procedures. Simulation models are well placed to provide added rigor to scenario planning because of their ability to reproduce complex system dynamics, but the scenarios and management options explored in simulations are often not developed by stakeholders, and there is not a clear consensus on how to include climate model outputs. We see these strengths and weaknesses as complementarities and offer an analytical framework for integrating these three tools. We then describe the ways in which this framework can help shift climate change research from useful to usable.

  19. An Ill Wind? Climate Change, Migration, and Health

    PubMed Central

    Barnett, Jon

    2012-01-01

    Background: Climate change is projected to cause substantial increases in population movement in coming decades. Previous research has considered the likely causal influences and magnitude of such movements and the risks to national and international security. There has been little research on the consequences of climate-related migration and the health of people who move. Objectives: In this review, we explore the role that health impacts of climate change may play in population movements and then examine the health implications of three types of movements likely to be induced by climate change: forcible displacement by climate impacts, resettlement schemes, and migration as an adaptive response. Methods: This risk assessment draws on research into the health of refugees, migrants, and people in resettlement schemes as analogs of the likely health consequences of climate-related migration. Some account is taken of the possible modulation of those health risks by climate change. Discussion: Climate-change–related migration is likely to result in adverse health outcomes, both for displaced and for host populations, particularly in situations of forced migration. However, where migration and other mobility are used as adaptive strategies, health risks are likely to be minimized, and in some cases there will be health gains. Conclusions: Purposeful and timely policy interventions can facilitate the mobility of people, enhance well-being, and maximize social and economic development in both places of origin and places of destination. Nevertheless, the anticipated occurrence of substantial relocation of groups and communities will underscore the fundamental seriousness of human-induced climate change. PMID:22266739

  20. ESA's Earth Observation Programmes in the Changing Anthropocene

    NASA Astrophysics Data System (ADS)

    Liebig, Volker

    2016-07-01

    The intervention will present ESA's Earth Observation programmes and their relevance to studying the anthropocene. ESA's Earth observation missions are mainly grouped into three categories: The Sentinel satellites in the context of the European Copernicus Programme, the scientific Earth Explorers and the meteorological missions. Developments, applications and scientific results for the different mission types will be addressed, along with overall trends and strategies. The Earth Explorers, who form the science and research element of ESA's Living Planet Programme, focus on the atmosphere, biosphere, hydrosphere, cryosphere and Earth's interior. The Earth Explorers also aim at learning more about the interactions between these components and the impact that human activity is having on natural Earth processes. The Sentinel missions provide accurate, timely, long term and uninterrupted data to provide key information services, improving the way the environment is managed, and helping to mitigate the effects of climate change. The operational Sentinel satellites can also be exploited for scientific studies of the anthropocene. In the anthropocene human activities affect the whole planet and space is a very efficient means to measure their impact, but for relevant endeavours to be successful they can only be carried out in international cooperation. ESA maintains long-standing partnerships with other space agencies and institutions worldwide. In running its Earth observation programmes, ESA responds to societal needs and challenges and to requirements resulting from political priorities set by decision makers. Activities related to Climate Change are a prime example. Within ESA's Climate Change Initiative, 13 Essential Climate Variables are constantly monitored to create a long-term record of key geophysical parameters.

  1. Countering Climate Confusion in the Classroom: New Methods and Initiatives

    NASA Astrophysics Data System (ADS)

    McCaffrey, M.; Berbeco, M.; Reid, A. H.

    2014-12-01

    Politicians and ideologues blocking climate education through legislative manipulation. Free marketeers promoting the teaching of doubt and controversy to head off regulation. Education standards and curricula that skim over, omit, or misrepresent the causes, effects, risks and possible responses to climate change. Teachers who unknowingly foster confusion by presenting "both sides" of a phony scientific controversy. All of these contribute to dramatic differences in the quality and quantity of climate education received by U.S. students. Most U.S. adults and teens fail basic quizzes on energy and climate basics, in large part, because climate science has never been fully accepted as a vital component of a 21st-century science education. Often skipped or skimmed over, human contributions to climate change are sometimes taught as controversy or through debate, perpetuating a climate of confusion in many classrooms. This paper will review recent history of opposition to climate science education, and explore initial findings from a new survey of science teachers on whether, where and how climate change is being taught. It will highlight emerging effective pedagogical practices identified in McCaffrey's Climate Smart & Energy Wise, including the role of new initiatives such as the Next Generation Science Standards and Green Schools, and detail efforts of the Science League of America in countering denial and doubt so that educators can teach consistently and confidently about climate change.

  2. Climate mitigation and the future of tropical landscapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, Allison M.; Calvin, Katherine V.; Chini, Louise Parsons

    2010-11-16

    Land use change to meet 21st Century demands for food, fuel, and fiber will occur in the context of both a changing climate as well as societal efforts to mitigate climate change. This changing natural and human environment will have large consequences for forest resources, terrestrial carbon storage and emissions, and food and energy crop production over the next century. Any climate change mitigation policies enacted will change the environment under which land-use decisions are made and alter global land use change patterns. Here we use the GCAM integrated assessment model to explore how climate mitigation policies that achieve amore » climate stabilization at 4.5 W m-2 radiative forcing in 2100 and value carbon in terrestrial ecosystems interact with future agricultural productivity and food and energy demands to influence land use in the tropics. The regional land use results are downscaled from GCAM regions to produce gridded maps of tropical land use change. We find that tropical forests are preserved only in cases where a climate mitigation policy that values terrestrial carbon is in place, and crop productivity growth continues throughout the century. Crop productivity growth is also necessary to avoid large scale deforestation globally and enable the production of bioenergy crops. The terrestrial carbon pricing assumptions in GCAM are effective at avoiding deforestation even when cropland must expand to meet future food demand.« less

  3. Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture.

    PubMed

    Boxall, Alistair B A; Hardy, Anthony; Beulke, Sabine; Boucard, Tatiana; Burgin, Laura; Falloon, Peter D; Haygarth, Philip M; Hutchinson, Thomas; Kovats, R Sari; Leonardi, Giovanni; Levy, Leonard S; Nichols, Gordon; Parsons, Simon A; Potts, Laura; Stone, David; Topp, Edward; Turley, David B; Walsh, Kerry; Wellington, Elizabeth M H; Williams, Richard J

    2009-04-01

    Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. In this review, we used expert input and considered literature on climate change; health effects resulting from exposure to pathogens and chemicals arising from agriculture; inputs of chemicals and pathogens to agricultural systems; and human exposure pathways for pathogens and chemicals in agricultural systems. We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes.

  4. Implications of climate change predictions for UK cropping and prospects for possible mitigation: a review of challenges and potential responses.

    PubMed

    Rial-Lovera, Karen; Davies, W Paul; Cannon, Nicola D

    2017-01-01

    The UK, like the rest of the world, is confronting the impacts of climate change. Further changes are expected and they will have a profound effect on agriculture. Future crop production will take place against increasing CO 2 levels and temperatures, decreasing water availability, and increasing frequency of extreme weather events. This review contributes to research on agricultural practices for climate change, but with a more regional perspective. The present study explores climate change impacts on UK agriculture, particularly food crop production, and how to mitigate and build resilience to climate change by adopting and/or changing soil management practices, including fertilisation and tillage systems, new crop adoption and variety choice. Some mitigation can be adopted in the shorter term, such as changes in crop type and reduction in fertiliser use, but in other cases the options will need greater investment and longer adaptation period. This is the case for new crop variety development and deployment, and possible changes to soil cultivations. Uncertainty of future weather conditions, particularly extreme weather, also affect decision-making for adoption of practices by farmers to ensure more stable and sustainable production. Even when there is real potential for climate change mitigation, it can sometimes be more difficult to accomplish with certainty on-farm. Better future climate projections and long-term investments will be required to create more resilient agricultural systems in the UK in the face of climate change challenges. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Climate and Management Controls on Forest Growth and Forest Carbon Balance in the Western United States

    NASA Astrophysics Data System (ADS)

    Kelsey, Katharine Cashman

    Climate change is resulting in a number of rapid changes in forests worldwide. Forests comprise a critical component of the global carbon cycle, and therefore climate-induced changes in forest carbon balance have the potential to create a feedback within the global carbon cycle and affect future trajectories of climate change. In order to further understanding of climate-driven changes in forest carbon balance, I (1) develop a method to improve spatial estimates forest carbon stocks, (2) investigate the effect of climate change and forest management actions on forest recovery and carbon balance following disturbance, and (3) explore the relationship between climate and forest growth, and identify climate-driven trends in forest growth through time, within San Juan National Forest in southwest Colorado, USA. I find that forest carbon estimates based on texture analysis from LandsatTM imagery improve regional forest carbon maps, and this method is particularly useful for estimating carbon stocks in forested regions affected by disturbance. Forest recovery from disturbance is also a critical component of future forest carbon stocks, and my results indicate that both climate and forest management actions have important implications for forest recovery and carbon dynamics following disturbance. Specifically, forest treatments that use woody biomass removed from the forest for electricity production can reduce carbon emissions to the atmosphere, but climate driven changes in fire severity and forest recovery can have the opposite effect on forest carbon stocks. In addition to the effects of disturbance and recovery on forest condition, I also find that climate change is decreasing rates of forest growth in some species, likely in response to warming summer temperatures. These growth declines could result in changes of vegetation composition, or in extreme cases, a shift in vegetation type that would alter forest carbon storage. This work provides insight into both current and future changes in forest carbon balance as a consequence of climate change and forest management in the western US.

  6. Individual-scale inference to anticipate climate-change vulnerability of biodiversity.

    PubMed

    Clark, James S; Bell, David M; Kwit, Matthew; Stine, Anne; Vierra, Ben; Zhu, Kai

    2012-01-19

    Anticipating how biodiversity will respond to climate change is challenged by the fact that climate variables affect individuals in competition with others, but interest lies at the scale of species and landscapes. By omitting the individual scale, models cannot accommodate the processes that determine future biodiversity. We demonstrate how individual-scale inference can be applied to the problem of anticipating vulnerability of species to climate. The approach places climate vulnerability in the context of competition for light and soil moisture. Sensitivities to climate and competition interactions aggregated from the individual tree scale provide estimates of which species are vulnerable to which variables in different habitats. Vulnerability is explored in terms of specific demographic responses (growth, fecundity and survival) and in terms of the synthetic response (the combination of demographic rates), termed climate tracking. These indices quantify risks for individuals in the context of their competitive environments. However, by aggregating in specific ways (over individuals, years, and other input variables), we provide ways to summarize and rank species in terms of their risks from climate change.

  7. Visualizing and communicating climate change using the ClimateWizard: decision support and education through web-based analysis and mapping

    NASA Astrophysics Data System (ADS)

    Girvetz, E. H.; Zganjar, C.; Raber, G. T.; Maurer, E. P.; Duffy, P.

    2009-12-01

    Virtually all fields of study and parts of society—from ecological science and nature conservation, to global development, multinational corporations, and government bodies—need to know how climate change has and may impact specific locations of interest. Our ability to respond to climate change depends on having convenient tools that make past and projected climate trends available to planners, managers, scientists and the general public, at scales ranging from global to local scales. Web-mapping applications provide an effective platform for communicating climate change impacts in specific geographic areas of interest to the public. Here, we present one such application, the ClimateWizard, that allows users to analyze, visualize and explore climate change maps for specific geographic areas of interest throughout the world (http://ClimateWizard.org). Built on Web 2.0 web-services (SOAP), Google Maps mash-up, and cloud computing technologies, the ClimateWizard analyzes large databases of climate information located on remote servers to create synthesized information and useful products tailored to geographic areas of interest (e.g. maps, graphs, tables, GIS layers). We demonstrate how the ClimateWizard can be used to assess projected changes to temperature and precipitation across all states in the contiguous United States and all countries of the world using statistically downscaled general circulation models from the CMIP3 dataset. We then go on to show how ClimateWizard can be used to analyze changes to other climate related variables, such as moisture stress and water production. Finally, we discuss how this tool can be adapted to develop a wide range of web-based tools that are targeted at informing specific audiences—from scientific research and natural resource management, to K-12 and higher education—about how climate change may affect different aspects of human and natural systems.

  8. Exploring hydrological uncertainties and thresholds of a drought vulnerable region in Austria

    NASA Astrophysics Data System (ADS)

    Hohmann, Clara; Kirchengast, Gottfried; Birk, Steffen

    2015-04-01

    In the region of South-Eastern Styria, Austria, a strong increase of summer temperature over the last decades was recognized by Kabas et. al. (Meteorol. Z./ 20 (3), 277-289, 2011). With climate change the temperature will further increase, so that the possibility for more frequent droughts in summer will rise. This leads to the question if, for example, a steppe climate similar to that in the neighboring Hungarian Pussta can evolve in this region. Drastic climatic changes will be accompanied by strong changes in the hydrological balance. Since the region is strongly influenced by agriculture and other non-climatic factors as well, these human impacts on the water cycle must be considered. The Wegener Center, University of Graz is studying the Raab catchment in South-Eastern Styria, Austria, as an example of a small catchment of the climate-sensitive southern Alpine foothills. The available data indicate that the region is vulnerable to droughts in summer, signalled by a strong temperature increase over the recent decades and a tendency of precipitation decrease. The main goals of this study are to explore how the water balance in the region is going to change in the future, what the most significant uncertainties are and where there might be thresholds towards drastic changes. In this poster we report on the first steps, which is to build up a hydrological model for the Styrian Raab valley based on the Water balance Simulation Model (WaSiM) of ETH Zurich, Switzerland. Within the calibration the focus is on low flow conditions in summer. Given that the model shows good results for the well observed recent decades, a sensitivity analysis for changes in specific (control) parameters of the surface water balance is conducted. This will include anomalies of temperature and precipitation, water use for irrigation, and others. This enables to explore how warmer temperatures or changes in irrigation and crops affect the catchment. Model analyses do not only focus on flow conditions but also on internal variables, such as the soil moisture, which has a significant impact on the water balance and the drought vulnerability of the region.

  9. Attribution of maize yield increase in China to climate change and technological advancement between 1980 and 2010

    NASA Astrophysics Data System (ADS)

    Guo, Jianping; Zhao, Junfang; Wu, Dingrong; Mu, Jia; Xu, Yanhong

    2014-12-01

    Crop yields are affected by climate change and technological advancement. Objectively and quantitatively evaluating the attribution of crop yield change to climate change and technological advancement will ensure sustainable development of agriculture under climate change. In this study, daily climate variables obtained from 553 meteorological stations in China for the period 1961-2010, detailed observations of maize from 653 agricultural meteorological stations for the period 1981-2010, and results using an Agro-Ecological Zones (AEZ) model, are used to explore the attribution of maize (Zea mays L.) yield change to climate change and technological advancement. In the AEZ model, the climatic potential productivity is examined through three step-by-step levels: photosynthetic potential productivity, photosynthetic thermal potential productivity, and climatic potential productivity. The relative impacts of different climate variables on climatic potential productivity of maize from 1961 to 2010 in China are then evaluated. Combined with the observations of maize, the contributions of climate change and technological advancement to maize yield from 1981 to 2010 in China are separated. The results show that, from 1961 to 2010, climate change had a significant adverse impact on the climatic potential productivity of maize in China. Decreased radiation and increased temperature were the main factors leading to the decrease of climatic potential productivity. However, changes in precipitation had only a small effect. The maize yields of the 14 main planting provinces in China increased obviously over the past 30 years, which was opposite to the decreasing trends of climatic potential productivity. This suggests that technological advancement has offset the negative effects of climate change on maize yield. Technological advancement contributed to maize yield increases by 99.6%-141.6%, while climate change contribution was from -41.4% to 0.4%. In particular, the actual maize yields in Shandong, Henan, Jilin, and Inner Mongolia increased by 98.4, 90.4, 98.7, and 121.5 kg hm-2 yr-1 over the past 30 years, respectively. Correspondingly, the maize yields affected by technological advancement increased by 113.7, 97.9, 111.5, and 124.8 kg hm-2 yr-1, respectively. On the contrary, maize yields reduced markedly under climate change, with an average reduction of -9.0 kg hm-2 yr-1. Our findings highlight that agronomic technological advancement has contributed dominantly to maize yield increases in China in the past three decades.

  10. Whitebark pine (Pinus albicaulis) assisted migration trial

    Treesearch

    Sierra C. McLane; Sally N. Aitken

    2011-01-01

    Assisted migration - the translocation of a species into a climatically-suitable location outside of its current range - has been proposed as a means of saving vulnerable species from extinction as temperatures rise due to climate change. We explore this controversial technique using the keystone wildlife symbiote and ecosystem engineer, whitebark pine (Pinus...

  11. NASA Earth Exchange (NEX) Supporting Analyses for National Climate Assessments

    NASA Astrophysics Data System (ADS)

    Nemani, R. R.; Thrasher, B. L.; Wang, W.; Lee, T. J.; Melton, F. S.; Dungan, J. L.; Michaelis, A.

    2015-12-01

    The NASA Earth Exchange (NEX) is a collaborative computing platform that has been developed with the objective of bringing scientists together with the software tools, massive global datasets, and supercomputing resources necessary to accelerate research in Earth systems science and global change. NEX supports several research projects that are closely related with the National Climate Assessment including the generation of high-resolution climate projections, identification of trends and extremes in climate variables and the evaluation of their impacts on regional carbon/water cycles and biodiversity, the development of land-use management and adaptation strategies for climate-change scenarios, and even the exploration of climate mitigation through geo-engineering. Scientists also use the large collection of satellite data on NEX to conduct research on quantifying spatial and temporal changes in land surface processes in response to climate and land-cover-land-use changes. Researchers, leveraging NEX's massive compute/storage resources, have used statistical techniques to downscale the coarse-resolution CMIP5 projections to fulfill the demands of the community for a wide range of climate change impact analyses. The DCP-30 (Downscaled Climate Projections at 30 arcsecond) for the conterminous US at monthly, ~1km resolution and the GDDP (Global Daily Downscaled Projections) for the entire world at daily, 25km resolution are now widely used in climate research and applications, as well as for communicating climate change. In order to serve a broader community, the NEX team in collaboration with Amazon, Inc, created the OpenNEX platform. OpenNEX provides ready access to NEX data holdings, including the NEX-DCP30 and GDDP datasets along with a number of pertinent analysis tools and workflows on the AWS infrastructure in the form of publicly available, self contained, fully functional Amazon Machine Images (AMI's) for anyone interested in global climate change.

  12. Climate Change, Disaster and Sentiment Analysis over Social Media Mining

    NASA Astrophysics Data System (ADS)

    Lee, J.; McCusker, J. P.; McGuinness, D. L.

    2012-12-01

    Accelerated climate change causes disasters and disrupts people living all over the globe. Disruptive climate events are often reflected in expressed sentiments of the people affected. Monitoring changes in these sentiments during and after disasters can reveal relationships between climate change and mental health. We developed a semantic web tool that uses linked data principles and semantic web technologies to integrate data from multiple sources and analyze them together. We are converting statistical data on climate change and disaster records obtained from the World Bank data catalog and the International Disaster Database into a Resource Description Framework (RDF) representation that was annotated with the RDF Data Cube vocabulary. We compare these data with a dataset of tweets that mention terms from the Emotion Ontology to get a sense of how disasters can impact the affected populations. This dataset is being gathered using an infrastructure we developed that extracts term uses in Twitter with controlled vocabularies. This data was also converted to RDF structure so that statistical data on the climate change and disasters is analyzed together with sentiment data. To visualize and explore relationship of the multiple data across the dimensions of time and location, we use the qb.js framework. We are using this approach to investigate the social and emotional impact of climate change. We hope that this will demonstrate the use of social media data as a valuable source of understanding on global climate change.

  13. Rainfall and temperatures changes have confounding impacts on Phytophthora cinnamomi occurrence risk in the southwestern USA under climate change scenarios.

    PubMed

    Thompson, Sally E; Levin, Simon; Rodriguez-Iturbe, Ignacio

    2014-04-01

    Global change will simultaneously impact many aspects of climate, with the potential to exacerbate the risks posed by plant pathogens to agriculture and the natural environment; yet, most studies that explore climate impacts on plant pathogen ranges consider individual climatic factors separately. In this study, we adopt a stochastic modeling approach to address multiple pathways by which climate can constrain the range of the generalist plant pathogen Phytophthora cinnamomi (Pc): through changing winter soil temperatures affecting pathogen survival; spring soil temperatures and thus pathogen metabolic rates; and changing spring soil moisture conditions and thus pathogen growth rates through host root systems. We apply this model to the southwestern USA for contemporary and plausible future climate scenarios and evaluate the changes in the potential range of Pc. The results indicate that the plausible range of this pathogen in the southwestern USA extends over approximately 200,000 km(2) under contemporary conditions. While warming temperatures as projected by the IPCC A2 and B1 emissions scenarios greatly expand the range over which the pathogen can survive winter, projected reductions in spring rainfall reduce its feasible habitat, leading to spatially complex patterns of changing risk. The study demonstrates that temperature and rainfall changes associated with possible climate futures in the southwestern USA have confounding impacts on the range of Pc, suggesting that projections of future pathogen dynamics and ranges should account for multiple pathways of climate-pathogen interaction. © 2014 John Wiley & Sons Ltd.

