Sample records for explore potential applications

  1. Ares V: Application to Solar System Scientific Exploration

    NASA Technical Reports Server (NTRS)

    Reh, Kim; Spilker, Tom; Elliott, John; Balint, Tibor; Donahue, Ben; McCormick, Dave; Smith, David B.; Tandon, Sunil; Woodcock, Gordon

    2008-01-01

    The following sections describe Ares V performance and its payoff to a wide array of potential solar system exploration missions. Application to potential Astrophysics missions is addressed in Reference 3.

  2. Locust bean gum: Exploring its potential for biopharmaceutical applications

    PubMed Central

    Dionísio, Marita; Grenha, Ana

    2012-01-01

    Polysaccharides have been finding, in the last decades, very interesting and useful applications in the biomedical and, specifically, in the biopharmaceutical field. Locust bean gum is a polysaccharide belonging to the group of galactomannans, being extracted from the seeds of the carob tree (Ceratonia siliqua). This polymer displays a number of appealing characteristics for biopharmaceutical applications, among which its high gelling capacity should be highlighted. In this review, we describe critical aspects of locust bean gum, contributing for its role in biopharmaceutical applications. Physicochemical properties, as well as strong and effective synergies with other biomaterials are described. The potential for in vivo biodegradation is explored and the specific biopharmaceutical applications are discussed. PMID:22923958

  3. Wide Bandgap Semiconductor Opportunities in Power Electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Sujit; Marlino, Laura D.; Armstrong, Kristina O.

    The report objective is to explore the Wide Bandgap (WBG) Power Electronics (PE) market, applications, and potential energy savings in order to identify key areas where further resources and investments of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (DOE EERE) would have the most impact on U.S. competiveness. After considering the current market, several potential near-term application areas were identified as having significant market and energy savings potential with respect to clean energy applications: (1) data centers (uninterruptible power supplies and server power supplies); (2) renewable energy generation (photovoltaic-solar and wind); (3) motor drives (industrial,more » commercial and residential); (4) rail traction; and, (5) hybrid and electric vehicles (traction and charging). After the initial explorative analyses, it became clear that, SiC, not GaN, would be the principal WBG power device material for the chosen markets in the near future. Therefore, while GaN is discussed when appropriate, this report focuses on SiC devices, other WBG applications (e.g., solid-state transformers, combined heat and power, medical, and wireless power), the GaN market, and GaN specific applications (e.g., LiDAR, 5G) will be explored at a later date. In addition to the market, supply and value chain analyses addressed in Section 1 of this report, a SWOT (Strength, Weakness, Opportunity, Threat) analysis and potential energy savings analysis was conducted for each application area to identify the major potential WBG application area(s) with a U.S. competitiveness opportunity in the future.« less

  4. A Modular Robotic System with Applications to Space Exploration

    NASA Technical Reports Server (NTRS)

    Hancher, Matthew D.; Hornby, Gregory S.

    2006-01-01

    Modular robotic systems offer potential advantages as versatile, fault-tolerant, cost-effective platforms for space exploration, but a sufficiently mature system is not yet available. We describe the possible applications of such a system, and present prototype hardware intended as a step in the right direction. We also present elements of an automated design and optimization framework aimed at making modular robots easier to design and use, and discuss the results of applying the system to a gait optimization problem. Finally, we discuss the potential near-term applications of modular robotics to terrestrial robotics research.

  5. Advanced Life Support Systems: Opportunities for Technology Transfer

    NASA Technical Reports Server (NTRS)

    Fields, B.; Henninger, D.; Ming, D.; Verostko, C. E.

    1994-01-01

    NASA's future missions to explore the solar system will be of long-duration possibly lasting years at a time. Human life support systems will have to operate with very high reliability for these long periods with essentially no resupply from Earth. Such life support systems will make extensive use of higher plants, microorganisms, and physicochemical processes for recycling air and water, processing wastes, and producing food. Development of regenerative life support systems will be a pivotal capability for NASA's future human missions. A fully functional closed loop human life support system currently does not exist and thus represents a major technical challenge for space exploration. Technologies where all life support consumables are recycled have many potential terrestrial applications as well. Potential applications include providing human habitation in hostile environments such as the polar regions or the desert in such a way as to minimize energy expenditures and to minimize negative impacts on those often ecologically-sensitive areas. Other potential applications include production of food and ornamental crops without damaging the environment from fertilizers that contaminate water supplies; removal of trace gas contaminants from tightly sealed, energy-efficient buildings (the so-called sick building syndrome); and even the potential of gaining insight into the dynamics of the Earth's biosphere such that we can better manage our global environment. Two specific advanced life support technologies being developed by NASA, with potential terrestrial application, are the zeoponic plant growth system and the Hybrid Regenerative Water Recovery System (HRWRS). The potential applications for these candidate dual use technologies are quite different as are the mechanisms for transfer. In the case of zeoponics, a variety of commercial applications has been suggested which represent potentially lucrative markets. Also, the patented nature of this product offers opportunities for licensing to commercial entities. In the case of the HRWRS, commercial markets with broad applications have not been identified but some terrestrial applications are being explored where this approach has advantages over other methods of waste water processing. Although these potential applications do not appear to have the same broad attraction from the standpoint of rapid commercialization, they represent niches where commercialization possibilities as well as social benefits could be realized.

  6. 75 FR 18877 - Notice of Invitation to Participate; Exploration for Coal in Utah License Application UTU-87041

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ... the Mineral Leasing Act of 1920, as amended by section 4 of the Federal Coal Leasing Amendments Act of... reserves contained in a potential lease. The Federal coal resources are located in Emery and Sevier...] Notice of Invitation to Participate; Exploration for Coal in Utah License Application UTU-87041 AGENCY...

  7. Exploring the Potential of Mobile Applications to Support Learning and Engagement in Elementary Classes

    ERIC Educational Resources Information Center

    Al Mosawi, Athraa; Wali, Esra Ahmed

    2015-01-01

    Mobile devices have integrated themselves in society where they are used naturally and invisibly by individuals. Despite the fact that these devices are available to teachers and learners, the traditional style of classes is still the dominant style. This research explores the utilization of mobile applications in traditional classroom settings,…

  8. Tailored Assembly of 2D Heterostructures beyond Graphene

    DTIC Science & Technology

    2017-05-11

    liquid crystal and catalyst application. Another important approach we have explored during this project is the solution phase assembly of two...graphene oxide, and its potential functionalities in liquid crystal and catalyst application. Another important approach we have explored during...exfoliation, liquid phase exfoliation, and chemical vapor deposition, and opened up new opportunities to graphene based platform for novel

  9. Development of Optically Active Nanostructures for Potential Applications in Sensing, Therapeutics and Imaging

    NASA Astrophysics Data System (ADS)

    Joshi, Padmanabh

    Materials at nanoscale are finding manifold applications in the various fields like sensing, plasmonics, therapeutics, to mention a few. Large amount of development has taken place regarding synthesis and exploring the novel applications of the various types of nanomaterials like organic, inorganic and hybrid of both. Yet, it is believed that the full potential of different nanomaterials is yet to be fully established stimulating researchers to explore more in the field of nanotechnology. Building on the same premise, in the following studies we have developed the nanomaterials in the class of optically active nanoparticles. First part of the study we have successfully designed, synthesized, and characterized Ag-Fe3O4 nanocomposite substrate for potential applications in quantitative Surface Enhanced Raman Scattering (SERS) measurements. Quantitative SERS-based detection of dopamine was performed successfully. In subsequent study, facile, single-step synthesis of polyethyleneimine (PEI) coated lanthanide based NaYF4 (Yb, Er) nanoparticles was developed and their application as potential photodynamic therapy agent was studied using excitations by light in near infra-red and visible region. In the following and last study, synthesis and characterization of the conjugated polymer nanoparticles was attempted successfully. Functionalization of the conjugated nanoparticles, which is a bottleneck for their potential applications, was successfully performed by encapsulating them in the silica nanoparticles, surface of which was then functionalized by amine group. Three types of optically active nanoparticles were developed for potential applications in sensing, therapeutics and imaging.

