ERIC Educational Resources Information Center
Forde, Amanda
2011-01-01
Despite much research into mate selection, non-heterosexual populations are often only included for comparison purposes, while trans people and their partners are overlooked. This study attempts to address this using qualitative methodology to explore the mate selection of the partners of trans people. Six participants were recruited from online…
An Alternative to Adaptation by Sexual Selection: Habitat Choice.
Porter, Cody K; Akcali, Christopher K
2018-06-09
Adaptation in mating signals and preferences has generally been explained by sexual selection. We propose that adaptation in such mating traits might also arise via a non-mutually exclusive process wherein individuals preferentially disperse to habitats where they experience high mating performance. Here we explore the evolutionary implications of this process. Copyright © 2018 Elsevier Ltd. All rights reserved.
Senior, Alistair McNair; Nakagawa, Shinichi; Grimm, Volker
2014-01-01
Females may select a mate based on signalling traits that are believed to accurately correlate with heritable aspects of male quality. Anthropogenic actions, in particular chemicals released into the environment, are now disrupting the accuracy of mating signals to convey information about male quality. The long-term prediction for disrupted mating signals is most commonly loss of female preference. Yet, this prediction has rarely been tested using quantitative models. We use agent-based models to explore the effects of rapid disruption of mating signals. In our model, a gene determines survival. Males signal their level of genetic quality via a signal trait, which females use to select a mate. We allowed this system of sexual selection to become established, before introducing a disruption between the male signal trait and quality, which was similar in nature to that induced by exogenous chemicals. Finally, we assessed the capacity of the system to recover from this disruption. We found that within a relatively short time frame, disruption of mating signals led to a lasting loss of female preference. Decreases in mean viability at the population-level were also observed, because sexual-selection acting against newly arising deleterious mutations was relaxed. The ability of the population to recover from disrupted mating signals was strongly influenced by the mechanisms that promoted or maintained genetic diversity in traits under sexual selection. Our simple model demonstrates that environmental perturbations to the accuracy of male mating signals can result in a long-term loss of female preference for those signals within a few generations. What is more, the loss of this preference can have knock-on consequences for mean population fitness. PMID:25047080
Intrasexual competition in females: evidence for sexual selection?
Rosvall, Kimberly A
2011-11-01
In spite of recent interest in sexual selection in females, debate exists over whether traits that influence female-female competition are sexually selected. This review uses female-female aggressive behavior as a model behavioral trait for understanding the evolutionary mechanisms promoting intrasexual competition, focusing especially on sexual selection. I employ a broad definition of sexual selection, whereby traits that influence competition for mates are sexually selected, whereas those that directly influence fecundity or offspring survival are naturally selected. Drawing examples from across animal taxa, including humans, I examine 4 predictions about female intrasexual competition based on the abundance of resources, the availability of males, and the direct or indirect benefits those males provide. These patterns reveal a key sex difference in sexual selection: Although females may compete for the number of mates, they appear to compete more so for access to high-quality mates that provide direct and indirect (genetic) benefits. As is the case in males, intrasexual selection in females also includes competition for essential resources required for access to mates. If mate quality affects the magnitude of mating success, then restricting sexual selection to competition for quantity of mates may ignore important components of fitness in females and underestimate the role of sexual selection in shaping female phenotype. In the future, understanding sex differences in sexual selection will require further exploration of the extent of mutual intrasexual competition and the incorporation of quality of mating success into the study of sexual selection in both sexes.
Intrasexual competition in females: evidence for sexual selection?
2011-01-01
In spite of recent interest in sexual selection in females, debate exists over whether traits that influence female–female competition are sexually selected. This review uses female–female aggressive behavior as a model behavioral trait for understanding the evolutionary mechanisms promoting intrasexual competition, focusing especially on sexual selection. I employ a broad definition of sexual selection, whereby traits that influence competition for mates are sexually selected, whereas those that directly influence fecundity or offspring survival are naturally selected. Drawing examples from across animal taxa, including humans, I examine 4 predictions about female intrasexual competition based on the abundance of resources, the availability of males, and the direct or indirect benefits those males provide. These patterns reveal a key sex difference in sexual selection: Although females may compete for the number of mates, they appear to compete more so for access to high-quality mates that provide direct and indirect (genetic) benefits. As is the case in males, intrasexual selection in females also includes competition for essential resources required for access to mates. If mate quality affects the magnitude of mating success, then restricting sexual selection to competition for quantity of mates may ignore important components of fitness in females and underestimate the role of sexual selection in shaping female phenotype. In the future, understanding sex differences in sexual selection will require further exploration of the extent of mutual intrasexual competition and the incorporation of quality of mating success into the study of sexual selection in both sexes. PMID:22479137
ERIC Educational Resources Information Center
Moore, Dani; Holbrook, C. Tate; Meadows, Melissa G.; Taylor, Lisa A.
2012-01-01
In species that reproduce sexually, an individual's fitness depends on its ability to secure a mate (or mates). Although both males and females are selected to maximize their reproductive output, the mating strategies of the two sexes can differ dramatically. We present a classroom simulation that allows undergraduates to actively experience how…
Sexual selection and physical attractiveness : Implications for mating dynamics.
Gangestad, S W
1993-09-01
Sexual selection processes have received much attention in recent years, attention reflected in interest in human mate preferences. Among these mate preferences are preferences for physical attractiveness. Preferences in and of themselves, however, do not fully explain the nature of the relationships that individuals attain. A tacit negotiation process underlies relationship formation and maintenance. The notion that preferences for physical attractiveness evolved under parasite-driven "good genes" sexual selection leads to predictions about the nature of trade-offs that individuals make between mates' physical attractiveness and investment potential. These predictions and relevant data are explored, with a primary emphasis on women's preferences for men's qualities. In addition, further implications of trade-offs are examined, most notably (a) the impact of environmental variations on the nature of mating and (b) some effects of trade-offs on infidelity and male attempts to control women.
Soularue, J-P; Kremer, A
2014-01-01
The timing of bud burst (TBB) in temperate trees is a key adaptive trait, the expression of which is triggered by temperature gradients across the landscape. TBB is strongly correlated with flowering time and is therefore probably mediated by assortative mating. We derived theoretical predictions and realized numerical simulations of evolutionary changes in TBB in response to divergent selection and gene flow in a metapopulation. We showed that the combination of the environmental gradient of TBB and assortative mating creates contrasting genetic clines, depending on the direction of divergent selection. If divergent selection acts in the same direction as the environmental gradient (cogradient settings), genetic clines are established and inflated by assortative mating. Conversely, under divergent selection of the same strength but acting in the opposite direction (countergradient selection), genetic clines are slightly constrained. We explored the consequences of these dynamics for population maladaptation, by monitoring pollen swamping. Depending on the direction of divergent selection with respect to the environmental gradient, pollen filtering owing to assortative mating either facilitates or impedes adaptation in peripheral populations. PMID:24924591
ERIC Educational Resources Information Center
Roberts, Andrea L.; Lyall, Kristen; Weisskopf, Marc G.
2017-01-01
Maternal experience of childhood abuse has been associated with offspring autism. To explore whether familial tendency towards autistic traits--presumably related to genetic predisposition--accounts for this association, we examined whether women who experienced childhood abuse were more likely to select mates with high levels of autistic traits,…
Synergistic selection between ecological niche and mate preference primes diversification.
Boughman, Janette W; Svanbäck, Richard
2017-01-01
The ecological niche and mate preferences have independently been shown to be important for the process of speciation. Here, we articulate a novel mechanism by which ecological niche use and mate preference can be linked to promote speciation. The degree to which individual niches are narrow and clustered affects the strength of divergent natural selection and population splitting. Similarly, the degree to which individual mate preferences are narrow and clustered affects the strength of divergent sexual selection and assortative mating between diverging forms. This novel perspective is inspired by the literature on ecological niches; it also explores mate preferences and how they may contribute to speciation. Unlike much comparative work, we do not search for evolutionary patterns using proxies for adaptation and sexual selection, but rather we elucidate how ideas from niche theory relate to mate preference, and how this relationship can foster speciation. Recognizing that individual and population niches are conceptually and ecologically linked to individual and population mate preference functions will significantly increase our understanding of rapid evolutionary diversification in nature. It has potential to help solve the difficult challenge of testing the role of sexual selection in the speciation process. We also identify ecological factors that are likely to affect individual niche and individual mate preference in synergistic ways and as a consequence to promote speciation. The ecological niche an individual occupies can directly affect its mate preference. Clusters of individuals with narrow, differentiated niches are likely to have narrow, differentiated mate preference functions. Our approach integrates ecological and sexual selection research to further our understanding of diversification processes. Such integration may be necessary for progress because these processes seem inextricably linked in the natural world. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Sexual selection in hermaphrodites, sperm and broadcast spawners, plants and fungi
Ortiz-Barrientos, Daniel
2016-01-01
Darwin was the first to recognize that sexual selection is a strong evolutionary force. Exaggerated traits allow same-sex individuals to compete over access to mates and provide a mechanism by which mates are selected. It is relatively easy to appreciate how inter- and intrasexual selection work in organisms with the sensory capabilities to perceive physical or behavioural traits that signal mate quality or mate compatibility, and to assess the relative quality of competitors. It is therefore not surprising that most studies of sexual selection have focused on animals with separate sexes and obvious adaptations that function in the context of reproductive competition. Yet, many sexual organisms are both male and female at the same time, often lack sexual dimorphism and never come into direct contact at mating. How does sexual selection act in such species, and what can we learn from them? Here, we address these questions by exploring the potential for sexual selection in simultaneous hermaphrodites, sperm- and broadcast spawners, plants and fungi. Our review reveals a range of mechanisms of sexual selection, operating primarily after gametes have been released, which are common in many of these groups and also quite possibly in more familiar (internally fertilizing and sexually dimorphic) organisms. This article is part of the themed issue ‘Weird sex: the underappreciated diversity of sexual reproduction’. PMID:27619704
Sexual selection in hermaphrodites, sperm and broadcast spawners, plants and fungi.
Beekman, Madeleine; Nieuwenhuis, Bart; Ortiz-Barrientos, Daniel; Evans, Jonathan P
2016-10-19
Darwin was the first to recognize that sexual selection is a strong evolutionary force. Exaggerated traits allow same-sex individuals to compete over access to mates and provide a mechanism by which mates are selected. It is relatively easy to appreciate how inter- and intrasexual selection work in organisms with the sensory capabilities to perceive physical or behavioural traits that signal mate quality or mate compatibility, and to assess the relative quality of competitors. It is therefore not surprising that most studies of sexual selection have focused on animals with separate sexes and obvious adaptations that function in the context of reproductive competition. Yet, many sexual organisms are both male and female at the same time, often lack sexual dimorphism and never come into direct contact at mating. How does sexual selection act in such species, and what can we learn from them? Here, we address these questions by exploring the potential for sexual selection in simultaneous hermaphrodites, sperm- and broadcast spawners, plants and fungi. Our review reveals a range of mechanisms of sexual selection, operating primarily after gametes have been released, which are common in many of these groups and also quite possibly in more familiar (internally fertilizing and sexually dimorphic) organisms.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. © 2016 The Author(s).
2010-01-01
Background A major challenge in evolutionary biology is to understand the typically complex interactions between diverse counter-balancing factors of Darwinian selection for size assortative mating and sexual size dimorphism. It appears that rarely a simple mechanism could provide a major explanation of these phenomena. Mechanics of behaviors can predict animal morphology, such like adaptations to locomotion in animals from various of taxa, but its potential to predict size-assortative mating and its evolutionary consequences has been less explored. Mate-grasping by males, using specialized adaptive morphologies of their forelegs, midlegs or even antennae wrapped around female body at specific locations, is a general mating strategy of many animals, but the contribution of the mechanics of this wide-spread behavior to the evolution of mating behavior and sexual size dimorphism has been largely ignored. Results Here, we explore the consequences of a simple, and previously ignored, fact that in a grasping posture the position of the male's grasping appendages relative to the female's body is often a function of body size difference between the sexes. Using an approach taken from robot mechanics we model coercive grasping of females by water strider Gerris gracilicornis males during mating initiation struggles. We determine that the male optimal size (relative to the female size), which gives the males the highest grasping force, properly predicts the experimentally measured highest mating success. Through field sampling and simulation modeling of a natural population we determine that the simple mechanical model, which ignores most of the other hypothetical counter-balancing selection pressures on body size, is sufficient to account for size-assortative mating pattern as well as species-specific sexual dimorphism in body size of G. gracilicornis. Conclusion The results indicate how a simple and previously overlooked physical mechanism common in many taxa is sufficient to account for, or importantly contribute to, size-assortative mating and its consequences for the evolution of sexual size dimorphism. PMID:21092131
Roberts, Andrea L; Lyall, Kristen; Weisskopf, Marc G
2017-07-01
Maternal experience of childhood abuse has been associated with offspring autism. To explore whether familial tendency towards autistic traits-presumably related to genetic predisposition-accounts for this association, we examined whether women who experienced childhood abuse were more likely to select mates with high levels of autistic traits, and whether parental autistic traits accounted for the association of maternal abuse and offspring autism in 209 autism cases and 833 controls. Maternal childhood abuse was strongly associated with high paternal autistic traits (severe abuse, OR = 3.98, 95% CI = 1.26, 8.31). Maternal and paternal autistic traits accounted for 21% of the association between maternal abuse and offspring autism. These results provide evidence that childhood abuse affects mate selection, with implications for offspring health.
Sexual selection gradients change over time in a simultaneous hermaphrodite
Hoffer, Jeroen NA; Mariën, Janine; Ellers, Jacintha; Koene, Joris M
2017-01-01
Sexual selection is generally predicted to act more strongly on males than on females. The Darwin-Bateman paradigm predicts that this should also hold for hermaphrodites. However, measuring this strength of selection is less straightforward when both sexual functions are performed throughout the organism’s lifetime. Besides, quantifications of sexual selection are usually done during a short time window, while many animals store sperm and are long-lived. To explore whether the chosen time frame affects estimated measures of sexual selection, we recorded mating success and reproductive success over time, using a simultaneous hermaphrodite. Our results show that male sexual selection gradients are consistently positive. However, an individual’s female mating success seems to negatively affect its own male reproductive success, an effect that only becomes visible several weeks into the experiment, highlighting that the time frame is crucial for the quantification and interpretation of sexual selection measures, an insight that applies to any iteroparous mating system. DOI: http://dx.doi.org/10.7554/eLife.25139.001 PMID:28613158
Krupp, Daniel Brian
2008-02-01
Information is crucial to decision-making, including mate choice decisions. Perceptual systems, such as attention, evolved in part to forage for reproductive information; consequently, these systems can be used to reveal mate preferences. Here, I consider the place of visual information in human mate choice and provide a rationale for pressing into service methods drawn from the attention literature for the study of mate choice decisions. Because visual attention is allocated automatically and selectively, it may be used to complement common methods of mate preference assessment, such as self-report questionnaires and measures of genital arousal, while avoiding some of the pitfalls of these methods. Beyond the utility of increasing confidence in extant research findings by employing relatively unobtrusive methods, visual attention paradigms can also allow researchers to explore a variety of questions that are rarely asked, such as those concerned with signal efficiency and tradeoffs in the assessment of mate value.
Lankinen, Åsa; Smith, Henrik G; Andersson, Stefan; Madjidian, Josefin A
2016-03-01
Although much attention has focused on the diversity of plant mating systems, only a few studies have considered the joint effects of mating system and sexual conflict in plant evolution. In mixed-mating Collinsia heterophylla, a sexual conflict over timing of stigma receptivity is proposed: pollen with a capacity to induce early onset of stigma receptivity secures paternity for early-arriving pollen (at the expense of reduced maternal seed set), whereas late onset of stigma receptivity mitigates the negative effects of early-arriving pollen. Here we investigated whether selection on pollen and pistil traits involved in sexual conflict is affected by the presence of both outcross- and self-pollen (mixed mating) during pollen competition. We conducted two-donor crosses at different floral developmental stages to explore male fitness (siring ability) and female fitness (seed set) in relation to male and female identity, pollen and pistil traits, and type of competitor pollen (outcross vs. self). Late-fertilizing pollen rather than rapidly growing pollen tubes was most successful in terms of siring success, especially in competition with self-pollen after pollination at early floral stages. Late stigma receptivity increased seed set after early-stage pollinations, in agreement with selection against antagonistic pollen. Selection on pollen and pistil traits in C. heterophylla is affected by both sexual conflict and mixed mating, suggesting the importance of jointly considering these factors in plant evolution. © 2016 Botanical Society of America.
Evans, Melissa L; Dionne, Mélanie; Miller, Kristina M; Bernatchez, Louis
2012-01-22
Major histocompatibility complex (MHC)-dependent mating preferences have been observed across vertebrate taxa and these preferences are expected to promote offspring disease resistance and ultimately, viability. However, little empirical evidence linking MHC-dependent mate choice and fitness is available, particularly in wild populations. Here, we explore the adaptive potential of previously observed patterns of MHC-dependent mate choice in a wild population of Atlantic salmon (Salmo salar) in Québec, Canada, by examining the relationship between MHC genetic variation and adult reproductive success and offspring survival over 3 years of study. While Atlantic salmon choose their mates in order to increase MHC diversity in offspring, adult reproductive success was in fact maximized between pairs exhibiting an intermediate level of MHC dissimilarity. Moreover, patterns of offspring survival between years 0+ and 1+, and 1+ and 2+ and population genetic structure at the MHC locus relative to microsatellite loci indicate that strong temporal variation in selection is likely to be operating on the MHC. We interpret MHC-dependent mate choice for diversity as a likely bet-hedging strategy that maximizes parental fitness in the face of temporally variable and unpredictable natural selection pressures.
Evans, Melissa L.; Dionne, Mélanie; Miller, Kristina M.; Bernatchez, Louis
2012-01-01
Major histocompatibility complex (MHC)-dependent mating preferences have been observed across vertebrate taxa and these preferences are expected to promote offspring disease resistance and ultimately, viability. However, little empirical evidence linking MHC-dependent mate choice and fitness is available, particularly in wild populations. Here, we explore the adaptive potential of previously observed patterns of MHC-dependent mate choice in a wild population of Atlantic salmon (Salmo salar) in Québec, Canada, by examining the relationship between MHC genetic variation and adult reproductive success and offspring survival over 3 years of study. While Atlantic salmon choose their mates in order to increase MHC diversity in offspring, adult reproductive success was in fact maximized between pairs exhibiting an intermediate level of MHC dissimilarity. Moreover, patterns of offspring survival between years 0+ and 1+, and 1+ and 2+ and population genetic structure at the MHC locus relative to microsatellite loci indicate that strong temporal variation in selection is likely to be operating on the MHC. We interpret MHC-dependent mate choice for diversity as a likely bet-hedging strategy that maximizes parental fitness in the face of temporally variable and unpredictable natural selection pressures. PMID:21697172
Evans, Jonathan P; Simmons, Leigh W
2008-09-01
The good-sperm and sexy-sperm (GS-SS) hypotheses predict that female multiple mating (polyandry) can fuel sexual selection for heritable male traits that promote success in sperm competition. A major prediction generated by these models, therefore, is that polyandry will benefit females indirectly via their sons' enhanced fertilization success. Furthermore, like classic 'good genes' and 'sexy son' models for the evolution of female preferences, GS-SS processes predict a genetic correlation between genes for female mating frequency (analogous to the female preference) and those for traits influencing fertilization success (the sexually selected traits). We examine the premise for these predictions by exploring the genetic basis of traits thought to influence fertilization success and female mating frequency. We also highlight recent debates that stress the possible genetic constraints to evolution of traits influencing fertilization success via GS-SS processes, including sex-linked inheritance, nonadditive effects, interacting parental genotypes, and trade-offs between integrated ejaculate components. Despite these possible constraints, the available data suggest that male traits involved in sperm competition typically exhibit substantial additive genetic variance and rapid evolutionary responses to selection. Nevertheless, the limited data on the genetic variation in female mating frequency implicate strong genetic maternal effects, including X-linkage, which is inconsistent with GS-SS processes. Although the relative paucity of studies on the genetic basis of polyandry does not allow us to draw firm conclusions about the evolutionary origins of this trait, the emerging pattern of sex linkage in genes for polyandry is more consistent with an evolutionary history of antagonistic selection over mating frequency. We advocate further development of GS-SS theory to take account of the complex evolutionary dynamics imposed by sexual conflict over mating frequency.
Efficient Breeding by Genomic Mating.
Akdemir, Deniz; Sánchez, Julio I
2016-01-01
Selection in breeding programs can be done by using phenotypes (phenotypic selection), pedigree relationship (breeding value selection) or molecular markers (marker assisted selection or genomic selection). All these methods are based on truncation selection, focusing on the best performance of parents before mating. In this article we proposed an approach to breeding, named genomic mating, which focuses on mating instead of truncation selection. Genomic mating uses information in a similar fashion to genomic selection but includes information on complementation of parents to be mated. Following the efficiency frontier surface, genomic mating uses concepts of estimated breeding values, risk (usefulness) and coefficient of ancestry to optimize mating between parents. We used a genetic algorithm to find solutions to this optimization problem and the results from our simulations comparing genomic selection, phenotypic selection and the mating approach indicate that current approach for breeding complex traits is more favorable than phenotypic and genomic selection. Genomic mating is similar to genomic selection in terms of estimating marker effects, but in genomic mating the genetic information and the estimated marker effects are used to decide which genotypes should be crossed to obtain the next breeding population.
Density-dependent selection on mate search and evolution of Allee effects.
Berec, Luděk; Kramer, Andrew M; Bernhauerová, Veronika; Drake, John M
2018-01-01
Sexually reproducing organisms require males and females to find each other. Increased difficulty of females finding mates as male density declines is the most frequently reported mechanism of Allee effects in animals. Evolving more effective mate search may alleviate Allee effects, but may depend on density regimes a population experiences. In particular, high-density populations may evolve mechanisms that induce Allee effects which become detrimental when populations are reduced and maintained at a low density. We develop an individual-based, eco-genetic model to study how mating systems and fitness trade-offs interact with changes in population density to drive evolution of the rate at which males or females search for mates. Finite mate search rate triggers Allee effects in our model and we explore how these Allee effects respond to such evolution. We allow a population to adapt to several population density regimes and examine whether high-density populations are likely to reverse adaptations attained at low densities. We find density-dependent selection in most of scenarios, leading to search rates that result in lower Allee thresholds in populations kept at lower densities. This mainly occurs when fecundity costs are imposed on mate search, and provides an explanation for why Allee effects are often observed in anthropogenically rare species. Optimizing selection, where the attained trait value minimizes the Allee threshold independent of population density, depended on the trade-off between search and survival, combined with monogamy when females were searching. Other scenarios led to runaway selection on the mate search rate, including evolutionary suicide. Trade-offs involved in mate search may thus be crucial to determining how density influences the evolution of Allee effects. Previous studies did not examine evolution of a trait related to the strength of Allee effects under density variation. We emphasize the crucial role that mating systems, fitness trade-offs and the evolving sex have in determining the density threshold for population persistence, in particular since evolution need not always take the Allee threshold to its minimum value. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Sexual selection in Drosophila silvestris of Hawaii.
Spiess, E B; Carson, H L
1981-05-01
Previous discovery that Drosophila melanogaster females tend to discriminate in mating against phenotypes of earliest courting males prompted a study of the Hawaiian species D. silvestris. Tibial bristle variation in males from opposite coasts of the island of Hawaii functions in courtship, and the possibility that females can distinguish males differing in the tibial trait is explored. Mating tests, designed to give each female and male an alternative choice between two individuals of opposite sex every 30 min, consisted of intrapopulation tests with a strain derived from an eastern (Kilauea) population and interpopulation tests between that strain and one derived from a western (Kahuku) population. Males were given initial combat tests, with "winners" then used in mating (except one test with "loser" males). Matings (52-55%) were classified into categories according to the readiness of the female to mate and sequence of courtship. Low-threshold females (accepting the first male after less than four courtship bouts) occurred at 30-35%. Among intrapopulational tests, females (with higher threshold) accepted first- and second-courting males about equally (25:36, respectively), but for male success in mating, the winning of initial intermale combats and the uniformity of courtship effort tended to be important criteria. Among interpopulation tests, homogamic matings were nearly equal (25% each), but heterogamic matings contrasted in that Kilauea females were reluctant to mate with Kahuku males (14%), while reciprocal matings occurred most frequently (34%). Females favored males second to court, particularly when a Kilauea male (with extra tibial bristles) was the second male. Thus a morphological feature likely to be influential in mating is demonstrated to be so; and sexual selection is operating via male-male combat plus discrimination in favor of particular opposite-sex individuals in this species.
Setchell, Joanna M; Abbott, Kristin M; Gonzalez, Jean-Paul; Knapp, Leslie A
2013-10-01
A large body of evidence suggests that major histocompatibility complex (MHC) genotype influences mate choice. However, few studies have investigated MHC-mediated post-copulatory mate choice under natural, or even semi-natural, conditions. We set out to explore this question in a large semi-free-ranging population of mandrills (Mandrillus sphinx) using MHC-DRB genotypes for 127 parent-offspring triads. First, we showed that offspring MHC heterozygosity correlates positively with parental MHC dissimilarity suggesting that mating among MHC dissimilar mates is efficient in increasing offspring MHC diversity. Second, we compared the haplotypes of the parental dyad with those of the offspring to test whether post-copulatory sexual selection favored offspring with two different MHC haplotypes, more diverse gamete combinations, or greater within-haplotype diversity. Limited statistical power meant that we could only detect medium or large effect sizes. Nevertheless, we found no evidence for selection for heterozygous offspring when parents share a haplotype (large effect size), genetic dissimilarity between parental haplotypes (we could detect an odds ratio of ≥1.86), or within-haplotype diversity (medium-large effect). These findings suggest that comparing parental and offspring haplotypes may be a useful approach to test for post-copulatory selection when matings cannot be observed, as is the case in many study systems. However, it will be extremely difficult to determine conclusively whether post-copulatory selection mechanisms for MHC genotype exist, particularly if the effect sizes are small, due to the difficulty in obtaining a sufficiently large sample. © 2013 Wiley Periodicals, Inc.
Fuller, Rebecca C
2009-07-01
The sensory bias model for the evolution of mating preferences states that mating preferences evolve as correlated responses to selection on nonmating behaviors sharing a common sensory system. The critical assumption is that pleiotropy creates genetic correlations that affect the response to selection. I simulated selection on populations of neural networks to test this. First, I selected for various combinations of foraging and mating preferences. Sensory bias predicts that populations with preferences for like-colored objects (red food and red mates) should evolve more readily than preferences for differently colored objects (red food and blue mates). Here, I found no evidence for sensory bias. The responses to selection on foraging and mating preferences were independent of one another. Second, I selected on foraging preferences alone and asked whether there were correlated responses for increased mating preferences for like-colored mates. Here, I found modest evidence for sensory bias. Selection for a particular foraging preference resulted in increased mating preference for similarly colored mates. However, the correlated responses were small and inconsistent. Selection on foraging preferences alone may affect initial levels of mating preferences, but these correlations did not constrain the joint evolution of foraging and mating preferences in these simulations.
Sachdeva, Himani; Barton, Nicholas H
2017-06-01
Assortative mating is an important driver of speciation in populations with gene flow and is predicted to evolve under certain conditions in few-locus models. However, the evolution of assortment is less understood for mating based on quantitative traits, which are often characterized by high genetic variability and extensive linkage disequilibrium between trait loci. We explore this scenario for a two-deme model with migration, by considering a single polygenic trait subject to divergent viability selection across demes, as well as assortative mating and sexual selection within demes, and investigate how trait divergence is shaped by various evolutionary forces. Our analysis reveals the existence of sharp thresholds of assortment strength, at which divergence increases dramatically. We also study the evolution of assortment via invasion of modifiers of mate discrimination and show that the ES assortment strength has an intermediate value under a range of migration-selection parameters, even in diverged populations, due to subtle effects which depend sensitively on the extent of phenotypic variation within these populations. The evolutionary dynamics of the polygenic trait is studied using the hypergeometric and infinitesimal models. We further investigate the sensitivity of our results to the assumptions of the hypergeometric model, using individual-based simulations. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Carry-over effects of the social environment on future divorce probability in a wild bird population
Culina, Antica; Hinde, Camilla A.; Sheldon, Ben C.
2015-01-01
Initial mate choice and re-mating strategies (infidelity and divorce) influence individual fitness. Both of these should be influenced by the social environment, which determines the number and availability of potential partners. While most studies looking at this relationship take a population-level approach, individual-level responses to variation in the social environment remain largely unstudied. Here, we explore carry-over effects on future mating decisions of the social environment in which the initial mating decision occurred. Using detailed data on the winter social networks of great tits, we tested whether the probability of subsequent divorce, a year later, could be predicted by measures of the social environment at the time of pairing. We found that males that had a lower proportion of female associates, and whose partner ranked lower among these, as well as inexperienced breeders, were more likely to divorce after breeding. We found no evidence that a female's social environment influenced the probability of divorce. Our findings highlight the importance of the social environment that individuals experience during initial pair formation on later pairing outcomes, and demonstrate that such effects can be delayed. Exploring these extended effects of the social environment can yield valuable insights into processes and selective pressures acting upon the mating strategies that individuals adopt. PMID:26468239
2011-01-01
Background Monogynous mating systems with extremely low male mating rates have several independent evolutionary origins and are associated with drastic adaptations involving self-sacrifice, one-shot genitalia, genital damage, and termination of spermatogenesis immediately after maturation. The combination of such extreme traits likely restricts evolutionary potential perhaps up to the point of making low male mating rates irreversible and hence may constitute an evolutionary dead end. Here, we explore the case of a reversion to multiple mating from monogynous ancestry in golden orb-web spiders, Nephila senegalensis. Results Male multiple mating is regained by the loss of genital damage and sexual cannibalism but spermatogenesis is terminated with maturation, restricting males to a single loading of their secondary mating organs and a fixed supply of sperm. However, males re-use their mating organs and by experimentally mating males to many females, we show that the sperm supply is divided between copulations without reloading the pedipalps. Conclusion By portioning their precious sperm supply, males achieve an average mating rate of four females which effectively doubles the maximal mating rate of their ancestors. A heritage of one-shot genitalia does not completely restrict the potential to increase mating rates in Nephila although an upper limit is defined by the available sperm load. Future studies should now investigate how males use this potential in the field and identify selection pressures responsible for a reversal from monogynous to polygynous mating strategies. PMID:21740561
Schneider, Jutta M; Michalik, Peter
2011-07-08
Monogynous mating systems with extremely low male mating rates have several independent evolutionary origins and are associated with drastic adaptations involving self-sacrifice, one-shot genitalia, genital damage, and termination of spermatogenesis immediately after maturation. The combination of such extreme traits likely restricts evolutionary potential perhaps up to the point of making low male mating rates irreversible and hence may constitute an evolutionary dead end. Here, we explore the case of a reversion to multiple mating from monogynous ancestry in golden orb-web spiders, Nephila senegalensis. Male multiple mating is regained by the loss of genital damage and sexual cannibalism but spermatogenesis is terminated with maturation, restricting males to a single loading of their secondary mating organs and a fixed supply of sperm. However, males re-use their mating organs and by experimentally mating males to many females, we show that the sperm supply is divided between copulations without reloading the pedipalps. By portioning their precious sperm supply, males achieve an average mating rate of four females which effectively doubles the maximal mating rate of their ancestors. A heritage of one-shot genitalia does not completely restrict the potential to increase mating rates in Nephila although an upper limit is defined by the available sperm load. Future studies should now investigate how males use this potential in the field and identify selection pressures responsible for a reversal from monogynous to polygynous mating strategies.
EVOLUTION OF DIVERGENT FEMALE MATING PREFERENCE IN RESPONSE TO EXPERIMENTAL SEXUAL SELECTION
Debelle, Allan; Ritchie, Michael G; Snook, Rhonda R
2014-01-01
Sexual selection is predicted to drive the coevolution of mating signals and preferences (mating traits) within populations, and could play a role in speciation if sexual isolation arises due to mating trait divergence between populations. However, few studies have demonstrated that differences in mating traits between populations result from sexual selection alone. Experimental evolution is a promising approach to directly examine the action of sexual selection on mating trait divergence among populations. We manipulated the opportunity for sexual selection (low vs. high) in populations of Drosophila pseudoobscura. Previous studies on these experimental populations have shown that sexual selection manipulation resulted in the divergence between sexual selection treatments of several courtship song parameters, including interpulse interval (IPI) which markedly influences male mating success. Here, we measure female preference for IPI using a playback design to test for preference divergence between the sexual selection treatments after 130 generations of experimental sexual selection. The results suggest that female preference has coevolved with male signal, in opposite directions between the sexual selection treatments, providing direct evidence of the ability of sexual selection to drive the divergent coevolution of mating traits between populations. We discuss the implications in the context sexual selection and speciation. PMID:24931497
2018-01-01
Abstract Research on sexual selection and hybridization has focused on female mate choice and male–male competition. While the evolutionary outcomes of interspecific female preference have been well explored, we are now gaining a better understanding of the processes by which male–male competition between species in secondary contact promotes reproductive isolation versus hybridization. What is relatively unexplored is the interaction between female choice and male competition, as they can oppose one another or align with similar outcomes for reproductive isolation. The role of female–female competition in hybridization is also not well understood, but could operate similarly to male–male competition in polyandrous and other systems where costs to heterospecific mating are low for females. Reproductive competition between either sex of sympatric species can cause the divergence and/or convergence of sexual signals and recognition, which in turn influences the likelihood for interspecific mating. Future work on species interactions in secondary contact should test the relative influences of both mate choice and competition for mates on hybridization outcomes, and should not ignore the possibilities that females can compete over mating resources, and males can exercise mate choice. PMID:29492041
Conroy-Beam, Daniel; Buss, David M.
2016-01-01
Prior mate preference research has focused on the content of mate preferences. Yet in real life, people must select mates among potentials who vary along myriad dimensions. How do people incorporate information on many different mate preferences in order to choose which partner to pursue? Here, in Study 1, we compare seven candidate algorithms for integrating multiple mate preferences in a competitive agent-based model of human mate choice evolution. This model shows that a Euclidean algorithm is the most evolvable solution to the problem of selecting fitness-beneficial mates. Next, across three studies of actual couples (Study 2: n = 214; Study 3: n = 259; Study 4: n = 294) we apply the Euclidean algorithm toward predicting mate preference fulfillment overall and preference fulfillment as a function of mate value. Consistent with the hypothesis that mate preferences are integrated according to a Euclidean algorithm, we find that actual mates lie close in multidimensional preference space to the preferences of their partners. Moreover, this Euclidean preference fulfillment is greater for people who are higher in mate value, highlighting theoretically-predictable individual differences in who gets what they want. These new Euclidean tools have important implications for understanding real-world dynamics of mate selection. PMID:27276030
Conroy-Beam, Daniel; Buss, David M
2016-01-01
Prior mate preference research has focused on the content of mate preferences. Yet in real life, people must select mates among potentials who vary along myriad dimensions. How do people incorporate information on many different mate preferences in order to choose which partner to pursue? Here, in Study 1, we compare seven candidate algorithms for integrating multiple mate preferences in a competitive agent-based model of human mate choice evolution. This model shows that a Euclidean algorithm is the most evolvable solution to the problem of selecting fitness-beneficial mates. Next, across three studies of actual couples (Study 2: n = 214; Study 3: n = 259; Study 4: n = 294) we apply the Euclidean algorithm toward predicting mate preference fulfillment overall and preference fulfillment as a function of mate value. Consistent with the hypothesis that mate preferences are integrated according to a Euclidean algorithm, we find that actual mates lie close in multidimensional preference space to the preferences of their partners. Moreover, this Euclidean preference fulfillment is greater for people who are higher in mate value, highlighting theoretically-predictable individual differences in who gets what they want. These new Euclidean tools have important implications for understanding real-world dynamics of mate selection.
How multiple mating by females affects sexual selection
Shuster, Stephen M.; Briggs, William R.; Dennis, Patricia A.
2013-01-01
Multiple mating by females is widely thought to encourage post-mating sexual selection and enhance female fitness. We show that whether polyandrous mating has these effects depends on two conditions. Condition 1 is the pattern of sperm utilization by females; specifically, whether, among females, male mating number, m (i.e. the number of times a male mates with one or more females) covaries with male offspring number, o. Polyandrous mating enhances sexual selection only when males who are successful at multiple mating also sire most or all of each of their mates' offspring, i.e. only when Cov♂(m,o), is positive. Condition 2 is the pattern of female reproductive life-history; specifically, whether female mating number, m, covaries with female offspring number, o. Only semelparity does not erode sexual selection, whereas iteroparity (i.e. when Cov♀(m,o), is positive) always increases the variance in offspring numbers among females, which always decreases the intensity of sexual selection on males. To document the covariance between mating number and offspring number for each sex, it is necessary to assign progeny to all parents, as well as identify mating and non-mating individuals. To document significant fitness gains by females through iteroparity, it is necessary to determine the relative magnitudes of male as well as female contributions to the total variance in relative fitness. We show how such data can be collected, how often they are collected, and we explain the circumstances in which selection favouring multiple mating by females can be strong or weak. PMID:23339237
Evolution of divergent female mating preference in response to experimental sexual selection.
Debelle, Allan; Ritchie, Michael G; Snook, Rhonda R
2014-09-01
Sexual selection is predicted to drive the coevolution of mating signals and preferences (mating traits) within populations, and could play a role in speciation if sexual isolation arises due to mating trait divergence between populations. However, few studies have demonstrated that differences in mating traits between populations result from sexual selection alone. Experimental evolution is a promising approach to directly examine the action of sexual selection on mating trait divergence among populations. We manipulated the opportunity for sexual selection (low vs. high) in populations of Drosophila pseudoobscura. Previous studies on these experimental populations have shown that sexual selection manipulation resulted in the divergence between sexual selection treatments of several courtship song parameters, including interpulse interval (IPI) which markedly influences male mating success. Here, we measure female preference for IPI using a playback design to test for preference divergence between the sexual selection treatments after 130 generations of experimental sexual selection. The results suggest that female preference has coevolved with male signal, in opposite directions between the sexual selection treatments, providing direct evidence of the ability of sexual selection to drive the divergent coevolution of mating traits between populations. We discuss the implications in the context sexual selection and speciation. © 2014 The Authors. Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Gorjanc, Gregor; Hickey, John M
2018-05-02
AlphaMate is a flexible program that optimises selection, maintenance of genetic diversity, and mate allocation in breeding programs. It can be used in animal and cross- and self-pollinating plant populations. These populations can be subject to selective breeding or conservation management. The problem is formulated as a multi-objective optimisation of a valid mating plan that is solved with an evolutionary algorithm. A valid mating plan is defined by a combination of mating constraints (the number of matings, the maximal number of parents, the minimal/equal/maximal number of contributions per parent, or allowance for selfing) that are gender specific or generic. The optimisation can maximize genetic gain, minimize group coancestry, minimize inbreeding of individual matings, or maximize genetic gain for a given increase in group coancestry or inbreeding. Users provide a list of candidate individuals with associated gender and selection criteria information (if applicable) and coancestry matrix. Selection criteria and coancestry matrix can be based on pedigree or genome-wide markers. Additional individual or mating specific information can be included to enrich optimisation objectives. An example of rapid recurrent genomic selection in wheat demonstrates how AlphaMate can double the efficiency of converting genetic diversity into genetic gain compared to truncation selection. Another example demonstrates the use of genome editing to expand the gain-diversity frontier. Executable versions of AlphaMate for Windows, Mac, and Linux platforms are available at http://www.AlphaGenes.roslin.ed.ac.uk/AlphaMate. gregor.gorjanc@roslin.ed.ack.uk.
Peacocks, Picasso, and parental investment: The effects of romantic motives on creativity.
Griskevicius, Vladas; Cialdini, Robert B; Kenrick, Douglas T
2006-07-01
Four experiments explored the effects of mating motivation on creativity. Even without other incentives to be creative, romantic motives enhanced creativity on subjective and objective measures. For men, any cue designed to activate a short-term or a long-term mating goal increased creative displays; however, women displayed more creativity only when primed to attract a high-quality long-term mate. These creative boosts were unrelated to increased effort on creative tasks or to changes in mood or arousal. Furthermore, results were unaffected by the application of monetary incentives for creativity. These findings align with the view that creative displays in both sexes may be linked to sexual selection, qualified by unique exigencies of human parental investment. Copyright 2006 APA, all rights reserved.
Genetic versus census estimators of the opportunity for sexual selection in the wild.
Dunn, Stacey J; Waits, Lisette P; Byers, John A
2012-04-01
Abstract The existence of a direct link between intensity of sexual selection and mating-system type is widely accepted. However, the quantification of sexual selection has proven problematic. Several measures of sexual selection have been proposed, including the operational sex ratio (OSR), the breeding sex ratio (BSR), and the opportunity for sexual selection (I(mates)). For a wild population of pronghorn (Antilocapra americana), we calculated OSR and BSR. We estimated I(mates) from census data on the spatial and temporal distribution of receptive females in rut and from a multigenerational genetic pedigree. OSR and BSR indicated weak sexual selection on males, but census and pedigree I(mates) suggested stronger sexual selection on males than on females. OSR and BSR correlated with census but not pedigree estimates of I(mates), and census I(mates) did not correlate with pedigree estimates. This suggests that the behavioral mating system, as deduced from the spatial and temporal distribution of females, does not predict the genetic mating system of pronghorn. The differences we observed between estimators were primarily due to female mate sampling and choice and to the sex ratio. For most species, behavioral data are not perfectly accurate and therefore will be an insufficient alternative to using multigenerational pedigrees to quantify sexual selection.
Lancaster, Lesley T; McAdam, Andrew G; Hipsley, Christy A; Sinervo, Barry R
2014-08-01
Genetically determined polymorphisms incorporating multiple traits can persist in nature under chronic, fluctuating, and sometimes conflicting selection pressures. Balancing selection among morphs preserves equilibrium frequencies, while correlational selection maintains favorable trait combinations within each morph. Under negative frequency-dependent selection, females should mate (often disassortatively) with rare male morphotypes to produce conditionally fit offspring. Conversely, under correlational selection, females should mate assortatively to preserve coadapted gene complexes and avoid ontogenetic conflict. Using controlled breeding designs, we evaluated consequences of assortative mating patterns in color-polymorphic side-blotched lizards (Uta stansburiana), to identify conflict between these sources of selection. Females who mated disassortatively, and to conditionally high-quality males in the context of frequency-dependent selection, experienced highest fertility rates. In contrast, assortatively mated females experienced higher fetal viability rates. The trade-off between fertility and egg viability resulted in no overall fitness benefit to either assortative or disassortative mating patterns. These results suggest that ongoing conflict between correlational and frequency dependent selection in polymorphic populations may generate a trade-off between rare-morph advantage and phenotypic integration and between assortative and disassortative mating decisions. More generally, interactions among multiple sources of diversity-promoting selection can alter adaptations and dynamics predicted to arise under any of these regimes alone.
Polyandry as a mediator of sexual selection before and after mating
Kvarnemo, Charlotta; Simmons, Leigh W.
2013-01-01
The Darwin–Bateman paradigm recognizes competition among males for access to multiple mates as the main driver of sexual selection. Increasingly, however, females are also being found to benefit from multiple mating so that polyandry can generate competition among females for access to multiple males, and impose sexual selection on female traits that influence their mating success. Polyandry can reduce a male's ability to monopolize females, and thus weaken male focused sexual selection. Perhaps the most important effect of polyandry on males arises because of sperm competition and cryptic female choice. Polyandry favours increased male ejaculate expenditure that can affect sexual selection on males by reducing their potential reproductive rate. Moreover, sexual selection after mating can ameliorate or exaggerate sexual selection before mating. Currently, estimates of sexual selection intensity rely heavily on measures of male mating success, but polyandry now raises serious questions over the validity of such approaches. Future work must take into account both pre- and post-copulatory episodes of selection. A change in focus from the products of sexual selection expected in males, to less obvious traits in females, such as sensory perception, is likely to reveal a greater role of sexual selection in female evolution. PMID:23339234
Polyandry as a mediator of sexual selection before and after mating.
Kvarnemo, Charlotta; Simmons, Leigh W
2013-03-05
The Darwin-Bateman paradigm recognizes competition among males for access to multiple mates as the main driver of sexual selection. Increasingly, however, females are also being found to benefit from multiple mating so that polyandry can generate competition among females for access to multiple males, and impose sexual selection on female traits that influence their mating success. Polyandry can reduce a male's ability to monopolize females, and thus weaken male focused sexual selection. Perhaps the most important effect of polyandry on males arises because of sperm competition and cryptic female choice. Polyandry favours increased male ejaculate expenditure that can affect sexual selection on males by reducing their potential reproductive rate. Moreover, sexual selection after mating can ameliorate or exaggerate sexual selection before mating. Currently, estimates of sexual selection intensity rely heavily on measures of male mating success, but polyandry now raises serious questions over the validity of such approaches. Future work must take into account both pre- and post-copulatory episodes of selection. A change in focus from the products of sexual selection expected in males, to less obvious traits in females, such as sensory perception, is likely to reveal a greater role of sexual selection in female evolution.
Rogers, D W; Baker, R H; Chapman, T; Denniff, M; Pomiankowski, A; Fowler, K
2005-05-01
Traditionally it was thought that fitness-related traits such as male mating frequency, with a history of strong directional selection, should have little additive genetic variance and thus respond asymmetrically to bidirectional artificial selection. However, recent findings and theory suggest that a balance between selection for increased male mating frequency and opposing selection pressures on physiologically linked traits will cause male mating frequency to have high additive genetic variation and hence respond symmetrically to selection. We tested these hypotheses in the stalk-eyed fly, Cyrtodiopsis dalmanni, in which males hold harems comprising many females and so have the opportunity to mate at extremely high frequencies. We subjected male stalk-eyed flies to artificial selection for increased ('high') and decreased ('low') mating frequency in the presence of ecologically realistic, high numbers of females. High line males mated significantly more often than control or low line males. The direct response to selection was approximately symmetric in the high and low lines, revealing high additive genetic variation for, and no significant genetic constraints on, increased male mating frequency in C. dalmanni. In order to investigate trade-offs that might constrain male mating frequency under natural conditions we examined correlated responses to artificial selection. We measured accessory gland length, testis length and eyespan after 7 and 14 generations of selection. High line males had significantly larger accessory glands than low line males. No consistent correlated responses to selection were found in testis length or eyespan. Our results suggest that costs associated with the production and maintenance of large accessory glands, although yet to be identified, are likely to be a major constraint on mating frequency in natural populations of C. dalmanni.
Personality and mate preferences: five factors in mate selection and marital satisfaction.
Botwin, M D; Buss, D M; Shackelford, T K
1997-03-01
Although personality characteristics figure prominently in what people want in a mate, little is known about precisely which personality characteristics are most important, whether men and women differ in their personality preferences, whether individual women or men differ in what they want, and whether individuals actually get what they want. To explore these issues, two parallel studies were conducted, one using a sample of dating couples (N = 118) and one using a sample of married couples (N = 216). The five-factor model, operationalized in adjectival form, was used to assess personality characteristics via three data sources-self--report, partner report, and independent interviewer reports. Participants evaluated on a parallel 40-item instrument their preferences for the ideal personality characteristics of their mates. Results were consistent across both studies. Women expressed a greater preference than men for a wide array of socially desirable personality traits. Individuals differed in which characteristics they desired, preferring mates who were similar to themselves and actually obtaining mates who embodied what they desired. Finally, the personality characteristics of one's partner significantly predicted marital and sexual dissatisfaction, most notably when the partner was lower on Agreeableness, Emotional Stability, and Intellect-Openness than desired.
Adaptive genetic complementarity in mate choice coexists with selection for elaborate sexual traits
Oh, Kevin P; Badyaev, Alexander V
2006-01-01
Choice of genetically unrelated mates is widely documented, yet it is not known how self-referential mate choice can co-occur with commonly observed directional selection on sexual displays. Across 10 breeding seasons in a wild bird population, we found strong fitness benefits of matings between genetically unrelated partners and show that self-referential choice of genetically unrelated mates alternates with sexual selection on elaborate plumage. Seasonal cycles of diminishing variation in ornamentation, caused by early pairing of the most elaborated males, and influx of increasingly genetically unrelated available mates caused by female-biased dispersal, lead to temporal fluctuations in the target of mate choice and enabled coexistence of directional selection for ornament elaboration with adaptive pairing of genetically unrelated partners. PMID:16822752
Family feuds: social competition and sexual conflict in complex societies.
Rubenstein, Dustin R
2012-08-19
Darwin was initially puzzled by the processes that led to ornamentation in males-what he termed sexual selection-and those that led to extreme cooperation and altruism in complex animal societies-what was later termed kin selection. Here, I explore the relationships between sexual and kin selection theory by examining how social competition for reproductive opportunities-particularly in females-and sexual conflict over mating partners are inherent and critical parts of complex altruistic societies. I argue that (i) patterns of reproductive sharing within complex societies can drive levels of social competition and reproductive conflict not only in males but also in females living in social groups, and ultimately the evolution of female traits such as ornaments and armaments; (ii) mating conflict over female choice of sexual partners can influence kin structure within groups and drive the evolution of complex societies; and (iii) patterns of reproductive sharing and conflict among females may also drive the evolution of complex societies by influencing kin structure within groups. Ultimately, complex societies exhibiting altruistic behaviour appear to have only arisen in taxa where social competition over reproductive opportunities and sexual conflict over mating partners were low. Once such societies evolved, there were important selective feedbacks on traits used to regulate and mediate intra-sexual competition over reproductive opportunities, particularly in females.
Guo, Qingke; Feng, Linlin; Wang, Mingming
2017-04-01
Human's preferences for altruistic mates have been confirmed by many researchers. Under the deep influence of Confucianism that authorised more parental control over offspring's mate selection, Chinese people's mating strategies and mate preferences may be different from what the evolutionary psychologists have suggested. This study used the Q-sort technique to assess the roles of altruistic traits in mate selection and personal advertisement. A total of 200 university students participated in the Q-sort procedures and were asked to sort 50 traits (among which altruistic traits were mixed) according to their importance when choosing (or advertising to) a long-term (LT) or a short-term (ST) mate. Our findings were quite different from prior studies. When Chinese participants chose a mate or advertised themselves to a potential mate, kin altruism was considered to be the most important trait; altruistic traits were more preferred by males than by females and females tended to advertise themselves as more altruistic; preferences for altruistic traits showed no difference between LT and ST mate selections (or between personal advertisement to a LT and a ST mate). © 2015 International Union of Psychological Science.
Mating flights select for symmetry in honeybee drones ( Apis mellifera)
NASA Astrophysics Data System (ADS)
Jaffé, Rodolfo; Moritz, Robin F. A.
2010-03-01
Males of the honeybee ( Apis mellifera) fly to specific drone congregation areas (DCAs), which virgin queens visit in order to mate. From the thousands of drones that are reared in a single colony, only very few succeed in copulating with a queen, and therefore, a strong selection is expected to act on adult drones during their mating flights. In consequence, the gathering of drones at DCAs may serve as an indirect mate selection mechanism, assuring that queens only mate with those individuals having a better flight ability and a higher responsiveness to the queen’s visual and chemical cues. Here, we tested this idea relying on wing fluctuating asymmetry (FA) as a measure of phenotypic quality. By recapturing marked drones at a natural DCA and comparing their size and FA with a control sample of drones collected at their maternal hives, we were able to detect any selection on wing size and wing FA occurring during the mating flights. Although we found no solid evidence for selection on wing size, wing FA was found to be significantly lower in the drones collected at the DCA than in those collected at the hives. Our results demonstrate the action of selection during drone mating flights for the first time, showing that developmental stability can influence the mating ability of honeybee drones. We therefore conclude that selection during honeybee drone mating flights may confer some fitness advantages to the queens.
Mating flights select for symmetry in honeybee drones (Apis mellifera).
Jaffé, Rodolfo; Moritz, Robin F A
2010-03-01
Males of the honeybee (Apis mellifera) fly to specific drone congregation areas (DCAs), which virgin queens visit in order to mate. From the thousands of drones that are reared in a single colony, only very few succeed in copulating with a queen, and therefore, a strong selection is expected to act on adult drones during their mating flights. In consequence, the gathering of drones at DCAs may serve as an indirect mate selection mechanism, assuring that queens only mate with those individuals having a better flight ability and a higher responsiveness to the queen's visual and chemical cues. Here, we tested this idea relying on wing fluctuating asymmetry (FA) as a measure of phenotypic quality. By recapturing marked drones at a natural DCA and comparing their size and FA with a control sample of drones collected at their maternal hives, we were able to detect any selection on wing size and wing FA occurring during the mating flights. Although we found no solid evidence for selection on wing size, wing FA was found to be significantly lower in the drones collected at the DCA than in those collected at the hives. Our results demonstrate the action of selection during drone mating flights for the first time, showing that developmental stability can influence the mating ability of honeybee drones. We therefore conclude that selection during honeybee drone mating flights may confer some fitness advantages to the queens.
Sexual selection and the risk of extinction in birds.
Morrow, Edward H; Pitcher, Trevor E
2003-01-01
The relationship between sexual selection and extinction risk has rarely been investigated. This is unfortunate because extinction plays a key role in determining the patterns of species richness seen in extant clades, which form the basis of comparative studies into the role that sexual selection may play in promoting speciation. We investigate the extent to which the perceived risk of extinction relates to four different estimates of sexual selection in 1030 species of birds. We find no evidence that the number of threatened species is distributed unevenly according to a social mating system, and neither of our two measures of pre-mating sexual selection (sexual dimorphism and dichromatism) was related to extinction risk, after controlling for phylogenetic inertia. However, threatened species apparently experience more intense post-mating sexual selection, measured as testis size, than non-threatened species. These results persisted after including body size as a covariate in the analysis, and became even stronger after controlling for clutch size (two known correlates of extinction risk). Sexual selection may therefore be a double-edged process-promoting speciation on one hand but promoting extinction on the other. Furthermore, we suggest that it is post-mating sexual selection, in particular, that is responsible for the negative effect of sexual selection on clade size. Why this might be is unclear, but the mean population fitness of species with high intensities of post-mating sexual selection may be especially low if costs associated with multiple mating are high or if the selection load imposed by post-mating selection is higher relative to that of pre-mating sexual selection. PMID:12964981
Lin, Zibei; Shi, Fan; Hayes, Ben J; Daetwyler, Hans D
2017-05-01
Heuristic genomic inbreeding controls reduce inbreeding in genomic breeding schemes without reducing genetic gain. Genomic selection is increasingly being implemented in plant breeding programs to accelerate genetic gain of economically important traits. However, it may cause significant loss of genetic diversity when compared with traditional schemes using phenotypic selection. We propose heuristic strategies to control the rate of inbreeding in outbred plants, which can be categorised into three types: controls during mate allocation, during selection, and simultaneous selection and mate allocation. The proposed mate allocation measure GminF allocates two or more parents for mating in mating groups that minimise coancestry using a genomic relationship matrix. Two types of relationship-adjusted genomic breeding values for parent selection candidates ([Formula: see text]) and potential offspring ([Formula: see text]) are devised to control inbreeding during selection and even enabling simultaneous selection and mate allocation. These strategies were tested in a case study using a simulated perennial ryegrass breeding scheme. As compared to the genomic selection scheme without controls, all proposed strategies could significantly decrease inbreeding while achieving comparable genetic gain. In particular, the scenario using [Formula: see text] in simultaneous selection and mate allocation reduced inbreeding to one-third of the original genomic selection scheme. The proposed strategies are readily applicable in any outbred plant breeding program.
Jones, Adam G; Arguello, J Roman; Arnold, Stevan J
2002-01-01
Few studies have influenced thought on the nature of sexual selection to the extent of the classic paper of A. J. Bateman on mating patterns in Drosophila. However, interpretation of his study remains controversial, and a lack of modern empirical evidence prevents a consensus with respect to the perceived utility of Bateman's principles in the study of sexual selection. Here, we use a genetic study of natural mating patterns in the rough-skinned newt, Taricha granulosa, to investigate the concordance between Bateman's principles and the intensity of sexual selection. We found that males experienced strong sexual selection on tail height and body size, while sexual selection was undetectable in females. This direct quantification of sexual selection agreed perfectly with inferences that are based on Bateman's principles. Specifically, males (in comparison with females) exhibited greater standardized variances in reproductive and mating success, as well as a stronger relationship between mating success and reproductive success. Overall, our results illustrate that Bateman's principles provide the only quantitative measures of the mating system with explicit connections to formal selection theory and should be the central focus of studies of mating patterns in natural populations. PMID:12573067
Sexual selection and the opportunity cost of free mate choice.
Apostolou, Menelaos
2016-06-01
The model of sexual selection under parental choice has been proposed to account for the control that parents exercise over their children's mating decisions. The present paper attempts to formalize and advance this model with the purpose of providing a better understanding of how parental choice mandates the course of sexual selection. In particular, in the proposed formulation, free mate choice involves an opportunity cost which motivates parents to place their children's mate choices under their control. When they succeed in doing so, they become a significant sexual selection force, as traits that appeal to parents in an in-law are selected and increase in frequency in the population. The degree of parental control over mating, and thus the strength of sexual selection under parental choice, is positively predicted by the size of the opportunity cost of free mate choice. The primary factors that affect the level of opportunity cost vary between society types, affecting the strength of parental choice as a sexual selection force.
Järvenpää, Marja; Lindström, Kai
2004-11-22
Eutrophication as a result of human activity has resulted in increased algal blooms and turbidity in aquatic environments. We investigated experimentally the effect of algal turbidity on the mating system and sexual selection in the sand goby, Pomatoschistus minutus (Pallas), a marine fish with a resource-defence mating system and paternal care. Owing to male-male competition and female choice, large males can monopolize multiple mates, while some males do not achieve mating at all. We show that the number of eggs laid was the same in both turbid and clear tanks but that mating success was more evenly distributed among males in turbid than in clear water. The opportunity for sexual selection was lower in turbid conditions. In turbid conditions mating success was less skewed towards large males. Our results suggest that increased turbidity can change mating systems and decrease the opportunity for sexual selection as well as selection intensity.
Jagadeeshan, Santosh; Shah, Ushma; Chakrabarti, Debarti; Singh, Rama S
2015-01-01
The mating success of larger male Drosophila melanogaster in the laboratory and the wild has been traditionally been explained by female choice, even though the reasons are generally hard to reconcile. Female choice can explain this success by virtue of females taking less time to mate with preferred males, but so can the more aggressive or persistent courtships efforts of large males. Since mating is a negotiation between the two sexes, the behaviors of both are likely to interact and influence mating outcomes. Using a series of assays, we explored these negotiations by testing for the relative influence of male behaviors and its effect on influencing female courtship arousal threshold, which is the time taken for females to accept copulation. Our results show that large males indeed have higher copulation success compared to smaller males. Competition between two males or an increasing number of males had no influence on female sexual arousal threshold;-females therefore may have a relatively fixed 'arousal threshold' that must be reached before they are ready to mate, and larger males appear to be able to manipulate this threshold sooner. On the other hand, the females' physiological and behavioral state drastically influences mating; once females have crossed the courtship arousal threshold they take less time to mate and mate indiscriminately with large and small males. Mating quicker with larger males may be misconstrued to be due to female choice; our results suggest that the mating advantage of larger males may be more a result of heightened male activity and relatively less of female choice. Body size per se may not be a trait under selection by female choice, but size likely amplifies male activity and signal outputs in courtship, allowing them to influence female arousal threshold faster.
Zandberg, Lies; Gort, Gerrit; van Oers, Kees; Hinde, Camilla A
2017-10-01
Under sexual selection, mate preferences can evolve for traits advertising fitness benefits. Observed mating patterns (mate choice) are often assumed to represent preference, even though they result from the interaction between preference, sampling strategy and environmental factors. Correlating fitness with mate choice instead of preference will therefore lead to confounded conclusions about the role of preference in sexual selection. Here we show that direct fitness benefits underlie mate preferences for genetic characteristics in a unique experiment on wild great tits. In repeated mate preference tests, both sexes preferred mates that had similar heterozygosity levels to themselves, and not those with which they would optimise offspring heterozygosity. In a subsequent field experiment where we cross fostered offspring, foster parents with more similar heterozygosity levels had higher reproductive success, despite the absence of assortative mating patterns. These results support the idea that selection for preference persists despite constraints on mate choice. © 2017 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd.
ASSORTATIVE MATING CAN IMPEDE OR FACILITATE FIXATION OF UNDERDOMINANT ALLELES
NEWBERRY, MITCHELL G; MCCANDLISH, DAVID M; PLOTKIN, JOSHUA B
2017-01-01
Underdominant mutations have fixed between divergent species, yet classical models suggest that rare underdominant alleles are purged quickly except in small or subdivided populations. We predict that underdominant alleles that also influence mate choice, such as those affecting coloration patterns visible to mates and predators alike, can fix more readily. We analyze a mechanistic model of positive assortative mating in which individuals have n chances to sample compatible mates. This one-parameter model naturally spans random mating (n =1) and complete assortment (n → ∞), yet it produces sexual selection whose strength depends non-monotonically on n. This sexual selection interacts with viability selection to either inhibit or facilitate fixation. As mating opportunities increase, underdominant alleles fix as frequently as neutral mutations, even though sexual selection and underdominance independently each suppress rare alleles. This mechanism allows underdominant alleles to fix in large populations and illustrates how life history can affect evolutionary change. PMID:27497738
Sexual selection on cuticular hydrocarbons in the Australian field cricket, Teleogryllus oceanicus
Thomas, Melissa L; Simmons, Leigh W
2009-01-01
Background Females in a wide range of taxa have been shown to base their choice of mates on pheromone signals. However, little research has focussed specifically on the form and intensity of selection that mate choice imposes on the pheromone signal. Using multivariate selection analysis, we characterise directly the form and intensity of sexual selection acting on cuticular hydrocarbons, chemical compounds widely used in the selection of mates in insects. Using the Australian field cricket Teleogryllus oceanicus as a model organism, we use three measures of male attractiveness to estimate fitness; mating success, the duration of courtship required to elicit copulation, and subsequent spermatophore attachment duration. Results We found that all three measures of male attractiveness generated sexual selection on male cuticular hydrocarbons, however there were differences in the form and intensity of selection among these three measures. Mating success was the only measure of attractiveness that imposed both univariate linear and quadratic selection on cuticular hydrocarbons. Although we found that all three attractiveness measures generated nonlinear selection, again only mating success was found to exert statistically significant stabilizing selection. Conclusion This study shows that sexual selection plays an important role in the evolution of male cuticular hydrocarbon signals. PMID:19594896
Agricultural management affects evolutionary processes in a migratory songbird
Perlut, N.G.; Freeman-Gallant, C. R.; Strong, A.M.; Donovan, T.M.; Kilpatrick, C.W.; Zalik, N.J.
2008-01-01
Hay harvests have detrimental ecological effects on breeding songbirds, as harvesting results in nest failure. Importantly, whether harvesting also affects evolutionary processes is not known. We explored how hay harvest affected social and genetic mating patterns, and thus, the overall opportunity for sexual selection and evolutionary processes for a ground-nesting songbird, the Savannah sparrow (Passerculus sandwichensis). On an unharvested field, 55% of females were in polygynous associations, and social polygyny was associated with greater rates of extra-pair paternity (EPP). In this treatment, synchrony explained variation in EPP rates, as broods by more synchronous females had more EPP than broods by asynchronous females. In contrast, on a harvested field, simultaneous nest failure caused by haying dramatically decreased the overall incidence of EPP by increasing the occurrence of social monogamy and, apparently, the ability of polygynous males to maintain paternity in their own nests. Despite increased social and genetic monogamy, these haying-mediated changes in mating systems resulted in greater than twofold increase in the opportunity for sexual selection. This effect arose, in part, from a 30% increase in the variance associated with within-pair fertilization success, relative to the unharvested field. This effect was caused by a notable increase (+110%) in variance associated with the quality of social mates following simultaneous nest failure. Because up to 40% of regional habitat is harvested by early June, these data may demonstrate a strong population-level effect on mating systems, sexual selection, and consequently, evolutionary processes. ?? 2008 The Authors.
Mate-Selection Systems and Criteria: Variation according to Family Structure.
ERIC Educational Resources Information Center
Lee, Gary R.; Stone, Lorene Hemphill
1980-01-01
Autonomous mate selection based on romantic attraction is more likely to be institutionalized in societies with nuclear family systems. Neolocal residence customs increase the probability that mate selection is autonomous but decrease the probability that it is based on romantic attraction. (Author)
Measuring genomic pre-selection in theory and in practice
USDA-ARS?s Scientific Manuscript database
Potential biases from genomic pre-selection were estimated from actual selection and mating patterns of US Holsteins. Traditional models using only phenotypes and pedigrees do not adjust for average genomic merit of an animal’s parents, progeny, mates, or contemporaries. Positive assortative mating ...
Developmental Environment Effects on Sexual Selection in Male and Female Drosophila melanogaster
Morimoto, Juliano; Pizzari, Tommaso; Wigby, Stuart
2016-01-01
The developmental environment can potentially alter the adult social environment and influence traits targeted by sexual selection such as body size. In this study, we manipulated larval density in male and female Drosophila melanogaster, which results in distinct adult size phenotypes–high (low) densities for small (large) adults–and measured sexual selection in experimental groups consisting of adult males and females from high, low, or a mixture of low and high larval densities. Overall, large adult females (those reared at low larval density) had more matings, more mates and produced more offspring than small females (those reared at high larval density). The number of offspring produced by females was positively associated with their number of mates (i.e. there was a positive female Bateman gradient) in social groups where female size was experimentally varied, likely due to the covariance between female productivity and mating rate. For males, we found evidence that the larval environment affected the relative importance of sexual selection via mate number (Bateman gradients), mate productivity, paternity share, and their covariances. Mate number and mate productivity were significantly reduced for small males in social environments where males were of mixed sizes, versus social environments where all males were small, suggesting that social heterogeneity altered selection on this subset of males. Males are commonly assumed to benefit from mating with large females, but in contrast to expectations we found that in groups where both the male and female size varied, males did not gain more offspring per mating with large females. Collectively, our results indicate sex-specific effects of the developmental environment on the operation of sexual selection, via both the phenotype of individuals, and the phenotype of their competitors and mates. PMID:27167120
An integrative view of sexual selection in Tribolium flour beetles.
Fedina, Tatyana Y; Lewis, Sara M
2008-05-01
Sexual selection is a major force driving the evolution of diverse reproductive traits. This evolutionary process is based on individual reproductive advantages that arise either through intrasexual competition or through intersexual choice and conflict. While classical studies of sexual selection focused mainly on differences in male mating success, more recent work has focused on the differences in paternity share that may arise through sperm competition or cryptic female choice whenever females mate with multiple males. Thus, an integrative view of sexual selection needs to encompass processes that occur not only before copulation (pre-mating), but also during copulation (peri-mating), as well as after copulation (post-mating), all of which can generate differences in reproductive success. By encompassing mechanisms of sexual selection across all of these sequential reproductive stages this review takes an integrative approach to sexual selection in Tribolium flour beetles (Coleoptera: Tenebrionidae), a particularly well-studied and economically important model organism. Tribolium flour beetles colonize patchily distributed grain stores, and juvenile and adult stages share the same food resources. Adults are highly promiscuous and female reproduction is distributed across an adult lifespan lasting approximately 1 year. While Tribolium males produce an aggregation pheromone that attracts both sexes, there appears to be little pre-mating discrimination among potential mates by either sex. However, recent work has revealed several peri-mating and post-mating mechanisms that determine how offspring paternity is apportioned among a female's mates. During mating, Tribolium females reject spermatophore transfer and limit sperm numbers transferred by males with low phenotypic quality. Although there is some conflicting evidence, male copulatory leg-rubbing appears to be associated with overcoming female resistance to insemination and does not influence a male's subsequent paternity share. Evidence suggests that Tribolium beetles have several possible post-mating mechanisms that they may use to bias paternity. Male sperm precedence has been extensively studied in Tribolium spp. and the related Tenebrio molitor, and several factors influencing male paternity share among a female's progeny have been identified. These include oviposition time, inter-mating interval, male strain/genotype, the mating regimen of a male's mother, male starvation, and tapeworm infection. Females exert muscular control over sperm storage, although there is no evidence to date that females use this to differentiate among mates. Females could also influence offspring paternity by re-mating with additional males, and T. castaneum females more readily accept spermatophores when they are re-mating with more attractive males. Additional work is needed to examine the possible roles played by both male and female accessory gland products in determining male paternity share. Sexual selection during pre-mating episodes may be reinforced or counteracted by peri- and post-copulatory selection, and antagonistic coevolution between the sexes may be played out across reproductive stages. In Tribolium, males' olfactory attractiveness is positively correlated with both insemination success and paternity share, suggesting consistent selection across different reproductive stages. Similar studies across sequential reproductive stages are needed in other taxa to provide a more integrative view of sexual selection.
Assortative mating can impede or facilitate fixation of underdominant alleles.
Newberry, Mitchell G; McCandlish, David M; Plotkin, Joshua B
2016-12-01
Underdominant mutations have fixed between divergent species, yet classical models suggest that rare underdominant alleles are purged quickly except in small or subdivided populations. We predict that underdominant alleles that also influence mate choice, such as those affecting coloration patterns visible to mates and predators alike, can fix more readily. We analyze a mechanistic model of positive assortative mating in which individuals have n chances to sample compatible mates. This one-parameter model naturally spans random mating (n=1) and complete assortment (n→∞), yet it produces sexual selection whose strength depends non-monotonically on n. This sexual selection interacts with viability selection to either inhibit or facilitate fixation. As mating opportunities increase, underdominant alleles fix as frequently as neutral mutations, even though sexual selection and underdominance independently each suppress rare alleles. This mechanism allows underdominant alleles to fix in large populations and illustrates how life history can affect evolutionary change. Copyright © 2016 Elsevier Inc. All rights reserved.
Molecular identification and functional characterization of rabbit MATE1 and MATE2-K.
Zhang, Xiaohong; Cherrington, Nathan J; Wright, Stephen H
2007-07-01
An electroneutral organic cation (OC)/proton exchanger in the apical membrane of proximal tubules mediates the final step of renal OC excretion. Two members of the multidrug and toxin extrusion family, MATE1 and MATE2-K, were recently identified in human and rodent kidney and proposed to be the molecular basis of renal OC/H(+) exchange. To take advantage of the comparative value of the large database on the kinetic and selectivity characteristics of OC/H(+) exchange that exists for rabbit kidney, we cloned rbMATE1 and rbMATE2-K. The rabbit homologs have 75% (MATE1) and 74% (MATE2-K) amino acid identity to their human counterparts (and 51% identity with each other). rbMATE1 and rbMATE2-K exhibited H(+) gradient-dependent uptake and efflux of tetraethylammonium (TEA) when expressed in Chinese hamster ovary cells. Both transporters displayed similar affinities for selected compounds [IC(50) values within 2-fold for TEA, 1-methyl-4-phenylpyridinium, and quinidine] and very different affinities for others (IC(50) values differing by 8- to 80-fold for choline and cimetidine, respectively). These results indicate that rbMATE1 and rbMATE2-K are multispecific OC/H(+) exchangers with similar, but distinct, functional characteristics. Overall, the selectivity of MATE1 and MATE2-K correlated closely with that observed in rabbit renal brush-border membrane vesicles.