  14. Assessing Potential Future Carbon Dynamics with Climate Change and Fire Management in a Mountainous Landscape on the Olympic Peninsula, Washington, USA

    NASA Astrophysics Data System (ADS)

    Kennedy, R. S.

    2010-12-01

    Forests of the mountainous landscapes of the maritime Pacific Northwestern USA may have high carbon sequestration potential via their high productivity and moderate to infrequent fire regimes. With climate change, there may be shifts in incidence and severity of fire, especially in the drier areas of the region, via changes to forest productivity and hydrology, and consequent effects to C sequestration and forest structure. To explore this issue, I assessed potential effects of fire management (little fire suppression/wildland fire management/highly effective fire suppression) under two climate change scenarios on future C sequestration dynamics (amounts and spatial pattern) in Olympic National Park, WA, over a 500-year simulation period. I used the simulation platform FireBGCv2, which contains a mechanistic, individual tree succession model, a spatially explicit climate-based biophysical model that uses daily weather data, and a spatially explicit fire model incorporating ignition, spread, and effects on ecosystem components. C sequestration patterns varied over time and spatial and temporal patterns differed somewhat depending on the climate change scenario applied and the fire management methods employed. Under the more extreme climate change scenario with little fire suppression, fires were most frequent and severe and C sequestration decreased. General trends were similar under the more moderate climate change scenario, as compared to current climate, but spatial patterns differed. Both climate change scenarios under highly effective fire suppression showed about 50% of starting total C after the initial transition phase, whereas with 10% fire suppression both scenarios exhibited about 10% of starting amounts. Areas of the landscape that served as refugia for older forest under increasing frequency of high severity fire were also hotspots for C sequestration in a landscape experiencing increasing frequency of disturbance with climate change.

  15. Predictive Seagrass Habitat Model

    EPA Science Inventory

    Restoration of ecosystem services provided by seagrass habitats in estuaries requires a firm understanding of the modes of action of multiple interacting stressors including nutrients, climate change, coastal land-use change, and habitat modification. We explored the application...

  16. Regional Climate Models as a Tool for Assessing Changes in the Laurentian Great Lakes Net Basin Supply

    NASA Astrophysics Data System (ADS)

    Music, B.; Mailhot, E.; Nadeau, D.; Irambona, C.; Frigon, A.

    2017-12-01

    Over the last decades, there has been growing concern about the effects of climate change on the Great Lakes water supply. Most of the modelling studies focusing on the Laurentian Great Lakes do not allow two-way exchanges of water and energy between the atmosphere and the underlying surface, and therefore do not account for important feedback mechanisms. Moreover, energy budget constraint at the land surface is not usually taken into account. To address this issue, several recent climate change studies used high resolution Regional Climate Models (RCMs) for evaluating changes in the hydrological regime of the Great Lakes. As RCMs operate on the concept of water and energy conservation, an internal consistency of the simulated energy and water budget components is assured. In this study we explore several recently generated Regional Climate Model (RCM) simulations to investigate the Great Lakes' Net Basin Supply (NBS) in a changing climate. These include simulations of the Canadian Regional Climate Model (CRCM5) supplemented by simulations from several others RCMs participating to the North American CORDEX project (CORDEX-NA). The analysis focuses on the NBS extreme values under nonstationary conditions. The results are expected to provide useful information to the industries in the Great Lakes that all need to include accurate climate change information in their long-term strategy plans to better anticipate impacts of low and/or high water levels.

  17. Bringing hands-on exploration of air quality technology to the ...

    EPA Pesticide Factsheets

    This is an educational presentation to the OAQPS Teachers Workshop on the PM sensor kit and other related air technology educational activities. This workshop for teachers and other educators includes topics, such as: how EPA manages air quality, the environmental health effects and risks of air pollution, climate change, and sustainability solutions and more. Attendees will also build a DYI Sensor kit and explore energy choices and the environment when they play the interactive board game developed by EPA scientists called Generate! This workshop for teachers and other educators includes topics, such as: how EPA manages air quality, the environmental health effects and risks of air pollution, climate change and sustainability and more. Attendees will also build a DYI Sensor kit and explore energy choices and the environment when they play the interactive board game developed by EPA scientists called Generate!

  18. Climate and land-use change in wetlands: A dedication

    USGS Publications Warehouse

    Middleton, Beth A.

    2017-01-01

    Future climate and land-use change may wreak havoc on wetlands, with the potential to erode their values as harbors for biota and providers of human services. Wetlands are important to protect, particularly because these provide a variety of ecosystem services including wildlife habitat, water purification, flood storage, and storm protection (Mitsch, Bernal, and Hernandez 2015). Without healthy wetlands, future generations may become increasingly less in harmony with the sustainability of the Earth. To this end, the thematic feature on climate and land-use change in wetlands explores the critical role of wetlands in the overall health and well-being of humans and our planet. Our special feature contributes to the understanding of the idea that the health of natural ecosystems and humans are linked and potentially stressed by climate change and land-use change (Horton and Lo 2015; McDonald 2015). In particular, this special issue considers the important role of wetlands in the environment, and how land-use and environmental change might affect them in the future.

  19. Scenario Planning Provides a Framework for Climate Change Adaptation in the National Park Service

    NASA Astrophysics Data System (ADS)

    Welling, L. A.

    2012-12-01

    Resource management decisions must be based on future expectations. Abundant evidence suggests climate change will have highly consequential effects on the Nation's natural and cultural resources, but specific impacts are difficult to accurately predict. This situation of too much information but not enough specificity can often lead to either paralysis or denial for decision makers. Scenario planning is an emerging tool for climate change adaptation that provides a structured framework for identifying and exploring critical drivers of change and their uncertain outcomes. Since 2007, the National Park Service (NPS) has been working with its partners to develop and apply a scenario-based approach for adaptation planning that integrates quantitative, model-driven, climate change projections with qualitative, participatory exercises to explore management and policy options under a range of future conditions. Major outcomes of this work are (1) increased understanding of key scientific results and uncertainties, (2) incorporation of alternative perspectives into park and landscape level planning, (3) identification of "no brainer" and "no gainer" actions, (4) strengthening of regional science-management partnerships, and (5) overall improved capacity for flexible decision making. The basic approach employed by NPS for scenario planning follows a typical adaptive management process: define the focal question, assess the relevant science, explore plausible futures, identify effective strategies, prioritize and implement actions, and monitor results. Many science and management partners contributed to the process, including NOAA Regional Integrated Science and Assessment teams (RISAs) and Regional Climate Centers (RCCs), USGS Research Centers, and other university and government scientists. The Global Business Network, an internationally recognized leader in scenario development, provided expert facilitation and training techniques. Climate science input is provided through global and regional circulation models and downscaling to arrive at climate driver information that is relevant for parks and the landscapes within which they are found. Considerable effort is necessary to synthesize the information and to effectively communicate uncertainties about both values and trend (e.g. scientists have higher confidence in the trend of temperature over a given time period than the value). Drivers that are determined to be highly consequential and uncertain are used to create management-relevant scenarios using various techniques, including a structured 2X2 matrix approach, a succession of rapid combinations using multiple variables, and the development of a base, "least change" scenario from which alternatives are then constructed. Socio-economic factors are also considered as essential factors that define the full decision environment within which management and policy decisions are made. Resulting scenarios incorporate information about impacts to natural and cultural resources as well as facilities and visitor experience. The NPS conducted prototypes for scenario planning in each of seven regions and has begun to incorporate elements of the process into all planning requirements. A significant outcome of this work is managers and scientists alike understand climate and ecosystem models provide tools for exploring the future rather than predicting it.

  20. Climate change vulnerability assessments as catalysts for social learning: four case studies in south-eastern Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, Benjamin L

    2012-01-01

    Technical assessments of vulnerability and/or risk are increasingly being undertaken to assess the impacts of climate change. Underlying this is the belief that they will bring clarity to questions regarding the scale of institutional investments required, plausible adaptation policies and measures, and the timing of their implementation. Despite the perceived importance of technical assessments in 'evidence-based' decision environments, assessments cannot be undertaken independent of values and politics, nor are they capable of eliminating the uncertainty that clouds decision-making on climate adaptation As such, assessments can trigger as many questions as they answer, leaving practitioners and stakeholders to question their value.more » This paper explores the value of vulnerability/risk assessments in climate change adaptation planning processes as a catalyst for learning in four case studies in Southeastern Australia. Data were collected using qualitative interviews with stakeholders involved in the assessments and analysed using a social learning framework. This analysis revealed that detailed and tangible strategies or actions often do not emerge directly from technical assessments. However, it also revealed that the assessments became important platforms for social learning. In providing these platforms, assessments present opportunities to question initial assumptions, explore multiple framings of an issue, generate new information, and galvanise support for collective actions. This study highlights the need for more explicit recognition and understanding of the important role social learning plays in climate change vulnerability assessments and adaptation planning more broadly.« less

  1. Lessons learned from Applications of a Decision Tree for Confronting Climate Change Uncertainty - the Short Term and the Long Term

    NASA Astrophysics Data System (ADS)

    Ray, P. A.; Wi, S.; Bonzanigo, L.; Taner, M. U.; Rodriguez, D.; Garcia, L.; Brown, C.

    2016-12-01

    The Decision Tree for Confronting Climate Change Uncertainty is a hierarchical, staged framework for accomplishing climate change risk management in water resources system investments. Since its development for the World Bank Water Group two years ago, the framework has been applied to pilot demonstration projects in Nepal (hydropower generation), Mexico (water supply), Kenya (multipurpose reservoir operation), and Indonesia (flood risks to dam infrastructure). An important finding of the Decision Tree demonstration projects has been the need to present the risks/opportunities of climate change to stakeholders and investors in proportion to risks/opportunities and hazards of other kinds. This presentation will provide an overview of tools and techniques used to quantify risks/opportunities to each of the project types listed above, with special attention to those found most useful for exploration of the risk space. Careful exploration of the risk/opportunity space shows that some interventions would be better taken now, whereas risks/opportunities of other types would be better instituted incrementally in order to maintain reversibility and flexibility. A number of factors contribute to the robustness/flexibility tradeoff: available capital, magnitude and imminence of potential risk/opportunity, modular (or not) character of investment, and risk aversion of the decision maker, among others. Finally, in each case, nuance was required in the translation of Decision Tree findings into actionable policy recommendations. Though the narrative of stakeholder solicitation, engagement, and ultimate partnership is unique to each case, summary lessons are available from the portfolio that can serve as a guideline to the community of climate change risk managers.

  2. Neutralizing misinformation through inoculation: Exposing misleading argumentation techniques reduces their influence

    PubMed Central

    Cook, John; Lewandowsky, Stephan; Ecker, Ullrich K. H.

    2017-01-01

    Misinformation can undermine a well-functioning democracy. For example, public misconceptions about climate change can lead to lowered acceptance of the reality of climate change and lowered support for mitigation policies. This study experimentally explored the impact of misinformation about climate change and tested several pre-emptive interventions designed to reduce the influence of misinformation. We found that false-balance media coverage (giving contrarian views equal voice with climate scientists) lowered perceived consensus overall, although the effect was greater among free-market supporters. Likewise, misinformation that confuses people about the level of scientific agreement regarding anthropogenic global warming (AGW) had a polarizing effect, with free-market supporters reducing their acceptance of AGW and those with low free-market support increasing their acceptance of AGW. However, we found that inoculating messages that (1) explain the flawed argumentation technique used in the misinformation or that (2) highlight the scientific consensus on climate change were effective in neutralizing those adverse effects of misinformation. We recommend that climate communication messages should take into account ways in which scientific content can be distorted, and include pre-emptive inoculation messages. PMID:28475576

  3. Microhabitat and Climatic Niche Change Explain Patterns of Diversification among Frog Families.

    PubMed

    Moen, Daniel S; Wiens, John J

    2017-07-01

    A major goal of ecology and evolutionary biology is to explain patterns of species richness among clades. Differences in rates of net diversification (speciation minus extinction over time) may often explain these patterns, but the factors that drive variation in diversification rates remain uncertain. Three important candidates are climatic niche position (e.g., whether clades are primarily temperate or tropical), rates of climatic niche change among species within clades, and microhabitat (e.g., aquatic, terrestrial, arboreal). The first two factors have been tested separately in several studies, but the relative importance of all three is largely unknown. Here we explore the correlates of diversification among families of frogs, which collectively represent ∼88% of amphibian species. We assemble and analyze data on phylogeny, climate, and microhabitat for thousands of species. We find that the best-fitting phylogenetic multiple regression model includes all three types of variables: microhabitat, rates of climatic niche change, and climatic niche position. This model explains 67% of the variation in diversification rates among frog families, with arboreal microhabitat explaining ∼31%, niche rates ∼25%, and climatic niche position ∼11%. Surprisingly, we show that microhabitat can have a much stronger influence on diversification than climatic niche position or rates of climatic niche change.

  4. Response of the tropical Pacific to abrupt climate change 8,200 years ago

    NASA Astrophysics Data System (ADS)

    Atwood, A. R.; Battisti, D.; Bitz, C. M.; Sachs, J. P.

    2017-12-01

    The relatively stable climate of the Holocene epoch was punctuated by a period of large and abrupt climate change ca. 8,200 yr BP, when an outburst of glacial meltwater into the Labrador Sea drove large and abrupt climate changes across the globe. However, little is known about the response of the tropical Pacific to this event. We present the first evidence for large perturbations to the eastern tropical Pacific climate, based on sedimentary biomarker and hydrogen isotopic records from a freshwater lake in the Galápagos Islands. We inform these reconstructions with freshwater forcing simulations performed with the Community Climate System Model version 4. Together, the biomarker records and model simulations provide evidence for a mechanistic link between (1) a southward shift of the Intertropical Convergence Zone in the eastern equatorial Pacific and (2) decreased frequency and/or intensity of Eastern Pacific El Niño events during the 8,200 BP event. While climate theory and modeling studies support a southward shift of the ITCZ in response to a weakened AMOC, the dynamical drivers for the observed change in ENSO variability are less well developed. To explore these linkages, we perform simulations with an intermediate complexity model of the tropical Pacific. These results provide valuable insight into the controls of tropical Pacific climate variability and the mechanisms behind the global response to abrupt climate change.

  5. Permafrost Meta-Omics and Climate Change

    NASA Astrophysics Data System (ADS)

    Mackelprang, Rachel; Saleska, Scott R.; Jacobsen, Carsten Suhr; Jansson, Janet K.; Taş, Neslihan

    2016-06-01

    Permanently frozen soil, or permafrost, covers a large portion of the Earth's terrestrial surface and represents a unique environment for cold-adapted microorganisms. As permafrost thaws, previously protected organic matter becomes available for microbial degradation. Microbes that decompose soil carbon produce carbon dioxide and other greenhouse gases, contributing substantially to climate change. Next-generation sequencing and other -omics technologies offer opportunities to discover the mechanisms by which microbial communities regulate the loss of carbon and the emission of greenhouse gases from thawing permafrost regions. Analysis of nucleic acids and proteins taken directly from permafrost-associated soils has provided new insights into microbial communities and their functions in Arctic environments that are increasingly impacted by climate change. In this article we review current information from various molecular -omics studies on permafrost microbial ecology and explore the relevance of these insights to our current understanding of the dynamics of permafrost loss due to climate change.

  6. Climate change and health modeling: horses for courses.

    PubMed

    Ebi, Kristie L; Rocklöv, Joacim

    2014-01-01

    Mathematical and statistical models are needed to understand the extent to which weather, climate variability, and climate change are affecting current and may affect future health burdens in the context of other risk factors and a range of possible development pathways, and the temporal and spatial patterns of any changes. Such understanding is needed to guide the design and the implementation of adaptation and mitigation measures. Because each model projection captures only a narrow range of possible futures, and because models serve different purposes, multiple models are needed for each health outcome ('horses for courses'). Multiple modeling results can be used to bracket the ranges of when, where, and with what intensity negative health consequences could arise. This commentary explores some climate change and health modeling issues, particularly modeling exposure-response relationships, developing early warning systems, projecting health risks over coming decades, and modeling to inform decision-making. Research needs are also suggested.

  7. Extreme climate events counteract the effects of climate and land-use changes in Alpine treelines

    PubMed Central

    Barros, Ceres; Guéguen, Maya; Douzet, Rolland; Carboni, Marta; Boulangeat, Isabelle; Zimmermann, Niklaus E.; Münkemüller, Tamara; Thuiller, Wilfried

    2017-01-01

    Summary 1. Climate change and extreme events, such as drought, threaten ecosystems worldwide and in particular mountain ecosystems, where species often live at their environmental tolerance limits. In the European Alps, plant communities are also influenced by land-use abandonment leading to woody encroachment of subalpine and alpine grasslands. 2. In this study, we explored how the forest–grassland ecotone of Alpine treelines will respond to gradual climate warming, drought events and land-use change in terms of forest expansion rates, taxonomic diversity and functional composition. We used a previously validated dynamic vegetation model, FATE-HD, parameterised for plant communities in the Ecrins National Park in the French Alps. 3. Our results showed that intense drought counteracted the forest expansion at higher elevations driven by land-use abandonment and climate change, especially when combined with high drought frequency (occurring every 2 or less than 2 years). 4. Furthermore, intense and frequent drought accelerated the rates of taxonomic change and resulted in overall higher taxonomic spatial heterogeneity of the ecotone than would be expected under gradual climate and land-use changes only. 5. Synthesis and applications. The results from our model show that intense and frequent drought counteracts forest expansion driven by climate and land-use changes in the forest–grassland ecotone of Alpine treelines. We argue that land-use planning must consider the effects of extreme events, such as drought, as well as climate and land-use changes, since extreme events might interfere with trends predicted under gradual climate warming and agricultural abandonment. PMID:28670002

  8. 2700 years of Mediterranean environmental change in central Italy: a synthesis of sedimentary and cultural records to interpret past impacts of climate on society

    NASA Astrophysics Data System (ADS)

    Mensing, Scott A.; Tunno, Irene; Sagnotti, Leonardo; Florindo, Fabio; Noble, Paula; Archer, Claire; Zimmerman, Susan; Pavón-Carrasco, Francisco Javier; Cifani, Gabriele; Passigli, Susanna; Piovesan, Gianluca

    2015-05-01

    Abrupt climate change in the past is thought to have disrupted societies by accelerating environmental degradation, potentially leading to cultural collapse. Linking climate change directly to societal disruption is challenging because socioeconomic factors also play a large role, with climate being secondary or sometimes inconsequential. Combining paleolimnologic, historical, and archaeological methods provides for a more secure basis for interpreting the past impacts of climate on society. We present pollen, non-pollen palynomorph, geochemical, paleomagnetic and sedimentary data from a high-resolution 2700 yr lake sediment core from central Italy and compare these data with local historical documents and archeological surveys to reconstruct a record of environmental change in relation to socioeconomic history and climatic fluctuations. Here we document cases in which environmental change is strongly linked to changes in local land management practices in the absence of clear climatic change, as well as examples when climate change appears to have been a strong catalyst that resulted in significant environmental change that impacted local communities. During the Imperial Roman period, despite a long period of stable, mild climate, and a large urban population in nearby Rome, our site shows only limited evidence for environmental degradation. Warm and mild climate during the Medieval Warm period, on the other hand, led to widespread deforestation and erosion. The ability of the Romans to utilize imported resources through an extensive trade network may have allowed for preservation of the environment near the Roman capital, whereas during medieval time, the need to rely on local resources led to environmental degradation. Cool wet climate during the Little Ice Age led to a breakdown in local land use practices, widespread land abandonment and rapid reforestation. Our results present a high-resolution regional case study that explores the effect of climate change on society for an under-documented region of Europe.

  9. Novel competitors shape species' responses to climate change.

    PubMed

    Alexander, Jake M; Diez, Jeffrey M; Levine, Jonathan M

    2015-09-24

    Understanding how species respond to climate change is critical for forecasting the future dynamics and distribution of pests, diseases and biological diversity. Although ecologists have long acknowledged species' direct physiological and demographic responses to climate, more recent work suggests that these direct responses can be overwhelmed by indirect effects mediated via other interacting community members. Theory suggests that some of the most dramatic impacts of community change will probably arise through the assembly of novel species combinations after asynchronous migrations with climate. Empirical tests of this prediction are rare, as existing work focuses on the effects of changing interactions between competitors that co-occur today. To explore how species' responses to climate warming depend on how their competitors migrate to track climate, we transplanted alpine plant species and intact plant communities along a climate gradient in the Swiss Alps. Here we show that when alpine plants were transplanted to warmer climates to simulate a migration failure, their performance was strongly reduced by novel competitors that could migrate upwards from lower elevation; these effects generally exceeded the impact of warming on competition with current competitors. In contrast, when we grew the focal plants under their current climate to simulate climate tracking, a shift in the competitive environment to novel high-elevation competitors had little to no effect. This asymmetry in the importance of changing competitor identity at the leading versus trailing range edges is best explained by the degree of functional similarity between current and novel competitors. We conclude that accounting for novel competitive interactions may be essential to predict species' responses to climate change accurately.