  10. Strategies towards an optimized use of the shallow geothermal potential

    NASA Astrophysics Data System (ADS)

    Schelenz, S.; Firmbach, L.; Kalbacher, T.; Goerke, U.; Kolditz, O.; Dietrich, P.; Vienken, T.

    2013-12-01

    Thermal use of the shallow subsurface for heat generation, cooling and thermal energy storage is increasingly gaining importance in reconsideration of future energy supplies, e.g. in the course of German energy transition, with application shifting from isolated to intensive use. The planning and dimensioning of (geo-)thermal applications is strongly influenced by the availability of exploration data. Hence, reliable site-specific dimensioning of systems for the thermal use of the shallow subsurface will contribute to an increase in resource efficiency, cost reduction during installation and operation, as well as reduction of environmental impacts and prevention of resource over-exploitation. Despite large cumulative investments that are being made for the utilization of the shallow thermal potential, thermal energy is in many cases exploited without prior on-site exploration and investigation of the local geothermal potential, due to the lack of adequate and cost-efficient exploration techniques. We will present new strategies for an optimized utilization of urban thermal potential, showcased at a currently developed residential neighborhood with high demand for shallow geothermal applications, based on a) enhanced site characterization and b) simulation of different site specific application scenarios. For enhanced site characterization, surface geophysics and vertical high resolution direct push-profiling were combined for reliable determination of aquifer structure and aquifer parameterization. Based on the site characterization, different site specific geothermal application scenarios, including different system types and system configurations, were simulated using OpenGeoSys to guarantee an environmental and economic sustainable thermal use of the shallow subsurface.

  11. OCT for industrial applications

    NASA Astrophysics Data System (ADS)

    Song, Guiju; Harding, Kevin

    2012-11-01

    Optical coherence tomography (OCT), as an interferometric method, has been studied as a distance ranger. As a technology capable of producing high-resolution, depth-resolved images of biological tissue, OCT had been widely used for the application of ophthalmology and has been commercialized in the market today. Enlightened by the emerging research interest in biomedical domain, the applications of OCT in industrial inspection were rejuvenated by a few groups to explore its potential for characterizing new materials, imaging or inspecting industrial parts as a service solution[3]. Benefiting from novel photonics components and devices, the industrial application of the older concepts in OCT can be re-visited with respect to the unique performance and availability. Commercial OCT developers such as Michelson Diagnostics (MDL; Orpington, U.K.) and Thorlabs (Newton, NJ) are actively exploring the application of OCT to industrial applications and they have outlined meaningful path toward the metrology application in emerging industry[3]. In this chapter, we will introduce the fundamental concepts of OCT and discuss its current and potential industrial applications.

  12. The role of oxytocin in relationships between dogs and humans and potential applications for the treatment of separation anxiety in dogs.

    PubMed

    Thielke, Lauren E; Udell, Monique A R

    2017-02-01

    The hormone oxytocin plays an important role in attachment formation and bonding between humans and domestic dogs. Recent research has led to increased interest in potential applications for intranasal oxytocin to aid with the treatment of psychological disorders in humans. While a few studies have explored the effects of intranasally administered oxytocin on social cognition and social bonding in dogs, alternative applications have not yet been explored for the treatment of behavioural problems in this species. One potentially important application for intranasal oxytocin in dogs could be the treatment of separation anxiety, a common attachment disorder in dogs. Here we provide an overview of what is known about the role of oxytocin in the human-dog bond and canine separation anxiety, and discuss considerations for future research looking to integrate oxytocin into behavioural treatment based on recent findings from both the human and dog literature. © 2015 Cambridge Philosophical Society.

  13. A Learning Community Explores the Potential of Mobile Apps in Higher Education

    ERIC Educational Resources Information Center

    Van Duzer, Joan; Munoz, Kathy D.

    2013-01-01

    Faculty and staff are curious about the potential of applications for mobile devices and how they can be used to enhance learning, teaching, and productivity. However, the number of applications seems overwhelming and faculty and staff have limited time and money to consider possibilities. This poster outlines the results of a learning community…

  14. A study of the applicability/compatibility of inertial energy storage systems to future space missions

    NASA Technical Reports Server (NTRS)

    Weldon, W. F.

    1980-01-01

    The applicability/compatibility of inertial energy storage systems like the homopolar generator (HPG) and the compensated pulsed alternator (CPA) to future space missions is explored. Areas of CPA and HPG design requiring development for space applications are identified. The manner in which acceptance parameters of the CPA and HPG scale with operating parameters of the machines are explored and the types of electrical loads which are compatible with the CPA and HPG are examined. Potential applications including the magnetoplasmadynamic (MPD) thruster, pulsed data transmission, laser ranging, welding and electromagnetic space launch are discussed.

  15. The potential of the fresh-water fern Azolla in aquatic farming systems

    NASA Astrophysics Data System (ADS)

    Bijl, Peter K.; Werf, vd, Adrie; Schluepmann, Henriette; Reichart, Gert-Jan; Brouwer, Paul; Nierop, Klaas G. J.; Hellgardt, Klaus; Brinkhuis, Henk

    2014-05-01

    With aquatic farming systems a new avenue in agriculture is explored, in which the competition with conventional arable land is avoided. The aquatic, ubiquitous, floating fern Azolla is not yet widely explored as potential crop in such farming systems, despite its high potential because it grows in many natural systems under low-light intensities, has an enormous annual yield, and has special biomass qualities for applications in food, feed and specialty chemical industries. But, what makes Azolla particularly interesting as cost-effective crop is its capability to take up atmospheric nitrogen through symbiosis with nitrogen-fixing bacteria Anabaena azollae. This makes Azolla independent of nitrogen fertilization. In order to explore the potential of Azolla as a crop for a suite of applications, we have assembled a team of expertise: AZOFAST, consisting of agricultural engineers, plant physiologists, chemical engineers and organic chemists. Our growth experiments reveal high annual production yields with constant harvest. We are developing a germination and spore collecting/preservation protocol as a first step to domestication. Finally we have explored the biomass quality of different species of extant Azolla. We performed organic chemical analyses on lipid and tannin extracts, and quantified yields of specific compounds within these fractions. In our presentation we will present some of our results to show the potential of Azolla as a new, sustainable aquatic crop serving all kinds of industrial streams from protein feed to platform chemicals.

  16. Evaluation of Advanced Composite Structures Technologies for Application to NASA's Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.