Family feuds: social competition and sexual conflict in complex societies
Rubenstein, Dustin R.
2012-01-01
Darwin was initially puzzled by the processes that led to ornamentation in males—what he termed sexual selection—and those that led to extreme cooperation and altruism in complex animal societies—what was later termed kin selection. Here, I explore the relationships between sexual and kin selection theory by examining how social competition for reproductive opportunities—particularly in females—and sexual conflict over mating partners are inherent and critical parts of complex altruistic societies. I argue that (i) patterns of reproductive sharing within complex societies can drive levels of social competition and reproductive conflict not only in males but also in females living in social groups, and ultimately the evolution of female traits such as ornaments and armaments; (ii) mating conflict over female choice of sexual partners can influence kin structure within groups and drive the evolution of complex societies; and (iii) patterns of reproductive sharing and conflict among females may also drive the evolution of complex societies by influencing kin structure within groups. Ultimately, complex societies exhibiting altruistic behaviour appear to have only arisen in taxa where social competition over reproductive opportunities and sexual conflict over mating partners were low. Once such societies evolved, there were important selective feedbacks on traits used to regulate and mediate intra-sexual competition over reproductive opportunities, particularly in females. PMID:22777018
Quantitative genetic insights into the coevolutionary dynamics of male and female genitalia
Evans, Jonathan P.; van Lieshout, Emile; Gasparini, Clelia
2013-01-01
The spectacular variability that typically characterizes male genital traits has largely been attributed to the role of sexual selection. Among the evolutionary mechanisms proposed to account for this diversity, two processes in particular have generated considerable interest. On the one hand, females may exploit postcopulatory mechanisms of selection to favour males with preferred genital traits (cryptic female choice; CFC), while on the other hand females may evolve structures or behaviours that mitigate the direct costs imposed by male genitalia (sexual conflict; SC). A critical but rarely explored assumption underlying both processes is that male and female reproductive traits coevolve, either via the classic Fisherian model of preference-trait coevolution (CFC) or through sexually antagonistic selection (SC). Here, we provide evidence for this prediction in the guppy (Poecilia reticulata), a polyandrous livebearing fish in which males transfer sperm internally to females via consensual and forced matings. Our results from a paternal half-sibling breeding design reveal substantial levels of additive genetic variation underlying male genital size and morphology—two traits known to predict mating success during non-consensual matings. Our subsequent finding that physically interacting female genital traits exhibit corresponding levels of genetic (co)variation reveals the potential intersexual coevolutionary dynamics of male and female genitalia, thereby fulfilling a fundamental assumption underlying CFC and SC theory. PMID:23720546
Beyond sex allocation: the role of mating systems in sexual selection in parasitoid wasps
Boulton, Rebecca A; Collins, Laura A; Shuker, David M
2015-01-01
Despite the diverse array of mating systems and life histories which characterise the parasitic Hymenoptera, sexual selection and sexual conflict in this taxon have been somewhat overlooked. For instance, parasitoid mating systems have typically been studied in terms of how mating structure affects sex allocation. In the past decade, however, some studies have sought to address sexual selection in the parasitoid wasps more explicitly and found that, despite the lack of obvious secondary sexual traits, sexual selection has the potential to shape a range of aspects of parasitoid reproductive behaviour and ecology. Moreover, various characteristics fundamental to the parasitoid way of life may provide innovative new ways to investigate different processes of sexual selection. The overall aim of this review therefore is to re-examine parasitoid biology with sexual selection in mind, for both parasitoid biologists and also researchers interested in sexual selection and the evolution of mating systems more generally. We will consider aspects of particular relevance that have already been well studied including local mating structure, sex allocation and sperm depletion. We go on to review what we already know about sexual selection in the parasitoid wasps and highlight areas which may prove fruitful for further investigation. In particular, sperm depletion and the costs of inbreeding under chromosomal sex determination provide novel opportunities for testing the role of direct and indirect benefits for the evolution of mate choice. PMID:24981603
2013-01-01
The genetic trends in fitness (inbreeding, fertility and survival) of a closed nucleus flock of Menz sheep under selection during ten years for increased body weight were investigated to evaluate the consequences of selection for body weight on fitness. A mate selection tool was used to optimize in retrospect the actual selection and matings conducted over the project period to assess if the observed genetic gains in body weight could have been achieved with a reduced level of inbreeding. In the actual selection, the genetic trends for yearling weight, fertility of ewes and survival of lambs were 0.81 kg, –0.00026% and 0.016% per generation. The average inbreeding coefficient remained zero for the first few generations and then tended to increase over generations. The genetic gains achieved with the optimized retrospective selection and matings were highly comparable with the observed values, the correlation between the average breeding values of lambs born from the actual and optimized matings over the years being 0.99. However, the level of inbreeding with the optimized mate selections remained zero until late in the years of selection. Our results suggest that an optimal selection strategy that considers both genetic merits and coancestry of mates should be adopted to sustain the Menz sheep breeding program. PMID:23783076
Sexual selection and mate choice.
Andersson, Malte; Simmons, Leigh W
2006-06-01
The past two decades have seen extensive growth of sexual selection research. Theoretical and empirical work has clarified many components of pre- and postcopulatory sexual selection, such as aggressive competition, mate choice, sperm utilization and sexual conflict. Genetic mechanisms of mate choice evolution have been less amenable to empirical testing, but molecular genetic analyses can now be used for incisive experimentation. Here, we highlight some of the currently debated areas in pre- and postcopulatory sexual selection. We identify where new techniques can help estimate the relative roles of the various selection mechanisms that might work together in the evolution of mating preferences and attractive traits, and in sperm-egg interactions.
Fantasy-Testing-Assessment: A Proposed Model for the Investigation of Mate Selection.
ERIC Educational Resources Information Center
Nofz, Michael P.
1984-01-01
Proposes a model for mate selection which outlines three modes of interpersonal relating--fantasy, testing, and assessment (FTA). The model is viewed as a more accurate representation of mate selection processes than suggested by earlier theories, and can be used to clarify couples' understandings of their own relationships. (JAC)
Devigili, Alessandro; Evans, Jonathan P; Di Nisio, Andrea; Pilastro, Andrea
2015-09-15
In many species, females mate with multiple partners, meaning that sexual selection on male traits operates across a spectrum that encompasses the competition for mates (that is, before mating) and fertilizations (after mating). Despite being inextricably linked, pre- and postcopulatory sexual selection are typically studied independently, and we know almost nothing about how sexual selection operates across this divide. Here we bridge this knowledge gap using the livebearing fish Poecilia reticulata. We show that both selective episodes, as well as their covariance, explain a significant component of variance in male reproductive fitness. Moreover, linear and nonlinear selection simultaneously act on pre- and postcopulatory traits, and interact to generate multiple phenotypes with similar fitness.
Douglas, T E; Strassmann, J E; Queller, D C
2016-07-01
Theory indicates that numbers of mating types should tend towards infinity or remain at two. The social amoeba, Dictyostelium discoideum, however, has three mating types. It is therefore a mystery how this species has broken the threshold of two mating types, but has not increased towards a much higher number. Frequency-dependent selection on rare types in combination with isogamy, a form of reproduction involving gametes similar in size, could explain the evolution of multiple mating types in this system. Other factors, such as drift, may be preventing the evolution of more than three. We first looked for evidence of isogamy by measuring gamete size associated with each type. We found no evidence of size dissimilarities between gametes. We then looked for evidence of balancing selection, by examining mating type distributions in natural populations and comparing genetic differentiation at the mating type locus to that at more neutral loci. We found that mating type frequency varied among the three populations we examined, with only one of the three showing an even sex ratio, which does not support balancing selection. However, we found more population structure at neutral loci than the mating type locus, suggesting that the three mating types are indeed maintained at intermediate frequencies by balancing selection. Overall, the data are consistent with balancing selection acting on D. discoideum mating types, but with a sufficiently weak rare sex advantage to allow for drift, a potential explanation for why these amoebae have only three mating types. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
SEXUAL SELECTION THROUGH FEMALE CHOICE IN LAWES' PAROTIA, A LEK-MATING BIRD OF PARADISE.
Pruett-Jones, S G; Pruett-Jones, M A
1990-05-01
We studied sexual selection in Lawes' Parotia, a lek-mating bird of paradise, during 1981-1983 in Papua New Guinea. There was a high variance in mating success among males, with fewer than half of the individuals mating in any one year. This variance was independent of male-male interactions and disruptions. A role of female choice in sexual selection was suggested by the patterns of female visitation to courts and statistical correlations across males between phenotypic traits and mating success. Females repeatedly visited most males in their home ranges and began visiting males up to six weeks before mating. In one or more years, six aspects of male behavior and one morphological variable were positively correlated with mating success, but the probability values were not significant using a simultaneous inference test. Calculation of combined probability values across all three years revealed that one aspect of male display behavior, the probability of display, positively and significantly influenced mating status. The probability of display was also significantly correlated with relative mating success among males. Females showed strong fidelity to mates, both within and between seasons. Display sites of male Lawes' Parotia are variably dispersed, but mating success did not differ for grouped and solitary males. These data confirm an important role of female choice in sexual selection in birds of paradise but also suggest that female choice may be unrelated to the process of lek-initiation in this species. © 1990 The Society for the Study of Evolution.
Sex in murky waters: algal-induced turbidity increases sexual selection in pipefish.
Sundin, Josefin; Aronsen, Tonje; Rosenqvist, Gunilla; Berglund, Anders
2017-01-01
Algal-induced turbidity has been shown to alter several important aspects of reproduction and sexual selection. However, while turbidity has been shown to negatively affect reproduction and sexually selected traits in some species, it may instead enhance reproductive success in others, implying that the impact of eutrophication is far more complex than originally believed. In this study, we aimed to provide more insight into these inconsistent findings. We used molecular tools to investigate the impact of algal turbidity on reproductive success and sexual selection on males in controlled laboratory experiments, allowing mate choice, mating competition, and mate encounter rates to affect reproduction. As study species, we used the broad-nosed pipefish, Syngnathus typhle , a species practicing male pregnancy and where we have previously shown that male mate choice is impaired by turbidity. Here, turbidity instead enhanced sexual selection on male size and mating success as well as reproductive success. Effects from mating competition and mate encounter rates may thus override effects from mate choice based on visual cues, producing an overall stronger sexual selection in turbid waters. Hence, seemingly inconsistent effects of turbidity on sexual selection may depend on which mechanisms of sexual selection that have been under study. Algal blooms are becoming increasingly more common due to eutrophication of freshwater and marine environments. The high density of algae lowers water transparency and reduces the possibility for fish and other aquatic animals to perform behaviors dependent on vision. We have previously shown that pipefish are unable to select the best partner in mate choice trials when water transparency was reduced. However, fish might use other senses than vision to compensate for the reduction in water transparency. In this study, we found that when fish were allowed to freely interact, thereby allowing competition between partners and direct contact between the fish, the best partner was indeed chosen. Hence, the negative effects of reduced water visibility due to algal blooms may be counteracted by the use of other senses in fish.
Potential fitness benefits from mate selection in the Atlantic cod (Gadus morhua).
Rudolfsen, G; Figenschou, L; Folstad, I; Nordeide, J T; Søreng, E
2005-01-01
Little evidence of benefits from female mate choice has been found when males provide no parental care or resources. Yet, good genes models of sexual selection suggest that elaborated male sexual characters are reliable signals of mate quality and that the offspring of males with elaborate sexual ornaments will perform better than those of males with less elaborate ornaments. We used cod (Gadus morhua L.), an externally fertilizing species where males provide nothing but sperm, to examine the potential of optimal mate selection with respect to offspring survival. By applying in vitro fertilizations, we crossed eight females with nine males in all possible combinations and reared each of the 72 sib groups. We found that offspring survival was dependent on which female was mated with which male and that optimal mate selection has the potential to increase mean offspring survival from 31.9 to 55.6% (a 74% increase). However, the size of the male sexual ornaments and sperm quality (i.e. sperm velocity and sperm density) could not predict offspring survival. Thus, even if there may be large fitness benefits of mate selection, we might not yet have identified the male characteristics generating high offspring survival.
Variance-based selection may explain general mating patterns in social insects.
Rueppell, Olav; Johnson, Nels; Rychtár, Jan
2008-06-23
Female mating frequency is one of the key parameters of social insect evolution. Several hypotheses have been suggested to explain multiple mating and considerable empirical research has led to conflicting results. Building on several earlier analyses, we present a simple general model that links the number of queen matings to variance in colony performance and this variance to average colony fitness. The model predicts selection for multiple mating if the average colony succeeds in a focal task, and selection for single mating if the average colony fails, irrespective of the proximate mechanism that links genetic diversity to colony fitness. Empirical support comes from interspecific comparisons, e.g. between the bee genera Apis and Bombus, and from data on several ant species, but more comprehensive empirical tests are needed.
Laland, Kevin N
2008-11-12
Genes and culture represent two streams of inheritance that for millions of years have flowed down the generations and interacted. Genetic propensities, expressed throughout development, influence what cultural organisms learn. Culturally transmitted information, expressed in behaviour and artefacts, spreads through populations, modifying selection acting back on populations. Drawing on three case studies, I will illustrate how this gene-culture coevolution has played a critical role in human evolution. These studies explore (i) the evolution of handedness, (ii) sexual selection with a culturally transmitted mating preference, and (iii) cultural niche construction and human evolution. These analyses shed light on how genes and culture shape each other, and on the significance of feedback mechanisms between biological and cultural processes.
Commensal Bacteria Aid Mate-selection in the Fruit Fly, Bactrocera dorsalis.
Damodaram, Kamala Jayanthi Pagadala; Ayyasamy, Arthikirubha; Kempraj, Vivek
2016-10-01
Commensal bacteria influence many aspects of an organism's behaviour. However, studies on the influence of commensal bacteria in insect mate-selection are scarce. Here, we present empirical evidence that commensal bacteria mediate mate-selection in the Oriental fruit fly, Bactrocera dorsalis. Male flies were attracted to female flies, but this attraction was abolished when female flies were fed with antibiotics, suggesting the role of the fly's microbiota in mediating mate-selection. We show that male flies were attracted to and ejaculated more sperm into females harbouring the microbiota. Using culturing and 16S rDNA sequencing, we isolated and identified different commensal bacteria, with Klebsiella oxytoca being the most abundant bacterial species. This preliminary study will enhance our understanding of the influence of commensal bacteria on mate-selection behaviour of B. dorsalis and may find use in devising control operations against this devastating pest.
Mate-sampling costs and sexy sons.
Kokko, H; Booksmythe, I; Jennions, M D
2015-01-01
Costly female mating preferences for purely Fisherian male traits (i.e. sexual ornaments that are genetically uncorrelated with inherent viability) are not expected to persist at equilibrium. The indirect benefit of producing 'sexy sons' (Fisher process) disappears: in some models, the male trait becomes fixed; in others, a range of male trait values persist, but a larger trait confers no net fitness advantage because it lowers survival. Insufficient indirect selection to counter the direct cost of producing fewer offspring means that preferences are lost. The only well-cited exception assumes biased mutation on male traits. The above findings generally assume constant direct selection against female preferences (i.e. fixed costs). We show that if mate-sampling costs are instead derived based on an explicit account of how females acquire mates, an initially costly mating preference can coevolve with a male trait so that both persist in the presence or absence of biased mutation. Our models predict that empirically detecting selection at equilibrium will be difficult, even if selection was responsible for the location of the current equilibrium. In general, it appears useful to integrate mate sampling theory with models of genetic consequences of mating preferences: being explicit about the process by which individuals select mates can alter equilibria. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Baena, Martha Lucía; Macías-Ordóñez, Rogelio
2012-01-01
Recent debate has highlighted the importance of estimating both the strength of sexual selection on phenotypic traits, and the opportunity for sexual selection. We describe seasonal fluctuations in mating dynamics of Leptinotarsa undecimlineata (Coleoptera: Chrysomelidae). We compared several estimates of the opportunity for, and the strength of, sexual selection and male precopulatory competition over the reproductive season. First, using a null model, we suggest that the ratio between observed values of the opportunity for sexual selections and their expected value under random mating results in unbiased estimates of the actual nonrandom mating behavior of the population. Second, we found that estimates for the whole reproductive season often misrepresent the actual value at any given time period. Third, mating differentials on male size and mobility, frequency of male fighting and three estimates of the opportunity for sexual selection provide contrasting but complementary information. More intense sexual selection associated to male mobility, but not to male size, was observed in periods with high opportunity for sexual selection and high frequency of male fights. Fourth, based on parameters of spatial and temporal aggregation of female receptivity, we describe the mating system of L. undecimlineata as a scramble mating polygyny in which the opportunity for sexual selection varies widely throughout the season, but the strength of sexual selection on male size remains fairly weak, while male mobility inversely covaries with mating success. We suggest that different estimates for the opportunity for, and intensity of, sexual selection should be applied in order to discriminate how different behavioral and demographic factors shape the reproductive dynamic of populations. PMID:22761675
An empirical test of sex differences in the emphasis on physical attractiveness in mate selection.
Colwell, John
2007-08-01
Within a context provided by social structural theory, social evolutionary theory, and physical attractiveness stereotyping, the importance of physical attractiveness in heterosexual mate selection was explored by presenting 50 male and 50 female psychology students (M age = 22.5 yr.) during a scheduled class with an opposite sex personals advertisement, wherein the advertiser was described as 'average' or 'good-looking'. Dependent variables consisted of a written paragraph and measures of evaluation (Semantic Differential), attraction, advertisement appeal, and success. An interaction for sex x looks on the qualitative measure showed no effect for men, but the good-looking female advertiser was evaluated more positively. However, for quantitative data, the advertisement was seen as more appealing and likely to be successful when the advertiser was good looking as opposed to average looking, irrespective of sex of advertiser. Findings are discussed in relation to theoretical perspectives.
Sexual selection is influenced by both developmental and adult environments.
Gillespie, Stephanie R; Scarlett Tudor, M; Moore, Allen J; Miller, Christine W
2014-12-01
Sexual selection is often assumed to be strong and consistent, yet increasing research shows it can fluctuate over space and time. Few experimental studies have examined changes in sexual selection in response to natural environmental variation. Here, we use a difference in resource quality to test for the influence of past environmental conditions and current environmental conditions on male and female mate choice and resulting selection gradients for leaf-footed cactus bugs, Narnia femorata. We raised juveniles on natural high- and low-quality diets, cactus pads with and without ripe cactus fruits. New adults were again assigned a cactus pad with or without fruit, paired with a potential mate, and observed for mating behaviors. We found developmental and adult encounter environments affected mating decisions and the resulting patterns of sexual selection for both males and females. Males were not choosy in the low-quality encounter environment, cactus without fruit, but they avoided mating with small females in the high-quality encounter environment. Females were choosy in both encounter environments, avoiding mating with small males. However, they were the choosiest when they were in the low-quality encounter environment. Female mate choice was also context dependent by male developmental environment. Females were more likely to mate with males that had developed on cactus with fruit when they were currently in the cactus with fruit environment. This pattern disappeared when females were in the cactus without fruit environment. Altogether, these results experimentally demonstrate context-dependent mate choice by both males and females. Furthermore, we demonstrate that simple, seasonal changes in resources can lead to fluctuations in sexual selection. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Facial attractiveness, symmetry, and physical fitness in young women.
Hönekopp, Johannes; Bartholomé, Tobias; Jansen, Gregor
2004-06-01
This study explores the evolutionary-based hypothesis that facial attractiveness (a guiding force in mate selection) is a cue for physical fitness (presumably an important contributor to mate value in ancestral times). Since fluctuating asymmetry, a measure of developmental stability, is known to be a valid cue for fitness in several biological domains, we scrutinized facial asymmetry as a potential mediator between attractiveness and fitness. In our sample of young women, facial beauty indeed indicated physical fitness. The relationships that pertained to asymmetry were in the expected direction. However, a closer analysis revealed that facial asymmetry did not mediate the relationship between fitness and attractiveness. Unexpected problems regarding the measurement of facial asymmetry are discussed.
ERIC Educational Resources Information Center
Gibson-Bilton, Joya
2009-01-01
The purpose of this study was twofold. First, this study examined the influence of African American females' level of self-esteem on the mate-selection process. Secondly, this study was concerned with the influence of the level of self-esteem of African American females on valuing the mate-selection characteristics of interpersonal skills,…
The use of ultrasound for communication by the big brown bat (Eptesicus fuscus)
NASA Astrophysics Data System (ADS)
Grilliot, Matthew E.
2007-12-01
Communication signals are important regulators of mating behavior in many animals. Various pre- and post-copulatory mechanisms have been suggested to play a role in the reproductive success and mating strategies of many mammals. Recent studies have cited sperm competition as a possible post-copulatory mechanism of selection in bats, but few studies have examined which pre-copulatory mechanisms influence mate selection. Although it is generally accepted that bats emit vocalizations that function for communication purposes as well as the more universally recognized echolocation function, there is lack of actual empirical support for this idea. In this dissertation, I test the hypothesis that ultrasonic vocalizations of big brown bats are sexually dimorphic and differ contextually in the mating season. I used playback experiments to test the response of male and female big brown bats to variations in ultrasonic vocalizations of the opposite sex and to determine if ultrasonic vocalizations are used for mate selection. My data suggest that males were likely to select ultrasonic vocalization of frequently copulating females, but females did not select ultrasonic vocalizations of frequently copulating males over infrequently copulating males. These results suggest that mate selection of male big brown bats is influenced by ultrasonic vocalizations of females.
Montiglio, Pierre-Olivier; Wey, Tina W; Chang, Ann T; Fogarty, Sean; Sih, Andrew
2017-03-01
Despite a central line of research aimed at quantifying relationships between mating success and sexually dimorphic traits (e.g., ornaments), individual variation in sexually selected traits often explains only a modest portion of the variation in mating success. Another line of research suggests that a significant portion of the variation in mating success observed in animal populations could be explained by correlational selection, where the fitness advantage of a given trait depends on other components of an individual's phenotype and/or its environment. We tested the hypothesis that interactions between multiple traits within an individual (phenotype dependence) or between an individual's phenotype and its social environment (context dependence) can select for individual differences in behaviour (i.e., personality) and social plasticity. To quantify the importance of phenotype- and context-dependent selection on mating success, we repeatedly measured the behaviour, social environment and mating success of about 300 male stream water striders, Aquarius remigis. Rather than explaining individual differences in long-term mating success, we instead quantified how the combination of a male's phenotype interacted with the immediate social context to explain variation in hour-by-hour mating decisions. We suggest that this analysis captures more of the mechanisms leading to differences in mating success. Males differed consistently in activity, aggressiveness and social plasticity. The mating advantage of these behavioural traits depended on male morphology and varied with the number of rival males in the pool, suggesting mechanisms selecting for consistent differences in behaviour and social plasticity. Accounting for phenotype and context dependence improved the amount of variation in male mating success we explained statistically by 30-274%. Our analysis of the determinants of male mating success provides important insights into the evolutionary forces that shape phenotypic variation. In particular, our results suggest that sexual selection is likely to favour individual differences in behaviour, social plasticity (i.e., individuals adjusting their behaviour), niche preference (i.e., individuals dispersing to particular social conditions) or social niche construction (i.e., individuals modifying the social environment). The true effect of sexual traits can only be understood in interaction with the individual's phenotype and environment. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
The role of ecology in speciation by sexual selection: a systematic empirical review.
Scordato, Elizabeth S C; Symes, Laurel B; Mendelson, Tamra C; Safran, Rebecca J
2014-01-01
Theoretical and empirical research indicates that sexual selection interacts with the ecological context in which mate choice occurs, suggesting that sexual and natural selection act together during the evolution of premating reproductive isolation. However, the relative importance of natural and sexual selection to speciation remains poorly understood. Here, we applied a recent conceptual framework for examining interactions between mate choice divergence and ecological context to a review of the empirical literature on speciation by sexual selection. This framework defines two types of interactions between mate choice and ecology: internal interactions, wherein natural and sexual selection jointly influence divergence in sexual signal traits and preferences, and external interactions, wherein sexual selection alone acts on traits and preferences but ecological context shapes the transmission efficacy of sexual signals. The objectives of this synthesis were 3-fold: to summarize the traits, ecological factors, taxa, and geographic contexts involved in studies of mate choice divergence; to analyze patterns of association between these variables; and to identify the most common types of interactions between mate choice and ecological factors. Our analysis revealed that certain traits are consistently associated with certain ecological factors. Moreover, among studies that examined a divergent sexually selected trait and an ecological factor, internal interactions were more common than external interactions. Trait-preference associations may thus frequently be subject to both sexual and natural selection in cases of divergent mate choice. Our results highlight the importance of interactions between sexual selection and ecology in mate choice divergence and suggest areas for future research. © The American Genetic Association. 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Sex and Caste-Specific Variation in Compound Eye Morphology of Five Honeybee Species
Streinzer, Martin; Brockmann, Axel; Nagaraja, Narayanappa; Spaethe, Johannes
2013-01-01
Ranging from dwarfs to giants, the species of honeybees show remarkable differences in body size that have placed evolutionary constrains on the size of sensory organs and the brain. Colonies comprise three adult phenotypes, drones and two female castes, the reproductive queen and sterile workers. The phenotypes differ with respect to tasks and thus selection pressures which additionally constrain the shape of sensory systems. In a first step to explore the variability and interaction between species size-limitations and sex and caste-specific selection pressures in sensory and neural structures in honeybees, we compared eye size, ommatidia number and distribution of facet lens diameters in drones, queens and workers of five species (Apis andreniformis, A. florea, A. dorsata, A. mellifera, A. cerana). In these species, male and female eyes show a consistent sex-specific organization with respect to eye size and regional specialization of facet diameters. Drones possess distinctly enlarged eyes with large dorsal facets. Aside from these general patterns, we found signs of unique adaptations in eyes of A. florea and A. dorsata drones. In both species, drone eyes are disproportionately enlarged. In A. dorsata the increased eye size results from enlarged facets, a likely adaptation to crepuscular mating flights. In contrast, the relative enlargement of A. florea drone eyes results from an increase in ommatidia number, suggesting strong selection for high spatial resolution. Comparison of eye morphology and published mating flight times indicates a correlation between overall light sensitivity and species-specific mating flight times. The correlation suggests an important role of ambient light intensities in the regulation of species-specific mating flight times and the evolution of the visual system. Our study further deepens insights into visual adaptations within the genus Apis and opens up future perspectives for research to better understand the timing mechanisms and sensory physiology of mating related signals. PMID:23460896
Mate choice theory and the mode of selection in sexual populations.
Carson, Hampton L
2003-05-27
Indirect new data imply that mate and/or gamete choice are major selective forces driving genetic change in sexual populations. The system dictates nonrandom mating, an evolutionary process requiring both revised genetic theory and new data on heritability of characters underlying Darwinian fitness. Successfully reproducing individuals represent rare selections from among vigorous, competing survivors of preadult natural selection. Nonrandom mating has correlated demographic effects: reduced effective population size, inbreeding, low gene flow, and emphasis on deme structure. Characters involved in choice behavior at reproduction appear based on quantitative trait loci. This variability serves selection for fitness within the population, having only an incidental relationship to the origin of genetically based reproductive isolation between populations. The claim that extensive hybridization experiments with Drosophila indicate that selection favors a gradual progression of "isolating mechanisms" is flawed, because intra-group random mating is assumed. Over deep time, local sexual populations are strong, independent genetic systems that use rich fields of variable polygenic components of fitness. The sexual reproduction system thus particularizes, in small subspecific populations, the genetic basis of the grand adaptive sweep of selective evolutionary change, much as Darwin proposed.
Sexually selected females in the monogamous Western Australian seahorse.
Kvarnemo, Charlotta; Moore, Glenn I; Jones, Adam G
2007-02-22
Studies of sexual selection in monogamous species have hitherto focused on sexual selection among males. Here, we provide empirical documentation that sexual selection can also act strongly on females in a natural population with a monogamous mating system. In our field-based genetic study of the monogamous Western Australian seahorse, Hippocampus subelongatus, sexual selection differentials and gradients show that females are under stronger sexual selection than males: mated females are larger than unmated ones, whereas mated and unmated males do not differ in size. In addition, the opportunity for sexual selection (variance in mating success divided by its mean squared) for females is almost three times that for males. These results, which seem to be generated by a combination of a male preference for larger females and a female-biased adult sex ratio, indicate that substantial sexual selection on females is a potentially important but under-appreciated evolutionary phenomenon in monogamous species.
Sexually selected females in the monogamous Western Australian seahorse
Kvarnemo, Charlotta; Moore, Glenn I; Jones, Adam G
2006-01-01
Studies of sexual selection in monogamous species have hitherto focused on sexual selection among males. Here, we provide empirical documentation that sexual selection can also act strongly on females in a natural population with a monogamous mating system. In our field-based genetic study of the monogamous Western Australian seahorse, Hippocampus subelongatus, sexual selection differentials and gradients show that females are under stronger sexual selection than males: mated females are larger than unmated ones, whereas mated and unmated males do not differ in size. In addition, the opportunity for sexual selection (variance in mating success divided by its mean squared) for females is almost three times that for males. These results, which seem to be generated by a combination of a male preference for larger females and a female-biased adult sex ratio, indicate that substantial sexual selection on females is a potentially important but under-appreciated evolutionary phenomenon in monogamous species. PMID:17476772
Genetic conflict between sexual signalling and juvenile survival in the three-spined stickleback.
Kim, Sin-Yeon; Velando, Alberto
2016-02-29
Secondary sexual traits and mating preferences may evolve in part because the offspring of attractive males inherit attractiveness and other genetically correlated traits such as fecundity and viability. A problem regarding these indirect genetic mechanisms is how sufficient genetic variation in the traits subject to sexual selection is maintained within a population. Here we explored the additive genetic correlations between carotenoid-based male ornament colouration, female fecundity and juvenile survival rate in the three-spined stickleback (Gasterosteus aculeatus) to test the possibility that attractiveness genes reduce important fitness components in the bearers not expressing the sexual trait. Male sexual attractiveness (i.e., red nuptial colouration) as well as female fecundity and juvenile viability showed heritable variations in the three-spined stickleback. Thus, females can gain indirect benefits by mating with an attractive male. There was a strong positive genetic correlation between female fecundity and juvenile viability. However, red sexual signal of male sticklebacks was negatively genetically correlated with juvenile survival, suggesting genetic conflict between attractiveness and viability. There was no significant correlation between attractiveness of brothers and fecundity of sisters, suggesting no intra-locus sexual conflict. The negative effects of mating with a colourful male on offspring viability may contribute to maintaining the heritable variation under strong directional sexual selection. The strength of indirect sexual selection may be weaker than previously thought due to the hidden genetic conflicts.
Morrissey, Kari M.; Stocker, Sophie L.; Chen, Eugene C.; Castro, Richard A.; Brett, Claire M.; Giacomini, Kathleen M.
2015-01-01
Background and Objectives In the proximal tubule, basic drugs are transported from the renal cells to the tubule lumen through the concerted action of the H+/organic cation antiporters, multidrug and toxin extrusion 1 (MATE1) and 2K (MATE2K). Dual inhibitors of the MATE transporters have been shown to have a clinically relevant effect on the pharmacokinetics of concomitantly administered basic drugs. However, the clinical impact of selective renal organic cation transport inhibition on the pharmacokinetics and pharmacodynamics of basic drugs, such as metformin, is unknown. This study sought to identify a selective MATE2K inhibitor in vitro and to determine its clinical impact on the pharmacokinetics and pharmacodynamics of metformin in healthy subjects. Methods A strategic cell-based screen of 71 U.S. Food and Drug Administration (FDA)-approved medications was conducted to identify selective inhibitors of renal organic cation transporters that are capable of inhibiting at clinically relevant concentrations. From this screen, nizatidine was identified and predicted to be a clinically potent and selective inhibitor of MATE2K-mediated transport. The effect of nizatidine on the pharmacokinetics and pharmacodynamics of metformin was evaluated in 12 healthy volunteers in an open-label, randomized, two-phase crossover drug-drug interaction (DDI) study. Results In healthy volunteers, the MATE2K-selective inhibitor, nizatidine, significantly increased the apparent volume of distribution, half-life and hypoglycemic activity of metformin. However, despite achieving unbound maximum concentrations greater than the in vitro inhibition potency (IC50) of MATE2K-mediated transport, nizatidine did not affect the renal clearance or net secretory clearance of metformin. Conclusion This study demonstrates that a selective inhibition of MATE2K by nizatidine, affected the apparent volume of distribution, tissue levels and peripheral effects of metformin. However, nizatidine did not alter systemic concentrations or the renal clearance of metformin, suggesting that specific MATE2K inhibition may not be sufficient to cause renal DDIs with basic drugs. PMID:26507723
Arnocky, Steven
2018-01-01
Ten years ago, Buss and Shackelford demonstrated that high mate value (i.e., physically attractive) women held more discerning mate preferences relative to lower mate value women. Since then, researchers have begun to consider the equally important role of men's sexual selectivity in human mate choice. Yet, little research has focused on whether high mate value men are similarly choosy in their mate preferences. In a sample of 139 undergraduate men, relationships between self-perceived mate value as well as female-rated facial attractiveness were examined in relation to men's expressed mate preferences. Results showed that self-perceived mate value was unrelated to men's facial attractiveness as rated by women. Men who believed they were of high mate value were more likely than lower mate value men to prefer to marry at a younger age; to have a spouse who was younger than them; and to have a partner who was sociable, ambitious, high in social status, with good financial prospects, a desire for children, health, good looks, and mutual attraction. Objective male facial attractiveness was generally unrelated to heightened mate preferences, with the exception of heightened preference for similar religious background and good physical health. Findings suggest that men who perceive themselves as high in overall mate value are selective in their mate choice in a manner similar to high mate value women.
Hopwood, Paul E.; Head, Megan L.; Jordan, Eleanor J.; Carter, Mauricio J.; Davey, Emma; Moore, Allen J.; Royle, Nick J.
2016-01-01
Male and female genital morphology varies widely across many taxa, and even among populations. Disentangling potential sources of selection on genital morphology is problematic because each sex is predicted to respond to adaptations in the other due to reproductive conflicts of interest. To test how variation in this sexual conflict trait relates to variation in genital morphology we used our previously developed artificial selection lines for high and low repeated mating rates. We selected for high and low repeated mating rates using monogamous pairings to eliminate contemporaneous female choice and male–male competition. Male and female genital shape responded rapidly to selection on repeated mating rate. High and low mating rate lines diverged from control lines after only 10 generations of selection. We also detected significant patterns of male and female genital shape coevolution among selection regimes. We argue that because our selection lines differ in sexual conflict, these results support the hypothesis that sexually antagonistic coevolution can drive the rapid divergence of genital morphology. The greatest divergence in morphology corresponded with lines in which the resolution of sexual conflict over mating rate was biased in favor of male interests. PMID:27144373
Behavioural divergence, interfertility and speciation: a review.
Pillay, Neville; Rymer, Tasmin L
2012-11-01
Behavioural compatibility between mates is fundamental for maintaining species boundaries and is achieved through appropriate communication between males and females. A breakdown in communication will lead to behavioural divergence and reduced interfertility. In this review, we summarise the current knowledge on male signals and female perception of these signals, integrating the literature from several taxa. We advocate that signaller-perceiver coevolution, which is usually under strong stabilising selection to enable mating, forms the basis of species-specific mate recognition systems. The mechanisms (phylogeny, geography, ecology, biology) shaping signaller-perceiver systems are briefly discussed to demonstrate the factors underpinning the evolution of signaller-perceiver couplings. Since divergence and diversification of communication systems is driven by changes in the mechanical properties of sensory pathways and morphology of sensory organs, we highlight signal modalities (auditory, olfactory, visual, tactile) and their importance in communication, particularly in mate selection. Next, using available examples and generating a stylised model, we suggest how disruption (biological, ecological, stochastic) of signaller-perceiver systems drives behavioural divergence and consequently results in reduced interfertility and speciation. Future studies should adopt an integrative approach, combining multiple parameters (phylogeny, adaptive utility of communication systems, genetics and biomechanical/biochemical properties of signals and perception) to explore how disruption of signaller-perceiver systems results in behavioural divergence and reduced interfertility. Finally, we question the impact that rapid environmental change will have on disruption of communication systems, potentially interfering with signaller-perceiver couplings. Copyright © 2012 Elsevier B.V. All rights reserved.
Salcedo, A; Kalisz, S; Wright, S I
2014-07-01
Highly selfing species often show reduced effective population sizes and reduced selection efficacy. Whether mixed mating species, which produce both self and outcross progeny, show similar patterns of diversity and selection remains less clear. Examination of patterns of molecular evolution and levels of diversity in species with mixed mating systems can be particularly useful for investigating the relative importance of linked selection and demographic effects on diversity and the efficacy of selection, as the effects of linked selection should be minimal in mixed mating populations, although severe bottlenecks tied to founder events could still be frequent. To begin to address this gap, we assembled and analysed the transcriptomes of individuals from a recently diverged mixed mating sister species pair in the self-compatible genus, Collinsia. The de novo assembly of 52 and 37 Mbp C. concolor and C. parryi transcriptomes resulted in ~40 000 and ~55 000 contigs, respectively, both with an average contig size ~945. We observed a high ratio of shared polymorphisms to fixed differences in the species pair and minimal differences between species in the ratio of synonymous to replacement substitutions or codon usage bias implying comparable effective population sizes throughout species divergence. Our results suggest that differences in effective population size and selection efficacy in mixed mating taxa shortly after their divergence may be minimal and are likely influenced by fluctuating mating systems and population sizes. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Foellmer, Matthias W; Fairbairn, Daphne J
2005-02-01
Mate search plays a central role in hypotheses for the adaptive significance of extreme female-biased sexual size dimorphism (SSD) in animals. Spiders (Araneae) are the only free-living terrestrial taxon where extreme SSD is common. The "gravity hypothesis" states that small body size in males is favoured during mate search in species where males have to climb to reach females, because body length is inversely proportional to achievable speed on vertical structures. However, locomotive performance of males may also depend on relative leg length. Here we examine selection on male body size and leg length during mate search in the highly dimorphic orb-weaving spider Argiope aurantia, using a multivariate approach to distinguish selection targeted at different components of size. Further, we investigate the scaling relationships between male size and energy reserves, and the differential loss of reserves. Adult males do not feed while roving, and a size-dependent differential energy storage capacity may thus affect male performance during mate search. Contrary to predictions, large body size was favoured in one of two populations, and this was due to selection for longer legs. Male size was not under selection in the second population, but we detected direct selection for longer third legs. Males lost energy reserves during mate search, but this was independent of male size and storage capacity scaled isometrically with size. Thus, mate search is unlikely to lead to selection for small male size, but the hypothesis that relatively longer legs in male spiders reflect a search-adapted morphology is supported.
Context-dependent female mate choice maintains variation in male sexual activity
Plath, Martin; Gismann, Jakob; Helfrich, Claudia; Bierbach, David
2017-01-01
The existence of individual variation in males' motivation to mate remains a conundrum as directional selection should favour high mating frequencies. Balancing selection resulting from (context-dependent) female mate choice could contribute to the maintenance of this behavioural polymorphism. In dichotomous choice tests, mosquitofish (Gambusia holbrooki) females preferred virtual males showing intermediate mating frequencies, reflecting females' tendencies to avoid harassment by highly sexually active males. When tested in the presence of a female shoal—which protects females from male harassment—focal females showed significantly stronger preferences for high sexual activity. A trade-off between (indirect) benefits and (direct) costs of mating with sexually active males probably explains context-dependent female mate choice, as costs depend on the social environment in which females choose their mates. No preference was observed when we tested virgin females, suggesting that the behavioural pattern described here is part of the learned behavioural repertoire of G. holbrooki females. PMID:28791157
Extrapair mating between relatives in the barn swallow: a role for kin selection?
Kleven, Oddmund; Jacobsen, Frode; Robertson, Raleigh J; Lifjeld, Jan T
2005-12-22
Why do females of many species mate with more than one male? One of the main hypotheses suggests that female promiscuity is an insurance mechanism against the potential detrimental effects of inbreeding. Accordingly, females should preferably mate with less related males in multiple or extrapair mating. Here we analyse paternity, relatedness among mating partners, and relatedness between parents and offspring, in the socially monogamous North American barn swallow (Hirundo rustica erythrogaster). In contrast to the inbreeding avoidance hypothesis, we found that extrapair mating partners were more related than expected by random choice, and tended to be more related than social partners. Furthermore, extrapair mating resulted in genetic parents being more related to their extrapair young than to their withinpair young. We propose a new hypothesis for extrapair mating based on kin selection theory as a possible explanation to these findings.
Mating and Parental Care in Lake Tanganyika's Cichlids
Sefc, Kristina M.
2011-01-01
Cichlid fishes of Lake Tanganyika display a variety of mating and parental care behaviors, including polygamous and monogamous mouthbrooding and substrate breeding, cooperative breeding, as well as various alternative reproductive tactics such as sneaking and piracy. Moreover, reproductive behaviors sometimes vary within species both in space and in time. Here, I survey reports on mating and parenting behaviors of Lake Tanganyika cichlid species and address the evolution of mating and parental care patterns and sexual dimorphism. Notes on measures of sexual selection intensity and the difficulties of defining mating systems and estimating selection intensities at species level conclude the essay. PMID:21822482
Female extrapair mating behavior can evolve via indirect selection on males
Forstmeier, Wolfgang; Martin, Katrin; Bolund, Elisabeth; Schielzeth, Holger; Kempenaers, Bart
2011-01-01
In many species that form socially monogamous pair bonds, a considerable proportion of the offspring is sired by extrapair males. This observation has remained a puzzle for evolutionary biologists: although mating outside the pair bond can obviously increase the offspring production of males, the benefits of such behavior to females are less clear, yet females are known to actively solicit extrapair copulations. For more than two decades adaptionist explanations have dominated the discussions, yet remain controversial, and genetic constraint arguments have been dismissed without much consideration. An intriguing but still untested hypothesis states that extrapair mating behavior by females may be affected by the same genetic variants (alleles) as extrapair mating behavior by males, such that the female behavior could evolve through indirect selection on the male behavior. Here we show that in the socially monogamous zebra finch, individual differences in extrapair mating behavior have a hereditary component. Intriguingly, this genetic basis is shared between the sexes, as shown by a strong genetic correlation between male and female measurements of extrapair mating behavior. Hence, positive selection on males to sire extrapair young will lead to increased extrapair mating by females as a correlated evolutionary response. This behavior leads to a fundamentally different view of female extrapair mating: it may exist even if females obtain no net benefit from it, simply because the corresponding alleles were positively selected in the male ancestors. PMID:21670288
Sympatric speciation as a consequence of male pregnancy in seahorses
Jones, Adam G.; Moore, Glenn I.; Kvarnemo, Charlotta; Walker, DeEtte; Avise, John C.
2003-01-01
The phenomenon of male pregnancy in the family Syngnathidae (seahorses, pipefishes, and sea dragons) undeniably has sculpted the course of behavioral evolution in these fishes. Here we explore another potentially important but previously unrecognized consequence of male pregnancy: a predisposition for sympatric speciation. We present microsatellite data on genetic parentage that show that seahorses mate size-assortatively in nature. We then develop a quantitative genetic model based on these empirical findings to demonstrate that sympatric speciation indeed can occur under this mating regime in response to weak disruptive selection on body size. We also evaluate phylogenetic evidence bearing on sympatric speciation by asking whether tiny seahorse species are sister taxa to large sympatric relatives. Overall, our results indicate that sympatric speciation is a plausible mechanism for the diversification of seahorses, and that assortative mating (in this case as a result of male parental care) may warrant broader attention in the speciation process for some other taxonomic groups as well. PMID:12732712
High temperatures disrupt Artemia franciscana mating patterns and impact sexual selection intensity
NASA Astrophysics Data System (ADS)
Santos, Maria R.; Vieira, Natividade; Monteiro, Nuno M.
2018-07-01
Temperature plays a critical role in survival and reproduction, especially in ectotherms. Therefore, it is important to understand the mechanisms influencing life history traits and reproductive behaviours in order to predict climate change impacts on species' occurrence and performance. Here, we used the crustacean Artemia franciscana to investigate the potential impacts of temperature on life history traits, mating patterns and intensity of sexual selection. We reared A. franciscana at three temperatures 20 °C, 25 °C, and 30 °C and measured life history traits such as growth, mortality or development of sexual traits. Our observations confirmed a clear link between life history traits and temperature, with advanced sexual maturity and increased mortality rates following temperature rises. Also, we found that mating is size assortative close to the ideal developmental temperature. Nevertheless, when temperatures deviate from the optimum, mating patterns were altered. Although selection intensity for females remained similar at all tested temperatures, as males preferentially mated with the larger females, size assortative mating disappeared at the highest temperature. Overall, our results highlight the potential for a temperature-dependent disruption of A. franciscana mating patterns. This disruption is especially pronounced under high temperatures as reproduction becomes progressively more random, thus entailing a relaxation of sexual selection intensity.
Quintero-Fong, L; Toledo, J; Ruiz, L; Rendón, P; Orozco-Dávila, D; Cruz, L; Liedo, P
2016-10-01
The sexual performance of Anastrepha ludens males of the Tapachula-7 genetic sexing strain, produced via selection based on mating success, was compared with that of males produced without selection in competition with wild males. Mating competition, development time, survival, mass-rearing quality parameters and pheromone production were compared. The results showed that selection based on mating competitiveness significantly improved the sexual performance of offspring. Development time, survival of larvae, pupae and adults, and weights of larvae and pupae increased with each selection cycle. Differences in the relative quantity of the pheromone compounds (Z)-3-nonenol and anastrephin were observed when comparing the parental males with the F4 and wild males. The implications of this colony management method on the sterile insect technique are discussed.
ERIC Educational Resources Information Center
O'Brien, Eileen; Foley, Lara
1999-01-01
Describes the "Dating Game," an exercise for use in marriage and family courses that enables students to learn about the theories of mate selection by simulating random mating. States that the dating game helps make mate selection concepts relevant to the students' lives. Discusses the students' reaction to the exercise. (CMK)
Attributions of Deception in Dating Situations
ERIC Educational Resources Information Center
Benz, Joseph J.; Anderson, Mary K.; Miller, Richard L.
2005-01-01
Mate selection criteria for humans, and the concept of deception as a mating strategy, have both been demonstrated by past research. This study provides evidence that men and women believe that the mate selection criteria used by one sex corresponds to the deceptive tactics used by the opposite sex. A survey of the deceptive techniques used by men…
Dougherty, Liam R; Shuker, David M
Sexual selection has been shown to be the driving force behind the evolution of the sometimes extreme and elaborate genitalia of many species. Sexual selection may arise before and/or after mating, or vary according to other factors such as the social environment. However, bouts of selection are typically considered in isolation. We measured the strength and pattern of selection acting on the length of the male intromittent organ (or processus) in two closely related species of lygaeid seed bug: Lygaeus equestris and Lygaeus simulans . In both species, we measured both pre- and post-copulatory selection. For L. equestris , we also varied the experimental choice design used in mating trials. We found contrasting pre- and post-copulatory selection on processus length in L. equestris . Furthermore, significant pre-copulatory selection was only seen in mating trials in which two males were present. This selection likely arises indirectly due to selection on a correlated trait, as the processus does not interact with the female prior to copulation. In contrast, we were unable to detect significant pre- or post-copulatory selection on processus length in L. simulans . However, a formal meta-analysis of previous estimates of post-copulatory selection on processus length in L. simulans suggests that there is significant stabilising selection across studies, but the strength of selection varies between experiments. Our results emphasise that the strength and direction of sexual selection on genital traits may be multifaceted and can vary across studies, social contexts and different stages of reproduction. Animal genitalia vary greatly in size and complexity across species, and selection acting on genital size and shape can be complex. In this study, we show that the length of the penis in two species of seed bug is subject to complex patterns of selection, varying depending on the social context and whether selection is measured before or after mating. In one of the species, we show unexpectedly that penis length is correlated with male mating success, despite the fact that the penis does not interact with the female prior to mating. Our results highlight the fact that genitalia may be subject to both direct and indirect selection at different stages of mating and that to fully understand the evolution of such traits we should combine estimates of selection arising from these multiple episodes.
Bhattacharya, Samik; Baldwin, Ian T
2012-08-01
The self-compatible plant Nicotiana attenuata grows in genetically diverse populations after fires, and produces flowers that remain open for 3 days and are visited by assorted pollinators. To determine whether and when post-pollination non-random mate selection occurs among self and non-self pollen, seed paternity and semi-in vivo pollen tube growth were determined in controlled single/mixed pollinations. Despite all pollen sources being equally proficient in siring seeds in single-genotype pollinations, self pollen was consistently selected in mixed pollinations, irrespective of maternal genotype. However, clear patterns of mate discrimination occurred amongst non-self pollen when mixed pollinations were performed soon after corollas open, including selection against hygromycin B resistance (transformation selectable marker) in wild-type styles and for it in transformed styles. However, mate choice among pollen genotypes was completely shut down in plants transformed to be unable to produce (irACO) or perceive (ETR1) ethylene. The post-pollination ethylene burst, which originates primarily from the stigma and upper style, was strongly correlated with mate selection in single and mixed hand-pollinations using eight pollen donors in two maternal ecotypes. The post-pollination ethylene burst was also negatively correlated with the continuation of emission of benzylacetone, the most abundant pollinator-attracting corolla-derived floral volatile. We conclude that ethylene signaling plays a pivotal role in mate choice, and the post-pollination ethylene burst and the termination of benzylacetone release are accurate predictors, both qualitatively and quantitatively, of pre-zygotic mate selection and seed paternity. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.
Mating behaviour of Pseudodiaptomus annandalei (Copepoda Calanoida) with emphasis on rejection rate
NASA Astrophysics Data System (ADS)
Dur, G.; Souissi, S.; Schmitt, F. G.; Hwang, J. S.; Cheng, S. H.
2009-04-01
Mating behaviour has important consequences at both individual and population levels. Reproductive fitness is of paramount importance to sustain the success of planktonic copepod populations in aquatic environments. The calanoid copepod Pseudodiaptomus annandalei has one of the largest geographical ranges for Indo-Pacific Pseudodiaptomidae. It is also of great importance in fish culture pounds south of Taiwan. However, the mating behavior of this species has never been studied. Mating and predatory behaviour are conceptually the same. In both cases, the encounter and the interactions occur between two individuals with opposite characteristics: predator-prey for predation; male-female for mating. The mating behaviour may be defined as a sequence of encounter, pursuit, capture and copulation. Several observed behaviour suggest that both sexes asses and choose among available mates before the copulation. Pre-copulatory mate choice in copepods may manifest as mate guarding where males attached to CV females until their final moult, complicated pre-copulatory dance and escaping. During our preliminary observations, we notice that P. annandalei females escape by shaking, often violently, the males that have caught them. Consequently for such a species the act of mating may be visualized as a chain of six events (i.e. search, encounter, pursuit, capture, selective dance, copulation).Within this chain, encounter, capture and copulation are conditional events depending on the successful conclusion of their preceding events in the chain. In this study, we examined the different step in the mating behaviour of the scarcely studied sub-tropical copepod, Pseudodiaptomus annandalei, collected from the Danshuei estuary (North Taiwan). The individuals were observed using a 3D optical system to obtain simultaneous front and side views. Males, when placed in the water where females had previously swum in, showed significant increase of their swimming velocities. Additionally, their swimming trajectories are more convoluted, indicating that males explore larger volume of fluid to increase the probability to encounter a female. The mate finding behaviour appears to depend not only on chemical signal but also on hydromechanical signals. Some males exhibited shifts of direction when females were passing by. When male intercepted a chemical trail left by a female, they initiate tracking behaviour racing up the trail with increasing speed. Males pursued pheromone trails up to 24 sec old and 10 mm long. Most studies of mating behaviour have focused on detection and sometimes pursuit, but few have addressed the other components of successful mating, namely, capture and copulation. Moreover, mate choice issue has largely been ignored in regards to pelagic copepods. Consequently very few are known about the plasticity of rejection rates as a function of mate encounter rates. The second aim of this experiment is to describe the process used by female to select their mate and to fill the gap in the quantification of mating success. Once caught by a male, P. annandalei's females entered in intensive dance which sometimes lead to shake off the males suggesting a female mate choice. The three-dimensional trajectories described by the couple during this event were characterized by fast loops and intense jumps. Individual's access to mates may be affected by operational sex ratios, causing strong variation in mating success. We finally manipulated adult sex ratios of the brackish copepod P. annandalei, to examine the influence of population sex ratio on mating success of P. annandalei in a final set of experiment concluding the investigation. It should be notice that, to our knowledge, it the first quantification ever done before. The plasticity of rejection rate was therefore investigated as a function of sex-ratio and mate encounter rate. The encounter rate reached maximum value for balanced proportion of male and female and decreased as the sex ratio unbalanced. Higher value of success was nevertheless observed for a pro-male sex-ratio.
Hopwood, Paul E; Head, Megan L; Jordan, Eleanor J; Carter, Mauricio J; Davey, Emma; Moore, Allen J; Royle, Nick J
2016-06-01
Male and female genital morphology varies widely across many taxa, and even among populations. Disentangling potential sources of selection on genital morphology is problematic because each sex is predicted to respond to adaptations in the other due to reproductive conflicts of interest. To test how variation in this sexual conflict trait relates to variation in genital morphology we used our previously developed artificial selection lines for high and low repeated mating rates. We selected for high and low repeated mating rates using monogamous pairings to eliminate contemporaneous female choice and male-male competition. Male and female genital shape responded rapidly to selection on repeated mating rate. High and low mating rate lines diverged from control lines after only 10 generations of selection. We also detected significant patterns of male and female genital shape coevolution among selection regimes. We argue that because our selection lines differ in sexual conflict, these results support the hypothesis that sexually antagonistic coevolution can drive the rapid divergence of genital morphology. The greatest divergence in morphology corresponded with lines in which the resolution of sexual conflict over mating rate was biased in favor of male interests. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
ERIC Educational Resources Information Center
Romine, William L.; Walter, Emily M.; Bosse, Ephiram; Todd, Amber N.
2017-01-01
We validate the Measure of Acceptance of the Theory of Evolution (MATE) on undergraduate students using the Rasch model and utilize the MATE to explore qualitatively how students express their acceptance of evolution. At least 24 studies have used the MATE, most with the assumption that it is unidimensional. However, we found that the MATE is best…
MHC-disassortative mate choice and inbreeding avoidance in a solitary primate.
Huchard, Elise; Baniel, Alice; Schliehe-Diecks, Susanne; Kappeler, Peter M
2013-08-01
Sexual selection theory suggests that choice for partners carrying dissimilar genes at the major histocompatibility complex (MHC) may play a role in maintaining genetic variation in animal populations by limiting inbreeding or improving the immunity of future offspring. However, it is often difficult to establish whether the observed MHC dissimilarity among mates drives mate choice or represents a by-product of inbreeding avoidance based on MHC-independent cues. Here, we used 454-sequencing and a 10-year study of wild grey mouse lemurs (Microcebus murinus), small, solitary primates from western Madagascar, to compare the relative importance on the mate choice of two MHC class II genes, DRB and DQB, that are equally variable but display contrasting patterns of selection at the molecular level, with DRB under stronger diversifying selection. We further assessed the effect of the genetic relatedness and of the spatial distance among candidate mates on the detection of MHC-dependent mate choice. Our results reveal inbreeding avoidance, along with disassortative mate choice at DRB, but not at DQB. DRB-disassortative mate choice remains detectable after excluding all related dyads (characterized by a relatedness coefficient r > 0), but varies slightly with the spatial distance among candidate mates. These findings suggest that the observed deviations from random mate choice at MHC are driven by functionally important MHC genes (like DRB) rather than passively resulting from inbreeding avoidance and further emphasize the need for taking into account the spatial and genetic structure of the population in correlative tests of MHC-dependent mate choice. © 2013 John Wiley & Sons Ltd.
Temporal variation in size-assortative mating and male mate choice in a spider with amphisexual care
NASA Astrophysics Data System (ADS)
Moura, Rafael R.; Gonzaga, Marcelo O.
2017-04-01
Males should be more selective when they have a high investment in reproduction, especially in species with biparental or paternal care. In this context, male mate choice can promote size-assortative mating (SAM) when (1) large males win intrasexual disputes, (2) large females are more fecund, and (3) males prefer larger females to smaller ones. In the spider Manogea porracea, males exhibit high reproductive investment by building their webs above those of females and exhibiting extended care of offspring in the absence of females. Under these circumstances, we expect the occurrence of SAM and male preference for large females. Herein, we performed observations and experiments in the field to evaluate the hypotheses that (1) M. porracea mates assortatively by size and (2) SAM is influenced by male mate choice. Furthermore, we measured variables that could affect mating patterns, the sex ratios, and densities of both sexes. Pairing in M. porracea was positively size-assortative in 2012, but not in 2013. Large males won most disputes for mates and preferred larger females, which produced more eggs. The inconsistency in detection of SAM was due to population dynamics, namely variations in sex ratio and population density across the breeding season. Furthermore, we found that the significance of male mate choice on sexual selection of body size in M. porracea strongly depends on the competition intensity for mating opportunities. The traditional sexual selection hypothesis of SAM needs to be reviewed and must include measures of competition intensity.
Artificial selection reveals sex differences in the genetic basis of sexual attractiveness.
Gosden, Thomas P; Reddiex, Adam J; Chenoweth, Stephen F
2018-05-07
Mutual mate choice occurs when males and females base mating decisions on shared traits. Despite increased awareness, the extent to which mutual choice drives phenotypic change remains poorly understood. When preferences in both sexes target the same traits, it is unclear how evolution will proceed and whether responses to sexual selection from male choice will match or oppose responses to female choice. Answering this question is challenging, as it requires understanding, genetic relationships between the traits targeted by choice, mating success, and, ultimately, fitness for both sexes. Addressing this, we applied artificial selection to the cuticular hydrocarbons of the fly Drosophila serrata that are targeted by mutual choice and tracked evolutionary changes in males and females alongside changes in mating success. After 10 generations, significant trait evolution occurred in both sexes, but intriguingly there were major sex differences in the associated fitness consequences. Sexually selected trait evolution in males led to a genetically based increase in male mating success. By contrast, although trait evolution also occurred in females, there was no change in mating success. Our results suggest that phenotypic sexual selection on females from male choice is environmentally, rather than genetically, generated. Thus, compared with female choice, male choice is at best a weak driver of signal trait evolution in this species. Instead, the evolution of apparent female ornamentation seems more likely due to a correlated response to sexual selection on males and possibly other forms of natural selection.
Brooks, R; Endler, J A
2001-08-01
Variation among females in mate choice may influence evolution by sexual selection. The genetic basis of this variation is of interest because the elaboration of mating preferences requires additive genetic variation in these traits. Here we measure the repeatability and heritability of two components of female choosiness (responsiveness and discrimination) and of female preference functions for the multiple ornaments borne by male guppies (Poecilia reticulata). We show that there is significant repeatable variation in both components of choosiness and in some preference functions but not in others. There appear to be several male ornaments that females find uniformly attractive and others for which females differ in preference. One consequence is that there is no universally attractive male phenotype. Only responsiveness shows significant additive genetic variation. Variation in responsiveness appears to mask variation in discrimination and some preference functions and may be the most biologically relevant source of phenotypic and genetic variation in mate-choice behavior. To test the potential evolutionary importance of the phenotypic variation in mate choice that we report, we estimated the opportunity for and the intensity of sexual selection under models of mate choice that excluded and that incorporated individual female variation. We then compared these estimates with estimates based on measured mating success. Incorporating individual variation in mate choice generally did not predict the outcome of sexual selection any better than models that ignored such variation.
Israeli, Moshe; Kristt, Don; Nardi, Yuval; Klein, Tirza
2014-05-01
Previous studies support a role for MHC on mating preference, yet it remains unsettled as to whether mating occurs preferentially between individuals sharing human leukocyte antigen (HLA) determinants or not. Investigating sex-mate preferences in the contemporary Israeli population is of further curiosity being a population with distinct genetic characteristics, where multifaceted cultural considerations influence mate selection. Pairs of male-female sex partners were evaluated in three groups. Two groups represented unmarried (n = 1002) or married (n = 308) couples and a control group of fictitious male-female couples. HLA and short-tandem-repeat (STR) genetic identification markers were assessed for the frequency of shared antigens and alleles. Human leukocyte antigen results showed that Class I and/ or Class II single antigen as well as double antigen sharing was more common in sex partners than in control group couples (P < 0.001). Married versus unmarried pairs were not distinguishable. In contrast, STR-DNA markers failed to differentiate between sex-mates and controls (P = 0.78). Sex partnerships shared HLA determinants more frequently than randomly constituted male-female pairs. The observed phenomenon does not reflect a syngenetic background between sex-mates as STR markers were not selectively shared. Thus, sex-mate selection in man may contravene the evolutionary pressure for genetic diversity in regard to HLA. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Avise, John C.; Liu, Jin-Xian
2010-01-01
We construct a verbal and graphical theory (the “fecundity-limitation hypothesis”) about how constraints on the brooding space for embryos probably truncate individual fecundity in male-pregnant and female-pregnant species in ways that should differentially influence selection pressures for multiple mating by males or by females. We then review the empirical literature on genetically deduced rates of multiple mating by the embryo-brooding parent in various fish species with three alternative categories of pregnancy: internal gestation by males, internal gestation by females, and external gestation (in nests) by males. Multiple mating by the brooding gender was common in all three forms of pregnancy. However, rates of multiple mating as well as mate numbers for the pregnant parent averaged higher in species with external as compared with internal male pregnancy, and also for dams in female-pregnant species versus sires in male-pregnant species. These outcomes are all consistent with the theory that different types of pregnancy have predictable consequences for a parent's brood space, its effective fecundity, its opportunities and rewards for producing half-sib clutches, and thereby its exposure to selection pressures for seeking multiple mates. Overall, we try to fit these fecundity-limitation phenomena into a broader conceptual framework for mating-system evolution that also includes anisogamy, sexual-selection gradients, parental investment, and other selective factors that can influence the relative proclivities of males versus females to seek multiple sexual partners. PMID:20956296
The mitonuclear compatibility hypothesis of sexual selection
Hill, Geoffrey E.; Johnson, James D.
2013-01-01
Why females assess ornaments when choosing mates remains a central question in evolutionary biology. We hypothesize that the imperative for a choosing female to find a mate with nuclear oxidative phosphorylation (OXPHOS) genes that are compatible with her mitochondrial OXPHOS genes drives the evolution of ornaments. Indicator traits are proposed to signal the efficiency of OXPHOS function thus enabling females to select mates with nuclear genes that are compatible with maternal mitochondrial genes in the formation of OXPHOS complexes. Species-typical pattern of ornamentation is proposed to serve as a marker of mitochondrial type ensuring that females assess prospective mates with a shared mitochondrial background. The mitonuclear compatibility hypothesis predicts that the production of ornaments will be closely linked to OXPHOS pathways, and that sexual selection for compatible mates will be strongest when genes for nuclear components of OXPHOS complexes are Z-linked. The implications of this hypothesis are that sexual selection may serve as a driver for the evolution of more efficient cellular respiration. PMID:23945683
Aesthetic evolution by mate choice: Darwin's really dangerous idea.
Prum, Richard O
2012-08-19
Darwin proposed an explicitly aesthetic theory of sexual selection in which he described mate preferences as a 'taste for the beautiful', an 'aesthetic capacity', etc. These statements were not merely colourful Victorian mannerisms, but explicit expressions of Darwin's hypothesis that mate preferences can evolve for arbitrarily attractive traits that do not provide any additional benefits to mate choice. In his critique of Darwin, A. R. Wallace proposed an entirely modern mechanism of mate preference evolution through the correlation of display traits with male vigour or viability, but he called this mechanism natural selection. Wallace's honest advertisement proposal was stridently anti-Darwinian and anti-aesthetic. Most modern sexual selection research relies on essentially the same Neo-Wallacean theory renamed as sexual selection. I define the process of aesthetic evolution as the evolution of a communication signal through sensory/cognitive evaluation, which is most elaborated through coevolution of the signal and its evaluation. Sensory evaluation includes the possibility that display traits do not encode information that is being assessed, but are merely preferred. A genuinely Darwinian, aesthetic theory of sexual selection requires the incorporation of the Lande-Kirkpatrick null model into sexual selection research, but also encompasses the possibility of sensory bias, good genes and direct benefits mechanisms.
Svensson, Glenn P; Ryne, Camilla; Löfstedt, Christer
2002-07-01
The short-term evolutionary effect of pheromone-based mating disruption on the mating ability of the Indian meal moth, Plodia interpunctella, was investigated. Three independent selection lines were established, and the mating ability of moths in plastic tents treated with high doses of pheromone and in control tents was compared for two consecutive generations. In addition, the heritability of the sex pheromone blend, measured as the ratio of two major pheromone components (Z,E)-9,12-tetradecadienyl acetate and (Z,E)-9,12-tetradecadienol, was estimated. Based on a mother-daughter regression analysis including 21 families, the heritability of the pheromone blend was 0.65 +/- 0.14, indicating a potential for evolutionary change of the character. However, no increase in mating ability of females in pheromone-treated tents or alteration of the pheromone blend was observed in any selection line when compared with control lines, indicating no or weak selection on the pheromone blend as well as other traits influencing mating ability of this species under the created mating disruption conditions. Factors contributing to the lack of selection effects are discussed.
Mating System and Sexual Selection in the Scorpionfly Panorpa vulgaris (Mecoptera: Panorpidae)
NASA Astrophysics Data System (ADS)
Sauer, Klaus Peter; Lubjuhn, Thomas; Sindern, Jörn; Kullmann, Harald; Kurtz, Joachim; Epplen, Conny; Epplen, Jörg Thomas
1998-05-01
has become a model insect for testing theories of sexual selection. This contribution summarizes that which has been learned in recent years and presents new data that clearly show that the mating system of P. vulgaris is not simply a resource-defense polygyny, as has previously been thought. In P. vulgaris neither the pattern in food exploitation nor the ratio of variance in the lifetime reproductive success of the two sexes is in accordance with that expected in resource defense polygynous mating systems. Lifetime mating duration is the most important proximate determinant of male fitness. Males employing alternative mating tactics obtain copulations of varying duration in relation to the following sequence: saliva secretion 1 food offering 1 no gift. The number of salivary masses which males provide to females during their lifetime is significantly correlated with the lifetime condition index. The condition index depends on the fighting prowess of males and their ability to find food items. Thus saliva secretion of Panorpa is considered a Zahavian handicap, which can serve as an honest quality indicator used by mating females. Our results confirm four main predictions of the indicator model of the theory of sexual selection: (a) the indicator signals high ecological quality of its bearer, (b) the indicator value increases with phenotypic quality, (c) the indicator value is positively correlated with the genetic quality affecting offspring fitness in a natural selection context, and (d) the quality indicator is more costly for low- than for high-quality individuals. The evolutionary consequences of the mating pattern and the sperm competition mechanism in P. vulgaris are discussed in the context the way in which sexual selection creates and maintains sperm mixing and the evolution of a promiscuous mating system.
Female mating preferences determine system-level evolution in a gene network model.
Fierst, Janna L
2013-06-01
Environmental patterns of directional, stabilizing and fluctuating selection can influence the evolution of system-level properties like evolvability and mutational robustness. Intersexual selection produces strong phenotypic selection and these dynamics may also affect the response to mutation and the potential for future adaptation. In order to to assess the influence of mating preferences on these evolutionary properties, I modeled a male trait and female preference determined by separate gene regulatory networks. I studied three sexual selection scenarios: sexual conflict, a Gaussian model of the Fisher process described in Lande (in Proc Natl Acad Sci 78(6):3721-3725, 1981) and a good genes model in which the male trait signalled his mutational condition. I measured the effects these mating preferences had on the potential for traits and preferences to evolve towards new states, and mutational robustness of both the phenotype and the individual's overall viability. All types of sexual selection increased male phenotypic robustness relative to a randomly mating population. The Fisher model also reduced male evolvability and mutational robustness for viability. Under good genes sexual selection, males evolved an increased mutational robustness for viability. Females choosing their mates is a scenario that is sufficient to create selective forces that impact genetic evolution and shape the evolutionary response to mutation and environmental selection. These dynamics will inevitably develop in any population where sexual selection is operating, and affect the potential for future adaptation.
Functional pleiotropy and mating system evolution in plants: frequency-independent mating.
Jordan, Crispin Y; Otto, Sarah P
2012-04-01
Mutations that alter the morphology of floral displays (e.g., flower size) or plant development can change multiple functions simultaneously, such as pollen export and selfing rate. Given the effect of these various traits on fitness, pleiotropy may alter the evolution of both mating systems and floral displays, two characters with high diversity among angiosperms. The influence of viability selection on mating system evolution has not been studied theoretically. We model plant mating system evolution when a single locus simultaneously affects the selfing rate, pollen export, and viability. We assume frequency-independent mating, so our model characterizes prior selfing. Pleiotropy between increased viability and selfing rate reduces opportunities for the evolution of pure outcrossing, can favor complete selfing despite high inbreeding depression, and notably, can cause the evolution of mixed mating despite very high inbreeding depression. These results highlight the importance of pleiotropy for mating system evolution and suggest that selection by nonpollinating agents may help explain mixed mating, particularly in species with very high inbreeding depression. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Rose, Emily; Paczolt, Kimberly A; Jones, Adam G
2013-09-01
Empirical studies of sexual selection often focus on events occurring either before or after mating but rarely both and consequently may fail to discern the relative magnitudes and interactions of premating and postmating episodes of selection. Here, we simultaneously quantify premating and postmating selection in the sex-role-reversed Gulf pipefish by using a microsatellite-based analysis of parentage in experimental populations. Female pipefish exhibited an opportunity for selection (I) of 1.64, which was higher than that of males (0.35). Decompositions of I and the selection differential on body size showed that over 95% of the selection on females arose from the premating phase. We also found evidence for a trade-off between selection phases, where multiply mating females had significantly lower offspring survivorship compared to singly mated females. In males, variance in relative fitness arose mainly from the number of eggs received per copulation and a small number of males who failed to mate. Overall, our study exemplifies a general approach for the decomposition of total selection into premating and postmating phases to understand the interplay among components of natural and sexual selection that conspire to shape sexually selected traits.