  10. On solar geoengineering and climate uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacMartin, Douglas; Kravitz, Benjamin S.; Rasch, Philip J.

    2015-09-03

    Uncertainty in the climate system response has been raised as a concern regarding solar geoengineering. Here we show that model projections of regional climate change outcomes may have greater agreement under solar geoengineering than with CO2 alone. We explore the effects of geoengineering on one source of climate system uncertainty by evaluating the inter-model spread across 12 climate models participating in the Geoengineering Model Intercomparison project (GeoMIP). The model spread in regional temperature and precipitation changes is reduced with CO2 and a solar reduction, in comparison to the case with increased CO2 alone. That is, the intermodel spread in predictionsmore » of climate change and the model spread in the response to solar geoengineering are not additive but rather partially cancel. Furthermore, differences in efficacy explain most of the differences between models in their temperature response to an increase in CO2 that is offset by a solar reduction. These conclusions are important for clarifying geoengineering risks.« less

  11. Can role-play with interactive simulations enhance climate change knowledge, affect and intent to act?

    NASA Astrophysics Data System (ADS)

    Rooney-varga, J. N.; Sterman, J.; Fracassi, E. P.; Franck, T.; Kapmeier, F.; Kurker, V.; Jones, A.; Rath, K.

    2017-12-01

    The strong scientific consensus about the reality and risks of anthropogenic climate change stands in stark contrast to widespread confusion and complacency among the public. Many efforts to close that gap, grounded in the information deficit model of risk communication, provide scientific information on climate change through reports and presentations. However, research shows that showing people research does not work: the gap between scientific and public understanding of climate change remains wide. Tools that are rigorously grounded in the science and motivate action on climate change are urgently needed. Here we assess the impact of one such tool, an interactive, role-play simulation, World Climate. Participants take the roles of delegates to the UN climate negotiations and are challenged to create an agreement limiting warming to no more than 2°C. The C-ROADS climate simulation model then provides participants with immediate feedback about the expected impacts of their decisions. Participants use C-ROADS to explore the climate system and use the results to refine their negotiating positions, learning about climate change while experiencing the social dynamics of negotiations and decision-making. Pre- and post-survey results from 21 sessions in eight nations showed significant gains in participants' climate change knowledge, affective engagement, intent to take action, and desire to learn. Contrary to the deficit model, gains in participants' desire to learn more and intention to act were associated with gains in affective engagement, particularly feelings of urgency and hope, but not climate knowledge. Gains were just as strong among participants who oppose government regulation, suggesting the simulation's potential to reach across political divides. Results indicate that simulations like World Climate offer a climate change communication tool that enables people to learn and feel for themselves, which together have the potential to motivate action informed by science.

  12. The impacts of climate change on poverty in 2030, and the potential from rapid, inclusive and climate-informed development

    NASA Astrophysics Data System (ADS)

    Rozenberg, J.; Hallegatte, S.

    2016-12-01

    There is a consensus on the fact that poor people are more vulnerable to climate change than the rest of the population, but, until recently, few quantified estimates had been proposed and few frameworks existed to design policies for addressing the issue. In this paper, we analyze the impacts of climate change on poverty using micro-simulation approaches. We start from household surveys that describe the current distribution of income and occupations, we project these households into the future and we look at the impacts of climate change on people's income. To project households into the future, we explore a large range of assumptions on future demographic changes (including on education), technological changes, and socio-economic trends (including redistribution policies). This approach allows us to identify the main combination of factors that lead to fast poverty reduction, and the ones that lead to high climate change impacts on the poor. Identifying these factors is critical for designing efficient policies to protect the poorest from climate change impacts and making economic growth more inclusive. Conclusions are twofold. First, by 2030 climate change can have a large impact on poverty, with between 3 and 122 million more people in poverty, but climate change remains a secondary driver of poverty trends within this time horizon. Climate change impacts do not only affect the poorest: in 2030, the bottom 40 percent lose more than 4 percent of income in many countries. The regional hotspots are Sub-Saharan Africa and - to a lesser extent - India and the rest of South Asia. The most important channel through which climate change increases poverty is through agricultural income and food prices. Second, by 2030 and in the absence of surprises on climate impacts, inclusive climate-informed development can prevent most of (but not all) the impacts on poverty. In a scenario with rapid, inclusive and climate-proof development, climate change impact on poverty is between 3 and 16 million, vs. between 35 and 122 million if development is delayed and less inclusive. Development and inclusive policies appears to reduce the impact of climate change on poverty much more than it reduces aggregated losses expressed in percentage of GDP.

  13. Long-term trends in tourism climate index scores for 40 stations across Iran: the role of climate change and influence on tourism sustainability

    NASA Astrophysics Data System (ADS)

    Roshan, Gholamreza; Yousefi, Robabe; Fitchett, Jennifer M.

    2016-01-01

    Tourism is a rapidly growing international sector and relies intrinsically on an amenable climate to attract visitors. Climate change is likely to influence the locations preferred by tourists and the time of year of peak travel. This study investigates the effect of climate change on the Tourism Climate Index (TCI) for Iran. The paper first calculates the monthly TCI for 40 cities across Iran for each year from 1961 to 2010. Changes in the TCI over the study period for each of the cities are then explored. Increases in TCI are observed for at least one station in each month, whilst for some months no decreases occurred. For October, the maximum of 45 % of stations demonstrated significant changes in TCI, whilst for December only 10 % of stations demonstrated change. The stations Kashan, Orumiyeh, Shahrekord, Tabriz, Torbat-e-Heidarieh and Zahedan experienced significant increases in TCI for over 6 months. The beginning of the change in TCI is calculated to have occurred from 1970 to 1980 for all stations. Given the economic dependence on oil exports, the development of sustainable tourism in Iran is of importance. This critically requires the identification of locations most suitable for tourism, now and in the future, to guide strategic investment.

  14. Long-term trends in tourism climate index scores for 40 stations across Iran: the role of climate change and influence on tourism sustainability.

    PubMed

    Roshan, Gholamreza; Yousefi, Robabe; Fitchett, Jennifer M

    2016-01-01

    Tourism is a rapidly growing international sector and relies intrinsically on an amenable climate to attract visitors. Climate change is likely to influence the locations preferred by tourists and the time of year of peak travel. This study investigates the effect of climate change on the Tourism Climate Index (TCI) for Iran. The paper first calculates the monthly TCI for 40 cities across Iran for each year from 1961 to 2010. Changes in the TCI over the study period for each of the cities are then explored. Increases in TCI are observed for at least one station in each month, whilst for some months no decreases occurred. For October, the maximum of 45% of stations demonstrated significant changes in TCI, whilst for December only 10% of stations demonstrated change. The stations Kashan, Orumiyeh, Shahrekord, Tabriz, Torbat-e-Heidarieh and Zahedan experienced significant increases in TCI for over 6 months. The beginning of the change in TCI is calculated to have occurred from 1970 to 1980 for all stations. Given the economic dependence on oil exports, the development of sustainable tourism in Iran is of importance. This critically requires the identification of locations most suitable for tourism, now and in the future, to guide strategic investment.

  15. Global climate change and terrestrial net primary production

    NASA Technical Reports Server (NTRS)

    Melillo, Jerry M.; Mcguire, A. D.; Kicklighter, David W.; Moore, Berrien, III; Vorosmarty, Charles J.; Schloss, Annette L.

    1993-01-01

    A process-based model was used to estimate global patterns of net primary production and soil nitrogen cycling for contemporary climate conditions and current atmospheric CO2 concentration. Over half of the global annual net primary production was estimated to occur in the tropics, with most of the production attributable to tropical evergreen forest. The effects of CO2 doubling and associated climate changes were also explored. The responses in tropical and dry temperate ecosystems were dominated by CO2, but those in northern and moist temperate ecosystems reflected the effects of temperature on nitrogen availability.

  16. Climate change health assessment: a novel approach for Alaska Native communities.

    PubMed

    Brubaker, Michael Y; Bell, Jacob N; Berner, James E; Warren, John A

    2011-06-01

    Develop a process for assessing climate change impacts on public health that identifies climate-health vulnerabilities and mechanisms and encourages adaptation. Multi-stakeholder, participatory, qualitative research. A Climate Change Health Assessment (CCHA) was developed that involved 4 steps: (1) scoping to describe local conditions and engage stakeholders; (2) surveying to collect descriptive and quantitative data; (3) analysis to evaluate the data; and (4) planning to communicate findings and explore appropriate actions with community members. The health effects related to extreme weather, thinning ice, erosion, flooding, thawing permafrost and changing conditions of water and food resources were considered. The CCHA process was developed and performed in north-west Arctic villages. Refinement of the process took place in Point Hope, a coastal Inupiat village that practices whaling and a variety of other traditional subsistence harvest practices. Local observers identified climate change impacts that resulted in damaged health infrastructure, compromised food and water security and increased risk of injury. Priority health issues included thawing traditional ice cellars, diminished quality of the community water source and increased safety issues related to sea ice change. The CCHA increased awareness about health vulnerability and encouraged informed planning and decision-making. A community-scale assessment process guided by observation-based data can identify climate health impacts, raise awareness and encourage adaptive actions, thereby improving the response capacity of communities vulnerable to climate change.

  17. A tale of two springs: using recent climate anomalies to characterize the sensitivity of temperate forest phenology to climate change

    Treesearch

    Mark A Friedl; Josh M Gray; Eli K Melaas; Andrew D Richardson; Koen Hufkens; Trevor F Keenan; Amey Bailey; John O' Keefe

    2014-01-01

    By the end of this century, mean annual temperatures in the Northeastern United States are expected to warm by 3-5 °C, which will have significant impacts on the structure and function of temperate forests in this region. To improve understanding of these impacts, we exploited two recent climate anomalies to explore how the springtime phenology of Northeastern...

  18. Modeling aspen responses to climatic warming and insect defoliation in western Canada

    Treesearch

    E. H. Ted Hogg

    2001-01-01

    Effects of climate change at three aspen sites in Saskatchewan were explored using a climate-driven model that includes insect defoliation. A simulated warming of 4-5 °C caused complete mortality due to drought at all three sites. A simulated warming of 2-2.5 °C caused complete mortality of aspen at the parkland site, while aspen growth at two boreal sites showed...

  19. Simulation climate change impact on runoff and sediment yield in a small watershed in the basque country, northern Spain.

    PubMed

    Zabaleta, Ane; Meaurio, Maite; Ruiz, Estilita; Antigüedad, Iñaki

    2014-01-01

    Climate change is likely to have an impact on runoff and fluvial sediments in watersheds. These factors are among those used to characterize water bodies in relation to the European Water Framework Directive (WFD). Hence, it is important to investigate the extent to which climate change may hinder the achievement of the objectives of the WFD. We explored the potential impact of climate change on runoff and sediment yield for the Aixola watershed using the Soil and Water Assessment Tool (SWAT). The model calibration (2007-2010) and validation (2005-2006) results were rated as satisfactory. Subsequently, simulations were run for four climate change model-scenario combinations based on two general circulation models (CGCM2 and ECHAM4) under two emissions scenarios (A2 and B2) from 2011 to 2100. All combinations predicted that runoff and sediment yield would decrease compared with baseline (1961-1990). Three combinations suggested that runoff and sediments would decrease by 0.13 to 0.45 m s and 0.11 to 0.43 t every year from 2011 to 2100. However, the CGCM2-B2 scenario resulted in an "extremely likely" increase in runoff and sediments of 0.94 m s and 0.57 t every year. These variations in annual sediment yield are closely related to changes in precipitation. The high degree of uncertainty in the results must be considered when assessing potential impacts and making decisions about adaptation measures. Nevertheless, this first attempt to estimate future sediment yields in our region could be a useful starting point to explore future hydrological impacts in the area. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Amplification or suppression: Social networks and the climate change—migration association in rural Mexico

    PubMed Central

    Riosmena, Fernando; Hunter, Lori M.; Runfola, Daniel M.

    2015-01-01

    Increasing rates of climate migration may be of economic and national concern to sending and destination countries. It has been argued that social networks – the ties connecting an origin and destination – may operate as “migration corridors” with the potential to strongly facilitate climate change-related migration. This study investigates whether social networks at the household and community levels amplify or suppress the impact of climate change on international migration from rural Mexico. A novel set of 15 climate change indices was generated based on daily temperature and precipitation data for 214 weather stations across Mexico. Employing geostatistical interpolation techniques, the climate change values were linked to 68 rural municipalities for which sociodemographic data and detailed migration histories were available from the Mexican Migration Project. Multi-level discrete-time event-history models were used to investigate the effect of climate change on international migration between 1986 and 1999. At the household level, the effect of social networks was approximated by comparing the first to the last move, assuming that through the first move a household establishes internal social capital. At the community level, the impact of social capital was explored through interactions with a measure of the proportion of adults with migration experience. The results show that rather than amplifying, social capital may suppress the sensitivity of migration to climate triggers, suggesting that social networks could facilitate climate change adaptation in place. PMID:26692656

  1. The Green Sahara: Climate Change, Hydrologic History and Human Occupation

    NASA Technical Reports Server (NTRS)

    Blom, Ronald G.; Farr, Tom G.; Feynmann, Joan; Ruzmaikin, Alexander; Paillou, Philippe

    2009-01-01

    Archaeology can provide insight into interactions of climate change and human activities in sensitive areas such as the Sahara, to the benefit of both disciplines. Such analyses can help set bounds on climate change projections, perhaps identify elements of tipping points, and provide constraints on models. The opportunity exists to more precisely constrain the relationship of natural solar and climate interactions, improving understanding of present and future anthropogenic forcing. We are beginning to explore the relationship of human occupation of the Sahara and long-term solar irradiance variations synergetic with changes in atmospheric-ocean circulation patterns. Archaeological and climate records for the last 12 K years are gaining adequate precision to make such comparisons possible. We employ a range of climate records taken over the globe (e.g. Antarctica, Greenland, Cariaco Basin, West African Ocean cores, records from caves) to identify the timing and spatial patterns affecting Saharan climate to compare with archaeological records. We see correlation in changing ocean temperature patterns approx. contemporaneous with drying of the Sahara approx. 6K years BP. The role of radar images and other remote sensing in this work includes providing a geographically comprehensive geomorphic overview of this key area. Such coverage is becoming available from the Japanese PALSAR radar system, which can guide field work to collect archaeological and climatic data to further constrain the climate change chronology and link to models. Our initial remote sensing efforts concentrate on the Gilf Kebir area of Egypt.

  2. Rice Production Vulnerability to Climate Change in Indonesia: An Overview on Community-based Adaptation

    NASA Astrophysics Data System (ADS)

    Komaladara, A. A. S. P.; Budiasa, I. W.; Ambarawati, I. G. A. A.

    2015-12-01

    Rice remains to be a major crop and staple food in Indonesia. The task to ensure that rice production meets the demand of a growing population continues to engage the attention of national planners and policy makers. However, the adverse effects of climate change on agriculture production have presented Indonesia with yet another significant challenge. The exposure of rice crops to climate-related hazards such as temperature stress, floods, and drought, may lead to lower yield and self-sufficiency rate. This study explores the vulnerability of rice production to the effects of climate change in Indonesia. Considering the vast geographical span of the country and varying exposure, sensitivity, and adaptive capacity to climate change at regional level, this study emphasize the importance of community-based adaptation. Results from a simulation based on production and climate data from 1984 to 2014 indicates that rice production is sensitive to variation in growing season temperature and precipitation. A projection of these climate factors in 2050 has a significant impact on the major rice crop. To manage the impact of climate change, this study turns to the potential roles of farmer organizations, such as Subak, in adaptation strategies. The Subak in Bali is recognized for its cultural and organizational framework that highlights the sharing of knowledge and local wisdom in rice production. This is demonstrated by its efficient community-based irrigation management system, leading to sustainable rice production. Keywords: rice production, climate change, community-based adaptation, Indonesia

  3. Global Climate Change Pilot Course Project

    NASA Astrophysics Data System (ADS)

    Schuenemann, K. C.; Wagner, R.

    2011-12-01

    In fall 2011 a pilot course on "Global Climate Change" is being offered, which has been proposed to educate urban, diverse, undergraduate students about climate change at the introductory level. The course has been approved to fulfill two general college requirements, a natural sciences requirement that focuses on the scientific method, as well as a global diversity requirement. This course presents the science behind global climate change from an Earth systems and atmospheric science perspective. These concepts then provide the basis to explore the effect of global warming on regions throughout the world. Climate change has been taught as a sub-topic in other courses in the past solely using scientific concepts, with little success in altering the climate change misconceptions of the students. This pilot course will see if new, innovative projects described below can make more of an impact on the students' views of climate change. Results of the successes or failures of these projects will be reported, as well as results of a pre- and post-course questionnaire on climate change given to students taking the course. Students in the class will pair off and choose a global region or country that they will research, write papers on, and then represent in four class discussions spaced throughout the semester. The first report will include details on the current climate of their region and how the climate shapes that region's society and culture. The second report will discuss how that region is contributing to climate change and/or sequestering greenhouse gases. Thirdly, students will discuss observed and predicted changes in that region's climate and what impact it has had, and could have, on their society. Lastly, students will report on what role their region has played in mitigating climate change, any policies their region may have implemented, and how their region can or cannot adapt to future climate changes. They will also try to get a feel for the region's attitude towards climate change science, policy, and the stances taken by other regions on climate change. The professor will provide a model of integrative research using the U.S. as a focus, and on discussion days, prompt a sort of United Nations discussion on each of these topics with the intention of having the students look at climate change from a different point of view that contrasts their current U.S.-centric view, as well as realize the interdependence of regions particularly in regards to climate change.

  4. Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species.

    PubMed

    Wiens, John J

    2016-12-01

    Current climate change may be a major threat to global biodiversity, but the extent of species loss will depend on the details of how species respond to changing climates. For example, if most species can undergo rapid change in their climatic niches, then extinctions may be limited. Numerous studies have now documented shifts in the geographic ranges of species that were inferred to be related to climate change, especially shifts towards higher mean elevations and latitudes. Many of these studies contain valuable data on extinctions of local populations that have not yet been thoroughly explored. Specifically, overall range shifts can include range contractions at the "warm edges" of species' ranges (i.e., lower latitudes and elevations), contractions which occur through local extinctions. Here, data on climate-related range shifts were used to test the frequency of local extinctions related to recent climate change. The results show that climate-related local extinctions have already occurred in hundreds of species, including 47% of the 976 species surveyed. This frequency of local extinctions was broadly similar across climatic zones, clades, and habitats but was significantly higher in tropical species than in temperate species (55% versus 39%), in animals than in plants (50% versus 39%), and in freshwater habitats relative to terrestrial and marine habitats (74% versus 46% versus 51%). Overall, these results suggest that local extinctions related to climate change are already widespread, even though levels of climate change so far are modest relative to those predicted in the next 100 years. These extinctions will presumably become much more prevalent as global warming increases further by roughly 2-fold to 5-fold over the coming decades.

  5. Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species

    PubMed Central

    Wiens, John J.

    2016-01-01

    Current climate change may be a major threat to global biodiversity, but the extent of species loss will depend on the details of how species respond to changing climates. For example, if most species can undergo rapid change in their climatic niches, then extinctions may be limited. Numerous studies have now documented shifts in the geographic ranges of species that were inferred to be related to climate change, especially shifts towards higher mean elevations and latitudes. Many of these studies contain valuable data on extinctions of local populations that have not yet been thoroughly explored. Specifically, overall range shifts can include range contractions at the “warm edges” of species’ ranges (i.e., lower latitudes and elevations), contractions which occur through local extinctions. Here, data on climate-related range shifts were used to test the frequency of local extinctions related to recent climate change. The results show that climate-related local extinctions have already occurred in hundreds of species, including 47% of the 976 species surveyed. This frequency of local extinctions was broadly similar across climatic zones, clades, and habitats but was significantly higher in tropical species than in temperate species (55% versus 39%), in animals than in plants (50% versus 39%), and in freshwater habitats relative to terrestrial and marine habitats (74% versus 46% versus 51%). Overall, these results suggest that local extinctions related to climate change are already widespread, even though levels of climate change so far are modest relative to those predicted in the next 100 years. These extinctions will presumably become much more prevalent as global warming increases further by roughly 2-fold to 5-fold over the coming decades. PMID:27930674

  6. Climate Voyager: An Iteratively Built Information and Visualization Tool for At-Risk Climate Communities

    NASA Astrophysics Data System (ADS)

    Terando, A. J.; Lascurain, A.; Aldridge, H. D.; Davis, C.