    2008-01-01

    AS&M performed a broad assessment survey and study to establish the potential composite materials and structures applications and benefits to the Constellation Program Elements. Trade studies were performed on selected elements to determine the potential weight or performance payoff from use of composites. Weight predictions were made for liquid hydrogen and oxygen tanks, interstage cylindrical shell, lunar surface access module, ascent module liquid methane tank, and lunar surface manipulator. A key part of this study was the evaluation of 88 different composite technologies to establish their criticality to applications for the Constellation Program. The overall outcome of this study shows that composites are viable structural materials which offer from 20% to 40% weight savings for many of the structural components that make up the Major Elements of the Constellation Program. NASA investment in advancing composite technologies for space structural applications is an investment in America's Space Exploration Program.

  17. A Potential Role for smallsats and Cubesats in Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Carpenter, James; Fisackerly, Richard; Houdou, Bérengère; De Rosa, Diego; Schiemann, Jens D.; Walker, Roger; Zeppenfeldt, Frank

    2015-04-01

    The Moon is an important exploration destination for ESA, which is currently engaged in activities to access and exploit the Moon through developments in future human exploration systems and precursor robotic surface missions. However, recent major advancements in Smallsat and Cubesat technologies, and their application to fields such as Earth imaging and atmospheric science, has opened the possibility of utilising these smaller, lower cost platforms beyond LEO and potentially at the Moon. ESA is interested in understanding how emerging Smallsat & Cubesat instrument and platform technology could be applied to Lunar Exploration, particularly in the fields of technology demonstration and investigations which can be precursors to longer term l exploration activies. Lunar Cubesats can offer an means of access to the Moon, which complements larger ESA-led opportunities on international surface missions and via future human exploration systems. In this talk ESA will outline its current objectives in Lunar Exploration and highlight potential future opportunities for Smallsat and Cubesat platforms to play a role.

  18. Exploring a model-driven architecture (MDA) approach to health care information systems development.

    PubMed

    Raghupathi, Wullianallur; Umar, Amjad

    2008-05-01

    To explore the potential of the model-driven architecture (MDA) in health care information systems development. An MDA is conceptualized and developed for a health clinic system to track patient information. A prototype of the MDA is implemented using an advanced MDA tool. The UML provides the underlying modeling support in the form of the class diagram. The PIM to PSM transformation rules are applied to generate the prototype application from the model. The result of the research is a complete MDA methodology to developing health care information systems. Additional insights gained include development of transformation rules and documentation of the challenges in the application of MDA to health care. Design guidelines for future MDA applications are described. The model has the potential for generalizability. The overall approach supports limited interoperability and portability. The research demonstrates the applicability of the MDA approach to health care information systems development. When properly implemented, it has the potential to overcome the challenges of platform (vendor) dependency, lack of open standards, interoperability, portability, scalability, and the high cost of implementation.

  19. Remote Sensing Applications for Antrim Shale Fracture Characterization, Michigan Basin

    NASA Technical Reports Server (NTRS)

    Kuuskraa, Vello

    1997-01-01

    Advanced Research International (ARI) sent seven staff members to the 1997 International Coalbed Methane Symposium, held in Tuscaloosa, Alabama from May 12-17. ARI gave a short course on risk reduction strategies, including remote fracture detection, for coalbed methane exploration and development that was attended by about 25 coalbed methane industry professionals; and presented a paper entitled 'Optimizing coalbed methane cavity completion operations with the application of a new discrete element model.' We met with many potential clients and discussed our fracture detection services. China has vast coalbed methane resources, but is still highly dependent on coal-and wood-burning. This workshop, sponsored by the United Nations, was intended to help China develop its less-polluting energy reserves. ARI is successfully finding new applications for its fracture detection services. Coalbed methane exploration became an important market in this quarter, with the inception of a joint industry/government collaboration between ARI, Texaco and DOE to use remote fracture detection to identify areas with good potential for coalbed methane production in the Ferron Coal Trend of central Utah. Geothermal energy exploration is another emerging market for ARI, where fracture detection is applied to identify pathways for groundwater recharge, movement, and the locations of potential geothermal reservoirs. Ari continued work on two industry/government collaborations to demonstrate fracture detection to potential clients. Also completed the technical content layout for multimedia CD-ROM that describes our remote fracture detection services.

  20. Virtual Reality and Its Potential Application in Education and Training.

    ERIC Educational Resources Information Center

    Milheim, William D.

    1995-01-01

    An overview is provided of current trends in virtual reality research and development, including discussion of hardware, types of virtual reality, and potential problems with virtual reality. Implications for education and training are explored. (Author/JKP)

  1. Air cushion landing gear applications study

    NASA Technical Reports Server (NTRS)

    Earl, T. D.

    1979-01-01

    A series of air cushion landing gear (ACLG) applications was studied and potential benefits analyzed in order to identify the most attractive of these. The selected applications are new integrated designs (not retrofits) and employ a modified design approach with improved characteristics and performance. To aid the study, a survey of potential users was made. Applications were evaluated in the light of comments received. A technology scenario is developed, with discussion of problem areas, current technology level and future needs. Feasible development timetables are suggested. It is concluded that near-term development of small-size ACLG trunks, exploration of flight effects and braking are key items. The most attractive applications are amphibious with very large cargo aircraft and small general aviation having the greatest potential.

  2. Technology Needs to Support Future Mars Exploration

    NASA Technical Reports Server (NTRS)

    Nilsen, Erik N.; Baker, John; Lillard, Randolph P.

    2013-01-01

    The Mars Program Planning Group (MPPG) under the direction of Dr. Orlando Figueroa, was chartered to develop options for a program-level architecture for robotic exploration of Mars consistent with the objective to send humans to Mars in the 2030's. Scientific pathways were defined for future exploration, and multiple architectural options were developed that meet current science goals and support the future human exploration objectives. Integral to the process was the identification of critical technologies which enable the future scientific and human exploration goals. This paper describes the process for technology capabilities identification and examines the critical capability needs identified in the MPPG process. Several critical enabling technologies that have been identified to support the robotic exploration goals and with potential feedforward application to human exploration goals. Potential roadmaps for the development and validation of these technologies are discussed, including options for subscale technology demonstrations of future human exploration technologies on robotic missions.

  3. Vision for Micro Technology Space Missions. Chapter 2

    NASA Technical Reports Server (NTRS)

    Dennehy, Neil

    2005-01-01

    It is exciting to contemplate the various space mission applications that Micro Electro Mechanical Systems (MEMS) technology could enable in the next 10-20 years. The primary objective of this chapter is to both stimulate ideas for MEMS technology infusion on future NASA space missions and to spur adoption of the MEMS technology in the minds of mission designers. This chapter is also intended to inform non-space oriented MEMS technologists, researchers and decision makers about the rich potential application set that future NASA Science and Exploration missions will provide. The motivation for this chapter is therefore to lead the reader down a path to identify and it is exciting to contemplate the various space mission applications that Micro Electro Mechanical Systems (MEMS) technology could enable in the next 10-20 years. The primary objective of this chapter is to both stimulate ideas for MEMS technology infusion on future NASA space missions and to spur adoption of the MEMS technology in the minds of mission designers. This chapter is also intended to inform non-space oriented MEMS technologists, researchers and decision makers about the rich potential application set that future NASA Science and Exploration missions will provide. The motivation for this chapter is therefore to lead the reader down a path to identify and consider potential long-term, perhaps disruptive or revolutionary, impacts that MEMS technology may have for future civilian space applications. A general discussion of the potential for MEMS in space applications is followed by a brief showcasing of a few selected examples of recent MEMS technology developments for future space missions. Using these recent developments as a point of departure, a vision is then presented of several areas where MEMS technology might eventually be exploited in future Science and Exploration mission applications. Lastly, as a stimulus for future research and development, this chapter summarizes a set of barriers to progress, design challenges and key issues that must be overcome in order for the community to move on, from the current nascent phase of developing and infusing MEMS technology into space missions, in order to achieve its full future potential.