Both Geography and Ecology Contribute to Mating Isolation in Guppies
Schwartz, Amy K.; Weese, Dylan J.; Bentzen, Paul; Kinnison, Michael T.; Hendry, Andrew P.
2010-01-01
Local adaptation to different environments can promote mating isolation – either as an incidental by-product of trait divergence, or as a result of selection to avoid maladaptive mating. Numerous recent empirical examples point to the common influence of divergent natural selection on speciation based largely on evidence of strong pre-mating isolation between populations from different habitat types. Accumulating evidence for natural selection's influence on speciation is therefore no longer a challenge. The difficulty, rather, is in determining the mechanisms involved in the progress of adaptive divergence to speciation once barriers to gene flow are already present. Here, we present results of both laboratory and field experiments with Trinidadian guppies (Poecilia reticulata) from different environments, who do not show complete reproductive isolation despite adaptive divergence. We investigate patterns of mating isolation between populations that do and do not exchange migrants and show evidence for both by-product and reinforcement mechanisms depending on female ecology. Specifically, low-predation females discriminate against all high-predation males thus implying a by-product mechanism, whereas high-predation females only discriminate against low-predation males from further upstream in the same river, implying selection to avoid maladaptive mating. Our study thus confirms that mechanisms of adaptive speciation are not necessarily mutually exclusive and uncovers the complex ecology-geography interactions that underlie the evolution of mating isolation in nature. PMID:21179541
ERIC Educational Resources Information Center
Finley, Cathaleen
The unit explores several ideas regarding marriage and emphasizes that tribal women need to plan for a career as well as for marriage. The following concepts are to be stressed: (1) roles in marriage have changed; (2) people marry for a variety of reasons; (3) love is not the only consideration in selecting a mate; (4) marriage is really a…
Pre and Post-copulatory Selection Favor Similar Genital Phenotypes in the Male Broad Horned Beetle
House, Clarissa M.; Sharma, M. D.; Okada, Kensuke; Hosken, David J.
2016-01-01
Sexual selection can operate before and after copulation and the same or different trait(s) can be targeted during these episodes of selection. The direction and form of sexual selection imposed on characters prior to mating has been relatively well described, but the same is not true after copulation. In general, when male–male competition and female choice favor the same traits then there is the expectation of reinforcing selection on male sexual traits that improve competitiveness before and after copulation. However, when male–male competition overrides pre-copulatory choice then the opposite could be true. With respect to studies of selection on genitalia there is good evidence that male genital morphology influences mating and fertilization success. However, whether genital morphology affects reproductive success in more than one context (i.e., mating versus fertilization success) is largely unknown. Here we use multivariate analysis to estimate linear and nonlinear selection on male body size and genital morphology in the flour beetle Gnatocerus cornutus, simulated in a non-competitive (i.e., monogamous) setting. This analysis estimates the form of selection on multiple traits and typically, linear (directional) selection is easiest to detect, while nonlinear selection is more complex and can be stabilizing, disruptive, or correlational. We find that mating generates stabilizing selection on male body size and genitalia, and fertilization causes a blend of directional and stabilizing selection. Differences in the form of selection across these bouts of selection result from a significant alteration of nonlinear selection on body size and a marginally significant difference in nonlinear selection on a component of genital shape. This suggests that both bouts of selection favor similar genital phenotypes, whereas the strong stabilizing selection imposed on male body size during mate acquisition is weak during fertilization. PMID:27371390
Mate preferences do predict attraction and choices in the early stages of mate selection.
Li, Norman P; Yong, Jose C; Tov, William; Sng, Oliver; Fletcher, Garth J O; Valentine, Katherine A; Jiang, Yun F; Balliet, Daniel
2013-11-01
Although mate preference research has firmly established that men value physical attractiveness more than women do and women value social status more than men do, recent speed-dating studies have indicated mixed evidence (at best) for whether people's sex-differentiated mate preferences predict actual mate choices. According to an evolutionary, mate preference priority model (Li, Bailey, Kenrick, & Linsenmeier, 2002; Li & Kenrick, 2006; Li, Valentine, & Patel, 2011), the sexes are largely similar in what they ideally like, but for long-term mates, they should differ on what they most want to avoid in early selection contexts. Following this model, we conducted experiments using online messaging and modified speed-dating platforms. Results indicate that when a mating pool includes people at the low end of social status and physical attractiveness, mate choice criteria are sex-differentiated: Men, more than women, chose mates based on physical attractiveness, whereas women, more than men, chose mates based on social status. In addition, individuals who more greatly valued social status or physical attractiveness on paper valued these traits more in their actual choices. In particular, mate choices were sex-differentiated when considering long-term relationships but not short-term ones, where both sexes shunned partners with low physical attractiveness. The findings validate a large body of mate preferences research and an evolutionary perspective on mating, and they have implications for research using speed-dating and other interactive contexts. PsycINFO Database Record (c) 2013 APA, all rights reserved.
EFFECTS OF EXOGENOUS ESTROGEN ON MATE SELECTION OF HOUSE FINCHES
Concern about the potential for endocrine disrupting chemicals to interfere with normal breeding behaviors of wildlife has prompted this study of effects of exogenous estrogen on mate selection in songbirds. The house finch (Carpodacus mexicanus) was selected as a model as it is ...
Patterns of MHC-dependent mate selection in humans and nonhuman primates: a meta-analysis.
Winternitz, J; Abbate, J L; Huchard, E; Havlíček, J; Garamszegi, L Z
2017-01-01
Genes of the major histocompatibility complex (MHC) in vertebrates are integral for effective adaptive immune response and are associated with sexual selection. Evidence from a range of vertebrates supports MHC-based preference for diverse and dissimilar mating partners, but evidence from human mate choice studies has been disparate and controversial. Methodologies and sampling peculiarities specific to human studies make it difficult to know whether wide discrepancies in results among human populations are real or artefact. To better understand what processes may affect MHC-mediated mate choice across humans and nonhuman primates, we performed phylogenetically controlled meta-analyses using 58 effect sizes from 30 studies across seven primate species. Primates showed a general trend favouring more MHC-diverse mates, which was statistically significant for humans. In contrast, there was no tendency for MHC-dissimilar mate choice, and for humans, we observed effect sizes indicating selection of both MHC-dissimilar and MHC-similar mates. Focusing on MHC-similar effect sizes only, we found evidence that preference for MHC similarity was an artefact of population ethnic heterogeneity in observational studies but not among experimental studies with more control over sociocultural biases. This suggests that human assortative mating biases may be responsible for some patterns of MHC-based mate choice. Additionally, the overall effect sizes of primate MHC-based mating preferences are relatively weak (Fisher's Z correlation coefficient for dissimilarity Zr = 0.044, diversity Zr = 0.153), calling for careful sampling design in future studies. Overall, our results indicate that preference for more MHC-diverse mates is significant for humans and likely conserved across primates. © 2016 John Wiley & Sons Ltd.
Mazer, Susan J; Delesalle, Véronique A; Paz, Horacio
2007-01-01
Sex allocation theory has assumed that hermaphroditic species exhibit strong genetically based trade-offs between investment in male and female function. The potential effects of mating system on the evolution of this genetic covariance, however, have not been explored. We have challenged the assumption of a ubiquitous trade-off between male and female investment by arguing that in highly self-fertilizing species, stabilizing natural selection should favor highly efficient ratios of male to female gametes. In flowering plants, the result of such selection would be similar pollen:ovule (P:O) ratios across selfing genotypes, precluding a negative genetic correlation (r(g)) between pollen and ovule production per flower. Moreover, if selfing genotypes with similar P:O ratios differ in total gametic investment per flower, a positive r(g) between pollen and ovule production would be observed. In outcrossers, by contrast, male- and female-biased flowers and genotypes may have equal fitness and coexist at evolutionary equilibrium. In the absence of strong stabilizing selection on the P:O ratio, selection on this trait will be relaxed, resulting in independence or resource-based trade-offs between male and female investment. To test this prediction, we conducted artificial selection on pollen and ovule production per flower in two sister species with contrasting mating systems. The predominantly self-fertilizing species (Clarkia exilis) consistently exhibited a significant positive r(g) between pollen and ovule production while the outcrossing species (C. unguiculata) exhibited either a trade-off or independence between these traits. Clarkia exilis also exhibited much more highly canalized gender expression than C. unguiculata. Selection on pollen and ovule production resulted in little correlated change in the P:O ratio in the selfing exilis, while dramatic changes in the P:O ratio were observed in unguiculata. To test the common prediction that floral attractiveness should be positively genetically correlated with investment in male function, we examined the response of petal area to selection on pollen and ovule production and found that petal area was not consistently genetically correlated with gender expression in either species. Our results suggest that the joint evolutionary trajectory of primary sexual traits in hermaphroditic species will be affected by their mating systems; this should be taken into account in future theoretical and comparative empirical investigations.
An Overview of the Function and Maintenance of Sexual Reproduction in Dikaryotic Fungi
Wallen, R. M.; Perlin, Michael H.
2018-01-01
Sexual reproduction likely evolved as protection from environmental stresses, specifically, to repair DNA damage, often via homologous recombination. In higher eukaryotes, meiosis and the production of gametes with allelic combinations different from parental type provides the side effect of increased genetic variation. In fungi it appears that while the maintenance of meiosis is paramount for success, outcrossing is not a driving force. In the subkingdom Dikarya, fungal members are characterized by existence of a dikaryon for extended stages within the life cycle. Such fungi possess functional or, in some cases, relictual, loci that govern sexual reproduction between members of their own species. All mating systems identified so far in the Dikarya employ a pheromone/receptor system for haploid organisms to recognize a compatible mating partner, although the paradigm in the Ascomycota, e.g., Saccharomyces cerevisiae, is that genes for the pheromone precursor and receptor are not found in the mating-type locus but rather are regulated by its products. Similarly, the mating systems in the Ascomycota are bipolar, with two non-allelic idiomorphs expressed in cells of opposite mating type. In contrast, for the Basidiomycota, both bipolar and tetrapolar mating systems have been well characterized; further, at least one locus directly encodes the pheromone precursor and the receptor for the pheromone of a different mating type, while a separate locus encodes proteins that may regulate the first locus and/or additional genes required for downstream events. Heterozygosity at both of two unlinked loci is required for cells to productively mate in tetrapolar systems, whereas in bipolar systems the two loci are tightly linked. Finally, a trade-off exists in wild fungal populations between sexual reproduction and the associated costs, with adverse conditions leading to mating. For fungal mammal pathogens, the products of sexual reproduction can be targets for the host immune system. The opposite appears true for phytopathogenic fungi, where mating and pathogenicity are inextricably linked. Here, we explore, compare, and contrast different strategies used among the Dikarya, both saprophytic and pathogenic fungi, and highlight differences between pathogens of mammals and pathogens of plants, providing context for selective pressures acting on this interesting group of fungi. PMID:29619017
Disruptive ecological selection on a mating cue.
Merrill, Richard M; Wallbank, Richard W R; Bull, Vanessa; Salazar, Patricio C A; Mallet, James; Stevens, Martin; Jiggins, Chris D
2012-12-22
Adaptation to divergent ecological niches can result in speciation. Traits subject to disruptive selection that also contribute to non-random mating will facilitate speciation with gene flow. Such 'magic' or 'multiple-effect' traits may be widespread and important for generating biodiversity, but strong empirical evidence is still lacking. Although there is evidence that putative ecological traits are indeed involved in assortative mating, evidence that these same traits are under divergent selection is considerably weaker. Heliconius butterfly wing patterns are subject to positive frequency-dependent selection by predators, owing to aposematism and Müllerian mimicry, and divergent colour patterns are used by closely related species to recognize potential mates. The amenability of colour patterns to experimental manipulation, independent of other traits, presents an excellent opportunity to test their role during speciation. We conducted field experiments with artificial butterflies, designed to match natural butterflies with respect to avian vision. These were complemented with enclosure trials with live birds and real butterflies. Our experiments showed that hybrid colour-pattern phenotypes are attacked more frequently than parental forms. For the first time, we demonstrate disruptive ecological selection on a trait that also acts as a mating cue.
Low level of polyandry constrains phenotypic plasticity of male body size in mites.
Schausberger, Peter; Walzer, Andreas; Murata, Yasumasa; Osakabe, Masahiro
2017-01-01
Polyandry, i.e. females mating with multiple males, is more common than previously anticipated and potentially provides both direct and indirect fitness benefits to females. The level of polyandry (defined by the lifetime number of male mates of a female) is an important determinant of the occurrence and intensity of sexual selection acting on male phenotypes. While the forces of sexual selection acting on phenotypic male traits such as body size are relatively well understood, sexual selection acting on phenotypic plasticity of these traits is unexplored. We tackled this issue by scrutinizing the link between polyandry and phenotypic plasticity of male body size in two sympatric plant-inhabiting predatory mite species, Phytoseiulus persimilis and Neoseiulus californicus. These two species are similar in life history, ecological niche requirements, mating behavior, polygyny and female body size plasticity but strikingly differ in the level of both polyandry and phenotypic plasticity of male body size (both lower in P. persimilis). We hypothesized that deviations from standard body size, i.e. the size achieved under favorable conditions, incur higher costs for males in the less polyandrous P. persimilis. To test our hypotheses, we conducted two experiments on (i) the effects of male body size on spermatophore transfer in singly mating females and (ii) the effects of mate sequence (switching the order of standard-sized and small males) on mating behavior and paternity success in doubly mating females. In P. persimilis but not N. californicus, small males transferred fewer but larger spermatophores to the females; in both species, females re-mated more likely with standard-sized following small than small following standard-sized males; in P. persimilis, first standard-sized males sired a higher proportion of offspring produced after re-mating by the female than first small males, whereas in N. californicus the paternity success of small and standard-sized males was independent of the mating sequence. Based on our results and pertinent previous studies, which showed that females of P. persimilis, but not N. californicus, prefer mating with standard-sized over small males and allow them fertilizing more eggs, the lack of interspecific difference in female body size plasticity, and the absence of any clue pointing at a role of natural selection, we suggest that the interspecific difference in male body size plasticity is sexually selected. Our study provides an indication of sexual selection constraining plasticity of male phenotypes, suggesting that the level of polyandry may be an important co-determinant of the level of phenotypic plasticity of male body size.
Low level of polyandry constrains phenotypic plasticity of male body size in mites
Walzer, Andreas; Murata, Yasumasa; Osakabe, Masahiro
2017-01-01
Polyandry, i.e. females mating with multiple males, is more common than previously anticipated and potentially provides both direct and indirect fitness benefits to females. The level of polyandry (defined by the lifetime number of male mates of a female) is an important determinant of the occurrence and intensity of sexual selection acting on male phenotypes. While the forces of sexual selection acting on phenotypic male traits such as body size are relatively well understood, sexual selection acting on phenotypic plasticity of these traits is unexplored. We tackled this issue by scrutinizing the link between polyandry and phenotypic plasticity of male body size in two sympatric plant-inhabiting predatory mite species, Phytoseiulus persimilis and Neoseiulus californicus. These two species are similar in life history, ecological niche requirements, mating behavior, polygyny and female body size plasticity but strikingly differ in the level of both polyandry and phenotypic plasticity of male body size (both lower in P. persimilis). We hypothesized that deviations from standard body size, i.e. the size achieved under favorable conditions, incur higher costs for males in the less polyandrous P. persimilis. To test our hypotheses, we conducted two experiments on (i) the effects of male body size on spermatophore transfer in singly mating females and (ii) the effects of mate sequence (switching the order of standard-sized and small males) on mating behavior and paternity success in doubly mating females. In P. persimilis but not N. californicus, small males transferred fewer but larger spermatophores to the females; in both species, females re-mated more likely with standard-sized following small than small following standard-sized males; in P. persimilis, first standard-sized males sired a higher proportion of offspring produced after re-mating by the female than first small males, whereas in N. californicus the paternity success of small and standard-sized males was independent of the mating sequence. Based on our results and pertinent previous studies, which showed that females of P. persimilis, but not N. californicus, prefer mating with standard-sized over small males and allow them fertilizing more eggs, the lack of interspecific difference in female body size plasticity, and the absence of any clue pointing at a role of natural selection, we suggest that the interspecific difference in male body size plasticity is sexually selected. Our study provides an indication of sexual selection constraining plasticity of male phenotypes, suggesting that the level of polyandry may be an important co-determinant of the level of phenotypic plasticity of male body size. PMID:29190832
Genetic quality and sexual selection: an integrated framework for good genes and compatible genes.
Neff, Bryan D; Pitcher, Trevor E
2005-01-01
Why are females so choosy when it comes to mating? This question has puzzled and marveled evolutionary and behavioral ecologists for decades. In mating systems in which males provide direct benefits to the female or her offspring, such as food or shelter, the answer seems straightforward--females should prefer to mate with males that are able to provide more resources. The answer is less clear in other mating systems in which males provide no resources (other than sperm) to females. Theoretical models that account for the evolution of mate choice in such nonresource-based mating systems require that females obtain a genetic benefit through increased offspring fitness from their choice. Empirical studies of nonresource-based mating systems that are characterized by strong female choice for males with elaborate sexual traits (like the large tail of peacocks) suggest that additive genetic benefits can explain only a small percentage of the variation in fitness. Other research on genetic benefits has examined nonadditive effects as another source of genetic variation in fitness and a potential benefit to female mate choice. In this paper, we review the sexual selection literature on genetic quality to address five objectives. First, we attempt to provide an integrated framework for discussing genetic quality. We propose that the term 'good gene' be used exclusively to refer to additive genetic variation in fitness, 'compatible gene' be used to refer to nonadditive genetic variation in fitness, and 'genetic quality' be defined as the sum of the two effects. Second, we review empirical approaches used to calculate the effect size of genetic quality and discuss these approaches in the context of measuring benefits from good genes, compatible genes and both types of genes. Third, we discuss biological mechanisms for acquiring and promoting offspring genetic quality and categorize these into three stages during breeding: (i) precopulatory (mate choice); (ii) postcopulatory, prefertilization (sperm utilization); and (iii) postcopulatory, postfertilization (differential investment). Fourth, we present a verbal model of the effect of good genes sexual selection and compatible genes sexual selection on population genetic variation in fitness, and discuss the potential trade-offs that might exist between mate choice for good genes and mate choice for compatible genes. Fifth, we discuss some future directions for research on genetic quality and sexual selection.
Aesthetic evolution by mate choice: Darwin's really dangerous idea
Prum, Richard O.
2012-01-01
Darwin proposed an explicitly aesthetic theory of sexual selection in which he described mate preferences as a ‘taste for the beautiful’, an ‘aesthetic capacity’, etc. These statements were not merely colourful Victorian mannerisms, but explicit expressions of Darwin's hypothesis that mate preferences can evolve for arbitrarily attractive traits that do not provide any additional benefits to mate choice. In his critique of Darwin, A. R. Wallace proposed an entirely modern mechanism of mate preference evolution through the correlation of display traits with male vigour or viability, but he called this mechanism natural selection. Wallace's honest advertisement proposal was stridently anti-Darwinian and anti-aesthetic. Most modern sexual selection research relies on essentially the same Neo-Wallacean theory renamed as sexual selection. I define the process of aesthetic evolution as the evolution of a communication signal through sensory/cognitive evaluation, which is most elaborated through coevolution of the signal and its evaluation. Sensory evaluation includes the possibility that display traits do not encode information that is being assessed, but are merely preferred. A genuinely Darwinian, aesthetic theory of sexual selection requires the incorporation of the Lande–Kirkpatrick null model into sexual selection research, but also encompasses the possibility of sensory bias, good genes and direct benefits mechanisms. PMID:22777014
The Evolution of Autistic-Like and Schizotypal Traits: A Sexual Selection Hypothesis
Del Giudice, Marco; Angeleri, Romina; Brizio, Adelina; Elena, Marco R.
2010-01-01
In this paper we present a new hypothesis on the evolution of autistic-like and schizotypal personality traits. We argue that autistic-like and schizotypal traits contribute in opposite ways to individual differences in reproductive and mating strategies, and have been maintained – at least in part – by sexual selection through mate choice. Whereas positive schizotypy can be seen as a psychological phenotype oriented to high-mating effort and good genes displays in both sexes, autistic-like traits in their non-pathological form contribute to a male-typical strategy geared toward high parental investment, low-mating effort, and long-term resource allocation. At the evolutionary-genetic level, this sexual selection hypothesis is consistent with Crespi and Badcock's “imprinted brain” theory of autism and psychosis; the effect of offspring mating behavior on resource flow within the family connects sexual selection with genomic imprinting in the context of human biparental care. We conclude by presenting the results of an empirical study testing one of the predictions derived from our hypothesis. In a sample of 199 college students, autistic-like traits predicted lower interest in short-term mating, higher partner-specific investment, and stronger commitment to long-term romantic relations, whereas positive schizotypy showed the opposite pattern of effects. PMID:21833210
Steinauer, Michelle L
2009-08-01
The mating systems of internal parasites are inherently difficult to investigate although they have important implications for the evolutionary biology of the species, disease epidemiology, and are important considerations for control measures. Using parentage analyses, three topics concerning the mating biology of Schistosoma mansoni were investigated: the number of mates per adult male and female, variance in reproductive success among individuals, and the potential role for sexual selection on male body size and also mate choice for genetically dissimilar individuals. Results indicated that schistosomes were mostly monogamous, and evidence of only one mate change occurred over a period of 5-6 weeks. One male was polygynous and contained two females in its gynecophoral canal although offspring were only detected for one of the females. Even though they were primarily monogamous and the sex ratio near even, reproductive success was highly variable, indicating a potential role for sexual selection. Male body size was positively related to reproductive success, consistent with sexual selection via male-male competition and female choice for large males. However, relatedness of pairs was not associated with their reproductive success. Finally, genetically identical individuals differed significantly in their reproductive output and identical males in their body size, indicating important partner and environmental effects on these traits.
Performance measures from the explorer platform berthing experiment
NASA Technical Reports Server (NTRS)
Leake, Stephen
1993-01-01
The Explorer Platform is a Modular Mission Spacecraft: it has several subunits that are designed to be replaced on orbit. The Goddard Space Flight Center Robotics Lab undertook an experiment to evaluate various robotic approaches to replacing one of the units; a large (approximately 1 meter by 1 meter by 0.5 meter) power box. The hardware consists of a Robotics Research Corporation K-1607 (RRC) manipulator mounted on a large gantry robot, a Kraft handcontroller for teleoperation of RRC, a Lightweight Servicing Tool (LST) mounted on the RRC, and an Explorer Platform mockup (EP) with a removable box (MMS) that has fixtures that mate with the LST. Sensors include a wrist wrench sensor on the RRC and Capaciflectors mounted on the LST and the MMS. There are also several cameras, but no machine vision is used. The control system for the RRC is entirely written by Goddard; it consists of Ada code on three Multibus I 386/387 CPU boards doing the real-time robot control, and C on a 386 PC processing Capaciflector data. The gantry is not moved during this experiment. The task is the exchange of the MMS; it is removed and replaced. This involves four basic steps: mating the LST to the MMS, demating the MMS from the EP, mating the MMS to the EP, and demating the LST form the MMS. Each of the mating steps must be preceeded by an alignment to bring the mechanical fixtures within their capture range. Two basic approaches to alignment are explored: teleoperation with the operator viewing thru cameras, and Capaciflector based autonomy. To evaluate the two alignment approaches, several runs were run with each approach and the final pose was recorded. Comparing this to the ideal alignment pose gives accuracy and repeatability data. In addition the wrenches exerted during the mating tasks were recorded; this gives information on how the alignment step affects the mating step. There are also two approaches to mating; teleoperation, and impedance based autonomy. The wrench data taken during mating using these two approaches is used to evaluate them. Section 2 describes the alignment results, section 3 describes the mating results, and finally Section 4 gives some conclusions.
Ercit, K; Gwynne, D T
2016-06-01
The relationship between sexual and viability selection in females is necessarily different than that in males, as investment in sexual traits potentially comes at the expense of both fecundity and survival. Accordingly, females do not usually invest in sexually selected traits. However, direct benefits obtained from mating, such as nuptial gifts, may encourage competition among females and subsidize investment into sexually selected traits. We compared sexual and viability selection on female tree crickets Oecanthus nigricornis, a species where females mate frequently to obtain nuptial gifts and sexual selection on females is likely. If male choice determines female mating success in this species, we expect sexual selection for fecundity traits, as males of many species prefer more fecund females. Alternatively, intrasexual scramble or combat competition on females may select for larger jumping legs or wider heads (respectively). We estimated mating success in wild caught crickets using microsatellite analysis of stored sperm and estimated relative viability by comparing surviving female O. nigricornis to those captured by a common wasp predator. In support of the scramble competition hypothesis, we found sexual selection for females with larger hind legs and narrower heads. We also found stabilizing viability selection for intermediate head width and hind leg size. As predicted, traits under viability and sexual selection were very similar, and the direction of that selection was not opposing. However, because the shape of sexual and viability selection differs, these episodes of selection may favour slightly different trait sizes. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Prioritization of Potential Mates' History of Sexual Fidelity During a Conjoint Ranking Task.
Mogilski, Justin K; Wade, T Joel; Welling, Lisa L M
2014-07-01
This series of studies is the first to use conjoint analysis to examine how individuals make trade-offs during mate selection when provided information about a partner's history of sexual infidelity. Across three studies, participants ranked profiles of potential mates, with each profile varying across five attributes: financial stability, physical attractiveness, sexual fidelity, emotional investment, and similarity. They also rated each attribute separately for importance in an ideal mate. Overall, we found that for a long-term mate, participants prioritized a potential partner's history of sexual fidelity over other attributes when profiles were ranked conjointly. For a short-term mate, sexual fidelity, physical attractiveness, and financial stability were equally important, and each was more important than emotional investment and similarity. These patterns contrast with participants' self-reported importance ratings of each individual attribute. Our results are interpreted within the context of previous literature examining how making trade-offs affect mate selection. © 2014 by the Society for Personality and Social Psychology, Inc.
Selection on male sex pheromone composition contributes to butterfly reproductive isolation
Bacquet, P. M. B.; Brattström, O.; Wang, H.-L.; Allen, C. E.; Löfstedt, C.; Brakefield, P. M.; Nieberding, C. M.
2015-01-01
Selection can facilitate diversification by inducing character displacement in mate choice traits that reduce the probability of maladaptive mating between lineages. Although reproductive character displacement (RCD) has been demonstrated in two-taxa case studies, the frequency of this process in nature is still debated. Moreover, studies have focused primarily on visual and acoustic traits, despite the fact that chemical communication is probably the most common means of species recognition. Here, we showed in a large, mostly sympatric, butterfly genus, a strong pattern of recurrent RCD for predicted male sex pheromone composition, but not for visual mate choice traits. Our results suggest that RCD is not anecdotal, and that selection for divergence in male sex pheromone composition contributed to reproductive isolation within the Bicyclus genus. We propose that selection may target olfactory mate choice traits as a more common sensory modality to ensure reproductive isolation among diverging lineages than previously envisaged. PMID:25740889
Promiscuous mating in the harem-roosting fruit bat, Cynopterus sphinx.
Garg, Kritika M; Chattopadhyay, Balaji; Doss D, Paramanatha Swami; A K, Vinoth Kumar; Kandula, Sripathi; Ramakrishnan, Uma
2012-08-01
Observations on mating behaviours and strategies guide our understanding of mating systems and variance in reproductive success. However, the presence of cryptic strategies often results in situations where social mating system is not reflective of genetic mating system. We present such a study of the genetic mating system of a harem-forming bat Cynopterus sphinx where harems may not be true indicators of male reproductive success. This temporal study using data from six seasons on paternity reveals that social harem assemblages do not play a role in the mating system, and variance in male reproductive success is lower than expected assuming polygynous mating. Further, simulations reveal that the genetic mating system is statistically indistinguishable from promiscuity. Our results are in contrast to an earlier study that demonstrated high variance in male reproductive success. Although an outcome of behavioural mating patterns, standardized variance in male reproductive success (I(m)) affects the opportunity for sexual selection. To gain a better understanding of the evolutionary implications of promiscuity for mammals in general, we compared our estimates of I(m) and total opportunity for sexual selection (I(m) /I(f), where I(f) is standardized variance in female reproductive success) with those of other known promiscuous species. We observed a broad range of I(m) /I(f) values across known promiscuous species, indicating our poor understanding of the evolutionary implications of promiscuous mating. © 2012 Blackwell Publishing Ltd.
Geography, assortative mating, and the effects of sexual selection on speciation with gene flow.
Servedio, Maria R
2016-01-01
Theoretical and empirical research on the evolution of reproductive isolation have both indicated that the effects of sexual selection on speciation with gene flow are quite complex. As part of this special issue on the contributions of women to basic and applied evolutionary biology, I discuss my work on this question in the context of a broader assessment of the patterns of sexual selection that lead to, versus inhibit, the speciation process, as derived from theoretical research. In particular, I focus on how two factors, the geographic context of speciation and the mechanism leading to assortative mating, interact to alter the effect that sexual selection through mate choice has on speciation. I concentrate on two geographic contexts: sympatry and secondary contact between two geographically separated populations that are exchanging migrants and two mechanisms of assortative mating: phenotype matching and separate preferences and traits. I show that both of these factors must be considered for the effects of sexual selection on speciation to be inferred.
Sardell, Rebecca J; Kempenaers, Bart; Duval, Emily H
2014-02-01
Indirect benefits of mate choice result from increased offspring genetic quality and may be important drivers of female behaviour. 'Good-genes-for-viability' models predict that females prefer mates of high additive genetic value, such that offspring survival should correlate with male attractiveness. Mate choice may also vary with genetic diversity (e.g. heterozygosity) or compatibility (e.g. relatedness), where the female's genotype influences choice. The relative importance of these nonexclusive hypotheses remains unclear. Leks offer an excellent opportunity to test their predictions, because lekking males provide no material benefits and choice is relatively unconstrained by social limitations. Using 12 years of data on lekking lance-tailed manakins, Chiroxiphia lanceolata, we tested whether offspring survival correlated with patterns of mate choice. Offspring recruitment weakly increased with father attractiveness (measured as reproductive success, RS), suggesting attractive males provide, if anything, only minor benefits via offspring viability. Both male RS and offspring survival until fledging increased with male heterozygosity. However, despite parent-offspring correlation in heterozygosity, offspring survival was unrelated to its own or maternal heterozygosity or to parental relatedness, suggesting survival was not enhanced by heterozygosity per se. Instead, offspring survival benefits may reflect inheritance of specific alleles or nongenetic effects. Although inbreeding depression in male RS should select for inbreeding avoidance, mates were not less related than expected under random mating. Although mate heterozygosity and relatedness were correlated, selection on mate choice for heterozygosity appeared stronger than that for relatedness and may be the primary mechanism maintaining genetic variation in this system despite directional sexual selection. © 2014 John Wiley & Sons Ltd.
Genetic compatibility, mate choice and patterns of parentage: invited review.
Tregenza, T; Wedell, N
2000-08-01
There is growing interest in the possibility that genetic compatibility may drive mate choice, including gamete choice, particularly from the perspective of understanding why females frequently mate with more than one male. Mate choice for compatibility differs from other forms of choice for genetic benefits (such as 'good genes') because individuals are expected to differ in their mate preferences, changing the evolutionary dynamics of sexual selection. Recent experiments designed to investigate genetic benefits of polyandry suggest that mate choice on the basis of genetic compatibility may be widespread. However, in most systems the mechanisms responsible for variation in compatibility are unknown. We review potential sources of variation in genetic compatibility and whether there is any evidence for mate choice driven by these factors. Selfish genetic elements appear to have the potential to drive mate compatibility mate choice, though as yet there is only one convincing example. There is abundant evidence for assortative mating between populations in hybrid zones, but very few examples where this is clearly a result of selection against mating with genetically less compatible individuals. There are also numerous cases of inbreeding avoidance, but little evidence that mate choice or differential fertilization success driven by genetic compatibility occurs between unrelated individuals. The exceptions to this are a handful of situations where both the alleles causing incompatibility and the alleles involved in mate choice are located in a chromosome region where recombination is suppressed. As yet there are only a few potential sources of genetic compatibility which have clearly been shown to drive mate choice. This may reflect limitations in the potential for the evolution of mate choice for genetic compatibility within populations, although the most promising sources of such incompatibilities have received relatively little research.
Genetic Diversity on the Sex Chromosomes
Wilson Sayres, Melissa A
2018-01-01
Abstract Levels and patterns of genetic diversity can provide insights into a population’s history. In species with sex chromosomes, differences between genomic regions with unique inheritance patterns can be used to distinguish between different sets of possible demographic and selective events. This review introduces the differences in population history for sex chromosomes and autosomes, provides the expectations for genetic diversity across the genome under different evolutionary scenarios, and gives an introductory description for how deviations in these expectations are calculated and can be interpreted. Predominantly, diversity on the sex chromosomes has been used to explore and address three research areas: 1) Mating patterns and sex-biased variance in reproductive success, 2) signatures of selection, and 3) evidence for modes of speciation and introgression. After introducing the theory, this review catalogs recent studies of genetic diversity on the sex chromosomes across species within the major research areas that sex chromosomes are typically applied to, arguing that there are broad similarities not only between male-heterogametic (XX/XY) and female-heterogametic (ZZ/ZW) sex determination systems but also any mating system with reduced recombination in a sex-determining region. Further, general patterns of reduced diversity in nonrecombining regions are shared across plants and animals. There are unique patterns across populations with vastly different patterns of mating and speciation, but these do not tend to cluster by taxa or sex determination system. PMID:29635328
Singh, Karan; Kochar, Ekta; Prasad, N. G.
2015-01-01
Background Ability to resist temperature shock is an important component of fitness of insects and other ectotherms. Increased resistance to temperature shock is known to affect life-history traits. Temperature shock is also known to affect reproductive traits such as mating ability and viability of gametes. Therefore selection for increased temperature shock resistance can affect the evolution of reproductive traits. Methods We selected replicate populations of Drosophila melanogaster for resistance to cold shock. We then investigated the evolution of reproductive behavior along with other components of fitness- larval survivorship, adult mortality, fecundity, egg viability in these populations. Results We found that larval survivorship, adult mortality and fecundity post cold shock were not significantly different between selected and control populations. However, compared to the control populations, the selected populations laid significantly higher percentage of fertile eggs (egg viability) 24 hours post cold shock. The selected populations had higher mating frequency both with and without cold shock. After being subjected to cold shock, males from the selected populations successfully mated with significantly more non-virgin females and sired significantly more progeny compared to control males. Conclusions A number of studies have reported the evolution of survivorship in response to selection for temperature shock resistance. Our results clearly indicate that adaptation to cold shock can involve changes in components of reproductive fitness. Our results have important implications for our understanding of how reproductive behavior can evolve in response to thermal stress. PMID:26065704
Jones, A G; Avise, J C
2001-01-01
In pipefishes and seahorses (family Syngnathidae), the males provide all postzygotic care of offspring by brooding embryos on their ventral surfaces. In some species, this phenomenon of male "pregnancy" results in a reversal of the usual direction of sexual selection, such that females compete more than males for access to mates, and secondary sexual characteristics evolve in females. Thus the syngnathids can provide critical tests of theories related to the evolution of sex differences and sexual selection. Microsatellite-based studies of the genetic mating systems of several species of pipefishes and seahorses have provided insights into important aspects of the natural history and evolution of these fishes. First, males of species with completely enclosed pouches have complete confidence of paternity, as might be predicted from parental investment theory for species in which males invest so heavily in offspring. Second, a wide range of genetic mating systems have been documented in nature, including genetic monogamy in a seahorse, polygynandry in two species of pipefish, and polyandry in a third pipefish species. The genetic mating systems appear to be causally related to the intensity of sexual selection, with secondary sex characters evolving most often in females of the more polyandrous species. Third, genetic studies of captive-breeding pipefish suggest that the sexual selection gradient (or Bateman gradient) may be a substantially better method for characterizing the mating system than previously available techniques. Finally, these genetic studies of syngnathid mating systems have led to some general insights into the occurrence of clustered mutations at microsatellite loci, the utility of linked loci in studies of parentage, and the use of parentage data for direct estimation of adult population size.
Mating programs including genomic relationships
USDA-ARS?s Scientific Manuscript database
Computer mating programs have helped breeders minimize pedigree inbreeding and avoid recessive defects by mating animals with parents that have fewer common ancestors. With genomic selection, breed associations, AI organizations, and on-farm software providers could use new programs to minimize geno...
Kvarnemo, Charlotta
2018-04-23
Why do some animals mate with one partner rather than many? Here, I investigate factors related to (i) spatial constraints (habitat limitation, mate availability), (ii) time constraints (breeding synchrony, length of breeding season), (iii) need for parental care, and (iv) genetic compatibility, to see what support can be found in different taxa regarding the importance of these factors in explaining the occurrence of monogamy, whether shown by one sex (monogyny or monandry) or by both sexes (mutual monogamy). Focusing on reproductive rather than social monogamy whenever possible, I review the empirical literature for birds, mammals and fishes, with occasional examples from other taxa. Each of these factors can explain mating patterns in some taxa, but not in all. In general, there is mixed support for how well the factors listed above predict monogamy. The factor that shows greatest support across taxa is habitat limitation. By contrast, while a need for parental care might explain monogamy in freshwater fishes and birds, there is clear evidence that this is not the case in marine fishes and mammals. Hence, reproductive monogamy does not appear to have a single overriding explanation, but is more taxon specific. Genetic compatibility is a promising avenue for future work likely to improve our understanding of monogamy and other mating patterns. I also discuss eight important consequences of reproductive monogamy: (i) parentage, (ii) parental care, (iii) eusociality and altruism, (iv) infanticide, (v) effective population size, (vi) mate choice before mating, (vii) sexual selection, and (viii) sexual conflict. Of these, eusociality and infanticide have been subject to debate, briefly summarised herein. A common expectation is that monogamy leads to little sexual conflict and no or little sexual selection. However, as reviewed here, sexual selection can be substantial under mutual monogamy, and both sexes can be subject to such selection. Under long-term mutual monogamy, mate quality is obviously more important than mate numbers, which in turn affects the need for pre-mating mate choice. Overall, I conclude that, despite much research on genetic mating patterns, reproductive monogamy is still surprisingly poorly understood and further experimental and comparative work is needed. This review identifies several areas in need of more data and also proposes new hypotheses to test. © 2018 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
An Evolutionary Perspective of Friendship Selection
ERIC Educational Resources Information Center
Coutinho, Savia A.
2007-01-01
The research reported in this article investigates whether promiscuity plays a role in same-sex and opposite-sex friend selection. Since same-sex friends share strong similarity and spend time with their friends' mates or potential mates, it becomes important to select same-sex friends who will not be sexual rivals. One way to determine rivalry in…
Funayama, Risa; Sugiura, Motoaki; Sassa, Yuko; Jeong, Hyeonjeong; Wakusawa, Keisuke; Horie, Kaoru; Sato, Shigeru; Kawashima, Ryuta
2012-01-01
Mate choice is an example of sophisticated daily decision making supported by multiple componential processes. In mate-choice literature, different characteristics of the value dimensions, including the sex difference in the value dimensions, and the involvement of self-assessment due to the mutual nature of the choice, have been suggested. We examined whether the brain-activation pattern during virtual mate choice would be congruent with these characteristics in terms of stimulus selectivity and activated brain regions. In measuring brain activity, young men and women were shown two pictures of either faces or behaviors, and they indicated which person they would choose either as a spouse or as a friend. Activation selective to spouse choice was observed face-selectively in men's amygdala and behavior-selectively in women's motor system. During both partner-choice conditions, behavior-selective activation was observed in the temporoparietal regions. Taking the available knowledge of these regions into account, these results are congruent with the suggested characteristics of value dimensions for physical attractiveness, parenting resources, and beneficial personality traits for a long-lasting relationship, respectively. The medial prefrontal and posterior cingulate cortices were nonselectively activated during the partner choices, suggesting the involvement of a self-assessment process. The results thus provide neuroscientific support for the multi-component mate-choice mechanism.
Trading up: the fitness consequences of divorce in monogamous birds.
Culina, Antica; Radersma, Reinder; Sheldon, Ben C
2015-11-01
Social and genetic mating systems play an important role in natural and sexual selection, as well as in the dynamics of populations. In socially monogamous species different genetic mating patterns appear when individuals mate outside the breeding pair within a breeding season (extra-pair mating) or when they change partners between two breeding seasons (widowing or divorce). Divorce can be defined as having occurred when two previously paired individuals are alive during the next breeding season and at least one of them has re-mated with a new partner. In socially monogamous birds divorce is widespread, but it is not clear whether it is a behavioural adaptation to improve the quality of a mating decision or whether, alternatively, it results as a non-selected consequence of other processes: existing studies suggest a heterogeneous set of results with respect to this central question. This heterogeneity could result from a number of factors, ranging from the methodological approaches used, to population- or species-specific characters. In this review we use phylogenetic meta-analyses to assess the evidence that divorce is adaptive (in terms of breeding success) across 64 species of socially monogamous birds. Second, we explore biological and methodological reasons for the heterogeneity in the results of previous studies. Results of our analyses supported the hypothesis that divorce is, in general, an adaptive behavioural strategy as: (1) divorce is triggered by relatively low breeding success; (2) there is a positive change in breeding success as a result of divorce. More specifically, while controlling for methodological moderators, we show that: (i) earlier stages of breeding are better predictors of divorce than later stages (r = 0.231; 95% CI: 0.061-0.391 for clutch size; similar for laying date); (ii) females benefited from divorce more than males in terms of increasing breeding success between successive breeding attempts, with different stages of the breeding cycle improving at different rates (e.g. r = 0.637; 95% CI: 0.328-0.817 for brood-level measures). We show that the effect size was dependent on the methodological approach used across studies and argue that research on the adaptive nature of divorce should be cautious when designing the study and interpreting the results. Altogether, by providing strong evidence that divorce is an adaptive strategy across monogamous birds, the results of our analysis provide a firm ground for further exploration of external covariates of divorce (e.g. demographic factors) and the mechanisms underlying the differences in the effect sizes of the proximal fitness causes and consequences of divorce. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.
Pre and Post-copulatory Selection Favor Similar Genital Phenotypes in the Male Broad Horned Beetle.
House, Clarissa M; Sharma, M D; Okada, Kensuke; Hosken, David J
2016-10-01
Sexual selection can operate before and after copulation and the same or different trait(s) can be targeted during these episodes of selection. The direction and form of sexual selection imposed on characters prior to mating has been relatively well described, but the same is not true after copulation. In general, when male-male competition and female choice favor the same traits then there is the expectation of reinforcing selection on male sexual traits that improve competitiveness before and after copulation. However, when male-male competition overrides pre-copulatory choice then the opposite could be true. With respect to studies of selection on genitalia there is good evidence that male genital morphology influences mating and fertilization success. However, whether genital morphology affects reproductive success in more than one context (i.e., mating versus fertilization success) is largely unknown. Here we use multivariate analysis to estimate linear and nonlinear selection on male body size and genital morphology in the flour beetle Gnatocerus cornutus, simulated in a non-competitive (i.e., monogamous) setting. This analysis estimates the form of selection on multiple traits and typically, linear (directional) selection is easiest to detect, while nonlinear selection is more complex and can be stabilizing, disruptive, or correlational. We find that mating generates stabilizing selection on male body size and genitalia, and fertilization causes a blend of directional and stabilizing selection. Differences in the form of selection across these bouts of selection result from a significant alteration of nonlinear selection on body size and a marginally significant difference in nonlinear selection on a component of genital shape. This suggests that both bouts of selection favor similar genital phenotypes, whereas the strong stabilizing selection imposed on male body size during mate acquisition is weak during fertilization. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology.
Mating programs including genomic relationships and dominance effects
USDA-ARS?s Scientific Manuscript database
Breed associations, artificial-insemination organizations, and on-farm software providers need new computerized mating programs for genomic selection so that genomic inbreeding could be minimized by comparing genotypes of potential mates. Efficient methods for transferring elements of the genomic re...
The "booty call": a compromise between men's and women's ideal mating strategies.
Jonason, Peter K; Li, Norman P; Cason, Margaret J
2009-01-01
Traditionally, research on romantic and sexual relationships has focused on one-night stands and monogamous pairs. However, as the result of men and women pursuing their ideal relationship types, various compromise relationships may emerge. One such compromise is explored here: the "booty call." The results of an act-nomination and frequency study of college students provided an initial definition and exploration of this type of relationship. Booty calls tend to utilize various communication mediums to facilitate sexual contact among friends who, for men, may represent low-investment, attractive sexual partners and, for women, may represent attractive test-mates. The relationship is discussed as a compromise between men's and women's ideal mating strategies that allows men greater sexual access and women an ongoing opportunity to evaluate potential long-term mates.
Mobley, Kenyon B; Jones, Adam G
2013-03-01
The genetic mating system is a key component of the sexual selection process, yet methods for the quantification of mating systems remain controversial. One approach involves metrics derived from Bateman's principles, which are based on variances in mating and reproductive success and the relationship between them. However, these measures are extremely difficult to measure for both sexes in open populations, because missing data can result in biased estimates. Here, we develop a novel approach for the estimation of mating system metrics based on Bateman's principles and apply it to a microsatellite-based parentage analysis of a natural population of the dusky pipefish, Syngnathus floridae. Our results show that both male and female dusky pipefish have significantly positive Bateman gradients. However, females exhibit larger values of the opportunity for sexual selection and the opportunity for selection compared to males. These differences translate into a maximum intensity of sexual selection (S'max) for females three times larger than that for males. Overall, this study identifies a critical source of bias that affects studies of mating systems in open populations, presents a novel method for overcoming this bias, and applies this method for the first time in a sex-role-reversed pipefish. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Worthless donations: male deception and female counter play in a nuptial gift-giving spider
2011-01-01
Background In nuptial gift-giving species, benefits of acquiring a mate may select for male deception by donation of worthless gifts. We investigated the effect of worthless gifts on mating success in the spider Pisaura mirabilis. Males usually offer an insect prey wrapped in silk; however, worthless gifts containing inedible items are reported. We tested male mating success in the following experimental groups: protein enriched fly gift (PG), regular fly gift (FG), worthless gift (WG), or no gift (NG). Results Males that offered worthless gifts acquired similar mating success as males offering nutritional gifts, while males with no gift experienced reduced mating success. The results suggest that strong selection on the nuptial gift-giving trait facilitates male deception by donation of worthless gifts. Females terminated matings faster when males offered worthless donations; this demonstrate a cost of deception for the males as shorter matings lead to reduced sperm transfer and thus give the deceiving males a disadvantage in sperm competition. Conclusion We propose that the gift wrapping trait allows males to exploit female foraging preference by disguising the gift content thus deceiving females into mating without acquiring direct benefits. Female preference for a genuine prey gift combined with control over mating duration, however, counteracts the male deception. PMID:22082300
Worthless donations: male deception and female counter play in a nuptial gift-giving spider.
Albo, Maria J; Winther, Gudrun; Tuni, Cristina; Toft, Søren; Bilde, Trine
2011-11-14
In nuptial gift-giving species, benefits of acquiring a mate may select for male deception by donation of worthless gifts. We investigated the effect of worthless gifts on mating success in the spider Pisaura mirabilis. Males usually offer an insect prey wrapped in silk; however, worthless gifts containing inedible items are reported. We tested male mating success in the following experimental groups: protein enriched fly gift (PG), regular fly gift (FG), worthless gift (WG), or no gift (NG). Males that offered worthless gifts acquired similar mating success as males offering nutritional gifts, while males with no gift experienced reduced mating success. The results suggest that strong selection on the nuptial gift-giving trait facilitates male deception by donation of worthless gifts. Females terminated matings faster when males offered worthless donations; this demonstrate a cost of deception for the males as shorter matings lead to reduced sperm transfer and thus give the deceiving males a disadvantage in sperm competition. We propose that the gift wrapping trait allows males to exploit female foraging preference by disguising the gift content thus deceiving females into mating without acquiring direct benefits. Female preference for a genuine prey gift combined with control over mating duration, however, counteracts the male deception.
Karageorge, Kurt W; Wilson, Raymond R
2017-12-01
Characterizing the mating systems of long-lived, economically important Pacific rockfishes comprising the viviparous Sebastes species flock is crucial for their conservation. However, direct assignment of mating success to sires is precluded by open, offshore populations and high female fecundity. We addressed this challenge by integrating paternity-assigned mating success of females with the adult sex ratio (ASR) of the population, male evolutionary responses to receptive females, and reproductive life history traits-in the framework of sexual selection theory-to assess the mating system of Sebastes melanops . Microsatellite parentage analysis of 17 pregnant females, 1,256 of their progeny, and 106 adults from the population yielded one to four sires per brood, a mean of two sires, and a female mate frequency distribution with a truncated normal (random) pattern. The 11 multiple paternity broods all contained higher median allele richness than the six single paternity broods (Wilcoxon test: W = 0, p < .001), despite similar levels of average heterozygosity. By sampling sperm and alleles from different males, polyandrous females gain opportunities to enhance their sperm supply and to lower the cost of mating with genetically incompatible males through reproductive compensation. A mean of two mates per mated female with a variance of one, an ASR = 1.2 females per male, and the expected population mean of 2.4 mates for mated males (and the estimated 35 unavailable sires), fits polygamous male mate frequency distributions that distinguish polygynandry and polyandrogyny mating systems, that is, variations of polygamy, but not polyandry. Inference for polygamy is consistent with weak premating sexual selection on males, expected in mid-water, schooling S. melanops , owing to polyandrous mating, moderately aggregated receptive females, an even ASR, and no territories and nests used for reproduction. Each of these characteristics facilitates more mating males and erodes conspicuous sexual dimorphism. Evaluation of male evolutionary responses of demersal congeners that express reproductively territorial behavior revealed they have more potential mechanisms for producing premating sexual selection, greater variation in reproductive success, and a reduced breeding effective population size of adults and annual effective size of a cohort, compared to S. melanops modeled with two mates per adult. Such divergence in behavior and mating system by territorial species may differentially lower their per capita birth rates, subsequent population growth, and slow their recovery from exploitation.
Mutual Mate Choice: When it Pays Both Sexes to Avoid Inbreeding
Lihoreau, Mathieu; Zimmer, Cédric; Rivault, Colette
2008-01-01
Theoretical models of sexual selection predict that both males and females of many species should benefit by selecting their mating partners. However, empirical evidence testing and validating this prediction is scarce. In particular, whereas inbreeding avoidance is expected to induce sexual conflicts, in some cases both partners could benefit by acting in concert and exerting mutual mate choice for non-assortative pairings. We tested this prediction with the gregarious cockroach Blattella germanica (L.). We demonstrated that males and females base their mate choice on different criteria and that choice occurs at different steps during the mating sequence. Males assess their relatedness to females through antennal contacts before deciding to court preferentially non-siblings. Conversely, females biased their choice towards the most vigorously courting males that happened to be non-siblings. This study is the first to demonstrate mutual mate choice leading to close inbreeding avoidance. The fact that outbred pairs were more fertile than inbred pairs strongly supports the adaptive value of this mating system, which includes no “best phenotype” as the quality of two mating partners is primarily linked to their relatedness. We discuss the implications of our results in the light of inbreeding conflict models. PMID:18843373
Mutual mate choice: when it pays both sexes to avoid inbreeding.
Lihoreau, Mathieu; Zimmer, Cédric; Rivault, Colette
2008-01-01
Theoretical models of sexual selection predict that both males and females of many species should benefit by selecting their mating partners. However, empirical evidence testing and validating this prediction is scarce. In particular, whereas inbreeding avoidance is expected to induce sexual conflicts, in some cases both partners could benefit by acting in concert and exerting mutual mate choice for non-assortative pairings. We tested this prediction with the gregarious cockroach Blattella germanica (L.). We demonstrated that males and females base their mate choice on different criteria and that choice occurs at different steps during the mating sequence. Males assess their relatedness to females through antennal contacts before deciding to court preferentially non-siblings. Conversely, females biased their choice towards the most vigorously courting males that happened to be non-siblings. This study is the first to demonstrate mutual mate choice leading to close inbreeding avoidance. The fact that outbred pairs were more fertile than inbred pairs strongly supports the adaptive value of this mating system, which includes no "best phenotype" as the quality of two mating partners is primarily linked to their relatedness. We discuss the implications of our results in the light of inbreeding conflict models.
The dilemma of female mate selection in the brown bear, a species with sexually selected infanticide
Bellemain, Eva; Zedrosser, Andreas; Manel, Stéphanie; Waits, Lisette P; Taberlet, Pierre; Swenson, Jon E
2005-01-01
Because of differential investment in gametes between sexes, females tend to be the more selective sex. Based on this concept, we investigate mate selection in a large carnivore: the brown bear (Ursus arctos). We hypothesize that, in this species with sexually selected infanticide (SSI), females may be faced with a dilemma: either select a high-quality partner based on phenotypic criteria, as suggested by theories of mate choice, or rather mate with future potentially infanticidal males as a counter-strategy to SSI. We evaluated which male characteristics were important in paternity assignment. Among males available in the vicinity of the females, the largest, most heterozygous and less inbred and also the geographically closest males were more often the fathers of the female's next litter. We suggest that female brown bears may select the closest males as a counter-strategy to infanticide and exercise a post-copulatory cryptic choice, based on physical attributes, such as a large body size, reflecting male genetic quality. However, male–male competition either in the form of fighting before copulation or during the post-copulatory phase, in the form of sperm competition, cannot entirely be ruled out. PMID:16543170
Reproductive strategies in snakes.
Shine, Richard
2003-01-01
Snakes of both sexes display remarkable flexibility and diversity in their reproductive tactics. Many features of reproduction in female snakes (such as reproductive mode and frequency, seasonality and multiple mating) allow flexible maternal control. For example, females can manipulate not only the genotypes of their offspring (through mate choice or enhanced sperm competition) but also the phenotypes of their offspring (through allocation 'decisions', behavioural and physiological thermoregulation, and nest-site selection). Reliance on stored energy ('capital') to fuel breeding results in low frequencies of female reproduction and, in extreme cases, semelparity. A sophisticated vomeronasal system not only allows male snakes to locate reproductive females by following scent trails, but also facilitates pheromonally mediated mate choice by males. Male-male rivalry takes diverse forms, including female mimicry and mate guarding; combat bouts impose strong selection for large body size in males of some species. Intraspecific (geographical) variation and phenotypic plasticity in a wide array of reproductive traits (offspring size and number; reproductive frequency; incidence of multiple mating; male tactics such as mate guarding and combat; mate choice criteria) provide exceptional opportunities for future studies. PMID:12803888
Promiscuity resolves constraints on social mate choice imposed by population viscosity.
While, Geoffrey M; Uller, Tobias; Bordogna, Genevieve; Wapstra, Erik
2014-02-01
Population viscosity can have major consequences for adaptive evolution, in particular for phenotypes involved in social interactions. For example, population viscosity increases the probability of mating with close kin, resulting in selection for mechanisms that circumvent the potential negative consequences of inbreeding. Female promiscuity is often suggested to be one such mechanism. However, whether avoidance of genetically similar partners is a major selective force shaping patterns of promiscuity remains poorly supported by empirical data. Here, we show (i) that fine-scale genetic structure constrains social mate choice in a pair-bonding lizard, resulting in individuals pairing with genetically similar individuals, (ii) that these constraints are circumvented by multiple mating with less related individuals and (iii) that this results in increased heterozygosity of offspring. Despite this, we did not detect any significant effects of heterozygosity on offspring or adult fitness or a strong relationship between pair relatedness and female multiple mating. We discuss these results within the context of incorporating the genetic context dependence of mating strategies into a holistic understanding of mating system evolution. © 2013 John Wiley & Sons Ltd.
Reproductive strategies in snakes.
Shine, Richard
2003-05-22
Snakes of both sexes display remarkable flexibility and diversity in their reproductive tactics. Many features of reproduction in female snakes (such as reproductive mode and frequency, seasonality and multiple mating) allow flexible maternal control. For example, females can manipulate not only the genotypes of their offspring (through mate choice or enhanced sperm competition) but also the phenotypes of their offspring (through allocation 'decisions', behavioural and physiological thermoregulation, and nest-site selection). Reliance on stored energy ('capital') to fuel breeding results in low frequencies of female reproduction and, in extreme cases, semelparity. A sophisticated vomeronasal system not only allows male snakes to locate reproductive females by following scent trails, but also facilitates pheromonally mediated mate choice by males. Male-male rivalry takes diverse forms, including female mimicry and mate guarding; combat bouts impose strong selection for large body size in males of some species. Intraspecific (geographical) variation and phenotypic plasticity in a wide array of reproductive traits (offspring size and number; reproductive frequency; incidence of multiple mating; male tactics such as mate guarding and combat; mate choice criteria) provide exceptional opportunities for future studies.
Mating programs including genomic relationships and dominance effects
USDA-ARS?s Scientific Manuscript database
Computer mating programs have helped breeders minimize pedigree inbreeding and avoid recessive defects by mating animals with parents that have fewer common ancestors. With genomic selection, breed associations, AI organizations, and on-farm software providers could use new programs to minimize geno...
Rapkin, J; Jensen, K; House, C M; Sakaluk, S K; Sakaluk, J K; Hunt, J
2017-04-01
The condition dependence of male sexual traits plays a central role in sexual selection theory. Relatively little, however, is known about the condition dependence of chemical signals used in mate choice and their subsequent effects on male mating success. Furthermore, few studies have isolated the specific nutrients responsible for condition-dependent variation in male sexual traits. Here, we used nutritional geometry to determine the effect of protein (P) and carbohydrate (C) intake on male cuticular hydrocarbon (CHC) expression and mating success in male decorated crickets (Gryllodes sigillatus). We show that both traits are maximized at a moderate-to-high intake of nutrients in a P:C ratio of 1 : 1.5. We also show that female precopulatory mate choice exerts a complex pattern of linear and quadratic sexual selection on this condition-dependent variation in male CHC expression. Structural equation modelling revealed that although the effect of nutrient intake on mating success is mediated through condition-dependent CHC expression, it is not exclusively so, suggesting that other traits must also play an important role. Collectively, our results suggest that the complex interplay between nutrient intake, CHC expression and mating success plays an important role in the operation of sexual selection in G. sigillatus. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Edwards, Mark A; Derocher, Andrew E
2015-02-01
In comparison to core populations, peripheral populations have low density and recruitment, and are subject to different selective pressures, such as environmental conditions, food type and availability, predation, disease, etc., which may result in behavioural modifications to mating. We test the roam-to-mate hypothesis for a peripheral population of grizzly bears (Ursus arctos) at the northern extent of their North American range, in Canada's Arctic. If bears are roaming-to-mate, we predicted greater range size and daily displacement, and more linear movements for receptive animals during the mating period compared to post-mating. In contrast to our predictions, we found that in general range size and displacement increased from mating to post-mating regardless of reproductive status. When considered across both periods, females with cubs-of-the-year had smaller range use metrics than other reproductive groups, which we attribute to a counter-strategy against sexually selected infanticide and the reduced mobility of cubs. Linearity of movements remained near zero during both periods across all groups, suggesting tortuous movements more characteristic of foraging than of mate-searching. We suggest that for this population, finding quality habitat takes precedence over mate-searching in this marginal Arctic landscape. Alternatively, a more monogamous mating system and sequestering behaviour may have obscured movement differences between the two periods. The behavioural differences in mating that we observed from what is typical of core populations may reflect local adaptation to marginal conditions and could benefit the species in the face of ongoing environmental change. Copyright © 2014 Elsevier B.V. All rights reserved.
Non-random pairing in American kestrels: mate choice versus intra-sexual competition
Bortolotti, Gary R.; Iko, William M.
1992-01-01
Natural selection may influence the arrangement of individuals into mated pairs through either inter-sexual (mate choice) or intra-sexual selection (competition). A study of the American kestrel, Falco sparverius, in northern Saskatchewan distinguished between these two processes using size as a measure of the bird's competitive ability, and condition (mass scaled to body size) as an index of quality. Both sexes arrive on the study area after spring migration in equal numbers and males establish territories. Males and females that moved among territories at the time of pair formation were not different in size or condition from those that did not move, suggesting that birds were not being displaced by superior competitors, and that females moved to encounter potential mates. Within mated pairs, there was no relationship between a bird's size and the condition of its mate for either sex as would be predicted if intra-sexual competitition explained mating patterns. Instead, there was positive assortative mating by condition, suggesting that both sexes used quality as the criterion in choosing mates. There was no correlation between the sizes of males and females in mated paird. Because there were no differences in size or condition of breeding and non-breeding males, factors other than physical attributes, such as prior experience with the area, may determine a male's success in obtaining a territory. Because females that did not obtain mates were in poorer condition than those that did, males may have rejected poor quality females. The results suggest that intra-sexual competition was not important for pair formation, and that kestrels chose mates on the basis of quality.
Rapid adaptation to mammalian sociality via sexually selected traits
2013-01-01
Background Laboratory studies show that the components of sexual selection (e.g., mate choice and intrasexual competition) can profoundly affect the development and fitness of offspring. Less is known, however, about the total effects of sexual selection on offspring in normal social conditions. Complex social networks, such as dominance hierarchies, regulate the opportunity for mating success, and are often missing from laboratory studies. Social selection is an extended view of sexual selection that incorporates competition during sexual and nonsexual interactions, and predicts complex evolutionary dynamics. Whether social selection improves or constrains offspring fitness is controversial. Results To identify fitness consequences of social selection, wild-derived mice that had bred under laboratory conditions for eight generations were re-introduced to naturalistic competition in enclosures for three consecutive generations (promiscuous line). In parallel, a control lineage bred in cages under random mate assignment (monogamous line). A direct competition experiment using second-generation animals revealed that promiscuous line males had greater reproductive success than monogamous line males (particularly during extra-territorial matings), in spite of higher mortality and equivalent success in social dominance and sperm competition. There were no major female fitness effects (though promiscuous line females had fewer litters than monogamous line females). This result suggested that selection primarily acted upon a sexually attractive male phenotype in the promiscuous line, a hypothesis we confirmed in female odor and mating preference trials. Conclusions We present novel evidence for the strength of sexual selection under normal social conditions, and show rapid male adaptation driven largely by sexual trait expression, with tradeoffs in survivorship and female fecundity. Re-introducing wild-derived mice to competition quickly uncovers sexually selected phenotypes otherwise lost in normal colony breeding. PMID:23577674
Sensory regulation of C. elegans male mate-searching behaviour
Barrios, Arantza; Nurrish, Stephen; Emmons, Scott W.
2009-01-01
Summary How do animals integrate internal drives and external environmental cues to coordinate behaviours? We address this question studying mate-searching behaviour in C. elegans. C. elgans males explore their environment in search of mates (hermaphrodites) and will leave food if mating partners are absent. However, when mates and food coincide, male exploratory behaviour is suppressed and males are retained on the food source. We show that the drive to explore is stimulated by male specific neurons in the tail, the ray neurons. Periodic contact with the hermaphrodite detected through ray neurons changes the male’s behaviour during periods of no contact and prevents the male from leaving the food source. The hermaphrodite signal is conveyed by male-specific interneurons that are post-synaptic to the rays and that send processes to the major integrative center in the head. This study identifies key parts of the neural circuit that regulates a sexual appetitive behaviour in C. elegans. PMID:19062284
Social structure affects mating competition in a damselfish
NASA Astrophysics Data System (ADS)
Wacker, Sebastian; Ness, Miriam Horstad; Östlund-Nilsson, Sara; Amundsen, Trond
2017-12-01
The strength of mating competition and sexual selection varies over space and time in many animals. Such variation is typically driven by ecological and demographic factors, including adult sex ratio and consequent availability of mates. The spatial scale at which demographic factors affect mating competition and sexual selection may vary but is not often investigated. Here, we analyse variation in size and sex ratio of social groups, and how group structure affects mating competition, in the site-attached damselfish Chrysiptera cyanea. Site-attached reef fishes are known to show extensive intraspecific variation in social structure. Previous work has focused on species for which the size and dynamics of social groups are constrained by habitat, whereas species with group structure unconstrained by habitat have received little attention. Chrysiptera cyanea is such a species, with individuals occurring in spatial clusters that varied widely in size and sex ratio. Typically, only one male defended a nest in multi-male groups. Nest-holding males were frequently visited by mate-searching females, with more visits in groups with more females, suggesting that courtship and mating mostly occur within groups and that male mating success depends on the number of females in the group. Male-male aggression was frequent in multi-male groups but absent in single-male groups. These findings demonstrate that groups are distinct social units. In consequence, the dynamics of mating and reproduction are mainly a result of group structure, largely unaffected short term by overall population demography which would be important in open social systems. Future studies of the C. cyanea model system should analyse longer-term dynamics, including how groups are formed, how they vary in relation to density and time of season and how social structure affects sexual selection.
2012-01-01
Sexual selection is a major force driving evolution and is intertwined with ecological factors. Differential allocation of limited resources has a central role in the cost of reproduction. In this paper, I review the costs and benefits of mating in tettigoniids, focussing on nuptial gifts, their trade-off with male calling songs, protandry and how mate density influences mate choice. Tettigoniids have been widely used as model systems for studies of mating costs and benefits; they can provide useful general insights. The production and exchange of large nuptial gifts by males for mating is an important reproductive strategy in tettigoniids. As predicted by sexual selection theory spermatophylax size is condition dependent and is constrained by the need to invest in calling to attract mates also. Under some circumstances, females benefit directly from the nuptial gifts by an increase in reproductive output. However, compounds in the nuptial gift can also benefit the male by prolonging the period before the female remates. There is also a trade-off between adult male maturation and mating success. Where males mature before females (protandry) the level of protandry varies in the direction predicted by sperm competition theory; namely, early male maturation is correlated with a high level of first inseminations being reproductively successful. Lastly, mate density in bushcrickets is an important environmental factor influencing the behavioural decisions of individuals. Where mates are abundant, individuals are more choosey of mates; when they are scarce, individuals are less choosey. This review reinforces the view that tettigoniids provide excellent models to test and understand the economics of matings in both sexes. PMID:22894685
Sexual Selection on male cuticular hydrocarbons via male-male competition and female choice.
Lane, S M; Dickinson, A W; Tregenza, T; House, C M
2016-07-01
Traditional views of sexual selection assumed that male-male competition and female mate choice work in harmony, selecting upon the same traits in the same direction. However, we now know that this is not always the case and that these two mechanisms often impose conflicting selection on male sexual traits. Cuticular hydrocarbons (CHCs) have been shown to be linked to both social dominance and male attractiveness in several insect species. However, although several studies have estimated the strength and form of sexual selection imposed on male CHCs by female mate choice, none have established whether these chemical traits are also subject to sexual selection via male-male competition. Using a multivariate selection analysis, we estimate and compare sexual selection exerted by male-male competition and female mate choice on male CHC composition in the broad-horned flour beetle Gnatocerus cornutus. We show that male-male competition exerts strong linear selection on both overall CHC abundance and body size in males, while female mate choice exerts a mixture of linear and nonlinear selection, targeting not just the overall amount of CHCs expressed but the relative abundance of specific hydrocarbons as well. We discuss the potential implications of this antagonistic selection with regard to male reproductive success. © 2016 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.
EFFECTS OF EXTROGENOUS ESTROGEN ON MATE SELECTION OF HOUSE FINCHES
Effects of exogenous estrogen on mate selection of house finches. Clark, J., Fairbrother, A*. Parametrix, Inc., Corvallis, OR; Brewer, L., EBA, Inc., Sisters, OR; Bennett, R.S., USEPA, Mid-Continent Ecology Division, Duluth, MN.
Concern about the potential for endocrine...
Sexual selection of male parental care in giant water bugs
Ohba, Shin-ya; Okuda, Noboru; Kudo, Shin-ichi
2016-01-01
Paternal care can be maintained under sexual selection, if it helps in attracting more mates. We tested the hypothesis in two giant water bug species, Appasus major and Appasus japonicus, that male parental care is sexually selected through female preference for caring males. Females were given an opportunity to choose between two males. In the first test of female mate choice, one male carried eggs on its back, while the other did not. The egg status was switched between these two males in the second test. The experiment revealed that females of both species preferred caring males (i.e. egg-bearing) to non-caring males. Nonetheless, the female mate preference for egg-bearing males was stronger in A. major than in A. japonicus. Our results suggest that sexual selection plays an important role in maintaining elaborate paternal care in giant water bugs, but the importance of egg-bearing by males in female mate choice varies among species. PMID:27293778
Ainsworth, Sarah E; Maner, Jon K
2014-12-01
Throughout history, men have tended to be more violent than women. Evolutionary theories suggest that this sex difference derives in part from their historically greater need to compete with other men over access to potential mates. In the current research, men and women (Experiment 1) or men only (Experiments 2 and 3) underwent a mating motive prime or control prime, and then performed a task designed to measure aggression toward a same-sex partner. The mating prime increased aggression among men, but not women (Experiment 1). Furthermore, mating-related increases in aggression were directed only toward men who were depicted as viable intrasexual rivals, including a dominant (vs. non-dominant) male partner (Experiment 2) and a man who was depicted as single (versus married) and looking for a mate (Experiment 3). This research provides a picture of male intrasexual aggression as highly selective and aimed strategically at asserting one's dominance over sexual rivals. © 2014 by the Society for Personality and Social Psychology, Inc.
Hübner, Kerstin; Gonzalez-Wanguemert, Mercedes; Diekmann, Onno E; Serrão, Ester A
2013-01-01
Sexual selection theory predicts that, in organisms with reversed sex roles, more polyandrous species exhibit higher levels of sexual dimorphism. In the family Syngnathidae (pipefish, seahorses, and seadragons), males provide all parental care by carrying developing embryos on their ventral surfaces, and females develop secondary sex characters. Syngnathids exhibit a variety of genetic mating patterns, making them an ideal group to test predictions of sexual selection theory. Here, we describe the mating system of the black-striped pipefish Syngnathus abaster, using 4 highly variable microsatellites to analyze parentage of 102 embryos. Results revealed that 1) both sexes mate multiple times over the course of a pregnancy (polygynandrous mating system), 2) eggs are spatially segregated by maternity within each brood pouch, and 3) larger females have higher mating success (Kolmogorov-Smirnov test; P < 0.05). Together with similar studies of other syngnathid species, our results support the hypothesis that the mating system is related to the intensity of sexual dimorphism.
Do extra-group fertilizations increase the potential for sexual selection in male mammals?