    2016-12-01

    Climate Voyager provides an innovative way to visualize both large-scale and local climate change projections using a three-map layout and time series plot. This product includes a suite of tools designed to assist with climate risk and opportunity assessments, including changes in average seasonal conditions and the capability to evaluate a variety of different decision-relevant thresholds (e.g. changes in extreme temperature occurrence). Each tool summarizes output from 20 downscaled global climate models and contains a historical average for comparison with the spread of projected future outcomes. The Climate Voyager website is interactive, allowing users to explore both regional and location-specific guidance for two Representative Concentration Pathways (RCPs) and four future 20-year time periods. By presenting climate model projections and measures of uncertainty of specific parameters beyond just annual temperatures and precipitation, Climate Voyager can help a wide variety of decision makers plan for climate changes that may affect them. We present a case study in which a new module was developed within Climate Voyager for use by Tribes and native communities in the eastern U.S. to help make informed resource decisions. In this first attempt, Ramps (Allium tricoccum), a plant species of great cultural significance, was incorporated through consultation with the tribal organization. We will also discuss the process of engagement employed with end-users and the potential to make the Climate Voyager interface an iterative, co-produced process to enhance the usability of climate model information for adaptation planning.

  7. How will climate change affect spatial planning in agricultural and natural environments? Examples from three Dutch case study regions

    NASA Astrophysics Data System (ADS)

    Blom-Zandstra, Margaretha; Paulissen, Maurice; Agricola, Herman; Schaap, Ben

    2009-11-01

    Climate change will place increasing pressure on the functioning of agricultural and natural areas in the Netherlands. Strategies to adapt these areas to stress are likely to require changes in landscape structure and management. In densely populated countries such as the Netherlands, the increased pressure of climate change on agricultural and natural areas will inevitably lead, through the necessity of spatial adaptation measures, to spatial conflicts between the sectors of agriculture and nature. An integrated approach to climate change adaptation may therefore be beneficial in limiting such sectoral conflicts. We explored the conflicting and synergistic properties of different climate adaptation strategies for agricultural and natural environments in the Netherlands. To estimate the feasibility and effectiveness of the strategies, we focussed on three case study regions with contrasting landscape structural, natural and agricultural characteristics. For each region, we estimated the expected climate-related threats and associated trade-offs for arable farming and natural areas for 2040. We describe a number of spatial and integrated adaptation strategies to mitigate these threats. Formulating adaptation strategies requires consultation of different stakeholders and deliberation between different interests. We discuss some trade-offs involved in this decision-making.

  8. Effects of heat stress on working populations when facing climate change.

    PubMed

    Lundgren, Karin; Kuklane, Kalev; Gao, Chuansi; Holmér, Ingvar

    2013-01-01

    It is accepted that the earth's climate is changing in an accelerating pace, with already documented implications for human health and the environment. This literature review provides an overview of existing research findings about the effects of heat stress on the working population in relation to climate change. In the light of climate change adaptation, the purpose of the literature review was to explore recent and previous research into the impacts of heat stress on humans in an occupational setting. Heat stress in the workplace has been researched extensively in the past however, in the contemporary context of climate change, information is lacking on its extent and implications. The main factors found to exacerbate heat stress in the current and future workplace are the urban 'heat island effect', physical work, individual differences, and the developing country context where technological fixes are often not applicable. There is also a lack of information on the effects on vulnerable groups such as elderly people and pregnant women. As increasing temperatures reduce work productivity, world economic productivity could be condensed, affecting developing countries in the tropical climate zone disproportionately. Future research is needed taking an interdisciplinary approach, including social, economic, environmental and technical aspects.

  9. The public health impacts of climate change in the former Yugoslav Republic of Macedonia.

    PubMed

    Kendrovski, Vladimir; Spasenovska, Margarita; Menne, Bettina

    2014-06-05

    Projected climatic changes for the former Yugoslav Republic of Macedonia for the period 2025-2100 will be most intense in the warmest period of the year with more frequent and more intense heat-waves, droughts and flood events compared with the period 1961-1990. The country has examined their vulnerabilities to climate change and many public health impacts have been projected. A variety of qualitative and quantitative methodologies were used in the assessment: literature reviews, interviews, focus groups, time series and regression analysis, damage and adaptation cost estimation, and scenario-based assessment. Policies and interventions to minimize the risks and development of long-term adaptation strategies have been explored. The generation of a robust evidence base and the development of stakeholder engagement have been used to support the development of an adaptation strategy and to promote adaptive capacity by improving the resilience of public health systems to climate change. Climate change adaptation has been established as a priority within existing national policy instruments. The lessons learnt from the process are applicable to countries considering how best to improve adaptive capacity and resilience of health systems to climate variability and its associated impacts.

  10. Persistence of climate changes due to a range of greenhouse gases.

    PubMed

    Solomon, Susan; Daniel, John S; Sanford, Todd J; Murphy, Daniel M; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2010-10-26

    Emissions of a broad range of greenhouse gases of varying lifetimes contribute to global climate change. Carbon dioxide displays exceptional persistence that renders its warming nearly irreversible for more than 1,000 y. Here we show that the warming due to non-CO(2) greenhouse gases, although not irreversible, persists notably longer than the anthropogenic changes in the greenhouse gas concentrations themselves. We explore why the persistence of warming depends not just on the decay of a given greenhouse gas concentration but also on climate system behavior, particularly the timescales of heat transfer linked to the ocean. For carbon dioxide and methane, nonlinear optical absorption effects also play a smaller but significant role in prolonging the warming. In effect, dampening factors that slow temperature increase during periods of increasing concentration also slow the loss of energy from the Earth's climate system if radiative forcing is reduced. Approaches to climate change mitigation options through reduction of greenhouse gas or aerosol emissions therefore should not be expected to decrease climate change impacts as rapidly as the gas or aerosol lifetime, even for short-lived species; such actions can have their greatest effect if undertaken soon enough to avoid transfer of heat to the deep ocean.

  11. Linking Wildfire and Climate as Drivers of Plant Species and Community-level Change

    NASA Astrophysics Data System (ADS)

    Newingham, B. A.; Hudak, A. T.; Bright, B. C.

    2015-12-01

    Plant species distributions and community shifts after fire are affected by burn severity, elevation, aspect, and climate. However, little empirical data exists on long-term (decadal) recovery after fire across these interacting factors, limiting understanding of fire regime characteristics and climate in post-fire community trajectories. We examined plant species and community responses a decade after fire across five fires in ponderosa pine, dry mixed coniferous, and moist mixed coniferous forests across the western USA. Using field data, we determined changes in plant communities one and ten years post-fire across gradients of burn severity, elevation, and aspect. Existing published work has shown that plant species distributions can be accurately predicted from physiologically relevant climate variables using non-parametric Random Forests models; such models have also been linked to projected climate profiles in 2030, 2060, and 2090 generated from three commonly used general circulation models (GCMs). We explore the possibility that fire and climate are coupled drivers affecting plant species distributions. Climate change may not manifest as a slow shift in plant species distributions, but as sudden, localized events tied to changing fire and other disturbance regimes.

  12. Biodiversity of Terrestrial Vegetation during Past Warm Periods

    NASA Astrophysics Data System (ADS)

    Davies-Barnard, T.; Valdes, P. J.; Ridgwell, A.

    2016-12-01

    Previous modelling studies of vegetation have generally used a small number of plant functional types to understand how the terrestrial biosphere responds to climate changes. Whilst being useful for understanding first order climate feedbacks, this climate-envelope approach makes a lot of assumptions about past vegetation being very similar to modern. A trait-based method has the advantage for paleo modelling in that there are substantially less assumptions made. In a novel use of the trait-based dynamic vegetation model JeDi, forced with output from climate model HadCM3, we explore past biodiversity and vegetation carbon changes. We use JeDi to model an optimal 2000 combinations of fifteen different traits to enable assessment of the overall level of biodiversity as well as individual growth strategies. We assess the vegetation shifts and biodiversity changes in past greenhouse periods to better understand the impact on the terrestrial biosphere. This work provides original insights into the response of vegetation and terrestrial carbon to climate and hydrological changes in high carbon dioxide climates over time, including during the Late Permian and Cretaceous. We evaluate how the location of biodiversity hotspots and species richness in past greenhouse climates is different to the present day.

  13. Impact assessment of recent climate change on rice yields in the Heilongjiang Reclamation Area of north-east China.

    PubMed

    Zhou, Yang; Li, Ning; Dong, Guanpeng; Wu, Wenxiang

    2013-08-30

    Investigating the degree to which climate change may have impacted on rice yields can provide an insight into how to adapt to climate change in the future. Meteorological and rice yield data over the period 1960-2009 from the Heilongjiang Reclamation Area of north-east China (HRANC) were used to explore the possible impacts of climate change on rice yields at sub-regional scale. Results showed that a warming trend was obvious in the HRANC and discernible climate fluctuations and yield variations on inter-annual scale were detected to have occurred in the 1980s and 1990s, respectively. Statistically positive correlation was observed between growing season temperature and rice yields, with an increase rate by approximately 3.60% for each 1°C rise in the minimum temperature during growing season. Such findings are consistent with the current mainstream view that warming climate may exert positive impacts on crop yields in the middle and higher latitude regions. Our study indicated that the growing season minimum temperature was a major driver of all the climatic factors to the recent increase trends in rice yield in HRANC over the last five decades. © 2013 Society of Chemical Industry.

  14. The Hockey Stick and the Climate Wars: Dispatches From The Front Lines

    NASA Astrophysics Data System (ADS)

    Mann, M. E.

    2011-12-01

    A central figure in the controversy over human-caused climate change has been The Hockey Stick, a simple, easy-to-understand graph my colleagues and I constructed to depict changes in Earth's temperature back to 1000 AD. The graph was featured in the high-profile Summary for Policy Makers of the 2001 report of the Intergovernmental Panel on Climate Change (IPCC), and it quickly became an icon in the debate over human-caused (anthropogenic) climate change. I will tell the story behind the Hockey Stick, using it as a vehicle for exploring broader issues regarding the role of skepticism in science, the uneasy relationship between science and politics, and the dangers that arise when special economic interests and those who do their bidding attempt to skew the discourse over policy-relevant areas of science. In short, I attempt to use the Hockey Stick to cut through the fog of disinformation that has been generated by the campaign to deny the reality of climate change. It is my intent, in so doing, to reveal the very real threat to our future that lies behind it.

  15. Criteria for selecting a CO/sub 2//climate change region of study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmonds, J.; Cushman, R.; Easterling, W.

    One of the most important research issues active today is the greenhouse issue. Progress has been made in exploring the relationship between human activities and the accumulation of CO/sub 2/ and other radiatively important gases in the atmosphere. While significant research remains in refining our understanding of the timing of possible CO/sub 2//climate change, the examination of the nature and magnitude of consequences of CO/sub 2//climate change remains in a relatively early stage of development. While the accumulation of greenhouse gases in the atmosphere may be a global problem, the consequences of CO/sub 2//climate change will be experienced regionally. Itmore » is therefore critical that methods be developed to address the regional examination of CO/sub 2//climate change. An analytical framework is described and a ''cookie cutter'' technique is utilized to deal with multiple resource sectors in selecting a Region of Study. The result leads to the selection of the four midwestern states of Kansas, Nebraska, Iowa, and Missouri. The role of information systems, uncertainty analysis, and knowledge transfer is discussed. 19 refs., 2 figs.« less

  16. Exploring the universal ecological responses to climate change in a univoltine butterfly.

    PubMed

    Fenberg, Phillip B; Self, Angela; Stewart, John R; Wilson, Rebecca J; Brooks, Stephen J

    2016-05-01

    Animals with distinct life stages are often exposed to different temperatures during each stage. Thus, how temperature affects these life stages should be considered for broadly understanding the ecological consequences of climate warming on such species. For example, temperature variation during particular life stages may affect respective change in body size, phenology and geographic range, which have been identified as the "universal" ecological responses to climate change. While each of these responses has been separately documented across a number of species, it is not known whether each response occurs together within a species. The influence of temperature during particular life stages may help explain each of these ecological responses to climate change. Our goal was to determine if monthly temperature variation during particular life stages of a butterfly species can predict respective changes in body size and phenology. We also refer to the literature to assess if temperature variability during the adult stage influences range change over time. Using historical museum collections paired with monthly temperature records, we show that changes in body size and phenology of the univoltine butterfly, Hesperia comma, are partly dependent upon temporal variation in summer temperatures during key stages of their life cycle. June temperatures, which are likely to affect growth rate of the final larval instar, are important for predicting adult body size (for males only; showing a positive relationship with temperature). July temperatures, which are likely to influence the pupal stage, are important for predicting the timing of adult emergence (showing a negative relationship with temperature). Previous studies show that August temperatures, which act on the adult stage, are linked to range change. Our study highlights the importance of considering temperature variation during each life stage over historic time-scales for understanding intraspecific response to climate change. Range edge studies of ectothermic species that have annual life cycles, long time-series occurrence data, and associated temperature records (ideally at monthly resolutions) could be useful model systems for intraspecific tests of the universal ecological responses to climate change and for exploring interactive effects. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  17. The response of land-falling tropical cyclone characteristics to projected climate change in northeast Australia

    NASA Astrophysics Data System (ADS)

    Parker, Chelsea L.; Bruyère, Cindy L.; Mooney, Priscilla A.; Lynch, Amanda H.

    2018-01-01

    Land-falling tropical cyclones along the Queensland coastline can result in serious and widespread damage. However, the effects of climate change on cyclone characteristics such as intensity, trajectory, rainfall, and especially translation speed and size are not well-understood. This study explores the relative change in the characteristics of three case studies by comparing the simulated tropical cyclones under current climate conditions with simulations of the same systems under future climate conditions. Simulations are performed with the Weather Research and Forecasting Model and environmental conditions for the future climate are obtained from the Community Earth System Model using a pseudo global warming technique. Results demonstrate a consistent response of increasing intensity through reduced central pressure (by up to 11 hPa), increased wind speeds (by 5-10% on average), and increased rainfall (by up to 27% for average hourly rainfall rates). The responses of other characteristics were variable and governed by either the location and trajectory of the current climate cyclone or the change in the steering flow. The cyclone that traveled furthest poleward encountered a larger climate perturbation, resulting in a larger proportional increase in size, rainfall rate, and wind speeds. The projected monthly average change in the 500 mb winds with climate change governed the alteration in the both the trajectory and translation speed for each case. The simulated changes have serious implications for damage to coastal settlements, infrastructure, and ecosystems through increased wind speeds, storm surge, rainfall, and potentially increased size of some systems.

  18. Vulnerability and adaptation to climate-related fire impacts in rural and urban interior Alaska

    USGS Publications Warehouse

    Trainor, Sarah F.; Calef, Monika; Natcher, David; Chapin, F. Stuart; McGuire, A. David; Huntington, Orville; Duffy, Paul A.; Rupp, T. Scott; DeWilde, La'Ona; Kwart, Mary; Fresco, Nancy; Lovecraft, Amy Lauren

    2009-01-01

    This paper explores whether fundamental differences exist between urban and rural vulnerability to climate-induced changes in the fire regime of interior Alaska. We further examine how communities and fire managers have responded to these changes and what additional adaptations could be put in place. We engage a variety of social science methods, including demographic analysis, semi-structured interviews, surveys, workshops and observations of public meetings. This work is part of an interdisciplinary study of feedback and interactions between climate, vegetation, fire and human components of the Boreal forest social–ecological system of interior Alaska. We have learned that although urban and rural communities in interior Alaska face similar increased exposure to wildfire as a result of climate change, important differences exist in their sensitivity to these biophysical, climate-induced changes. In particular, reliance on wild foods, delayed suppression response, financial resources and institutional connections vary between urban and rural communities. These differences depend largely on social, economic and institutional factors, and are not necessarily related to biophysical climate impacts per se. Fire management and suppression action motivated by political, economic or other pressures can serve as unintentional or indirect adaptation to climate change. However, this indirect response alone may not sufficiently reduce vulnerability to a changing fire regime. More deliberate and strategic responses may be required, given the magnitude of the expected climate change and the likelihood of an intensification of the fire regime in interior Alaska.

  19. Reconciling justice and attribution research to advance climate policy

    NASA Astrophysics Data System (ADS)

    Huggel, Christian; Wallimann-Helmer, Ivo; Stone, Dáithí; Cramer, Wolfgang

    2016-10-01

    The Paris Climate Agreement is an important step for international climate policy, but the compensation for negative effects of climate change based on clear assignment of responsibilities remains highly debated. From both a policy and a science perspective, it is unclear how responsibilities should be defined and on what evidence base. We explore different normative principles of justice relevant to climate change impacts, and ask how different forms of causal evidence of impacts drawn from detection and attribution research could inform policy approaches in accordance with justice considerations. We reveal a procedural injustice based on the imbalance of observations and knowledge of impacts between developed and developing countries. This type of injustice needs to be considered in policy negotiations and decisions, and efforts strengthened to reduce it.

  20. A Generalized Stability Analysis of the AMOC in Earth System Models: Implication for Decadal Variability and Abrupt Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorov, Alexey V.

    2015-01-14

    The central goal of this research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) as related to climate variability and abrupt climate change within a hierarchy of climate models ranging from realistic ocean models to comprehensive Earth system models. Generalized Stability Analysis, a method that quantifies the transient and asymptotic growth of perturbations in the system, is one of the main approaches used throughout this project. The topics we have explored range from physical mechanisms that control AMOC variability to the factors that determine AMOC predictability in the Earth systemmore » models, to the stability and variability of the AMOC in past climates.« less

  1. CLIMATE VARIABILITY, LAND OWNERSHIP AND MIGRATION: EVIDENCE FROM THAILAND ABOUT GENDER IMPACTS

    PubMed Central

    Curran, Sara R.; Meijer-Irons, Jacqueline

    2016-01-01

    Scholars point to climate change, often in the form of more frequent and severe drought, as a potential driver of migration in the developing world, particularly for places where populations rely on agriculture for their livelihoods. To date, however, there have been few large-scale, longitudinal studies that explore the relationship between climate change and migration. This study significantly extends current scholarship by evaluating distinctive effects of climatic variation and models these effects on men’s and women’s responsiveness to drought and rainfall. Our study also investigates how land ownership moderates these effects. We find small, but significant, increases in migration above existing migratory levels during periods of prolonged climatic stress, and that these patterns differ both by gender and land tenure. PMID:27547492

  2. Gender-specific responses to climate variability in a semi-arid ecosystem in northern Benin.

    PubMed

    Dah-Gbeto, Afiavi P; Villamor, Grace B

    2016-12-01

    Highly erratic rainfall patterns in northern Benin complicate the ability of rural farmers to engage in subsistence agriculture. This research explores gender-specific responses to climate variability in the context of agrarian Benin through a household survey (n = 260) and an experimental gaming exercise among a subset of the survey respondents. Although men and women from the sample population are equally aware of climate variability and share similar coping strategies, their specific land-use strategies, preferences, and motivations are distinct. Over the long term, these differences would likely lead to dissimilar coping strategies and vulnerability to the effects of climate change. Examination of gender-specific land-use responses to climate change and anticipatory learning can enhance efforts to improve adaptability and resilience among rural subsistence farmers.

  3. Exploring the Mass Balance and Sea Level Contribution of Global Glaciers During the Last Interglaciation and Mid-Holocene

    NASA Astrophysics Data System (ADS)

    Smith, S.; Ullman, D. J.; He, F.; Carlson, A. E.; Marzeion, B.; Maussion, F.

    2017-12-01

    Understanding the behavior of the world's glaciers during previous interglaciations is key to interpreting the sensitivity and behavior of the cryosphere under scenarios of future anthropogenic warming. Previous studies of the Last Interglaciation (LIG, 130 ka to 116 ka) indicate elevated global temperatures and higher sea levels than the Holocene, but most assessments of the impact on the cryosphere have focused on the mass balance and volume change of polar ice sheets. In assessing sea-level sources, most studies assume complete deglacation of global glaciers, but this has yet to be tested. In addition, the significant changes in orbital forcing during the LIG and the associated impacts on climate seasonality and variability may have led to unique glacier evolution.Here, we explore the effect of LIG climate on the global glacier budget. We employ the Open Global Glacier Model (OGGM), forced by simulated LIG equilibrium climate anomalies (127 ka) from the Community Climate System Model Version 3 (CCSM3). OGGM is a glacier mass balance and dynamics model, specifically designed to reconstruct global glacier volume change. Our simulations have been conducted in an equilibrium state to determine the effect of the prolonged climate forcing of the LIG. Due to unknown flow characteristics of glaciers during the LIG, we explore the parametric uncertainty in the mass balance and flow sensitivity parameters. As a point of comparison, we also conduct a series of simulations using forcing anomalies from the CCSM3 mid-Holocene (6 ka) experiment. Results from both experiments show that glacier mass balance is highly sensitive to these sensitivity parameters, pointing at the need for glacier margin calibration for OGGM in paleoclimate applications.

  4. The Regional Network for Asian Schistosomiasis and Other Helminth Zoonoses (RNAS(+)) target diseases in face of climate change.