  4. Exploring Pacific Seamounts through Telepresence Mapping on the NOAA Ship Okeanos Explorer

    NASA Astrophysics Data System (ADS)

    Lobecker, E.; Malik, M.; Sowers, D.; Kennedy, B. R.

    2016-12-01

    Telepresence utilizes modern computer networks and a high bandwidth satellite connection to enable remote users to participate virtually in ocean research and exploration cruises. NOAA's Office of Ocean Exploration and Research (OER) has been leveraging telepresence capabilities since the early 2000s. Through telepresence, remote users have provided support for operations planning and execution, troubleshooting hardware and software, and data interpretation during exploratory ocean mapping and remotely operated vehicle missions conducted by OER. The potential for this technology's application to immersive data acquisition and processing during mapping missions, however, has not yet been fully realized. We report the results of the application of telepresence to an 18-day 24 hour / day seafloor mapping expedition with the NOAA Ship Okeanos Explorer. The mapping team was split between shipboard and shore-based mission team members based at the Exploration Command Center at the University of New Hampshire. This cruise represented the third dedicated mapping cruise in a multi-year NOAA Campaign to Address the Pacific monument Science, Technology, and Ocean Needs (CAPSTONE). Cruise objectives included mapping several previously unmapped seamounts in the Wake Atoll Unit of the recently expanded Pacific Remote Islands Marine National Monument, and mapping of prominent seamount, ridge, and fracture zone features during transits. We discuss (1) expanded shore-based data processing of multiple sonar data streams leading to enhanced, rapid, initial site characterization, (2) remote access control of shipboard sonar data acquisition and processing computers, and (3) potential for broadening multidisciplinary applications of ocean mapping cruises including outreach, education, and communications efforts focused on expanding societal cognition and benefits of ocean exploration.

  5. Iodine Propulsion Advantages for Low Cost Mission Applications and the Iodine Satellite (ISAT) Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Schumacher, Daniel M.

    2015-01-01

    The NASA Marshall Space Flight Center Science and Technology Office is continuously exploring technology options to increase performance or reduce cost and risk to future NASA missions including science and exploration. Electric propulsion is a prevalent technology known to reduce mission costs by reduction in launch costs and spacecraft mass through increased post launch propulsion performance. The exploration of alternative propellants for electric propulsion continues to be of interest to the community. Iodine testing has demonstrated comparable performance to xenon. However, iodine has a higher storage density resulting in higher ?V capability for volume constrained systems. Iodine's unique properties also allow for unpressurized storage yet sublimation with minimal power requirements to produce required gas flow rates. These characteristics make iodine an ideal propellant for secondary spacecraft. A range of mission have been evaluated with a focus on low-cost applications. Results highlight the potential for significant cost reduction over state of the art. Based on the potential, NASA has been developing the iodine Satellite for a near-term iodine Hall propulsion technology demonstration. Mission applications and progress of the iodine Satellite project are presented.

  6. Multidimensional Approach to Detecting Creative Potential in Managers

    ERIC Educational Resources Information Center

    Caroff, Xavier; Lubart, Todd

    2012-01-01

    Creativity is increasingly recognized as a key component to success in the workplace. This article explores the detection of creative potential in managers. In a first part, creative potential is defined and a multivariate approach concerning the psychological resources for creativity is presented. Then, in a second part, an application of this…

  7. Remote sensing in hydrology: A survey of applications with selected bibliography and abstracts

    NASA Technical Reports Server (NTRS)

    Sers, S. W. (Compiler)

    1971-01-01

    Remote infrared sensing as a water exploration technique is demonstrated. Various applications are described, demonstrating that infrared sensors can locate aquifers, geothermal water, water trapped by faults, springs and water in desert regions. The potentiality of airborne IR sensors as a water prospecting tool is considered. Also included is a selected bibliography with abstracts concentrating on those publications which will better acquaint the hydrologist with investigations using thermal remote sensors as applied to water exploration.

  8. Applications Explorer Missions (AEM): Mission planners handbook

    NASA Technical Reports Server (NTRS)

    Smith, S. R. (Editor)

    1974-01-01

    The Applications Explorer Missions (AEM) Program is a planned series of space applications missions whose purpose is to perform various tasks that require a low cost, quick reaction, small spacecraft in a dedicated orbit. The Heat Capacity Mapping Mission (HCMM) is the first mission of this series. The spacecraft described in this document was conceived to support a variety of applications instruments and the HCMM instrument in particular. The maximum use of commonality has been achieved. That is, all of the subsystems employed are taken directly or modified from other programs such as IUE, IMP, RAE, and Nimbus. The result is a small versatile spacecraft. The purpose of this document, the AEM Mission Planners Handbook (AEM/MPH) is to describe the spacecraft and its capabilities in general and the HCMM in particular. This document will also serve as a guide for potential users as to the capabilities of the AEM spacecraft and its achievable orbits. It should enable each potential user to determine the suitability of the AEM concept to his mission.

  9. A Survey of the Rapidly Emerging Field of Nanotechnology: Potential Applications for Scientific Instruments and Technologies for Atmospheric Entry Probes

    NASA Technical Reports Server (NTRS)

    Meyyappan, M.; Arnold, J. O.

    2005-01-01

    The field of Nanotechnology is well funded worldwide and innovations applicable to Solar System Exploration are emerging much more rapidly than thought possible just a few years ago. This presentation will survey recent innovations from nanotechnololgy with a focus on novel applications to atmospheric entry science and probe technology, in a fashion similar to that presented by Arnold and Venkatapathy at the previous workshop forum at Lisbon Portugal, October 6-9, 2003. Nanotechnology is a rapidly emerging field that builds systems, devices and materials from the bottom up, atom by atom, and in so doing provides them with novel and remarkable macro-scale performance. This technology has the potential to revolutionize space exploration by reducing mass and simultaneously increasing capability. Thermal, Radiation, Impact Protective Shields: Atmospheric probes and humans on long duration deep space missions involved in Solar System Exploration must safely endure 3 significant hazards: (i) atmospheric entry; (ii) radiation; and (iii) micrometeorite or debris impact. Nanostructured materials could be developed to address all three hazards with a single protective shield, which would involve much less mass than a traditional approach. The concept can be ready in time for incorporation into NASA s Crew Exploration Vehicle, and possible entry probes to fly on the Jupiter Icy Moons

  10. Exploring the potential of laser capture microdissection technology in integrated oral biosciences.

    PubMed

    Thennavan, A; Sharma, M; Chandrashekar, C; Hunter, K; Radhakrishnan, R

    2017-09-01

    Laser capture microdissection (LCM) is a high-end research and diagnostic technology that helps in obtaining pure cell populations for the purpose of cell- or lesion-specific genomic and proteomic analysis. Literature search on the application of LCM in oral tissues was made through PubMed. There is ample evidence to substantiate the utility of LCM in understanding the underlying molecular mechanism involving an array of oral physiological and pathological processes, including odontogenesis, taste perception, eruptive tooth movement, oral microbes, and cancers of the mouth and jaw tumors. This review is aimed at exploring the potential application of LCM in oral tissues as a high-throughput tool for integrated oral sciences. The indispensable application of LCM in the construction of lesion-specific genomic libraries with emphasis on some of the novel molecular markers thus discovered is also highlighted. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Biomedical applications of nanodiamonds in imaging and therapy.