Isvaran, Kavita; Sankaran, Sumithra
2017-10-01
Fertilizations by males outside the social breeding group (extra-group paternity, EGP) are widespread in birds and mammals. EGP is generally proposed to increase male reproductive skew and thereby increase the potential for sexual selection, but the generality of this relationship is unclear. We extracted data from 27 mammals in seven orders and used phylogenetic comparative methods to investigate the influence of EGP and social mating system on measures of inequality in male fertilization success, which are indices of the potential for sexual selection. We find that EGP and social mating system can predict the potential for sexual selection in mammalian populations, but only when considered jointly and not individually. EGP appears to increase the potential for sexual selection but only when the degree of social polygyny is relatively low. When social polygyny is high, EGP appears to result in a more uniform distribution of reproduction and a decrease in the potential for sexual selection. A possible explanation to be investigated is that the phenotype of extra-group fathers differs systematically across social mating systems. Our findings have implications for the use of EGP and social mating system as indices of sexual selection in comparative analyses of trait evolution under sexual selection. © 2017 The Author(s).
Bateman's principles and human sex roles.
Brown, Gillian R; Laland, Kevin N; Mulder, Monique Borgerhoff
2009-06-01
In 1948, Angus J. Bateman reported a stronger relationship between mating and reproductive success in male fruit flies compared with females, and concluded that selection should universally favour 'an undiscriminating eagerness in the males and a discriminating passivity in the females' to obtain mates. The conventional view of promiscuous, undiscriminating males and coy, choosy females has also been applied to our own species. Here, we challenge the view that evolutionary theory prescribes stereotyped sex roles in human beings, firstly by reviewing Bateman's principles and recent sexual selection theory and, secondly, by examining data on mating behaviour and reproductive success in current and historic human populations. We argue that human mating strategies are unlikely to conform to a single universal pattern.
Edward, Dominic A; Fricke, Claudia; Chapman, Tracey
2010-08-27
Artificial selection and experimental evolution document natural selection under controlled conditions. Collectively, these techniques are continuing to provide fresh and important insights into the genetic basis of evolutionary change, and are now being employed to investigate mating behaviour. Here, we focus on how selection techniques can reveal the genetic basis of post-mating adaptations to sexual selection and sexual conflict. Alteration of the operational sex ratio of adult Drosophila over just a few tens of generations can lead to altered ejaculate allocation patterns and the evolution of resistance in females to the costly effects of elevated mating rates. We provide new data to show how male responses to the presence of rivals can evolve. For several traits, the way in which males responded to rivals was opposite in lines selected for male-biased, as opposed to female-biased, adult sex ratio. This shows that the manipulation of the relative intensity of intra- and inter-sexual selection can lead to replicable and repeatable effects on mating systems, and reveals the potential for significant contemporary evolutionary change. Such studies, with important safeguards, have potential utility for understanding sexual selection and sexual conflict across many taxa. We discuss how artificial selection studies combined with genomics will continue to deepen our knowledge of the evolutionary principles first laid down by Darwin 150 years ago.
Duthie, A Bradley; Reid, Jane M
2016-12-01
While extensive population genetic theory predicts conditions favoring evolution of self-fertilization versus outcrossing, there is no analogous theory that predicts conditions favoring evolution of inbreeding avoidance or inbreeding preference enacted through mate choice given obligate biparental reproduction. Multiple interacting processes complicate the dynamics of alleles underlying such inbreeding strategies, including sexual conflict, distributions of kinship, genetic drift, purging of mutation load, direct costs, and restricted kin discrimination. We incorporated these processes into an individual-based model to predict conditions where selection should increase or decrease frequencies of alleles causing inbreeding avoidance or inbreeding preference when females or males controlled mating. Selection for inbreeding avoidance occurred given strong inbreeding depression when either sex chose mates, while selection for inbreeding preference occurred given very weak inbreeding depression when females chose but never occurred when males chose. Selection for both strategies was constrained by direct costs and restricted kin discrimination. Purging was negligible, but allele frequencies were strongly affected by drift in small populations, while selection for inbreeding avoidance was weak in larger populations because inbreeding risk decreased. Therefore, while selection sometimes favored alleles underlying inbreeding avoidance or preference, evolution of such strategies may be much more restricted and stochastic than is commonly presumed.
Silk wrapping of nuptial gifts as visual signal for female attraction in a crepuscular spider
NASA Astrophysics Data System (ADS)
Trillo, Mariana C.; Melo-González, Valentina; Albo, Maria J.
2014-02-01
An extensive diversity of nuptial gifts is known in invertebrates, but prey wrapped in silk is a unique type of gift present in few insects and spiders. Females from spider species prefer males offering a gift accepting more and longer matings than when males offered no gift. Silk wrapping of the gift is not essential to obtain a mating, but appears to increase the chance of a mating evidencing a particularly intriguing function of this trait. Consequently, as other secondary sexual traits, silk wrapping may be an important trait under sexual selection, if it is used by females as a signal providing information on male quality. We aimed to understand whether the white color of wrapped gifts is used as visual signal during courtship in the spider Paratrechalea ornata. We studied if a patch of white paint on the males' chelicerae is attractive to females by exposing females to males: with their chelicerae painted white; without paint; and with the sternum painted white (paint control). Females contacted males with white chelicerae more often and those males obtained higher mating success than other males. Thereafter, we explored whether silk wrapping is a condition-dependent trait and drives female visual attraction. We exposed good and poor condition males, carrying a prey, to the female silk. Males in poor condition added less silk to the prey than males in good condition, indicating that gift wrapping is an indicator of male quality and may be used by females to acquire information of the potential mate.
Singh, Karan; Samant, Manas Arun; Tom, Megha Treesa; Prasad, Nagaraj Guru
2016-01-01
Background In Drosophila melanogaster the fitness of males depends on a broad array of reproductive traits classified as pre- and post-copulatory traits. Exposure to cold stress, can reduce sperm number, male mating ability and courtship behavior. Therefore, it is expected that the adaptation to cold stress will involve changes in pre- and post-copulatory traits. Such evolution of reproductive traits in response to cold stress is not well studied. Methods We selected replicate populations of D. melanogaster for resistance to cold shock. Over 37–46 generations of selection, we investigated pre- and post-copulatory traits such as mating latency, copulation duration, mating frequency, male fertility, fitness (progeny production) and sperm competitive ability in male flies subjected to cold shock and those not subjected to cold shock. Results We found that post cold shock, the males from the selected populations had a significantly lower mating latency along with, higher mating frequency, fertility, sperm competitive ability and number of progeny relative to the control populations. Conclusion While most studies of experimental evolution of cold stress resistance have documented the evolution of survivorship in response to selection, our study clearly shows that adaptation to cold stress involves rapid changes in the pre- and post-copulatory traits. Additionally, improved performances under stressful conditions need not necessarily trade-off with performance under benign conditions. PMID:27093599
Barreto, Felipe S; Avise, John C
2010-10-07
Taxa in which males alone invest in postzygotic care of offspring are often considered good models for investigating the proffered relationships between sexual selection and mating systems. In the pycnogonid sea spider Pycnogonum stearnsi, males carry large egg masses on their bodies for several weeks, so this species is a plausible candidate for sex-role reversal (greater intensity of sexual selection on females than on males). Here, we couple a microsatellite-based assessment of the mating system in a natural population with formal quantitative measures of genetic fitness to investigate the direction of sexual selection in P. stearnsi. Both sexes proved to be highly polygamous and showed similar standardized variances in reproductive and mating successes. Moreover, the fertility (number of progeny) of males and females appeared to be equally and highly dependent on mate access, as shown by similar Bateman gradients for the two sexes. The absence of sex-role reversal in this population of P. stearnsi is probably attributable to the fact that males are not limited by brooding space but have evolved an ability to carry large numbers of progeny. Body length was not a good predictor of male mating or reproductive success, so the aim of future studies should be to determine what traits are the targets of sexual selection in this species.
Can preference for oviposition sites initiate reproductive isolation in Callosobruchus maculatus?
Rova, Emma; Björklund, Mats
2011-01-31
Theory has identified a variety of evolutionary processes that may lead to speciation. Our study includes selection experiments using different host plants and test key predictions concerning models of speciation based on host plant choice, such as the evolution of host use (preference and performance) and assortative mating. This study shows that after only ten generations of selection on different resources/hosts in allopatry, strains of the seed beetle Callosobruchus maculatus develop new resource preferences and show resource-dependent assortative mating when given the possibility to choose mates and resources during secondary contact. The resulting reduced gene flow between the different strains remained for two generations after contact before being overrun by disassortative mating. We show that reduced gene flow can evolve in a population due to a link between host preference and assortative mating, although this result was not found in all lines. However, consistent with models of speciation, assortative mating alone is not sufficient to maintain reproductive isolation when individuals disperse freely between hosts. We conclude that the evolution of reproductive isolation in this system cannot proceed without selection against hybrids. Other possible factors facilitating the evolution of isolation would be longer periods of allopatry, the build up of local adaptation or reduced migration upon secondary contact.
Managing the rate of increase in average co-ancestry in a rolling front tree breeding strategy.
Kerr, R J; McRae, T A; Dutkowski, G W; Tier, B
2015-04-01
In breeding forest trees, as for livestock, the goal is to capture as much genetic gain as possible for the breeding objective, while limiting long- and short-term inbreeding. The Southern Tree Breeding Association (STBA) is responsible for breeding Australia's two main commercial forest tree species and has adopted algorithms and methods commonly used in animal breeding to achieve this balance. Discrete generation breeding is the norm for most tree breeding programmes. However, the STBA uses an overlapping generation strategy, with a new stream of breeding initiated each year. A feature of the species bred by the STBA (Pinus radiata and Eucalyptus globulus) is the long interval (up to 7 years) between when an individual is mated and when its progeny is first assessed in field trials and performance data included in the national performance database. Mate selection methods must therefore recognize the large pool of unmeasured progeny generated over recent years of crossing. In addition, the substantial delay between when an individual is selected in a field trial and when it is clonally copied into a mating facility (breeding arboretum) means that selection and mating must occur as a two-step process. In this article, we describe modifications to preselection and mate selection algorithms that allow unmeasured progeny (juveniles) to be recognized. We also demonstrate that the addition of hypothetical new progeny to the juvenile pool is important for computing the increase in average co-ancestry in the population. Methods outlined in this article may have relevance to animal breeding programmes where between mating and progeny measurement, new rounds of mating are initiated. © 2015 Blackwell Verlag GmbH.
DuVal, Emily H; Kempenaers, Bart
2008-09-07
Leks are classic models for studies of sexual selection due to extreme variance in male reproductive success, but the relative influence of intrasexual competition and female mate choice in creating this skew is debatable. In the lekking lance-tailed manakin (Chiroxiphia lanceolata), these selective episodes are temporally separated into intrasexual competition for alpha status and female mate choice among alpha males that rarely interact. Variance in reproductive success between status classes of adult males (alpha versus non-alpha) can therefore be attributed to male-male competition whereas that within status largely reflects female mate choice. This provides an excellent opportunity for quantifying the relative contribution of each of these mechanisms of sexual selection to the overall opportunity for sexual selection on males (I males). To calculate variance in actual reproductive success, we assigned genetic paternity to 92.3% of 447 chicks sampled in seven years. Reproduction by non-alphas was rare and apparently reflected status misclassifications or opportunistic copulations en route to attaining alpha status rather than alternative mating strategies. On average 31% (range 7-44%, n=6 years) of the total I males was due to variance in reproductive success between alphas and non-alphas. Similarly, in a cohort of same-aged males followed for six years, 44-58% of the total I males was attributed to variance between males of different status. Thus, both intrasexual competition for status and female mate choice among lekking alpha males contribute substantially to the potential for sexual selection in this species.
DuVal, Emily H; Kempenaers, Bart
2008-01-01
Leks are classic models for studies of sexual selection due to extreme variance in male reproductive success, but the relative influence of intrasexual competition and female mate choice in creating this skew is debatable. In the lekking lance-tailed manakin (Chiroxiphia lanceolata), these selective episodes are temporally separated into intrasexual competition for alpha status and female mate choice among alpha males that rarely interact. Variance in reproductive success between status classes of adult males (alpha versus non-alpha) can therefore be attributed to male–male competition whereas that within status largely reflects female mate choice. This provides an excellent opportunity for quantifying the relative contribution of each of these mechanisms of sexual selection to the overall opportunity for sexual selection on males (Imales). To calculate variance in actual reproductive success, we assigned genetic paternity to 92.3% of 447 chicks sampled in seven years. Reproduction by non-alphas was rare and apparently reflected status misclassifications or opportunistic copulations en route to attaining alpha status rather than alternative mating strategies. On average 31% (range 7–44%, n=6 years) of the total Imales was due to variance in reproductive success between alphas and non-alphas. Similarly, in a cohort of same-aged males followed for six years, 44–58% of the total Imales was attributed to variance between males of different status. Thus, both intrasexual competition for status and female mate choice among lekking alpha males contribute substantially to the potential for sexual selection in this species. PMID:18495620
Sympatric speciation by sexual selection alone is unlikely.
Arnegard, Matthew E; Kondrashov, Alexey S
2004-02-01
According to Darwin, sympatric speciation is driven by disruptive, frequency-dependent natural selection caused by competition for diverse resources. Recently, several authors have argued that disruptive sexual selection can also cause sympatric speciation. Here, we use hypergeometric phenotypic and individual-based genotypic models to explore sympatric speciation by sexual selection under a broad range of conditions. If variabilities of preference and display traits are each caused by more than one or two polymorphic loci, sympatric speciation requires rather strong sexual selection when females exert preferences for extreme male phenotypes. Under this kind of mate choice, speciation can occur only if initial distributions of preference and display are close to symmetric. Otherwise, the population rapidly loses variability. Thus, unless allele replacements at very few loci are enough for reproductive isolation, female preferences for extreme male displays are unlikely to drive sympatric speciation. By contrast, similarity-based female preferences that do not cause sexual selection are less destabilizing to the maintenance of genetic variability and may result in sympatric speciation across a broader range of initial conditions. Certain groups of African cichlids have served as the exclusive motivation for the hypothesis of sympatric speciation by sexual selection. Mate choice in these fishes appears to be driven by female preferences for extreme male phenotypes rather than similarity-based preferences, and the evolution of premating reproductive isolation commonly involves at least several genes. Therefore, differences in female preferences and male display in cichlids and other species of sympatric origin are more likely to have evolved as isolating mechanisms under disruptive natural selection.
Knott, Cheryl Denise; Emery Thompson, Melissa; Stumpf, Rebecca M.; McIntyre, Matthew H.
2010-01-01
Intersexual conflicts over mating can engender antagonistic coevolution of strategies, such as coercion by males and selective resistance by females. Orangutans are exceptional among mammals for their high levels of forced copulation. This has typically been viewed as an alternative mating tactic used by the competitively disadvantaged unflanged male morph, with little understanding of how female strategies may have shaped and responded to this behaviour. Here, we show that male morph is not by itself a good predictor of mating dynamics in wild Bornean orangutans but that female conception risk mediated the occurrence and quality of male–female interactions. Near ovulation, females mated cooperatively only with prime flanged males who they encountered at higher rates. When conception risk was low, willingness to associate and mate with non-prime males increased. Our results support the hypothesis that, together with concealed ovulation, facultative association is a mechanism of female choice in a species in which females can rarely avoid coercive mating attempts. Female resistance, which reduced copulation time, may provide an additional mechanism for mate selection. However, coercive factors were also important as prime males were frequently aggressive to females and females used mating strategies consistent with infanticide avoidance. PMID:19812079
Ingleby, Fiona C.; Hunt, John; Hosken, David J.
2013-01-01
Recent research has highlighted the potential importance of environmental and genotype-by-environment (G×E) variation in sexual selection, but most studies have focussed on the expression of male sexual traits. Consequently, our understanding of genetic variation for plasticity in female mate choice is extremely poor. In this study we examine the genetics of female mate choice in Drosophila simulans using isolines reared across two post-eclosion temperatures. There was evidence for G×Es in female choosiness and preference, which suggests that the evolution of female mate choice behaviour could differ across environments. However, the ranked order of preferred males was consistent across females and environments, so the same males are favoured by mate choice in spite of G×Es. Our study highlights the importance of taking cross-environment perspectives in order to gain a more comprehensive understanding of the operation of sexual selection. PMID:23825675
Gershman, Susan N.; Mitchell, Christopher; Sakaluk, Scott K.; Hunt, John
2012-01-01
Nuptial food gifts function to enhance male fertilization success, but their consumption is not always beneficial to females. In decorated crickets, the spermatophore transferred at mating includes a gelatinous mass, the spermatophylax, which is consumed by females after mating. However, females often discard spermatophylaxes shortly after mating, whereupon they terminate sperm transfer. We hypothesized that females discard gifts based on their assessment of the gift itself, and specifically the composition of free amino acids. We tested this hypothesis by comparing spermatophylaxes discarded by females after mating with those that were destined to be fully consumed, and employed multivariate selection analysis to quantify the strength and form of multivariate sexual selection operating on the free amino acid composition of gifts. The analysis yielded a saddle-shaped fitness surface with two local peaks. Different amino acid profiles appear to elicit continued feeding on the spermatophylax either because they offer the same level of gustatory appeal, or because they differentially affect both the gustatory appeal and texture of the spermatophylax. We conclude that the gustatory response of females to males' nuptial food gifts represents an important avenue of post-copulatory mate choice, imposing significant sexual selection on the free amino acid composition of the spermatophylax. PMID:22357263
Testing mate choice and overdominance at MH in natural families of Atlantic salmon Salmo salar.
Tentelier, C; Barroso-Gomila, O; Lepais, O; Manicki, A; Romero-Garmendia, I; Jugo, B M
2017-04-01
This study aimed to test mate choice and selection during early life stages on major histocompatibility (MH) genotype in natural families of Atlantic salmon Salmo salar spawners and juveniles, using nine microsatellites to reconstruct families, one microsatellite linked to an MH class I gene and one minisatellite linked to an MH class II gene. MH-based mate choice was only detected for the class I locus on the first year, with lower expected heterozygosity in the offspring of actually mated pairs than predicted under random mating. The genotype frequencies of MH-linked loci observed in the juveniles were compared with frequencies expected from Mendelian inheritance of parental alleles to detect selection during early life stages. No selection was detected on the locus linked to class I gene. For the locus linked to class II gene, observed heterozygosity was higher than expected in the first year and lower in the second year, suggesting overdominance and underdominance, respectively. Within family, juveniles' body size was linked to heterozygosity at the same locus, with longer heterozygotes in the first year and longer homozygotes in the second year. Selection therefore seems to differ from one locus to the other and from year to year. © 2017 The Fisheries Society of the British Isles.
Clark, Rulon W; Schuett, Gordon W; Repp, Roger A; Amarello, Melissa; Smith, Charles F; Herrmann, Hans-Werner
2014-01-01
Long-term studies of individual animals in nature contribute disproportionately to our understanding of the principles of ecology and evolution. Such field studies can benefit greatly from integrating the methods of molecular genetics with traditional approaches. Even though molecular genetic tools are particularly valuable for species that are difficult to observe directly, they have not been widely adopted. Here, we used molecular genetic techniques in a 10-year radio-telemetric investigation of the western diamond-backed rattlesnake (Crotalus atrox) for an analysis of its mating system and to measure sexual selection. Specifically, we used microsatellite markers to genotype 299 individuals, including neonates from litters of focal females to ascertain parentage using full-pedigree likelihood methods. We detected high levels of multiple paternity within litters, yet found little concordance between paternity and observations of courtship and mating behavior. Larger males did not father significantly more offspring, but we found evidence for size-specific male-mating strategies, with larger males guarding females for longer periods in the mating seasons. Moreover, the spatial proximity of males to mothers was significantly associated with reproductive success. Overall, our field observations alone would have been insufficient to quantitatively measure the mating system of this population of C. atrox, and we thus urge more widespread adoption of molecular tools by field researchers studying the mating systems and sexual selection of snakes and other secretive taxa.
Clark, Rulon W.; Schuett, Gordon W.; Repp, Roger A.; Amarello, Melissa; Smith, Charles F.; Herrmann, Hans-Werner
2014-01-01
Long-term studies of individual animals in nature contribute disproportionately to our understanding of the principles of ecology and evolution. Such field studies can benefit greatly from integrating the methods of molecular genetics with traditional approaches. Even though molecular genetic tools are particularly valuable for species that are difficult to observe directly, they have not been widely adopted. Here, we used molecular genetic techniques in a 10-year radio-telemetric investigation of the western diamond-backed rattlesnake (Crotalus atrox) for an analysis of its mating system and to measure sexual selection. Specifically, we used microsatellite markers to genotype 299 individuals, including neonates from litters of focal females to ascertain parentage using full-pedigree likelihood methods. We detected high levels of multiple paternity within litters, yet found little concordance between paternity and observations of courtship and mating behavior. Larger males did not father significantly more offspring, but we found evidence for size-specific male-mating strategies, with larger males guarding females for longer periods in the mating seasons. Moreover, the spatial proximity of males to mothers was significantly associated with reproductive success. Overall, our field observations alone would have been insufficient to quantitatively measure the mating system of this population of C. atrox, and we thus urge more widespread adoption of molecular tools by field researchers studying the mating systems and sexual selection of snakes and other secretive taxa. PMID:24598810
Hurtado-Gonzales, Jorge L; Uy, J Albert C
2010-12-23
Intense competition for access to females can lead to males exploiting different components of sexual selection, and result in the evolution of alternative mating strategies (AMSs). Males of Poecilia parae, a colour polymorphic fish, exhibit five distinct phenotypes: drab-coloured (immaculata), striped (parae), structural-coloured (blue) and carotenoid-based red and yellow morphs. Previous work indicates that immaculata males employ a sneaker strategy, whereas the red and yellow morphs exploit female preferences for carotenoid-based colours. Mating strategies favouring the maintenance of the other morphs remain to be determined. Here, we report the role of agonistic male-male interactions in influencing female mating preferences and male mating success, and in facilitating the evolution of AMSs. Our study reveals variation in aggressiveness among P. parae morphs during indirect and direct interactions with sexually receptive females. Two morphs, parae and yellow, use aggression to enhance their mating success (i.e., number of copulations) by 1) directly monopolizing access to females, and 2) modifying female preferences after winning agonistic encounters. Conversely, we found that the success of the drab-coloured immaculata morph, which specializes in a sneak copulation strategy, relies in its ability to circumvent both male aggression and female choice when facing all but yellow males. Strong directional selection is expected to deplete genetic variation, yet many species show striking genetically-based polymorphisms. Most studies evoke frequency dependent selection to explain the persistence of such variation. Consistent with a growing body of evidence, our findings suggest that a complex form of balancing selection may alternatively explain the evolution and maintenance of AMSs in a colour polymorphic fish. In particular, this study demonstrates that intrasexual competition results in phenotypically distinct males exhibiting clear differences in their levels of aggression to exclude potential sexual rivals. By being dominant, the more aggressive males are able to circumvent female mating preferences for attractive males, whereas another male type incorporates subordinate behaviours that allow them to circumvent male aggression and female mating preferences. Together, these and previous results indicate that exploiting different aspects of social interactions may allow males to evolve distinct mating strategies and thus the long term maintenance of polymorphisms within populations.
Predator experience overrides learned aversion to heterospecifics in stickleback species pairs
Kozak, Genevieve M.; Boughman, Janette W.
2015-01-01
Predation risk can alter female mating decisions because the costs of mate searching and selecting attractive mates increase when predators are present. In response to predators, females have been found to plastically adjust mate preference within species, but little is known about how predators alter sexual isolation and hybridization among species. We tested the effects of predator exposure on sexual isolation between benthic and limnetic threespine sticklebacks (Gasterosteus spp.). Female discrimination against heterospecific mates was measured before and after females experienced a simulated attack by a trout predator or a control exposure to a harmless object. In the absence of predators, females showed increased aversion to heterospecifics over time. We found that predator exposure made females less discriminating and precluded this learned aversion to heterospecifics. Benthic and limnetic males differ in coloration, and predator exposure also affected sexual isolation by weakening female preferences for colourful males. Predator effects on sexual selection were also tested but predators had few effects on female choosiness among conspecific mates. Our results suggest that predation risk may disrupt the cognitive processes associated with mate choice and lead to fluctuations in the strength of sexual isolation between species. PMID:25808887
Sexual selection and mating chronology of Lesser Prairie-Chickens
Behney, Adam C.; Grisham, Blake A.; Boal, Clint W.; Whitlaw, Heather A.; Haukos, David A.
2012-01-01
Little is known about mate selection and lek dynamics of Lesser Prairie-Chickens (Tympanuchus pallidicinctus). We collected data on male territory size and location on leks, behavior, and morphological characteristics and assessed the importance of these variables on male Lesser Prairie-Chicken mating success during spring 2008 and 2009 in the Texas Southern High Plains. We used discrete choice models and found that males that were less idle were chosen more often for mating. Our results also suggest that males with smaller territories obtained more copulations. Morphological characteristics were weaker predictors of male mating success. Peak female attendance at leks occurred during the 1-week interval starting 13 April during both years of study. Male prairie-chickens appear to make exploratory movements to, and from, leks early in the lekking season; 13 of 19 males banded early (23 Feb–13 Mar) in the lekking season departed the lek of capture and were not reobserved (11 yearlings, 2 adults). Thirty-three percent (range = 26–51%) of males on a lek mated (yearlings = 44%, adults = 20%) and males that were more active experienced greater mating success.
Cognitive ability is heritable and predicts the success of an alternative mating tactic
Smith, Carl; Philips, André; Reichard, Martin
2015-01-01
The ability to attract mates, acquire resources for reproduction, and successfully outcompete rivals for fertilizations may make demands on cognitive traits—the mechanisms by which an animal acquires, processes, stores and acts upon information from its environment. Consequently, cognitive traits potentially undergo sexual selection in some mating systems. We investigated the role of cognitive traits on the reproductive performance of male rose bitterling (Rhodeus ocellatus), a freshwater fish with a complex mating system and alternative mating tactics. We quantified the learning accuracy of males and females in a spatial learning task and scored them for learning accuracy. Males were subsequently allowed to play the roles of a guarder and a sneaker in competitive mating trials, with reproductive success measured using paternity analysis. We detected a significant interaction between male mating role and learning accuracy on reproductive success, with the best-performing males in maze trials showing greater reproductive success in a sneaker role than as a guarder. Using a cross-classified breeding design, learning accuracy was demonstrated to be heritable, with significant additive maternal and paternal effects. Our results imply that male cognitive traits may undergo intra-sexual selection. PMID:26041347
Cognitive ability is heritable and predicts the success of an alternative mating tactic.
Smith, Carl; Philips, André; Reichard, Martin
2015-06-22
The ability to attract mates, acquire resources for reproduction, and successfully outcompete rivals for fertilizations may make demands on cognitive traits--the mechanisms by which an animal acquires, processes, stores and acts upon information from its environment. Consequently, cognitive traits potentially undergo sexual selection in some mating systems. We investigated the role of cognitive traits on the reproductive performance of male rose bitterling (Rhodeus ocellatus), a freshwater fish with a complex mating system and alternative mating tactics. We quantified the learning accuracy of males and females in a spatial learning task and scored them for learning accuracy. Males were subsequently allowed to play the roles of a guarder and a sneaker in competitive mating trials, with reproductive success measured using paternity analysis. We detected a significant interaction between male mating role and learning accuracy on reproductive success, with the best-performing males in maze trials showing greater reproductive success in a sneaker role than as a guarder. Using a cross-classified breeding design, learning accuracy was demonstrated to be heritable, with significant additive maternal and paternal effects. Our results imply that male cognitive traits may undergo intra-sexual selection. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Sex roles and mutual mate choice matter during mate sampling.
Myhre, Lise Cats; de Jong, Karen; Forsgren, Elisabet; Amundsen, Trond
2012-06-01
The roles of females and males in mating competition and mate choice have lately proven more variable, between and within species, than previously thought. In nature, mating competition occurs during mate search and is expected to be regulated by the numbers of potential mates and same-sex competitors. Here, we present the first study to test how a temporal change in sex roles affects mating competition and mate choice during mate sampling. Our model system (the marine fish Gobiusculus flavescens) is uniquely suitable because of its change in sex roles, from conventional to reversed, over the breeding season. As predicted from sex role theory, courtship was typically initiated by males and terminated by females early in the breeding season. The opposite pattern was observed late in the season, at which time several females often simultaneously courted the same male. Mate-searching females visited more males early than late in the breeding season. Our study shows that mutual mate choice and mating competition can have profound effects on female and male behavior. Future work needs to consider the dynamic nature of mating competition and mate choice if we aim to fully understand sexual selection in the wild.
Assortative Mating: Encounter-Network Topology and the Evolution of Attractiveness
Dipple, S.; Jia, T.; Caraco, T.; Korniss, G.; Szymanski, B. K.
2017-01-01
We model a social-encounter network where linked nodes match for reproduction in a manner depending probabilistically on each node’s attractiveness. The developed model reveals that increasing either the network’s mean degree or the “choosiness” exercised during pair formation increases the strength of positive assortative mating. That is, we note that attractiveness is correlated among mated nodes. Their total number also increases with mean degree and selectivity during pair formation. By iterating over the model’s mapping of parents onto offspring across generations, we study the evolution of attractiveness. Selection mediated by exclusion from reproduction increases mean attractiveness, but is rapidly balanced by skew in the offspring distribution of highly attractive mated pairs. PMID:28345625
Correlational selection does not explain the evolution of a behavioural syndrome.
Han, C S; Brooks, R C
2013-10-01
Correlated suites of behaviours, or behavioural syndromes, appear to be widespread, and yet few studies have explored how they arise and are maintained. One possibility holds that correlational selection can generate and maintain behavioural syndrome if certain behavioural combinations enjoy greater fitness than other combinations. Here we test this correlational selection hypothesis by comparing behavioural syndrome structure with a multivariate fitness surface based on reproductive success of male water striders. We measured the structure of a behavioural syndrome including dispersal ability, exploration behaviour, latency to remount and sex recognition sensitivity in males. We then measured the relationship between these behaviours and mating success in a range of sex ratio environments. Despite the presence of some significant correlational selection, behavioural syndrome structure was not associated with correlational selection on behaviours. Although we cannot conclusively reject the correlational selection hypothesis, our evidence suggests that correlational selection and resulting linkage disequilibrium might not be responsible for maintaining the strong correlations between behaviours. Instead, we suggest alternative ways in which this behavioural syndrome may have arisen and outline the need for physiological and quantitative genetic tests of these suggestions. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Steiger, S; Capodeanu-Nägler, A; Gershman, S N; Weddle, C B; Rapkin, J; Sakaluk, S K; Hunt, J
2015-12-01
Indirect genetic benefits derived from female mate choice comprise additive (good genes) and nonadditive genetic benefits (genetic compatibility). Although good genes can be revealed by condition-dependent display traits, the mechanism by which compatibility alleles are detected is unclear because evaluation of the genetic similarity of a prospective mate requires the female to assess the genotype of the male and compare it to her own. Cuticular hydrocarbons (CHCs), lipids coating the exoskeleton of most insects, influence female mate choice in a number of species and offer a way for females to assess genetic similarity of prospective mates. Here, we determine whether female mate choice in decorated crickets is based on male CHCs and whether it is influenced by females' own CHC profiles. We used multivariate selection analysis to estimate the strength and form of selection acting on male CHCs through female mate choice, and employed different measures of multivariate dissimilarity to determine whether a female's preference for male CHCs is based on similarity to her own CHC profile. Female mating preferences were significantly influenced by CHC profiles of males. Male CHC attractiveness was not, however, contingent on the CHC profile of the choosing female, as certain male CHC phenotypes were equally attractive to most females, evidenced by significant linear and stabilizing selection gradients. These results suggest that additive genetic benefits, rather than nonadditive genetic benefits, accrue to female mate choice, in support of earlier work showing that CHC expression of males, but not females, is condition dependent. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Maroja, Luana S; McKenzie, Zachary M; Hart, Elizabeth; Jing, Joy; Larson, Erica L; Richardson, David P
2014-03-28
Pre-zygotic barriers often involve some form of sexual selection, usually interpreted as female choice, as females are typically the choosier sex. However, males typically show some mate preferences, which are increasingly reported. Here we document previously uncharacterized male courtship behavior (effort and song) and cuticular hydrocarbon (CHC) profiles in the hybridizing crickets Gryllus firmus and G. pennsylvanicus. These two species exhibit multiple barriers to gene exchange that act throughout their life history, including a behavioral barrier that results in increased time to mate in heterospecific pairs. We demonstrated that male mate choice (as courtship effort allocation) plays a more important role in the prezygotic behavioral barrier than previously recognized. In gryllids females ultimately decide whether or not to mate, yet we found males were selective by regulating courtship effort intensity toward the preferred (conspecific) females. Females were also selective by mating with more intensely courting males, which happened to be conspecifics. We report no differences in courtship song between the two species and suggest that the mechanism that allows males to act differentially towards conspecific and heterospecific females is the cuticular hydrocarbon (CHC) composition. CHC profiles differed between males and females of both species, and there were clear differences in CHC composition between female G. firmus and G. pennsylvanicus but not between the males of each species. Although many barriers to gene exchange are known in this system, the mechanism behind the mate recognition leading to reduced heterospecific mating remains unknown. The CHC profiles might be the phenotypic cue that allow males to identify conspecifics and thus to adjust their courtship intensity accordingly, leading to differential mating between species.
Creative Activity, Personality, Mental Illness, and Short-Term Mating Success
ERIC Educational Resources Information Center
Beaussart, Melanie L.; Kaufman, Scott Barry; Kaufman, James C.
2012-01-01
It has been argued that creativity evolved, at least in part, through sexual selection to attract mates. Recent research lends support to this view and has also demonstrated a link between certain dimensions of schizotypy, creativity, and short-term mating. The current study delves deeper into these relationships by focusing on engagement in…
Phillips, Tim; Ferguson, Eamonn; Rijsdijk, Fruhling
2010-11-01
Altruistic behaviour raises major questions for psychology and biology. One hypothesis proposes that human altruistic behaviour evolved as a result of sexual selection. Mechanisms that seek to explain how sexual selection works suggest genetic influence acting on both the mate preference for the trait and the preferred trait itself. We used a twin study to estimate whether genetic effects influenced responses to psychometric scales measuring mate preference towards altruistic traits (MPAT) and the preferred trait (i.e., 'altruistic personality'). As predicted, we found significant genetic effects influencing variation in both. We also predicted that individuals expressing stronger MPAT and 'altruistic personality' would have mated at a greater frequency in ancestral populations. We found evidence for this in that 67% of the covariance in the phenotypic correlation between the two scales was associated with significant genetic effects. Both sets of findings are thus consistent with the hypothesized link between sexual selection and human altruism towards non-kin. We discuss how this study contributes to our understanding of altruistic behaviour and how further work might extend this understanding.
Iglesias-Carrasco, M; Head, M L; Jennions, M D; Cabido, C
2017-10-01
Selection can favour phenotypic plasticity in mate choice in response to environmental factors that alter the costs and benefits of being choosy, or of choosing specific mates. Human-induced environmental change could alter sexual selection by affecting the costs of mate choice, or by impairing the ability of individuals to identify preferred mates. For example, variation in mate choice could be driven by environmentally induced differences in body condition (e.g. health) that change the cost of choosiness, or by environmental effects on the ability to detect or discriminate sexual signals. We teased apart these possibilities experimentally, by comparing female mate choice in the palmate newt Lissotriton helveticus between environments that mimic water from either native oak forests or exotic eucalypt plantations. In laboratory two-choice mate trials in clean water, females with prolonged exposure (21 days) to waterborne chemicals leached from eucalypt leaves did not preferentially associate with the male with a stronger immune response, but females exposed to water with chemicals from oak leaves did. In contrast, female choice was unaffected by the immediate presence or absence of eucalypt leachates during mate choice (using only females previously held in oak-treated water). The habitat-related change in female choice we observed is likely to be driven by effects of eucalypt leachates on female physiology, rather than immediate inhibition of pheromone transmission or blocking of pheromone reception. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
NASA Astrophysics Data System (ADS)
Wang, Qiao; Chen, Li-Yuan
2005-05-01
Long-range sex pheromones have been demonstrated for several cerambycid beetle species. Our field study on the mating behavior of Zorion guttigerum, on the basis of its temporal and spatial distributions on mating and feeding sites (flowers), and longevity, however, suggests that such pheromones are not used by this species. Plant characteristics rather than long-range sex pheromones may play an important role in bringing both sexes together. Adult activities on flowers occur exclusively during the day with two peaks, one around midday and the other in the late afternoon. Overall operational sex ratio is male-biased (≈1 ♀:1.5 ♂) but it becomes very highly male-biased (≈1 ♀:9 ♂) when mating and feeding activities decrease to the minimum in mid-afternoon, suggesting that females leave flowers to oviposit during that period of time. For cerambycid species whose females oviposit alone, and in which mating and oviposition occur on different plants or different plant parts, the operational sex ratio appears to vary significantly over time on the mating sites. The number and duration of pair-bondings also vary over time for Z. guttigerum. Fewer and shorter pair-bondings in the morning may suggest a strong sexual selection process. After ≈2 h of selection, both sexes tend to engage in longer pair-bondings and mate more times before females leave the mating sites in mid-afternoon. Details of the mating behavior are described here.
Wang, Qiao; Chen, Li-Yuan
2005-05-01
Long-range sex pheromones have been demonstrated for several cerambycid beetle species. Our field study on the mating behavior of Zorion guttigerum, on the basis of its temporal and spatial distributions on mating and feeding sites (flowers), and longevity, however, suggests that such pheromones are not used by this species. Plant characteristics rather than long-range sex pheromones may play an important role in bringing both sexes together. Adult activities on flowers occur exclusively during the day with two peaks, one around midday and the other in the late afternoon. Overall operational sex ratio is male-biased ( approximately 1 female symbol:1.5 male symbol) but it becomes very highly male-biased ( approximately 1 female symbol:9 male symbol) when mating and feeding activities decrease to the minimum in mid-afternoon, suggesting that females leave flowers to oviposit during that period of time. For cerambycid species whose females oviposit alone, and in which mating and oviposition occur on different plants or different plant parts, the operational sex ratio appears to vary significantly over time on the mating sites. The number and duration of pair-bondings also vary over time for Z. guttigerum. Fewer and shorter pair-bondings in the morning may suggest a strong sexual selection process. After approximately 2 h of selection, both sexes tend to engage in longer pair-bondings and mate more times before females leave the mating sites in mid-afternoon. Details of the mating behavior are described here.
Marcela, P; Hassan, A Abu; Hamdan, A; Dieng, H; Kumara, T K
2015-12-01
Mating behavior between Aedes aegypti and Ae. albopictus, established colony strains were examined under laboratory conditions (30-cm(3) screened cages) for 5 consecutive days. The effect of selected male densities (30, 20, 10) and female density (20) on the number of swarming, mating pairs, eggs produced, and inseminated females were evaluated. Male densities significantly increased swarming behavior, mating pairs, and egg production of heterospecific females, but female insemination was reduced. Aedes aegypti males mate more readily with heterospecific females than do Ae. albopictus males. The current study suggests that Ae. aegypti males were not species-specific in mating, and if released into the field as practiced in genetically modified mosquito techniques, they may mate with both Ae. aegypti and Ae. albopictus females, hence reducing populations of both species by producing infertile eggs.
Cotto, Olivier; Servedio, Maria R
2017-11-01
In recent years, theoretical models have introduced the concept that ongoing hybridization between "good" species can occur because incomplete reproductive isolation can be a selected optimum. They furthermore show that positive frequency-dependent sexual selection, which is naturally generated by some of the underlying processes that lead to assortative mating, plays a key role in the evolution of incomplete reproductive isolation. This occurs, however, through different mechanisms in sympatric versus allopatric scenarios. We investigate the evolution of incomplete reproductive isolation by sexual selection in scenarios ranging from sympatry to allopatry, to examine how these mechanisms interact. We consider an ecological scenario in which there are two habitats used during foraging and individuals can breed either within a habitat or in a common mating pool. We find that when trait divergence is maintained, sexual selection drives the evolution of choosiness in opposite ways in the common mating pool versus within each habitat. Specifically, strong choosiness is favored in the common mating pool, whereas intermediate choosiness is favored within habitat; the interaction of these forces determines whether intermediate reproductive isolation ultimately evolves in the system. We further find cases where the evolution of stronger choosiness occurs but leads to the loss of divergence. Overall, our study shows that contrasting forces on the evolution of reproductive isolation can occur in different mating areas, and we propose a new avenue for understanding the diversity in levels of reproductive isolation within and across species.
Nonlinear and correlational sexual selection on 'honest' female ornamentation.
LeBas, Natasha R; Hockham, Leon R; Ritchie, Michael G
2003-01-01
Female ornamentation has long been overlooked because of the greater prevalence of elaborate displays in males. However, the circumstances under which females would benefit from honestly signalling their quality are limited. Females are not expected to invest in ornamentation unless the fitness benefits of the ornament exceed those derived from investing the resources directly into offspring. It has been proposed that when females gain direct benefits from mating, females may instead be selected for ornamentation that deceives males about their reproductive state. In the empidid dance flies, males frequently provide nuptial gifts and it is usually only the female that is ornamented. Female traits in empidids, such as abdominal sacs and enlarged pinnate leg scales, have been proposed to 'deceive' males into matings by disguising egg maturity. We quantified sexual selection in the dance fly Rhamphomyia tarsata and found escalating, quadratic selection on pinnate scales and that pinnate scales honestly reflect female fecundity. Mated females had a larger total number and more mature eggs than unmated females, highlighting a potential benefit rather than a cost of male mate choice. We also show correlational selection on female pinnate scales and fecundity. Correlational selection, equivalent investment patterns or increased nutrition from nuptial gifts may all maintain honesty in female ornamentation. PMID:14561280
Jones, Adam G.; Walker, DeEtte; Kvarnemo, Charlotta; Lindström, Kai; Avise, John C.
2001-01-01
Alternative mating strategies are common in nature and are generally thought to increase the intensity of sexual selection. However, cuckoldry can theoretically decrease the opportunity for sexual selection, particularly in highly polygamous species. We address here the influence of sneaking (fertilization thievery) on the opportunity for sexual selection in the sand goby Pomatoschistus minutus, a marine fish species in which males build and defend nests. Our microsatellite-based analysis of the mating system in a natural sand goby population shows high rates of sneaking and multiple mating by males. Sneaker males had fertilized eggs in ≈50% of the assayed nests, and multiple sneakers sometimes fertilized eggs from a single female. Successful males had received eggs from 2 to 6 females per nest (mean = 3.4). We developed a simple mathematical model showing that sneaking in this polygynous sand goby population almost certainly decreases the opportunity for sexual selection, an outcome that contrasts with the usual effects of cuckoldry in socially monogamous animals. These results highlight a more complex and interesting relationship between cuckoldry rates and the intensity of sexual selection than previously assumed in much of the literature on animal mating systems. PMID:11481481
Terminal Investment Strategies and Male Mate choice: Extreme Tests of Bateman.
Andrade, Maydianne C B; Kasumovic, Michael M
2005-11-01
Bateman's principle predicts the intensity of sexual selection depends on rates of increase of fecundity with mating success for each sex (Bateman slopes). The sex with the steeper increase (usually males) is under more intense sexual selection and is expected to compete for access to the sex under less intense sexual selection (usually females). Under Bateman and modern refinements of his ideas, differences in parental investment are key to defining Bateman slopes and thus sex roles. Other theories predict sex differences in mating investment, or any expenditures that reduce male potential reproductive rate, can also control sex roles. We focus on sexual behaviour in systems where males have low paternal investment but frequently mate only once in their lifetimes, after which they are often killed by the female. Mating effort (=terminal investment) is high for these males, and many forms of investment theory might predict sex role reversal. We find no qualitative evidence for sex role reversal in a sample of spiders that show this extreme male investment pattern. We also present new data for terminally-investing redback spiders (Latrodectus hasselti). Bateman slopes are relatively steep for male redbacks, and, as predicted by Bateman, there is little evidence for role reversal. Instead, males are competitive and show limited choosiness despite wide variation in female reproductive value. This study supports the proposal that high male mating investment coupled with low parental investment may predispose males to choosiness but will not lead to role reversal. We support the utility of using Bateman slopes to predict sex roles, even in systems with extreme male mating investment.
Genetic determinants of mate recognition in Brachionus manjavacas (Rotifera)
Snell, Terry W; Shearer, Tonya L; Smith, Hilary A; Kubanek, Julia; Gribble, Kristin E; Welch, David B Mark
2009-01-01
Background Mate choice is of central importance to most animals, influencing population structure, speciation, and ultimately the survival of a species. Mating behavior of male brachionid rotifers is triggered by the product of a chemosensory gene, a glycoprotein on the body surface of females called the mate recognition pheromone. The mate recognition pheromone has been biochemically characterized, but little was known about the gene(s). We describe the isolation and characterization of the mate recognition pheromone gene through protein purification, N-terminal amino acid sequence determination, identification of the mate recognition pheromone gene from a cDNA library, sequencing, and RNAi knockdown to confirm the functional role of the mate recognition pheromone gene in rotifer mating. Results A 29 kD protein capable of eliciting rotifer male circling was isolated by high-performance liquid chromatography. Two transcript types containing the N-terminal sequence were identified in a cDNA library; further characterization by screening a genomic library and by polymerase chain reaction revealed two genes belonging to each type. Each gene begins with a signal peptide region followed by nearly perfect repeats of an 87 to 92 codon motif with no codons between repeats and the final motif prematurely terminated by the stop codon. The two Type A genes contain four and seven repeats and the two Type B genes contain three and five repeats, respectively. Only the Type B gene with three repeats encodes a peptide with a molecular weight of 29 kD. Each repeat of the Type B gene products contains three asparagines as potential sites for N-glycosylation; there are no asparagines in the Type A genes. RNAi with Type A double-stranded RNA did not result in less circling than in the phosphate-buffered saline control, but transfection with Type B double-stranded RNA significantly reduced male circling by 17%. The very low divergence between repeat units, even at synonymous positions, suggests that the repeats are kept nearly identical through a process of concerted evolution. Information-rich molecules like surface glycoproteins are well adapted for chemical communication and aquatic animals may have evolved signaling systems based on these compounds, whereas insects use cuticular hydrocarbons. Conclusion Owing to its critical role in mating, the mate recognition pheromone gene will be a useful molecular marker for exploring the mechanisms and rates of selection and the evolution of reproductive isolation and speciation using rotifers as a model system. The phylogenetic variation in the mate recognition pheromone gene can now be studied in conjunction with the large amount of ecological and population genetic data being gathered for the Brachionus plicatilis species complex to understand better the evolutionary drivers of cryptic speciation. PMID:19740420
Genetic determinants of mate recognition in Brachionus manjavacas (Rotifera).
Snell, Terry W; Shearer, Tonya L; Smith, Hilary A; Kubanek, Julia; Gribble, Kristin E; Welch, David B Mark
2009-09-09
Mate choice is of central importance to most animals, influencing population structure, speciation, and ultimately the survival of a species. Mating behavior of male brachionid rotifers is triggered by the product of a chemosensory gene, a glycoprotein on the body surface of females called the mate recognition pheromone. The mate recognition pheromone has been biochemically characterized, but little was known about the gene(s). We describe the isolation and characterization of the mate recognition pheromone gene through protein purification, N-terminal amino acid sequence determination, identification of the mate recognition pheromone gene from a cDNA library, sequencing, and RNAi knockdown to confirm the functional role of the mate recognition pheromone gene in rotifer mating. A 29 kD protein capable of eliciting rotifer male circling was isolated by high-performance liquid chromatography. Two transcript types containing the N-terminal sequence were identified in a cDNA library; further characterization by screening a genomic library and by polymerase chain reaction revealed two genes belonging to each type. Each gene begins with a signal peptide region followed by nearly perfect repeats of an 87 to 92 codon motif with no codons between repeats and the final motif prematurely terminated by the stop codon. The two Type A genes contain four and seven repeats and the two Type B genes contain three and five repeats, respectively. Only the Type B gene with three repeats encodes a peptide with a molecular weight of 29 kD. Each repeat of the Type B gene products contains three asparagines as potential sites for N-glycosylation; there are no asparagines in the Type A genes. RNAi with Type A double-stranded RNA did not result in less circling than in the phosphate-buffered saline control, but transfection with Type B double-stranded RNA significantly reduced male circling by 17%. The very low divergence between repeat units, even at synonymous positions, suggests that the repeats are kept nearly identical through a process of concerted evolution. Information-rich molecules like surface glycoproteins are well adapted for chemical communication and aquatic animals may have evolved signaling systems based on these compounds, whereas insects use cuticular hydrocarbons. Owing to its critical role in mating, the mate recognition pheromone gene will be a useful molecular marker for exploring the mechanisms and rates of selection and the evolution of reproductive isolation and speciation using rotifers as a model system. The phylogenetic variation in the mate recognition pheromone gene can now be studied in conjunction with the large amount of ecological and population genetic data being gathered for the Brachionus plicatilis species complex to understand better the evolutionary drivers of cryptic speciation.
Deng, Yan; Zheng, Yong
2015-01-26
Studies of humans and non-human animals indicate that females tend to change the likelihood of choosing a potential mate based on the decisions of other females; this is known as mate-choice copying. In a sample of both single and coupled women, we examined the influence of other women's (model) mate-choice decisions, including mate acceptance and mate rejection, on participants' attractiveness ratings of men (target) and willingness of mate selection. We also examined whether different types of relationships between the target men and the model women affected mate-choice copying. We found that both the single and coupled women showed mate-choice copying, but their response patterns differed. The significant effects for single women were dependent on a decrease in attractiveness ratings when they perceived the models' mate rejection. However, the significant findings for coupled women relied on an increase in attractiveness ratings when they observed the models' mate acceptance. Furthermore, the relationship status between the target men and the model women affected the magnitude of mate-choice copying effects for the single women. Specifically, they showed less mate-choice copying when the targets and models were in a committed romantic relationship than when in a temporary relationship.
Ambivalent Sexism and Power-Related Gender-role Ideology in Marriage
Chen, Zhixia; Fiske, Susan T.; Lee, Tiane L.
2013-01-01
Glick-Fiske's (1996) Ambivalent Sexism Inventory(ASI) and a new Gender-Role Ideology in Marriage (GRIM) inventory examine ambivalent sexism toward women, predicting power-related, gender-role beliefs about mate selection and marriage norms. Mainland Chinese, 552, and 252 U.S. undergraduates participated. Results indicated that Chinese and men most endorsed hostile sexism; Chinese women more than U.S. women accepted benevolent sexism. Both Chinese genders prefer home-oriented mates (women especially seeking a provider and upholding him; men especially endorsing male-success/female-housework, male dominance, and possibly violence). Both U.S. genders prefer considerate mates (men especially seeking an attractive one). Despite gender and culture differences in means, ASI-GRIM correlations replicate across those subgroups: Benevolence predicts initial mate selection; hostility predicts subsequent marriage norms. PMID:24058258
High estradiol and low progesterone are associated with high assertiveness in women.
Blake, Khandis R; Bastian, Brock; O'Dean, Siobhan M; Denson, Thomas F
2017-01-01
Sexual selection theory posits that women are more selective than men are when choosing a mate. This evolutionary theory suggests that "choosiness" increases during the fertile window because the costs and benefits of mate selection are highest when women are likely to conceive. Little research has directly investigated reproductive correlates of choice assertion. To address this gap, in the present research we investigated whether fertility, estradiol, and progesterone influenced general assertiveness in women. We recruited 98 naturally cycling, ethnically diverse women. Using a within-subjects design and ovarian hormone concentrations at fertile and non-fertile menstrual cycle phases, we measured implicit assertiveness and self-reported assertive behavior. To see if fertility-induced high assertiveness was related to increased sexual motivation, we also measured women's implicit sexual availability and interest in buying sexy clothes. Results showed that high estradiol and low progesterone predicted higher assertiveness. Sexual availability increased during periods of high fertility. Low progesterone combined with high estradiol predicted greater interest in buying sexy clothes. Results held when controlling for individual differences in mate value and sociosexual orientation. Our findings support the role of fluctuating ovarian hormones in the expression and magnitude of women's assertiveness. High assertiveness during the fertile window may be a psychological adaptation that promotes mate selectivity and safeguards against indiscriminate mate choice when conception risk is highest. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thomson, Ian R.; Darveau, Charles-A.; Bertram, Susan M.
2014-01-01
High mating success in animals is often dependent on males signalling attractively with high effort. Since males should be selected to maximize their reproductive success, female preferences for these traits should result in minimal signal variation persisting in the population. However, extensive signal variation persists. The genic capture hypothesis proposes genetic variation persists because fitness-conferring traits depend on an individual's basic processes, including underlying physiological, morphological, and biochemical traits, which are themselves genetically variable. To explore the traits underlying signal variation, we quantified among-male differences in signalling, morphology, energy stores, and the activities of key enzymes associated with signalling muscle metabolism in two species of crickets, Gryllus assimilis (chirper: <20 pulses/chirp) and G. texensis (triller: >20 pulses/chirp). Chirping G. assimilis primarily fuelled signalling with carbohydrate metabolism: smaller individuals and individuals with increased thoracic glycogen stores signalled for mates with greater effort; individuals with greater glycogen phosphorylase activity produced more attractive mating signals. Conversely, the more energetic trilling G. texensis fuelled signalling with both lipid and carbohydrate metabolism: individuals with increased β-hydroxyacyl-CoA dehydrogenase activity and increased thoracic free carbohydrate content signalled for mates with greater effort; individuals with higher thoracic and abdominal carbohydrate content and higher abdominal lipid stores produced more attractive signals. Our findings suggest variation in male reproductive success may be driven by hidden physiological trade-offs that affect the ability to uptake, retain, and use essential nutrients, although the results remain correlational in nature. Our findings indicate that a physiological perspective may help us to understand some of the causes of variation in behaviour. PMID:24608102
40 CFR 799.9355 - TSCA reproduction/developmental toxicity screening test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the mating period and, approximately, two weeks post-mating). In view of the limited pre-mating dosing...) Selection of animal species. This test standard is designed for use with the rat. If other species are used... three test groups and a control group should be used. Dose levels may be based on information from acute...
40 CFR 799.9355 - TSCA reproduction/developmental toxicity screening test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the mating period and, approximately, two weeks post-mating). In view of the limited pre-mating dosing...) Selection of animal species. This test standard is designed for use with the rat. If other species are used... three test groups and a control group should be used. Dose levels may be based on information from acute...
40 CFR 799.9355 - TSCA reproduction/developmental toxicity screening test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the mating period and, approximately, two weeks post-mating). In view of the limited pre-mating dosing...) Selection of animal species. This test standard is designed for use with the rat. If other species are used... three test groups and a control group should be used. Dose levels may be based on information from acute...
Perceptions of Mate Selection for Marriage among African American, College-Educated, Single Mothers
ERIC Educational Resources Information Center
Holland, Rochelle
2009-01-01
This ethnographic study researched the perceptions of mate selection for marriage and the decisions of college-educated, African American mothers who bore children while single. Twenty-five senior-level African American students who attended a college in New York City participated in the study. There has been a significant change in the family…
Males of the orb-web spider Argiope bruennichi sacrifice themselves to unrelated females
Welke, Klaas W.; Schneider, Jutta M.
2010-01-01
Costs of inbreeding can lead to total reproductive failure and inbreeding avoidance is, therefore, common. In classical sex roles with no paternal care, the selective pressure to avoid inbreeding is mostly on the female, which carries the higher costs. In some orb-web spiders, this situation is very different because females are polyandrous and males are monogynous or at most bigynous. Additionally, females of many entelegyne orb weavers are thought to bias paternity post-copulatorily towards a desired mate. This increases the selective pressure on males to adjust their investment in a mating with regard to the compatibility to a female. Here, we examine whether genetic relatedness influences mating behaviour in the orb-web spider Argiope bruennichi. We mated either a sibling or a non-sibling male to a female in single copulation trials and compared copulation duration, cannibalism rate and female fecundity. Our experiment revealed that males prolonged their copulation duration and were cannibalized more frequently when mating with a non-sibling female. Males mating with a sibling female were more likely to escape cannibalism by copulating briefly, thus presumably increasing their chances of re-mating with a more compatible female. This suggests that males can adaptively adjust their investment relating to the compatibility of a female. PMID:20410027
Orihuela, Pedro A; Zuñiga, Lidia M; Rios, Mariana; Parada-Bustamante, Alexis; Sierralta, Walter D; Velásquez, Luis A; Croxatto, Horacio B
2009-11-30
Mating changes the mode of action of 17beta-estradiol (E2) to accelerate oviductal egg transport from a nongenomic to a genomic mode, although in both pathways estrogen receptors (ER) are required. This change was designated as intracellular path shifting (IPS). Herein, we examined the subcellular distribution of ESR1 and ESR2 (formerly known as ER-alpha and ER-beta) in oviductal epithelial cells of rats on day 1 of cycle (C1) or pregnancy (P1) using immunoelectron microscopy for ESR1 and ESR2. The effect of mating on intraoviductal ESR1 or ESR2 signaling was then explored comparing the expression of E2-target genes c-fos, brain creatine kinase (Ckb) and calbindin 9 kDa (s100g) in rats on C1 or P1 treated with selective agonists for ESR1 (PPT) or ESR2 (DPN). The effect of ER agonists on egg transport was also evaluated on C1 or P1 rats. Receptor immunoreactivity was associated with the nucleus, cytoplasm and plasma membrane of the epithelial cells. Mating affected the subcellular distribution of both receptors as well as the response to E2. In C1 and P1 rats, PPT increased Ckb while both agonists increased c-fos. DPN increased Ckb and s100g only in C1 and P1 rats, respectively. PPT accelerated egg transport in both groups and DPN accelerated egg transport only in C1 rats. Estrogen receptors present a subcellular distribution compatible with E2 genomic and nongenomic signaling in the oviductal epithelial cells of C1 and P1 although IPS occurs independently of changes in the distribution of ESR1 and ESR2 in the oviductal epithelial cells. Mating affected intraoviductal ER-signaling and induced loss of functional involvement of ESR2 on E2-induced accelerated egg transport. These findings reveal a profound influence on the ER signaling pathways exerted by mating in the oviduct.
Sex Ratio Bias Leads to the Evolution of Sex Role Reversal in Honey Locust Beetles.
Fritzsche, Karoline; Booksmythe, Isobel; Arnqvist, Göran
2016-09-26
The reversal of conventional sex roles was enigmatic to Darwin, who suggested that it may evolve when sex ratios are female biased [1]. Here we present direct evidence confirming Darwin's hypothesis. We investigated mating system evolution in a sex-role-reversed beetle (Megabruchidius dorsalis) using experimental evolution under manipulated sex ratios and food regimes. In female-biased populations, where reproductive competition among females was intensified, females evolved to be more attractive and the sex roles became more reversed. Interestingly, female-specific mating behavior evolved more rapidly than male-specific mating behavior. We show that sexual selection due to reproductive competition can be strong in females and can target much the same traits as in males of species with conventional mating systems. Our study highlights two central points: the role of ecology in directing sexual selection and the role that females play in mating system evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Weijian; Zhang, Yuchi; Li, Fengying; Li, Xinyu; Li, Ping; Jia, Xiaoyu; Chen, Haide; Ji, Haojie
2015-01-01
Although a growing number of empirical studies have revealed that activating mate-related motives might exert a specific set of consequences for human cognition and behaviors, such as attention and memory, little is known about whether mate-related motives affect self-regulated learning. The present study examined the effects of mate-related motives (mate-search and mate-guarding) on study-time allocation to faces varying in attractiveness. In two experiments, participants in mate-related priming conditions (Experiment 1: mate-search; Experiment 2: mate-guarding) or control conditions studied 20 female faces (10 highly attractive, 10 less attractive) during a self-paced study task, and then were given a yes/no face recognition task. The finding of Experiment 1 showed that activating a mate-search motive led the male participants to allocate more time to highly attractive female faces (i.e., perceived potential mates) than to less attractive ones. In Experiment 2, female participants in the mate-guarding priming condition spent more time studying highly attractive female faces (i.e., perceived potential rivals) than less attractive ones, compared to participants in the control condition. These findings illustrate the highly specific consequences of mate-related motives on study-time allocation, and highlight the value of exploring human cognition and motivation within evolutionary and self-regulated learning frameworks.
Li, Fengying; Li, Xinyu; Li, Ping; Jia, Xiaoyu; Chen, Haide; Ji, Haojie
2015-01-01
Although a growing number of empirical studies have revealed that activating mate-related motives might exert a specific set of consequences for human cognition and behaviors, such as attention and memory, little is known about whether mate-related motives affect self-regulated learning. The present study examined the effects of mate-related motives (mate-search and mate-guarding) on study-time allocation to faces varying in attractiveness. In two experiments, participants in mate-related priming conditions (Experiment 1: mate-search; Experiment 2: mate-guarding) or control conditions studied 20 female faces (10 highly attractive, 10 less attractive) during a self-paced study task, and then were given a yes/no face recognition task. The finding of Experiment 1 showed that activating a mate-search motive led the male participants to allocate more time to highly attractive female faces (i.e., perceived potential mates) than to less attractive ones. In Experiment 2, female participants in the mate-guarding priming condition spent more time studying highly attractive female faces (i.e., perceived potential rivals) than less attractive ones, compared to participants in the control condition. These findings illustrate the highly specific consequences of mate-related motives on study-time allocation, and highlight the value of exploring human cognition and motivation within evolutionary and self-regulated learning frameworks. PMID:26121131
Correlated evolution of beak morphology and song in the neotropical woodcreeper radiation.
Derryberry, Elizabeth Perrault; Seddon, Nathalie; Claramunt, Santiago; Tobias, Joseph Andrew; Baker, Adam; Aleixo, Alexandre; Brumfield, Robb Thomas
2012-09-01
Mating signals may diversify as a byproduct of morphological adaptation to different foraging niches, potentially driving speciation. Although many studies have focused on the direct influence of ecological and sexual selection on signal divergence, the role of indirect mechanisms remains poorly understood. Using phenotypic and molecular datasets, we explored the interplay between morphological and vocal evolution in an avian radiation characterized by dramatic beak variation, the Neotropical woodcreepers (Dendrocolaptinae). We found evidence of a trade-off between the rate of repetition of song syllables and frequency bandwidth: slow paced songs had either narrow or wide frequency bandwidths, and bandwidth decreased as song pace increased. This bounded phenotypic space for song structure supports the hypothesis that passerine birds face a motor constraint during song production. Diversification of acoustic characters within this bounded space was correlated with diversification of beak morphology. In particular, species with larger beaks produced slower songs with narrower frequency bandwidths, suggesting that ecological selection on beak morphology influences the diversification of woodcreeper songs. Because songs in turn mediate mate choice and species recognition in birds, these results indicate a broader role for ecology in avian diversification. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Albo, Maria J.; Peretti, Alfredo V.
2015-01-01
In nuptial gift-giving species females sometimes select their potential mates based on the presence and size of the gift. But in some species, such as the Neotropical polyandrous spider Paratrechalea ornate male gifts vary in quality, from nutritive to worthless, and this male strategy can be in conflict with female nutritional benefits. In this species, males without gifts experience a reduction in mating success and duration, while males that offer worthless or genuine nutritive gifts mate with similar frequencies and durations. The female apparently controls the duration of copulation. Thus, there is scope for females to favour males offering gifts and further if these are nutritious, via post-copulatory processes. We first tested whether females differentially store sperm from males that offer the highest nutritional benefits by experimentally presenting females with males that offer either nutritive or worthless gifts (uninterrupted matings). Second, we carried out another set of experiments to examine whether females can select sperm based only on gift presence. This time we interrupted matings after the first pedipalp insertion, thus matching number of insertions and mating duration for males that: offered and did not offer gift. Our results showed that the amount of sperm stored is positive related to mating duration in all groups, except in matings with worthless gifts. Gift presence itself did not affect the sperm stored by females, while they store similar number of sperm in matings with males offering either nutritive or worthless gifts. We discuss whether females prefer males with gifts regardless, if content, because it represents an attractive and/or reliable signal. Or alternatively, they prefer nutritive nuptial gifts, as they are an important source of food supply and/or signal of male donor ability. PMID:26107397
Henry, Laurence; Bourguet, Cécile; Coulon, Marion; Aubry, Christine; Hausberger, Martine
2013-02-01
Breeding decisions in birds involve both mate and nest choice, and there is increasing evidence that social influences may modulate individual choices. Female preferences may be affected by other females' preferences and mutual choice cannot always be excluded, which makes the whole pattern more complex than assumed by most sexual selection models. Social transmission may be facilitated by particular social bonds, therefore prebreeding social networks may influence later mate choices. The other case where females share mate or resources is polygyny, generally viewed to only benefit males. If mutual benefits may arise then mechanisms should evolve to reduce the reproductive cost for females such as to reduce the cost of aggression by sharing their mate with a preferred same-sex social partner. We tested the hypothesis that females' mating decisions may be influenced by the prebreeding social network and that social partner relations established prior to breeding may share decisions (mate/sites) in a facultatively polygynous species, the European starling. Two experiments were designed to test the relative importance of male or nest by following the whole dynamics of the breeding cycle from the prebreeding period until mate and nest selection. In both cases socially isolated females tended to be excluded from breeding, while prebreeding social partners tended to share mates and to nest in close proximity, mate copying leading in some case to polygyny. The final pattern resulted both from female "likes and dislikes" and male preferences for some females. Aggressive interactions between females were rare. Vocal sharing between females may have been a clue for males as to the degree of social integration of these females. PsycINFO Database Record (c) 2013 APA, all rights reserved
The mating behavior of Iguana iguana
Rodda, G.H.
1992-01-01
Over a 19 month period I observed the social behaviors of individually recognized green iguanas, Iguana iguana, at three sites in the llanos of Venezuela. The behavior of iguanas outside the mating season differed from that seen during the mating season in three major ways: (1) during normal waking hours outside the breeding season, adult iguanas spent the majority of time immobile, apparently resting; (2) their interactions involved fewer high intensity displays; and (3) their day to day movements were often nomadic. During the mating season, one site was watched continuously during daylight hours (iguanas sleep throughout the night), allowing a complete count of all copulation attempts (N = 250) and territorial interactions. At all sites, dominant males controlled access to small mating territories. Within the territories there did not appear to be any resources needed by females or their offspring. Thus, females could choose mates directly on the basis of male phenotype. Females aggregated in the mating territories of the largest males and mated preferentially with them. Territorial males copulated only once per day, although on several occasions more than one resident female was receptive on the same day. A few small nonterritorial males exhibited pseudofemale behavior (i.e., they abstained from sexual competition), but most nonterritorial males stayed on the periphery of mating territories and attempted to force copulations on unguarded females (peripheral male behavior). Uncooperative females were mounted by as many as three males simultaneously. Females resisted 95% of the 200 observed mating attempts by peripheral males, but only 56% of the attempts by territorial males (N = 43). The selectivity of the females probably increased the genetic representation of the territorial males in the next generation. During the mating season females maintained a dominance hierarchy among themselves. Low ranked females tended to be excluded from preferred mating territories. In this system, both sexes may be subjected to sexual selection. I hypothesize that the ecological factors responsible for the unusual mating system are related to the lack of defendable resources, the iguana's folivory, and the high density of iguanas present in preferred mating areas.
Tobias, Joseph A; Montgomerie, Robert; Lyon, Bruce E
2012-08-19
Ornaments, weapons and aggressive behaviours may evolve in female animals by mate choice and intrasexual competition for mating opportunities-the standard forms of sexual selection in males. However, a growing body of evidence suggests that selection tends to operate in different ways in males and females, with female traits more often mediating competition for ecological resources, rather than mate acquisition. Two main solutions have been proposed to accommodate this disparity. One is to expand the concept of sexual selection to include all mechanisms related to fecundity; another is to adopt an alternative conceptual framework-the theory of social selection-in which sexual selection is one component of a more general form of selection resulting from all social interactions. In this study, we summarize the history of the debate about female ornaments and weapons, and discuss potential resolutions. We review the components of fitness driving ornamentation in a wide range of systems, and show that selection often falls outside the limits of traditional sexual selection theory, particularly in females. We conclude that the evolution of these traits in both sexes is best understood within the unifying framework of social selection.
Biased learning affects mate choice in a butterfly.
Westerman, Erica L; Hodgins-Davis, Andrea; Dinwiddie, April; Monteiro, Antónia
2012-07-03
Early acquisition of mate preferences or mate-preference learning is associated with signal diversity and speciation in a wide variety of animal species. However, the diversity of mechanisms of mate-preference learning across taxa remains poorly understood. Using the butterfly Bicyclus anynana we uncover a mechanism that can lead to directional sexual selection via mate-preference learning: a bias in learning enhanced ornamentation, which is independent of preexisting mating biases. Naïve females mated preferentially with wild-type males over males with enhanced wing ornamentation, but females briefly exposed to enhanced males mated significantly more often with enhanced males. In contrast, females exposed to males with reduced wing ornamentation did not learn to prefer drab males. Thus, we observe both a learned change of a preexisting mating bias, and a bias in ability to learn enhanced male ornaments over reduced ornaments. Our findings demonstrate that females are able to change their preferences in response to a single social event, and suggest a role for biased learning in the evolution of visual sexual ornamentation.
Tan, Cedric Kai Wei; Doyle, Philippa; Bagshaw, Emma; Richardson, David S.; Wigby, Stuart; Pizzari, Tommaso
2017-01-01
In structured populations, competition for reproductive opportunities should be relaxed among related males. The few tests of this prediction often neglect the fact that sexual selection acts through multiple mechanisms, both before and after mating. We performed experiments to study the role of within‐group male relatedness across pre‐ and postcopulatory mechanisms of sexual selection in social groups of red junglefowl, Gallus gallus, in which two related males and one unrelated male competed over females unrelated to all the males. We confirm theoretical expectations that, after controlling for male social status, competition over mating was reduced among related males. However, this effect was contrasted by other sexual selection mechanisms. First, females biased male mating in favor of the unrelated male, and might also favor his inseminations after mating. Second, males invested more—rather than fewer—sperm in postcopulatory competition with relatives. A number of factors may contribute to explain this counterintuitive pattern of sperm allocation, including trade‐offs between male investment in pre‐ versus postcopulatory competition, differences in the relative relatedness of pre‐ versus postcopulatory competitors, and female bias in sperm utilization in response to male relatedness. Collectively, these results reveal that within‐group male relatedness may have contrasting effects in different mechanisms of sexual selection. PMID:27925168
Is it useful to view the brain as a secondary sexual characteristic?