    PubMed

    Yang, Guo-Jing; Utzinger, Jürg; Lv, Shan; Qian, Ying-Jun; Li, Shi-Zhu; Wang, Qiang; Bergquist, Robert; Vounatsou, Penelope; Li, Wei; Yang, Kun; Zhou, Xiao-Nong

    2010-01-01

    Climate change-according to conventional wisdom-will result in an expansion of tropical parasitic diseases in terms of latitude and altitude, with vector-borne diseases particularly prone to change. However, although a significant rise in temperature occurred over the past century, there is little empirical evidence whether climate change has indeed favoured infectious diseases. This might be explained by the complex relationship between climate change and the frequency and the transmission dynamics of infectious diseases, which is characterised by nonlinear associations and countless other complex factors governing the distribution of infectious diseases. Here, we explore whether and how climate change might impact on diseases targeted by the Regional Network for Asian Schistosomiasis and Other Helminth Zoonoses (RNAS(+)). We start our review with a short summary of the current evidence-base how climate change affects the distribution of infectious diseases. Next, we introduce biology-based models for predicting the distribution of infectious diseases in a future, warmer world. Two case studies are presented: the classical RNAS(+) disease schistosomiasis and an emerging disease, angiostrongyliasis, focussing on their occurrences in the People's Republic of China. Strengths and limitations of current models for predicting the impact of climate change on infectious diseases are discussed, and we propose model extensions to include social and ecological factors. Finally, we recommend that mitigation and adaptation strategies to diminish potential negative effects of climate change need to be developed in concert with key stakeholders so that surveillance and early-warning systems can be strengthened and the most vulnerable population groups protected. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Trans- and Interdisciplinarity in K-14 Climate Change Education: Trends Emerging from Recent Reports by the National Research Council

    NASA Astrophysics Data System (ADS)

    Storksdieck, M.

    2012-12-01

    A recent report by the National Research Council placed climate change or climate science education deeply into the curriculum of K-12 science education in the US (A Framework for K-12 Science Education). The NRC Framework is currently being translated into the Next Generation Science Standards (NGSS), an effort by 26 states, representing 57% of the US school-aged population, under the leadership of the educational nonprofit Achieve. A first draft version of the NGSS was made available to public audiences in June of 2012, and a revised draft will be available for a second round of reviews in later November of 2012; the final version of the NGSS which will likely feature climate change and climate science as part of Earth Systems Science, but also embedded in other areas of the science curriculum, is expected to be released in the spring of 2013. It has already become apparent, though, that successful implementation of the new standards down into effective classroom-based instruction will require a deep analysis of current and likely future barriers and opportunities for engaging K-14 students in climate change education. A recently released report on an NRC workshop conducted in 2011 summarizes these discussions (Climate Change Education in Formal Settings, K-14: A Workshop Summary). The proceedings of the workshop highlight the need to think in trans- or interdisciplinary ways about educating children in primary, secondary and early post-secondary education. This report builds on a 2010 workshop that addressed how to best reach general audiences on the issue of climate change education, particularly if the desired outcome is seen as building adaptive capacity in children and adults alike. This workshop was summarized in a report entitled Climate Change Education: Goals, Audiences, and Strategies. Opportunities for engaging students in trans- or interdisciplinary exploration of climate science or climate change-related topics, while available to K-12 students, abound in undergraduate education and informal learning. This presentation will feature a variety of cases in which climate is being addressed this way, and discuss principles that one can extract from such diverse examples as an integrated undergraduate minor; a youth-oriented show and related activities for schools provided by an educational non-profit; Green Schools and other specialty initiatives at the K-12 level that integrate education around climate and energy challenges, or programs in nature and science centers that address climate issues from a stewardship perspective, addressing actions children can take as part of the educational activities themselves. Principles that have guided various successful efforts to implement trans-and interdisciplinary climate education include orientation towards local and community action; relevance to learners; commitment by leadership and staff; institutional and organizational freedom to experiment and cooperate; opportunities to explore underlying natural and social science phenomena through hands-on and active learning; and commitment to excellence and scientific "truth". The session will close with a reflection on the merits of infusing climate change throughout the learning trajectory of a child, adolescent or young adult.

  6. Lens on Climate Change (LOCC) - Engaging Diverse Secondary Students in Climate Science through Videography

    NASA Astrophysics Data System (ADS)

    Gold, Anne; Smith, Lesley; Leckey, Erin; Oonk, David; Woods, Melanie

    2016-04-01

    The impact of climate change is often discussed using examples from Polar Regions, such as decreasing polar bear populations, but significant changes are happening to local climates around the world. Climate change is often perceived as happening elsewhere, evoking a sense that others have to take action to mitigate climate change. Learning about climate change is very tangible for students when it addresses impacts they can observe close to their home. The Lens on Climate Change (LOCC) program engages students, ages 11to18 in producing short videos about climate change topics in Colorado, USA, specifically ones that are impacting students' lives and their local community. Participating schools are located in rural, suburban and urban Colorado many of which have diverse student populations often from socioeconomically disadvantaged backgrounds. Project staff recruits university graduate and undergraduate students to mentor the students in their research and video production. With the help of these mentors, student groups select and research climate topics, interview science experts and stakeholders, and produce short videos. The program aims to engage students in self-motivated research and learning about a climate topic. Furthermore, it serves as a way to spark students' interest in a career in science by matching them with college students for the program duration and bringing them to a university campus for a final screening event. For many of the students it is their first visit to a college campus. The LOCC project aims to connect secondary students, who otherwise would not have this opportunity, with college life and the scientific community. Evaluation results show that the process of video production is a powerful tool for the students to explore and learn about climate change topics. Students and teachers appreciate the unique approach to learning. The here presented approach of teaching science with videography in an active, self-directed style can easily be transferred.

  7. Adapting Infrastructure and Civil Engineering Practice to a Changing Climate: Developing a Manual of Practice

    NASA Astrophysics Data System (ADS)

    Walker, D.; Ayyub, B. M.

    2017-12-01

    According to U.S. Census, new construction spending in the U.S. for 2014 was $993 Billion (roughly 6 percent of U.S. GDP). Informing the development of standards of engineering practice related to design and maintenance thus represents a significant opportunity to promote climate adaptation and mitigation, as well as community resilience. The climate science community informs us that extremes of climate and weather are changing from historical values and that the changes are driven substantially by emissions of greenhouse gases caused by human activities. Civil infrastructure systems traditionally have been designed, constructed, operated and maintained for appropriate probabilities of functionality, durability and safety while exposed to climate and weather extremes during their full service lives. Because of uncertainties in future greenhouse gas emissions and in the models for future climate and weather extremes, neither the climate science community nor the engineering community presently can define the statistics of future climate and weather extremes. The American Society for Civil Engineering's (ASCE) Committee on Adapting to a Changing Climate is actively involved in efforts internal and external to ASCE to promote understanding of the challenges climate change represents in engineering practice and to promote a re-examination of those practices that may need to change in light of changing climate. In addition to producing an ASCE e-book, as well as number of ASCE webinars, the Committee is currently developing a Manual of Practice intended to provide guidance for the development or enhancement of standards for infrastructure analysis and design in a world in which risk profiles are changing (non-stationarity) and climate change is a reality, but cannot be projected with a high degree of certainty. This presentation will explore both the need for such guidance as well as some of the challenges and opportunities facing its implementation.

  8. Mid-latitude shrub steppe plant communities: Climate change consequences for soil water resources

    USGS Publications Warehouse

    Palmquist, Kyle A.; Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, Willliam K.

    2016-01-01

    In the coming century, climate change is projected to impact precipitation and temperature regimes worldwide, with especially large effects in drylands. We use big sagebrush ecosystems as a model dryland ecosystem to explore the impacts of altered climate on ecohydrology and the implications of those changes for big sagebrush plant communities using output from 10 Global Circulation Models (GCMs) for two representative concentration pathways (RCPs). We ask: 1) What is the magnitude of variability in future temperature and precipitation regimes among GCMs and RCPs for big sagebrush ecosystems and 2) How will altered climate and uncertainty in climate forecasts influence key aspects of big sagebrush water balance? We explored these questions across 1980-2010, 2030-2060, and 2070-2100 to determine how changes in water balance might develop through the 21st century. We assessed ecohydrological variables at 898 sagebrush sites across the western US using a process-based soil water model, SOILWAT to model all components of daily water balance using site-specific vegetation parameters and site-specific soil properties for multiple soil layers. Our modeling approach allowed for changes in vegetation based on climate. Temperature increased across all GCMs and RCPs, while changes in precipitation were more variable across GCMs. Winter and spring precipitation was predicted to increase in the future (7% by 2030-2060, 12% by 2070-2100), resulting in slight increases in soil water potential (SWP) in winter. Despite wetter winter soil conditions, SWP decreased in late spring and summer due to increased evapotranspiration (6% by 2030-2060, 10% by 2070-2100) and groundwater recharge (26% and 30% increase by 2030-2060 and 2070-2100). Thus, despite increased precipitation in the cold season, soils may dry out earlier in the year, resulting in potentially longer drier summer conditions. If winter precipitation cannot offset drier summer conditions in the future, we expect big sagebrush regeneration and survival will be negatively impacted, potentially resulting in shifts in the relative abundance of big sagebrush plant functional groups. Our results also highlight the importance of assessing multiple GCMs to understand the range of climate change outcomes on ecohydrology, which was contingent on the GCM chosen.

  9. Companies and Climate Risk: Opportunities to Engage the Business Community in Promoting Climate-conscious Policies (Invited)

    NASA Astrophysics Data System (ADS)

    Goldman, G. T.; Rogerson, P.

    2013-12-01

    Regardless of their policy orientation, the business community has an interest in how climate change impacts will affect their operations and ultimately change their bottom line. The reality that climate change presents material and financial risks to many companies in diverse sectors of the economy presents an opportunity to engage companies on climate-related issues. Company investors are exposed to such financial risks and can pressure public companies to change behavior through shareholder resolutions, voting, and election of new board members. The US Securities and Exchange Commission (SEC) obligates all publicly traded companies to discuss risks that might materially affect their business in their annual Form 10-K filings. In 2010, the guidance for the Form 10-K specifically suggested that companies consider and discuss any significant risks to their business from climate change--both from its physical effects and from impacts of climate regulations. Form 10-Ks for 28 US companies were analyzed for the years 2009 and 2010. Results indicate that some companies comprehensively considered climate-related risks. However, in spite of the SEC guidance, some fail to mention climate change at all. Additionally, many companies discuss only the impacts that regulation would have on their business--not the physical effects of climate change itself. The lack of consideration of climate-related risks in companies' risk assessments demonstrates a need for a more uniform understanding of SEC requirements and additionally, this state of affairs presents an opportunity to push companies to more deeply consider climate change impacts. Several avenues are available for engaging with companies themselves, their shareholders, the SEC, and the public. We will explore what strategies have been effective for engaging such actors and what further opportunities exist for working with the business community to promote more climate-conscious policies and practices.

  10. Suggestions for Forest Conservation Policy under Climate Change

    NASA Astrophysics Data System (ADS)

    Choe, H.; Thorne, J. H.; Lee, D. K.; Seo, C.

    2015-12-01

    Climate change and the destruction of natural habitats by land-use change are two main factors in decreasing terrestrial biodiversity. Studying land-use and climate change and their impact under different scenarios can help suggest policy directions for future events. This study explores the spatial results of different land use and climate models on the extent of species rich areas in South Korea. We built land use models of forest conversion and created four 2050 scenarios: (1) a loss trend following current levels, resulting in 15.5% lost; (2) similar loss, but with forest conservation in areas with suitable future climates; (3) a reduction of forest loss by 50%; and (4) a combination of preservation of forest climate refugia and overall reduction of loss by 50%. Forest climate refugia were identified through the use of species distribution models run on 1,031 forest plant species to project current and 2050 distributions. We calculated change in species richness under four climate projections, permitting an assessment of forest refugia zones. We then crossed the four land use models with the climate-driven change in species richness. Forest areas predominantly convert to agricultural areas, while climate-suitable extents for forest plants decline and move northward, especially to higher elevations. Scenario 2, that has the higher level of deforestation but protects future species rich areas, conserves nearly as much future biodiversity as scenario 3, which reduced deforestation rates by 50%. This points to the importance of including biogeographic climate dynamics in forest policy. Scenario 4 was the most effective at conserving forest biodiversity. We suggest conserving forest areas with suitable climates for biodiversity conservation and the establishment of monoculture plantations targeted to areas where species richness will decline based on our results.

  11. Disentangling the effects of climate variability and functional change on ecosystem carbon dynamics using semi-empirical modelling

    NASA Astrophysics Data System (ADS)

    Wu, J.; van der Linden, L.; Lasslop, G.; Carvalhais, N.; Pilegaard, K.; Beier, C.; Ibrom, A.

    2012-04-01

    The ecosystem carbon balance is affected by both external climatic forcing (e.g. solar radiation, air temperature and humidity) and internal dynamics in the ecosystem functional properties (e.g. canopy structure, leaf photosynthetic capacity and carbohydrate reserve). In order to understand to what extent and at which temporal scale, climatic variability and functional changes regulated the interannual variation (IAV) in the net ecosystem exchange of CO2 (NEE), data-driven analysis and semi-empirical modelling (Lasslop et al. 2010) were performed based on a 13 year NEE record in a temperate deciduous forest (Pilegaard et al 2011, Wu et al. 2012). We found that the sensitivity of carbon fluxes to climatic variability was significantly higher at shorter than at longer time scales and changed seasonally. This implied that the changing distribution of climate anomalies during the vegetation period could have stronger impacts on future ecosystem carbon balances than changes in average climate. At the annual time scale, approximately 80% of the interannual variability in NEE was attributed to the variation in the model parameters, indicating the observed IAV in the carbon dynamics at the investigated site was dominated by changes in ecosystem functioning. In general this study showed the need for understanding the mechanisms of ecosystem functional change. The method can be applied at other sites to explore ecosystem behavior across different plant functional types and climate gradients. Incorporating ecosystem functional change into process based models will reduce the uncertainties in long-term predictions of ecosystem carbon balances in global climate change projections. Acknowledgements. This work was supported by the EU FP7 project CARBO-Extreme, the DTU Climate Centre and the Danish national project ECOCLIM (Danish Council for Strategic Research).

  12. Assessing climate change impacts on wetlands in a flow regulated catchment: A case study in the Macquarie Marshes, Australia.

    PubMed

    Fu, Baihua; Pollino, Carmel A; Cuddy, Susan M; Andrews, Felix

    2015-07-01

    Globally wetlands are increasingly under threat due to changes in water regimes as a result of river regulation and climate change. We developed the Exploring CLimAte Impacts on Management (EXCLAIM) decision support system (DSS), which simulates flow-driven habitat condition for 16 vegetation species, 13 waterbird species and 4 fish groups in the Macquarie catchment, Australia. The EXCLAIM DSS estimates impacts to habitat condition, considering scenarios of climate change and water management. The model framework underlying the DSS is a probabilistic Bayesian network, and this approach was chosen to explicitly represent uncertainties in climate change scenarios and predicted ecological outcomes. The results suggest that the scenario with no climate change and no water resource development (i.e. flow condition without dams, weirs or water license entitlements, often regarded as a surrogate for 'natural' flow) consistently has the most beneficial outcomes for vegetation, waterbird and native fish. The 2030 dry climate change scenario delivers the poorest ecological outcomes overall, whereas the 2030 wet climate change scenario has beneficial outcomes for waterbird breeding, but delivers poor outcomes for river red gum and black box woodlands, and fish that prefer river channels as habitats. A formal evaluation of the waterbird breeding model showed that higher numbers of observed nest counts are typically associated with higher modelled average breeding habitat conditions. The EXCLAIM DSS provides a generic framework to link hydrology and ecological habitats for a large number of species, based on best available knowledge of their flood requirements. It is a starting point towards developing an integrated tool for assessing climate change impacts on wetland ecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth.

    PubMed

    Charney, Noah D; Babst, Flurin; Poulter, Benjamin; Record, Sydne; Trouet, Valerie M; Frank, David; Enquist, Brian J; Evans, Margaret E K

    2016-09-01

    Predicting long-term trends in forest growth requires accurate characterisation of how the relationship between forest productivity and climatic stress varies across climatic regimes. Using a network of over two million tree-ring observations spanning North America and a space-for-time substitution methodology, we forecast climate impacts on future forest growth. We explored differing scenarios of increased water-use efficiency (WUE) due to CO2 -fertilisation, which we simulated as increased effective precipitation. In our forecasts: (1) climate change negatively impacted forest growth rates in the interior west and positively impacted forest growth along the western, southeastern and northeastern coasts; (2) shifting climate sensitivities offset positive effects of warming on high-latitude forests, leaving no evidence for continued 'boreal greening'; and (3) it took a 72% WUE enhancement to compensate for continentally averaged growth declines under RCP 8.5. Our results highlight the importance of locally adapted forest management strategies to handle regional differences in growth responses to climate change. © 2016 John Wiley & Sons Ltd/CNRS.

  14. Inter-comparison of multiple statistically downscaled climate datasets for the Pacific Northwest, USA

    PubMed Central

    Jiang, Yueyang; Kim, John B.; Still, Christopher J.; Kerns, Becky K.; Kline, Jeffrey D.; Cunningham, Patrick G.

    2018-01-01

    Statistically downscaled climate data have been widely used to explore possible impacts of climate change in various fields of study. Although many studies have focused on characterizing differences in the downscaling methods, few studies have evaluated actual downscaled datasets being distributed publicly. Spatially focusing on the Pacific Northwest, we compare five statistically downscaled climate datasets distributed publicly in the US: ClimateNA, NASA NEX-DCP30, MACAv2-METDATA, MACAv2-LIVNEH and WorldClim. We compare the downscaled projections of climate change, and the associated observational data used as training data for downscaling. We map and quantify the variability among the datasets and characterize the spatio-temporal patterns of agreement and disagreement among the datasets. Pair-wise comparisons of datasets identify the coast and high-elevation areas as areas of disagreement for temperature. For precipitation, high-elevation areas, rainshadows and the dry, eastern portion of the study area have high dissimilarity among the datasets. By spatially aggregating the variability measures into watersheds, we develop guidance for selecting datasets within the Pacific Northwest climate change impact studies. PMID:29461513

  15. Inter-comparison of multiple statistically downscaled climate datasets for the Pacific Northwest, USA.

    PubMed

    Jiang, Yueyang; Kim, John B; Still, Christopher J; Kerns, Becky K; Kline, Jeffrey D; Cunningham, Patrick G

    2018-02-20

    Statistically downscaled climate data have been widely used to explore possible impacts of climate change in various fields of study. Although many studies have focused on characterizing differences in the downscaling methods, few studies have evaluated actual downscaled datasets being distributed publicly. Spatially focusing on the Pacific Northwest, we compare five statistically downscaled climate datasets distributed publicly in the US: ClimateNA, NASA NEX-DCP30, MACAv2-METDATA, MACAv2-LIVNEH and WorldClim. We compare the downscaled projections of climate change, and the associated observational data used as training data for downscaling. We map and quantify the variability among the datasets and characterize the spatio-temporal patterns of agreement and disagreement among the datasets. Pair-wise comparisons of datasets identify the coast and high-elevation areas as areas of disagreement for temperature. For precipitation, high-elevation areas, rainshadows and the dry, eastern portion of the study area have high dissimilarity among the datasets. By spatially aggregating the variability measures into watersheds, we develop guidance for selecting datasets within the Pacific Northwest climate change impact studies.

  16. Physio-climatic controls on vulnerability of watersheds to climate and land use change across the U. S.

    NASA Astrophysics Data System (ADS)

    Deshmukh, Ankit; Singh, Riddhi

    2016-11-01

    Understanding how a watershed's physio-climatic characteristics affect its vulnerability to environmental (climatic and land use) change is crucial for managing these complex systems. In this study, we combine the strengths of recently developed exploratory modeling frameworks and comparative hydrology to quantify the relationship between watershed's vulnerability and its physio-climatic characteristics. We propose a definition of vulnerability that can be used by a diverse range of water system managers and is useful in the presence of large uncertainties in drivers of environmental change. This definition is related to adverse climate change and land use thresholds that are quantified using a recently developed exploratory modeling approach. In this way, we estimate the vulnerability of 69 watersheds in the United States to climate and land use change. We explore definitions of vulnerability that describe average or extreme flow conditions, as well as others that are relevant from the point of view of instream organisms. In order to understand the dominant controls on vulnerability, we correlate these indices with watershed's characteristics describing its topography, geology, drainage, climate, and land use. We find that mean annual flow is more vulnerable to reductions in precipitation in watersheds with lower average soil permeability, lower baseflow index, lower forest cover, higher topographical wetness index, and vice-versa. Our results also indicate a potential mediation of climate change impacts by regional groundwater systems. By developing such relationships across a large range of watersheds, such information can potentially be used to assess the vulnerability of ungauged watersheds to uncertain environmental change.

  17. Climate change is advancing spring onset across the U.S. national park system

    USGS Publications Warehouse

    Monahan, William B.; Rosemartin, Alyssa; Gerst, Katharine L.; Fisichelli, Nicholas A.; Ault, Toby R.; Schwartz, Mark D.; Gross, John E.; Weltzin, Jake F.