    PubMed

    Perevedentseva, Elena; Lin, Yu-Chung; Jani, Mona; Cheng, Chia-Liang

    2013-12-01

    Nanodiamonds have attracted remarkable scientific attention for bioimaging and therapeutic applications owing to their low toxicity with many cell lines, convenient surface properties and stable fluorescence without photobleaching. Newer techniques are being applied to enhance fluorescence. Interest is also growing in exploring the possibilities for modifying the nanodiamond surface and functionalities by attaching various biomolecules of interest for interaction with the targets. The potential of Raman spectroscopy and fluorescence properties of nanodiamonds has been explored for bioimaging and drug delivery tracing. The interest in nanodiamonds' biological/medical application appears to be continuing with enhanced focus. In this review an attempt is made to capture the scope, spirit and recent developments in the field of nanodiamonds for biomedical applications.

  12. A connectionist model for dynamic control

    NASA Technical Reports Server (NTRS)

    Whitfield, Kevin C.; Goodall, Sharon M.; Reggia, James A.

    1989-01-01

    The application of a connectionist modeling method known as competition-based spreading activation to a camera tracking task is described. The potential is explored for automation of control and planning applications using connectionist technology. The emphasis is on applications suitable for use in the NASA Space Station and in related space activities. The results are quite general and could be applicable to control systems in general.

  13. Exploring long-wave infrared transmitting materials with AxBy form: First-principles gene-like studies.

    PubMed

    Du, Jia-Ren; Chen, Nian-Ke; Li, Xian-Bin; Xie, Sheng-Yi; Tian, Wei Quan; Wang, Xian-Yin; Tu, Hai-Ling; Sun, Hong-Bo

    2016-02-23

    Long-wave infrared (8-12 μm) transmitting materials play critical roles in space science and electronic science. However, the paradox between their mechanical strength and infrared transmitting performance seriously prohibits their applications in harsh external environment. From the experimental view, searching a good window material compatible with both properties is a vast trail-and-error engineering project, which is not readily achieved efficiently. In this work, we propose a very simple and efficient method to explore potential infrared window materials with suitable mechanical property by first-principles gene-like searching. Two hundred and fifty-three potential materials are evaluated to find their bulk modulus (for mechanical performance) and phonon vibrational frequency (for optical performance). Seven new potential candidates are selected, namely TiSe, TiS, MgS, CdF2, HgF2, CdO, and SrO. Especially, the performances of TiS and CdF2 can be comparable to that of the most popular commercial ZnS at high temperature. Finally, we propose possible ranges of infrared transmission for halogen, chalcogen and nitrogen compounds respectively to guide further exploration. The present strategy to explore IR window materials can significantly speed up the new development progress. The same idea can be used for other material rapid searching towards special functions and applications.

  14. Smart Fabrics Technology Development

    NASA Technical Reports Server (NTRS)

    Simon, Cory; Potter, Elliott; Potter, Elliott; McCabe, Mary; Baggerman, Clint

    2010-01-01

    Advances in Smart Fabrics technology are enabling an exciting array of new applications for NASA exploration missions, the biomedical community, and consumer electronics. This report summarizes the findings of a brief investigation into the state of the art and potential applications of smart fabrics to address challenges in human spaceflight.

  15. Ethical Considerations and Planetary Protection for Future Space Exploration - Starting with the Basics

    NASA Astrophysics Data System (ADS)

    Race, Margaret

    2012-07-01

    As COSPAR scientists deliberate what types of frameworks and policy approaches may be applicable to future activities by various sectors in space exploration, it also needs to consider the challenging question of what ethical values and foundations should be used in dealing with life, objects and activities in outer space. A 2010 COSPAR Workshop Report on Ethical Considerations for Planetary Protection in Space Exploration recommended that it is appropriate to maintain the existing PP policy aimed at scientific concerns even as we begin to explore various practical approaches to future contamination avoidance policies. It is also appropriate to examine in parallel the ethical considerations applicable to potential indigenous extraterrestrial life, non-living extraterrestrial features and environments, and planned uses and activities involving diverse life from Earth. Since numerous sectors have begun to propose activities raising varied ethical concerns (e.g., protection and management on the moon, strip mining, space synthetic biology, space code of conduct, and commercial space transport), it is timely to initiate serious international discussions about the appropriate ethical foundations and questions applicable to future space exploration. Plans are underway for convening interdisciplinary work groups to explore and deliberate on the values (e.g., intrinsic and instrumental) and ethical foundations that are appropriate for use in deliberations involving potential indigenous extraterrestrial life and the different classes of target objects and environments in our solar system. More than ever, information on bioethics, environmental ethics and geoethics will provide helpful guidance and foundational approaches of relevance to future policy deliberations that seek to go beyond science protection per se.

  16. Evaluation of a natural speech based informational inquiry system as a potential means to increase transit utilization.

    DOT National Transportation Integrated Search

    2013-05-01

    This project proposed to explore the potential of a user friendly, natural speech based : information inquiry application as one means of increasing public transit utilization. It suggested : that a key challenge to expanding transit ridership isto e...

  17. Collaborative Documentation in Mental Health: Applications to Rehabilitation Counseling

    ERIC Educational Resources Information Center

    Sheehan, Lindsay; Lewicki, Todd

    2016-01-01

    Purpose: In this article, the emerging practice of collaborative documentation (CD) in community mental health care and its applications to rehabilitation counseling were explored. CD has the potential to promote greater client empowerment, clinical transparency, and documentation efficiency and quality; however, the CD process is not well…

  18. Application of Solar-Electric Propulsion to Robotic and Human Missions in Near-Earth Space

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.; Dankanich, John

    2011-01-01

    Interest in applications of solar electric propulsion (SEP) is increasing. Application of SEP technology is favored when: (1) the mission is compatible with low-thrust propulsion, (2) the mission needs high total delta V such that chemical propulsion is disadvantaged; and (3) performance enhancement is needed. If all such opportunities for future missions are considered, many uses of SEP are likely. Representative missions are surveyed and several SEP applications selected for analysis, including orbit raising, lunar science, lunar exploration, lunar exploitation, planetary science, and planetary exploration. These missions span SEP power range from 10s of kWe to several MWe. Modes of use and benefits are described, and potential SEP evolution is discussed.

  19. Application of Solar-Electric Propulsion to Robotic and Human Missions in Near-Earth Space

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.; Dankanich, John

    2006-01-01

    Interest in applications of solar electric propulsion (SEP) is increasing. Application of SEP technology is favored when: (1) the mission is compatible with low-thrust propulsion, (2) the mission needs high total delta V such that chemical propulsion is disadvantaged; and (3) performance enhancement is needed. If all such opportunities for future missions are considered, many uses of SEP are likely. Representative missions are surveyed and several SEP applications selected for analysis, including orbit raising, lunar science, lunar exploration, lunar exploitation, planetary science, and planetary exploration. These missions span SEP power range from 10s of kWe to several MWe. Modes of use and benefits are described, and potential SEP evolution is discussed.