Ball, Gregory F; Balthazart, Jacques; McCarthy, Margaret M
2014-10-01
Many sex differences in brain and behavior related to reproduction are thought to have evolved based on sexual selection involving direct competition for mates during male-male competition and female choice. Therefore, certain aspects of brain circuitry can be viewed as secondary sexual characteristics. The study of proximate causes reveals that sex differences in the brain of mammals and birds reflect organizational and activational effects of sex steroids as articulated by Young and collaborators. However, sex differences in brain and behavior have been identified in the cognitive domain with no obvious link to reproduction. Recent views of sexual selection advocate for a broader view of how intra-sexual selection might occur including such examples as competition within female populations for resources that facilitate access to mates rather than mating competition per se. Sex differences can also come about for other reasons than sexual selection and recent work on neuroendocrine mechanisms has identified a plethora of ways that the brain can develop in a sex specific manner. Identifying the brain as sexually selected requires careful hypothesis testing so that one can link a sex-biased aspect of a neural trait to a behavior that provides an advantage in a competitive mating situation. Copyright © 2014 Elsevier Ltd. All rights reserved.
The relationship between health and mating success in humans
Rhodes, Gillian
2017-01-01
Health has been claimed to play an important role in human sexual selection, especially in terms of mate choice. Our preferences for attractive individuals are said to represent evolved adaptations for finding high-quality, healthy mates. If this is true, then we expect health to predict mating success in humans. We tested this hypothesis using several important physiological indicators of health, including immune function, oxidative stress and semen quality, and self-reported measures of sexual behaviour that contribute to mating success. In contrast to our hypothesis, we did not find a relationship between the physiological measures of health and sexual behaviour. Our results provide little support for claims that health, at least the health measures we used, increases mating success in relatively healthy humans. PMID:28280558
Female mate choice by chemical signals in a semi-terrestrial crab
NASA Astrophysics Data System (ADS)
Sal Moyano, María Paz; Silva, Paola; Luppi, Tomás; Gavio, María Andrea
2014-01-01
Information about the roles of both sexes in pair formation is required to better understand the mechanisms involved in sexual selection. Mate choice could depend on the courtship behavior, involving chemical, tactile and visual signals. We determined if Neohelice granulata mate choice is based on female or male choice, considering visual and chemical with contact and without contact signals between partners and different categories of individuals: receptive and unreceptive females; and large, small, mated or unmated males. Experiments showed that mate selection was based on receptive female's choice using chemical signals, but not visual ones. Since copulation occurs during high and low tides, water-borne chemical signals would be preferentially used during high tide, while contact ones during low tide. Females preferred large and unmated males, while males did not seem to recognize receptive females using chemical neither visual signals. Females were capable of detecting the presence of the chemical signals released by large and unmated males, but not its amount. It is proposed that small and mated males are probably releasing different types of chemical signals, not attractive to females, or that they are not emitting any signal.
Looking for sexual selection in the female brain.
Cummings, Molly E
2012-08-19
Female mate choice behaviour has significant evolutionary consequences, yet its mechanistic origins are not fully understood. Recent studies of female sensory systems have made great strides in identifying internal mechanisms governing female preferences. Only recently, however, have we begun to identify the dynamic genomic response associated with mate choice behaviour. Poeciliids provide a powerful comparative system to examine genomic responses governing mate choice and female preference behaviour, given the great range of mating systems: from female mate choice taxa with ornamental courting males to species lacking male ornamentation and exhibiting only male coercion. Furthermore, they exhibit laboratory-tractable preference responses without sexual contact that are decoupled from reproductive state, allowing investigators to isolate mechanisms in the brain without physiological confounds. Early investigations with poeciliid species (Xiphophorus nigrensis and Gambusia affinis) have identified putative candidate genes associated with female preference response and highlight a possible genomic pathway underlying female social interactions with males linked functionally with synaptic plasticity and learning processes. This network is positively correlated with female preference behaviour in the female mate choice species, but appears inhibited in the male coercive species. This behavioural genomics approach provides opportunity to elucidate the fundamental building blocks, and evolutionary dynamics, of sexual selection.
Intraspecific Variation in Female Sex Pheromone of the Codling Moth Cydia pomonella
Duménil, Claire; Judd, Gary J. R.; Bosch, Dolors; Baldessari, Mario; Gemeno, César; Groot, Astrid T.
2014-01-01
The codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), is a major pest of apple, pear and walnut orchards worldwide. This pest is often controlled using the biologically friendly control method known as pheromone-based mating disruption. Mating disruption likely exerts selection on the sexual communication system of codling moth, as male and female moths will persist in their attempt to meet and mate. Surprisingly little is known on the intraspecific variation of sexual communication in this species. We started an investigation to determine the level of individual variation in the female sex pheromone composition of this moth and whether variation among different populations might be correlated with use of mating disruption against those populations. By extracting pheromone glands of individual females from a laboratory population in Canada and from populations from apple orchards in Spain and Italy, we found significant between- and within-population variation. Comparing females that had been exposed to mating disruption, or not, revealed a significant difference in sex pheromone composition for two of the minor components. Overall, the intraspecific variation observed shows the potential for a shift in female sexual signal when selection pressure is high, as is the case with continuous use of mating disruption. PMID:26462935
Intraspecific Variation in Female Sex Pheromone of the Codling Moth Cydia pomonella.
Duménil, Claire; Judd, Gary J R; Bosch, Dolors; Baldessari, Mario; Gemeno, César; Groot, Astrid T
2014-09-26
The codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), is a major pest of apple, pear and walnut orchards worldwide. This pest is often controlled using the biologically friendly control method known as pheromone-based mating disruption. Mating disruption likely exerts selection on the sexual communication system of codling moth, as male and female moths will persist in their attempt to meet and mate. Surprisingly little is known on the intraspecific variation of sexual communication in this species. We started an investigation to determine the level of individual variation in the female sex pheromone composition of this moth and whether variation among different populations might be correlated with use of mating disruption against those populations. By extracting pheromone glands of individual females from a laboratory population in Canada and from populations from apple orchards in Spain and Italy, we found significant between- and within-population variation. Comparing females that had been exposed to mating disruption, or not, revealed a significant difference in sex pheromone composition for two of the minor components. Overall, the intraspecific variation observed shows the potential for a shift in female sexual signal when selection pressure is high, as is the case with continuous use of mating disruption.
A Comparison of Candidate Seal Designs for Future Docking Systems
NASA Technical Reports Server (NTRS)
Dunlap, Patrick, H., Jr.; Steinetz, Bruce, M.
2012-01-01
NASA is developing a new docking system to support future space exploration missions to low Earth orbit, the Moon, and other destinations. A key component of this system is the seal at the main docking interface which inhibits the loss of cabin air once docking is complete. Depending on the mission, the seal must be able to dock in either a seal-on-flange or seal-on-seal configuration. Seal-on-flange mating would occur when a docking system equipped with a seal docks to a system with a flat metal flange. This would occur when a vehicle docks to a node on the International Space Station. Seal-on-seal mating would occur when two docking systems equipped with seals dock to each other. Two types of seal designs were identified for this application: Gask-O-seals and multi-piece seals. Both types of seals had a pair of seal bulbs to satisfy the redundancy requirement. A series of performance assessments and comparisons were made between the candidate seal designs indicating that they meet the requirements for leak rate and compression and adhesion loads under a range of operating conditions. Other design factors such as part count, integration into the docking system tunnel, seal-on-seal mating, and cost were also considered leading to the selection of the multi-piece seal design for the new docking system. The results of this study can be used by designers of future docking systems and other habitable volumes to select the seal design best-suited for their particular application.
Gessner, C; Nakagawa, S; Zavodna, M; Gemmell, N J
2017-05-01
Cryptic female choice (CFC), a form of sexual selection during or post mating, describes processes of differential sperm utilization by females to bias fertilization outcomes towards certain males. In Chinook salmon (Oncorhynchus tshawytscha) the ovarian fluid surrounding the ova of a given female differently enhances the sperm velocity of males. Sperm velocity is a key ejaculate trait that determines fertilization success in externally fertilizing fishes, thus the differential effect on sperm velocity might bias male fertilization outcomes and represent a mechanism of CFC. Once sperm reach the oocyte, CFC could potentially be further facilitated by sperm-egg interactions, which are well understood in externally fertilizing marine invertebrates. Here, we explored the potential genetic basis of both possible mechanisms of CFC by examining whether the genotypic combinations of mates (amino-acid divergence, number of shared alleles) at the major histocompatibility complex (MHC) class I and II explain the variation in sperm velocity and/or male fertilization success that is not explained by sperm velocity, which might indicate MHC-based sperm-egg interactions. We recorded sperm velocity in ovarian fluid, employed paired-male fertilization trials and evaluated the fertilization success of each male using microsatellite-based paternity assignment. We showed that relative sperm velocity was positively correlated with fertilization success, confirming that the differential effect on sperm velocity may be a mechanism of CFC in Chinook salmon. The variation in sperm velocity was independent of MHC class I and II. However, the MHC class II divergence of mates explained fertilization success, indicating that this locus might influence sperm-egg interactions.
ERIC Educational Resources Information Center
Weber, Marco; Ruch, Willibald
2012-01-01
The present study investigated the role of 24 character strengths in 87 adolescent romantic relationships focusing on their role in partner selection and their role in mates' life satisfaction. Measures included the Values in Action Inventory of Strengths for Youth, the Students' Life Satisfaction Scale, and an Ideal Partner Profiler for the…
Evolutionary Trade-Off between Secondary Sexual Traits and Ejaculates.
Simmons, Leigh W; Lüpold, Stefan; Fitzpatrick, John L
2017-12-01
Recent theoretical models predict that the evolutionary diversification of the weapons and ornaments of pre-mating sexual selection should be influenced by trade-offs with male expenditure on ejaculates. However, the patterns of association between secondary sexual traits and ejaculate expenditure are frequently inconsistent in their support of this prediction. We show why consideration of additional life-history, ecological, and mating-system variables is crucial for the interpretation of associations between secondary sexual traits and ejaculate production. Incorporation of these 'missing variables' provides evidence that interactions between pre- and post-mating sexual selection can underlie broad patterns of diversification in male weapons and ornaments. We call for more experimental and genetic approaches to uncover trade-offs, as well as for studies that consider the costs of mate-searching. Copyright © 2017 Elsevier Ltd. All rights reserved.
Porretta, Daniele; Urbanelli, Sandra
2012-04-01
How natural selection might be involved in speciation remains a fundamental question in evolutionary biology. When two or more species co-occur in the same areas, natural selection may favor divergence in mating traits. By acting in sympatric but not allopatric populations, natural selection can also affect mate choice within species and ultimately initiate speciation among conspecific populations. Here, we address this potential effect in the sea rock-pool beetles Ochthebius quadricollis and O. urbanelliae. The two species, which inhabit the Mediterranean coasts, co-occurr syntopically in an area along the Italian Tyrrhenian coast and completed reproductive isolation by reinforcement. In this article, through mating trials under laboratory conditions between conspecific populations, we found in O. quadricollis no deviations from random mating. Conversely, in O. urbanelliae, we found a clear pattern of premating isolation between the reinforced populations sympatric with O. quadricollis and those nonreinforced allopatric. This pattern is consistent with the view that natural selection, which completed the reproductive isolation between the two species in sympatry, led incidentally also to partial premating reproductive isolation (I(PSI) estimator from 0.683 to 0.792) between conspecific populations of O. urbanelliae. This case study supports an until recently underappreciated role of natural selection resulting from species interactions in initiating speciation. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Havens, J A; Etges, W J
2013-03-01
Sexual signals in cactophilic Drosophila mojavensis include cuticular hydrocarbons (CHCs), contact pheromones that mediate female discrimination of males during courtship. CHCs, along with male courtship songs, cause premating isolation between diverged populations, and are influenced by genotype × environment interactions caused by different host cacti. CHC profiles of mated and unmated adult flies from a Baja California and a mainland Mexico population of D. mojavensis reared on two host cacti were assayed to test the hypothesis that male CHCs mediate within-population female discrimination of males. In multiple choice courtship trials, mated and unmated males differed in CHC profiles, indicating that females prefer males with particular blends of CHCs. Mated and unmated females significantly differed in CHC profiles as well. Adults in the choice trials had CHC profiles that were significantly different from those in pair-mated adults from no-choice trials revealing an influence of sexual selection. Females preferred different male CHC blends in each population, but the influence of host cactus on CHC variation was significant only in the mainland population indicating population-specific plasticity in CHCs. Different groups of CHCs mediated female choice-based sexual selection in each population suggesting that geographical and ecological divergence has the potential to promote divergence in mate communication systems. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
Swaddle, John P; Cathey, Mark G; Correll, Maureen; Hodkinson, Brendan P
2005-05-22
There is increasing evidence that animals can acquire mate preferences through the use of public information, notably by observing (and copying) the mate preferences of others in the population. If females acquire preferences through social mechanisms, sexual selection could act very rapidly to spread the preference and drive elaboration of the preferred trait(s). Although there are reports of 'mate-choice copying' in polygynous species, there is no clear evidence for this process in monogamous species. Here, we investigated whether adult female zebra finches Taeniopygia guttata can socially acquire sexual preferences for individual males and, in a separate study, for a generalized trait (coloured leg bands) of males. In both studies, test females observed males in two simultaneous conditions: a ('chosen') mixed-sex situation in which a male was paired with a (model) female, and a ('unchosen') same-sex situation in which a male was paired with another male. In the first experiment, after two weeks of females observing males, test females significantly preferred individual males who had been paired with another female (i.e. chosen males). In the second experiment, test females significantly preferred novel males that were wearing the same leg band colour as the apparently chosen males. Our findings are consistent with the conclusion that female zebra finches' mate preferences are altered by public information. Our study implies that mate preferences can spread rapidly through populations by social mechanisms, affecting the strength of sexual selection in a monogamous species.
The evolution of phenotypes and genetic parameters under preferential mating
Roff, Derek A; Fairbairn, Daphne J
2014-01-01
This article extends and adds more realism to Lande's analytical model for evolution under mate choice by using individual-based simulations in which females sample a finite number of males and the genetic architecture of the preference and preferred trait evolves. The simulations show that the equilibrium heritabilities of the preference and preferred trait and the genetic correlation between them (rG), depend critically on aspects of the mating system (the preference function, mode of mate choice, choosiness, and number of potential mates sampled), the presence or absence of natural selection on the preferred trait, and the initial genetic parameters. Under some parameter combinations, preferential mating increased the heritability of the preferred trait, providing a possible resolution for the lek paradox. The Kirkpatrick–Barton approximation for rG proved to be biased downward, but the realized genetic correlations were also low, generally <0.2. Such low values of rG indicate that coevolution of the preference and preferred trait is likely to be very slow and subject to significant stochastic variation. Lande's model accurately predicted the incidence of runaway selection in the simulations, except where preferences were relative and the preferred trait was subject to natural selection. In these cases, runaways were over- or underestimated, depending on the number of males sampled. We conclude that rapid coevolution of preferences and preferred traits is unlikely in natural populations, but that the parameter combinations most conducive to it are most likely to occur in lekking species. PMID:25077025
Wright, Daniel Shane; Pierotti, Michele E R; Rundle, Howard D; McKinnon, Jeffrey S
2015-01-01
Sexual selection drives the evolution of exaggerated male ornaments in many animal species. Female ornamentation is now acknowledged also to be common but is generally less well understood. One example is the recently documented red female throat coloration in some threespine stickleback (Gasterosteus aculeatus) populations. Although female sticklebacks often exhibit a preference for red male throat coloration, the possibility of sexual selection on female coloration has been little studied. Using sequential and simultaneous mate choice trials, we examined male mate preferences for female throat color, as well as pelvic spine color and standard length, using wild-captured threespine sticklebacks from the Little Campbell River, British Columbia. In a multivariate analysis, we found no evidence for a population-level mate preference in males, suggesting the absence of directional sexual selection on these traits arising from male mate choice. Significant variation was detected among males in their preference functions, but this appeared to arise from differences in their mean responsiveness across mating trials and not from variation in the strength (i.e., slope) of their preference, suggesting the absence of individual-level preferences as well. When presented with conspecific intruder males, male response decreased as intruder red throat coloration increased, suggesting that males can discriminate color and other aspects of phenotype in our experiment and that males may use these traits in intrasexual interactions. The results presented here are the first to explicitly address male preference for female throat color in threespine sticklebacks.
Wright, Daniel Shane; Pierotti, Michele E. R.; Rundle, Howard D.; McKinnon, Jeffrey S.
2015-01-01
Sexual selection drives the evolution of exaggerated male ornaments in many animal species. Female ornamentation is now acknowledged also to be common but is generally less well understood. One example is the recently documented red female throat coloration in some threespine stickleback (Gasterosteus aculeatus) populations. Although female sticklebacks often exhibit a preference for red male throat coloration, the possibility of sexual selection on female coloration has been little studied. Using sequential and simultaneous mate choice trials, we examined male mate preferences for female throat color, as well as pelvic spine color and standard length, using wild-captured threespine sticklebacks from the Little Campbell River, British Columbia. In a multivariate analysis, we found no evidence for a population-level mate preference in males, suggesting the absence of directional sexual selection on these traits arising from male mate choice. Significant variation was detected among males in their preference functions, but this appeared to arise from differences in their mean responsiveness across mating trials and not from variation in the strength (i.e., slope) of their preference, suggesting the absence of individual-level preferences as well. When presented with conspecific intruder males, male response decreased as intruder red throat coloration increased, suggesting that males can discriminate color and other aspects of phenotype in our experiment and that males may use these traits in intrasexual interactions. The results presented here are the first to explicitly address male preference for female throat color in threespine sticklebacks. PMID:25806520
Austen, Emily J.; Weis, Arthur E.
2016-01-01
Our understanding of selection through male fitness is limited by the resource demands and indirect nature of the best available genetic techniques. Applying complementary, independent approaches to this problem can help clarify evolution through male function. We applied three methods to estimate selection on flowering time through male fitness in experimental populations of the annual plant Brassica rapa: (i) an analysis of mating opportunity based on flower production schedules, (ii) genetic paternity analysis, and (iii) a novel approach based on principles of experimental evolution. Selection differentials estimated by the first method disagreed with those estimated by the other two, indicating that mating opportunity was not the principal driver of selection on flowering time. The genetic and experimental evolution methods exhibited striking agreement overall, but a slight discrepancy between the two suggested that negative environmental covariance between age at flowering and male fitness may have contributed to phenotypic selection. Together, the three methods enriched our understanding of selection on flowering time, from mating opportunity to phenotypic selection to evolutionary response. The novel experimental evolution method may provide a means of examining selection through male fitness when genetic paternity analysis is not possible. PMID:26911957
Tobias, Joseph A.; Montgomerie, Robert; Lyon, Bruce E.
2012-01-01
Ornaments, weapons and aggressive behaviours may evolve in female animals by mate choice and intrasexual competition for mating opportunities—the standard forms of sexual selection in males. However, a growing body of evidence suggests that selection tends to operate in different ways in males and females, with female traits more often mediating competition for ecological resources, rather than mate acquisition. Two main solutions have been proposed to accommodate this disparity. One is to expand the concept of sexual selection to include all mechanisms related to fecundity; another is to adopt an alternative conceptual framework—the theory of social selection—in which sexual selection is one component of a more general form of selection resulting from all social interactions. In this study, we summarize the history of the debate about female ornaments and weapons, and discuss potential resolutions. We review the components of fitness driving ornamentation in a wide range of systems, and show that selection often falls outside the limits of traditional sexual selection theory, particularly in females. We conclude that the evolution of these traits in both sexes is best understood within the unifying framework of social selection. PMID:22777016
Understanding The Role of Mate Selection Processes in Couples' Pair-Bonding Behavior.
Horwitz, Briana N; Reynolds, Chandra A; Walum, Hasse; Ganiban, Jody; Spotts, Erica L; Reiss, David; Lichtenstein, Paul; Neiderhiser, Jenae M
2016-01-01
Couples are similar in their pair-bonding behavior, yet the reasons for this similarity are often unclear. A common explanation is phenotypic assortment, whereby individuals select partners with similar heritable characteristics. Alternatively, social homogamy, whereby individuals passively select partners with similar characteristic due to shared social backgrounds, is rarely considered. We examined whether phenotypic assortment and/or social homogamy can contribute to mate similarity using a twin-partner design. The sample came from the Twin and Offspring Study in Sweden, which included 876 male and female monozygotic and same-sex dizygotic twins plus their married or cohabitating partners. Results showed that variance in pair-bonding behavior was attributable to genetic and nonshared environmental factors. Furthermore, phenotypic assortment accounted for couple similarity in pair-bonding behavior. This suggests that individuals' genetically based characteristics are involved in their selection of mates with similar pair-bonding behavior.
Why do female Callosobruchus maculatus kick their mates?
van Lieshout, Emile; McNamara, Kathryn B; Simmons, Leigh W
2014-01-01
Sexual conflict is now recognised as an important driver of sexual trait evolution. However, due to their variable outcomes and effects on other fitness components, the detection of sexual conflicts on individual traits can be complicated. This difficulty is exemplified in the beetle Callosobruchus maculatus, where longer matings increase the size of nutritious ejaculates but simultaneously reduce female future receptivity. While previous studies show that females gain direct benefits from extended mating duration, females show conspicuous copulatory kicking behaviour, apparently to dislodge mating males prematurely. We explore the potential for sexual conflict by comparing several fitness components and remating propensity in pairs of full sibling females where each female mated with a male from an unrelated pair of full sibling males. For one female, matings were terminated at the onset of kicking, whereas the other's matings remained uninterrupted. While fecundity (number of eggs) was similar between treatments, uninterrupted matings enhanced adult offspring numbers and fractionally also longevity. However, females whose matings were interrupted at the onset of kicking exhibited an increased propensity to remate. Since polyandry can benefit female fitness in this species, we argue that kicking, rather than being maladaptive, may indicate that females prefer remating over increased ejaculate size. It may thus be difficult to assess the presence of sexual conflict over contested traits such as mating duration when females face a trade off between direct benefits gained from one mating and indirect benefits from additional matings.
Castellano, Sergio; Cermelli, Paolo
2011-04-07
Mate choice depends on mating preferences and on the manner in which mate-quality information is acquired and used to make decisions. We present a model that describes how these two components of mating decision interact with each other during a comparative evaluation of prospective mates. The model, with its well-explored precedents in psychology and neurophysiology, assumes that decisions are made by the integration over time of noisy information until a stopping-rule criterion is reached. Due to this informational approach, the model builds a coherent theoretical framework for developing an integrated view of functions and mechanisms of mating decisions. From a functional point of view, the model allows us to investigate speed-accuracy tradeoffs in mating decision at both population and individual levels. It shows that, under strong time constraints, decision makers are expected to make fast and frugal decisions and to optimally trade off population-sampling accuracy (i.e. the number of sampled males) against individual-assessment accuracy (i.e. the time spent for evaluating each mate). From the proximate-mechanism point of view, the model makes testable predictions on the interactions of mating preferences and choosiness in different contexts and it might be of compelling empirical utility for a context-independent description of mating preference strength. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bahr, Angela; Wilson, Anthony B
2011-05-10
Both natural and sexual selection are thought to influence genetic diversity, but the study of the relative importance of these two factors on ecologically-relevant traits has traditionally focused on species with conventional sex-roles, with male-male competition and female-based mate choice. With its high variability and significance in both immune function and olfactory-mediated mate choice, the major histocompatibility complex (MHC/MH) is an ideal system in which to evaluate the relative contributions of these two selective forces to genetic diversity. Intrasexual competition and mate choice are both reversed in sex-role reversed species, and sex-related differences in the detection and use of MH-odor cues are expected to influence the intensity of sexual selection in such species. The seahorse, Hippocampus abdominalis, has an exceptionally highly developed form of male parental care, with female-female competition and male mate choice. Here, we demonstrate that the sex-role reversed seahorse has a single MH class II beta-chain gene and that the diversity of the seahorse MHIIβ locus and its pattern of variation are comparable to those detected in species with conventional sex roles. Despite the presence of only a single gene copy, intralocus MHIIβ allelic diversity in this species exceeds that observed in species with multiple copies of this locus. The MHIIβ locus of the seahorse exhibits a novel expression domain in the male brood pouch. The high variation found at the seahorse MHIIβ gene indicates that sex-role reversed species are capable of maintaining the high MHC diversity typical in most vertebrates.Whether such species have evolved the capacity to use MH-odor cues during mate choice is presently being investigated using mate choice experiments. If this possibility can be rejected, such systems would offer an exceptional opportunity to study the effects of natural selection in isolation, providing powerful comparative models for understanding the relative importance of selective factors in shaping patterns of genetic variation.
Kin encounter rate and inbreeding avoidance in canids
Geffen, Eli; Kam, Michael; Hefner, Reuven; Hersteinsson, Pall; Angerbjorn, Anders; Dalen, Love; Fuglei, Eva; Noren, Karin; Adams, Jennifer R.; Vicetich, John; Meier, Thomas J.; Mech, L.D.; VonHoldt, Bridgett M.; Stahler, Daniel R.; Wayne, Robert K.
2011-01-01
Mating with close kin can lead to inbreeding depression through the expression of recessive deleterious alleles and loss of heterozygosity. Mate selection may be affected by kin encounter rate, and inbreeding avoidance may not be uniform but associated with age and social system. Specifically, selection for kin recognition and inbreeding avoidance may be more developed in species that live in family groups or breed cooperatively. To test this hypothesis, we compared kin encounter rate and the proportion of related breeding pairs in noninbred and highly inbred canid populations. The chance of randomly encountering a full sib ranged between 1–8% and 20–22% in noninbred and inbred canid populations, respectively. We show that regardless of encounter rate, outside natal groups mates were selected independent of relatedness. Within natal groups, there was a significant avoidance of mating with a relative. Lack of discrimination against mating with close relatives outside packs suggests that the rate of inbreeding in canids is related to the proximity of close relatives, which could explain the high degree of inbreeding depression observed in some populations. The idea that kin encounter rate and social organization can explain the lack of inbreeding avoidance in some species is intriguing and may have implications for the management of populations at risk.
Kin encounter rate and inbreeding avoidance in canids
Geffen, E.; Kam, M.; Hefner, R.; Hersteinsson, P.; Angerbjorn, A.; Dalen, L.; Fuglei, E.; Noren, K.; Adams, J.R.; Vucetich, J.; Meier, T.J.; Mech, L.D.; Vonholdt, B.M.; Stahler, D.R.; Wayne, R.K.
2011-01-01
Mating with close kin can lead to inbreeding depression through the expression of recessive deleterious alleles and loss of heterozygosity. Mate selection may be affected by kin encounter rate, and inbreeding avoidance may not be uniform but associated with age and social system. Specifically, selection for kin recognition and inbreeding avoidance may be more developed in species that live in family groups or breed cooperatively. To test this hypothesis, we compared kin encounter rate and the proportion of related breeding pairs in noninbred and highly inbred canid populations. The chance of randomly encountering a full sib ranged between 1-8% and 20-22% in noninbred and inbred canid populations, respectively. We show that regardless of encounter rate, outside natal groups mates were selected independent of relatedness. Within natal groups, there was a significant avoidance of mating with a relative. Lack of discrimination against mating with close relatives outside packs suggests that the rate of inbreeding in canids is related to the proximity of close relatives, which could explain the high degree of inbreeding depression observed in some populations. The idea that kin encounter rate and social organization can explain the lack of inbreeding avoidance in some species is intriguing and may have implications for the management of populations at risk. ?? 2011 Blackwell Publishing Ltd.
Head, Megan L; Hinde, Camilla A; Moore, Allen J; Royle, Nick J
2014-07-01
According to classical parental care theory males are expected to provide less parental care when offspring in a brood are less likely to be their own, but empirical evidence in support of this relationship is equivocal. Recent work predicts that social interactions between the sexes can modify co-evolution between traits involved in mating and parental care as a result of costs associated with these social interactions (i.e. sexual conflict). In burying beetles (Nicrophorus vespilloides), we use artificial selection on a paternity assurance trait, and crosses within and between selection lines, to show that selection acting on females, not males, can drive the co-evolution of paternity assurance traits and parental care. Males do not care more in response to selection on mating rate. Instead, patterns of parental care change as an indirect response to costs of mating for females. © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.
Candolin, Ulrika; Tukiainen, Iina
2015-10-07
Extravagant male ornaments expressed during reproduction are almost invariably assumed to be sexually selected and evolve through competition for mating opportunities. Yet in species where male reproductive success depends on the defence of offspring, male ornaments could also evolve through social competition for offspring survival. However, in contrast to female ornaments, this possibility has received little attention in males. We show that a male ornament that is traditionally assumed to be sexually selected--the red nuptial coloration of the three-spined stickleback--is under stronger selection for offspring survival than for mating success. Males express most coloration during parenting, when they no longer attract females, and the colour correlates with nest retention and hatching success but not with attractiveness to females. This contradicts earlier assumptions and suggests that social selection for offspring survival rather than for sexual selection for mating success is the main mechanism maintaining the ornament in the population. These results suggest that we should consider other forms of social selection beyond sexual selection when seeking to explain the function and evolution of male ornaments. An incorrect assignment of selection pressures could hamper our understanding of evolution. © 2015 The Author(s).
Comparing pre- and post-copulatory mate competition using social network analysis in wild crickets
Fisher, David N.; Rodríguez-Muñoz, Rolando
2016-01-01
Sexual selection results from variation in success at multiple stages in the mating process, including competition before and after mating. The relationship between these forms of competition, such as whether they trade-off or reinforce one another, influences the role of sexual selection in evolution. However, the relationship between these 2 forms of competition is rarely quantified in the wild. We used video cameras to observe competition among male field crickets and their matings in the wild. We characterized pre- and post-copulatory competition as 2 networks of competing individuals. Social network analysis then allowed us to determine 1) the effectiveness of precopulatory competition for avoiding postcopulatory competition, 2) the potential for divergent mating strategies, and 3) whether increased postcopulatory competition reduces the apparent reproductive benefits of male promiscuity. We found 1) limited effectiveness of precopulatory competition for avoiding postcopulatory competition; 2) males do not specifically engage in only 1 type of competition; and 3) promiscuous individuals tend to mate with each other, which will tend to reduce variance in reproductive success in the population and highlights the trade-off inherent in mate guarding. Our results provide novel insights into the works of sexual competition in the wild. Furthermore, our study demonstrates the utility of using network analyses to study competitive interactions, even in species lacking obvious social structure. PMID:27174599
The Putative Son's Attractiveness Alters the Perceived Attractiveness of the Putative Father.
Prokop, Pavol
2015-08-01
A body of literature has investigated female mate choice in the pre-mating context (pre-mating sexual selection). Humans, however, are long-living mammals forming pair-bonds which sequentially produce offspring. Post-mating evaluations of a partner's attractiveness may thus significantly influence the reproductive success of men and women. I tested herein the theory that the attractiveness of putative sons provides extra information about the genetic quality of fathers, thereby influencing fathers' attractiveness across three studies. As predicted, facially attractive boys were more frequently attributed to attractive putative fathers and vice versa (Study 1). Furthermore, priming with an attractive putative son increased the attractiveness of the putative father with the reverse being true for unattractive putative sons. When putative fathers were presented as stepfathers, the effect of the boy's attractiveness on the stepfather's attractiveness was lower and less consistent (Study 2). This suggests that the presence of an attractive boy has the strongest effect on the perceived attractiveness of putative fathers rather than on non-fathers. The generalized effect of priming with beautiful non-human objects also exists, but its effect is much weaker compared with the effects of putative biological sons (Study 3). Overall, this study highlighted the importance of post-mating sexual selection in humans and suggests that the heritable attractive traits of men are also evaluated by females after mating and/or may be used by females in mate poaching.
InSight Atlas V Centaur Lift and Mate
2018-03-06
At Space Launch Complex 3 at Vandenberg Air Force Base in California, the United Launch Alliance Centaur upper stage is lifted and mated atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Centaur Transport / Lift & Mate
2018-03-06
At Space Launch Complex 3 at Vandenberg Air Force Base in California a crane lifts a United Launch Alliance Centaur upper stage for mating atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Centaur Transport / Lift & Mate
2018-03-06
At Vandenberg Air Force Base in California, a United Launch Alliance Centaur upper stage is transported to Space Launch Complex 3 for mating atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Centaur Lift & Mate
2018-03-06
At Space Launch Complex 3 at Vandenberg Air Force Base in California technicians and engineers mate a United Launch Alliance Centaur upper stage atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Centaur Lift & Mate
2018-03-06
At Space Launch Complex 3 at Vandenberg Air Force Base in California a crane lifts a United Launch Alliance Centaur upper stage for mating atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
No discrimination against previous mates in a sexually cannibalistic spider
NASA Astrophysics Data System (ADS)
Fromhage, Lutz; Schneider, Jutta M.
2005-09-01
In several animal species, females discriminate against previous mates in subsequent mating decisions, increasing the potential for multiple paternity. In spiders, female choice may take the form of selective sexual cannibalism, which has been shown to bias paternity in favor of particular males. If cannibalistic attacks function to restrict a male's paternity, females may have little interest to remate with males having survived such an attack. We therefore studied the possibility of female discrimination against previous mates in sexually cannibalistic Argiope bruennichi, where females almost always attack their mate at the onset of copulation. We compared mating latency and copulation duration of males having experienced a previous copulation either with the same or with a different female, but found no evidence for discrimination against previous mates. However, males copulated significantly shorter when inserting into a used, compared to a previously unused, genital pore of the female.
Multiple convergent supergene evolution events in mating-type chromosomes.
Branco, Sara; Carpentier, Fantin; Rodríguez de la Vega, Ricardo C; Badouin, Hélène; Snirc, Alodie; Le Prieur, Stéphanie; Coelho, Marco A; de Vienne, Damien M; Hartmann, Fanny E; Begerow, Dominik; Hood, Michael E; Giraud, Tatiana
2018-05-21
Convergent adaptation provides unique insights into the predictability of evolution and ultimately into processes of biological diversification. Supergenes (beneficial gene linkage) are striking examples of adaptation, but little is known about their prevalence or evolution. A recent study on anther-smut fungi documented supergene formation by rearrangements linking two key mating-type loci, controlling pre- and post-mating compatibility. Here further high-quality genome assemblies reveal four additional independent cases of chromosomal rearrangements leading to regions of suppressed recombination linking these mating-type loci in closely related species. Such convergent transitions in genomic architecture of mating-type determination indicate strong selection favoring linkage of mating-type loci into cosegregating supergenes. We find independent evolutionary strata (stepwise recombination suppression) in several species, with extensive rearrangements, gene losses, and transposable element accumulation. We thus show remarkable convergence in mating-type chromosome evolution, recurrent supergene formation, and repeated evolution of similar phenotypes through different genomic changes.
Preferential Mating in Symmetric Multilocus Systems: Limits for Multiallelism and for Many Loci
Raper, J.
1982-01-01
Models in which general forms of preferential mating have been superimposed on the framework of the symmetric heterozygosity selection regime have been examined previously with respect to the existence and local stability of a central polymorphic equilibrium. The results are now extended to produce the limiting form of the stability conditions in two cases: First, where the number of alleles per locus is assumed to be very large; second, where the number of loci affecting the character is very large. It is argued that some type of frequency dependence in the mating pattern must be included, and a particular case is examined in detail. It is shown that multiallelism is ambiguous in its effect on stability, while an increasing number of loci, at least under zero linkage, leads to a simple stability condition which is analogous to the one-locus heterosis principle. Assortative mating appears to be more likely to produce a stable central polymorphism under high levels of allelism than is sexual selection, but is relatively very much weaker than sexual or viability selection if the number of loci involved is large. PMID:17246061
Social biases determine spatiotemporal sparseness of ciliate mating heuristics.
Clark, Kevin B
2012-01-01
Ciliates become highly social, even displaying animal-like qualities, in the joint presence of aroused conspecifics and nonself mating pheromones. Pheromone detection putatively helps trigger instinctual and learned courtship and dominance displays from which social judgments are made about the availability, compatibility, and fitness representativeness or likelihood of prospective mates and rivals. In earlier studies, I demonstrated the heterotrich Spirostomum ambiguum improves mating competence by effecting preconjugal strategies and inferences in mock social trials via behavioral heuristics built from Hebbian-like associative learning. Heuristics embody serial patterns of socially relevant action that evolve into ordered, topologically invariant computational networks supporting intra- and intermate selection. S. ambiguum employs heuristics to acquire, store, plan, compare, modify, select, and execute sets of mating propaganda. One major adaptive constraint over formation and use of heuristics involves a ciliate's initial subjective bias, responsiveness, or preparedness, as defined by Stevens' Law of subjective stimulus intensity, for perceiving the meaningfulness of mechanical pressures accompanying cell-cell contacts and additional perimating events. This bias controls durations and valences of nonassociative learning, search rates for appropriate mating strategies, potential net reproductive payoffs, levels of social honesty and deception, successful error diagnosis and correction of mating signals, use of insight or analysis to solve mating dilemmas, bioenergetics expenditures, and governance of mating decisions by classical or quantum statistical mechanics. I now report this same social bias also differentially affects the spatiotemporal sparseness, as measured with metric entropy, of ciliate heuristics. Sparseness plays an important role in neural systems through optimizing the specificity, efficiency, and capacity of memory representations. The present findings indicate sparseness performs a similar function in single aneural cells by tuning the size and density of encoded computational architectures useful for decision making in social contexts.
Social biases determine spatiotemporal sparseness of ciliate mating heuristics
2012-01-01
Ciliates become highly social, even displaying animal-like qualities, in the joint presence of aroused conspecifics and nonself mating pheromones. Pheromone detection putatively helps trigger instinctual and learned courtship and dominance displays from which social judgments are made about the availability, compatibility, and fitness representativeness or likelihood of prospective mates and rivals. In earlier studies, I demonstrated the heterotrich Spirostomum ambiguum improves mating competence by effecting preconjugal strategies and inferences in mock social trials via behavioral heuristics built from Hebbian-like associative learning. Heuristics embody serial patterns of socially relevant action that evolve into ordered, topologically invariant computational networks supporting intra- and intermate selection. S. ambiguum employs heuristics to acquire, store, plan, compare, modify, select, and execute sets of mating propaganda. One major adaptive constraint over formation and use of heuristics involves a ciliate’s initial subjective bias, responsiveness, or preparedness, as defined by Stevens’ Law of subjective stimulus intensity, for perceiving the meaningfulness of mechanical pressures accompanying cell-cell contacts and additional perimating events. This bias controls durations and valences of nonassociative learning, search rates for appropriate mating strategies, potential net reproductive payoffs, levels of social honesty and deception, successful error diagnosis and correction of mating signals, use of insight or analysis to solve mating dilemmas, bioenergetics expenditures, and governance of mating decisions by classical or quantum statistical mechanics. I now report this same social bias also differentially affects the spatiotemporal sparseness, as measured with metric entropy, of ciliate heuristics. Sparseness plays an important role in neural systems through optimizing the specificity, efficiency, and capacity of memory representations. The present findings indicate sparseness performs a similar function in single aneural cells by tuning the size and density of encoded computational architectures useful for decision making in social contexts. PMID:22482001
Frequency dependence in matings with water-borne sperm.
Pemberton, A J; Noble, L R; Bishop, J D D
2003-03-01
Negative frequency-dependent mating success--the rare male effect--is a potentially powerful evolutionary force, but disagreement exists as to whether previous work, focusing on copulating species, has robustly demonstrated this phenomenon. Noncopulating sessile organisms that release male gametes into the environment but retain their eggs for fertilization may routinely receive unequal mixtures of sperm. Although promiscuity seems unavoidable it does not follow that the resulting paternity obeys 'fair raffle' expectations. This study investigates frequency dependence in the mating of one such species, the colonial ascidian Diplosoma listerianum. In competition with an alternative sperm source males fathered more progeny if previously mated to a particular female than if no mating history existed. This suggests positive frequency-dependent selection, but may simply result from a mate order effect involving sperm storage. With fewer acclimation matings, separated by longer intervals, this pattern was not found. When, in a different experimental design, virgin females were given simultaneous mixtures of gametes at widely divergent concentrations, sperm at the lower frequency consistently achieved a greater than expected share of paternity--a rare male effect. A convincing argument as to why D. listerianum should favour rare sperm has not been identified, as sperm rarity is expected to correlate very poorly with ecological or genetic male characteristics in this pattern of mating. The existence of nongenetic female preferences at the level of colony modules, analogous in effect to fixed female preferences, is proposed. If visible to selection, indirect benefits from increasing the genetic diversity of a sibship appear the only likely explanation of the rare male effect in this system as the life history presents virtually no costs to multiple mating, and a near absence of direct (resource) benefits, whereas less controversial hypotheses of female promiscuity (e.g. trade up, genetic incompatibility) do not seem appropriate.
Saccharomyces cerevisiae: a sexy yeast with a prion problem.
Kelly, Amy C; Wickner, Reed B
2013-01-01
Yeast prions are infectious proteins that spread exclusively by mating. The frequency of prions in the wild therefore largely reflects the rate of spread by mating counterbalanced by prion growth slowing effects in the host. We recently showed that the frequency of outcross mating is about 1% of mitotic doublings with 23-46% of total matings being outcrosses. These findings imply that even the mildest forms of the [PSI+], [URE3] and [PIN+] prions impart > 1% growth/survival detriment on their hosts. Our estimate of outcrossing suggests that Saccharomyces cerevisiae is far more sexual than previously thought and would therefore be more responsive to the adaptive effects of natural selection compared with a strictly asexual yeast. Further, given its large effective population size, a growth/survival detriment of > 1% for yeast prions should strongly select against prion-infected strains in wild populations of Saccharomyces cerevisiae.
Automatic attention towards face or body as a function of mating motivation.
Lu, Hui Jing; Chang, Lei
2012-03-22
Because women's faces and bodies carry different cues of reproductive value, men may attend to different perceptual cues as functions of their long-term versus short-term mating motivations. We tested this hypothesis in three experiments on 135 male and 132 female participants. When influenced by short-term rather than long-term mating motivations, men's attention was captured by (Study 1), was shifted to (Study 2), and was distracted by (Study 3) the waist/hip area rather than the face on photographs of attractive women. Similar effects were not found among the female participants in response to photographs of attractive men. These results support the evolutionary view that, similar to the attentional selectivity found in other domains of life, male perceptual attention has evolved to selectively capture and hold reproductive information about the opposite sex as a function of short-term versus long-term mating goals.
The effects of a parenting prime on sex differences in mate selection criteria.
Millar, Murray G; Ostlund, Nelse M
2006-11-01
This study tested an evolutionary hypothesis that the mere prospect of caring for a child will increase sex differences in human mate selection criteria. That is, women would adopt a stronger preference for socially dominant men when parenting had been primed and men would adopt a stronger preference for physically attractive women when parenting had been primed. Male and female university students were randomly assigned to be exposed to a parenting prime or a nonparenting prime. Following the priming procedure, participants rated the romantic appeal of a target person of the opposite sex. Exposure to the parenting prime, the target's social dominance, and the target's physical attractiveness were orthogonally manipulated. As predicted, women adopted a stronger mate preference for social dominance when parenting was at the forefront of the mind. Contrary to predictions, the parenting prime had no effect on men's mate preference for physical attractiveness.
Rearing Temperature Influences Adult Response to Changes in Mating Status
Westerman, Erica; Monteiro, Antónia
2016-01-01
Rearing environment can have an impact on adult behavior, but it is less clear how rearing environment influences adult behavior plasticity. Here we explore the effect of rearing temperature on adult mating behavior plasticity in the butterfly Bicyclus anynana, a species that has evolved two seasonal forms in response to seasonal changes in temperature. These seasonal forms differ in both morphology and behavior. Females are the choosy sex in cohorts reared at warm temperatures (WS butterflies), and males are the choosy sex in cohorts reared at cooler temperatures (DS butterflies). Rearing temperature also influences mating benefits and costs. In DS butterflies, mated females live longer than virgin females, and mated males live shorter than virgin males. No such benefits or costs to mating are present in WS butterflies. Given that choosiness and mating costs are rearing temperature dependent in B. anynana, we hypothesized that temperature may also impact male and female incentives to remate in the event that benefits and costs of second matings are similar to those of first matings. We first examined whether lifespan was affected by number of matings. We found that two matings did not significantly increase lifespan for either WS or DS butterflies relative to single matings. However, both sexes of WS but not DS butterflies experienced decreased longevity when mated to a non-virgin relative to a virgin. We next observed pairs of WS and DS butterflies and documented changes in mating behavior in response to changes in the mating status of their partner. WS but not DS butterflies changed their mating behavior in response to the mating status of their partner. These results suggest that rearing temperature influences adult mating behavior plasticity in B. anynana. This developmentally controlled behavioral plasticity may be adaptive, as lifespan depends on the partner’s mating status in one seasonal form, but not in the other. PMID:26863319
Why Do Female Callosobruchus maculatus Kick Their Mates?
van Lieshout, Emile; McNamara, Kathryn B.; Simmons, Leigh W.
2014-01-01
Sexual conflict is now recognised as an important driver of sexual trait evolution. However, due to their variable outcomes and effects on other fitness components, the detection of sexual conflicts on individual traits can be complicated. This difficulty is exemplified in the beetle Callosobruchus maculatus, where longer matings increase the size of nutritious ejaculates but simultaneously reduce female future receptivity. While previous studies show that females gain direct benefits from extended mating duration, females show conspicuous copulatory kicking behaviour, apparently to dislodge mating males prematurely. We explore the potential for sexual conflict by comparing several fitness components and remating propensity in pairs of full sibling females where each female mated with a male from an unrelated pair of full sibling males. For one female, matings were terminated at the onset of kicking, whereas the other’s matings remained uninterrupted. While fecundity (number of eggs) was similar between treatments, uninterrupted matings enhanced adult offspring numbers and fractionally also longevity. However, females whose matings were interrupted at the onset of kicking exhibited an increased propensity to remate. Since polyandry can benefit female fitness in this species, we argue that kicking, rather than being maladaptive, may indicate that females prefer remating over increased ejaculate size. It may thus be difficult to assess the presence of sexual conflict over contested traits such as mating duration when females face a trade off between direct benefits gained from one mating and indirect benefits from additional matings. PMID:24752530
Sexual conflict arising from extrapair matings in birds.
Chaine, Alexis S; Montgomerie, Robert; Lyon, Bruce E
2015-01-20
The discovery that extrapair copulation (EPC) and extrapair paternity (EPP) are common in birds led to a paradigm shift in our understanding of the evolution of mating systems. The prevalence of extrapair matings in pair-bonded species sets the stage for sexual conflict, and a recent focus has been to consider how this conflict can shape variation in extrapair mating rates. Here, we invert the causal arrow and consider the consequences of extrapair matings for sexual conflict. Extrapair matings shift sexual conflict from a simple two-player (male vs. female) game to a game with three or more players, the nature of which we illustrate with simple diagrams that highlight the net costs and benefits of extrapair matings to each player. This approach helps identify the sorts of traits that might be under selection because of sexual conflict. Whether EPP is driven primarily by the extrapair male or the within-pair female profoundly influences which players are in conflict, but the overall pattern of conflict varies little among different mating systems. Different aspects of conflict are manifest at different stages of the breeding cycle and can be profitably considered as distinct episodes of selection caused by conflict. This perspective is illuminating both because conflict between specific players can change across episodes and because the traits that evolve to mediate conflict likely differ between episodes. Although EPP clearly leads to sexual conflict, we suggest that the link between sexual conflict and multiple paternity might be usefully understood by examining how deviations from lifetime sexual monogamy influence sexual conflict. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.
Sexual Conflict Arising from Extrapair Matings in Birds
Chaine, Alexis S.; Montgomerie, Robert; Lyon, Bruce E.
2015-01-01
The discovery that extrapair copulation (EPC) and extrapair paternity (EPP) are common in birds led to a paradigm shift in our understanding of the evolution of mating systems. The prevalence of extrapair matings in pair-bonded species sets the stage for sexual conflict, and a recent focus has been to consider how this conflict can shape variation in extrapair mating rates. Here, we invert the causal arrow and consider the consequences of extrapair matings for sexual conflict. Extrapair matings shift sexual conflict from a simple two-player (male vs. female) game to a game with three or more players, the nature of which we illustrate with simple diagrams that highlight the net costs and benefits of extrapair matings to each player. This approach helps identify the sorts of traits that might be under selection because of sexual conflict. Whether EPP is driven primarily by the extrapair male or the within-pair female profoundly influences which players are in conflict, but the overall pattern of conflict varies little among different mating systems. Different aspects of conflict are manifest at different stages of the breeding cycle and can be profitably considered as distinct episodes of selection caused by conflict. This perspective is illuminating both because conflict between specific players can change across episodes and because the traits that evolve to mediate conflict likely differ between episodes. Although EPP clearly leads to sexual conflict, we suggest that the link between sexual conflict and multiple paternity might be usefully understood by examining how deviations from lifetime sexual monogamy influence sexual conflict. PMID:25605708
Jones, Adam G
2015-11-01
Bateman's principles continue to play a major role in the characterization of genetic mating systems in natural populations. The modern manifestations of Bateman's ideas include the opportunity for sexual selection (i.e. I(s) - the variance in relative mating success), the opportunity for selection (i.e. I - the variance in relative reproductive success) and the Bateman gradient (i.e. β(ss) - the slope of the least-squares regression of reproductive success on mating success). These variables serve as the foundation for one convenient approach for the quantification of mating systems. However, their estimation presents at least two challenges, which I address here with a new Windows-based computer software package called BATEMANATER. The first challenge is that confidence intervals for these variables are not easy to calculate. BATEMANATER solves this problem using a bootstrapping approach. The second, more serious, problem is that direct estimates of mating system variables from open populations will typically be biased if some potential progeny or adults are missing from the analysed sample. BATEMANATER addresses this problem using a maximum-likelihood approach to estimate mating system variables from incompletely sampled breeding populations. The current version of BATEMANATER addresses the problem for systems in which progeny can be collected in groups of half- or full-siblings, as would occur when eggs are laid in discrete masses or offspring occur in pregnant females. BATEMANATER has a user-friendly graphical interface and thus represents a new, convenient tool for the characterization and comparison of genetic mating systems. © 2015 John Wiley & Sons Ltd.
Hit or Miss: Fertilization Outcomes of Natural Inseminations by Japanese Quail
Adkins-Regan, Elizabeth
2015-01-01
Variation in fertilization success underlies sexual selection, yet mating does not guarantee fertilization. The relationship between natural inseminations and fertilization success is essential for understanding sexual selection, yet that relationship and its underlying mechanisms are poorly understood in sperm-storing vertebrates such as birds. Here the relationship is analyzed in mating trials using Japanese quail (Coturnix japonica), which show striking variation in the fertilizing success of inseminations. Failures of males’ inseminations to fertilize eggs were mainly due to failures prior to sperm-egg contact. Fertilization probabilities on any given day were unrelated to whether the female had laid an egg the previous day, arguing against stimulation of sperm release from sperm storage tubules by the events of the daily egg-laying cycle. Instead, an unfertilized egg laid between two fertilized eggs predicted a longer sperm storage interval. Both sexes gained similar numbers of fertilized eggs by mating with a second partner the next day, but males, unlike females in a previous study, did not gain by having two females to mate with at the same time. Instead, they were both behaviorally and sperm limited, whereas females gain by mating twice in quick succession. Even double inseminations often failed to fertilize any eggs, and multiple matings would be needed for an entire clutch to be fertilized with high certainty. Paradoxically, this low and probabilistic fertilization success co-occurs with other notable characteristics of male quail suggestive of past sexual selection for increased success, including vigorous copulatory behavior, forced copulations, foamy secretion aiding in sperm competition, large testes and unusual sperm morphology. PMID:26222780
Tan, Cedric Kai Wei; Doyle, Philippa; Bagshaw, Emma; Richardson, David S; Wigby, Stuart; Pizzari, Tommaso
2017-02-01
In structured populations, competition for reproductive opportunities should be relaxed among related males. The few tests of this prediction often neglect the fact that sexual selection acts through multiple mechanisms, both before and after mating. We performed experiments to study the role of within-group male relatedness across pre- and postcopulatory mechanisms of sexual selection in social groups of red junglefowl, Gallus gallus, in which two related males and one unrelated male competed over females unrelated to all the males. We confirm theoretical expectations that, after controlling for male social status, competition over mating was reduced among related males. However, this effect was contrasted by other sexual selection mechanisms. First, females biased male mating in favor of the unrelated male, and might also favor his inseminations after mating. Second, males invested more-rather than fewer-sperm in postcopulatory competition with relatives. A number of factors may contribute to explain this counterintuitive pattern of sperm allocation, including trade-offs between male investment in pre- versus postcopulatory competition, differences in the relative relatedness of pre- versus postcopulatory competitors, and female bias in sperm utilization in response to male relatedness. Collectively, these results reveal that within-group male relatedness may have contrasting effects in different mechanisms of sexual selection. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Rapid loss of behavioral plasticity and immunocompetence under intense sexual selection.
van Lieshout, Emile; McNamara, Kathryn B; Simmons, Leigh W
2014-09-01
Phenotypic plasticity allows animals to maximize fitness by conditionally expressing the phenotype best adapted to their environment. Although evidence for such adjustment in reproductive tactics is common, little is known about how phenotypic plasticity evolves in response to sexual selection. We examined the effect of sexual selection intensity on phenotypic plasticity in mating behavior using the beetle Callosobruchus maculatus. Male genital spines harm females during mating and females exhibit copulatory kicking, an apparent resistance trait aimed to dislodge mating males. After exposing individuals from male- and female-biased experimental evolution lines to male- and female-biased sociosexual environments, we examined behavioral plasticity in matings with standard partners. While females from female-biased lines kicked sooner after exposure to male-biased sociosexual contexts, in male-biased lines this plasticity was lost. Ejaculate size did not diverge in response to selection history, but males from both treatments exhibited plasticity consistent with sperm competition intensity models, reducing size as the number of competitors increased. Analysis of immunocompetence revealed reduced immunity in both sexes in male-biased lines, pointing to increased reproductive costs under high sexual selection. These results highlight how male and female reproductive strategies are shaped by interactions between phenotypically plastic and genetic mechanisms of sexual trait expression. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Internal states drive nutrient homeostasis by modulating exploration-exploitation trade-off
Corrales-Carvajal, Verónica María; Faisal, Aldo A; Ribeiro, Carlos
2016-01-01
Internal states can profoundly alter the behavior of animals. A quantitative understanding of the behavioral changes upon metabolic challenges is key to a mechanistic dissection of how animals maintain nutritional homeostasis. We used an automated video tracking setup to characterize how amino acid and reproductive states interact to shape exploitation and exploration decisions taken by adult Drosophila melanogaster. We find that these two states have specific effects on the decisions to stop at and leave proteinaceous food patches. Furthermore, the internal nutrient state defines the exploration-exploitation trade-off: nutrient-deprived flies focus on specific patches while satiated flies explore more globally. Finally, we show that olfaction mediates the efficient recognition of yeast as an appropriate protein source in mated females and that octopamine is specifically required to mediate homeostatic postmating responses without affecting internal nutrient sensing. Internal states therefore modulate specific aspects of exploitation and exploration to change nutrient selection. DOI: http://dx.doi.org/10.7554/eLife.19920.001 PMID:27770569
Sexual conflict over mating in Gnatocerus cornutus? Females prefer lovers not fighters.
Okada, Kensuke; Katsuki, Masako; Sharma, Manmohan D; House, Clarissa M; Hosken, David J
2014-06-22
Female mate choice and male-male competition are the typical mechanisms of sexual selection. However, these two mechanisms do not always favour the same males. Furthermore, it has recently become clear that female choice can sometimes benefit males that reduce female fitness. So whether male-male competition and female choice favour the same or different males, and whether or not females benefit from mate choice, remain open questions. In the horned beetle, Gnatocerus cornutus, males have enlarged mandibles used to fight rivals, and larger mandibles provide a mating advantage when there is direct male-male competition for mates. However, it is not clear whether females prefer these highly competitive males. Here, we show that female choice targets male courtship rather than mandible size, and these two characters are not phenotypically or genetically correlated. Mating with attractive, highly courting males provided indirect benefits to females but only via the heritability of male attractiveness. However, mating with attractive males avoids the indirect costs to daughters that are generated by mating with competitive males. Our results suggest that male-male competition may constrain female mate choice, possibly reducing female fitness and generating sexual conflict over mating.
Maklakov, Alexei A; Lubin, Yael
2004-05-01
Female multiple mating (polyandry) is a widespread but costly behavior that remains poorly understood. Polyandry may arise when whatever benefits females accrue from multiple mating outweigh the costs, or males manipulate females against the females' best interests. In a polyandrous spider Stegodyphus lineatus females may mate with up to five males, but behave aggressively toward additional males after the first mating. Female aggressiveness may act to select for better quality males. Alternatively, females may try to avoid superfluous matings. To test these alternatives, we allocated females into single-mating (SM) and double-mating treatments. Double-mated females either accepted (DM) or rejected (RE) the second male. DM females laid more eggs, but did not produce more offspring than SM and RE females. Offspring of DM females were smaller at dispersal than offspring of SM and RE females. Also, nest failure was significantly more common in DM females. Paternal variables did not influence female reproductive success, whereas maternal body condition explained much of the variation. We show that polyandry is costly for females despite the production of larger clutches and suggest that multiple mating results from male manipulation of female remating behavior.
Aguilera, Patricia M.; Bubillo, Rosana E.; Otegui, Mónica B.; Ducasse, Daniel A.; Zapata, Pedro D.; Marti, Dardo A.
2014-01-01
Yerba mate (Ilex paraguariensis A. St.-Hil.) is an important subtropical tree crop cultivated on 326,000 ha in Argentina, Brazil and Paraguay, with a total yield production of more than 1,000,000 t. Yerba mate presents a strong limitation regarding sequence information. The NCBI GenBank lacks an EST database of yerba mate and depicts only 80 DNA sequences, mostly uncharacterized. In this scenario, in order to elucidate the yerba mate gene landscape by means of NGS, we explored and discovered a vast collection of I. paraguariensis transcripts. Total RNA from I. paraguariensis was sequenced by Illumina HiSeq-2000 obtaining 72,031,388 pair-end 100 bp sequences. High quality reads were de novo assembled into 44,907 transcripts encompassing 40 million bases with an estimated coverage of 180X. Multiple sequence analysis allowed us to predict that yerba mate contains ∼32,355 genes and 12,551 gene variants or isoforms. We identified and categorized members of more than 100 metabolic pathways. Overall, we have identified ∼1,000 putative transcription factors, genes involved in heat and oxidative stress, pathogen response, as well as disease resistance and hormone response. We have also identified, based in sequence homology searches, novel transcripts related to osmotic, drought, salinity and cold stress, senescence and early flowering. We have also pinpointed several members of the gene silencing pathway, and characterized the silencing effector Argonaute1. We predicted a diverse supply of putative microRNA precursors involved in developmental processes. We present here the first draft of the transcribed genomes of the yerba mate chloroplast and mitochondrion. The putative sequence and predicted structure of the caffeine synthase of yerba mate is presented. Moreover, we provide a collection of over 10,800 SSR accessible to the scientific community interested in yerba mate genetic improvement. This contribution broadly expands the limited knowledge of yerba mate genes, and is presented as the first genomic resource of this important crop. PMID:25330175
Mate competition and evolutionary outcomes in genetically modified zebrafish (Danio rerio).
Howard, Richard D; Rohrer, Karl; Liu, Yiyang; Muir, William M
2015-05-01
Demonstrating relationships between sexual selection mechanisms and trait evolution is central to testing evolutionary theory. Using zebrafish, we found that wild-type males possessed a significant advantage in mate competition over transgenic RFP Glofish® males. In mating trials, wild-type males were aggressively superior to transgenic males in male-male chases and male-female chases; as a result, wild-type males sired 2.5× as many young as did transgenic males. In contrast, an earlier study demonstrated that female zebrafish preferred transgenic males as mates when mate competition was excluded experimentally. We tested the evolutionary consequence of this conflict between sexual selection mechanisms in a long-term study. The predicted loss of the transgenic phenotype was confirmed. More than 18,500 adults collected from 18 populations across 15 generations revealed that the frequency of the transgenic phenotype declined rapidly and was eliminated entirely in all but one population. Fitness component data for both sexes indicated that only male mating success differed between wild-type and transgenic individuals. Our predictive demographic model based on fitness components closely matched the rate of transgenic phenotype loss observed in the long-term study, thereby supporting its utility for studies assessing evolutionary outcomes of escaped or released genetically modified animals. © 2015 The Author(s).
Beyond magic traits: Multimodal mating cues in Heliconius butterflies.
Mérot, Claire; Frérot, Brigitte; Leppik, Ene; Joron, Mathieu
2015-11-01
Species coexistence involves the evolution of reproductive barriers opposing gene flow. Heliconius butterflies display colorful patterns affecting mate choice and survival through warning signaling and mimicry. These patterns are called "magic traits" for speciation because divergent natural selection may promote mimicry shifts in pattern whose role as mating cue facilitates reproductive isolation. By contrast, between comimetic species, natural selection promotes pattern convergence. We addressed whether visual convergence interferes with reproductive isolation by testing for sexual isolation between two closely related species with similar patterns, H. timareta thelxinoe and H. melpomene amaryllis. Experiments with models confirmed visual attraction based on wing phenotype, leading to indiscriminate approach. Nevertheless, mate choice experiments showed assortative mating. Monitoring male behavior toward live females revealed asymmetry in male preference, H. melpomene males courting both species equally while H. timareta males strongly preferred conspecifics. Experiments with hybrid males suggested an important genetic component for such asymmetry. Behavioral observations support a key role for short-distance cues in determining male choice in H. timareta. Scents extracts from wings and genitalia revealed interspecific divergence in chemical signatures, and hybrid female scent composition was significantly associated with courtship intensity by H. timareta males, providing candidate chemical mating cues involved in sexual isolation. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Pischedda, Alison; Chippindale, Adam K
2017-06-01
Intralocus sexual conflict generates a cost to mate choice: high-fitness partners transmit genetic variation that confers lower fitness to offspring of the opposite sex. Our earlier work in the fruit fly, Drosophila melanogaster, revealed that these indirect genetic costs were sufficient to reverse potential "good genes" benefits of sexual selection. However, mate choice can also confer direct fitness benefits by inducing larger numbers of progeny. Here, we consider whether direct benefits through enhanced fertility could offset the costs associated with intralocus sexual conflict in D. melanogaster. Using hemiclonal analysis, we found that females mated to high-fitness males produced 11% more offspring compared to those mated to low-fitness males, and high-fitness females produced 34% more offspring than low-fitness females. These direct benefits more than offset the reduction in offspring fitness caused by intralocus sexual conflict, creating a net fitness benefit for each sex to pairing with a high-fitness partner. Our findings highlight the need to consider both direct and indirect effects when investigating the fitness impacts of mate choice. Direct fitness benefits may shelter sexually antagonistic alleles from selection, suggesting a novel mechanism for the maintenance of fitness variation. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Social experience affects neuronal responses to male calls in adult female zebra finches.
Menardy, F; Touiki, K; Dutrieux, G; Bozon, B; Vignal, C; Mathevon, N; Del Negro, C
2012-04-01
Plasticity studies have consistently shown that behavioural relevance can change the neural representation of sounds in the auditory system, but what occurs in the context of natural acoustic communication where significance could be acquired through social interaction remains to be explored. The zebra finch, a highly social songbird species that forms lifelong pair bonds and uses a vocalization, the distance call, to identify its mate, offers an opportunity to address this issue. Here, we recorded spiking activity in females while presenting distance calls that differed in their degree of familiarity: calls produced by the mate, by a familiar male, or by an unfamiliar male. We focused on the caudomedial nidopallium (NCM), a secondary auditory forebrain region. Both the mate's call and the familiar call evoked responses that differed in magnitude from responses to the unfamiliar call. This distinction between responses was seen both in single unit recordings from anesthetized females and in multiunit recordings from awake freely moving females. In contrast, control females that had not heard them previously displayed responses of similar magnitudes to all three calls. In addition, more cells showed highly selective responses in mated than in control females, suggesting that experience-dependent plasticity in call-evoked responses resulted in enhanced discrimination of auditory stimuli. Our results as a whole demonstrate major changes in the representation of natural vocalizations in the NCM within the context of individual recognition. The functional properties of NCM neurons may thus change continuously to adapt to the social environment. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Social barriers to pathogen transmission in wild animal populations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loehle, C.
Diseases and pathogens are receiving increasing recognition as sources of mortality in animal populations. Immune system strength is clearly important in fending off pathogen attack. Physical barriers to pathogen entry are also important. Various individual behaviors are efficacious in reducing contact with diseases and pests. This paper focuses on a fourth mode of defense: social barriers to transmission. Various social behaviors have pathogen transmission consequences. Selective pressures on these social behaviors may therefore exist. Effects on pathogen transmission of mating strategies, social avoidance, group size, group isolation, and other behaviors are explored. It is concluded that many of these behaviorsmore » may have been affected by selection pressures to reduce transmission of pathogens. 84 refs., 1 tab.« less
March, Evita; Wagstaff, Danielle L.
2017-01-01
Modern dating platforms have given rise to new dating and sexual behaviors. In the current study, we examine predictors of sending unsolicited explicit images, a particularly underexplored online sexual behavior. The aim of the current study was to explore the utility of dark personality traits (i.e., narcissism, Machiavellianism, psychopathy, and sadism) and self-rated mate value in predicting attitudes toward and behavior of sending unsolicited explicit images. Two hundred and forty participants (72% female; Mage = 25.96, SD = 9.79) completed an online questionnaire which included a measure of self-rated mate value, a measure of dark personality traits, and questions regarding sending unsolicited explicit images (operationalized as the explicit image scale). Men, compared to women, were found to have higher explicit image scale scores, and both self-rated mate value and trait Machiavellianism were positive predictors of explicit image scale scores. Interestingly, there were no significant interactions between sex and these variables. Further, Machiavellianism mediated all relationships between other dark traits and explicit image scale scores, indicating this behavior is best explained by the personality trait associated with behavioral strategies. In sum, these results provide support for the premise that sending unsolicited explicit images may be a tactic of a short-term mating strategy; however, future research should further explore this claim. PMID:29326632
Grob, B; Knapp, L A; Martin, R D; Anzenberger, G
1998-01-01
It has been known for decades that MHC genes play a critical role in the cellular immune response, but only recent research has provided a better understanding of how these molecules might affect mate choice. Original studies in inbred mouse strains revealed that mate choice was influenced by MHC dissimilarity. Detection of MHC differences between individuals in these experiments was related to olfactory cues, primarily in urine. Recent studies in humans have shown an analogous picture of MHC-based mating. Taken together, these findings could support either the hypothesis of MHC-based inbreeding avoidance or the hypothesis of MHC-related avoidance of reproductive failure, since studies in mice, humans and pigtailed macaques have shown that parental sharing of certain MHC alleles correlates with frequent spontaneous abortion or prolonged intergestational intervals. Data from many mammalian species clearly demonstrate that reproductive failure occurs as a result of inbreeding. Therefore, MHC similarity might serve as an indicator of genome-wide relatedness. In contrast, increased fitness due to the presence of individual MHC alleles in a pathogenic environment could explain MHC-based selection of currently good genes. Specifically, the physical condition of long-living animals depends on the ability to respond to immunological challenge and an individual's MHC alleles determine the response, since, unlike the T cell receptors, MHC alleles are not somatically recombined. Therefore, sexual selection of condition-dependent traits during mate choice could be used to select successful MHC alleles, thereby providing offspring with a higher relative immunity in their pathogenic environment.
Divergent sexual selection via male competition: ecology is key.
Lackey, A C R; Boughman, J W
2013-08-01
Sexual selection and ecological differences are important drivers of speciation. Much research has focused on female choice, yet the role of male competition in ecological speciation has been understudied. Here, we test how mating habitats impact sexual selection and speciation through male competition. Using limnetic and benthic species of threespine stickleback fish, we find that different mating habitats select differently on male traits through male competition. In mixed habitat with both vegetated and open areas, selection favours two trait combinations of male body size and nuptial colour: large with little colour and small with lots of colour. This matches what we see in reproductively isolated stickleback species, suggesting male competition could promote trait divergence and reproductive isolation. In contrast, when only open habitat exists, selection favours one trait combination, large with lots of colour, which would hinder trait divergence and reproductive isolation. Other behavioural mechanisms in male competition that might promote divergence, such as avoiding aggression with heterospecifics, are insufficient to maintain separate species. This work highlights the importance of mating habitats in male competition for both sexual selection and speciation. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Grueter, Cyril C.; Zhu, Pingfen; Allen, William L.; Higham, James P.; Ren, Baoping; Li, Ming
2015-01-01
Sexual selection typically produces ornaments in response to mate choice, and armaments in response to male–male competition. Unusually among mammals, many primates exhibit colour signals that may be related to one or both processes. Here, we document for the first time correlates of facial coloration in one of the more brightly coloured primates, the black-and-white snub-nosed monkey (Rhinopithecus bieti). Snub-nosed monkeys have a one-male unit (OMU) based social organization, but these units aggregate semi-permanently into larger bands. This form of mating system causes many males to become associated with bachelor groups. We quantified redness of the prominent lower lip in 15 males (eight bachelors, seven OMU holders) in a group at Xiangguqing, China. Using mixed models, our results show that lip redness increases with age. More interestingly, there is a significant effect of the interaction of group-holding status and mating season on redness; that is, lip colour of OMU males undergoes reddening in the mating season, whereas the lips of subadult and juvenile bachelor males become paler at that time of year. These results indicate that lip coloration is a badge of (group-holding) status during the mating season, with non-adults undergoing facial differentiation, perhaps to avoid the costs of reproductive competition. Future research should investigate whether lip coloration is a product of male–male competition, and/or female mate choice. PMID:27019735
NASA Astrophysics Data System (ADS)
Fowler-Finn, Kasey D.; Al-Wathiqui, Nooria; Cruz, Daniel; Al-Wathiqui, Mishal; Rodríguez, Rafael L.
2014-03-01
Finding and attracting mates can impose costs on males in terms of increased encounters with, and attraction of, predators. To decrease the likelihood of predation, males may modify mate-acquisition efforts in two main ways: they may reduce mate-searching efforts or they may reduce mate-attraction efforts. The specific behavior that males change in the presence of predator cues should depend upon the nature of risk imposed by the type of predator present in the environment. For example, sit-and-wait predators impose greater costs to males moving in search of mates. Here, we test whether cues of the presence of a sit-and-wait predator lead to a reduction in mate-searching but not mate-acquisition behavior. We used a member of the Enchenopa binotata complex of treehoppers—a clade of vibrationally communicating insects in which males fly in search of mates and produce mate-attraction signals when they land on plant stems. We tested for changes in mate-searching and signaling behaviors when silk from a web-building spider was present or absent. We found that males delayed flight when spider silk was present but only if they were actively searching for mates. These results suggest that males have been selected to reduce predation risk by adjusting how they move about their environment according to the cues of sit-and-wait predators.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- The port fairing closes in on the Galaxy Evolution Explorer (GALEX). The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
Oxytocin receptor density is associated with male mating tactics and social monogamy
Ophir, Alexander G.; Gessel, Ana; Zheng, Da-Jiang; Phelps, Steven M.