    2016-01-01

    Many U.S. national parks are already at the extreme warm end of their historical temperature distributions. With rapidly warming conditions, park resource management will be enhanced by information on seasonality of climate that supports adjustments in the timing of activities such as treating invasive species, operating visitor facilities, and scheduling climate-related events (e.g., flower festivals and fall leaf-viewing). Seasonal changes in vegetation, such as pollen, seed, and fruit production, are important drivers of ecological processes in parks, and phenology has thus been identified as a key indicator for park monitoring. Phenology is also one of the most proximate biological responses to climate change. Here, we use estimates of start of spring based on climatically modeled dates of first leaf and first bloom derived from indicator plant species to evaluate the recent timing of spring onset (past 10–30 yr) in each U.S. natural resource park relative to its historical range of variability across the past 112 yr (1901–2012). Of the 276 high latitude to subtropical parks examined, spring is advancing in approximately three-quarters of parks (76%), and 53% of parks are experiencing “extreme” early springs that exceed 95% of historical conditions. Our results demonstrate how changes in climate seasonality are important for understanding ecological responses to climate change, and further how spatial variability in effects of climate change necessitates different approaches to management. We discuss how our results inform climate change adaptation challenges and opportunities facing parks, with implications for other protected areas, by exploring consequences for resource management and planning.

  18. Defining the Core of Positive School Culture

    ERIC Educational Resources Information Center

    Alexander, Justin T.

    2012-01-01

    This study explored the traits and leadership tactics of an effective leader that influenced the climate and culture of a school. This study examined changes a principal made to the climate in order to establish leadership and cultivate positive school culture. The purpose of this study was to examine leadership and culture together by observing…

  19. Targeting climate diversity in conservation planning to build resilience to climate change

    USGS Publications Warehouse

    Heller, Nicole E.; Kreitler, Jason R.; Ackerly, David; Weiss, Stuart; Recinos, Amanda; Branciforte, Ryan; Flint, Lorraine E.; Flint, Alan L.; Micheli, Elisabeth

    2015-01-01

    Climate change is raising challenging concerns for systematic conservation planning. Are methods based on the current spatial patterns of biodiversity effective given long-term climate change? Some conservation scientists argue that planning should focus on protecting the abiotic diversity in the landscape, which drives patterns of biological diversity, rather than focusing on the distribution of focal species, which shift in response to climate change. Climate is one important abiotic driver of biodiversity patterns, as different climates host different biological communities and genetic pools. We propose conservation networks that capture the full range of climatic diversity in a region will improve the resilience of biotic communities to climate change compared to networks that do not. In this study we used historical and future hydro-climate projections from the high resolution Basin Characterization Model to explore the utility of directly targeting climatic diversity in planning. Using the spatial planning tool, Marxan, we designed conservation networks to capture the diversity of climate types, at the regional and sub-regional scale, and compared them to networks we designed to capture the diversity of vegetation types. By focusing on the Conservation Lands Network (CLN) of the San Francisco Bay Area as a real-world case study, we compared the potential resilience of networks by examining two factors: the range of climate space captured, and climatic stability to 18 future climates, reflecting different emission scenarios and global climate models. We found that the climate-based network planned at the sub-regional scale captured a greater range of climate space and showed higher climatic stability than the vegetation and regional based-networks. At the same time, differences among network scenarios are small relative to the variance in climate stability across global climate models. Across different projected futures, topographically heterogeneous areas consistently show greater climate stability than homogenous areas. The analysis suggests that utilizing high-resolution climate and hydrological data in conservation planning improves the likely resilience of biodiversity to climate change. We used these analyses to suggest new conservation priorities for the San Francisco Bay Area.

  20. Impacts of Climate Change on Indirect Human Exposure to Pathogens and Chemicals from Agriculture

    PubMed Central

    Boxall, Alistair B.A.; Hardy, Anthony; Beulke, Sabine; Boucard, Tatiana; Burgin, Laura; Falloon, Peter D.; Haygarth, Philip M.; Hutchinson, Thomas; Kovats, R. Sari; Leonardi, Giovanni; Levy, Leonard S.; Nichols, Gordon; Parsons, Simon A.; Potts, Laura; Stone, David; Topp, Edward; Turley, David B.; Walsh, Kerry; Wellington, Elizabeth M.H.; Williams, Richard J.

    2009-01-01

    Objective Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. Data sources In this review, we used expert input and considered literature on climate change; health effects resulting from exposure to pathogens and chemicals arising from agriculture; inputs of chemicals and pathogens to agricultural systems; and human exposure pathways for pathogens and chemicals in agricultural systems. Data synthesis We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Conclusions Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes. PMID:19440487

  1. Relating climate change policy to poverty policy: assessing the global exposure of the poor to floods and droughts

    NASA Astrophysics Data System (ADS)

    Winsemius, Hessel; Jongman, Brenden; Veldkamp, Ted; Hallegatte, Stéphane; Bangalore, Mook; Ward, Philip

    2016-04-01

    Prior to the COP21 conference in Paris this year, the World Bank published a report called "Shockwaves - Managing the Impacts of Climate Change on Poverty". The report flagged that ending poverty and stabilizing climate change should be jointly tackled and that without a good joint policy, a further 100 million people could become trapped in poverty by 2050. As part of the "Shockwaves" report, we investigated whether low-income households are disproportionately overrepresented in hazard-prone areas compared to households with higher income. Furthermore, the hazardous conditions under which poor households are exposed to now may become worse due to climate change with resulting increases in intensity and frequency of floods and droughts. We also show how the amount of affected people to these natural hazards change in the future if nothing is done. We use recent advances in the global spatial modeling of flood and drought hazard and a large sample of household surveys containing asset and income data to explore the relationships.

  2. Climate and atmosphere simulator for experiments on ecological systems in changing environments.

    PubMed

    Verdier, Bruno; Jouanneau, Isabelle; Simonnet, Benoit; Rabin, Christian; Van Dooren, Tom J M; Delpierre, Nicolas; Clobert, Jean; Abbadie, Luc; Ferrière, Régis; Le Galliard, Jean-François

    2014-01-01

    Grand challenges in global change research and environmental science raise the need for replicated experiments on ecosystems subjected to controlled changes in multiple environmental factors. We designed and developed the Ecolab as a variable climate and atmosphere simulator for multifactor experimentation on natural or artificial ecosystems. The Ecolab integrates atmosphere conditioning technology optimized for accuracy and reliability. The centerpiece is a highly contained, 13-m(3) chamber to host communities of aquatic and terrestrial species and control climate (temperature, humidity, rainfall, irradiance) and atmosphere conditions (O2 and CO2 concentrations). Temperature in the atmosphere and in the water or soil column can be controlled independently of each other. All climatic and atmospheric variables can be programmed to follow dynamical trajectories and simulate gradual as well as step changes. We demonstrate the Ecolab's capacity to simulate a broad range of atmospheric and climatic conditions, their diurnal and seasonal variations, and to support the growth of a model terrestrial plant in two contrasting climate scenarios. The adaptability of the Ecolab design makes it possible to study interactions between variable climate-atmosphere factors and biotic disturbances. Developed as an open-access, multichamber platform, this equipment is available to the international scientific community for exploring interactions and feedbacks between ecological and climate systems.

  3. Exploring Science Teachers' Argumentation and Personal Epistemology About Global Climate Change

    NASA Astrophysics Data System (ADS)

    Liu, Shiyu; Roehrig, Gillian

    2017-06-01

    This case study investigated the nature of in-service science teachers' argumentation and personal epistemology about global climate change during a 3-year professional development program on climate change education. Qualitative analysis of data from interviews and written assessments revealed that while these teachers grounded their arguments on climate issues in evidence, the evidence was often insufficient to justify their causal claims. Compared with generating arguments for their own views, teachers had more difficulties in constructing evidence-based arguments for alternative perspectives. Moreover, while these teachers shared some similarities in their epistemology about climate science, they varied in their beliefs about specific aspects such as scientists' expertise and the credibility of scientific evidence. Such similarities and distinctions were shown to relate to how teachers used evidence to justify claims in their arguments. The findings also suggested a mismatch between teachers' personal epistemology about science in general and climate science, which was revealed through their argumentation. This work helps to further the ongoing discussions in environmental education about what knowledge and skills teachers need in order to teach climate issues and prepare students for future decision making. It constitutes first steps to facilitate reasoning and argumentation in climate change education and provides important implications for future design of professional development programs.

  4. Modelling exploration of non-stationary hydrological system

    NASA Astrophysics Data System (ADS)

    Kim, Kue Bum; Kwon, Hyun-Han; Han, Dawei

    2015-04-01

    Traditional hydrological modelling assumes that the catchment does not change with time (i.e., stationary conditions) which means the model calibrated for the historical period is valid for the future period. However, in reality, due to change of climate and catchment conditions this stationarity assumption may not be valid in the future. It is a challenge to make the hydrological model adaptive to the future climate and catchment conditions that are not observable at the present time. In this study a lumped conceptual rainfall-runoff model called IHACRES was applied to a catchment in southwest England. Long observation data from 1961 to 2008 were used and seasonal calibration (in this study only summer period is further explored because it is more sensitive to climate and land cover change than the other three seasons) has been done since there are significant seasonal rainfall patterns. We expect that the model performance can be improved by calibrating the model based on individual seasons. The data is split into calibration and validation periods with the intention of using the validation period to represent the future unobserved situations. The success of the non-stationary model will depend not only on good performance during the calibration period but also the validation period. Initially, the calibration is based on changing the model parameters with time. Methodology is proposed to adapt the parameters using the step forward and backward selection schemes. However, in the validation both the forward and backward multiple parameter changing models failed. One problem is that the regression with time is not reliable since the trend may not be in a monotonic linear relationship with time. The second issue is that changing multiple parameters makes the selection process very complex which is time consuming and not effective in the validation period. As a result, two new concepts are explored. First, only one parameter is selected for adjustment while the other parameters are set as constant. Secondly, regression is made against climate condition instead of against time. It has been found that such a new approach is very effective and this non-stationary model worked very well both in the calibration and validation period. Although the catchment is specific in southwest England and the data are for only the summer period, the methodology proposed in this study is general and applicable to other catchments. We hope this study will stimulate the hydrological community to explore a variety of sites so that valuable experiences and knowledge could be gained to improve our understanding of such a complex modelling issue in climate change impact assessment.

  5. Grassland responses to increased rainfall depend on the timescale of forcing.

    PubMed

    Sullivan, Martin J P; Thomsen, Meredith A; Suttle, K B

    2016-04-01

    Forecasting impacts of future climate change is an important challenge to biologists, both for understanding the consequences of different emissions trajectories and for developing adaptation measures that will minimize biodiversity loss. Existing variation provides a window into the effects of climate on species and ecosystems, but in many places does not encompass the levels or timeframes of forcing expected under directional climatic change. Experiments help us to fill in these uncertainties, simulating directional shifts to examine outcomes of new levels and sustained changes in conditions. Here, we explore the translation between short-term responses to climate variability and longer-term trajectories that emerge under directional climatic change. In a decade-long experiment, we compare effects of short-term and long-term forcings across three trophic levels in grassland plots subjected to natural and experimental variation in precipitation. For some biological responses (plant productivity), responses to long-term extension of the rainy season were consistent with short-term responses, while for others (plant species richness, abundance of invertebrate herbivores and predators), there was pronounced divergence of long-term trajectories from short-term responses. These differences between biological responses mean that sustained directional changes in climate can restructure ecological relationships characterizing a system. Importantly, a positive relationship between plant diversity and productivity turned negative under one scenario of climate change, with a similar change in the relationship between plant productivity and consumer biomass. Inferences from experiments such as this form an important part of wider efforts to understand the complexities of climate change responses. © 2016 John Wiley & Sons Ltd.

  6. Household perceptions of coastal hazards and climate change in the Central Philippines.

    PubMed

    Combest-Friedman, Chelsea; Christie, Patrick; Miles, Edward

    2012-12-15

    As a tropical archipelagic nation, the Philippines is particularly susceptible to coastal hazards, which are likely to be exacerbated by climate change. To improve coastal hazard management and adaptation planning, it is imperative that climate information be provided at relevant scales and that decision-makers understand the causes and nature of risk in their constituencies. Focusing on a municipality in the Central Philippines, this study examines local meteorological information and explores household perceptions of climate change and coastal hazard risk. First, meteorological data and local perceptions of changing climate conditions are assessed. Perceived changes in climate include an increase in rainfall and rainfall variability, an increase in intensity and frequency of storm events and sea level rise. Second, factors affecting climate change perceptions and perceived risk from coastal hazards are determined through statistical analysis. Factors tested include social status, economic standing, resource dependency and spatial location. Results indicate that perceived risk to coastal hazards is most affected by households' spatial location and resource dependency, rather than socio-economic conditions. However, important differences exist based on the type of hazard and nature of risk being measured. Resource dependency variables are more significant in determining perceived risk from coastal erosion and sea level rise than flood events. Spatial location is most significant in determining households' perceived risk to their household assets, but not perceived risk to their livelihood. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Climate change alters the reproductive phenology and investment of a lacustrine fish, the three-spine stickleback.

    PubMed

    Hovel, Rachel A; Carlson, Stephanie M; Quinn, Thomas P

    2017-06-01

    High-latitude lakes are particularly sensitive to the effects of global climate change, demonstrating earlier ice breakup, longer ice-free seasons, and increased water temperatures. Such physical changes have implications for diverse life-history traits in taxa across entire lake food webs. Here, we use a five-decade time series from an Alaskan lake to explore effects of climate change on growth and reproduction of a widely distributed lacustrine fish, the three-spine stickleback (Gasterosteus aculeatus). We used multivariate autoregressive state-space (MARSS) models to describe trends in the mean length for multiple size classes and to explore the influence of physical (date of ice breakup, surface water temperature) and biological (density of con- and heterospecifics) factors. As predicted, mean size of age 1 and older fish at the end of the growing season increased across years with earlier ice breakup and warmer temperatures. In contrast, mean size of age 0 fish decreased over time. Overall, lower fish density and warmer water temperatures were associated with larger size for all cohorts. Earlier ice breakup was associated with larger size for age 1 and older fish but, paradoxically, with smaller size of age 0 fish. To explore this latter result, we used mixing models on age 0 size distributions, which revealed an additional cohort in years with early ice breakup, lowering the mean size of age 0 fish. Moreover, early ice breakup was associated with earlier breeding, evidenced by earlier capture of age 0 fish. Our results suggest that early ice breakup altered both timing and frequency of breeding; three-spine stickleback spawned earlier and more often in response to earlier ice breakup date. While previous studies have shown the influence of changing conditions in northern lakes on breeding timing and growth, this is the first to document increased breeding frequency, highlighting another pathway by which climate change can alter the ecology of northern lakes. © 2016 John Wiley & Sons Ltd.

  8. Vulnerability of Thai rice production to simultaneous climate and socioeconomic changes: a double exposure analysis

    NASA Astrophysics Data System (ADS)

    Sangpenchan, R.

    2011-12-01

    This research explores the vulnerability of Thai rice production to simultaneous exposure by climate and socioeconomic change -- so-called "double exposure." Both processes influence Thailand's rice production system, but the vulnerabilities associated with their interactions are unknown. To understand this double exposure, I adopts a mixed-method, qualitative-quantitative analytical approach consisting of three phases of analysis involving a Vulnerability Scoping Diagram, a Principal Component Analysis, and the EPIC crop model using proxy datasets collected from secondary data sources at provincial scales.The first and second phases identify key variables representing each of the three dimensions of vulnerability -- exposure, sensitivity, and adaptive capacity indicating that the greatest vulnerability in the rice production system occurs in households and areas with high exposure to climate change, high sensitivity to climate and socioeconomic stress, and low adaptive capacity. In the third phase, the EPIC crop model simulates rice yields associated with future climate change projected by CSIRO and MIROC climate models. Climate change-only scenarios project the decrease in yields by 10% from the current productivity during 2016-2025 and 30% during 2045-2054. Scenarios applying both climate change and improved technology and management practices show that a 50% increase in rice production is possible, but requires strong collaboration between sectors to advance agricultural research and technology and requires strong adaptive capacity in the rice production system characterized by well-developed social capital, social networks, financial capacity, and infrastructure and household mobility at the local scale. The vulnerability assessment and climate and crop adaptation simulations used here provide useful information to decision makers developing vulnerability reduction plans in the face of concurrent climate and socioeconomic change.

  9. Two sides of the same coin? Exploring the relationship between Petén-Itzá and Cariaco Basin pollen records

    NASA Astrophysics Data System (ADS)

    Gonzalez, C.; Correa-Metrio, A.

    2013-05-01

    Millennial time-scale climate changes from the high latitudes seem to have had a profound effect on Neotropical terrestrial and marine biota during the last glacial cycle. By comparing high resolution palynological data from the Yucatán Peninsula (Lake Petén-Itzá) and Cariaco Basin off Venezuelan coast during the last 70,000 years, we Intend to gain insight into the climatic linkages that existed between both regions. Specifically, we examine the role of atmospheric linking mechanisms like the ITCZ in driving synchronous changes in both palynological records. At millennial time-scales striking similarities appear between the dynamics of drought-indicative taxa (e.g. Poaceae) in Yucatán and riverine input-indicative taxa (Spiniferites) in Cariaco Basin suggesting that both systems responded to the same forcing almost simultaneously. At orbital time-scales, we explore the profound ecological changes that occurred in both sites at ca. 60 kyr that might be related to the shift from glacial to interglacial climatic conditions.

  10. Community shifts under climate change: mechanisms at multiple scales.

    PubMed

    Gornish, Elise S; Tylianakis, Jason M

    2013-07-01

    Processes that drive ecological dynamics differ across spatial scales. Therefore, the pathways through which plant communities and plant-insect relationships respond to changing environmental conditions are also expected to be scale-dependent. Furthermore, the processes that affect individual species or interactions at single sites may differ from those affecting communities across multiple sites. We reviewed and synthesized peer-reviewed literature to identify patterns in biotic or abiotic pathways underpinning changes in the composition and diversity of plant communities under three components of climate change (increasing temperature, CO2, and changes in precipitation) and how these differ across spatial scales. We also explored how these changes to plants affect plant-insect interactions. The relative frequency of biotic vs. abiotic pathways of climate effects at larger spatial scales often differ from those at smaller scales. Local-scale studies show variable responses to climate drivers, often driven by biotic factors. However, larger scale studies identify changes to species composition and/or reduced diversity as a result of abiotic factors. Differing pathways of climate effects can result from different responses of multiple species, habitat effects, and differing effects of invasions at local vs. regional to global scales. Plant community changes can affect higher trophic levels as a result of spatial or phenological mismatch, foliar quality changes, and plant abundance changes, though studies on plant-insect interactions at larger scales are rare. Climate-induced changes to plant communities will have considerable effects on community-scale trophic exchanges, which may differ from the responses of individual species or pairwise interactions.

  11. Storytelling and Technology Combine to Create Student Engagement Around Locally Relevant Climate Change Topics.

    NASA Astrophysics Data System (ADS)

    Leckey, E.; Littrell-Baez, M.; Tayne, K.; Gold, A. U.; Okochi, C.; Oonk, D.; Smith, L. K.; Lynds, S. E.

    2017-12-01

    Storytelling is a powerful way for students to engage with science topics, particularly topics that may initially seem too broad to impact their lives, like climate change. Empowering students to telling a personal story about climate change's effects and helping them turn their story into a film is powerful approach. Especially because these films can be shared globally and gives students a voice around a complex topic like climate change. Here, we present impacts of the Lens on Climate Change program (LOCC), which engages middle and high school students in producing short films featuring how climate change impacts their communities. LOCC is offered as an intensive week-long summer program and as an extracurricular program during the school year. The majority of student participants are recruited from historically underserved communities and come from ethnical and socioeconomically diverse backgrounds. Survey data revealed that LOCC participants had a significant increase in their belief in the reality of climate change after participation in their program relative to students in a demographically-matched control groups. Furthermore, participant responses on reflection surveys given after the program included statements that suggest that students had begun thinking more deeply about climate change as a serious global challenge and felt empowered to take actions to mitigate climate change and/or spread awareness in their communities. The majority of students in the LOCC program also reported being very proud of their film and intended to share their film with their friends and family. Additionally, we explored the long-term impacts of participation by interviewing students a year after the program and offered them the opportunity to make a subsequent film. Students in this "advanced group" reported being more aware of climate change in their community following making their films and were enthusiastic to increase their filmmaking skills through producing additional films. We suggest that the combination of storytelling and filmmaking gives students a means to become part of the climate change narrative and to engage in thinking about and acting on climate change at a broader level than they might otherwise be comfortable doing.

  12. Synthesizing the role of epigenetics in the response and adaptation of species to climate change in freshwater ecosystems.