  20. Exploring the Potential of WAP Technology in Online Discussion

    ERIC Educational Resources Information Center

    Lee, Chwee Beng

    2004-01-01

    The intent of this study is to explore how WAP (wireless application protocol) technology mediates online discussions. The focus of this research is on the implications of WAP technology for online discussions, and the types of discussion topics that are most suitable for WAP-based discussions and the finding of the combination of WAP- and…

  1. Bio-Aerosol Detection Using Mass Spectrometry: Public Health Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludvigson, Laura D.

    2004-01-01

    I recently spent a summer as an intern at the Lawrence Livermore National Laboratory. I worked on a project involving the real-time, reagentless, single cell detection of aerosolized pathogens using a novel mass spectrometry approach called Bio-Aerosol Mass Spectrometry (BAMS). Based upon preliminary results showing the differentiation capabilities of BAMS, I would like to explore the development and use of this novel detection system in the context of both environmental and clinical sample pathogen detection. I would also like to explore the broader public health applications that a system such as BAMS might have in terms of infectious disease preventionmore » and control. In order to appreciate the potential of this instrument, I will demonstrate the need for better pathogen detection methods, and outline the instrumentation, data analysis and preliminary results that lead me toward a desire to explore this technology further. I will also discuss potential experiments for the future along with possible problems that may be encountered along the way.« less

  2. Emotional System for Military Target Identification

    DTIC Science & Technology

    2009-10-01

    algorithm [23], and used it to solve a facial recognition problem. In other works [24,25], we explored the potential of using emotional neural...other application areas, such as security ( facial recognition ) and medical (blood cell identification), can be also efficiently used in military...Application of an emotional neural network to facial recognition . Neural Computing and Applications, 18(4), 309-320. [25] Khashman, A. (2009). Blood cell

  3. Designing Applications for Physics Learning: Facilitating High School Students' Conceptual Understanding by Using Tablet PCs

    ERIC Educational Resources Information Center

    Wang, June-Yi; Wu, Hsin-Kai; Chien, Sung-Pei; Hwang, Fu-Kwun; Hsu, Ying-Shao

    2015-01-01

    So far relatively little research in education has explored the pedagogical and learning potentials of applications (Apps) on tablet PCs (TPCs). Drawing upon research on learning technologies and taking an embodied perspective, this study first identified educational functionalities of TPCs and generated guidelines to design educational Apps for…

  4. Application of the Concepts of Individualism and Collectivism to Intercultural Training.

    ERIC Educational Resources Information Center

    Deal, Christopher

    The purpose of this paper is to explore the potential applications of the individualism-collectivism (I-C) construct to intercultural training. Drawing on experience in Taiwan, especially on the author's training experience in Taipei, this theory was found to be useful in several aspects of training, including training objectives, program design,…

  5. UWB Technology and Applications on Space Exploration

    NASA Technical Reports Server (NTRS)

    Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    Ultra-wideband (UWB), also known as impulse or carrier-free radio technology, is one promising new technology. In February 2002, the Federal Communications Commission (FCC) approved the deployment of this technology. It is increasingly recognized that UWB technology holds great potential to provide significant benefits in many terrestrial and space applications such as precise positioning/tracking and high data rate mobile wireless communications. This talk presents an introduction to UWB technology and some applications on space exploration. UWB is characterized by several uniquely attractive features, such as low impact on other RF systems due to its extremely low power spectral densities, immunity to interference from narrow band RF systems due to its ultra-wide bandwidth, multipath immunity to fading due to ample multipath diversity, capable of precise positioning due to fine time resolution, capable of high data rate multi-channel performance. The related FCC regulations, IEEE standardization efforts and industry activities also will be addressed in this talk. For space applications, some projects currently under development at NASA Johnson Space Center will be introduced. These include the UWB integrated communication and tracking system for Lunar/Mars rover and astronauts, UWB-RFID ISS inventory tracking, and UWB-TDOA close-in high resolution tracking for potential applications on robonaut.

  6. Exploring the Nature of the H[subscript 2] Bond. 1. Using Spreadsheet Calculations to Examine the Valence Bond and Molecular Orbital Methods

    ERIC Educational Resources Information Center

    Halpern, Arthur M.; Glendening, Eric D.

    2013-01-01

    A three-part project for students in physical chemistry, computational chemistry, or independent study is described in which they explore applications of valence bond (VB) and molecular orbital-configuration interaction (MO-CI) treatments of H[subscript 2]. Using a scientific spreadsheet, students construct potential-energy (PE) curves for several…

  7. Exploring plasmonic nanoantenna arrays as a platform for biosensing

    NASA Astrophysics Data System (ADS)

    Toussaint, Kimani C.

    2017-08-01

    In recent years, the PROBE Lab at the University of Illinois at Urbana-Champaign has made significant developments in plasmonic nanoantenna technology by more closely exploring the rich parameter space associated with these structures including geometry and material composition, as well as the optical excitation conditions. Indeed, plasmonic nanoantennas are attractive for a variety of potential applications in nanotechnology, biology, and photonics due to their ability to tightly confine and strongly enhance optical fields. This talk will discuss our work with arrays of Au bowtie nanoantennas (BNAs) with an emphasis on how their field enhancement properties could be harnessed for particle manipulation and sensing. We also present our work with pillar-supported BNAs (p-BNAs) and discuss their potential for sensing applications, particularly when adapted for response in the near-IR. The talk will conclude with a brief discussion of some of the future work pursued by the PROBE lab, including adapting BNAs for lab-on-a-chip applications.

  8. Potential Applications for Radioisotope Power Systems in Support of Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.; Colozza, Anthony J.; Schmitz, Paul C.

    2013-01-01

    Radioisotope power systems (RPS) for space applications have powered over 27 U.S. space systems, starting with Transit 4A and 4B in 1961, and more recently with the successful landing of the Mars Science Laboratory rover Curiosity in August 2012. RPS enable missions with destinations far from the Sun with faint solar flux, on planetary surfaces with dense or dusty atmospheres, and at places with long eclipse periods where solar array sizes and energy storage mass become impractical. RPS could also provide an enabling capability in support of human exploration activities. It is envisioned that with the higher power needs of most human mission concepts, a high efficiency thermal-to-electric technology would be required such as the Advanced Stirling Radioisotope generator (ASRG). The ASRG should be capable of a four-fold improvement in efficiency over traditional thermoelectric RPS. While it may be impractical to use RPS as a main power source, many other applications could be considered, such as crewed pressurized rovers, in-situ resource production of propellants, back-up habitat power, drilling, any mobile or remote activity from the main base habitat, etc. This paper will identify potential applications and provide concepts that could be a practical extension of the current ASRG design in providing for robust and flexible use of RPS on human exploration missions.

  9. Pervasive Learning Games: Explorations of Hybrid Educational Gamescapes

    ERIC Educational Resources Information Center

    Thomas, Siobhan

    2006-01-01

    Pervasive gaming has tremendous potential as a learning tool and represents an interesting development in the field of video games and education. The literature surrounding video games and education is vast: For more than 20 years, educationalists have been discussing the potential that exists for the application of video games to learning.…

  10. Potential of plant proteins for medical applications.

    PubMed

    Reddy, Narendra; Yang, Yiqi

    2011-10-01

    Various natural and synthetic polymers are being explored to develop biomaterials for tissue engineering and drug delivery. Although proteins are preferable over carbohydrates and synthetic polymers, biomaterials developed from proteins lack the mechanical properties and/or biocompatibilities required for medical applications. Plant proteins are widely available, have low potential to be immunogenic and can be made into fibers, films, hydrogels and micro- and nano-particles for medical applications. Studies, mostly with zein, have demonstrated the potential of using plant proteins for tissue engineering and drug delivery. Although other plant proteins such as wheat gluten and soyproteins have also shown biocompatibility using in vitro studies, fabricating biomaterials such as nano-fibers and nano-particles from soy and wheat proteins offers considerable challenges. Copyright © 2011. Published by Elsevier Ltd.