2012-01-01
Despite its well-described role in female affiliation, the influence of oxytocin on male pairbonding is largely unknown. However, recent human studies indicate that this nonapeptide has a potent influence on male behaviors commonly associated with monogamy. Here we investigated the distribution of oxytocin receptors (OTR) throughout the forebrain of the socially monogamous male prairie vole (Microtus ochrogaster). Because males vary in both sexual and spatial fidelity, we explored the extent to which OTR predicted monogamous or non-monogamous patterns of space use, mating success and sexual fidelity in free-living males. We found that monogamous males expressed higher OTR density in the nucleus accumbens than non-monogamous males, a result that mirrors species differences in voles with different mating systems. OTR density in the posterior portion of the insula predicted mating success. Finally, OTR in the hippocampus and septohippocampal nucleus, which are nuclei associated with spatial memory, predicted patterns of space use and reproductive success within mating tactics. Our data highlight the importance of oxytocin receptor in neural structures associated with pairbonding and socio-spatial memory in male mating tactics. The role of memory in mating systems is often neglected, despite the fact that mating tactics impose an inherently spatial challenge for animals. Identifying mechanisms responsible for relating information about the social world with mechanisms mediating pairbonding and mating tactics is crucial to fully appreciate the suite of factors driving mating systems. PMID:22285648
Blyton, Michaela D J; Banks, Sam C; Peakall, Rod; Lindenmayer, David B
2012-02-01
The formal testing of mating system theories with empirical data is important for evaluating the relative importance of different processes in shaping mating systems in wild populations. Here, we present a generally applicable probability modelling framework to test the role of local mate availability in determining a population's level of genetic monogamy. We provide a significance test for detecting departures in observed mating patterns from model expectations based on mate availability alone, allowing the presence and direction of behavioural effects to be inferred. The assessment of mate availability can be flexible and in this study it was based on population density, sex ratio and spatial arrangement. This approach provides a useful tool for (1) isolating the effect of mate availability in variable mating systems and (2) in combination with genetic parentage analyses, gaining insights into the nature of mating behaviours in elusive species. To illustrate this modelling approach, we have applied it to investigate the variable mating system of the mountain brushtail possum (Trichosurus cunninghami) and compared the model expectations with the outcomes of genetic parentage analysis over an 18-year study. The observed level of monogamy was higher than predicted under the model. Thus, behavioural traits, such as mate guarding or selective mate choice, may increase the population level of monogamy. We show that combining genetic parentage data with probability modelling can facilitate an improved understanding of the complex interactions between behavioural adaptations and demographic dynamics in driving mating system variation. © 2011 Blackwell Publishing Ltd.
InSight Atlas V Centaur Transport / Lift & Mate
2018-03-06
At Space Launch Complex 3 at Vandenberg Air Force Base in California technicians and engineers prepare a United Launch Alliance Centaur upper stage for lifting and mating atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Centaur Transport / Lift & Mate
2018-03-06
At Vandenberg Air Force Base in California, a United Launch Alliance Centaur upper stage is prepared for transport to Space Launch Complex 3 for mating atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
Gessner, C; Nakagawa, S; Zavodna, M; Gemmell, N J
2017-01-01
Cryptic female choice (CFC), a form of sexual selection during or post mating, describes processes of differential sperm utilization by females to bias fertilization outcomes towards certain males. In Chinook salmon (Oncorhynchus tshawytscha) the ovarian fluid surrounding the ova of a given female differently enhances the sperm velocity of males. Sperm velocity is a key ejaculate trait that determines fertilization success in externally fertilizing fishes, thus the differential effect on sperm velocity might bias male fertilization outcomes and represent a mechanism of CFC. Once sperm reach the oocyte, CFC could potentially be further facilitated by sperm–egg interactions, which are well understood in externally fertilizing marine invertebrates. Here, we explored the potential genetic basis of both possible mechanisms of CFC by examining whether the genotypic combinations of mates (amino-acid divergence, number of shared alleles) at the major histocompatibility complex (MHC) class I and II explain the variation in sperm velocity and/or male fertilization success that is not explained by sperm velocity, which might indicate MHC-based sperm–egg interactions. We recorded sperm velocity in ovarian fluid, employed paired-male fertilization trials and evaluated the fertilization success of each male using microsatellite-based paternity assignment. We showed that relative sperm velocity was positively correlated with fertilization success, confirming that the differential effect on sperm velocity may be a mechanism of CFC in Chinook salmon. The variation in sperm velocity was independent of MHC class I and II. However, the MHC class II divergence of mates explained fertilization success, indicating that this locus might influence sperm–egg interactions. PMID:28051059
Dunning, Jeffery L.; Pant, Santosh; Bass, Aaron; Coburn, Zachary; Prather, Jonathan F.
2014-01-01
In the process of mate selection by female songbirds, male suitors advertise their quality through reproductive displays in which song plays an important role. Females evaluate the quality of each signal and the associated male, and the results of that evaluation guide expression of selective courtship displays. Some studies reveal broad agreement among females in their preferences for specific signal characteristics, indicating that those features are especially salient in female mate choice. Other studies reveal that females differ in their preference for specific characteristics, indicating that in those cases female evaluation of signal quality is influenced by factors other than simply the physical properties of the signal. Thus, both the physical properties of male signals and specific traits of female signal evaluation can impact female mate choice. Here, we characterized the mate preferences of female Bengalese finches. We found that calls and copulation solicitation displays are equally reliable indicators of female preference. In response to songs from an array of males, each female expressed an individual-specific song preference, and those preferences were consistent across tests spanning many months. Across a population of females, songs of some males were more commonly preferred than others, and females preferred female-directed songs more than undirected songs, suggesting that some song features are broadly attractive. Preferences were indistinguishable for females that did or did not have social experience with the singers, indicating that female preference is strongly directed by song features rather than experiences associated with the singer. Analysis of song properties revealed several candidate parameters that may influence female evaluation. In an initial investigation of those parameters, females could be very selective for one song feature yet not selective for another. Therefore, multiple song parameters are evaluated independently. Together these findings reveal the nature of signal evaluation and mate choice in this species. PMID:24558501
What women want in their sperm donor: A study of more than 1000 women's sperm donor selections.
Whyte, Stephen; Torgler, Benno; Harrison, Keith L
2016-12-01
Reproductive medicine and commercial sperm banking have facilitated an evolutionary shift in how women are able to choose who fathers their offspring, by notionally expanding women's opportunity set beyond former constraints. This study analyses 1546 individual reservations of semen by women from a private Australian assisted reproductive health facility across a ten year period from 2006 to 2015. Using the time that each sample was available at the facility until reservation, we explore women's preference for particular male characteristics. We find that younger donors, and those who hold a higher formal education compared to those with no academic qualifications are more quickly selected for reservation by women. Both age and education as proxies for resources are at the centre of Parental Investment theory, and our findings further build on this standard evolutionary construct in relation to female mate preferences. Reproductive medicine not only provides women the opportunity to become a parent, where previously they would not have been able to, it also reveals that female preference for resources of their potential mate (sperm donor) remain, even when the notion of paternal investment becomes redundant. These findings build on behavioural science's understanding of large-scale decisions and human behaviour in reproductive medical settings. Copyright © 2016 Elsevier B.V. All rights reserved.
Corl, Ammon; Ellegren, Hans
2012-07-01
Genomic levels of variation can help reveal the selective and demographic forces that have affected a species during its history. The relative amount of genetic diversity observed on the sex chromosomes as compared to the autosomes is predicted to differ among monogamous and polygynous species. Many species show departures from the expectation for monogamy, but it can be difficult to conclude that this pattern results from variation in mating system because forces other than sexual selection can act upon sex chromosome genetic diversity. As a critical test of the role of mating system, we compared levels of genetic diversity on the Z chromosome and autosomes of phylogenetically independent pairs of shorebirds that differed in their mating systems. We found general support for sexual selection shaping sex chromosome diversity because most polygynous species showed relatively reduced genetic variation on their Z chromosomes as compared to monogamous species. Differences in levels of genetic diversity between the sex chromosomes and autosomes may therefore contribute to understanding the long-term history of sexual selection experienced by a species. © 2012 The Author(s).
Deaton, Raelynn
2009-01-01
I examined the effects of the parasitic larval nematode, Eustrongylides ignotus, on male mate choice in the western mosquitofish, Gambusia affinis. I hypothesized that parasite presence influences male mate choice either directly (via reduction in male mating behavior due to presence of parasite in females) or indirectly (via reduction in male mating behavior due to reduced condition of infected females). Specifically, I tested the predictions that (1) males would mate preferentially with uninfected over infected females (scoring both mating attempts and association time with females); (2) parasitized females would be in poorer condition than non-parasitized females (measured as soluble fat stores); and (3) parasitized females would have reduced fecundity (measured as number of developing embryos). Males preferred to mate with non-parasitized over parasitized females, but showed no differences in association time between females. The nematode did not decrease female body condition, but did decrease female mass, and appeared to decrease female fecundity via reduction in broods (# embryos). Results support that parasites affect male mate choice in mosquitofish; however, the mechanisms used by males to differentiate between parasitized and non-parasitized females remain untested. This study provides the first empirical evidence of parasite affects on male mate choice in livebearing fishes, and suggest a potentially important role for parasite-mediated sexual selection in organisms that use coercive mating as the primary mechanism of obtaining mates.
Fungal Sex: The Basidiomycota.
Coelho, Marco A; Bakkeren, Guus; Sun, Sheng; Hood, Michael E; Giraud, Tatiana
2017-06-01
Fungi of the Basidiomycota, representing major pathogen lineages and mushroom-forming species, exhibit diverse means to achieve sexual reproduction, with particularly varied mechanisms to determine compatibilities of haploid mating partners. For species that require mating between distinct genotypes, discrimination is usually based on both the reciprocal exchange of diffusible mating pheromones, rather than sexes, and the interactions of homeodomain protein signals after cell fusion. Both compatibility factors must be heterozygous in the product of mating, and genetic linkage relationships of the mating pheromone/receptor and homeodomain genes largely determine the complex patterns of mating-type variation. Independent segregation of the two compatibility factors can create four haploid mating genotypes from meiosis, referred to as tetrapolarity. This condition is thought to be ancestral to the basidiomycetes. Alternatively, cosegregation by linkage of the two mating factors, or in some cases the absence of the pheromone-based discrimination, yields only two mating types from meiosis, referred to as bipolarity. Several species are now known to have large and highly rearranged chromosomal regions linked to mating-type genes. At the population level, polymorphism of the mating-type genes is an exceptional aspect of some basidiomycete fungi, where selection under outcrossing for rare, intercompatible allelic variants is thought to be responsible for numbers of mating types that may reach several thousand. Advances in genome sequencing and assembly are yielding new insights by comparative approaches among and within basidiomycete species, with the promise to resolve the evolutionary origins and dynamics of mating compatibility genetics in this major eukaryotic lineage.
Choi, Kate H.; Tienda, Marta
2016-01-01
Despite theoretical consensus that marriage markets constrain mate selection behavior, few studies directly evaluate how local marriage market conditions influence intermarriage patterns. Using data from the American Community Survey, we examine what aspects of marriage markets influence mate selection; assess whether the associations between marriage market conditions and intermarriage are uniform by gender and across pan-ethnic groups; and investigate the extent to which marriage market conditions account for group differences in intermarriage patterns. Relative group size is the most salient and consistent determinant of intermarriage patterns across pan-ethnic groups and by gender. Marriage market constraints typically explain a larger share of pan-ethnic differences in intermarriage rates than individual traits, suggesting that scarcity of co-ethnic partners is a key reason behind decisions to intermarry. When faced with market constraints, men are more willing or more successful than women in crossing racial and ethnic boundaries in marriage. PMID:28579638
Montoya, R Matthew
2008-10-01
Four studies investigated the importance of objective and subjective attributes to mate selection. This research tested whether perceivers' objective physical attractiveness influenced how they evaluated the physical attractiveness of others and, if considered, may provide a parsimonious account for matching in mate selection. Study 1 (N = 102) demonstrated that ratings of targets' attractiveness decreased as perceivers' objective physical attractiveness increased. Studies 2 (N = 89) and 3 (N = 68) revealed that as perceivers' objective physical attractiveness increased, reductions in expected satisfaction and rejection were mediated by perceivers' reduced assessments of targets' attractiveness. Study 4 (N = 114) produced patterns of matching by finding that attractive perceivers expected to date more attractive targets while unattractive perceivers expected to date less attractive targets. This research emphasizes the importance of objective physical attractiveness to target evaluations and describes how matching results from the combined influence of objective and subjective attributes.
No evidence for the effect of MHC on male mating success in the brown bear.
Kuduk, Katarzyna; Babik, Wieslaw; Bellemain, Eva; Valentini, Alice; Zedrosser, Andreas; Taberlet, Pierre; Kindberg, Jonas; Swenson, Jon E; Radwan, Jacek
2014-01-01
Mate choice is thought to contribute to the maintenance of the spectacularly high polymorphism of the Major Histocompatibility Complex (MHC) genes, along with balancing selection from parasites, but the relative contribution of the former mechanism is debated. Here, we investigated the association between male MHC genotype and mating success in the brown bear. We analysed fragments of sequences coding for the peptide-binding region of the highly polymorphic MHC class I and class II DRB genes, while controlling for genome-wide effects using a panel of 18 microsatellite markers. Male mating success did not depend on the number of alleles shared with the female or amino-acid distance between potential mates at either locus. Furthermore, we found no indication of female mating preferences for MHC similarity being contingent on the number of alleles the females carried. Finally, we found no significant association between the number of MHC alleles a male carried and his mating success. Thus, our results provided no support for the role of mate choice in shaping MHC polymorphism in the brown bear.
No evidence of inbreeding avoidance in a polygynous ungulate: the reindeer (Rangifer tarandus).
Holand, Oystein; Askim, Kjartan R; Røed, Knut H; Weladji, Robert B; Gjøstein, Hallvard; Nieminen, Mauri
2007-02-22
In polygynous species, mate choice is an integrated part of sexual selection. However, whether mate choice occurs independently of the genetic relatedness among mating pairs has received little attention, although inbreeding may have fitness consequences. We studied whether genetic relatedness influenced females' choice of partner in a highly polygynous ungulate--the reindeer (Rangifer tarandus)--in an experimental herd during two consecutive rutting seasons; the herd consisting of 75 females in 1999 and 74 females in 2000 was exposed to three 4.5-year-old adults and three 1.5-year-old young males, respectively. The females' distribution during peak rut was not influenced by their genetic relatedness with the dominant males of the mating groups. Further, genetic relatedness did not influence the actual choice of mating partner. We conclude that inbreeding avoidance through mating group choice as well as choice of mating partner, two interconnected processes of female mate choice operating at two different scales in space and time, in such a highly female-biased reindeer populations with low level of inbreeding may not occur.
Mate choice promotes inbreeding avoidance in the two-spotted spider mite.
Tien, N S H; Massourakis, G; Sabelis, M W; Egas, M
2011-06-01
Since inbreeding in Tetranychus urticae can reduce offspring fitness, sexual selection may favour disassortative mate choice with respect to relatedness of the mating partners. We tested whether T. urticae shows this preference for mating with unrelated partners. We chose an experimental set-up with high potential for female choosiness, since females only mate once and are therefore expected to be the choosier gender. An adult virgin female was placed together with two adult males from the same population. One male was unrelated and the other male was related-a brother with whom she had grown up. Significantly more copulations (64%) took place with the unrelated male. Time to mating did not depend on the female-to-male relatedness. The remaining (non-copulating) male tried to interfere with the ongoing mating in the majority of cases, but this interference did not depend on the female-to-male relatedness. These results imply that T. urticae (a) can recognize kin (via genetic and/or environmental similarity) and (b) has the potential to avoid inbreeding through mate choice.
Sexual signals and mating patterns in Syngnathidae.
Rosenqvist, G; Berglund, A
2011-06-01
Male pregnancy in the family Syngnathidae (pipefishes, seahorses and seadragons) predisposes males to limit female reproductive success; sexual selection may then operate more strongly on females and female sexual signals may evolve (sex-role reversal). A bewildering array of female signals has evolved in Syngnathids, e.g. skin folds, large body size, colouration, markings on the body and elaborate courtship. These female sexual signals do not seem quantitatively or qualitatively different from those that evolve in males in species with conventional sex roles where males provide females or offspring with direct benefits. In several syngnathid species, males also evolve ornaments, females are choosy in addition to being competitive and males compete as well as choosing partners. Thus, sex roles form a continuum, spanning from conventional to reversed within this group of fishes. Cases are presented here suggesting that stronger sexual selection on females may be most extreme in species showing classical polyandry (one male mates with several females, such as many species where males brood their eggs on the trunk), intermediate in polygynandrous species (males and females both mate with more than one partner, as in many species where males brood their eggs on the tail) and least extreme, even exhibiting conventional sex roles, in monogamous species (one male mates solely with one female, as in many seahorses and tropical pipefishes). At the same time caution is needed before unanimously establishing this pattern: first, the connection between mating patterns, strength of sexual selection, sex roles and ornament expression is far from simple and straightforward, and second, knowledge of the actual morphology, ecology and behaviour of most syngnathid species is scanty. Basically only a few Nerophis, Syngnathus and Hippocampus species have been studied in any detail. It is known, however, that this group of fishes exhibits a remarkable variation in sex roles and ornamentation, making them an ideal group for the study of mating patterns, sexual selection and sexually selected signals. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
2011-01-01
Background Both natural and sexual selection are thought to influence genetic diversity, but the study of the relative importance of these two factors on ecologically-relevant traits has traditionally focused on species with conventional sex-roles, with male-male competition and female-based mate choice. With its high variability and significance in both immune function and olfactory-mediated mate choice, the major histocompatibility complex (MHC/MH) is an ideal system in which to evaluate the relative contributions of these two selective forces to genetic diversity. Intrasexual competition and mate choice are both reversed in sex-role reversed species, and sex-related differences in the detection and use of MH-odor cues are expected to influence the intensity of sexual selection in such species. The seahorse, Hippocampus abdominalis, has an exceptionally highly developed form of male parental care, with female-female competition and male mate choice. Results Here, we demonstrate that the sex-role reversed seahorse has a single MH class II beta-chain gene and that the diversity of the seahorse MHIIβ locus and its pattern of variation are comparable to those detected in species with conventional sex roles. Despite the presence of only a single gene copy, intralocus MHIIβ allelic diversity in this species exceeds that observed in species with multiple copies of this locus. The MHIIβ locus of the seahorse exhibits a novel expression domain in the male brood pouch. Conclusions The high variation found at the seahorse MHIIβ gene indicates that sex-role reversed species are capable of maintaining the high MHC diversity typical in most vertebrates. Whether such species have evolved the capacity to use MH-odor cues during mate choice is presently being investigated using mate choice experiments. If this possibility can be rejected, such systems would offer an exceptional opportunity to study the effects of natural selection in isolation, providing powerful comparative models for understanding the relative importance of selective factors in shaping patterns of genetic variation. PMID:21569286
Mating system and the evolution of sex-specific mortality rates in two nymphalid butterflies.
Wiklund, Christer; Gotthard, Karl; Nylin, Sören
2003-09-07
Life-history theory predicts that organisms should invest resources into intrinsic components of lifespan only to the degree that it pays off in terms of reproductive success. The benefit of a long life may differ between the sexes and different mating systems may therefore select for different sex-specific mortality rates. In insects with polyandrous mating systems, females mate throughout their lives and male reproductive success is likely to increase monotonously with lifespan. In monandrous systems, where the mating season is less protracted because receptive females are available only at the beginning of the flight season, male mating success should be less dependent on a long lifespan. Here, we show, in a laboratory experiment without predation, that the duration of the mating season is longer in the polyandrous comma butterfly, Polygonia c-album, than in the monandrous peacock butterfly, Inachis io, and that, in line with predictions, male lifespan is shorter than female lifespan in I. io, whereas male and female lifespans are similar in P. c-album.
Dmitriew, Caitlin; Blanckenhorn, Wolf U
2012-01-01
The black scavenger fly Sepsis punctum exhibits striking among-population variation in the direction and magnitude of sexual size dimorphism, modification to the male forelimb and pre-copulatory behaviour. In some populations, male-biased sexual size dimorphism is observed; in other, less dimorphic, populations males court prior to mating. Such variation in reproductive traits is of interest to evolutionary biologists because it has the potential to limit gene flow among populations, contributing to speciation. Here, we investigate whether large male body size and modified forefemur are associated with higher male mating success within populations, whether these traits are associated with higher mating success among populations, and if these traits carry viability costs that could constrain their response to sexual selection. Flies from five distinct populations were reared at high or low food, generating high and low quality males. The expression of body size, forelimb morphology and courtship rate were each greater at high food, but high food males experienced higher mating success or reduced latency to first copulation in only one of the populations. Among populations, overall mating success increased with the degree of male-bias in overall body size and forelimb modification, suggesting that these traits have evolved as a means of increasing male mating rate. The increased mating success observed in large-male populations raises the question of why variation in magnitude of dimorphism persists among populations. One reason may be that costs of producing a large size constrain the evolution of ever-larger males. We found no evidence that juvenile mortality under food stress was greater for large-male populations, but development time was considerably longer and may represent an important constraint in an ephemeral and competitive growth environment.
Positive feedback in the transition from sexual reproduction to parthenogenesis.
Schwander, Tanja; Vuilleumier, Séverine; Dubman, Janie; Crespi, Bernard J
2010-05-07
Understanding how new phenotypes evolve is challenging because intermediate stages in transitions from ancestral to derived phenotypes often remain elusive. Here we describe and evaluate a new mechanism facilitating the transition from sexual reproduction to parthenogenesis. In many sexually reproducing species, a small proportion of unfertilized eggs can hatch spontaneously ('tychoparthenogenesis') and develop into females. Using an analytical model, we show that if females are mate-limited, tychoparthenogenesis can result in the loss of males through a positive feedback mechanism whereby tychoparthenogenesis generates female-biased sex ratios and increasing mate limitation. As a result, the strength of selection for tychoparthenogenesis increases in concert with the proportion of tychoparthenogenetic offspring in the sexual population. We then tested the hypothesis that mate limitation selects for tychoparthenogenesis and generates female-biased sex ratios, using data from natural populations of sexually reproducing Timema stick insects. Across 41 populations, both the tychoparthenogenesis rates and the proportions of females increased exponentially as the density of individuals decreased, consistent with the idea that low densities of individuals result in mate limitation and selection for reproductive insurance through tychoparthenogenesis. Our model and data from Timema populations provide evidence for a simple mechanism through which parthenogenesis can evolve rapidly in a sexual population.
Choosy but not chaste: multiple mating in human females.
Scelza, Brooke A
2013-01-01
When Charles Darwin set out to relate his theory of evolution by natural selection to humans he discovered that a complementary explanation was needed to properly understand the great variation seen in human behavior. The resulting work, The Descent of Man and Selection in Relation to Sex, laid out the defining principles and evidence of sexual selection. In brief, this work is best known for illuminating the typically male strategy of intrasexual competition and the typically female response of intersexual choice. While these sexual stereotypes were first laid out by Darwin, they grew in importance when, years later, A. J. Bateman, in a careful study of Drosophila mating strategies, noted that multiple mating appeared to provide great benefit to male reproductive success, but to have no such effect on females. As a result, female choice soon became synonymous with being coy, and only males were thought to gain from promiscuous behavior. However, the last thirty years of research have served to question much of the traditional wisdom about sex differences proposed by Darwin and Bateman, illuminating the many ways that women (and females more generally) can and do engage in multiple mating. Copyright © 2013 Wiley Periodicals, Inc.
2009-01-01
Background Mating changes the mode of action of 17beta-estradiol (E2) to accelerate oviductal egg transport from a nongenomic to a genomic mode, although in both pathways estrogen receptors (ER) are required. This change was designated as intracellular path shifting (IPS). Methods Herein, we examined the subcellular distribution of ESR1 and ESR2 (formerly known as ER-alpha and ER-beta) in oviductal epithelial cells of rats on day 1 of cycle (C1) or pregnancy (P1) using immunoelectron microscopy for ESR1 and ESR2. The effect of mating on intraoviductal ESR1 or ESR2 signaling was then explored comparing the expression of E2-target genes c-fos, brain creatine kinase (Ckb) and calbindin 9 kDa (s100g) in rats on C1 or P1 treated with selective agonists for ESR1 (PPT) or ESR2 (DPN). The effect of ER agonists on egg transport was also evaluated on C1 or P1 rats. Results Receptor immunoreactivity was associated with the nucleus, cytoplasm and plasma membrane of the epithelial cells. Mating affected the subcellular distribution of both receptors as well as the response to E2. In C1 and P1 rats, PPT increased Ckb while both agonists increased c-fos. DPN increased Ckb and s100g only in C1 and P1 rats, respectively. PPT accelerated egg transport in both groups and DPN accelerated egg transport only in C1 rats. Conclusion Estrogen receptors present a subcellular distribution compatible with E2 genomic and nongenomic signaling in the oviductal epithelial cells of C1 and P1 although IPS occurs independently of changes in the distribution of ESR1 and ESR2 in the oviductal epithelial cells. Mating affected intraoviductal ER-signaling and induced loss of functional involvement of ESR2 on E2-induced accelerated egg transport. These findings reveal a profound influence on the ER signaling pathways exerted by mating in the oviduct. PMID:19948032
Women's Fertility Status Alters Other Women's Jealousy and Mate Guarding.
Hurst, Ashalee C; Alquist, Jessica L; Puts, David A
2017-02-01
Across three studies, we tested the hypothesis that women exhibit greater jealousy and mate guarding toward women who are in the high (vs. low) fertility phase of their cycle. Women who imagined their partner with a woman pictured at high fertility reported more jealousy than women who imagined their partner with a woman pictured at low fertility (Studies 1 and 2). A meta-analysis across studies manipulating fertility status of the pictured woman found a significant effect of fertility status on both jealousy and mate guarding. Women with attractive partners viewed fertile-phase women as less trustworthy, which led to increased mate guarding (Study 2). In Study 3, the closer women were to peak fertility, the more instances they reported of other women acting jealously and mate guarding toward them. These studies provide evidence that women selectively exhibit jealousy and mate guarding toward women who are near peak fertility.
McCartney, J; Kokko, H; Heller, K-G; Gwynne, D T
2012-03-22
Sexual selection is thought to have led to searching as a profitable, but risky way of males obtaining mates. While there is great variation in which sex searches, previous theory has not considered search evolution when both males and females benefit from multiple mating. We present new theory and link it with data to bridge this gap. Two different search protocols exist between species in the bush-cricket genus Poecilimon (Orthoptera): females search for calling males, or males search for calling females. Poecilimon males also transfer a costly nuptial food gift to their mates during mating. We relate variations in searching protocols to variation in nuptial gift size among 32 Poecilimon taxa. As predicted, taxa where females search produce significantly larger nuptial gifts than those where males search. Our model and results show that search roles can reverse when multiple mating brings about sufficiently strong material benefits to females.
Mate replacement entails a fitness cost for a socially monogamous seabird.
Ismar, Stefanie M H; Daniel, Claire; Stephenson, Brent M; Hauber, Mark E
2010-01-01
Studies of the selective advantages of divorce in socially monogamous bird species have unravelled extensive variation among different lineages with diverse ecologies. We quantified the reproductive correlates of mate retention, mate loss and divorce in a highly philopatric, colonially breeding biparental seabird, the Australasian gannet Morus serrator. Estimates of annual divorce rates varied between 40-43% for M. serrator and were high in comparison with both the closely related Morus bassanus and the range of divorce rates reported across monogamous avian breeding systems. Mate retention across seasons was related to consistently higher reproductive success compared with mate replacement, while divorce per se contributed significantly to lower reproductive output only in one of two breeding seasons. Prior reproductive success was not predictive of mate replacement overall or divorce in particular. These patterns are in accordance with the musical chairs hypothesis of adaptive divorce theory, which operates in systems characterised by asynchronous territorial establishment.
The scent of inbreeding: a male sex pheromone betrays inbred males
van Bergen, Erik; Brakefield, Paul M.; Heuskin, Stéphanie; Zwaan, Bas J.; Nieberding, Caroline M.
2013-01-01
Inbreeding depression results from mating among genetically related individuals and impairs reproductive success. The decrease in male mating success is usually attributed to an impact on multiple fitness-related traits that reduce the general condition of inbred males. Here, we find that the production of the male sex pheromone is reduced significantly by inbreeding in the butterfly Bicyclus anynana. Other traits indicative of the general condition, including flight performance, are also negatively affected in male butterflies by inbreeding. Yet, we unambiguously show that only the production of male pheromones affects mating success. Thus, this pheromone signal informs females about the inbreeding status of their mating partners. We also identify the specific chemical component (hexadecanal) probably responsible for the decrease in male mating success. Our results advocate giving increased attention to olfactory communication as a major causal factor of mate-choice decisions and sexual selection. PMID:23466986
Mate replacement entails a fitness cost for a socially monogamous seabird
NASA Astrophysics Data System (ADS)
Ismar, Stefanie M. H.; Daniel, Claire; Stephenson, Brent M.; Hauber, Mark E.
2010-01-01
Studies of the selective advantages of divorce in socially monogamous bird species have unravelled extensive variation among different lineages with diverse ecologies. We quantified the reproductive correlates of mate retention, mate loss and divorce in a highly philopatric, colonially breeding biparental seabird, the Australasian gannet Morus serrator. Estimates of annual divorce rates varied between 40-43% for M. serrator and were high in comparison with both the closely related Morus bassanus and the range of divorce rates reported across monogamous avian breeding systems. Mate retention across seasons was related to consistently higher reproductive success compared with mate replacement, while divorce per se contributed significantly to lower reproductive output only in one of two breeding seasons. Prior reproductive success was not predictive of mate replacement overall or divorce in particular. These patterns are in accordance with the musical chairs hypothesis of adaptive divorce theory, which operates in systems characterised by asynchronous territorial establishment.
Filice, David C S; Long, Tristan A F
2017-05-01
Female mate choice is a complex decision-making process that involves many context-dependent factors. In Drosophila melanogaster , a model species for the study of sexual selection, indirect genetic effects (IGEs) of general social interactions can influence female mate choice behaviors, but the potential impacts of IGEs associated with mating experiences are poorly understood. Here, we examined whether the IGEs associated with a previous mating experience had an effect on subsequent female mate choice behaviors and quantified the degree of additive genetic variation associated with this effect. Females from 21 different genetic backgrounds were housed with males from one of two distinct genetic backgrounds for either a short (3 hr) or long (48 hr) exposure period and their subsequent mate choice behaviors were scored. We found that the genetic identity of a previous mate significantly influenced a female's subsequent interest in males and preference of males. Additionally, a hemiclonal analysis revealed significant additive genetic variation associated with experience-dependent mate choice behaviors, indicating a genotype-by-environment interaction for both of these parameters. We discuss the significance of these results with regard to the evolution of plasticity in female mate choice behaviors and the maintenance of variation in harmful male traits.
2013-01-01
Background Female mate preferences may be under strong selection in zones of contact between closely related species because of greater variation in available mates and the potential costs of hybridization. We studied female mate preferences experimentally in a zone of secondary contact between Desert and Bryant’s Woodrat (Neotoma lepida and N. bryanti) in the southern foothills of the Sierra Nevada of California. We tested female preference for conspecific versus heterospecific males in paired choice trials in which females could interact freely with males, but males could not interact directly with each other. We compared preferences of females from both allopatric and sympatric sites. Results We did not find evidence of the process of reinforcement as assortative preferences were not stronger in sympatry than in allopatry. Mate preferences, however, were asymmetric, with N. lepida females mating preferentially with conspecifics and N. bryanti females showing no preference by species. Sympatric females were less likely to mate than allopatric females, due in part to an increase in aggressive interactions. However, even in the absence of aggression, courtship led to mating less often in sympatric females, suggesting they were choosier or had lower sexual motivation than allopatric females. Conclusions Patterns of mate choice in this woodrat system appear to be strongly impacted by body size and aggressive behavior. In particular, females of the smaller-bodied species rarely interact with the relatively large heterospecific males. In contrast females of the larger-bodied species accept the relatively small heterospecific males. For sympatric animals, rates of aggression were markedly higher than for allopatric animals and reduced affiliative and reproductive behavior in our trials. Sympatric animals are larger and more aggressive, traits that are likely under strong ecological selection across the sharp resource gradient that characterizes the contact zone. However, our results suggest that these traits that are likely favored in competitive interactions between the species also impact reproductive interactions. Combined with our previous findings of post-zygotic isolation in this system, this study suggests that multiple isolating mechanisms contribute to the rate of genetic exchange between these species when they come into contact, and that these mechanisms are the result of selection on traits that are important in a range of ecological and reproductive interactions. PMID:24093823
2018-05-21
NASA's Ionospheric Connection Explorer (ICON) spacecraft is partially mated to the starboard faring of Orbital ATK's Pegasus XL rocket on May 21, 2018, inside Building 1555 at Vandenberg Air Force Base in California. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on the Pegasus XL, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology and communications systems.
The genetic correlation between height and IQ: shared genes or assortative mating?
Keller, Matthew C; Garver-Apgar, Christine E; Wright, Margaret J; Martin, Nicholas G; Corley, Robin P; Stallings, Michael C; Hewitt, John K; Zietsch, Brendan P
2013-04-01
Traits that are attractive to the opposite sex are often positively correlated when scaled such that scores increase with attractiveness, and this correlation typically has a genetic component. Such traits can be genetically correlated due to genes that affect both traits ("pleiotropy") and/or because assortative mating causes statistical correlations to develop between selected alleles across the traits ("gametic phase disequilibrium"). In this study, we modeled the covariation between monozygotic and dizygotic twins, their siblings, and their parents (total N = 7,905) to elucidate the nature of the correlation between two potentially sexually selected traits in humans: height and IQ. Unlike previous designs used to investigate the nature of the height-IQ correlation, the present design accounts for the effects of assortative mating and provides much less biased estimates of additive genetic, non-additive genetic, and shared environmental influences. Both traits were highly heritable, although there was greater evidence for non-additive genetic effects in males. After accounting for assortative mating, the correlation between height and IQ was found to be almost entirely genetic in nature. Model fits indicate that both pleiotropy and assortative mating contribute significantly and about equally to this genetic correlation.
Female brain size affects the assessment of male attractiveness during mate choice.
Corral-López, Alberto; Bloch, Natasha I; Kotrschal, Alexander; van der Bijl, Wouter; Buechel, Severine D; Mank, Judith E; Kolm, Niclas
2017-03-01
Mate choice decisions are central in sexual selection theory aimed to understand how sexual traits evolve and their role in evolutionary diversification. We test the hypothesis that brain size and cognitive ability are important for accurate assessment of partner quality and that variation in brain size and cognitive ability underlies variation in mate choice. We compared sexual preference in guppy female lines selected for divergence in relative brain size, which we have previously shown to have substantial differences in cognitive ability. In a dichotomous choice test, large-brained and wild-type females showed strong preference for males with color traits that predict attractiveness in this species. In contrast, small-brained females showed no preference for males with these traits. In-depth analysis of optomotor response to color cues and gene expression of key opsins in the eye revealed that the observed differences were not due to differences in visual perception of color, indicating that differences in the ability to process indicators of attractiveness are responsible. We thus provide the first experimental support that individual variation in brain size affects mate choice decisions and conclude that differences in cognitive ability may be an important underlying mechanism behind variation in female mate choice.
Social and behavioral barriers to pathogen transmission in wild animal populations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loehle, C.S.
Disease and pathogens have been studied as regulators of animal populations but not really as selective forces. The authors propose that pathogens can be major selective forces influencing social behaviors when these are successful at reducing disease transmission. The behaviors whose evolution could have been influenced by pathogen effects include group size, group isolation, mixed species flocking, migration, seasonal sociality, social avoidance, and dominance behaviors. Mate choice, mating system, and sexual selection are put in a new light when examined in terms of disease transmission. It is concluded that pathogen avoidance is a more powerful selective force than has heretoforemore » been recognized.« less
Experimental evolution reveals trade-offs between mating and immunity.
McNamara, Kathryn B; Wedell, Nina; Simmons, Leigh W
2013-08-23
Immune system maintenance and upregulation is costly. Sexual selection intensity, which increases male investment into reproductive traits, is expected to create trade-offs with immune function. We assayed phenoloxidase (PO) and lytic activity of individuals from populations of the Indian meal moth, Plodia interpunctella, which had been evolving under different intensities of sexual selection. We found significant divergence among populations, with males from female-biased populations having lower PO activity than males from balanced sex ratio or male-biased populations. There was no divergence in anti-bacterial lytic activity. Our data suggest that it is the increased male mating demands in female-biased populations that trades-off against immunity, and not the increased investment in sperm transfer per mating that characterizes male-biased populations.
Experimental evolution reveals trade-offs between mating and immunity
McNamara, Kathryn B.; Wedell, Nina; Simmons, Leigh W.
2013-01-01
Immune system maintenance and upregulation is costly. Sexual selection intensity, which increases male investment into reproductive traits, is expected to create trade-offs with immune function. We assayed phenoloxidase (PO) and lytic activity of individuals from populations of the Indian meal moth, Plodia interpunctella, which had been evolving under different intensities of sexual selection. We found significant divergence among populations, with males from female-biased populations having lower PO activity than males from balanced sex ratio or male-biased populations. There was no divergence in anti-bacterial lytic activity. Our data suggest that it is the increased male mating demands in female-biased populations that trades-off against immunity, and not the increased investment in sperm transfer per mating that characterizes male-biased populations. PMID:23720521
Puechmaille, Sébastien J.; Borissov, Ivailo M.; Zsebok, Sándor; Allegrini, Benjamin; Hizem, Mohammed; Kuenzel, Sven; Schuchmann, Maike; Teeling, Emma C.
2014-01-01
Animals employ an array of signals (i.e. visual, acoustic, olfactory) for communication. Natural selection favours signals, receptors, and signalling behaviour that optimise the received signal relative to background noise. When the signal is used for more than one function, antagonisms amongst the different signalling functions may constrain the optimisation of the signal for any one function. Sexual selection through mate choice can strongly modify the effects of natural selection on signalling systems ultimately causing maladaptive signals to evolve. Echolocating bats represent a fascinating group in which to study the evolution of signalling systems as unlike bird songs or frog calls, echolocation has a dual role in foraging and communication. The function of bat echolocation is to generate echoes that the calling bat uses for orientation and food detection with call characteristics being directly related to the exploitation of particular ecological niches. Therefore, it is commonly assumed that echolocation has been shaped by ecology via natural selection. Here we demonstrate for the first time using a novel combined behavioural, ecological and genetic approach that in a bat species, Rhinolophus mehelyi: (1) echolocation peak frequency is an honest signal of body size; (2) females preferentially select males with high frequency calls during the mating season; (3) high frequency males sire more off-spring, providing evidence that echolocation calls may play a role in female mate choice. Our data refute the sole role of ecology in the evolution of echolocation and highlight the antagonistic interplay between natural and sexual selection in shaping acoustic signals. PMID:25075972
Puechmaille, Sébastien J; Borissov, Ivailo M; Zsebok, Sándor; Allegrini, Benjamin; Hizem, Mohammed; Kuenzel, Sven; Schuchmann, Maike; Teeling, Emma C; Siemers, Björn M
2014-01-01
Animals employ an array of signals (i.e. visual, acoustic, olfactory) for communication. Natural selection favours signals, receptors, and signalling behaviour that optimise the received signal relative to background noise. When the signal is used for more than one function, antagonisms amongst the different signalling functions may constrain the optimisation of the signal for any one function. Sexual selection through mate choice can strongly modify the effects of natural selection on signalling systems ultimately causing maladaptive signals to evolve. Echolocating bats represent a fascinating group in which to study the evolution of signalling systems as unlike bird songs or frog calls, echolocation has a dual role in foraging and communication. The function of bat echolocation is to generate echoes that the calling bat uses for orientation and food detection with call characteristics being directly related to the exploitation of particular ecological niches. Therefore, it is commonly assumed that echolocation has been shaped by ecology via natural selection. Here we demonstrate for the first time using a novel combined behavioural, ecological and genetic approach that in a bat species, Rhinolophus mehelyi: (1) echolocation peak frequency is an honest signal of body size; (2) females preferentially select males with high frequency calls during the mating season; (3) high frequency males sire more off-spring, providing evidence that echolocation calls may play a role in female mate choice. Our data refute the sole role of ecology in the evolution of echolocation and highlight the antagonistic interplay between natural and sexual selection in shaping acoustic signals.
Mendel’s law reveals fatal flaws in Bateman’s 1948 study of mating and fitness
Gowaty, Patricia Adair; Kim, Yong-Kyu; Anderson, Wyatt W.
2013-01-01
Bateman’s experimental study of Drosophila melanogaster produced conclusions that are now part of the bedrock premises of modern sexual selection. Today it is the most cited experimental study in sexual selection, and famous as the first experimental demonstration of sex differences in the relationship between number of mates and relative reproductive success. We repeated the experimental methodology of the original to evaluate its reliability. The results indicate that Bateman’s methodology of visible mutations to assign parentage and reproductive success to subject adults is significantly biased. When combined in offspring, the mutations decrease offspring survival, so that counts of mate number and reproductive success are mismeasured. Bateman’s method overestimates the number of subjects with no mates and underestimates the number with one or more mates for both sexes. Here we discuss why Bateman’s paper is important and present additional analyses of data from our monogamy trials. Monogamy trials can inform inferences about the force of sexual selection in populations because in monogamy trials male–male competition and female choice are absent. Monogamy trials also would have provided Bateman with an a priori test of the fit of his data to Mendel’s laws, an unstated, but vital assumption of his methodology for assigning parentage from which he inferred the number of mates per individual subject and their reproductive success. Even under enforced monogamous mating, offspring frequencies of double mutant, single mutant and no mutant offspring were significantly different from Mendelian expectations proving that Bateman’s method was inappropriate for answering the questions he posed. Double mutant offspring (those with a mutation from each parent) suffered significant inviability as did single mutant offspring whenever they inherited their mother’s marker but the wild-type allele at their father’s marker locus. These inviability effects produced two important inaccuracies in Bateman’s results and conclusions. (1) Some matings that actually occurred were invisible and (2) reproductive success of some mothers was under-estimated. Both observations show that Bateman’s conclusions about sex differences in number of mates and reproductive success were unwarranted, based on biased observations. We speculate about why Bateman’s classic study remained without replication for so long, and we discuss why repetition almost 60 years after the original is still timely, necessary and critical to the scientific enterprise. We highlight overlooked alternative hypotheses to urge that modern tests of Bateman’s conclusions go beyond confirmatory studies to test alternative hypotheses to explain the relationship between mate number and reproductive success. PMID:23360967
Mendel's law reveals fatal flaws in Bateman's 1948 study of mating and fitness.
Gowaty, Patricia Adair; Kim, Yong-Kyu; Anderson, Wyatt W
2013-01-01
Bateman's experimental study of Drosophila melanogaster produced conclusions that are now part of the bedrock premises of modern sexual selection. Today it is the most cited experimental study in sexual selection, and famous as the first experimental demonstration of sex differences in the relationship between number of mates and relative reproductive success. We repeated the experimental methodology of the original to evaluate its reliability. The results indicate that Bateman's methodology of visible mutations to assign parentage and reproductive success to subject adults is significantly biased. When combined in offspring, the mutations decrease offspring survival, so that counts of mate number and reproductive success are mismeasured. Bateman's method overestimates the number of subjects with no mates and underestimates the number with one or more mates for both sexes. Here we discuss why Bateman's paper is important and present additional analyses of data from our monogamy trials. Monogamy trials can inform inferences about the force of sexual selection in populations because in monogamy trials male-male competition and female choice are absent. Monogamy trials also would have provided Bateman with an a priori test of the fit of his data to Mendel's laws, an unstated, but vital assumption of his methodology for assigning parentage from which he inferred the number of mates per individual subject and their reproductive success. Even under enforced monogamous mating, offspring frequencies of double mutant, single mutant and no mutant offspring were significantly different from Mendelian expectations proving that Bateman's method was inappropriate for answering the questions he posed. Double mutant offspring (those with a mutation from each parent) suffered significant inviability as did single mutant offspring whenever they inherited their mother's marker but the wild-type allele at their father's marker locus. These inviability effects produced two important inaccuracies in Bateman's results and conclusions. (1) Some matings that actually occurred were invisible and (2) reproductive success of some mothers was under-estimated. Both observations show that Bateman's conclusions about sex differences in number of mates and reproductive success were unwarranted, based on biased observations. We speculate about why Bateman's classic study remained without replication for so long, and we discuss why repetition almost 60 years after the original is still timely, necessary and critical to the scientific enterprise. We highlight overlooked alternative hypotheses to urge that modern tests of Bateman's conclusions go beyond confirmatory studies to test alternative hypotheses to explain the relationship between mate number and reproductive success.
Davis, A Gabriell; Leary, Christopher J
2015-03-01
Mate selection can be stressful; time spent searching for mates can increase predation risk and/or decrease food consumption, resulting in elevated stress hormone levels. Both high predation risk and low food availability are often associated with increased variation in mate choice by females, but it is not clear whether stress hormone levels contribute to such variation in female behavior. We examined how the stress hormone corticosterone (CORT) affects female preferences for acoustic signals in the green treefrog, Hyla cinerea. Specifically, we assessed whether CORT administration affects female preferences for call rate - an acoustic feature that is typically under directional selection via mate choice by females in most anurans and other species that communicate using acoustic signals. Using a dual speaker playback paradigm, we show that females that were administered higher doses of CORT were less likely to choose male advertisement calls broadcast at high rates. Neither CORT dose nor level was related to the latency of female phonotactic responses, suggesting that elevated CORT does not influence the motivation to mate. Results were also not related to circulating sex steroids (i.e., progesterone, androgens or estradiol) that have traditionally been the focus of studies examining the hormonal basis for variation in female mate choice. Our results thus indicate that elevated CORT levels decrease the strength of female preferences for acoustic signals. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Harano, Ken-Ichi; Sasaki, Ken; Nagao, Takashi
2005-07-01
To explore neuro-endocrinal changes in the brain of European honeybee (Apis mellifera) queens before and after mating, we measured the amount of several biogenic amines, including dopamine and its metabolite in the brain of 6- and 12-day-old virgins and 12-day-old mated queens. Twelve-day-old mated queens showed significantly lower amounts of dopamine and its metabolite (N-acetyldopamine) than both 6- and 12-day-old virgin queens, whereas significant differences in the amounts of these amines were not detected between 6- and 12-day-old virgin queens. These results are explained by down-regulation of both synthesis and secretion of brain dopamine after mating. It is speculated that higher amounts of brain dopamine in virgin queens might be involved in activation of ovarian follicles arrested in previtellogenic stages, as well as regulation of their characteristic behaviors.
PDF-1 neuropeptide signaling modulates a neural circuit for mate-searching behavior in C. elegans.
Barrios, Arantza; Ghosh, Rajarshi; Fang, Chunhui; Emmons, Scott W; Barr, Maureen M
2012-12-01
Appetitive behaviors require complex decision making that involves the integration of environmental stimuli and physiological needs. C. elegans mate searching is a male-specific exploratory behavior regulated by two competing needs: food and reproductive appetite. We found that the pigment dispersing factor receptor (PDFR-1) modulates the circuit that encodes the male reproductive drive that promotes male exploration following mate deprivation. PDFR-1 and its ligand, PDF-1, stimulated mate searching in the male, but not in the hermaphrodite. pdf-1 was required in the gender-shared interneuron AIM, and the receptor acted in internal and external environment-sensing neurons of the shared nervous system (URY, PQR and PHA) to produce mate-searching behavior. Thus, the pdf-1 and pdfr-1 pathway functions in non-sex-specific neurons to produce a male-specific, goal-oriented exploratory behavior. Our results indicate that secretin neuropeptidergic signaling is involved in regulating motivational internal states.
Pest persistence and eradication conditions in a deterministic model for sterile insect release.
Gordillo, Luis F
2015-01-01
The release of sterile insects is an environment friendly pest control method used in integrated pest management programmes. Difference or differential equations based on Knipling's model often provide satisfactory qualitative descriptions of pest populations subject to sterile release at relatively high densities with large mating encounter rates, but fail otherwise. In this paper, I derive and explore numerically deterministic population models that include sterile release together with scarce mating encounters in the particular case of species with long lifespan and multiple matings. The differential equations account separately the effects of mating failure due to sterile male release and the frequency of mating encounters. When insects spatial spread is incorporated through diffusion terms, computations reveal the possibility of steady pest persistence in finite size patches. In the presence of density dependence regulation, it is observed that sterile release might contribute to induce sudden suppression of the pest population.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- Workers in the Multi-Payload Processing Facility close the fairing around the Galaxy Evolution Explorer (GALEX). The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Workers in the Multi-Payload Processing Facility prepare the Galaxy Evolution Explorer (GALEX) for encapsulation. The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- Workers in the Multi-Payload Processing Facility prepare the Galaxy Evolution Explorer (GALEX) for encapsulation. The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
Personal Characteristics Important in Mate Preference among College Students.
ERIC Educational Resources Information Center
Hoyt, Les Leanne; Hudson, John W.
1981-01-01
Compared college students' values in mate selection held today with those of earlier generations. Responses to a questionnaire (N=316) reflected changes in sex roles, influence of the mass media, increased idealization of romantic love, and current social and economic conditions. (Author/RC)
Fitness consequences of female multiple mating: A direct test of indirect benefits
2012-01-01
Background The observation that females mate multiply when males provide nothing but sperm - which sexual selection theory suggests is unlikely to be limiting - continues to puzzle evolutionary biologists. Here we test the hypothesis that multiple mating is prevalent under such circumstances because it enhances female fitness. We do this by allowing female Trinidadian guppies to mate with either a single male or with multiple males, and then tracking the consequences of these matings across two generations. Results Overall, multiply mated females produced 67% more F2 grand-offspring than singly mated females. These offspring, however, did not grow or mature faster, nor were they larger at birth, than F2 grand-offspring of singly mated females. Our results, however, show that multiple mating yields benefits to females in the form of an increase in the production of F1. The higher fecundity among multiply mated mothers was driven by greater production of sons but not daughters. However, contrary to expectation, individually, the offspring of multiply mated females do not grow at different rates than offspring of singly mated females, nor do any indirect fitness benefits or costs accrue to second-generation offspring. Conclusions The study provides strong evidence that multiple mating is advantageous to females, even when males contribute only sperm. This benefit is achieved through an increase in fecundity in the first generation, rather than through other fitness correlates such as size at birth, growth rate, time to sexual maturation and survival. Considered alongside previous work that female guppies can choose to mate with multiple partners, our results provide compelling evidence that direct fitness benefits underpin these mating decisions. PMID:22978442
Henshaw, Jonathan M; Kokko, Hanna; Jennions, Michael D
2015-08-01
Simultaneous hermaphroditism is predicted to be unstable at high mating rates given an associated increase in sperm competition. The existence of reciprocal egg trading, which requires both hermaphroditism and high mating rates to evolve, is consequently hard to explain. We show using mathematical models that the presence of a trading economy creates an additional fitness benefit to egg production, which selects for traders to bias their sex allocation toward the female function. This female-biased sex allocation prevents pure females from invading a trading population, thereby allowing simultaneous hermaphroditism to persist stably at much higher levels of sperm competition than would otherwise be expected. More generally, our model highlights that simultaneous hermaphroditism can persist stably when mating opportunities are abundant, as long as sperm competition remains low. It also predicts that reciprocity will select for heavier investment in the traded resource. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Men With a Terminal Illness Relax Their Criteria for Facial Attractiveness
Danel, Dariusz P.; Siennicka, Agnieszka E.; Fedurek, Pawel; Frackowiak, Tomasz; Sorokowski, Piotr; Jankowska, Ewa A.; Pawlowski, Boguslaw
2017-01-01
According to the life history paradigm, in life-threatening conditions, sexual selection criteria are relaxed in order to increase the probability of a last resort reproduction, ultimately contributing to reproductive success. This should be reflected in loosened mating preferences — a process observed in nonhuman animals. Studies investigating this aspect in humans, however, are scarce. This study explored the aesthetic preferences towards facial and nonfacial stimuli in terminally ill patients with heart failure (HF) and their healthy, same-sex peers. The aim was to examine if these two groups of men demonstrate different patterns of aesthetic judgments. Using a 7-point scale, 65 male patients with HF and 143 healthy men evaluated the perceived attractiveness of 15 photographs (five adult male faces, five adult female faces, and five nonfacial pictures). A mixed-design analysis of variance was run to assess group differences in aesthetic preferences. Compared to healthy controls, stimuli. HF patients rated the pictures using significantly higher scores, but this applied only to male and female, but not nonfacial, stimuli. We propose that lower criteria for facial attractiveness in HF patients are linked to relaxation of mate preferences as a result of a life-threatening conditions, and that this process can be an adaptive mating strategy from an ultimate, evolutionary perspective. However, other mechanisms (e.g., seeking social support) may be also responsible for the observed patterns. PMID:28625113
Men With a Terminal Illness Relax Their Criteria for Facial Attractiveness.
Danel, Dariusz P; Siennicka, Agnieszka E; Fedurek, Pawel; Frackowiak, Tomasz; Sorokowski, Piotr; Jankowska, Ewa A; Pawlowski, Boguslaw
2017-07-01
According to the life history paradigm, in life-threatening conditions, sexual selection criteria are relaxed in order to increase the probability of a last resort reproduction, ultimately contributing to reproductive success. This should be reflected in loosened mating preferences - a process observed in nonhuman animals. Studies investigating this aspect in humans, however, are scarce. This study explored the aesthetic preferences towards facial and nonfacial stimuli in terminally ill patients with heart failure (HF) and their healthy, same-sex peers. The aim was to examine if these two groups of men demonstrate different patterns of aesthetic judgments. Using a 7-point scale, 65 male patients with HF and 143 healthy men evaluated the perceived attractiveness of 15 photographs (five adult male faces, five adult female faces, and five nonfacial pictures). A mixed-design analysis of variance was run to assess group differences in aesthetic preferences. Compared to healthy controls, stimuli. HF patients rated the pictures using significantly higher scores, but this applied only to male and female, but not nonfacial, stimuli. We propose that lower criteria for facial attractiveness in HF patients are linked to relaxation of mate preferences as a result of a life-threatening conditions, and that this process can be an adaptive mating strategy from an ultimate, evolutionary perspective. However, other mechanisms (e.g., seeking social support) may be also responsible for the observed patterns.
The evolutionary psychology of mate selection in Morocco : A multivariate analysis.
Walter, A
1997-06-01
Patterns of mate preference in Morocco are investigated in order to test whether they support hypotheses advanced by David Buss and other evolutionary psychologists. Because of the custom of cousin marriage in Morocco, a multivariate model that included cosocialization data was developed for the purpose of testing the Westermarck hypothesis of inbreeding avoidance. Hence, two previously separate domains of research are unified in one design that permits the further exploration of questions pertaining to the domain specificity of psychological mechanisms. Multiple independent mate choice predictors were identified using logistic regression analysis. Results support the Westermarck hypothesis of inbreeding avoidance. Sleeping in the same room during childhood was found in both sexes to produce an aversion to marriage. Other evidence suggests that aversion to inbreeding extends further among females than males in that females but not males show an aversion to marriage to related individuals with whom they had daily social contact in early childhood. The evolutionary prediction that females differ from males concerning resource holding capacity was also supported. Females showed a preference for males whom they judged to have higher social status than theirs, while this criterion was unimportant for males. The predicted sex difference in preferred age of marriage partner was also supported. Contrary to previous findings, the predicted difference between the sexes with regard to physical attractiveness was not supported.
Lyons, Kady; Chabot, Chris L; Mull, Christopher G; Paterson Holder, Corinne N; Lowe, Christopher G
2017-08-01
Polyandry resulting in multiply-sired litters has been documented in the majority of elasmobranch species examined to date. Although commonly observed, reasons for this mating system remain relatively obscure, especially in batoids. The round stingray ( Urobatis halleri ) is an abundant, well-studied elasmobranch distributed throughout the northeastern Pacific that we used to explore hypotheses regarding multiple paternity in elasmobranchs. Twenty mid- to late-term pregnant females were sampled off the coast of southern California and their litters analyzed for the occurrence of multiple paternity using five nuclear microsatellite loci. In addition, embryo sizes and their position within the female reproductive system (i.e., right or left uterus) were recorded and used to make inferences for patterns of ovulation. Multiple paternity was observed in 90% of litters and male reproductive success within litters was relatively even among sires. High variability in testes mass was observed suggesting that sperm competition is high in this species, although male reproductive success per litter appeared to be relatively even. Using embryo size as a proxy for fertilization, females were found to exhibit a variety of ovulation patterns that could function to limit a male's access to eggs and possibly promote high rates of multiple paternity. Our study highlights that elasmobranch mating systems may be more varied and complex than presumed and further investigation is warranted.
Status and Mating Success Amongst Visual Artists
Clegg, Helen; Nettle, Daniel; Miell, Dorothy
2011-01-01
Geoffrey Miller has hypothesized that producing artwork functions as a mating display. Here we investigate the relationship between mating success and artistic success in a sample of 236 visual artists. Initially, we derived a measure of artistic success that covered a broad range of artistic behaviors and beliefs. As predicted by Miller’s evolutionary theory, more successful male artists had more sexual partners than less successful artists but this did not hold for female artists. Also, male artists with greater artistic success had a mating strategy based on longer term relationships. Overall the results provide partial support for the sexual selection hypothesis for the function of visual art. PMID:22059085
Polyandry: the history of a revolution
Parker, Geoff A.; Birkhead, Tim R.
2013-01-01
We give a historic overview and critical perspective of polyandry in the context of sexual selection. Early approaches tended to obfuscate the fact that the total matings (copulations) by the two sexes is equal, neglecting female interests and that females often mate with (or receive ejaculates from) more than one male (polyandry). In recent years, we have gained much more insight into adaptive reasons for polyandry, particularly from the female perspective. However, costs and benefits of multiple mating are unlikely to be equal for males and females. These must be assessed for each partner at each potential mating between male i and female j, and will often be highly asymmetric. Interests of i and j may be in conflict, with (typically, ultimately because of primordial sex differences) i benefitting and j losing from mating, although theoretically the reverse can also obtain. Polyandry reduces the sex difference in Bateman gradients, and the probability of sexual conflict over mating by: (i) reducing the potential expected value of each mating to males in inverse proportion to the number of mates per female per clutch, and also often by (ii) increasing ejaculate costs through increased sperm allocation. It can nevertheless create conflict over fertilization and increase conflict over parental investment. The observed mean mating frequency for the population (and hence the degree of polyandry) is likely, at least in part, to reflect a resolution of sexual conflict. Immense diversity exists across and within taxa in the extent of polyandry, and views on its significance have changed radically, as we illustrate using avian polyandry as a case study. Despite recent criticisms, the contribution of the early pioneers of sexual selection, Darwin and Bateman, remains generally valid, and should not, therefore, be negated; as with much in science, pioneering advances are more often amplified and refined, rather than replaced with entirely new paradigms. PMID:23339245
Lawson, Lucinda P; Vander Meer, Robert K; Shoemaker, Dewayne
2012-08-22
Supergenes are clusters of tightly linked loci maintained in specific allelic combinations to facilitate co-segregation of genes governing adaptive phenotypes. In species where strong selection potentially operates at different levels (e.g. eusocial Hymenoptera), positive selection acting within a population to maintain specific allelic combinations in supergenes may have unexpected consequences for some individuals, including the preservation of disadvantageous traits. The nuclear gene Gp-9 in the invasive fire ant Solenopsis invicta is part of a non-recombining, polymorphic supergene region associated with polymorphism in social organization as well as traits affecting physiology, fecundity and behaviour. We show that both male reproductive success and facultative polyandry in queens have a simple genetic basis and are dependent on male Gp-9 genotype. Gp-9(b) males are unable to maintain exclusive reproductive control over their mates such that queens mated to Gp-9(b) males remain highly receptive to remating. Queens mated to multiple Gp-9(B) males are rare. This difference appears to be independent of mating plug production in fertile males of each Gp-9 genotype. However, Gp-9(b) males have significantly lower sperm counts than Gp-9(B) males, which could be a cue to females to seek additional mates. Despite the reduced fitness of Gp-9(b) males, polygyne worker-induced selective mortality of sexuals lacking b-like alleles coupled with the overall success of the polygyne social form act to maintain the Gp-9(b) allele within nature. Our findings highlight how strong worker-induced selection acting to maintain the Gp-9(b) allele in the polygyne social form may simultaneously result in reduced reproductive fitness for individual sexual offspring.
Female choice in the red mason bee, Osmia rufa (L.) (Megachilidae).
Conrad, Taina; Paxton, Robert J; Barth, Friedrich G; Francke, Wittko; Ayasse, Manfred
2010-12-01
Females are often thought to use several cues and more than one modality in selection of a mate, possibly because they offer complementary information on a mate's suitability. In the red mason bee, Osmia rufa, we investigated the criteria a female uses to choose a mating partner. We hypothesized that the female uses male thorax vibrations and size as signs of male viability and male odor for kin discrimination and assessment of genetic relatedness. We therefore compared males that had been accepted by a female for copulation with those rejected, in terms of their size, their immediate precopulatory vibrations (using laser vibrometry), the genetic relatedness of unmated and mated pairs (using microsatellite markers) and emitted volatiles (using chemical analyses). Females showed a preference for intermediate-sized males that were slightly larger than the modal male size. Furthermore, male precopulatory vibration burst duration was significantly longer in males accepted for copulation compared with rejected males. Vibrations may indicate vigor and assure that males selected by females are metabolically active and healthy. Females preferentially copulated with males that were genetically more closely related, possibly to avoid outbreeding depression. Volatiles of the cuticular surface differed significantly between accepted and rejected males in the relative amounts of certain hydrocarbons, although the relationship between male odor and female preference was complex. Females may therefore also use differences in odor bouquet to select among males. Our investigations show that O. rufa females appear to use multiple cues in selecting a male. Future investigations are needed to demonstrate whether odor plays a role in kin recognition and how the multiple cues are integrated in mate choice by females.
Lawson, Lucinda P.; Vander Meer, Robert K.; Shoemaker, DeWayne
2012-01-01
Supergenes are clusters of tightly linked loci maintained in specific allelic combinations to facilitate co-segregation of genes governing adaptive phenotypes. In species where strong selection potentially operates at different levels (e.g. eusocial Hymenoptera), positive selection acting within a population to maintain specific allelic combinations in supergenes may have unexpected consequences for some individuals, including the preservation of disadvantageous traits. The nuclear gene Gp-9 in the invasive fire ant Solenopsis invicta is part of a non-recombining, polymorphic supergene region associated with polymorphism in social organization as well as traits affecting physiology, fecundity and behaviour. We show that both male reproductive success and facultative polyandry in queens have a simple genetic basis and are dependent on male Gp-9 genotype. Gp-9b males are unable to maintain exclusive reproductive control over their mates such that queens mated to Gp-9b males remain highly receptive to remating. Queens mated to multiple Gp-9B males are rare. This difference appears to be independent of mating plug production in fertile males of each Gp-9 genotype. However, Gp-9b males have significantly lower sperm counts than Gp-9B males, which could be a cue to females to seek additional mates. Despite the reduced fitness of Gp-9b males, polygyne worker-induced selective mortality of sexuals lacking b-like alleles coupled with the overall success of the polygyne social form act to maintain the Gp-9b allele within nature. Our findings highlight how strong worker-induced selection acting to maintain the Gp-9b allele in the polygyne social form may simultaneously result in reduced reproductive fitness for individual sexual offspring. PMID:22535783
Loo, Sara L; Hawkes, Kristen; Kim, Peter S
2017-09-19
Men's provisioning of mates and offspring has been central to ideas about human evolution because paternal provisioning is absent in our closest evolutionary cousins, the great apes, and is widely assumed to result in pair bonding, which distinguishes us from them. Yet mathematical modelling has shown that paternal care does not readily spread in populations where competition for multiple mates is the common male strategy. Here we add to models that point to the mating sex ratio as an explanation for pairing as pay-offs to mate guarding rise with a male-biased sex ratio. This is of interest for human evolution because our grandmothering life history shifts the mating sex ratio from female- to male-biased. Using a difference equation model, we explore the relative pay-offs for three competing male strategies (dependant care, multiple mating, mate guarding) in response to changing adult sex ratios. When fertile females are abundant, multiple mating prevails. As they become scarce, mate guarding triumphs. The threshold for this shift depends on guarding efficiency. Combined with mating sex ratios of hunter-gatherer and chimpanzee populations, these results strengthen the hypothesis that the evolution of our grandmothering life history propelled the shift to pair bonding in the human lineage.This article is part of the themed issue 'Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies'. © 2017 The Author(s).
Oxytocin receptor density is associated with male mating tactics and social monogamy.
Ophir, Alexander G; Gessel, Ana; Zheng, Da-Jiang; Phelps, Steven M
2012-03-01
Despite its well-described role in female affiliation, the influence of oxytocin on male pairbonding is largely unknown. However, recent human studies indicate that this nonapeptide has a potent influence on male behaviors commonly associated with monogamy. Here we investigated the distribution of oxytocin receptors (OTR) throughout the forebrain of the socially monogamous male prairie vole (Microtus ochrogaster). Because males vary in both sexual and spatial fidelity, we explored the extent to which OTR predicted monogamous or non-monogamous patterns of space use, mating success and sexual fidelity in free-living males. We found that monogamous males expressed higher OTR density in the nucleus accumbens than non-monogamous males, a result that mirrors species differences in voles with different mating systems. OTR density in the posterior portion of the insula predicted mating success. Finally, OTR in the hippocampus and septohippocampal nucleus, which are nuclei associated with spatial memory, predicted patterns of space use and reproductive success within mating tactics. Our data highlight the importance of oxytocin receptor in neural structures associated with pairbonding and socio-spatial memory in male mating tactics. The role of memory in mating systems is often neglected, despite the fact that mating tactics impose an inherently spatial challenge for animals. Identifying mechanisms responsible for relating information about the social world with mechanisms mediating pairbonding and mating tactics is crucial to fully appreciate the suite of factors driving mating systems. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior. Published by Elsevier Inc.
Penley, McKenna J; Ha, Giang T; Morran, Levi T
2017-01-01
Parasites can impose strong selection on hosts. In response, some host populations have adapted via the evolution of defenses that prevent or impede infection by parasites. However, host populations have also evolved life history shifts that maximize host fitness despite infection. Outcrossing and self-fertilization can have contrasting effects on evolutionary trajectories of host populations. While selfing and outcrossing are known to affect the rate at which host populations adapt in response to parasites, these mating systems may also influence the specific traits that underlie adaptation to parasites. Here, we determined the role of evolved host defense versus altered life history,in mixed mating (selfing and outcrossing) and obligately outcrossing C. elegans host populations after experimental evolution with the bacterial parasite, S. marcescens. Similar to previous studies, we found that both mixed mating and obligately outcrossing host populations adapted to S. marcescens exposure, and that the obligately outcrossing populations exhibited the greatest rates of adaptation. Regardless of the host population mating system, exposure to parasites did not significantly alter reproductive timing or total fecundity over the course of experimental evolution. However, both mixed mating and obligately outcrossing host populations exhibited significantly reduced mortality rates in the presence of the parasite after experimental evolution. Therefore, adaptation in both the mixed mating and obligately outcrossing populations was driven, at least in part, by the evolution of increased host defense and not changes in host life history. Thus, the host mating system altered the rate of adaptation, but not the nature of adaptive change in the host populations.
Penley, McKenna J.; Ha, Giang T.; Morran, Levi T.
2017-01-01
Parasites can impose strong selection on hosts. In response, some host populations have adapted via the evolution of defenses that prevent or impede infection by parasites. However, host populations have also evolved life history shifts that maximize host fitness despite infection. Outcrossing and self-fertilization can have contrasting effects on evolutionary trajectories of host populations. While selfing and outcrossing are known to affect the rate at which host populations adapt in response to parasites, these mating systems may also influence the specific traits that underlie adaptation to parasites. Here, we determined the role of evolved host defense versus altered life history,in mixed mating (selfing and outcrossing) and obligately outcrossing C. elegans host populations after experimental evolution with the bacterial parasite, S. marcescens. Similar to previous studies, we found that both mixed mating and obligately outcrossing host populations adapted to S. marcescens exposure, and that the obligately outcrossing populations exhibited the greatest rates of adaptation. Regardless of the host population mating system, exposure to parasites did not significantly alter reproductive timing or total fecundity over the course of experimental evolution. However, both mixed mating and obligately outcrossing host populations exhibited significantly reduced mortality rates in the presence of the parasite after experimental evolution. Therefore, adaptation in both the mixed mating and obligately outcrossing populations was driven, at least in part, by the evolution of increased host defense and not changes in host life history. Thus, the host mating system altered the rate of adaptation, but not the nature of adaptive change in the host populations. PMID:28792961
No evidence for female discrimination against male house mice carrying a selfish genetic element
Lindholm, Anna K.
2016-01-01
Meiotic drivers distort transmission to the next generation in their favor, with detrimental effects on the fitness of their homologues and the rest of the genome. Male carriers of meiotic drivers commonly inflict costs on their mates through genetic incompatibility, reduced fecundity, or biased brood sex ratios. Given these costs, evidence for female discrimination against male carriers is surprisingly rare. One of few examples is the t haplotype in house mice, a meiotic driver that shows strong transmission distortion in males and is typically homozygote lethal. As a consequence, mating between 2 t heterozygous (+/t) mice leads to high embryo mortality. Previous experiments showing that +/t females avoid this incompatibility cost by preferring +/+ versus +/t males have inferred preference based on olfactory cues or brief social interactions. Evidence from mating contexts in laboratory settings and semi-natural populations has been inconclusive. Here, we investigated female choice from a large number of no-choice mating trials. We found no evidence for discrimination against +/t males based on mating, remating, and copulatory behavior. Further, we found no evidence for avoidance of incompatibility through selective interactions between gametes. The likelihood of mating showed significant effects of female weight and genotype, suggesting that our test paradigm enabled females to exhibit mate choice. We discuss the strengths and limitations of our approach. By explicitly considering selection at both the individual and gene level, we argue why precopulatory female discrimination by +/t females may be less evolutionarily stable than discrimination by all females based on postcopulatory mechanisms. PMID:29491955
Apostólico, Lígia H; Marian, José E A R
2017-11-01
Sperm competition is a powerful postcopulatory selective force influencing male adaptations associated with increasing fertilization success, and it is usually related to the evolution of different strategies of ejaculate expenditure between individuals. Ejaculates may also be influenced by additional selective pressures associated with sperm competition, such as timing between insemination and fertilization, female reproductive tract morphology, and fertilization environment. Also, males that adopt alternative mating tactics may face distinct sperm competition pressures, which may lead to the evolution of intraspecific diversity in ejaculates. In loliginid squids, males with alternative reproductive tactics (sneakers and consorts) differ not only in mating behavior, but also transfer spermatophores into two distinct sites within the female. Here, we compared structure and functioning of spermatophores between sneakers and consorts in the squid Doryteuthis plei applying microscopy techniques and in vitro experiments. Sneakers and consorts exhibit differences in spermatophore structure that lead to distinct spermatophoric reactions and spermatangium morphologies. Moreover, in sneakers, sperm release lasts longer and their sperm show an aggregative behavior not detected in consorts. Slow sperm release may be a strategy to guarantee longer sperm provision, given the wide interval between sneaker mating and egg release. For consorts, in turn, intense and quick sperm discharge may be advantageous, as timing between mating and egg-laying is relatively short. Within the complex squid mating system, factors such as (i) different fertilization sites and (ii) interval between mating and egg release may also influence sperm competition, and ultimately shape the evolution of divergent ejaculates between dimorphic males. © 2017 Wiley Periodicals, Inc.