    PubMed

    Jeremias, Guilherme; Barbosa, João; Marques, Sérgio M; Asselman, Jana; Gonçalves, Fernando J M; Pereira, Joana L

    2018-07-01

    Freshwater ecosystems are amongst the most threatened ecosystems on Earth. Currently, climate change is one of the most important drivers of freshwater transformation and its effects include changes in the composition, biodiversity and functioning of freshwater ecosystems. Understanding the capacity of freshwater species to tolerate the environmental fluctuations induced by climate change is critical to the development of effective conservation strategies. In the last few years, epigenetic mechanisms were increasingly put forward in this context because of their pivotal role in gene-environment interactions. In addition, the evolutionary role of epigenetically inherited phenotypes is a relatively recent but promising field. Here, we examine and synthesize the impacts of climate change on freshwater ecosystems, exploring the potential role of epigenetic mechanisms in both short- and long-term adaptation of species. Following this wrapping-up of current evidence, we particularly focused on bringing together the most promising future research avenues towards a better understanding of the effects of climate change on freshwater biodiversity, specifically highlighting potential molecular targets and the most suitable freshwater species for future epigenetic studies in this context. © 2018 John Wiley & Sons Ltd.

  13. Climate change surpasses land-use change in the contracting range boundary of a winter-adapted mammal

    PubMed Central

    Sultaire, Sean M.; Pauli, Jonathan N.; Martin, Karl J.; Meyer, Michael W.; Notaro, Michael; Zuckerberg, Benjamin

    2016-01-01

    The effects of climate change on biodiversity have emerged as a dominant theme in conservation biology, possibly eclipsing concern over habitat loss in recent years. The extent to which this shifting focus has tracked the most eminent threats to biodiversity is not well documented. We investigated the mechanisms driving shifts in the southern range boundary of a forest and snow cover specialist, the snowshoe hare, to explore how its range boundary has responded to shifting rates of climate and land cover change over time. We found that although both forest and snow cover contributed to the historical range boundary, the current duration of snow cover best explains the most recent northward shift, while forest cover has declined in relative importance. In this respect, the southern range boundary of snowshoe hares has mirrored the focus of conservation research; first habitat loss and fragmentation was the stronger environmental constraint, but climate change has now become the main threat. Projections of future range shifts show that climate change, and associated snow cover loss, will continue to be the major driver of this species' range loss into the future. PMID:27030410

  14. Extraordinary range expansion in a common bat: the potential roles of climate change and urbanisation.

    PubMed

    Ancillotto, L; Santini, L; Ranc, N; Maiorano, L; Russo, D

    2016-04-01

    Urbanisation and climate change are two global change processes that affect animal distributions, posing critical threats to biodiversity. Due to its versatile ecology and synurbic habits, Kuhl's pipistrelle (Pipistrellus kuhlii) offers a unique opportunity to explore the relative effects of climate change and urbanisation on species distributions. In a climate change scenario, this typically Mediterranean species is expected to expand its range in response to increasing temperatures. We collected 25,132 high-resolution occurrence records from P. kuhlii European range between 1980 and 2013 and modelled the species' distribution with a multi-temporal approach, using three bioclimatic variables and one proxy of urbanisation. Temperature in the coldest quarter of the year was the most important factor predicting the presence of P. kuhlii and showed an increasing trend in the study period; mean annual precipitation and precipitation seasonality were also relevant, but to a lower extent. Although urbanisation increased in recently colonised areas, it had little effect on the species' presence predictability. P. kuhlii expanded its geographical range by about 394 % in the last four decades, a process that can be interpreted as a response to climate change.

  15. Extraordinary range expansion in a common bat: the potential roles of climate change and urbanisation

    NASA Astrophysics Data System (ADS)

    Ancillotto, L.; Santini, L.; Ranc, N.; Maiorano, L.; Russo, D.

    2016-04-01

    Urbanisation and climate change are two global change processes that affect animal distributions, posing critical threats to biodiversity. Due to its versatile ecology and synurbic habits, Kuhl's pipistrelle ( Pipistrellus kuhlii) offers a unique opportunity to explore the relative effects of climate change and urbanisation on species distributions. In a climate change scenario, this typically Mediterranean species is expected to expand its range in response to increasing temperatures. We collected 25,132 high-resolution occurrence records from P. kuhlii European range between 1980 and 2013 and modelled the species' distribution with a multi-temporal approach, using three bioclimatic variables and one proxy of urbanisation. Temperature in the coldest quarter of the year was the most important factor predicting the presence of P. kuhlii and showed an increasing trend in the study period; mean annual precipitation and precipitation seasonality were also relevant, but to a lower extent. Although urbanisation increased in recently colonised areas, it had little effect on the species' presence predictability. P. kuhlii expanded its geographical range by about 394 % in the last four decades, a process that can be interpreted as a response to climate change.

  16. The Effect of Mitigation Policy on Regional Climate Impacts on the U.S. Electric Sector

    NASA Astrophysics Data System (ADS)

    Cohen, S. M.; Sun, Y.; Strzepek, K.; McFarland, J.; Boehlert, B.; Fant, C.

    2017-12-01

    Climate change can influence the U.S. electricity sector in many ways, the nature of which can be shaped by energy and environmental policy choices. Changing temperatures affect electricity demand largely through heating and cooling needs, and temperatures also affect generation and transmission system performance. Altered precipitation patterns affect the regional and seasonal distribution of surface water runoff, which changes hydropower operation and thermal cooling water availability. The extent to which these stimuli influence U.S. power sector operation and planning will depend to some extent on whether or not proactive policies are enacted to mitigate these impacts. Mitigation policies such as CO2 emissions limits or technology restrictions can change the makeup of the electricity system while reducing the extent of climate change itself. We use the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS), a U.S. electric sector capacity expansion model, to explore electric sector evolution through 2050 under alternative climate and policy assumptions. The model endogenously represents climate impacts on load, power system performance, cooling water availability, and hydropower, allowing internally consistent system responses to climate change along with projected technology, market, and policy conditions. We compare climate impacts across 5 global circulation models for a 8.5 W/m2 representative concentration pathway (RCP) without a climate mitigation policy and a 4.5 W/m2 RCP with climate mitigation. Climate drivers affect the capacity and generation mix at the national and regional levels, with relative growth of wind, solar, and natural gas-based technologies depending on local electricity system characteristics. These differences affect regional economic impacts, measured here as changes to electricity price and system costs. Mitigation policy reduces the economic and system impacts of climate change largely by moderating temperature-induced load but also by lessening water- and temperature-based performance constraints. Policy impacts are nuanced and region-specific, and this analysis underscores the importance of climate mitigation policy to regional electricity system planning decisions.

  17. Local-scale changes in mean and heavy precipitation in Western Europe, climate change or internal variability?

    NASA Astrophysics Data System (ADS)

    Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.

    2018-06-01

    High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.

  18. Local-scale changes in mean and heavy precipitation in Western Europe, climate change or internal variability?

    NASA Astrophysics Data System (ADS)

    Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.

    2017-09-01

    High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.

  19. Fostering Climate Change Literacy Through Rural-Urban Collaborations and GIS

    NASA Astrophysics Data System (ADS)

    Boger, R. A.; Low, R.; Gorokhovich, Y.; Mandryk, C.

    2012-12-01

    Three universities, University of Nebraska-Lincoln (UNL), Brooklyn College, and Lehman College, shared expertise and resources to expand the spectrum of climate change topics offered at these institutions. Through this collaboration, four independent but linked modules that incorporate geographic information systems (GIS) and remote sensing desktop and web-based tools and resources (e.g., NASA, NOAA, USGS, and a variety of universities and organizations) have been developed for use by instructors in all three institutions. Module 1 theme is an introduction to sustainability, climate, with an introduction to remote sensing and online GIS tools. The theme for Module 2 is water resources while Module 3 explores local meteorological data and global climate change models. The last module focuses on food production and independent research building on the urban farm movement in New York City and the agricultural stronghold of Nebraska. The hybrid online and face-face course, Global Climate Change, Food Security, and Local Sustainability, was piloted Fall 2012 in a jointly-taught course offered through UNL and Brooklyn College. The online portion was offered through the CAMEL Climate Change website to foster interactions between the rural Nebraska and urban New York City students. A major objective of the course materials is to foster rural-urban student exchanges while motivating students to make connections between climate change and the potential impacts on health, food, and water in their local communities, the nation and around the world. The research component of the project focuses on understanding the importance of spatial literacy in climate change understanding, and is supported by assessment instruments designed specifically for this course. In addition, the formal evaluation will determine whether our rural-urban, local-global approach will empower students to better understand the causes and impacts of climate change.

  20. Climate extremes and the carbon cycle.

    PubMed

    Reichstein, Markus; Bahn, Michael; Ciais, Philippe; Frank, Dorothea; Mahecha, Miguel D; Seneviratne, Sonia I; Zscheischler, Jakob; Beer, Christian; Buchmann, Nina; Frank, David C; Papale, Dario; Rammig, Anja; Smith, Pete; Thonicke, Kirsten; van der Velde, Marijn; Vicca, Sara; Walz, Ariane; Wattenbach, Martin

    2013-08-15

    The terrestrial biosphere is a key component of the global carbon cycle and its carbon balance is strongly influenced by climate. Continuing environmental changes are thought to increase global terrestrial carbon uptake. But evidence is mounting that climate extremes such as droughts or storms can lead to a decrease in regional ecosystem carbon stocks and therefore have the potential to negate an expected increase in terrestrial carbon uptake. Here we explore the mechanisms and impacts of climate extremes on the terrestrial carbon cycle, and propose a pathway to improve our understanding of present and future impacts of climate extremes on the terrestrial carbon budget.

  1. Spatial and Climate Literacy: Connecting Urban and Rural Students

    NASA Astrophysics Data System (ADS)

    Boger, R. A.; Low, R.; Mandryk, C.; Gorokhovich, Y.

    2013-12-01

    Through a collaboration between the University of Nebraska-Lincoln (UNL), Brooklyn College, and Lehman College, four independent but linked modules were developed and piloted in courses offered at Brooklyn College and UNL simultaneously. Module content includes climate change science and literacy principles, using geospatial technologies (GIS, GPS and remote sensing) as a vehicle to explore issues associated with global, regional, and local climate change in a concrete, quantitative and visual way using Internet resources available through NASA, NOAA, USGS, and a variety of universities and organizations. The materials take an Earth system approach and incorporate sustainability, resilience, water and watersheds, weather and climate, and food security topics throughout the semester. The research component of the project focuses on understanding the role of spatial literacy and authentic inquiry based experiences in climate change understanding and improving confidence in teaching science. In particular, engaging learners in both climate change science and GIS simultaneously provides opportunities to examine questions about the role that data manipulation, mental representation, and spatial literacy plays in students' abilities to understand the consequences and impacts of climate change. Pre and post surveys were designed to discern relationships between spatial cognitive processes and effective acquisition of climate change science concepts in virtual learning environments as well as alignment of teacher's mental models of nature of science and climate system dynamics to scientific models. The courses will again be offered simultaneously in Spring 2014 at Brooklyn College and UNL. Evaluation research will continue to examine the connections between spatial and climate literacy and teacher's mental models (via qualitative textual analysis using MAXQDA text analysis, and UCINET social network analysis programs) as well as how urban-rural learning interactions may influence climate literacy.

  2. Engaging informal audiences in learning about and responding to climate change through a portfolio of innovative approaches

    NASA Astrophysics Data System (ADS)

    Pfirman, S. L.; Brunacini, J.; Orlove, B. S.; Bachrach, E.; Hamilton, L.

    2017-12-01

    Informal learners have many different backgrounds, experiences, and perspectives. How can informal educators effectively reach such diverse audiences, meeting people where they are with regard to climate change? The Polar Learning and Responding: PoLAR Climate Change Education Partnership, supported by NSF, employs surveys, resource development, and research to develop innovative, evidence-based approaches that engage lifelong learners. General-public surveys on climate change yield insights on the knowledge and perceptions that informal learners bring to the table. That helps guide the creation of new tools for effective communication. For example, many people are unsure what causes sea level to rise. The Polar Explorer: Sea Level app uses a data and question-based approach guiding people through interactive maps to learn about melting land ice. In addition, people also tend to believe that climate impacts will happen in the future. Polar Voices podcasts feature Arctic Indigenous communities sharing first-hand experiences with climate change. Prior knowledge can be harnessed to enhance learning. Arctic SMARTIC engages people in role-playing negotiations with others to create a marine management plan. Climate game jams provide collaborative, creative spaces where participants learn as they interact with others. In each case participants, with all their knowledge and experience, are brought into group problem-solving. Understanding whom people trust for climate-change information offers insights that help them become climate communicators. Even those who are concerned about climate often do not discuss it with family and friends (Maibach et al. 2016), yet our research shows that family and friends are second only to scientists as trusted sources of climate information (Hamilton 2016). Fun and novel educational tools such as the EcoChains card game and the EcoKoin social networking app serve as conversation starters.

  3. Developing an In-depth Understanding of Elderly Adult's Vulnerability to Climate Change.

    PubMed

    Rhoades, Jason L; Gruber, James S; Horton, Bill

    2018-05-08

    Recent reports highlight the vulnerability of elderly adults to climate change, yet limited research has focused on this topic. To address this, the purpose of this study was to develop an in-depth understanding of elderly adult's vulnerability to climate change within the context of a specific community. A case study methodology utilizing a community-based action research approach was employed to engage elderly participants living in Bridgeport, CT, in exploring their vulnerability to current and predicted climate stressors with a focus on extreme heat, flooding and storms, and air pollution. This research identifies personal characteristics that interact with contextual factors to influence elderly adult's vulnerability to climate change. Personal characteristics include health, economic, and social considerations. Contextual factors include the adequacy of emergency preparedness measures, transportation resources, and coping and recovery resources. As a result of the interplay of these characteristics and factors, predicted climate changes could have serious consequences for Bridgeport's elderly adults. This research provides a contextualized and detailed illustration of how climate change could overwhelm elderly adult's adaptive capacity and highlights the need for support services to provide safeguards. The issues and concerns raised may bear similarities to other locations, especially urban settings facing similar climate stressors with similar socioeconomic conditions. The findings suggest a need for further research to improve our understanding and serve as the basis for collaborative adaptation planning that engages elderly communities with local governments and a broad coalition of partners to keep elders safe.

  4. Salmon and the Adaptive Capacity of Nimiipuu (Nez Perce) Culture to Cope with Change

    ERIC Educational Resources Information Center

    Colombi, Benedict J.

    2012-01-01

    Change due to natural disturbances and disasters, population growth and decline, economic crises, and environmental and climate change creates significant cultural challenges. Rapid change and the transformation it brings also involve complex relationships between sovereign tribes, resources, and the global system. This article explores how salmon…

  5. Development of Nested Socioeconomic Storylines for Climate Change IAV Applications (Invited)

    NASA Astrophysics Data System (ADS)

    Preston, B. L.; Absar, M.

    2013-12-01

    Socioeconomic scenarios are important for understanding future societal consequences of climate and weather. The global shared socioeconomic pathways (SSPs) represent a new opportunity for coordinated development and application of such scenarios to improve the representation of alternative societal development pathways within climate change consequence analysis. However, capitalizing on this opportunity necessitates bridging the scale disparity between the global SSPs and the regional/local context for which many impact, adaptation and vulnerability (IAV) studies are conducted. To this end, we adopted the Factor, Actor, and Sector methodology to develop a set of qualitative national and sub-national socioeconomic storylines for the United States and U.S. Southeast using the global SSPs as boundary conditions. In particular, our study sought to develop storylines to explore alternative socioeconomic futures for the U.S. Southeast and their implications for adaptive capacity of the region's energy, water, and agricultural sectors. These storylines subsequently serve as the foundation for a range of downstream IAV applications. These include qualitative vulnerability analysis to explore interactions between energy, water, and agriculture in a changing climate; as well as quantitative impact assessment where regional storylines are used to establish modeling parameters within a biophysical crop model. Such methods and applications illustrate potentially useful opportunities for routinizing the use of SSP-based storylines in IAV studies.

  6. Exploring objective climate classification for the Himalayan arc and adjacent regions using gridded data sources

    NASA Astrophysics Data System (ADS)

    Forsythe, N.; Blenkinsop, S.; Fowler, H. J.

    2015-05-01

    A three-step climate classification was applied to a spatial domain covering the Himalayan arc and adjacent plains regions using input data from four global meteorological reanalyses. Input variables were selected based on an understanding of the climatic drivers of regional water resource variability and crop yields. Principal component analysis (PCA) of those variables and k-means clustering on the PCA outputs revealed a reanalysis ensemble consensus for eight macro-climate zones. Spatial statistics of input variables for each zone revealed consistent, distinct climatologies. This climate classification approach has potential for enhancing assessment of climatic influences on water resources and food security as well as for characterising the skill and bias of gridded data sets, both meteorological reanalyses and climate models, for reproducing subregional climatologies. Through their spatial descriptors (area, geographic centroid, elevation mean range), climate classifications also provide metrics, beyond simple changes in individual variables, with which to assess the magnitude of projected climate change. Such sophisticated metrics are of particular interest for regions, including mountainous areas, where natural and anthropogenic systems are expected to be sensitive to incremental climate shifts.

  7. Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world.

    PubMed

    Tabachnick, W J

    2010-03-15

    Vector-borne pathogens cause enormous suffering to humans and animals. Many are expanding their range into new areas. Dengue, West Nile and Chikungunya have recently caused substantial human epidemics. Arthropod-borne animal diseases like Bluetongue, Rift Valley fever and African horse sickness pose substantial threats to livestock economies around the world. Climate change can impact the vector-borne disease epidemiology. Changes in climate will influence arthropod vectors, their life cycles and life histories, resulting in changes in both vector and pathogen distribution and changes in the ability of arthropods to transmit pathogens. Climate can affect the way pathogens interact with both the arthropod vector and the human or animal host. Predicting and mitigating the effects of future changes in the environment like climate change on the complex arthropod-pathogen-host epidemiological cycle requires understanding of a variety of complex mechanisms from the molecular to the population level. Although there has been substantial progress on many fronts the challenges to effectively understand and mitigate the impact of potential changes in the environment on vector-borne pathogens are formidable and at an early stage of development. The challenges will be explored using several arthropod-borne pathogen systems as illustration, and potential avenues to meet the challenges will be presented.

  8. An observational and modeling study of the regional impacts of climate variability

    NASA Astrophysics Data System (ADS)

    Horton, Radley M.

    Climate variability has large impacts on humans and their agricultural systems. Farmers are at the center of this agricultural network, but it is often agricultural planners---regional planners, extension agents, commodity groups and cooperatives---that translate climate information for users. Global climate models (GCMs) are a leading tool for understanding and predicting climate and climate change. Armed with climate projections and forecasts, agricultural planners adapt their decision-making to optimize outcomes. This thesis explores what GCMs can, and cannot, tell us about climate variability and change at regional scales. The question is important, since high-quality regional climate projections could assist farmers and regional planners in key management decisions, contributing to better agricultural outcomes. To answer these questions, climate variability and its regional impacts are explored in observations and models for the current and future climate. The goals are to identify impacts of observed variability, assess model simulation of variability, and explore how climate variability and its impacts may change under enhanced greenhouse warming. Chapter One explores how well Goddard Institute for Space Studies (GISS) atmospheric models, forced by historical sea surface temperatures (SST), simulate climatology and large-scale features during the exceptionally strong 1997--1999 El Nino Southern Oscillation (ENSO) cycle. Reasonable performance in this 'proof of concept' test is considered a minimum requirement for further study of variability in models. All model versions produce appropriate local changes with ENSO, indicating that with correct ocean temperatures these versions are capable of simulating the large-scale effects of ENSO around the globe. A high vertical resolution model (VHR) provides the best simulation. Evidence is also presented that SST anomalies outside the tropical Pacific may play a key role in generating remote teleconnections even during El Nino events. Based on the results from Chapter One, the analysis is expanded in several ways in Chapter Two. To gain a more complete and statistically meaningful understanding of ENSO, a 25 year time period is used instead of a single event. To gain a fuller understanding of climate variability, additional patterns are analyzed. Finally analysis is conducted at the regional scales that are of interest to farmers and agricultural planners. Key findings are that GISS ModelE can reproduce: (1) the spatial pattern associated with two additional related modes, the Arctic Oscillation (AO) and the North Atlantic Oscillation (NAO); (2) rainfall patterns in Indonesia; and (3) dynamical features such as sea level pressure (SLP) gradients and wind in the study regions. When run in coupled mode, the same model reproduces similar modes spatially but with reduced variance and weak teleconnections. Since Chapter Two identified Western Indonesia as the region where GCMs hold the most promise for agricultural applications, in Chapter Three a finer spatial and temporal scale analysis of ENSO's effects is presented. Agricultural decision-making is also linked to ENSO's climate effects. Early rainy season precipitation and circulation, and same-season planting and harvesting dates, are shown to be sensitive to ENSO. The locus of ENSO convergence and rainfall anomalies is shown to be near the axis of rainy season establishment, defined as the 6--8 mm/day isohyet, an approximate threshold for irrigated rice cultivation. As the axis tracks south and east between October and January, so do ENSO anomalies. Circulation anomalies associated with ENSO are shown to be similar to those associated with rainfall anomalies, suggesting that long lead-time ENSO forecasts may allow more adaptation than 'wait and see' methods, with little loss of forecast skill. Additional findings include: (1) rice and corn yields are lower (higher) during dry (wet) trimesters and El Nino (La Nina) years; and (2) a statistically significant negative relationship exists between malaria cases and ENSO. The final chapter adds climate change to the climate variability story. Under high CO2, the model able to capture ENSO dynamics---an atmospheric model coupled to the Cane-Zebiak ocean model ('C4' here)---generates more El Nino-like mean conditions in the tropical Pacific. These changes produce a 4x larger increase in maximum precipitation with warming in C4 than an atmospheric model with a slab ocean (Q4), dramatically enhancing the Pacific Hadley and Walker circulations, and through positive feedbacks, increasing the global temperature. Near Nordeste warming alone (Q4) produces added rainfall, which in C4 is partially cancelled out by El Nino-like changes in the Walker Cell. Both Q4 and C4 produce small changes in Indonesia, although C4 generates large circulation and precipitation anomalies over the Western Indian Ocean. C4 changes in the midlatitudes produce a very strong Pacific North American pattern (PNA) response that dominates a small positive AO change associated with Q4. These PNA changes produce increased rainfall over the Southeastern United States (SEUS) in C4. AO and NAO-like variability are also found to increase with enhanced CO2. This thesis highlights how climate variability influences regional climate variability, with an emphasis on four regions: Nordeste, Brazil, Western Indonesia, the Southeastern United States (SEUS), and the Mediterranean. It links El Nino-driven delay in the onset of rainy season drivers in Western Indonesia to decision-making about when to plant the year's largest crop. In a coupled configuration, the GISS GCM produces strong El Nino-like changes with global warming. This result suggests that the impacts---climatological and agricultural---of climate change may ultimately exceed the impacts of current variability. Somewhat paradoxically, these results indicate that one of the central manifestations of climate change is likely to be changes in patterns of climate variability and their regional impacts.