  11. Benefits of Using a Mars Forward Strategy for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Mulqueen, Jack; Griffin, Brand; Smitherman, David; Maples, Dauphne

    2009-01-01

    This paper identifies potential risk reduction, cost savings and programmatic procurement benefits of a Mars Forward Lunar Surface System architecture that provides commonality or evolutionary development paths for lunar surface system elements applicable to Mars surface systems. The objective of this paper is to identify the potential benefits for incorporating a Mars Forward development strategy into the planned Project Constellation Lunar Surface System Architecture. The benefits include cost savings, technology readiness, and design validation of systems that would be applicable to lunar and Mars surface systems. The paper presents a survey of previous lunar and Mars surface systems design concepts and provides an assessment of previous conclusions concerning those systems in light of the current Project Constellation Exploration Architectures. The operational requirements for current Project Constellation lunar and Mars surface system elements are compared and evaluated to identify the potential risk reduction strategies that build on lunar surface systems to reduce the technical and programmatic risks for Mars exploration. Risk reduction for rapidly evolving technologies is achieved through systematic evolution of technologies and components based on Moore's Law superimposed on the typical NASA systems engineering project development "V-cycle" described in NASA NPR 7120.5. Risk reduction for established or slowly evolving technologies is achieved through a process called the Mars-Ready Platform strategy in which incremental improvements lead from the initial lunar surface system components to Mars-Ready technologies. The potential programmatic benefits of the Mars Forward strategy are provided in terms of the transition from the lunar exploration campaign to the Mars exploration campaign. By utilizing a sequential combined procurement strategy for lunar and Mars exploration surface systems, the overall budget wedges for exploration systems are reduced and the costly technological development gap between the lunar and Mars programs can be eliminated. This provides a sustained level of technological competitiveness as well as maintaining a stable engineering and manufacturing capability throughout the entire duration of Project Constellation.

  12. Manufacture and Drug Delivery Applications of Silk Nanoparticles.

    PubMed

    Wongpinyochit, Thidarat; Johnston, Blair F; Seib, F Philipp

    2016-10-08

    Silk is a promising biopolymer for biomedical and pharmaceutical applications due to its outstanding mechanical properties, biocompatibility and biodegradability, as well its ability to protect and subsequently release its payload in response to a trigger. While silk can be formulated into various material formats, silk nanoparticles are emerging as promising drug delivery systems. Therefore, this article covers the procedures for reverse engineering silk cocoons to yield a regenerated silk solution that can be used to generate stable silk nanoparticles. These nanoparticles are subsequently characterized, drug loaded and explored as a potential anticancer drug delivery system. Briefly, silk cocoons are reverse engineered first by degumming the cocoons, followed by silk dissolution and clean up, to yield an aqueous silk solution. Next, the regenerated silk solution is subjected to nanoprecipitation to yield silk nanoparticles - a simple but powerful method that generates uniform nanoparticles. The silk nanoparticles are characterized according to their size, zeta potential, morphology and stability in aqueous media, as well as their ability to entrap a chemotherapeutic payload and kill human breast cancer cells. Overall, the described methodology yields uniform silk nanoparticles that can be readily explored for a myriad of applications, including their use as a potential nanomedicine.

  13. Glass and Glass-Ceramic Materials from Simulated Composition of Lunar and Martian Soils: Selected Properties and Potential Applications

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.

    2005-01-01

    In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.

  14. Exploiting Dark Information Resources to Create New Value Added Services to Study Earth Science Phenomena

    NASA Technical Reports Server (NTRS)

    Ramachandran, Rahul; Maskey, Manil; Li, Xiang; Bugbee, Kaylin

    2017-01-01

    This paper presents two research applications exploiting unused metadata resources in novel ways to aid data discovery and exploration capabilities. The results based on the experiments are encouraging and each application has the potential to serve as a useful standalone component or service in a data system. There were also some interesting lessons learned while designing the two applications and these are presented next.

  15. Exploring the Potential of Smartphones and Tablets for Performance Support in Food Chemistry Laboratory Classes

    ERIC Educational Resources Information Center

    van der Kolk, Koos; Hartog, Rob; Beldman, Gerrit; Gruppen, Harry

    2013-01-01

    Increasingly, mobile applications appear on the market that can support students in chemistry laboratory classes. In a multiple app-supported laboratory, each of these applications covers one use-case. In practice, this leads to situations in which information is scattered over different screens and written materials. Such a multiple app-supported…

  16. Magnetized jet creation using a ring laser and applications

    NASA Astrophysics Data System (ADS)

    Liang, Edison; Gao, Ian; Lu, Yingchao; Ji, Hantao; Follett, Russ; Froula, Dustin; Tzeferacos, Petros; Lamb, Donald; Bickel, Andrew; Sio, Hong; Li, Chi Kiang; Petrasso, Richard; Wei, Mingsheng; Fu, Wen; Han, Lily

    2017-10-01

    We have recently demonstrated a new robust platform of magnetized jet creation using 20 OMEGA beams to form a hollow ring. We will present the latest experimental results and their theoretical interpretation, and explore potential applications to laboratory astrophysics, fundamental plasma physics and other areas. We will also discuss the scaling of this platform to future NIF experiments.

  17. Mindfulness-Based Approaches and Their Potential for Educational Psychology Practice

    ERIC Educational Resources Information Center

    Davis, Timothy Sahaja

    2012-01-01

    Research has been carried out on the application of "mindfulness" to a number of different populations in varying contexts, some of which traverse the field of educational psychology. This discussion paper explores what is understood as mindfulness and outlines the breadth of its application. As well as more extensive research into the use of…

  18. From POEM to POET: Applications and perspectives for submucosal tunnel endoscopy.

    PubMed

    Chiu, Philip W Y; Inoue, Haruhiro; Rösch, Thomas

    2016-12-01

    Recent advances in submucosal endoscopy have unlocked a new horizon for potential development in diagnostic and therapeutic endoscopy. Increasing evidence has demonstrated that peroral endoscopic myotomy (POEM) is not only clinically feasible and safe, but also has excellent results in symptomatic relief of achalasia. The success of submucosal endoscopy in performance of tumor resection has confirmed the potential of this new area in diagnostic and therapeutic endoscopy. This article reviews the current applications and evidence, from POEM to peroral endoscopic tunnel resection (POET), while exploring the possible future clinical applications in this field. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Developments in laser Doppler blood perfusion monitoring

    NASA Astrophysics Data System (ADS)

    Leahy, Martin J.; de Mul, Frits F. M.; Nilsson, Gert E.; Maniewski, Roman; Liebert, Adam

    2003-03-01

    This paper reviews the development and use of laser Doppler perfusion monitors and imagers. Despite their great success and almost universal applicability in microcirculation research, they have had great difficulty in converting to widespread clinical application. The enormous interest in microvascular blood perfusion coupled with the 'ease of use' of the technique has led to 2000+ publications citing its use. However, useful results can only be achieved with an understanding of the basic principles of the instrumentation and its application in the various clinical disciplines. The basic technical background is explored and definitions of blood perfusion and laser Doppler perfusion are established. The calibration method is then described together with potential routes to standardisation. A guide to the limitations in application of the technique gives the user a clear indication of what can be achieved in new studies as well as possible inadequacy in some published investigations. Finally some clinical applications have found acceptability and these will be explored.