No evidence for female discrimination against male house mice carrying a selfish genetic element.
Sutter, Andreas; Lindholm, Anna K
2016-12-01
Meiotic drivers distort transmission to the next generation in their favor, with detrimental effects on the fitness of their homologues and the rest of the genome. Male carriers of meiotic drivers commonly inflict costs on their mates through genetic incompatibility, reduced fecundity, or biased brood sex ratios. Given these costs, evidence for female discrimination against male carriers is surprisingly rare. One of few examples is the t haplotype in house mice, a meiotic driver that shows strong transmission distortion in males and is typically homozygote lethal. As a consequence, mating between 2 t heterozygous (+/ t ) mice leads to high embryo mortality. Previous experiments showing that +/ t females avoid this incompatibility cost by preferring +/+ versus +/ t males have inferred preference based on olfactory cues or brief social interactions. Evidence from mating contexts in laboratory settings and semi-natural populations has been inconclusive. Here, we investigated female choice from a large number of no-choice mating trials. We found no evidence for discrimination against +/ t males based on mating, remating, and copulatory behavior. Further, we found no evidence for avoidance of incompatibility through selective interactions between gametes. The likelihood of mating showed significant effects of female weight and genotype, suggesting that our test paradigm enabled females to exhibit mate choice. We discuss the strengths and limitations of our approach. By explicitly considering selection at both the individual and gene level, we argue why precopulatory female discrimination by +/ t females may be less evolutionarily stable than discrimination by all females based on postcopulatory mechanisms.
König, S; Tsehay, F; Sitzenstock, F; von Borstel, U U; Schmutz, M; Preisinger, R; Simianer, H
2010-04-01
Due to consistent increases of inbreeding of on average 0.95% per generation in layer populations, selection tools should consider both genetic gain and genetic relationships in the long term. The optimum genetic contribution theory using official estimated breeding values for egg production was applied for 3 different lines of a layer breeding program to find the optimal allocations of hens and sires. Constraints in different scenarios encompassed restrictions related to additive genetic relationships, the increase of inbreeding, the number of selected sires and hens, and the number of selected offspring per mating. All these constraints enabled higher genetic gain up to 10.9% at the same level of additive genetic relationships or in lower relationships at the same gain when compared with conventional selection schemes ignoring relationships. Increases of inbreeding and genetic gain were associated with the number of selected sires. For the lowest level of the allowed average relationship at 10%, the optimal number of sires was 70 and the estimated breeding value for egg production of the selected group was 127.9. At the highest relationship constraint (16%), the optimal number of sires decreased to 15, and the average genetic value increased to 139.7. Contributions from selected sires and hens were used to develop specific mating plans to minimize inbreeding in the following generation by applying a simulated annealing algorithm. The additional reduction of average additive genetic relationships for matings was up to 44.9%. An innovative deterministic approach to estimate kinship coefficients between and within defined selection groups based on gene flow theory was applied to compare increases of inbreeding from random matings with layer populations undergoing selection. Large differences in rates of inbreeding were found, and they underline the necessity to establish selection tools controlling long-term relationships. Furthermore, it was suggested to use optimum genetic contribution theory for conservation schemes or, for example, the experimental line in our study.
Wang, Desen; Wang, Changlu; Singh, Narinderpal; Cooper, Richard; Zha, Chen; Eiden, Amanda L
2016-04-28
We investigated male mate choice and mating competency in the common bed bug, Cimex lectularius L., using video tracking for 10 min per experiment. In the male mate choice experiment, when a male was placed with two females of different mating status, males preferred to initiate copulation with the virgin female more quickly than with the mated female, and the mean total copulation duration with virgin females (38.0 ± 3.0 s) was significantly longer than with mated females (14.6 ± 3.0 s). When a male was placed with two females of different age, males initiated copulation more quickly with the old virgin female (29-34 d adult emergence) than with the young virgin one (<7 d adult emergence), and the mean total copulation duration with old virgin females (38.4 ± 4.0 s) was significantly longer than with young virgin females (24.0 ± 3.0 s). In the male mating competency experiment where a female was placed with two males of different mating status or age, the virgin males were more eager to mate than the mated males, and the old virgin males (29-34 d adult emergence) were more eager than the young virgin males (<7 d adult emergence), with eagerness measured by the percentage of first mate selected (first copulation occurred) and the total copulation duration by each group of males. Male mating competency is related to postmating duration (PMD); males mated 1 d earlier were significantly less likely to mate than virgin males. However, males mated 7 d earlier showed no significant difference in mating competency compared to virgin males. In conclusion, mate choice in C. lectularius is associated with both male and female mating status, age, and PMD. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mate Selection among Married and Cohabiting Couples.
ERIC Educational Resources Information Center
Blackwell, Debra L.; Lichter, Daniel T.
2000-01-01
Examines comparative patterns of educational and racial assortative mating or homogany among married and cohabiting couples, and evaluates whether women and men trade in socioeconomic status and racial caste prestige. Lists several findings, including married/cohabiting couples are highly homogenous with respect to race and education. Suggests…
Orion is Lifted for Mating with Delta IV
2014-11-12
At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians mate the agency's Orion spacecraft to its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Firefly Mating Algorithm for Continuous Optimization Problems
Ritthipakdee, Amarita; Premasathian, Nol; Jitkongchuen, Duangjai
2017-01-01
This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA), for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i) the mutual attraction between males and females causes them to mate and (ii) fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm. The performance of FMA was tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones) against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms. The experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima. PMID:28808442
Firefly Mating Algorithm for Continuous Optimization Problems.
Ritthipakdee, Amarita; Thammano, Arit; Premasathian, Nol; Jitkongchuen, Duangjai
2017-01-01
This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA), for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i) the mutual attraction between males and females causes them to mate and (ii) fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm. The performance of FMA was tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones) against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms. The experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima.
Drosophila melanogaster virgins are more likely to mate with strangers than familiar flies.
Odeen, Anders; Moray, Clea M
2008-03-01
Recent evidence shows that females of many species can discriminate against males and/or male phenotypes they have mated with previously. However, these studies have not tested whether actual mating is necessary to induce the avoidance behaviour. A preference for strangers may have evolved because it avoids multiple matings with similar genotypes. Alternatively, there may be selection against mating with familiar individuals directly. By choosing its first mate among unfamiliar individuals (which are less likely close relatives than are those encountered early in life), a virgin might disentangle some of the potential benefits of avoiding genetic incompatibility and inbreeding in the offspring from the costs of remating. In this study, we test whether Drosophila melanogaster flies bias their mate choice towards strangers according to previous, non-copulatory, experience. Based on 173 trials over 12 weeks, virgin females presented with two virgin males were 59% more likely to mate with a novel male than the one which she had been housed with for 8 h the day before. Hence we present the first report showing that a dipteran can distinguish between previously encountered and not previously encountered conspecifics.
Drosophila melanogaster virgins are more likely to mate with strangers than familiar flies
NASA Astrophysics Data System (ADS)
Ödeen, Anders; Moray, Clea M.
2008-03-01
Recent evidence shows that females of many species can discriminate against males and/or male phenotypes they have mated with previously. However, these studies have not tested whether actual mating is necessary to induce the avoidance behaviour. A preference for strangers may have evolved because it avoids multiple matings with similar genotypes. Alternatively, there may be selection against mating with familiar individuals directly. By choosing its first mate among unfamiliar individuals (which are less likely close relatives than are those encountered early in life), a virgin might disentangle some of the potential benefits of avoiding genetic incompatibility and inbreeding in the offspring from the costs of remating. In this study, we test whether Drosophila melanogaster flies bias their mate choice towards strangers according to previous, non-copulatory, experience. Based on 173 trials over 12 weeks, virgin females presented with two virgin males were 59% more likely to mate with a novel male than the one which she had been housed with for 8 h the day before. Hence we present the first report showing that a dipteran can distinguish between previously encountered and not previously encountered conspecifics.
Dual fitness benefits of post-mating sugar meals for female hawkmoths (Hyles lineata).
von Arx, Martin; Sullivan, Kayleigh A; Raguso, Robert A
2013-04-01
The white-lined sphinx moth (Hyles lineata: Sphingidae) is the most widespread and abundant hawkmoth pollinator in North America and plays a major role in the reproductive biology of many plant species. H. lineata visits a wide range of plants, which differ in the quality and quantity (e.g. caloric content, volume) of the nectar reward that they offer in exchange for pollination services. Some of these plants represent a suitable oviposition substrate as well as a profitable nectar source, allowing mated H. lineata females to mix foraging and oviposition bouts. We investigated the effects of post-mating nectar intake on the reproductive success of female H. lineata. While all experimental females had access to a 20% sucrose solution during the pre-mating phase (avg. 2.7 days) we manipulated the post-mating diet, assigning mated females to three experimental groups (sucrose fed, water fed, or unfed). Mated females with access to sucrose lived twice as long and produced more fertile eggs at double the rate of control moths that were starved or water-fed after mating. Thus, the sugar component of floral nectar positively affects the physiology of mated H. lineata at multiple levels, which translates into strong selection for mated females to continue nectar foraging during or between oviposition bouts. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- Workers in the Multi-Payload Processing Facility maneuver the port fairing into place around the Galaxy Evolution Explorer (GALEX). The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- Workers in the Multi-Payload Processing Facility maneuver the port fairing into place around the Galaxy Evolution Explorer (GALEX). The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- Workers watch as the first part of the fairing closes in on the Galaxy Evolution Explorer (GALEX) for encapsulation. The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined. .
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- Workers in the Multi-Payload Processing Facility prepare to install the port fairing on the Galaxy Evolution Explorer (GALEX). The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- -- Workers in the Multi-Payload Processing Facility prepare to install the port fairing on the Galaxy Evolution Explorer (GALEX). The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Workers in the Multi-Payload Processing Facility prepare to install the port fairing on the Galaxy Evolution Explorer (GALEX). The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
Dating Choices of High School Students
ERIC Educational Resources Information Center
Hansen, Sally L.
1977-01-01
Dating is experienced by most adolescents in our society as a prelude to mate selection. White and black youth (N=354) were studied to measure their dating-mating choices. Implications for teachers and practitioners, based on racial and gender differences, as well as perceived peer group influences are discussed. (Author)
Sensory Biology: How Female Treefrogs Pick Mates at a Noisy Party.
Taylor, Ryan C
2017-03-06
A recent study has found that, despite strong acoustic masking from background noise, female treefrogs are able to select among individual males advertising for mates by taking advantage of small, periodic decreases in the overall noise structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Olvido, Alexander E.; Fernandes, Pearl R.; Mousseau, Timothy A.
2010-01-01
Finding a mate is a fundamental aspect of sexual reproduction. To this end, specific-mate recognition systems (SMRS) have evolved that facilitate copulation between producers of the mating signal and their opposite-sex responders. Environmental variation, however, may compromise the efficiency with which SMRS operate. In this study, the degree to which seasonal climate experienced during juvenile and adult life-cycle stages affects the SMRS of a cricket, Allonemobius socius (Scudder) (Orthoptera: Gryllidae) was assessed. Results from two-choice behavioral trials suggest that adult ambient temperature, along with population and family origins, mediate variation in male mating call, and to a lesser extent directional response of females for those calls. Restricted maximum-likelihood estimates of heritability for male mating call components and for female response to mating call appeared statistically nonsignificant. However, appreciable “maternal genetic effects” suggest that maternal egg provisioning and other indirect maternal determinants of the embryonic environment significantly contributed to variation in male mating call and female response to mating calls. Thus, environmental factors can generate substantial variation in A. socius mating call, and, more importantly, their marginal effect on female responses to either fast-chirp or long-chirp mating calls suggest negative fitness consequences to males producing alternative types of calls. Future studies of sexual selection and SMRS evolution, particularly those focused on hybrid zone dynamics, should take explicit account of the loose concordance between signal producers and responders suggested by the current findings. PMID:20673114
Mating patterns and pollinator mobility are critical traits in forest fragmentation genetics
Breed, M F; Ottewell, K M; Gardner, M G; Marklund, M H K; Dormontt, E E; Lowe, A J
2015-01-01
Most woody plants are animal-pollinated, but the global problem of habitat fragmentation is changing the pollination dynamics. Consequently, the genetic diversity and fitness of the progeny of animal-pollinated woody plants sired in fragmented landscapes tend to decline due to shifts in plant-mating patterns (for example, reduced outcrossing rate, pollen diversity). However, the magnitude of this mating-pattern shift should theoretically be a function of pollinator mobility. We first test this hypothesis by exploring the mating patterns of three ecologically divergent eucalypts sampled across a habitat fragmentation gradient in southern Australia. We demonstrate increased selfing and decreased pollen diversity with increased fragmentation for two small-insect-pollinated eucalypts, but no such relationship for the mobile-bird-pollinated eucalypt. In a meta-analysis, we then show that fragmentation generally does increase selfing rates and decrease pollen diversity, and that more mobile pollinators tended to dampen these mating-pattern shifts. Together, our findings support the premise that variation in pollinator form contributes to the diversity of mating-pattern responses to habitat fragmentation. PMID:24002239
Mating system and the evolution of sex-specific mortality rates in two nymphalid butterflies.
Wiklund, Christer; Gotthard, Karl; Nylin, Sören
2003-01-01
Life-history theory predicts that organisms should invest resources into intrinsic components of lifespan only to the degree that it pays off in terms of reproductive success. The benefit of a long life may differ between the sexes and different mating systems may therefore select for different sex-specific mortality rates. In insects with polyandrous mating systems, females mate throughout their lives and male reproductive success is likely to increase monotonously with lifespan. In monandrous systems, where the mating season is less protracted because receptive females are available only at the beginning of the flight season, male mating success should be less dependent on a long lifespan. Here, we show, in a laboratory experiment without predation, that the duration of the mating season is longer in the polyandrous comma butterfly, Polygonia c-album, than in the monandrous peacock butterfly, Inachis io, and that, in line with predictions, male lifespan is shorter than female lifespan in I. io, whereas male and female lifespans are similar in P. c-album. PMID:12964985
Positive feedback in the transition from sexual reproduction to parthenogenesis
Schwander, Tanja; Vuilleumier, Séverine; Dubman, Janie; Crespi, Bernard J.
2010-01-01
Understanding how new phenotypes evolve is challenging because intermediate stages in transitions from ancestral to derived phenotypes often remain elusive. Here we describe and evaluate a new mechanism facilitating the transition from sexual reproduction to parthenogenesis. In many sexually reproducing species, a small proportion of unfertilized eggs can hatch spontaneously (‘tychoparthenogenesis’) and develop into females. Using an analytical model, we show that if females are mate-limited, tychoparthenogenesis can result in the loss of males through a positive feedback mechanism whereby tychoparthenogenesis generates female-biased sex ratios and increasing mate limitation. As a result, the strength of selection for tychoparthenogenesis increases in concert with the proportion of tychoparthenogenetic offspring in the sexual population. We then tested the hypothesis that mate limitation selects for tychoparthenogenesis and generates female-biased sex ratios, using data from natural populations of sexually reproducing Timema stick insects. Across 41 populations, both the tychoparthenogenesis rates and the proportions of females increased exponentially as the density of individuals decreased, consistent with the idea that low densities of individuals result in mate limitation and selection for reproductive insurance through tychoparthenogenesis. Our model and data from Timema populations provide evidence for a simple mechanism through which parthenogenesis can evolve rapidly in a sexual population. PMID:20071382
Can sexual selection theory inform genetic management of captive populations? A review
Chargé, Rémi; Teplitsky, Céline; Sorci, Gabriele; Low, Matthew
2014-01-01
Captive breeding for conservation purposes presents a serious practical challenge because several conflicting genetic processes (i.e., inbreeding depression, random genetic drift and genetic adaptation to captivity) need to be managed in concert to maximize captive population persistence and reintroduction success probability. Because current genetic management is often only partly successful in achieving these goals, it has been suggested that management insights may be found in sexual selection theory (in particular, female mate choice). We review the theoretical and empirical literature and consider how female mate choice might influence captive breeding in the context of current genetic guidelines for different sexual selection theories (i.e., direct benefits, good genes, compatible genes, sexy sons). We show that while mate choice shows promise as a tool in captive breeding under certain conditions, for most species, there is currently too little theoretical and empirical evidence to provide any clear guidelines that would guarantee positive fitness outcomes and avoid conflicts with other genetic goals. The application of female mate choice to captive breeding is in its infancy and requires a goal-oriented framework based on the needs of captive species management, so researchers can make honest assessments of the costs and benefits of such an approach, using simulations, model species and captive animal data. PMID:25553072
Do pre- and post-copulatory sexually selected traits covary in large herbivores?
2014-01-01
Background In most species, males compete to gain both matings (via pre-copulatory competition) and fertilizations (via post-copulatory competition) to maximize their reproductive success. However, the quantity of resources devoted to sexual traits is finite, and so males are predicted to balance their investment between pre- and post-copulatory expenditure depending on the expected pay-offs that should vary according to mating tactics. In Artiodactyla species, males can invest in weapons such as horns or antlers to increase their mating gains or in testes mass/sperm dimensions to increase their fertilization efficiency. Moreover, it has been suggested that in these species, males with territory defence mating tactic might preferentially increase their investment in post-copulatory traits to increase their fertilization efficiency whereas males with female defence mating tactic might increase their investment in pre-copulatory sexually selected traits to prevent other males from copulating with females. In this study, we thus test the prediction that male’s weapon length (pre-copulatory trait) covaries negatively with relative testes size and/or sperm dimensions (post-copulatory traits) across Artiodactyla using a phylogenetically controlled framework. Results Surprisingly no association between weapon length and testes mass is found but a negative association between weapon length and sperm length is evidenced. In addition, neither pre- nor post-copulatory traits were found to be affected by male mating tactics. Conclusions We propose several hypotheses that could explain why male ungulates may not balance their reproductive investment between pre- and post-copulatory traits. PMID:24716470
Homosexual mating preferences from an evolutionary perspective: sexual selection theory revisited.
Gobrogge, Kyle L; Perkins, Patrick S; Baker, Jessica H; Balcer, Kristen D; Breedlove, S Marc; Klump, Kelly L
2007-10-01
Studies in evolutionary psychology and sexual selection theory show that heterosexual men prefer younger mating partners than heterosexual women in order to ensure reproductive success. However, previous research has generally not examined differences in mating preferences as a function of sexual orientation or the type of relationship sought in naturalistic settings. Given that homosexual men seek partners for reasons other than procreation, they may exhibit different mating preferences than their heterosexual counterparts. Moreover, mating preferences may show important differences depending on whether an individual is seeking a long-term versus a short-term relationship. The purpose of the present study was to examine these issues by comparing partner preferences in terms of age and relationship type between homosexual and heterosexual men placing internet personal advertisements. Participants included 439 homosexual and 365 heterosexual men who placed internet ads in the U.S. or Canada. Ads were coded for the participant's age, relationship type (longer-term or short-term sexual encounter) sought, and partner age preferences. Significantly more homosexual than heterosexual men sought sexual encounters, although men (regardless of sexual orientation) seeking sexual encounters preferred a significantly wider age range of partners than men seeking longer-term relationships. These findings suggest that partner preferences are independent of evolutionary drives to procreate, since both types of men preferred similar ages in their partners. In addition, they highlight the importance of examining relationship type in evolutionary studies of mating preferences, as men's partner preferences show important differences depending upon the type of relationship sought.
Ellis, William; FitzGibbon, Sean; Pye, Geoff; Whipple, Bill; Barth, Ben; Johnston, Stephen; Seddon, Jenny; Melzer, Alistair; Higgins, Damien; Bercovitch, Fred
2015-01-01
Despite being a charismatic and well-known species, the social system of the koala (Phascolarctos cinereus--the only extant member of the family Phascolarctidae) is poorly known and much of the koala's sociality and mating behaviors remain un-quantified. We evaluated these using proximity logging-GPS enabled tracking collars on wild koalas and discuss their implications for the mating system of this species. The frequency and duration of male-female encounters increased during the breeding season, with male-male encounters quite uncommon, suggesting little direct mating competition. By comparison, female-female interactions were very common across both seasons. Body mass of males was not correlated with their interactions with females during the breeding season, although male size is associated with a variety of acoustic parameters indicating individuality. We hypothesise that vocal advertising reduces the likelihood of male-male encounters in the breeding season while increasing the rate of male-female encounters. We suggest that male mating-season bellows function to reduce physical confrontations with other males allowing them to space themselves apart, while, at the same time, attracting females. We conclude that indirect male-male competition, female mate choice, and possibly female competition, mediate sexual selection in koalas.
The synergistic effect of prosociality and physical attractiveness on mate desirability.
Ehlebracht, Daniel; Stavrova, Olga; Fetchenhauer, Detlef; Farrelly, Daniel
2017-12-17
Mate selection requires a prioritization and joint evaluation of different traits present or absent in potential mates. Herein, we focus on two such traits - physical attractiveness and prosociality - and examine how they jointly shape impressions of overall desirability. We report on two related experiments which make use of an innovative methodology combining large samples of raters and target persons (i.e., stimuli) and information on targets' behaviour in economic games representing altruistic behaviour (Experiment 1) and trustworthiness (Experiment 2), two important facets of prosociality. In accordance with predictions derived from a cognitive perspective on mate choice and sexual strategies theory, the results show that the impact of being prosocial on an individual's overall desirability was increased further by them also being physically attractive, but only in long-term mating contexts. Furthermore, we show that men's mate preferences for certain prosocial traits (i.e., trustworthiness) were more context-dependent than women's due to differential evolutionary pressures for ancestral men and women. © 2017 The British Psychological Society.
Wen-Qiao, Huang; Yuan-Jian, Zhu; Da-Bing, Lv; Xia, Zhou; Ying-Nan, Yang; Hong-Xiang, Zhu-Ge
2016-05-24
To explore the correlation between the genetic dissimilarity and heterozygosity of mates and the pathogenicity of Schistosoma japonicum in the definitive host. By using seven microsatellite loci markers, S. japonicum genotyping of sixteen pairs randomly mated was performed, the genetic dissimilarity and heterozygosity were calculated between the mates, and the correlation between the genetic dissimilarity and heterozygosity of the mates and the pathogenicity of S. japonicum in the definitive host was evaluated. There was a significant correlation between the genetic similarity of S. japonicum mates and the mean number of eggs per worm pair in the liver and intestinal tissue ( r = 0.501 6, P < 0.05; r = 0.796 5, P < 0.01, respectively) and the hatching rate of deposited eggs in the liver ( r = 0.508 3, P < 0.05), respectively. There was no correlation between the genetic similarity of the mates and hepatosplenomegaly per worm pair ( r = 0.109 5, P > 0.05; r = 0.265 3, P > 0.05, respectively) and the average diameter of granuloma in the liver ( r = -0.272 7, P > 0.05), respectively. There was no correlation between the heterozygosity of the mates and all the pathological parameters of S. japonicum in the definitive host ( P > 0.05). There is the correlation between the genetic dissimilarity of the mates and the pathogenicity of S. japonicum in the definitive host, and the genetic dissimilarity is greater, pathogenicity is weaker. There is no correlation between heterozygosity of the mates and the pathogenicity of S. japonicum in the definitive host.
Stillwell, Devon
2016-02-01
This article traces the history of modern genetic counseling to mate selection and marriage counselling practices of the early-20th century. Mate selection revolved around a belief that human heredity could be improved and genetic diseases eradicated through better breeding. Marriage counselling, though interested in reproduction, was also concerned with the emotional and psychological well-being of couples. These two practices coalesced most obviously in the work of well-known geneticist Sheldon Reed. Even as marriage and genetic counselling diverged in the post-WWII period, vestiges of these practices remain in contemporary counseling experiences with family planning and genetic screening programs. Emphasizing points of continuity between "positive" eugenic ideologies and modern genetic practices elaborates the diverse origins of genetic counseling. It also exposes how genetic counselors have become involved in genetic enterprises beyond standard clinical settings, and prods at key issues in the interaction between genetic science and social values.
A method for the dynamic management of genetic variability in dairy cattle
Colleau, Jean-Jacques; Moureaux, Sophie; Briend, Michèle; Bechu, Jérôme
2004-01-01
According to the general approach developed in this paper, dynamic management of genetic variability in selected populations of dairy cattle is carried out for three simultaneous purposes: procreation of young bulls to be further progeny-tested, use of service bulls already selected and approval of recently progeny-tested bulls for use. At each step, the objective is to minimize the average pairwise relationship coefficient in the future population born from programmed matings and the existing population. As a common constraint, the average estimated breeding value of the new population, for a selection goal including many important traits, is set to a desired value. For the procreation of young bulls, breeding costs are additionally constrained. Optimization is fully analytical and directly considers matings. Corresponding algorithms are presented in detail. The efficiency of these procedures was tested on the current Norman population. Comparisons between optimized and real matings, clearly showed that optimization would have saved substantial genetic variability without reducing short-term genetic gains. PMID:15231230
Quantifying male attractiveness.
McNamara, John M; Houston, Alasdair I; Marques Dos Santos, Miguel; Kokko, Hanna; Brooks, Rob
2003-01-01
Genetic models of sexual selection are concerned with a dynamic process in which female preference and male trait values coevolve. We present a rigorous method for characterizing evolutionary endpoints of this process in phenotypic terms. In our phenotypic characterization the mate-choice strategy of female population members determines how attractive females should find each male, and a population is evolutionarily stable if population members are actually behaving in this way. This provides a justification of phenotypic explanations of sexual selection and the insights into sexual selection that they provide. Furthermore, the phenotypic approach also has enormous advantages over a genetic approach when computing evolutionarily stable mate-choice strategies, especially when strategies are allowed to be complex time-dependent preference rules. For simplicity and clarity our analysis deals with haploid mate-choice genetics and a male trait that is inherited phenotypically, for example by vertical cultural transmission. The method is, however, easily extendible to other cases. An example illustrates that the sexy son phenomenon can occur when there is phenotypic inheritance of the male trait. PMID:14561306
Runaway sexual selection leads to good genes.
Chandler, Christopher H; Ofria, Charles; Dworkin, Ian
2013-01-01
Mate choice and sexual displays are widespread in nature, but their evolutionary benefits remain controversial. Theory predicts these traits can be favored by runaway sexual selection, in which preference and display reinforce one another due to genetic correlation; or by good genes benefits, in which mate choice is advantageous because extreme displays indicate a well-adapted genotype. However, these hypotheses are not mutually exclusive, and the adaptive benefits underlying mate choice can themselves evolve. In particular, examining how and why sexual displays become indicators of good genes is challenging in natural systems. Here, we use experimental evolution in "digital organisms" to demonstrate the origins of condition-dependent indicator displays following their spread due to a runaway process. Surprisingly, handicap-like costs are not necessary for displays to become indicators of male viability. Instead, a pleiotropic genetic architecture underlies both displays and viability. Runaway sexual selection and good genes benefits should thus be viewed as interacting mechanisms that reinforce one another. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
DEMOGRAPHIC OPPORTUNITY AND THE MATE SELECTION PROCESS IN INDIA
South, Scott J.; Trent, Katherine; Bose, Sunita
2016-01-01
We merged individual-level data from the 2004–2005 India Human Development Survey with district-level data derived from the 1991 and 2001 Indian population censuses to examine how the numerical supply of men to which married women were exposed during late adolescence is associated with women’s agency in the mate selection process and the duration of courtships. Multilevel models that control for an array of both individual and contextual factors showed that exposure to a relative surplus of potential mates is associated with a higher likelihood that women will have little or no say in the selection of their husband and an increased probability that women will meet their husband for the first time on their wedding day. Women’s educational attainment, birth cohort, religion, caste, and region of residence also emerged as significant correlates of women’s marital agency and courtship duration. The implications of these findings for India’s growing sex ratio imbalance are discussed. PMID:27616798
Bretman, Amanda; Lizé, Anne; Walling, Craig A.; Price, Tom A. R.
2014-01-01
Phenotypic plasticity is a key mechanism by which animals can cope with rapidly changeable environments, but the evolutionary lability of such plasticity remains unclear. The socio-sexual environment can fluctuate very rapidly, affecting both the frequency of mating opportunities and the level of competition males may face. Males of many species show plastic behavioural responses to changes in social environment, in particular the presence of rival males. For example, Drosophila pseudoobscura males respond to rivals by extending mating duration and increasing ejaculate size. Whilst such responses are predicted to be adaptive, the extent to which the magnitude of response is heritable, and hence selectable, is unknown. We investigated this using isofemale lines of the fruit fly D. pseudoobscura, estimating heritability of mating duration in males exposed or not to a rival, and any genetic basis to the change in this trait between these environments (i.e. degree of plasticity). The two populations differed in population sex ratio, and the presence of a sex ratio distorting selfish chromosome. We find that mating duration is heritable, but no evidence of population differences. We find no significant heritability of plasticity in mating duration in one population, but borderline significant heritability of plasticity in the second. This difference between populations might be related to the presence of the sex ratio distorting selfish gene in the latter population, but this will require investigation in additional populations to draw any conclusions. We suggest that there is scope for selection to produce an evolutionary response in the plasticity of mating duration in response to rivals in D. pseudoobscura, at least in some populations. PMID:24587294
Bretman, Amanda; Lizé, Anne; Walling, Craig A; Price, Tom A R
2014-01-01
Phenotypic plasticity is a key mechanism by which animals can cope with rapidly changeable environments, but the evolutionary lability of such plasticity remains unclear. The socio-sexual environment can fluctuate very rapidly, affecting both the frequency of mating opportunities and the level of competition males may face. Males of many species show plastic behavioural responses to changes in social environment, in particular the presence of rival males. For example, Drosophila pseudoobscura males respond to rivals by extending mating duration and increasing ejaculate size. Whilst such responses are predicted to be adaptive, the extent to which the magnitude of response is heritable, and hence selectable, is unknown. We investigated this using isofemale lines of the fruit fly D. pseudoobscura, estimating heritability of mating duration in males exposed or not to a rival, and any genetic basis to the change in this trait between these environments (i.e. degree of plasticity). The two populations differed in population sex ratio, and the presence of a sex ratio distorting selfish chromosome. We find that mating duration is heritable, but no evidence of population differences. We find no significant heritability of plasticity in mating duration in one population, but borderline significant heritability of plasticity in the second. This difference between populations might be related to the presence of the sex ratio distorting selfish gene in the latter population, but this will require investigation in additional populations to draw any conclusions. We suggest that there is scope for selection to produce an evolutionary response in the plasticity of mating duration in response to rivals in D. pseudoobscura, at least in some populations.
Mate choice and sexual selection: What have we learned since Darwin?
Jones, Adam G.; Ratterman, Nicholas L.
2009-01-01
Charles Darwin laid the foundation for all modern work on sexual selection in his seminal book The Descent of Man, and Selection in Relation to Sex. In this work, Darwin fleshed out the mechanism of sexual selection, a hypothesis that he had proposed in The Origin of Species. He went well beyond a simple description of the phenomenon by providing extensive evidence and considering the far-reaching implications of the idea. Here we consider the contributions of Darwin to sexual selection with a particular eye on how far we have progressed in the last 150 years. We focus on 2 key questions in sexual selection. First, why does mate choice evolve at all? And second, what factors determine the strength of mate choice (or intensity of sexual selection) in each sex? Darwin provided partial answers to these questions, and the progress that has been made on both of these topics since his time should be seen as one of the great triumphs of modern evolutionary biology. However, a review of the literature shows that key aspects of sexual selection are still plagued by confusion and disagreement. Many of these areas are complex and will require new theory and empirical data for complete resolution. Overall, Darwin's contributions are still surprisingly relevant to the modern study of sexual selection, so students of evolutionary biology would be well advised to revisit his works. Although we have made significant progress in some areas of sexual selection research, we still have much to accomplish. PMID:19528643
Mate choice and sexual selection: what have we learned since Darwin?
Jones, Adam G; Ratterman, Nicholas L
2009-06-16
Charles Darwin laid the foundation for all modern work on sexual selection in his seminal book The Descent of Man, and Selection in Relation to Sex. In this work, Darwin fleshed out the mechanism of sexual selection, a hypothesis that he had proposed in The Origin of Species. He went well beyond a simple description of the phenomenon by providing extensive evidence and considering the far-reaching implications of the idea. Here we consider the contributions of Darwin to sexual selection with a particular eye on how far we have progressed in the last 150 years. We focus on 2 key questions in sexual selection. First, why does mate choice evolve at all? And second, what factors determine the strength of mate choice (or intensity of sexual selection) in each sex? Darwin provided partial answers to these questions, and the progress that has been made on both of these topics since his time should be seen as one of the great triumphs of modern evolutionary biology. However, a review of the literature shows that key aspects of sexual selection are still plagued by confusion and disagreement. Many of these areas are complex and will require new theory and empirical data for complete resolution. Overall, Darwin's contributions are still surprisingly relevant to the modern study of sexual selection, so students of evolutionary biology would be well advised to revisit his works. Although we have made significant progress in some areas of sexual selection research, we still have much to accomplish.
Environmental quality alters female costs and benefits of evolving under enforced monogamy.
Grazer, Vera M; Demont, Marco; Michalczyk, Łukasz; Gage, Matthew J G; Martin, Oliver Y
2014-02-05
Currently many habitats suffer from quality loss due to environmental change. As a consequence, evolutionary trajectories might shift due to environmental effects and potentially increase extinction risk of resident populations. Nevertheless, environmental variation has rarely been incorporated in studies of sexual selection and sexual conflict, although local environments and individuals' condition undoubtedly influence costs and benefits. Here, we utilise polyandrous and monogamous selection lines of flour beetles, which evolved in presence or absence of sexual selection for 39 generations. We specifically investigated effects of low vs. standard food quality (i.e. stressful vs. benign environments) on reproductive success of cross pairs between beetles from the contrasting female and male selection histories to assess gender effects driving fitness. We found a clear interaction of food quality, male selection history and female selection history. Monogamous females generally performed more poorly than polyandrous counterparts, but reproductive success was shaped by selection history of their mates and environmental quality. When monogamous females were paired with polyandrous males in the standard benign environment, females seemed to incur costs, possibly due to sexual conflict. In contrast, in the novel stressful environment, monogamous females profited from mating with polyandrous males, indicating benefits of sexual selection outweigh costs. Our findings suggest that costs and benefits of sexually selected adaptations in both sexes can be profoundly altered by environmental quality. With regard to understanding possible impacts of environmental change, our results further show that the ecology of mating systems and associated selection pressures should be considered in greater detail.
Correlates of androgens in wild male Barbary macaques: Testing the challenge hypothesis.
Rincon, Alan V; Maréchal, Laëtitia; Semple, Stuart; Majolo, Bonaventura; MacLarnon, Ann
2017-10-01
Investigating causes and consequences of variation in hormonal expression is a key focus in behavioral ecology. Many studies have explored patterns of secretion of the androgen testosterone in male vertebrates, using the challenge hypothesis (Wingfield, Hegner, Dufty, & Ball, 1990; The American Naturalist, 136(6), 829-846) as a theoretical framework. Rather than the classic association of testosterone with male sexual behavior, this hypothesis predicts that high levels of testosterone are associated with male-male reproductive competition but also inhibit paternal care. The hypothesis was originally developed for birds, and subsequently tested in other vertebrate taxa, including primates. Such studies have explored the link between testosterone and reproductive aggression as well as other measures of mating competition, or between testosterone and aspects of male behavior related to the presence of infants. Very few studies have simultaneously investigated the links between testosterone and male aggression, other aspects of mating competition and infant-related behavior. We tested predictions derived from the challenge hypothesis in wild male Barbary macaques (Macaca sylvanus), a species with marked breeding seasonality and high levels of male-infant affiliation, providing a powerful test of this theoretical framework. Over 11 months, 251 hr of behavioral observations and 296 fecal samples were collected from seven adult males in the Middle Atlas Mountains, Morocco. Fecal androgen levels rose before the onset of the mating season, during a period of rank instability, and were positively related to group mating activity across the mating season. Androgen levels were unrelated to rates of male-male aggression in any period, but higher ranked males had higher levels in both the mating season and in the period of rank instability. Lower androgen levels were associated with increased rates of male-infant grooming during the mating and unstable periods. Our results generally support the challenge hypothesis and highlight the importance of considering individual species' behavioral ecology when testing this framework. © 2017 Wiley Periodicals, Inc.
Semenov, Georgy A; Scordato, Elizabeth S C; Khaydarov, David R; Smith, Chris C R; Kane, Nolan C; Safran, Rebecca J
2017-11-01
Phenotypic differentiation plays an important role in the formation and maintenance of reproductive barriers. In some cases, variation in a few key aspects of phenotype can promote and maintain divergence; hence, the identification of these traits and their associations with patterns of genomic divergence is crucial for understanding the patterns and processes of population differentiation. We studied hybridization between the alba and personata subspecies of the white wagtail (Motacilla alba), and quantified divergence and introgression of multiple morphological traits and 19,437 SNP loci on a 3,000 km transect. Our goal was to identify traits that may contribute to reproductive barriers and to assess how variation in these traits corresponds to patterns of genome-wide divergence. Variation in only one trait-head plumage patterning-was consistent with reproductive isolation. Transitions in head plumage were steep and occurred over otherwise morphologically and genetically homogeneous populations, whereas cline centres for other traits and genomic ancestry were displaced over 100 km from the head cline. Field observational data show that social pairs mated assortatively by head plumage, suggesting that these phenotypes are maintained by divergent mating preferences. In contrast, variation in all other traits and genetic markers could be explained by neutral diffusion, although weak ecological selection cannot be ruled out. Our results emphasize that assortative mating may maintain phenotypic differences independent of other processes shaping genome-wide variation, consistent with other recent findings that raise questions about the relative importance of mate choice, ecological selection and selectively neutral processes for divergent evolution. © 2017 John Wiley & Sons Ltd.
Incipient speciation driven by hypertrophied lips in Midas cichlid fishes?
Machado-Schiaffino, Gonzalo; Kautt, Andreas F; Torres-Dowdall, Julian; Baumgarten, Lukas; Henning, Frederico; Meyer, Axel
2017-04-01
Sympatric speciation has been debated in evolutionary biology for decades. Although it has gained in acceptance recently, still only a handful of empirical examples are seen as valid (e.g. crater lake cichlids). In this study, we disentangle the role of hypertrophied lips in the repeated adaptive radiations of Nicaraguan crater lake cichlid fish. We assessed the role of disruptive selection and assortative mating during the early stages of divergence and found a functional trade-off in feeding behaviour between thick- and thin-lipped ecotypes, suggesting that this trait is a target of disruptive selection. Thick-lipped fish perform better on nonevasive prey at the cost of a poorer performance on evasive prey. Using enclosures in the wild, we found that thick-lipped fish perform significantly better in rocky than in sandy habitats. We found almost no mixed pairs during two breeding seasons and hence significant assortative mating. Genetic differentiation between ecotypes seems to be related to the time since colonization, being subtle in L. Masaya (1600 generations ago) and absent in the younger L. Apoyeque (<600 generations ago). Genome-wide differentiation between ecotypes was higher in the old source lakes than in the young crater lakes. Our results suggest that hypertrophied lips might be promoting incipient sympatric speciation through divergent selection (ecological divergence in feeding performance) and nonrandom mating (assortative mating) in the young Nicaraguan crater lakes. Nonetheless, further manipulative experiments are needed in order to confirm the role of hypertrophied lips as the main cue for assortative mating. © 2017 John Wiley & Sons Ltd.
Constrained evolution of the sex comb in Drosophila simulans.
Maraqa, M S; Griffin, R; Sharma, M D; Wilson, A J; Hunt, J; Hosken, D J; House, C M
2017-02-01
Male fitness is dependent on sexual traits that influence mate acquisition (precopulatory sexual selection) and paternity (post-copulatory sexual selection), and although many studies have documented the form of selection in one or the other of these arenas, fewer have done it for both. Nonetheless, it appears that the dominant form of sexual selection is directional, although theoretically, populations should converge on peaks in the fitness surface, where selection is stabilizing. Many factors, however, can prevent populations from reaching adaptive peaks. Genetic constraints can be important if they prevent the development of highest fitness phenotypes, as can the direction of selection if it reverses across episodes of selection. In this study, we examine the evidence that these processes influence the evolution of the multivariate sex comb morphology of male Drosophila simulans. To do this, we conduct a quantitative genetic study together with a multivariate selection analysis to infer how the genetic architecture and selection interact. We find abundant genetic variance and covariance in elements of the sex comb. However, there was little evidence for directional selection in either arena. Significant nonlinear selection was detected prior to copulation when males were mated to nonvirgin females, and post-copulation during sperm offence (again with males mated to nonvirgins). Thus, contrary to our predictions, the evolution of the D. simulans sex comb is limited neither by genetic constraints nor by antagonistic selection between pre- and post-copulatory arenas, but nonlinear selection on the multivariate phenotype may prevent sex combs from evolving to reach some fitness maximizing optima. © 2016 The Authors. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Genetic benefits of a female mating preference in gray tree frogs are context-dependent.
Welch, Allison M
2003-04-01
"Good genes" models of sexual selection predict that male courtship displays can advertise genetic quality and that, by mating with males with extreme displays, females can obtain genetic benefits for their offspring. However, because the relative performance of different genotypes can vary across environments, these genetic benefits may depend on the environmental context; in which case, static mating preferences may not be adaptive. To better understand how selection acts on the preference that female gray tree frogs (Hyla versicolor) express for long advertisement calls, I tested for genetic benefits in two realistic natural environments, by comparing the performance of half-sibling offspring sired by males with long versus short calls. Tadpoles from twelve such maternal half-sibships were raised in enclosures in their natal pond at two densities. In the low-density treatment, offspring of long-call males were larger at metamorphosis than were offspring of short-call males, whereas in the high-density treatment, offspring of males with long calls tended to metamorphose later than offspring of males with short calls. Thus, although the genes indicated by long calls were advantageous under low-density conditions, they were not beneficial under all conditions, suggesting that a static preference for long calls may not be adaptive in all environments. Such a genotype-by-environment interaction in the genetic consequences of mate choice predicts that when the environment is variable, selection may favor plasticity in female preferences or female selectivity among environments to control the conditions experienced by the offspring.
Inter-genomic sexual conflict drives antagonistic coevolution in harvester ants
Herrmann, Michael; Cahan, Sara Helms
2014-01-01
The reproductive interests of males and females are not always aligned, leading to sexual conflict over parental investment, rate of reproduction and mate choice. Traits that increase the genetic interests of one sex often occur at the expense of the other, selecting for counter-adaptations leading to antagonistic coevolution. Reproductive conflict is not limited to intraspecific interactions; interspecific hybridization can produce pronounced sexual conflict between males and females of different species, but it is unclear whether such conflict can drive sexually antagonistic coevolution between reproductively isolated genomes. We tested for hybridization-driven sexually antagonistic adaptations in queens and males of the socially hybridogenetic ‘J’ lineages of Pogonomyrmex harvester ants, whose mating system promotes hybridization in queens but selects against it in males. We conducted no-choice mating assays to compare patterns of mating behaviour and sperm transfer between inter- and intra-lineage pairings. There was no evidence for mate discrimination on the basis of pair type, and the total quantity of sperm transferred did not differ between intra- and inter-lineage pairs; however, further dissection of the sperm transfer process into distinct mechanistic components revealed significant, and opposing, cryptic manipulation of copulatory investment by both sexes. Males of both lineages increased their rate of sperm transfer to high-fitness intra-lineage mates, with a stronger response in the rarer lineage for whom mating mistakes are the most likely. By contrast, the total duration of copulation for intra-lineage mating pairs was significantly shorter than for inter-lineage crosses, suggesting that queens respond to prevent excessive sperm loading by prematurely terminating copulation. These findings demonstrate that sexual conflict can lead to antagonistic coevolution in both intra-genomic and inter-genomic contexts. Indeed, the resolution of sexual conflict may be a key determinant of the long-term evolutionary potential of host-dependent reproductive strategies, counteracting the inherent instabilities arising from such systems. PMID:25355474
Content of Selected Minerals and Active Ingredients in Teas Containing Yerba Mate and Rooibos.
Rusinek-Prystupa, Elżbieta; Marzec, Zbigniew; Sembratowicz, Iwona; Samolińska, Wioletta; Kiczorowska, Bożena; Kwiecień, Małgorzata
2016-07-01
The study aimed to determine the content of selected elements: sodium, potassium, copper, zinc, iron, manganese and active ingredients such as phenolic acids and tannins in teas containing Yerba Mate and Rooibos cultivated in various areas. The study material comprised six samples of Yerba Mate teas and of Rooibos teas, both tea bags and leaves, purchased in Puławy and online via Allegro. In total, 24 samples were tested. Yerba Mate was particularly abundant in Mn and Fe. The richest source of these elements was Yerba Mate Yer-Vita (2261.3 mg · kg(-1) d.m.) and (691.6 mg · kg(-1) d.m.). The highest content of zinc was determined in Yerba Mate Amanda with lime (106.0 mg · kg(-1) d.m.), while copper was most abundant in Yerba Mate Big-Active cocoa and vanilla (14.05 mg · kg(-1) d.m.). In Rooibos, the content of sodium was several times higher than in Yerba Mate. A clear difference was observed in the content of minerals in dry weight of the examined products, which could be a result of both the taxonomic distinctness and the origin of the raw material. Leaf teas turned out to be a better source of tannins; on the other hand, tea bags contained substantially more phenolic acids. The richest source of phenolic acids was Yer-Vita in bags (1.8 %), and the highest amount of tannins was recorded in the leaf tea Green Goucho caramel and dark chocolate (9.04 g · 100 g(-1) d.m.). In Rooibos products, the highest content of phenolic acids was recorded in tea bags (Savannah with honey and vanilla 0.96 %), and tannins in (Lord Nelson with strawberry and cream 7.99 g · 100 g (-1) d.m.).
USDA-ARS?s Scientific Manuscript database
The genetic effects of long term random mating and natural selection aided by genetic male sterility (gms) were evaluated in two soybean [Glycine max (L.) Merr.] populations designated: RSII and RSIII. These populations were evaluated in the field at three locations each with two replications. Genot...
Marital Homophily on Illicit Drug Use among Young Adults: Assortative Mating or Marital Influence?
ERIC Educational Resources Information Center
Yamaguchi, Kazuo; Kandel, Denise
1993-01-01
Analysis of longitudinal and current survey data on 545 married/cohabiting couples found highest marital homophily for ethnicity, fertility expectations, religion, educational attainment, marital satisfaction, and illicit drug use. On drug use, data best supported a model of marital selection and assortative mating but was inconclusive concerning…
Eastwick, Paul W
2009-09-01
Evolutionary psychologists explore the adaptive function of traits and behaviors that characterize modern Homo sapiens. However, evolutionary psychologists have yet to incorporate the phylogenetic relationship between modern Homo sapiens and humans' hominid and pongid relatives (both living and extinct) into their theorizing. By considering the specific timing of evolutionary events and the role of evolutionary constraint, researchers using the phylogenetic approach can generate new predictions regarding mating phenomena and derive new explanations for existing evolutionary psychological findings. Especially useful is the concept of the adaptive workaround-an adaptation that manages the maladaptive elements of a pre-existing evolutionary constraint. The current review organizes 7 features of human mating into their phylogenetic context and presents evidence that 2 adaptive workarounds played a critical role as Homo sapiens's mating psychology evolved. These adaptive workarounds function in part to mute or refocus the effects of older, previously evolved adaptations and highlight the layered nature of humans' mating psychology. (c) 2009 APA, all rights reserved.
Ward, Jessica L; Love, Elliot K; Baugh, Alexander T; Gordon, Noah M; Tanner, Jessie C; Bee, Mark A
2015-12-01
Endocrine systems play critical roles in facilitating sexual behavior in seasonally breeding vertebrates. Much of the research exploring this topic has focused on the endocrine correlates of signaling behavior in males and sexual proceptivity in females. What is less understood is how hormones promote the expression of the often complex and highly selective set of stimulus-response behaviors that are observed in naturally breeding animals. In female frogs, phonotaxis is a robust and sensitive bioassay of mate choice and is exhibited by gravid females during the breeding season. In stark contrast, females exhibit low phonotactic responsiveness outside the breeding season, but the administration of hormones can induce sexual proceptivity. Here we test the hypothesis that manipulation of a minimal set of reproductive hormones-progesterone and prostaglandin F2α-are capable of evoking not only proceptive behavior in non-breeding females, but also the patterns of intraspecific selectivity for male sexual displays observed in gravid females tested during the breeding season. Specifically, we investigated whether preferences for faster call rates, longer call durations, and higher call efforts were similar between breeding and hormone-treated females of Cope's gray treefrog (Hyla chrysoscelis). Hormone injections induced patterns of selective phonotaxis in non-breeding females that were remarkably similar to those observed in breeding females. These results suggest that there may be an important contribution of hormonal pleiotropy in regulating this complex, acoustically-guided sexual behavior. Our findings also support the idea that hormonal induction could be used to evaluate hypotheses about selective mate choice, and its underlying mechanisms, using non-breeding females. Copyright © 2015 Elsevier Inc. All rights reserved.
Mate choice and human stature: homogamy as a unified framework for understanding mating preferences.
Courtiol, Alexandre; Raymond, Michel; Godelle, Bernard; Ferdy, Jean-Baptiste
2010-08-01
Assortative mating for human height has long attracted interest in evolutionary biology, and the phenomenon has been demonstrated in numerous human populations. It is often argued that mating preferences generate this pattern, but other processes can also induce trait correlations between mates. Here, we present a methodology tailored to quantify continuous preferences based on choice experiments between pairs of stimuli. In particular, it is possible to explore determinants of interindividual variations in preferences, such as the height of the chooser. We collected data from a sample of 200 individuals from France. Measurements obtained show that the perception of attractiveness depends on both the height of the stimuli and the stature of the individual who judged them. Therefore, this study demonstrates that homogamy is present at the level of preferences for both sexes. We also show that measurements of the function describing this homogamy are concordant with several distinct mating rules proposed in the literature. In addition, the quantitative approach introduced here fulfills metrics that can be used to compare groups of individuals. In particular, our results reveal an important disagreement between sexes regarding height preferences in the context of mutual mate choice. Finally, both women and men prefer individuals who are significantly taller than average. All major findings are confirmed by a reanalysis of previously published data.
Ferrandiz-Rovira, Mariona; Allainé, Dominique; Callait-Cardinal, Marie-Pierre; Cohas, Aurélie
2016-07-01
Sexual selection through female mate choice for genetic characteristics has been suggested to be an important evolutionary force maintaining genetic variation in animal populations. However, the genetic targets of female mate choice are not clearly identified and whether female mate choice is based on neutral genetic characteristics or on particular functional loci remains an open question. Here, we investigated the genetic targets of female mate choice in Alpine marmots (Marmota marmota), a socially monogamous mammal where extra-pair paternity (EPP) occurs. We used 16 microsatellites to describe neutral genetic characteristics and two MHC loci belonging to MHC class I and II as functional genetic characteristics. Our results reveal that (1) neutral and MHC genetic characteristics convey different information in this species, (2) social pairs show a higher MHC class II dissimilarity than expected under random mate choice, and (3) the occurrence of EPP increases when social pairs present a high neutral genetic similarity or dissimilarity but also when they present low MHC class II dissimilarity. Thus, female mate choice is based on both neutral and MHC genetic characteristics, and the genetic characteristics targeted seem to be context dependent (i.e., the genes involved in social mate choice and genetic mate choice differ). We emphasize the need for empirical studies of mate choice in the wild using both neutral and MHC genetic characteristics because whether neutral and functional genetic characteristics convey similar information is not universal.
Penshorn, Marina; Hamfler, Sybille; Herbert, Denise B.; Appel, Jessica; Meyer, Philipp; Slattery, Patrick; Charaf, Sarah; Wolf, Raoul; Völker, Johannes; Berger, Elisabeth A. M.; Dröge, Janis; Riesch, Rüdiger; Arias-Rodriguez, Lenin; Indy, Jeanne R.; Plath, Martin
2013-01-01
Ecological speciation assumes reproductive isolation to be the product of ecologically based divergent selection. Beside natural selection, sexual selection via phenotype-assortative mating is thought to promote reproductive isolation. Using the neotropical fish Poecilia mexicana from a system that has been described to undergo incipient ecological speciation in adjacent, but ecologically divergent habitats characterized by the presence or absence of toxic H2S and darkness in cave habitats, we demonstrate a gradual change in male body colouration along the gradient of light/darkness, including a reduction of ornaments that are under both inter- and intrasexual selection in surface populations. In dichotomous choice tests using video-animated stimuli, we found surface females to prefer males from their own population over the cave phenotype. However, female cave fish, observed on site via infrared techniques, preferred to associate with surface males rather than size-matched cave males, likely reflecting the female preference for better-nourished (in this case: surface) males. Hence, divergent selection on body colouration indeed translates into phenotype-assortative mating in the surface ecotype, by selecting against potential migrant males. Female cave fish, by contrast, do not have a preference for the resident male phenotype, identifying natural selection against migrants imposed by the cave environment as the major driver of the observed reproductive isolation. PMID:24175282
Avise, John C.; Liu, Jin-Xian
2011-01-01
We summarize the literature on rates of multiple paternity and sire numbers per clutch in viviparous fishes vs. mammals, two vertebrate groups in which pregnancy is common but entails very different numbers of embryos (for species surveyed, piscine broods averaged >10-fold larger than mammalian litters). As deduced from genetic parentage analyses, multiple mating by the pregnant sex proved to be common in assayed species but averaged significantly higher in fish than mammals. However, within either of these groups we found no significant correlations between brood size and genetically deduced incidence of multiple mating by females. Overall, these findings offer little support for the hypothesis that clutch size in pregnant species predicts the outcome of selection for multiple mating by brooders. Instead, whatever factors promote multiple mating by members of the gestating sex seem to do so in surprisingly similar ways in live-bearing vertebrates otherwise as different as fish and mammals. Similar conclusions emerged when we extended the survey to viviparous amphibians and reptiles. One notion consistent with these empirical observations is that although several fitness benefits probably accrue from multiple mating, logistical constraints on mate-encounter rates routinely truncate multiple mating far below levels that otherwise could be accommodated, especially in species with larger broods. We develop this concept into a “logistical constraint hypothesis” that may help to explain these mating outcomes in viviparous vertebrates. Under the logistical constraint hypothesis, propensities for multiple mating in each species register a balance between near-universal fitness benefits from multiple mating and species-idiosyncratic logistical limits on polygamy. PMID:21482777
SEXUAL SELECTION. Irrationality in mate choice revealed by túngara frogs.
Lea, Amanda M; Ryan, Michael J
2015-08-28
Mate choice models derive from traditional microeconomic decision theory and assume that individuals maximize their Darwinian fitness by making economically rational decisions. Rational choices exhibit regularity, whereby the relative strength of preferences between options remains stable when additional options are presented. We tested female frogs with three simulated males who differed in relative call attractiveness and call rate. In binary choice tests, females' preferences favored stimulus caller B over caller A; however, with the addition of an inferior "decoy" C, females reversed their preferences and chose A over B. These results show that the relative valuation of mates is not independent of inferior alternatives in the choice set and therefore cannot be explained with the rational choice models currently used in sexual selection theory. Copyright © 2015, American Association for the Advancement of Science.
Selective attention to signs of success: social dominance and early stage interpersonal perception.
Maner, Jon K; DeWall, C Nathan; Gailliot, Matthew T
2008-04-01
Results from two experiments suggest that observers selectively attend to male, but not female, targets displaying signs of social dominance. Participants overestimated the frequency of dominant men in rapidly presented stimulus arrays (Study 1) and visually fixated on dominant men in an eyetracking experiment (Study 2). When viewing female targets, participants attended to signs of physical attractiveness rather than social dominance. Findings fit with evolutionary models of mating, which imply that dominance and physical attractiveness sometimes tend to be prioritized preferentially in judgments of men versus women, respectively. Findings suggest that sex differences in human mating are observed not only at the level of overt mating preferences and choices but also at early stages of interpersonal perception. This research demonstrates the utility of examining early-in-the-stream social cognition through the functionalist lens of adaptive thinking.
Zhang, Qiuli; Maner, Jon K; Xu, Yin; Zheng, Yong
2017-02-01
In heterosexual individuals, attention is automatically captured by physically attractive members of the opposite sex. Although helpful for selecting new mates, attention to attractive relationship alternatives can threaten satisfaction with and commitment to an existing romantic relationship. The current study tested the hypothesis that although a mating prime would increase selective attention to attractive opposite-sex targets (relative to less attractive targets) among single participants, this effect would be reduced among people already committed to a long-term romantic partner. Consistent with hypotheses, whereas single participants responded to a mating prime with greater attentional adhesion to physically attractive opposite-sex targets (relative to less attractive targets), participants in a committed romantic relationship showed no such effect. These findings extend previous research suggesting the presence of relationship maintenance mechanisms that operate at early stages of social cognition.
Optimal level of inbreeding in the common lizard.
Richard, M; Losdat, S; Lecomte, J; de Fraipont, M; Clobert, J
2009-08-07
Mate choice with regard to genetic similarity has been rarely considered as a dynamic process. We examined this possibility in breeding populations of the common lizard (Lacerta vivipara) kept for several years in semi-natural conditions. We investigated whether they displayed a pattern of mate choice according to the genetic similarity and whether it was context-dependent. Mate choice depended on genetic similarity with the partner and also on age and condition. There was no systematic avoidance of inbreeding. Females of intermediate ages, more monogamous, did not mate with genetically similar partners, whereas younger and older females, more polyandrous, did but highest clutch proportions were associated with intermediate values of pair-relatedness. These results indicate dynamic mate choice, suggesting that individuals of different phenotypes select their partners in different ways according to their genetic similarity. We consider our results in the light of diverse and apparently contradictory theories concerning genetic compatibility, and particularly, optimal inbreeding and inclusive fitness.
Population-level mating patterns and fluctuating asymmetry in swordtail hybrids
NASA Astrophysics Data System (ADS)
Culumber, Zachary W.; Rosenthal, Gil G.
2013-08-01
Morphological symmetry is a correlate of fitness-related traits or even a direct target of mate choice in a variety of taxa. In these taxa, when females discriminate among potential mates, increased selection on males should reduce fluctuating asymmetry (FA). Hybrid populations of the swordtails Xiphophorus birchmanni and Xiphophorus malinche vary from panmictic (unstructured) to highly structured, in which reproductive isolation is maintained among hybrids and parental species. We predicted that FA in flanking vertical bars used in sexual signalling should be lower in structured populations, where non-random mating patterns are observed. FA in vertical bars was markedly lower in structured populations than in parental and unstructured hybrid populations. There was no difference in FA between parentals and hybrids, suggesting that hybridisation does not directly affect FA. Rather, variation in FA likely results from contrasting mating patterns in unstructured and structured populations.
Mate choice and genetic monogamy in a biparental, colonial fish.
Schaedelin, Franziska C; van Dongen, Wouter F D; Wagner, Richard H
2015-01-01
In socially monogamous species, in which both sexes provide essential parental care, males as well as females are expected to be choosy. Whereas hundreds of studies have examined monogamy in biparental birds, only several such studies exist in fish. We examined mate choice in the biparental, colonial cichlid fish Neolamprologus caudopunctatus in Lake Tanganyika, Zambia. We genotyped more than 350 individuals at 11 microsatellite loci to investigate their mating system. We found no extrapair paternity, identifying this biparental fish as genetically monogamous. Breeders paired randomly according to their genetic similarity, suggesting a lack of selection against inbreeding avoidance. We further found that breeders paired assortatively by body size, a criterion of quality in fish, suggesting mutual mate choice. In a subsequent mate preference test in an aquarium setup, females showed a strong preference for male size by laying eggs near the larger of 2 males in 13 of 14 trials.
Mate choice and genetic monogamy in a biparental, colonial fish
van Dongen, Wouter F.D.; Wagner, Richard H.
2015-01-01
In socially monogamous species, in which both sexes provide essential parental care, males as well as females are expected to be choosy. Whereas hundreds of studies have examined monogamy in biparental birds, only several such studies exist in fish. We examined mate choice in the biparental, colonial cichlid fish Neolamprologus caudopunctatus in Lake Tanganyika, Zambia. We genotyped more than 350 individuals at 11 microsatellite loci to investigate their mating system. We found no extrapair paternity, identifying this biparental fish as genetically monogamous. Breeders paired randomly according to their genetic similarity, suggesting a lack of selection against inbreeding avoidance. We further found that breeders paired assortatively by body size, a criterion of quality in fish, suggesting mutual mate choice. In a subsequent mate preference test in an aquarium setup, females showed a strong preference for male size by laying eggs near the larger of 2 males in 13 of 14 trials. PMID:26023276
Orion is Lifted for Mating with Delta IV
2014-11-12
At Cape Canaveral Air Force Station's Launch Complex 37, United Launch Alliance engineers and technicians prepare to mate the agency's Orion spacecraft to its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Awrahman, Z A; Champion de Crespigny, F; Wedell, N
2014-01-01
Most insects harbour a variety of maternally inherited endosymbionts, the most widespread being Wolbachia pipientis that commonly induce cytoplasmic incompatibility (CI) and reduced hatching success in crosses between infected males and uninfected females. High temperature and increasing male age are known to reduce the level of CI in a variety of insects. In Drosophila simulans, infected males have been shown to mate at a higher rate than uninfected males. By examining the impact of mating rate independent of age, this study investigates whether a high mating rate confers an advantage to infected males through restoring their compatibility with uninfected females over and above the effect of age. The impact of Wolbachia infection, male mating rate and age on the number of sperm transferred to females during copulation and how it relates to CI expression was also assessed. As predicted, we found that reproductive compatibility was restored faster in males that mate at higher rate than that of low mating and virgin males, and that the effect of mating history was over and above the effect of male age. Nonvirgin infected males transferred fewer sperm than uninfected males during copulation, and mating at a high rate resulted in the transfer of fewer sperm per mating irrespective of infection status. These results indicate that the advantage to infected males of mating at a high rate is through restoration of reproductive compatibility with uninfected females, whereas uninfected males appear to trade off the number of sperm transferred per mating with female encounter rate and success in sperm competition. This study highlights the importance Wolbachia may play in sexual selection by affecting male reproductive strategies. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Rymešová, Dana; Králová, Tereza; Promerová, Marta; Bryja, Josef; Tomášek, Oldřich; Svobodová, Jana; Šmilauer, Petr; Šálek, Miroslav; Albrecht, Tomáš
2017-01-01
Sexual selection has been hypothesised as favouring mate choice resulting in production of viable offspring with genotypes providing high pathogen resistance. Specific pathogen recognition is mediated by genes of the major histocompatibility complex (MHC) encoding proteins fundamental for adaptive immune response in jawed vertebrates. MHC genes may also play a role in odour-based individual recognition and mate choice, aimed at avoiding inbreeding. MHC genes are known to be involved in mate choice in a number of species, with 'good genes' (absolute criteria) and 'complementary genes' (self-referential criteria) being used to explain MHC-based mating. Here, we focus on the effect of morphological traits and variation and genetic similarity between individuals in MHC class IIB (MHCIIB) exon 2 on mating in a free-living population of a monogamous bird, the grey partridge. We found no evidence for absolute mate choice criteria as regards grey partridge MHCIIB genotypes, i.e., number and occurrence of amino acid variants, though red chroma of the spot behind eyes was positively associated with male pairing success. On the other hand, mate choice at MHCIIB was based on relative criteria as females preferentially paired with more dissimilar males having a lower number of shared amino acid variants. This observation supports the 'inbreeding avoidance' and 'complementary genes' hypotheses. Our study provides one of the first pieces of evidence for MHC-based mate choice for genetic complementarity in a strictly monogamous bird. The statistical approach employed can be recommended for testing mating preferences in cases where availability of potential mates (recorded with an appropriate method such as radio-tracking) shows considerable temporal variation. Additional genetic analyses using neutral markers may detect whether MHC-based mate choice for complementarity emerges as a by-product of general inbreeding avoidance in grey partridges.
[DNA extraction from bones and teeth using AutoMate Express forensic DNA extraction system].
Gao, Lin-Lin; Xu, Nian-Lai; Xie, Wei; Ding, Shao-Cheng; Wang, Dong-Jing; Ma, Li-Qin; Li, You-Ying
2013-04-01
To explore a new method in order to extract DNA from bones and teeth automatically. Samples of 33 bones and 15 teeth were acquired by freeze-mill method and manual method, respectively. DNA materials were extracted and quantified from the triturated samples by AutoMate Express forensic DNA extraction system. DNA extraction from bones and teeth were completed in 3 hours using the AutoMate Express forensic DNA extraction system. There was no statistical difference between the two methods in the DNA concentration of bones. Both bones and teeth got the good STR typing by freeze-mill method, and the DNA concentration of teeth was higher than those by manual method. AutoMate Express forensic DNA extraction system is a new method to extract DNA from bones and teeth, which can be applied in forensic practice.
The scope and strength of sex-specific selection in genome evolution
Wright, A E; Mank, J E
2013-01-01
Males and females share the vast majority of their genomes and yet are often subject to different, even conflicting, selection. Genomic and transcriptomic developments have made it possible to assess sex-specific selection at the molecular level, and it is clear that sex-specific selection shapes the evolutionary properties of several genomic characteristics, including transcription, post-transcriptional regulation, imprinting, genome structure and gene sequence. Sex-specific selection is strongly influenced by mating system, which also causes neutral evolutionary changes that affect different regions of the genome in different ways. Here, we synthesize theoretical and molecular work in order to provide a cohesive view of the role of sex-specific selection and mating system in genome evolution. We also highlight the need for a combined approach, incorporating both genomic data and experimental phenotypic studies, in order to understand precisely how sex-specific selection drives evolutionary change across the genome. PMID:23848139
Spatial distribution and male mating success of Anopheles gambiae swarms
2011-01-01
Background Anopheles gambiae mates in flight at particular mating sites over specific landmarks known as swarm markers. The swarms are composed of males; females typically approach a swarm, and leave in copula. This mating aggregation looks like a lek, but appears to lack the component of female choice. To investigate the possible mechanisms promoting the evolution of swarming in this mosquito species, we looked at the variation in mating success between swarms and discussed the factors that structure it in light of the three major lekking models, known as the female preference model, the hotspot model, and the hotshot model. Results We found substantial variation in swarm size and in mating success between swarms. A strong correlation between swarm size and mating success was observed, and consistent with the hotspot model of lek formation, the per capita mating success of individual males did not increase with swarm size. For the spatial distribution of swarms, our results revealed that some display sites were more attractive to both males and females and that females were more attracted to large swarms. While the swarm markers we recognize help us in localizing swarms, they did not account for the variation in swarm size or in the swarm mating success, suggesting that mosquitoes probably are attracted to these markers, but also perceive and respond to other aspects of the swarming site. Conclusions Characterizing the mating system of a species helps understand how this species has evolved and how selective pressures operate on male and female traits. The current study looked at male mating success of An. gambiae and discussed possible factors that account for its variation. We found that swarms of An. gambiae conform to the hotspot model of lek formation. But because swarms may lack the female choice component, we propose that the An. gambiae mating system is a lek-like system that incorporates characteristics pertaining to other mating systems such as scramble mating competition. PMID:21711542
Orbital Sciences Pegasus XL Mate
2007-02-28
At Vandenberg Air Force Base in California, the three stages of the Orbital Sciences Pegasus XL are being mated for the launch of NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.
Evolutionary Genomics of Peach and Almond Domestication
Velasco, Dianne; Hough, Josh; Aradhya, Mallikarjuna; Ross-Ibarra, Jeffrey
2016-01-01
The domesticated almond [Prunus dulcis (L.) Batsch] and peach [P. persica (Mill.) D. A. Webb] originated on opposite sides of Asia and were independently domesticated ∼5000 yr ago. While interfertile, they possess alternate mating systems and differ in a number of morphological and physiological traits. Here, we evaluated patterns of genome-wide diversity in both almond and peach to better understand the impacts of mating system, adaptation, and domestication on the evolution of these taxa. Almond has around seven times the genetic diversity of peach, and high genome-wide FST values support their status as separate species. We estimated a divergence time of ∼8 MYA (million years ago), coinciding with an active period of uplift in the northeast Tibetan Plateau and subsequent Asian climate change. We see no evidence of a bottleneck during domestication of either species, but identify a number of regions showing signatures of selection during domestication and a significant overlap in candidate regions between peach and almond. While we expected gene expression in fruit to overlap with candidate selected regions, instead we find enrichment for loci highly differentiated between the species, consistent with recent fossil evidence suggesting fruit divergence long preceded domestication. Taken together, this study tells us how closely related tree species evolve and are domesticated, the impact of these events on their genomes, and the utility of genomic information for long-lived species. Further exploration of this data will contribute to the genetic knowledge of these species and provide information regarding targets of selection for breeding application, and further the understanding of evolution in these species. PMID:27707802
A Role of DLPFC in the Learning Process of Human Mate Copying
Zhuang, Jin-Ying; Xie, Jiajia; Hu, Die; Fan, Mingxia; Zheng, Li
2016-01-01
In the current study, we conducted a behavioral experiment to test the mate coping effect and a functional magnetic resonance imaging (fMRI) experiment to test the neural basis involved in the social learning process of mate copying. In the behavioral experiment, participants were asked to rate the attractiveness of isolated opposite-sex (potential mates) facial photographs, then shown the targets associating with a neutral-faced model with textual cues indicating the models’ attitude (interested vs. not-interested) toward the potential mates, and then asked to re-evaluate the potential mates’ attractiveness. Using a similar procedure as the behavioral experiment, participants were scanned while observing the compound images in the fMRI experiment. The mate copying effect was confirmed in the behavioral experiment –greater increase in attractiveness ratings was observed for opposite-sex photographs in the interested than in the not-interested condition. The fMRI results showed that the dorsolateral prefrontal gyrus (DLPFC) was significantly active in the comparison of interested > not-interested condition, suggesting that a cognitive integration and selection function may be involved when participants process information from conditions related to mate copying. PMID:27148151
Genetic incompatibility drives mate choice in a parasitic wasp.