  9. Getting The Picture: Our Changing Climate- A new learning tool for climate science

    NASA Astrophysics Data System (ADS)

    Yager, K.; Balog, J. D.

    2014-12-01

    Earth Vision Trust (EVT), founded by James Balog- photographer and scientist, has developed a free, online, multimedia climate science education tool for students and educators. Getting The Picture (GTP) creates a new learning experience, drawing upon powerful archives of Extreme Ice Survey's unique photographs and time-lapse videos of changing glaciers around the world. GTP combines the latest in climate science through interactive tools that make the basic scientific tenets of climate science accessible and easy to understand. The aim is to use a multidisciplinary approach to encourage critical thinking about the way our planet is changing due to anthropogenic activities, and to inspire students to find their own voice regarding our changing climate The essence of this resource is storytelling through the use of inspiring images, field expedition notes and dynamic multimedia tools. EVT presents climate education in a new light, illustrating the complex interaction between humans and nature through their Art + Science approach. The overarching goal is to educate and empower young people to take personal action. GTP is aligned with national educational and science standards (NGSS, CCSS, Climate Literacy) so it may be used in conventional classrooms as well as education centers, museum kiosks or anywhere with Internet access. Getting The Picture extends far beyond traditional learning to provide an engaging experience for students, educators and all those who wish to explore the latest in climate science.

  10. A vulnerability driven approach to identify adverse climate and land use change combinations for critical hydrologic indicator thresholds: Application to a watershed in Pennsylvania, USA

    NASA Astrophysics Data System (ADS)

    Singh, R.; Wagener, T.; Crane, R.; Mann, M. E.; Ning, L.

    2014-04-01

    Large uncertainties in streamflow projections derived from downscaled climate projections of precipitation and temperature can render such simulations of limited value for decision making in the context of water resources management. New approaches are being sought to provide decision makers with robust information in the face of such large uncertainties. We present an alternative approach that starts with the stakeholder's definition of vulnerable ranges for relevant hydrologic indicators. Then the modeled system is analyzed to assess under what conditions these thresholds are exceeded. The space of possible climates and land use combinations for a watershed is explored to isolate subspaces that lead to vulnerability, while considering model parameter uncertainty in the analysis. We implement this concept using classification and regression trees (CART) that separate the input space of climate and land use change into those combinations that lead to vulnerability and those that do not. We test our method in a Pennsylvania watershed for nine ecological and water resources related streamflow indicators for which an increase in temperature between 3°C and 6°C and change in precipitation between -17% and 19% is projected. Our approach provides several new insights, for example, we show that even small decreases in precipitation (˜5%) combined with temperature increases greater than 2.5°C can push the mean annual runoff into a slightly vulnerable regime. Using this impact and stakeholder driven strategy, we explore the decision-relevant space more fully and provide information to the decision maker even if climate change projections are ambiguous.

  11. Dryland feedbacks to climatic change: Results from a climate manipulation experiment on the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Reed, S.; Belnap, J.; Ferrenberg, S.; Wertin, T. M.; Darrouzet-Nardi, A.; Tucker, C.; Rutherford, W. A.

    2015-12-01

    Arid and semiarid ecosystems cover ~40% of Earth's terrestrial surface and make up ~35% of the U.S., yet we know surprisingly little about how climate change will affect these widespread landscapes. Like many dryland regions, the Colorado Plateau in the southwestern U.S. is predicted to experience climate change as elevated temperature and altered timing and amount of annual precipitation. We are using a long-term (>10 yr) factorial warming and supplemental rainfall experiment on the Colorado Plateau to explore how predicted changes in climate will affect vascular plant and biological soil crust community composition, biogeochemical cycling, and energy balance (biocrusts are a surface soil community of moss, lichen, and cyanobacteria that can make up as much as 70% of the living cover in drylands). While some of the responses we have observed were expected, many of the results are surprising. For example, we documented biocrust community composition shifts in response to altered climate that were significantly faster and more dramatic than considered likely for these soil communities that typically change over decadal and centennial timescales. Further, while we continue to observe important climate change effects on carbon cycling - including reduced net photosynthesis in vascular plants, increased CO2 losses from biocrust soils during some seasons, and changes to the interactions between water and carbon cycles - we have also found marked treatment effects on the albedo and spectral signatures of dryland soils. In addition to demonstrating the effects of these treatments, the strong relationships we observed in our experiments between biota and climate provide a quantitative framework for improving our representation of dryland responses to climate change. In this talk we will cover a range of datasets that, taken together, show: (1) large climate-driven changes to dryland biogeochemical cycling may be the result of both effects on existing communities, as well of relatively rapid shifts in community composition; (2) drylands could provide feedbacks to future climate not only though altered carbon cycling but also via changes to surface albedo; and (3) models of dryland responses to climate change may need significant revision, but such a revision is well within reach.

  12. A Multi-Model Framework to Achieve Consistent Evaluation of Climate Change Impacts in the United States

    NASA Astrophysics Data System (ADS)

    Sarofim, M. C.; Martinich, J.; Waldhoff, S.; DeAngelo, B. J.; McFarland, J.; Jantarasami, L.; Shouse, K.; Crimmins, A.; Li, J.

    2014-12-01

    The Climate Change Impacts and Risk Analysis (CIRA) project establishes a new multi-model framework to systematically assess the physical impacts, economic damages, and risks from climate change. The primary goal of this framework is to estimate the degree to which climate change impacts and damages in the United States are avoided or reduced in the 21st century under multiple greenhouse gas (GHG) emissions mitigation scenarios. The first phase of the CIRA project is a modeling exercise that included two integrated assessment models and 15 sectoral models encompassing five broad impacts sectors: water resources, electric power, infrastructure, human health, and ecosystems. Three consistent socioeconomic and climate scenarios are used to analyze the benefits of global GHG mitigation targets: a reference scenario and two policy scenarios with total radiative forcing targets in 2100 of 4.5 W/m2 and 3.7 W/m2. In this exercise, the implications of key uncertainties are explored, including climate sensitivity, climate model, natural variability, and model structures and parameters. This presentation describes the motivations and goals of the CIRA project; the design and academic contribution of the first CIRA modeling exercise; and briefly summarizes several papers published in a special issue of Climatic Change. The results across impact sectors show that GHG mitigation provides benefits to the United States that increase over time, the effects of climate change can be strongly influenced by near-term policy choices, adaptation can reduce net damages, and impacts exhibit spatial and temporal patterns that may inform mitigation and adaptation policy discussions.

  13. Build a Catastrophe: Using Digital World and Policy Models to Engage Political Science Students with Climate Change

    NASA Astrophysics Data System (ADS)

    Horodyskyj, L.; Lennon, T.; Mead, C.; Anbar, A. D.

    2017-12-01

    Climate change is a problem that involves science, economics, and politics. Particularly in the United States, political resistance to addressing climate change has been exacerbated by a concerted misinformation campaign against the basic science, a negative response to how the proposed solutions to climate change intersect with values. Scientists often propose more climate science education as a solution to the problem, but preliminary studies indicate that more science education does not necessarily reduce polarization on the topic (Kahan et al. 2012). Is there a way that we can better engage non-science students in topics related to climate change that improve their comprehension of the problem and its implications, overcoming polarization? In an existing political science course, "Do You Want to Build a Nation?", we are testing a new digital world-building model based on resource development and consequent environmental and societal impacts. Students spend half the class building their nations based on their assigned ideology (i.e., socialist, absolute monarchy, libertarian) and the second half of the class negotiating with other nations to resolve global issues while remaining true to their ideologies. The course instructor, co-author Lennon, and ASU's Center for Education Through eXploration have collaborated to design a digital world model based on resources linked to an adaptive decision-making environment that translates student policies into modifications to the digital world. The model tracks students' exploration and justification of their nation's policy choices. In the Fall 2017 offering of the course, we will investigate how this digital world model and scenarios built around it affect student learning outcomes. Specifically, we anticipate improved understanding of the policy trade-offs related to energy development, better understanding of the ways that different ideologies approach solutions to climate change, and that both will result in more realistic diplomatic negotiations in the latter half of the course. We will report on the technical details of how the digital world model and scenarios are constructed as well as how students responded to the scenario.

  14. Canadian Boreal Forest Greening and Browning Trends: An Analysis of Biogeographic Patterns and the Relative Roles of Disturbance versus Climate Drivers

    NASA Astrophysics Data System (ADS)

    Sulla-menashe, D. J.; Woodcock, C. E.; Friedl, M. A.

    2017-12-01

    Recent studies have used satellite-derived normalized difference vegetation index (NDVI) time series derived from the Advanced Very High Resolution Radiometer (AVHRR) to explore geographic patterns in boreal forest greening and browning. A number of these studies indicate that boreal forests are experiencing widespread browning, and have suggested that these patterns reflect decreases in forest productivity induced by climate change. A key limitation of these studies, however, is their reliance on AVHRR data, which provides imagery with very coarse spatial resolution and lower radiometric quality relative to other available remote sensing time series. Here we use NDVI time series from Landsat, which has much higher radiometric quality and spatial resolution than AVHRR, to characterize spatial patterns in greening and browning across Canada's boreal forest and to explore the drivers behind the observed trends. Our results show that the majority of NDVI changes in Canada's boreal forest reflect disturbance-recovery dynamics not climate change impacts, that greening and browning trends outside of disturbed forests are consistent with expected ecological responses to regional changes in climate, and that observed NDVI changes are geographically limited and relatively small in magnitude. Consistent with biogeographic theory, greening and browning unrelated to disturbance tended to be located in ecotones near boundaries of the boreal forest bioclimatic envelope. We observe greening to be most prevalent in Eastern Canada, which is more humid, and browning to be most prevalent in Western Canada, where there is more moisture stress. We conclude that continued long-term climate change has the potential to significantly alter the character and function of Canada's boreal forest, but recent changes have been modest and near-term impacts are likely to be focused in or near ecotones. As part of a NASA funded project supporting the Arctic-Boreal Vulnerability Experiment (ABoVE), we have extended the scope of this study from a set of 46 sites to the entire ABoVE domain covering Alaska and Northwestern Canada (over 6 million square kilometers). Using the full Landsat record, we will also be investigating climate change impacts to the timing of leaf phenology and disturbance frequency in these rapidly warming regions.

  15. Water availability in +2°C and +4°C worlds.

    PubMed

    Fung, Fai; Lopez, Ana; New, Mark

    2011-01-13

    While the parties to the UNFCCC agreed in the December 2009 Copenhagen Accord that a 2°C global warming over pre-industrial levels should be avoided, current commitments on greenhouse gas emissions reductions from these same parties will lead to a 50 : 50 chance of warming greater than 3.5°C. Here, we evaluate the differences in impacts and adaptation issues for water resources in worlds corresponding to the policy objective (+2°C) and possible reality (+4°C). We simulate the differences in impacts on surface run-off and water resource availability using a global hydrological model driven by ensembles of climate models with global temperature increases of 2°C and 4°C. We combine these with UN-based population growth scenarios to explore the relative importance of population change and climate change for water availability. We find that the projected changes in global surface run-off from the ensemble show an increase in spatial coherence and magnitude for a +4°C world compared with a +2°C one. In a +2°C world, population growth in most large river basins tends to override climate change as a driver of water stress, while in a +4°C world, climate change becomes more dominant, even compensating for population effects where climate change increases run-off. However, in some basins where climate change has positive effects, the seasonality of surface run-off becomes increasingly amplified in a +4°C climate.

  16. Relating farmer's perceptions of climate change risk to adaptation behaviour in Hungary.

    PubMed

    Li, Sen; Juhász-Horváth, Linda; Harrison, Paula A; Pintér, László; Rounsevell, Mark D A

    2017-01-01

    Understanding how farmers perceive climate change risks and how this affects their willingness to adopt adaptation practices is critical for developing effective climate change response strategies for the agricultural sector. This study examines (i) the perceptual relationships between farmers' awareness of climate change phenomena, beliefs in climate change risks and actual adaptation behaviour, and (ii) how these relationships may be modified by farm-level antecedents related to human, social, financial capitals and farm characteristics. An extensive household survey was designed to investigate the current pattern of adaptation strategies and collect data on these perceptual variables and their potential antecedents from private landowners in Veszprém and Tolna counties, Hungary. Path analysis was used to explore the causal connections between variables. We found that belief in the risk of climate change was heightened by an increased awareness of directly observable climate change phenomena (i.e. water shortages and extreme weather events). The awareness of extreme weather events was a significant driver of adaptation behaviour. Farmers' actual adaptation behaviour was primarily driven by financial motives and managerial considerations (i.e. the aim of improving profit and product sales; gaining farm ownership and the amount of land managed; and, the existence of a successor), and stimulated by an innovative personality and the availability of information from socio-agricultural networks. These results enrich the empirical evidence in support of improving understanding of farmer decision-making processes, which is critical in developing well-targeted adaptation policies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Adaptation to climate change: Using nighttime lights satellite data to explore human response to flood events

    NASA Astrophysics Data System (ADS)

    Mård, Johanna; Di Baldassarre, Giuliano

    2017-04-01

    To better understand the impact of climate change, we need to uncover how (and to what extent) societies respond and adapt to it. Yet the dynamics resulting from two-way feedbacks between nature and society remain largely unknown. Here we present an interdisciplinary study aiming to uncover one of the least quantified aspects of human-nature interactions, the spatial-temporal distribution of demographic changes following the occurrence of extreme events. To this end, we use nighttime light satellite data in four contrasting case studies in both low- and high-income countries (Lower Limpopo River in Mozambique, Mekong River in Vietnam and Cambodia, Brisbane River in Australia and Mississippi River at St. Louis in USA), and explore the interplay between flooding events and changes in population distribution in the period 1992-2013. Our study shows the challenges and opportunities of nighttime lights in unraveling the way humans adapt to climate change. Specific results show that population distribution of societies that strongly rely on structural measures ("fighting floods" policies) is not significantly affected by the occurrence of flood events. Conversely, learning dynamics emerge in societies that mainly rely on non-structural measures ("living with floods" policies) in terms of relative population in floodplain areas, i.e. reduced human proximity to rivers. Lastly, we propose the development of a novel approach to exploit the growing availability of worldwide information, such as nighttime lights satellite data, to uncover human adaptation to climate change across scales and along gradients of social and natural conditions.

  18. Contemplating the Future: Building Student Resilience in Climate Change Education

    NASA Astrophysics Data System (ADS)

    Allison, E.

    2015-12-01

    Climate change research has largely focused on the biophysical, economic, and political aspects of the phenomenon, its projected impacts, and the possibilities for adaptation (Carey et al. 2014; Castree et al. 2014). In the classroom, too, climate change is generally presented as a scientific, technological, political, and economic challenge. However, defining climate change as physical challenge, divorced from its cultural causes and responses, forecloses some pathways of inquiry and limits the possibilities for adaptation (Adger et al. 2013). Recent perspectives by the environmental historian Mark Carey and colleagues (2014) and by the geographer Noel Castree and colleagues (2014) contend that ethnographic, narrative, social scientific, and humanistic insights are necessary additions to the climate change policy process and can contribute to deliberate, resilient responses to climate change. Among the humanistic insights needed are strategies and practices to maintain fortitude and persistence in the midst of dispiriting ecological trends. Students facing the "gloom and doom" of climate change data in environmental studies courses can experience negative states of mind such as denial, despair, burnout, and grief. Emerging research, however, demonstrates how contemplative practice can shift consciousness and promote resilience. Contemplative practices are those that consciously direct calm, focused attention. Such practices can build internal resilience, by promoting a greater sense of calm and well-being, decreasing stress, and sharpening focus and concentration. In addition, contemplative practices improve relationships with other people, through increasing compassion and flexibility in thinking. They also strengthen relationships with the surrounding world by increasing our ability to question, explore, and cope with rapid change and complexity. This presentation provides a context for incorporating contemplative practices, including mindfulness exercises, creative expression, and meditation, into the environmental studies classroom, and discusses how these practices can cultivate well-being and resilience in the face of climate change.

  19. Organismal responses to habitat change: herbivore performance, climate and leaf traits in regenerating tropical dry forests.

    PubMed

    Agosta, Salvatore J; Hulshof, Catherine M; Staats, Ethan G

    2017-05-01

    The ecological effects of large-scale climate change have received much attention, but the effects of the more acute form of climate change that results from local habitat alteration have been less explored. When forest is fragmented, cut, thinned, cleared or otherwise altered in structure, local climates and microclimates change. Such changes can affect herbivores both directly (e.g. through changes in body temperature) and indirectly (e.g. through changes in host plant traits). We advance an eco-physiological framework to understand the effects of changing forests on herbivorous insects. We hypothesize that if tropical forest caterpillars are climate and resource specialists, then they should have reduced performance outside of mature forest conditions. We tested this hypothesis with a field experiment contrasting the performance of Rothschildia lebeau (Saturniidae) caterpillars feeding on the host plant Casearia nitida (Salicaceae) in two different aged and structured tropical dry forests in Area de Conservación Guanacaste, Costa Rica. Compared to more mature closed-canopy forest, in younger secondary forest we found that: (1) ambient conditions were hotter, drier and more variable; (2) caterpillar growth and development were reduced; and (3) leaves were tougher, thicker and drier. Furthermore, caterpillar growth and survival were negatively correlated with these leaf traits, suggesting indirect host-mediated effects of climate on herbivores. Based on the available evidence, and relative to mature forest, we conclude that reduced herbivore performance in young secondary forest could have been driven by changes in climate, leaf traits (which were likely climate induced) or both. However, additional studies will be needed to provide more direct evidence of cause-and-effect and to disentangle the relative influence of these factors on herbivore performance in this system. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  20. Facing the limit of resilience: perceptions of climate change among reindeer herding Sami in Sweden.

    PubMed

    Furberg, Maria; Evengård, Birgitta; Nilsson, Maria

    2011-01-01

    The Arctic area is a part of the globe where the increase in global temperature has had the earliest noticeable effect and indigenous peoples, including the Swedish reindeer herding Sami, are amongst the first to be affected by these changes. To explore the experiences and perceptions of climate change among Swedish reindeer herding Sami. In-depth interviews with 14 Swedish reindeer herding Sami were performed, with purposive sampling. The interviews focused on the herders experiences of climate change, observed consequences and thoughts about this. The interviews were analysed using content analysis. One core theme emerged from the interviews: facing the limit of resilience. Swedish reindeer-herding Sami perceive climate change as yet another stressor in their daily struggle. They have experienced severe and more rapidly shifting, unstable weather with associated changes in vegetation and alterations in the freeze-thaw cycle, all of which affect reindeer herding. The forecasts about climate change from authorities and scientists have contributed to stress and anxiety. Other societal developments have lead to decreased flexibility that obstructs adaptation. Some adaptive strategies are discordant with the traditional life of reindeer herding, and there is a fear among the Sami of being the last generation practising traditional reindeer herding. The study illustrates the vulnerable situation of the reindeer herders and that climate change impact may have serious consequences for the trade and their overall way of life. Decision makers on all levels, both in Sweden and internationally, need improved insights into these complex issues to be able to make adequate decisions about adaptive climate change strategies.

Top