Thiel, Andra; Weeda, Anne C; de Boer, Jetske G; Hoffmeister, Thomas S
2013-07-30
Allelic incompatibility between individuals of the same species should select for mate choice based on the genetic make-up of both partners at loci that influence offspring fitness. As a consequence, mate choice may be an important driver of allelic diversity. A complementary sex determination (CSD) system is responsible for intraspecific allelic incompatibility in many species of ants, bees, and wasps. CSD may thus favour disassortative mating and in this, resembles the MHC of the vertebrate immune system, or the self-incompatibility (SI) system of higher plants. Here we show that in the monogamous parasitic wasp Bracon brevicornis (Wesmael), females are able to reject partners with incompatible alleles. Forcing females to accept initially rejected partners resulted in sex ratio distortion and partial infertility of offspring. CSD-disassortative mating occurred independent of kin recognition and inbreeding avoidance in our experiment. The fitness consequences of mate choice are directly observable, not influenced by environmental effects, and more severe than in comparable systems (SI or MHC), on individuals as well as at the population level. Our results thus demonstrate the strong potential of female mate choice for maintaining high offspring fitness in this species.
Bouchebti, Sofia; Durier, Virginie; Pasquaretta, Cristian; Rivault, Colette; Lihoreau, Mathieu
Many animals have evolved strategies to reduce risks of inbreeding and its deleterious effects on the progeny. In social arthropods, such as the eusocial ants and bees, inbreeding avoidance is typically achieved by the dispersal of breeders from their native colony. However studies in presocial insects suggest that kin discrimination during mate choice may be a more common mechanism in socially simpler species with no reproductive division of labour. Here we examined this possibility in the subsocial cockroach Nauphoeta cinerea, a model species for research in sexual selection, where males establish dominance hierarchies to access females and control breeding territories. When given a binary choice between a sibling male and a non-sibling male that had the opportunity to establish a hierarchy prior to the tests, females mated preferentially with the dominant male, irrespective of kinship or body size. Despite the lack of kin discrimination during mate choice, inbred-mated females incurred significant fitness costs, producing 20% less offspring than outbred-mated females. We discuss how the social mating system of this territorial cockroach may naturally limit the probability of siblings to encounter and reproduce, without the need for evolving active inbreeding avoidance mechanisms, such as kin recognition.
Bouchebti, Sofia; Durier, Virginie; Pasquaretta, Cristian; Rivault, Colette; Lihoreau, Mathieu
2016-01-01
Many animals have evolved strategies to reduce risks of inbreeding and its deleterious effects on the progeny. In social arthropods, such as the eusocial ants and bees, inbreeding avoidance is typically achieved by the dispersal of breeders from their native colony. However studies in presocial insects suggest that kin discrimination during mate choice may be a more common mechanism in socially simpler species with no reproductive division of labour. Here we examined this possibility in the subsocial cockroach Nauphoeta cinerea, a model species for research in sexual selection, where males establish dominance hierarchies to access females and control breeding territories. When given a binary choice between a sibling male and a non-sibling male that had the opportunity to establish a hierarchy prior to the tests, females mated preferentially with the dominant male, irrespective of kinship or body size. Despite the lack of kin discrimination during mate choice, inbred-mated females incurred significant fitness costs, producing 20% less offspring than outbred-mated females. We discuss how the social mating system of this territorial cockroach may naturally limit the probability of siblings to encounter and reproduce, without the need for evolving active inbreeding avoidance mechanisms, such as kin recognition. PMID:27655156
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- A worker in the Multi-Payload Processing Facility gestures toward the Galaxy Evolution Explorer (GALEX) being prepared for encapsulation. The first part of the fairing is behind him. The spacecraft is already mated to the Pegasus launch vehicle. After encapsulation, the GALEX/Pegasus will be transported to Cape Canaveral Air Force Station and mated to the L-1011 about four days before launch. A new launch date has not been determined.
Frequency-dependent sexual selection.
O'Donald, P; Majerus, M E
1988-07-06
Sexual selection by female choice is expected to give rise to a frequency-dependent sexual advantage in favour of preferred male phenotypes: the rarer the preferred phenotypes, the more often they are chosen as mates. This 'rare-male advantage' can maintain a polymorphism when two or more phenotypes are mated preferentially: each phenotype gains an advantage when it is rarer than the others; no preferred phenotype can then be lost from the population. Expression of preference may be complete or partial. In models of complete preference, females with a preference always mate preferentially. Models of partial preference are more realistic: in these models, the probability that a female mates preferentially depends on the frequency with which she encounters the males she prefers. Two different 'encounter models' of partial preference have been derived: the O'Donald model and the Charlesworth model. The encounter models contain the complete preference model as a limiting case. In this paper, the Charlesworth model is generalized to allow for female preference of more than one male phenotype. Levels of frequency dependence can then be compared in the O'Donald and Charlesworth models. The complete preference model and both encounter models are formulated in the same genetical terms of preferences for dominant and recessive male phenotypes. Polymorphic equilibria and conditions for stability are derived for each of the three models. The models are then fitted to data of frequencies of matings observed in experiments with the two-spot ladybird. The complete preference model gives as good a fit as the encounter models to the data of these and other experiments. The O'Donald and Charlesworth encounter models are shown to produce a very similar frequency-dependent relation. Generally, as females become less choosy, they express their preference with more dependence on male frequency, whereas the resulting selection of the males becomes less frequency dependent. More choosy females are more constant in expressing their preference, producing greater frequency dependence in the selection of the males.
Birds Do It, Bees Do It: Evolution and the Comparative Psychology of Mate Choice
ERIC Educational Resources Information Center
Boothroyd, Lynda G.; McLaughlin, Edward
2011-01-01
The primary theoretical framework for the study of human physical attraction is currently Darwinian sexual selection. Not only has this perspective enabled the discovery of what appear to be strong universals in human mate choice but it has also facilitated our understanding of systematic variation in preferences both between and within…
ERIC Educational Resources Information Center
Kaufman, Scott Barry; Kozbelt, Aaron; Silvia, Paul; Kaufman, James C.; Ramesh, Sheela; Feist, Gregory J.
2016-01-01
Creativity is sexy, but are all creative behaviors equally sexy? We attempted to clarify the role of creativity in mate selection among an ethnically diverse sample of 815 undergraduates. First we assessed the sexual attractiveness of different forms of creativity: ornamental/aesthetic, applied/technological, and everyday/domestic creativity. Both…
Tsuboi, M; Lim, A C O; Ooi, B L; Yip, M Y; Chong, V C; Ahnesjö, I; Kolm, N
2017-01-01
Brain size varies greatly at all taxonomic levels. Feeding ecology, life history and sexual selection have been proposed as key components in generating contemporary diversity in brain size across vertebrates. Analyses of brain size evolution have, however, been limited to lineages where males predominantly compete for mating and females choose mates. Here, we present the first original data set of brain sizes in pipefishes and seahorses (Syngnathidae) a group in which intense female mating competition occurs in many species. After controlling for the effect of shared ancestry and overall body size, brain size was positively correlated with relative snout length. Moreover, we found that females, on average, had 4.3% heavier brains than males and that polyandrous species demonstrated more pronounced (11.7%) female-biased brain size dimorphism. Our results suggest that adaptations for feeding on mobile prey items and sexual selection in females are important factors in brain size evolution of pipefishes and seahorses. Most importantly, our study supports the idea that sexual selection plays a major role in brain size evolution, regardless of on which sex sexual selection acts stronger. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Polygamy slows down population divergence in shorebirds
Jackson, Josephine D'Urban; dos Remedios, Natalie; Maher, Kathryn; Zefania, Sama; Haig, Susan M.; Oyler-McCance, Sara J.; Blomqvist, Donald; Burke, Terry; Bruford, Michael W.; Székely, Tamás; Küpper, Clemens
2017-01-01
Sexual selection may act as a promotor of speciation since divergent mate choice and competition for mates can rapidly lead to reproductive isolation. Alternatively, sexual selection may also retard speciation since polygamous individuals can access additional mates by increased breeding dispersal. High breeding dispersal should hence increase gene flow and reduce diversification in polygamous species. Here, we test how polygamy predicts diversification in shorebirds using genetic differentiation and subspecies richness as proxies for population divergence. Examining microsatellite data from 79 populations in 10 plover species (Genus: Charadrius) we found that polygamous species display significantly less genetic structure and weaker isolation-by-distance effects than monogamous species. Consistent with this result, a comparative analysis including 136 shorebird species showed significantly fewer subspecies for polygamous than for monogamous species. By contrast, migratory behavior neither predicted genetic differentiation nor subspecies richness. Taken together, our results suggest that dispersal associated with polygamy may facilitate gene flow and limit population divergence. Therefore, intense sexual selection, as occurs in polygamous species, may act as a brake rather than an engine of speciation in shorebirds. We discuss alternative explanations for these results and call for further studies to understand the relationships between sexual selection, dispersal, and diversification.
Polygamy slows down population divergence in shorebirds
D'Urban Jackson, Josephine; dos Remedios, Natalie; Maher, Kathryn H.; Zefania, Sama; Haig, Susan; Oyler‐McCance, Sara; Blomqvist, Donald; Burke, Terry; Bruford, Michael W.; Székely, Tamás; Küpper, Clemens
2017-01-01
Sexual selection may act as a promotor of speciation since divergent mate choice and competition for mates can rapidly lead to reproductive isolation. Alternatively, sexual selection may also retard speciation since polygamous individuals can access additional mates by increased breeding dispersal. High breeding dispersal should hence increase gene flow and reduce diversification in polygamous species. Here, we test how polygamy predicts diversification in shorebirds using genetic differentiation and subspecies richness as proxies for population divergence. Examining microsatellite data from 79 populations in 10 plover species (Genus: Charadrius) we found that polygamous species display significantly less genetic structure and weaker isolation‐by‐distance effects than monogamous species. Consistent with this result, a comparative analysis including 136 shorebird species showed significantly fewer subspecies for polygamous than for monogamous species. By contrast, migratory behavior neither predicted genetic differentiation nor subspecies richness. Taken together, our results suggest that dispersal associated with polygamy may facilitate gene flow and limit population divergence. Therefore, intense sexual selection, as occurs in polygamous species, may act as a brake rather than an engine of speciation in shorebirds. We discuss alternative explanations for these results and call for further studies to understand the relationships between sexual selection, dispersal, and diversification. PMID:28233288
Frye, Cheryl A; Paris, Jason J
2011-01-01
In the midbrain ventral tegmental area (VTA), actions of neurosteroids, such as the progesterone metabolite, 5α-pregnan-3α-ol-20-one (3α,5α-THP), can facilitate mating and influence stress-related processes. Some actions of 3α,5α-THP may occur via positive modulation of GABA(A) receptors (GBRs), or negative modulation of N-methyl-D: -aspartate receptors (NMDARs), to influence anxiety-like behavior; but this is not known. We aimed to assess the role that neurosteroids and stress factors play on intra-VTA NMDAR- and/or GBR-mediated anxiety-like and mating behavior. Estradiol-primed, ovariectomized rats, which were partially or completely adrenalectomized (ADX), received infusions of vehicle, an NMDAR blocker (MK-801; 200 ng), or a GBR antagonist (bicuculline, 100 ng) to the VTA. Rats then received intra-VTA vehicle or a neurosteroidogenesis enhancer (N,N-Dihexyl-2-(4-fluorophenyl)indole-3-acetamide, FGIN 1-27, 5 μg) and anxiety-like and sexual behavior was assessed. Complete, compared to partial, ADX significantly reduced open arm exploration on an elevated plus maze, the proportion of females that engaged in mating, lordosis quotients, pacing of sexual contacts, and defensive aggression towards a sexually vigorous male. Intra-VTA MK-801 enhanced open arm investigation and the proportion of females that engaged in mating. Infusions of either, MK-801 or FGIN 1-27, enhanced lordosis and, when co-administered, FGIN 1-27 attenuated MK-801's lordosis-enhancing effects. Intra-VTA infusions of bicuculline, prior to FGIN 1-27, blocked FGIN 1-27's effects to enhance lordosis. Together, these data suggest that reduced NMDAR activity in the VTA may influence motivation to explore and engage in sexual behavior. These data suggest that neurosteroid actions at NMDARs and GBRs in the VTA are important for exploration and/or sexual behavior.
Paris, Jason J.
2013-01-01
Rationale In the midbrain ventral tegmental area (VTA), actions of neurosteroids, such as the progesterone metabolite, 5α-pregnan-3α-ol-20-one (3α,5α-THP), can facilitate mating and influence stress-related processes. Some actions of 3α,5α-THP may occur via positive modulation of GABAA receptors (GBRs), or negative modulation of N-methyl-D-aspartate receptors (NMDARs), to influence anxiety-like behavior; but this is not known. Objectives We aimed to assess the role that neurosteroids and stress factors play on intra-VTA NMDAR- and/or GBR-mediated anxiety-like and mating behavior. Methods Estradiol-primed, ovariectomized rats, which were partially or completely adrenalectomized (ADX), received infusions of vehicle, an NMDAR blocker (MK-801; 200 ng), or a GBR antagonist (bicuculline, 100 ng) to the VTA. Rats then received intra-VTA vehicle or a neurosteroidogenesis enhancer (N,N-Dihexyl-2-(4-fluorophenyl)indole-3-acetamide, FGIN 1-27, 5 μg) and anxiety-like and sexual behavior was assessed. Results Complete, compared to partial, ADX significantly reduced open arm exploration on an elevated plus maze, the proportion of females that engaged in mating, lordosis quotients, pacing of sexual contacts, and defensive aggression towards a sexually vigorous male. Intra-VTA MK-801 enhanced open arm investigation and the proportion of females that engaged in mating. Infusions of either, MK-801 or FGIN 1-27, enhanced lordosis and, when co-administered, FGIN 1-27 attenuated MK-801’s lordosis-enhancing effects. Intra-VTA infusions of bicuculline, prior to FGIN 1-27, blocked FGIN 1-27’s effects to enhance lordosis. Conclusions Together, these data suggest that reduced NMDAR activity in the VTA may influence motivation to explore and engage in sexual behavior. These data suggest that neurosteroid actions at NMDARs and GBRs in the VTA are important for exploration and/or sexual behavior. PMID:20878318
Post-copulatory sexual selection and female fitness in Scathophaga stercoraria.
Martin, Oliver Y; Hosken, David J; Ward, Paul I
2004-02-22
Whether sexual selection increases or decreases female fitness is determined by the occurrence and relative importance of sexual-conflict processes and the ability of females to choose high-quality males. Experimentally enforced polyandry and monogamy have previously been shown to cause rapid evolution in the yellow dung fly Scathophaga stercoraria. Flies from polyandrous lines invested more in reproductive tissue, and this investment influenced paternity in sperm competition, but came at a cost to immune function. While some fitness consequences of enforced polyandry or monogamy have been examined when flies mate multiply, the consequences for female fitness when singly copulated remain unexplored. Under a good-genes scenario females from polyandrous lines should be of higher general quality and should outperform females from monogamous lines even with a single copulation. Under sexual conflict, costly adaptations will afford no advantages when females are allowed to mate only once. We investigate the lifetime reproductive success and longevity of females evolving under enforced monogamy or polyandry when mating once with males from these selection regimes. Females from polyandrous lines were found to have lower fitness than their monogamous counterparts when mating once. They died earlier and produced significantly fewer eggs and offspring. These results suggest that sexual conflict probably drove evolution under enforced polyandry as female fitness did not increase overall as expected with purely good-genes effects.
Natural and sexual selection in a monogamous historical human population.
Courtiol, Alexandre; Pettay, Jenni E; Jokela, Markus; Rotkirch, Anna; Lummaa, Virpi
2012-05-22
Whether and how human populations exposed to the agricultural revolution are still affected by Darwinian selection remains controversial among social scientists, biologists, and the general public. Although methods of studying selection in natural populations are well established, our understanding of selection in humans has been limited by the availability of suitable datasets. Here, we present a study comparing the maximum strengths of natural and sexual selection in humans that includes the effects of sex and wealth on different episodes of selection. Our dataset was compiled from church records of preindustrial Finnish populations characterized by socially imposed monogamy, and it contains a complete distribution of survival, mating, and reproductive success for 5,923 individuals born 1760-1849. Individual differences in early survival and fertility (natural selection) were responsible for most variation in fitness, even among wealthier individuals. Variance in mating success explained most of the higher variance in reproductive success in males compared with females, but mating success also influenced reproductive success in females, allowing for sexual selection to operate in both sexes. The detected opportunity for selection is in line with measurements for other species but higher than most previous reports for human samples. This disparity results from biological, demographic, economic, and social differences across populations as well as from failures by most previous studies to account for variation in fitness introduced by nonreproductive individuals. Our results emphasize that the demographic, cultural, and technological changes of the last 10,000 y did not preclude the potential for natural and sexual selection in our species.
Natural and sexual selection in a monogamous historical human population
Courtiol, Alexandre; Pettay, Jenni E.; Jokela, Markus; Rotkirch, Anna; Lummaa, Virpi
2012-01-01
Whether and how human populations exposed to the agricultural revolution are still affected by Darwinian selection remains controversial among social scientists, biologists, and the general public. Although methods of studying selection in natural populations are well established, our understanding of selection in humans has been limited by the availability of suitable datasets. Here, we present a study comparing the maximum strengths of natural and sexual selection in humans that includes the effects of sex and wealth on different episodes of selection. Our dataset was compiled from church records of preindustrial Finnish populations characterized by socially imposed monogamy, and it contains a complete distribution of survival, mating, and reproductive success for 5,923 individuals born 1760–1849. Individual differences in early survival and fertility (natural selection) were responsible for most variation in fitness, even among wealthier individuals. Variance in mating success explained most of the higher variance in reproductive success in males compared with females, but mating success also influenced reproductive success in females, allowing for sexual selection to operate in both sexes. The detected opportunity for selection is in line with measurements for other species but higher than most previous reports for human samples. This disparity results from biological, demographic, economic, and social differences across populations as well as from failures by most previous studies to account for variation in fitness introduced by nonreproductive individuals. Our results emphasize that the demographic, cultural, and technological changes of the last 10,000 y did not preclude the potential for natural and sexual selection in our species. PMID:22547810
Mating system and ploidy influence levels of inbreeding depression in Clarkia (Onagraceae).
Barringer, Brian C; Geber, Monica A
2008-05-01
Inbreeding depression is the reduction in offspring fitness associated with inbreeding and is thought to be one of the primary forces selecting against the evolution of self-fertilization. Studies suggest that most inbreeding depression is caused by the expression of recessive deleterious alleles in homozygotes whose frequency increases as a result of self-fertilization or mating among relatives. This process leads to the selective elimination of deleterious alleles such that highly selfing species may show remarkably little inbreeding depression. Genome duplication (polyploidy) has also been hypothesized to influence levels of inbreeding depression, with polyploids expected to exhibit less inbreeding depression than diploids. We studied levels of inbreeding depression in allotetraploid and diploid species of Clarkia (Onagraceae) that vary in mating system (each cytotype was represented by an outcrossing and a selfing species). The outcrossing species exhibited more inbreeding depression than the selfing species for most fitness components and for two different measures of cumulative fitness. In contrast, though inbreeding depression was generally lower for the polyploid species than for the diploid species, the difference was statistically significant only for flower number and one of the two measures of cumulative fitness. Further, we detected no significant interaction between mating system and ploidy in determining inbreeding depression. In sum, our results suggest that a taxon's current mating system is more important than ploidy in influencing levels of inbreeding depression in natural populations of these annual plants.
Wilson, Anthony B; Ahnesjö, Ingrid; Vincent, Amanda C J; Meyer, Axel
2003-06-01
Modern theory predicts that relative parental investment of the sexes in their young is a key factor responsible for sexual selection. Seahorses and pipefishes (family Syngnathidae) are extraordinary among fishes in their remarkable adaptations for paternal care and frequent occurrences of sex-role reversals (i.e., female-female competition for mates), offering exceptional opportunities to test predictions of sexual selection theory. During mating, the female transfers eggs into or onto specialized egg-brooding structures that are located on either the male's abdomen or its tail, where they are osmoregulated, aerated, and nourished by specially adapted structures. All syngnathid males exhibit this form of parental care but the brooding structures vary, ranging from the simple ventral gluing areas of some pipefishes to the completely enclosed pouches found in seahorses. We present a molecular phylogeny that indicates that the diversification of pouch types is positively correlated with the major evolutionary radiation of the group, suggesting that this extreme development and diversification of paternal care may have been an important evolutionary innovation of the Syngnathidae. Based on recent studies that show that the complexity of brooding structures reflects the degree of paternal investment in several syngnathid species, we predicted sex-role reversals to be more common among species with more complex brooding structures. In contrast to this prediction, however, both parsimony- and likelihood-based reconstructions of the evolution of sex-role reversal in pipefishes and seahorses suggest multiple shifts in sex roles in the group, independent from the degree of brood pouch development. At the same time, our data demonstrate that sex-role reversal is positively associated with polygamous mating patterns, whereas most nonreversed species mate monogamously, suggesting that selection for polygamy or monogamy in pipefishes and seahorses may strongly influence sex roles in the wild.
Chimpanzees breed with genetically dissimilar mates
Rudicell, Rebecca S.; Li, Yingying; Hahn, Beatrice H.; Wroblewski, Emily; Pusey, Anne E.
2017-01-01
Inbreeding adversely affects fitness, whereas heterozygosity often augments it. Therefore, mechanisms to avoid inbreeding and increase genetic distance between mates should be advantageous in species where adult relatives reside together. Here we investigate mate choice for genetic dissimilarity in chimpanzees, a species in which many females avoid inbreeding through dispersal, but where promiscuous mating and sexual coercion can limit choice when related adults reside together. We take advantage of incomplete female dispersal in Gombe National Park, Tanzania to compare mate choice for genetic dissimilarity among immigrant and natal females in two communities using pairwise relatedness measures in 135 genotyped chimpanzees. As expected, natal females were more related to adult males in their community than were immigrant females. However, among 62 breeding events, natal females were not more related to the sires of their offspring than immigrant females, despite four instances of close inbreeding. Moreover, females were generally less related to the sires of their offspring than to non-sires. These results demonstrate that chimpanzees may be capable of detecting relatedness and selecting mates on the basis of genetic distance. PMID:28280546
Chimpanzees breed with genetically dissimilar mates.
Walker, Kara K; Rudicell, Rebecca S; Li, Yingying; Hahn, Beatrice H; Wroblewski, Emily; Pusey, Anne E
2017-01-01
Inbreeding adversely affects fitness, whereas heterozygosity often augments it. Therefore, mechanisms to avoid inbreeding and increase genetic distance between mates should be advantageous in species where adult relatives reside together. Here we investigate mate choice for genetic dissimilarity in chimpanzees, a species in which many females avoid inbreeding through dispersal, but where promiscuous mating and sexual coercion can limit choice when related adults reside together. We take advantage of incomplete female dispersal in Gombe National Park, Tanzania to compare mate choice for genetic dissimilarity among immigrant and natal females in two communities using pairwise relatedness measures in 135 genotyped chimpanzees. As expected, natal females were more related to adult males in their community than were immigrant females. However, among 62 breeding events, natal females were not more related to the sires of their offspring than immigrant females, despite four instances of close inbreeding. Moreover, females were generally less related to the sires of their offspring than to non-sires. These results demonstrate that chimpanzees may be capable of detecting relatedness and selecting mates on the basis of genetic distance.
Jantzen, Troy M; Havenhand, Jon N
2003-06-01
Squid behavior is synonymous with distinctive body patterns, postures, and movements that constitute a complex visual communication system. These communications are particularly obvious during reproduction. They are important for sexual selection and have been identified as a potential means of species differentiation. Here we present a detailed account of copulation, mating, and egg deposition behaviors from in situ observations of the squid Sepioteuthis australis from South Australia. We identified four mating types from 85 separate mating attempts: "Male-upturned mating" (64% of mating attempts); "Sneaker mating" (33%); "Male-parallel" (2%); and "Head-to-head" (1%). Intervals between successive egg deposition behaviors were clearly bimodal, with modes at 2.5 s and 70.0 s. Ninety-three percent of egg capsules contained 3 or 4 eggs (mean = 3.54), and each egg cluster contained between 218 and 1922 egg capsules (mean = 893.9). The reproductive behavior of S. australis from South Australia was different from that described for other cephalopod species. More importantly, comparison between these results and those for other populations of S. australis suggests that behavior may differ from one population to another.
Predicting rates of inbreeding in populations undergoing selection.
Woolliams, J A; Bijma, P
2000-01-01
Tractable forms of predicting rates of inbreeding (DeltaF) in selected populations with general indices, nonrandom mating, and overlapping generations were developed, with the principal results assuming a period of equilibrium in the selection process. An existing theorem concerning the relationship between squared long-term genetic contributions and rates of inbreeding was extended to nonrandom mating and to overlapping generations. DeltaF was shown to be approximately (1)/(4)(1 - omega) times the expected sum of squared lifetime contributions, where omega is the deviation from Hardy-Weinberg proportions. This relationship cannot be used for prediction since it is based upon observed quantities. Therefore, the relationship was further developed to express DeltaF in terms of expected long-term contributions that are conditional on a set of selective advantages that relate the selection processes in two consecutive generations and are predictable quantities. With random mating, if selected family sizes are assumed to be independent Poisson variables then the expected long-term contribution could be substituted for the observed, providing (1)/(4) (since omega = 0) was increased to (1)/(2). Established theory was used to provide a correction term to account for deviations from the Poisson assumptions. The equations were successfully applied, using simple linear models, to the problem of predicting DeltaF with sib indices in discrete generations since previously published solutions had proved complex. PMID:10747074
Random and non-random mating populations: Evolutionary dynamics in meiotic drive.
Sarkar, Bijan
2016-01-01
Game theoretic tools are utilized to analyze a one-locus continuous selection model of sex-specific meiotic drive by considering nonequivalence of the viabilities of reciprocal heterozygotes that might be noticed at an imprinted locus. The model draws attention to the role of viability selections of different types to examine the stable nature of polymorphic equilibrium. A bridge between population genetics and evolutionary game theory has been built up by applying the concept of the Fundamental Theorem of Natural Selection. In addition to pointing out the influences of male and female segregation ratios on selection, configuration structure reveals some noted results, e.g., Hardy-Weinberg frequencies hold in replicator dynamics, occurrence of faster evolution at the maximized variance fitness, existence of mixed Evolutionarily Stable Strategy (ESS) in asymmetric games, the tending evolution to follow not only a 1:1 sex ratio but also a 1:1 different alleles ratio at particular gene locus. Through construction of replicator dynamics in the group selection framework, our selection model introduces a redefining bases of game theory to incorporate non-random mating where a mating parameter associated with population structure is dependent on the social structure. Also, the model exposes the fact that the number of polymorphic equilibria will depend on the algebraic expression of population structure. Copyright © 2015 Elsevier Inc. All rights reserved.
Harris, W Edwin; Uller, Tobias
2009-04-27
Reproductive investment decisions form an integral part of life-history biology. Selection frequently favours plasticity in investment that can generate maternal effects on offspring development. For example, if females differentially allocate resources based on mate attractiveness or quality, this can create a non-genetic link between mate attractiveness and offspring fitness with potential consequences for ecological and evolutionary dynamics. It is therefore important to understand under what conditions differential investment into offspring in relation to male quality is expected to occur and the direction of the effect. Two opposite predictions, increased investment into offspring produced with high-quality mates (differential allocation (DA)) and increased investment with low-quality males (reproductive compensation (RC)) have been suggested but no formal theoretical treatment justifying the assumptions underlying these two hypotheses has been conducted to date. Here, we used a state-based approach to investigate the circumstances under which the variation in mate quality results in differential female investment into offspring and how this interacts with female energetic resource levels. We found that a pattern of increased investment when mating with high-quality mates (i.e. DA) was the most common optimal investment strategy for females in our model. By contrast, increased investment when mating with low-quality mates (i.e. RC) was predicted only when the relative impact of parental investment on offspring quality was low. Finally, we found that the specific pattern of investment in relation to male quality depends on female energetic state, the likelihood for future mating opportunities and the expected future distribution of mate quality. Thus, the female's age and body condition should be important factors mediating DA and RC, which may help to explain the equivocal results of empirical studies.
Sexual selection accelerates signal evolution during speciation in birds.
Seddon, Nathalie; Botero, Carlos A; Tobias, Joseph A; Dunn, Peter O; Macgregor, Hannah E A; Rubenstein, Dustin R; Uy, J Albert C; Weir, Jason T; Whittingham, Linda A; Safran, Rebecca J
2013-09-07
Sexual selection is proposed to be an important driver of diversification in animal systems, yet previous tests of this hypothesis have produced mixed results and the mechanisms involved remain unclear. Here, we use a novel phylogenetic approach to assess the influence of sexual selection on patterns of evolutionary change during 84 recent speciation events across 23 passerine bird families. We show that elevated levels of sexual selection are associated with more rapid phenotypic divergence between related lineages, and that this effect is restricted to male plumage traits proposed to function in mate choice and species recognition. Conversely, we found no evidence that sexual selection promoted divergence in female plumage traits, or in male traits related to foraging and locomotion. These results provide strong evidence that female choice and male-male competition are dominant mechanisms driving divergence during speciation in birds, potentially linking sexual selection to the accelerated evolution of pre-mating reproductive isolation.
Experimental evolution of a sexually selected display in yeast
Rogers, David W.; Greig, Duncan
2008-01-01
The fundamental principle underlying sexual selection theory is that an allele conferring an advantage in the competition for mates will spread through a population. Remarkably, this has never been demonstrated empirically. We have developed an experimental system using yeast for testing genetic models of sexual selection. Yeast signal to potential partners by producing an attractive pheromone; stronger signallers are preferred as mates. We tested the effect of high and low levels of sexual selection on the evolution of a gene determining the strength of this signal. Under high sexual selection, an allele encoding a stronger signal was able to invade a population of weak signallers, and we observed a corresponding increase in the amount of pheromone produced. By contrast, the strong signalling allele failed to invade under low sexual selection. Our results demonstrate, for the first time, the spread of a sexually selected allele through a population, confirming the central assumption of sexual selection theory. Our yeast system is a powerful tool for investigating the genetics of sexual selection. PMID:18842545
Polyandry and sex-specific gene expression
Mank, Judith E.; Wedell, Nina; Hosken, David J.
2013-01-01
Polyandry is widespread in nature, and has important evolutionary consequences for the evolution of sexual dimorphism and sexual conflict. Although many of the phenotypic consequences of polyandry have been elucidated, our understanding of the impacts of polyandry and mating systems on the genome is in its infancy. Polyandry can intensify selection on sexual characters and generate more intense sexual conflict. This has consequences for sequence evolution, but also for sex-biased gene expression, which acts as a link between mating systems, sex-specific selection and the evolution of sexual dimorphism. We discuss this and the remarkable confluence of sexual-conflict theory and patterns of gene expression, while also making predictions about transcription patterns, mating systems and sexual conflict. Gene expression is a key link in the genotype–phenotype chain, and although in its early stages, understanding the sexual selection–transcription relationship will provide significant insights into this critical association. PMID:23339238
Mhatre, Natasha; Pollack, Gerald; Mason, Andrew
2016-04-01
Tree cricket males produce tonal songs, used for mate attraction and male-male interactions. Active mechanics tunes hearing to conspecific song frequency. However, tree cricket song frequency increases with temperature, presenting a problem for tuned listeners. We show that the actively amplified frequency increases with temperature, thus shifting mechanical and neuronal auditory tuning to maintain a match with conspecific song frequency. Active auditory processes are known from several taxa, but their adaptive function has rarely been demonstrated. We show that tree crickets harness active processes to ensure that auditory tuning remains matched to conspecific song frequency, despite changing environmental conditions and signal characteristics. Adaptive tuning allows tree crickets to selectively detect potential mates or rivals over large distances and is likely to bestow a strong selective advantage by reducing mate-finding effort and facilitating intermale interactions. © 2016 The Author(s).
Divergence in genital morphology may contribute to mechanical reproductive isolation in a millipede
Wojcieszek, Janine M; Simmons, Leigh W
2013-01-01
Genitalia appear to evolve rapidly and divergently in taxa with internal fertilization. The current consensus is that intense directional sexual selection drives the rapid evolution of genitalia. Recent research on the millipede Antichiropus variabilis suggests that the male genitalia are currently experiencing stabilizing selection – a pattern of selection expected for lock-and-key structures that enforce mate recognition and reproductive isolation. Here, we investigate how divergence in genital morphology affects reproductive compatibility among isolated populations of A. variabilis. Females from a focal population were mated first to a male from their own population and, second, to a male from one of two populations with divergent genital morphology. We observed variation in mating behavior that might indicate the emergence of precopulatory reproductive barriers: males from one divergent population took significantly longer to recognize females and exhibited mechanical difficulty in genital insertion. Moreover, we observed very low paternity success for extra-population males who were successful in copulating. Our data suggest that divergence in genital shape may be contributing to reproductive isolation, and incipient speciation among isolated populations of A. variabilis. PMID:23467632
Monogamy in the maternally mouthbrooding Lake Tanganyika cichlid fish Tropheus moorii
Egger, Bernd; Obermüller, Beate; Phiri, Harris; Sturmbauer, Christian; Sefc, Kristina M
2006-01-01
Supported by evidence for assortative mating and polygynandry, sexual selection through mate choice was suggested as the main force driving the evolution of colour diversity of haplochromine cichlids in Lakes Malawi and Victoria. The phylogenetically closely related tribe Tropheini of Lake Tanganyika includes the genus Tropheus, which comprises over 100 colour variants currently classified into six morphologically similar, polyphyletic species. To assess the potential for sexual selection in this sexually monochromatic maternal mouthbrooder, we used microsatellite-based paternity inference to investigate the mating system of Tropheus moorii. In contrast to haplochromines in Lake Malawi, multiple paternity is rare or even absent in broods of T. moorii. Eighteen of the 19 analysed families were consistent with genetic monogamy, while either a mutation or more than one sire explained the genotype of one offspring in another brood. We discuss the differences in breeding behaviour between T. moorii and the Lake Malawi haplochromines, and evaluate additional factors or alternatives to sexual selection as promoters of colour diversification. A preliminary survey of other Tropheini species suggested that multiple paternity is infrequent in the entire tribe. PMID:16790413
Roberts, Thomas; Roiser, Jonathan P
2010-11-01
The human leukocyte antigen (HLA) is the most polymorphic region of the genome, coding for proteins that mediate human immune response. This polymorphism may be maintained by balancing selection and certain populations show deviations from expected gene frequencies. Supporting this hypothesis, studies into olfactory preferences have suggested that females prefer the scent of males with dissimilar HLA to their own. However, it has also been proposed that androstenones play a role in female mate choice, and as these molecules inhibit the immune system, this has implications for the theory of HLA-driven mate preference. This review will critically analyze the findings of studies investigating olfactory preference in humans, and their implications for these two contrasting theories of mate choice.
Evolution of external female genital mutilation: why do males harm their mates?
Mouginot, Pierick; Uhl, Gabriele; Fromhage, Lutz
2017-11-01
Sperm competition may select for male reproductive traits that influence female mating or oviposition rate. These traits may induce fitness costs to the female; however, they may be costly for the males as well as any decrease in female fitness also affects male fitness. Male adaptations to sperm competition manipulate females by altering not only female behaviour or physiology, but also female morphology. In orb-weaving spiders, mating may entail mutilation of external structures of the female genitalia, which prevents genital coupling with subsequent males. Here, we present a game theoretical model showing that external female genital mutilation is favoured even under relatively high costs of mutilation, and that it is favoured by a high number of mate encounters per female and last-male sperm precedence.
Evolution of external female genital mutilation: why do males harm their mates?
Uhl, Gabriele
2017-01-01
Sperm competition may select for male reproductive traits that influence female mating or oviposition rate. These traits may induce fitness costs to the female; however, they may be costly for the males as well as any decrease in female fitness also affects male fitness. Male adaptations to sperm competition manipulate females by altering not only female behaviour or physiology, but also female morphology. In orb-weaving spiders, mating may entail mutilation of external structures of the female genitalia, which prevents genital coupling with subsequent males. Here, we present a game theoretical model showing that external female genital mutilation is favoured even under relatively high costs of mutilation, and that it is favoured by a high number of mate encounters per female and last-male sperm precedence. PMID:29291104
Blanckenhorn, W U; Kraushaar, U R S; Teuschl, Y; Reim, C
2004-05-01
Previous univariate studies of the fly Sepsis cynipsea (Diptera: Sepsidae) have demonstrated spatiotemporally variable and consequently overall weak sexual selection favouring large male size, which is nevertheless stronger on average than fecundity selection favouring larger females. To identify specific target(s) of selection on body size and additional traits possibly affecting mating success, two multivariate field studies of sexual selection were conducted. In one study using seasonal replicates from three populations, we assessed 15 morphological traits. No clear targets of sexual selection on male size could be detected, perhaps because spatiotemporal variation in selection was again strong. In particular, there was no (current) selection on male abdomen length or fore coxa length, the only traits for which S. cynipsea males are not smaller than females. Interestingly, copulating males had a consistently shorter fore femur base, a secondary sexual trait, and a wider clasper (hypopygium) gap, an external genital trait. In a second study using daily and seasonal replicates from one population, we included physiological measures of energy reserves (lipids, glucose, glycogen), in addition to hind tibia length and fluctuating asymmetry (FA) of all pairs of legs. This study again confirmed the mating advantage of large males, and additionally suggests independent positive influences of lipids (the long-term energy stores), with effects of glucose and glycogen (the short-term energy stores) tending to be negative. FA of paired traits was not associated with male mating success. Our study suggests that inclusion of physiological measures and genital traits in phenomenological studies of selection, which is rare, would be fruitful in other species.
Manfredini, Fabio; Brown, Mark J F; Vergoz, Vanina; Oldroyd, Benjamin P
2015-07-31
Mating is a complex process, which is frequently associated with behavioural and physiological changes. However, understanding of the genetic underpinnings of these changes is limited. Honey bees are both a model system in behavioural genomics, and the dominant managed pollinator of human crops; consequently understanding the mating process has both pure and applied value. We used next-generation transcriptomics to probe changes in gene expression in the brains of honey bee queens, as they transition from virgin to mated reproductive status. In addition, we used CO2-narcosis, which induces oviposition without mating, to isolate the process of reproductive maturation. The mating process produced significant changes in the expression of vision, chemo-reception, metabolic, and immune-related genes. Differential expression of these genes maps clearly onto known behavioural and physiological changes that occur during the transition from being a virgin queen to a newly-mated queen. A subset of these changes in gene expression were also detected in CO2-treated queens, as predicted from previous physiological studies. In addition, we compared our results to previous studies that used microarray techniques across a range of experimental time-points. Changes in expression of immune- and vision-related genes were common to all studies, supporting an involvement of these groups of genes in the mating process. Our study is an important step in understanding the molecular mechanisms regulating post-mating behavioural transitions in a natural system. The weak overlap in patterns of gene expression with previous studies demonstrates the high sensitivity of genome-wide approaches. Thus, while we build on previous microarray studies that explored post-mating changes in honey bees, the broader experimental design, use of RNA-sequencing, and focus on Australian honey bees, which remain free from the devastating parasite Varroa destructor, in the current study, provide unique insights into the biology of the mating process in honey bees.
NASA Astrophysics Data System (ADS)
Fierro, Annalisa; Cocozza, Sergio; Monticelli, Antonella; Scala, Giovanni; Miele, Gennaro
2017-06-01
The presence of phenomena analogous to phase transition in Statistical Mechanics has been suggested in the evolution of a polygenic trait under stabilizing selection, mutation and genetic drift. By using numerical simulations of a model system, we analyze the evolution of a population of N diploid hermaphrodites in random mating regime. The population evolves under the effect of drift, selective pressure in form of viability on an additive polygenic trait, and mutation. The analysis allows to determine a phase diagram in the plane of mutation rate and strength of selection. The involved pattern of phase transitions is characterized by a line of critical points for weak selective pressure (smaller than a threshold), whereas discontinuous phase transitions, characterized by metastable hysteresis, are observed for strong selective pressure. A finite-size scaling analysis suggests the analogy between our system and the mean-field Ising model for selective pressure approaching the threshold from weaker values. In this framework, the mutation rate, which allows the system to explore the accessible microscopic states, is the parameter controlling the transition from large heterozygosity ( disordered phase) to small heterozygosity ( ordered one).
Male-male competition, female mate choice and their interaction: determining total sexual selection.
Hunt, John; Breuker, Casper J; Sadowski, Jennifer A; Moore, Allen J
2009-01-01
Empirical studies of sexual selection typically focus on one of the two mechanisms of sexual selection without integrating these into a description of total sexual selection, or study total sexual selection without quantifying the contributions of all of the mechanisms of sexual selection. However, this can provide an incomplete or misleading view of how sexually selected traits evolve if the mechanisms of sexual selection are opposing or differ in form. Here, we take a two-fold approach to advocate a direction for future studies of sexual selection. We first show how a quantitative partitioning and examination of sexual selection mechanisms can inform by identifying illustrative studies that describe both male-male competition and female mate choice acting on the same trait. In our sample, the most common trait where this occurred was body size, and selection was typically linear. We found that male-male competition and female mate choice can be reinforcing or opposing, although the former is most common in the literature. The mechanisms of sexual selection can occur simultaneously or sequentially, and we found they were more likely to be opposing when the mechanisms operated sequentially. The degree and timing that these mechanisms interact have important implications for the operation of sexual selection and needs to be considered in designing studies. Our examples highlight where empirical data are needed. We especially lack standardized measures of the form and strength of selection imposed by each mechanism of sexual selection and how they combine to determine total sexual selection. Secondly, using quantitative genetic principles, we outline how the selection imposed by individual mechanisms can be measured and combined to estimate the total strength and form of sexual selection. We discuss the evolutionary consequences of combining the mechanisms of sexual selection and interpreting total sexual selection. We suggest how this approach may result in empirical progress in the field of sexual selection.
Mating design considerations—How many crosses do we really need to test?
R. Johnson
2000-01-01
The impact of increasing the number of crosses per parent on the efficiency of backwards selection was examined using Monte Carlo simulation. Both the efficiency of reselection and its associated variance leveled off after two to three crosses per parent.Because so few crosses appear to be needed to estimate parental GCA values, a quasi-complementary mating...
Mee-Sook Kim; Ned B. Klopfenstein; Geral I. McDonald; Kathiravetpillai Arumuganathan
2001-01-01
For assessments of intraspecific mating using flow cytometry and fluorescence microscopy, two compatible basidiospore-derived isolates were selected from each of four parental basidiomata of North American Biological Species (NABS) X. The nuclear status in NABS X varied with basidiospore-derived isolates. Nuclei within basidiospore-derived isolates existed as haploids...
Vasey, Paul L; Leca, Jean-Baptiste; Gunst, Noëlle; VanderLaan, Doug P
2014-10-01
In this paper, we review research related to female homosexual behavior in Japanese macaques (Macaca fuscata), including our 20-year program of research on this species. Multiple lines of evidence indicate that female homosexual behavior in this species is sexually motivated. In contrast, many sociosexual hypotheses have been tested in relation to female homosexual behavior in Japanese macaques, but none have been supported. Female Japanese macaques sometimes engage in same-sex sexual activity even when motivated opposite-sex alternatives are available. Within this context of mate choice, males compete inter-sexually for opportunities to copulate with females above and beyond any intra-sexual competition that is required. Anecdotal evidence suggests that inter-sexual competition for female sexual partners has been observed in a number of other species, including humans. At present it is unclear whether inter-sexual competition for sexual partners influences patterns of reproduction. Our understanding of sexual selection and the evolution of mating systems may be improved by investigating whether inter-sexual mate competition influences the acquisition and maintenance of reproductive partners in those species in which such interactions occur. Copyright © 2014 Elsevier Ltd. All rights reserved.
Selecting Female Mice in Estrus and Checking Plugs.
Behringer, Richard; Gertsenstein, Marina; Nagy, Kristina Vintersten; Nagy, Andras
2016-08-01
The female mouse estrous cycle is divided into four phases: proestrus (development of ovarian follicles), estrus (ovulation), metestrus (formation of corpora lutea), and diestrus (beginning of follicle development for next ovulation and elimination of previous oocytes). The appearance of the epithelium of the external genitalia is used to identify the stage of the estrous cycle of a female mouse. This is usually easier to see in strains with either no or only light skin pigmentation. By examining the color, moistness, and degree of swelling of the vagina, females in estrus can readily be identified. To set up the matings, females are examined in the afternoon, and those in estrus are placed into the cages with males (one or two females in each cage with one male). Usually, 50% or more of the selected females will mate. The presence of a vaginal copulation plug next morning indicates that mating has occurred, but it does not mean that a pregnancy will result even if proven breeder fertile males were used. It is important to check vaginal plugs early in the morning because they fall out or are no longer detectable ~12 h after mating or sometimes earlier. © 2016 Cold Spring Harbor Laboratory Press.
Ellis, Allan G; Johnson, Steven D
2010-11-01
Although the majority of flowering plants achieve pollination by exploiting the food‐seeking behavior of animals, some use alternative ploys that exploit their mate‐seeking behavior. Sexual deception is currently known only from the Orchidaceae and almost always involves pollination by male hymenoptera. An outstanding problem has been to identify the selective factors in plants that favor exploitation of mating versus feeding behaviors in pollinators. Here we show that the insectlike petal ornaments on inflorescences of the daisy Gorteria diffusa elicit copulation attempts from male bombyliid flies and that the intensity of the mating response varies across geographical floral morphotypes, suggesting a continuum in reliance on feeding through mating responses for pollination. Using pollen analogues applied to a morphotype with prominent insectlike petal ornaments, we demonstrate that mate‐seeking male flies are several‐fold more active and export significantly more pollen than females. These results suggest that selection for traits that exploit insect mating behavior can occur through the male component of plant fitness and conclusively demonstrates pollination by sexual deception in Gorteria, making this the first confirmed report of sexual deception outside of the Orchidaceae.
Social selection is a powerful explanation for prosociality.
Nesse, Randolph M
2016-01-01
Cultural group selection helps explain human cooperation, but social selection offers a complementary, more powerful explanation. Just as sexual selection shapes extreme traits that increase matings, social selection shapes extreme traits that make individuals preferred social partners. Self-interested partner choices create strong and possibly runaway selection for prosocial traits, without requiring group selection, kin selection, or reciprocity.
A study of postgraduate students' endogamous preference in mate selection.
Saroja, K; Surendra, H S
1991-01-01
Researchers distributed questionnaires to 395 21-28 year old postgraduate students at the University of Agricultural Sciences and Dharwad and Karnataka University both in Dharwad, India, to determine their endogamous preferences in selecting a mate and to examine the relationship between these preferences and their sex, desired type of marriage, and discipline of postgraduate studies. 64.3% preferred limited mate selection within their caste. Specifically, 32.4% favored subcaste endogamy, 19.5% caste endogamy, and 12.4% kinship endogamy. 24.1% wanted to marry someone from another caste but someone of the same religion. 11.6% wished to marry someone of another religion. Female students were more likely to prefer caste endogamy than male students (76.0% vs. 53.5%; p .01): kinship endogamy (14.8% vs. 10.3%), subcaste endogamy (38.5% vs. 27.2%), and caste endogamy (23.6% vs. 16%) than male students. Male students were more likely to prefer a mate from either the same or different religion than female students (29.6% vs. 17.6% and 16.9% vs. 5.5%, respectively; p .01). Even though most students (58%) preferred arranged marriages, a considerable percentage (42%) preferred to marry for love. 41.6% of those who preferred love marriages wanted to marry someone from another caste compared with only 11.4% of those who preferred arranged marriage (p .01). Students who wanted to marry for love were 3 times more likely to want to marry someone from another religion than were those who preferred arranged marriage (18.6% vs. 6.5%; p .01). 45.4% of students who preferred arranged marriage wanted to choose their mate from the same subcaste compared with only 14.5% of those who wanted a love marriage (p .01). 41.2% of applied science students preferred to marry someone of the same religion compared with 21.7% for basic science students and 16.3% for humanities students (p .01). 50% of applied science students, 75.2% of basic science students, and 66.3% of humanities students preferred to select a mate from the same caste. Students older than 23 years were more likely to prefer intermarriage than intramarriage (p .01). Overall, 35.7% preferred intermarriages (intercaste and interreligious marriage).
Björklund, Mats
1991-05-01
According to theory, two consequences of sexual selection are sexual dimorphism in size and secondary sexual characteristics, due to either intra- or intersexual selection. In this paper I suggest three criteria for the test of an evolutionary hypothesis involving quantitative morphological characters. First, the postulated change must be shown to have occurred in evolutionary time. Second, this change must be positively correlated with a change in the proposed selective agent. Third, given two taxa with different degrees of sexual size dimorphism and different mating system, the possible influence of drift must be rejected. If the hypothesis is not rejected by these three criteria, then we still have no proof of causality, but we can at least be more confident about its plausibility. This is applied to the particular hypothesis that sexual dimorphism in the Boat-tailed and Great-tailed grackles (Quiscalus spp; Icterinae; Aves) is caused by the highly polygynous mating system in these species. In relation to an outgroup, both species have increased disproportionately in male tarsus and tail size, creating an increased sexual dimorphism. This has cooccurred with the evolution of their particular mating system. However, the variance among species in male tarsus size can be accounted for by drift, and need not be a result of selection for increased size. In contrast, the variance among species in male tail size was much larger than expected under a null model of drift, indicating directional selection for long tails. The variance in female tail size was not larger than expected by drift, whereas the variance in female tarsus size was in fact lower than expected by drift, indicating stabilizing selection. The data are consistent with the hypothesis with regard to tail size, but not with regard to body size. © 1991 The Society for the Study of Evolution.
Bejanyan, Kathrine; Marshall, Tara C; Ferenczi, Nelli
2015-01-01
In collectivist cultures, families tend to be characterized by respect for parental authority and strong, interdependent ties. Do these aspects of collectivism exert countervailing pressures on mate choices and relationship quality? In the present research, we found that collectivism was associated with greater acceptance of parental influence over mate choice, thereby driving relationship commitment down (Studies 1 and 2), but collectivism was also associated with stronger family ties (referred to as family allocentrism), which drove commitment up (Study 2). Along similar lines, Study 1 found that collectivists' greater acceptance of parental influence on mate choice contributed to their reduced relationship passion, whereas Study 2 found that their greater family allocentrism may have enhanced their passion. Study 2 also revealed that collectivists may have reported a smaller discrepancy between their own preferences for mates high in warmth and trustworthiness and their perception of their parents' preferences for these qualities because of their stronger family allocentrism. However, their higher tolerance of parental influence may have also contributed to a smaller discrepancy in their mate preferences versus their perceptions of their parents' preferences for qualities signifying status and resources. Implications for the roles of collectivism, parental influence, and family allocentrism in relationship quality and mate selection will be discussed.
Evidence that pairing with genetically similar mates is maladaptive in a monogamous bird
Mulard, Hervé; Danchin, E.; Talbot, S.L.; Ramey, A.M.; Hatch, Shyla A.; White, J.F.; Helfenstein, F.; Wagner, R.H.
2009-01-01
Background. Evidence of multiple genetic criteria of mate choice is accumulating in numerous taxa. In many species, females have been shown to pair with genetically dissimilar mates or with extra-pair partners that are more genetically compatible than their social mates, thereby increasing their offsprings' heterozygosity which often correlates with offspring fitness. While most studies have focused on genetically promiscuous species, few studies have addressed genetically monogamous species, in which mate choice tends to be mutual. Results. Here, we used microsatellite markers to assess individual global heterozygosity and genetic similarity of pairs in a socially and genetically monogamous seabird, the black-legged kittiwake Rissa tridactyla. We found that pairs were more genetically dissimilar than expected by chance. We also identified fitness costs of breeding with genetically similar partners: (i) genetic similarity of pairs was negatively correlated with the number of chicks hatched, and (ii) offspring heterozygosity was positively correlated with growth rate and survival. Conclusion. These findings provide evidence that breeders in a genetically monogamous species may avoid the fitness costs of reproducing with a genetically similar mate. In such species that lack the opportunity to obtain extra-pair fertilizations, mate choice may therefore be under high selective pressure. ?? 2009 Mulard et al; licensee BioMed Central Ltd.
Li, Man-Wah; Muñoz, Nacira B; Wong, Chi-Fai; Wong, Fuk-Ling; Wong, Kwong-Sen; Wong, Johanna Wing-Hang; Qi, Xinpeng; Li, Kwan-Pok; Ng, Ming-Sin; Lam, Hon-Ming
2016-01-01
Soybean seeds are a rich source of phenolic compounds, especially isoflavonoids, which are important nutraceuticals. Our study using 14 wild- and 16 cultivated-soybean accessions shows that seeds from cultivated soybeans generally contain lower total antioxidants compared to their wild counterparts, likely an unintended consequence of domestication or human selection. Using a recombinant inbred population resulting from a wild and a cultivated soybean parent and a bin map approach, we have identified an overlapping genomic region containing major quantitative trait loci (QTLs) that regulate the seed contents of total antioxidants, phenolics, and flavonoids. The QTL for seed antioxidant content contains 14 annotated genes based on the Williams 82 reference genome (Gmax1.01). None of these genes encodes functions that are related to the phenylpropanoid pathway of soybean. However, we found three putative Multidrug And Toxic Compound Extrusion (MATE) transporter genes within this QTL and one adjacent to it (GmMATE1-4). Moreover, we have identified non-synonymous changes between GmMATE1 and GmMATE2, and that GmMATE3 encodes an antisense transcript that expresses in pods. Whether the polymorphisms in GmMATE proteins are major determinants of the antioxidant contents, or whether the antisense transcripts of GmMATE3 play important regulatory roles, awaits further functional investigations.
Bejanyan, Kathrine; Marshall, Tara C.; Ferenczi, Nelli
2015-01-01
In collectivist cultures, families tend to be characterized by respect for parental authority and strong, interdependent ties. Do these aspects of collectivism exert countervailing pressures on mate choices and relationship quality? In the present research, we found that collectivism was associated with greater acceptance of parental influence over mate choice, thereby driving relationship commitment down (Studies 1 and 2), but collectivism was also associated with stronger family ties (referred to as family allocentrism), which drove commitment up (Study 2). Along similar lines, Study 1 found that collectivists’ greater acceptance of parental influence on mate choice contributed to their reduced relationship passion, whereas Study 2 found that their greater family allocentrism may have enhanced their passion. Study 2 also revealed that collectivists may have reported a smaller discrepancy between their own preferences for mates high in warmth and trustworthiness and their perception of their parents’ preferences for these qualities because of their stronger family allocentrism. However, their higher tolerance of parental influence may have also contributed to a smaller discrepancy in their mate preferences versus their perceptions of their parents’ preferences for qualities signifying status and resources. Implications for the roles of collectivism, parental influence, and family allocentrism in relationship quality and mate selection will be discussed. PMID:25719563
No facultative worker policing in the honey bee ( Apis mellifera L.)
NASA Astrophysics Data System (ADS)
Loope, Kevin J.; Seeley, Thomas D.; Mattila, Heather R.
2013-05-01
Kin selection theory predicts that in colonies of social Hymenoptera with multiply mated queens, workers should mutually inhibit ("police") worker reproduction, but that in colonies with singly mated queens, workers should favor rearing workers' sons instead of queens' sons. In line with these predictions, Mattila et al. (Curr Biol 22:2027-2031, 2012) documented increased ovary development among workers in colonies of honey bees with singly mated queens, suggesting that workers can detect and respond adaptively to queen mating frequency and raising the possibility that they facultative police. In a follow-up experiment, we test and reject the hypothesis that workers in single-patriline colonies prefer worker-derived males and are able to reproduce directly; we show that their eggs are policed as strongly as those of workers in colonies with multiply mated queens. Evidently, workers do not respond facultatively to a kin structure that favors relaxed policing and increased direct reproduction. These workers may instead be responding to a poor queen or preparing for possible queen loss.
NASA Astrophysics Data System (ADS)
Rueppell, Olav; Phaincharoen, Mananya; Kuster, Ryan; Tingek, Salim
2011-09-01
During social evolution, the ovary size of reproductively specialized honey bee queens has dramatically increased while their workers have evolved much smaller ovaries. However, worker division of labor and reproductive competition under queenless conditions are influenced by worker ovary size. Little comparative information on ovary size exists in the different honey bee species. Here, we report ovariole numbers of freshly dissected workers from six Apis species from two locations in Southeast Asia. The average number of worker ovarioles differs significantly among species. It is strongly correlated with the average mating number of queens, irrespective of body size. Apis dorsata, in particular, is characterized by numerous matings and very large worker ovaries. The relation between queen mating number and ovary size across the six species suggests that individual selection via reproductive competition plays a role in worker ovary size evolution. This indicates that genetic diversity, generated by multiple mating, may bear a fitness cost at the colony level.
No facultative worker policing in the honey bee (Apis mellifera L.).
Loope, Kevin J; Seeley, Thomas D; Mattila, Heather R
2013-05-01
Kin selection theory predicts that in colonies of social Hymenoptera with multiply mated queens, workers should mutually inhibit ("police") worker reproduction, but that in colonies with singly mated queens, workers should favor rearing workers' sons instead of queens' sons. In line with these predictions, Mattila et al. (Curr Biol 22:2027-2031, 2012) documented increased ovary development among workers in colonies of honey bees with singly mated queens, suggesting that workers can detect and respond adaptively to queen mating frequency and raising the possibility that they facultative police. In a follow-up experiment, we test and reject the hypothesis that workers in single-patriline colonies prefer worker-derived males and are able to reproduce directly; we show that their eggs are policed as strongly as those of workers in colonies with multiply mated queens. Evidently, workers do not respond facultatively to a kin structure that favors relaxed policing and increased direct reproduction. These workers may instead be responding to a poor queen or preparing for possible queen loss.
Giraud, T; Jonot, O; Shykoff, J A
2006-05-01
Microbotryum violaceum is a fungus that causes the sterilizing anther smut disease in Caryophyllaceae. Its diploid teliospores normally produce equal proportions of haploid sporidia of its two mating types. However natural populations contain high frequencies of individuals producing sporidia of only one mating type ('biased strains'). This mating type-ratio bias is caused by deleterious alleles at haploid phase ('haplo-lethals') linked to the mating type locus that can be transmitted only by intra-tetrad selfing. We used experimental inoculations to test some of the hypotheses proposed to explain the maintenance of haplo-lethals. We found a disadvantage of biased strains in infection ability and high intra-tetrad mating rates. Biased strains had no higher competitive ability nor shorter latency and their higher spore production per flower appeared insufficient to compensate their disadvantages. These findings were only consistent with the hypothesis that haplo-lethals are maintained under a metapopulation structure because of high intra-tetrad selfing rates, founder effects and selection at the population level.
Optimal level of inbreeding in the common lizard
Richard, M.; Losdat, S.; Lecomte, J.; de Fraipont, M.; Clobert, J.
2009-01-01
Mate choice with regard to genetic similarity has been rarely considered as a dynamic process. We examined this possibility in breeding populations of the common lizard (Lacerta vivipara) kept for several years in semi-natural conditions. We investigated whether they displayed a pattern of mate choice according to the genetic similarity and whether it was context-dependent. Mate choice depended on genetic similarity with the partner and also on age and condition. There was no systematic avoidance of inbreeding. Females of intermediate ages, more monogamous, did not mate with genetically similar partners, whereas younger and older females, more polyandrous, did but highest clutch proportions were associated with intermediate values of pair-relatedness. These results indicate dynamic mate choice, suggesting that individuals of different phenotypes select their partners in different ways according to their genetic similarity. We consider our results in the light of diverse and apparently contradictory theories concerning genetic compatibility, and particularly, optimal inbreeding and inclusive fitness. PMID:19419985
Gribble, Kristin E; Mark Welch, David B
2012-08-01
Chemically mediated prezygotic barriers to reproduction likely play an important role in speciation. In facultatively sexual monogonont rotifers from the Brachionus plicatilis cryptic species complex, mate recognition of females by males is mediated by the Mate Recognition Protein (MRP), a globular glycoprotein on the surface of females, encoded by the mmr-b gene family. In this study, we sequenced mmr-b copies from 27 isolates representing 11 phylotypes of the B. plicatilis species complex, examined the mode of evolution and selection of mmr-b, and determined the relationship between mmr-b genetic distance and mate recognition among isolates. Isolates of the B. plicatilis species complex have 1-4 copies of mmr-b, each composed of 2-9 nearly identical tandem repeats. The repeats within a gene copy are generally more similar than are gene copies among phylotypes, suggesting concerted evolution. Compared to housekeeping genes from the same isolates, mmr-b has accumulated only half as many synonymous differences but twice as many non-synonymous differences. Most of the amino acid differences between repeats appear to occur on the outer face of the protein, and these often result in changes in predicted patterns of phosphorylation. However, we found no evidence of positive selection driving these differences. Isolates with the most divergent copies were unable to mate with other isolates and rarely self-crossed. Overall the degree of mate recognition was significantly correlated with the genetic distance of mmr-b. Discrimination of compatible mates in the B. plicatilis species complex is determined by proteins encoded by closely related copies of a single gene, mmr-b. While concerted evolution of the tandem repeats in mmr-b may function to maintain identity, it can also lead to the rapid spread of a mutation through all copies in the genome and thus to reproductive isolation. The mmr-b gene is evolving rapidly, and novel alleles may be maintained and increase in frequency via asexual reproduction. Our analyses indicate that mate recognition, controlled by MMR-B, may drive reproductive isolation and allow saltational sympatric speciation within the B. plicatilis cryptic species complex, and that this process may be largely neutral.
Genetic structure and breeding system in a social wasp and its social parasite
2008-01-01
Background Social insects dominate ecological communities because of their sophisticated group behaviors. However, the intricate behaviors of social insects may be exploited by social parasites, which manipulate insect societies for their own benefit. Interactions between social parasites and their hosts lead to unusual coevolutionary dynamics that ultimately affect the breeding systems and population structures of both species. This study represents one of the first attempts to understand the population and colony genetic structure of a parasite and its host in a social wasp system. Results We used DNA microsatellite markers to investigate gene flow, genetic variation, and mating behavior of the facultative social parasite Vespula squamosa and its primary host, V. maculifrons. Our analyses of genetic variability uncovered that both species possessed similar amounts of genetic variation and failed to show genetic structure over the sampling area. Our analysis of mating system of V. maculifrons and V. squamosa revealed high levels of polyandry and no evidence for inbreeding in the two species. Moreover, we found no significant differences between estimates of worker relatedness in this study and a previous investigation conducted over two decades ago, suggesting that the selective pressures operating on queen mate number have remained constant. Finally, the distribution of queen mate number in both species deviated from simple expectations suggesting that mate number may be under stabilizing selection. Conclusion The general biology of V. squamosa has not changed substantially from that of a typical, nonparasitic Vespula wasp. For example, population sizes of the host and its parasite appear to be similar, in contrast to other social parasites, which often display lower population sizes than their hosts. In addition, parasitism has not caused the mating behavior of V. squamosa queens to deviate from the high levels of multiple mating that typify Vespula wasps. This stands in contrast to some socially parasitic ants, which revert to mating with few males. Overall, the general similarity of the genetic structure of V. maculifrons and V. squamosa presumably reflects the fact that V. squamosa is still capable of independent colony founding and thus reflects an intermediate stage in the evolution of social parasitism. PMID:18715511
Multi-Attribute Tradespace Exploration in Space System Design
NASA Astrophysics Data System (ADS)
Ross, A. M.; Hastings, D. E.
2002-01-01
The complexity inherent in space systems necessarily requires intense expenditures of resources both human and monetary. The high level of ambiguity present in the early design phases of these systems causes long, highly iterative, and costly design cycles. This paper looks at incorporating decision theory methods into the early design processes to streamline communication of wants and needs among stakeholders and between levels of design. Communication channeled through formal utility interviews and analysis enables engineers to better understand the key drivers for the system and allows a more thorough exploration of the design tradespace. Multi-Attribute Tradespace Exploration (MATE), an evolving process incorporating decision theory into model and simulation- based design, has been applied to several space system case studies at MIT. Preliminary results indicate that this process can improve the quality of communication to more quickly resolve project ambiguity, and enable the engineer to discover better value designs for multiple stakeholders. MATE is also being integrated into a concurrent design environment to facilitate the transfer knowledge of important drivers into higher fidelity design phases. Formal utility theory provides a mechanism to bridge the language barrier between experts of different backgrounds and differing needs (e.g. scientists, engineers, managers, etc). MATE with concurrent design couples decision makers more closely to the design, and most importantly, maintains their presence between formal reviews.
Chuang, Ming-Feng; Bee, Mark A; Kam, Yeong-Choy
2013-01-01
Mating duration is a reproductive behaviour that can impact fertilization efficiency and offspring number. Previous studies of factors influencing the evolution of mating duration have focused on the potential role of internal sperm competition as an underlying source of selection; most of these studies have been on invertebrates. For vertebrates with external fertilization, such as fishes and frogs, the sources of selection acting on mating duration remain largely unknown due, in part, to the difficulty of observing complete mating behaviours in natural conditions. In this field study, we monitored breeding activity in a population of the territorial olive frog, Rana adenopleura, to identify factors that affect the duration of amplexus. Compared with most other frogs, amplexus was short, lasting less than 11 min on average, which included about 8 min of pre-oviposition activity followed by 3 min of oviposition. We evaluated the relationship between amplexus duration and seven variables: male body size, male condition, operational sex ratio (OSR), population size, clutch size, territory size, and the coverage of submerged vegetation in a male's territory. We also investigated the influence of these same variables, along with amplexus duration, on fertilization rate. Amplexus duration was positively related with clutch size and the degree of male-bias in the nightly OSR. Fertilization rate was directly related to male body size and inversely related to amplexus duration. Agonistic interactions between males in amplexus and intruding, unpaired males were frequent. These interactions often resulted in mating failure, prolonged amplexus duration, and reduced fertilization rates. Together, the pattern of our findings indicates short amplexus duration in this species may be an adaptive reproductive strategy whereby males attempt to reduce the risks of mating and fertilization failures and territory loss resulting from male-male competition.
Ejaculates are not used as nuptial gifts in simultaneously hermaphroditic snails.
Lodi, Monica; Meijer, Fedde W; Koene, Joris M
2017-08-01
Promoted by sexual selection, males usually adopt different ways to increase their fertilization chances. In many insect taxa males donate nuptial gifts, together with sperm, which represent a valuable additional nutrient source that females can use to provision eggs. This has also been suggested to occur in simultaneous hermaphrodites, organisms with both sex functions. In theory, donation of nuptial gifts or extra nutrients might work in hermaphrodites that mate unilaterally (one-way donation of ejaculates), but will not be effective when these organisms mate reciprocally (mutual exchange of ejaculates), since on average each partner would receive the amount it also transfers. Hence, for the latter the net amount gained would be zero, and when considering the non-trivial costs of metabolic conversion the energy balance of this exchange ends up negative. To test this prediction, we measured the material (dry weight) and resource (carbon and nitrogen content) investment into ejaculates of the unilaterally mating freshwater snail Lymnaea stagnalis and spermatophores of the reciprocally mating land snail Cornu aspersum. When compared to eggs, our measurements indicate that the investment is low for ejaculates and spermatophores, neither of which represent a significant contribution to egg production. Importantly, during reciprocal matings, couples exchanged similar amounts of material and resources, thus a gain of extra substances seems irrelevant. Hence, caution is needed when generalizing functions of male reproductive strategies across mating systems. Although digestion of ejaculates does not provide extra material and resources in simultaneous hermaphrodites, their absorption could still be important to eliminate an excess of received sperm and to select sperm via cryptic female choice. Copyright © 2017 Elsevier GmbH. All rights reserved.
Lima, Debora B; Melo, José Wagner S; Guedes, Nelsa Maria P; Gontijo, Lessando M; Guedes, Raul Narciso C; Gondim, Manoel Guedes C
2015-01-01
Synthetic pesticide use has been the dominant form of pest control since the 1940s. However, biopesticides are emerging as sustainable pest control alternatives, with prevailing use in organic agricultural production systems. Foremost among botanical biopesticides is the limonoid azadirachtin, whose perceived environmental safety has come under debate and scrutiny in recent years. Coconut production, particularly organic coconut production, is one of the agricultural systems in which azadirachtin is used as a primary method of pest control for the management of the invasive coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae). The management of this mite species also greatly benefits from predation by Neoseiulus baraki (Athias-Henriot) (Acari: Phytoseiidae). Here, we assessed the potential behavioral impacts of azadirachtin on the coconut mite predator, N. baraki. We explored the effects of this biopesticide on overall predator activity, female searching time, and mating behavior and fecundity. Azadirachtin impairs the overall activity of the predator, reducing it to nearly half; however, female searching was not affected. In contrast, mating behavior was compromised by azadirachtin exposure particularly when male predators were exposed to the biopesticide. Consequently, predator fecundity was also compromised by azadirachtin, furthering doubts about its environmental safety and selectivity towards biological control agents.
Effects of polygamy on the activity/rest rhythm of male fruit flies Drosophila melanogaster
NASA Astrophysics Data System (ADS)
Vartak, Vivek Rohidas; Varma, Vishwanath; Sharma, Vijay Kumar
2015-02-01
Although polygamy is common in insects, its extent varies enormously among natural populations. Mating systems influence the evolution of reproductive traits and the difference in extent of polygamy between males and females may be a key factor in determining traits which come under the influence of sexual selection. Fruit flies Drosophila melanogaster are promiscuous as both males and females mate with multiple partners. Mating has severe consequences on the physiology and behaviour of flies, and it affects their activity/rest rhythm in a sex-specific manner. In this study, we attempted to discern the effects of mating with multiple partners as opposed to a single partner, or of remaining unmated, on the activity/rest rhythm of flies under cyclic semi-natural (SN) and constant dark (DD) conditions. The results revealed that while evening activity of mated flies was significantly reduced compared to virgins, polygamous males showed a more severe reduction compared to monogamous males. In contrast, though mated females showed reduction in evening activity compared to virgins, activity levels were not different between polygamous and monogamous females. Although there was no detectable effect of mating on clock period, power of the activity/rest rhythm was significantly reduced in mated females with no difference seen between polygamous and monogamous individuals. These results suggest that courtship motivation, represented by evening activity, is successively reduced in males due to mating with one or more partners, while in females, it does not depend on the number of mating partners. Based on these results we conclude that polygamy affects the activity/rest rhythm of fruit flies D. melanogaster in a sex-dependent manner.