  20. Exploiting the Potential of CD-ROM Databases: Staff Induction at the University of East Anglia.

    ERIC Educational Resources Information Center

    Guillot, Marie-Noelle; Kenning, Marie-Madeleine

    1995-01-01

    Overviews a project exploring the possibility of using CD-ROM applications and the design of exploratory didactic materials to introduce academic staff to the field of computer-assisted instruction. The project heightened the staff's awareness of electronic resources and their potential as research, teaching, and learning aids, with particular…

  1. Knowledge Support and Automation for Performance Analysis with PerfExplorer 2.0

    DOE PAGES

    Huck, Kevin A.; Malony, Allen D.; Shende, Sameer; ...

    2008-01-01

    The integration of scalable performance analysis in parallel development tools is difficult. The potential size of data sets and the need to compare results from multiple experiments presents a challenge to manage and process the information. Simply to characterize the performance of parallel applications running on potentially hundreds of thousands of processor cores requires new scalable analysis techniques. Furthermore, many exploratory analysis processes are repeatable and could be automated, but are now implemented as manual procedures. In this paper, we will discuss the current version of PerfExplorer, a performance analysis framework which provides dimension reduction, clustering and correlation analysis ofmore » individual trails of large dimensions, and can perform relative performance analysis between multiple application executions. PerfExplorer analysis processes can be captured in the form of Python scripts, automating what would otherwise be time-consuming tasks. We will give examples of large-scale analysis results, and discuss the future development of the framework, including the encoding and processing of expert performance rules, and the increasing use of performance metadata.« less

  2. Chitosan Biomaterials for Current and Potential Dental Applications

    PubMed Central

    Husain, Shehriar; Al-Samadani, Khalid H.; Najeeb, Shariq; Zafar, Muhammad S.; Khurshid, Zohaib; Zohaib, Sana; Qasim, Saad B.

    2017-01-01

    Chitosan (CHS) is a very versatile natural biomaterial that has been explored for a range of bio-dental applications. CHS has numerous favourable properties such as biocompatibility, hydrophilicity, biodegradability, and a broad antibacterial spectrum (covering gram-negative and gram-positive bacteria as well as fungi). In addition, the molecular structure boasts reactive functional groups that provide numerous reaction sites and opportunities for forging electrochemical relationships at the cellular and molecular levels. The unique properties of CHS have attracted materials scientists around the globe to explore it for bio-dental applications. This review aims to highlight and discuss the hype around the development of novel chitosan biomaterials. Utilizing chitosan as a critical additive for the modification and improvement of existing dental materials has also been discussed. PMID:28772963

  3. Bacteriocins: Recent Trends and Potential Applications.

    PubMed

    Bali, Vandana; Panesar, Parmjit S; Bera, Manab B; Kennedy, John F

    2016-01-01

    In the modern era, there is great need for food preservation in both developing and developed countries due to increasing demand for extending shelf life and prevention of spoilage of food material. With the emergence of new pathogens and ability of micro-organisms to undergo changes, exploration of new avenues for the food preservation has gained importance. Moreover, awareness among consumers regarding harmful effects of chemical preservatives has been increased. Globally, altogether there is increasing demand by consumers for chemical-free and minimal processed food products. Potential of bacteriocin and its application in reducing the microbiological spoilages and in the preservation of food is long been recognized. Bacteriocins are normally specific to closely related species without disrupting the growth of other microbial populations. A number of applications of bacteriocin have been reported for humans, live stock, aquaculture etc. This review is focused on recent trends and applications of bacteriocins in different areas in addition to their biopreservative potential.

  4. Human eye haptics-based multimedia.

    PubMed

    Velandia, David; Uribe-Quevedo, Alvaro; Perez-Gutierrez, Byron

    2014-01-01

    Immersive and interactive multimedia applications offer complementary study tools in anatomy as users can explore 3D models while obtaining information about the organ, tissue or part being explored. Haptics increases the sense of interaction with virtual objects improving user experience in a more realistic manner. Common eye studying tools are books, illustrations, assembly models, and more recently these are being complemented with mobile apps whose 3D capabilities, computing power and customers are increasing. The goal of this project is to develop a complementary eye anatomy and pathology study tool using deformable models within a multimedia application, offering the students the opportunity for exploring the eye from up close and within with relevant information. Validation of the tool provided feedback on the potential of the development, along with suggestions on improving haptic feedback and navigation.

  5. Adaptive Sensing of Time Series with Application to Remote Exploration

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Cabrol, Nathalie A.; Furlong, Michael; Hardgrove, Craig; Low, Bryan K. H.; Moersch, Jeffrey; Wettergreen, David

    2013-01-01

    We address the problem of adaptive informationoptimal data collection in time series. Here a remote sensor or explorer agent throttles its sampling rate in order to track anomalous events while obeying constraints on time and power. This problem is challenging because the agent has limited visibility -- all collected datapoints lie in the past, but its resource allocation decisions require predicting far into the future. Our solution is to continually fit a Gaussian process model to the latest data and optimize the sampling plan on line to maximize information gain. We compare the performance characteristics of stationary and nonstationary Gaussian process models. We also describe an application based on geologic analysis during planetary rover exploration. Here adaptive sampling can improve coverage of localized anomalies and potentially benefit mission science yield of long autonomous traverses.

  6. Exploring with PAM: Prospecting ANTS Missions for Solar System Surveys

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Rilee, M. L.; Curtis, S. A.

    2003-03-01

    ANTS (Autonomous Nano Technology Swarm of hundreds of picoclass autonomous spacecraft) have many applications. A version designed for surveying and the resource potential of the asteroid belt, called PAM (Prospecting ANTS Mission), is examined here.

  7. Servant teaching: the power and promise for nursing education.

    PubMed

    Robinson, F Patrick

    2009-01-01

    The best theoretical or practical approaches to achieving learning outcomes in nursing likely depend on multiple variables, including instructor-related variables. This paper explores one such variable and its potential impact on learning. Application of the principles inherent in servant leadership to teaching/learning in nursing education is suggested as a way to produce professional nurses who are willing and able to transform the health care environment to achieve higher levels of quality and safety. Thus, the concept of servant teaching is introduced with discussion of the following principles and their application to teaching in nursing: judicious use of power, listening and empathy, willingness to change, reflection and contemplation, collaboration and consensus, service learning, healing, conceptualization, stewardship, building community, and commitment to the growth of people. Faculty colleagues are invited to explore the use of servant teaching and its potential for nursing education.

  8. In-Network Processing for Mission-Critical Wireless Networked Sensing and Control: A Real-Time, Efficiency, and Resiliency Perspective

    ERIC Educational Resources Information Center

    Xiang, Qiao

    2014-01-01

    As wireless cyber-physical systems (WCPS) are increasingly being deployed in mission-critical applications, it becomes imperative that we consider application QoS requirements in in-network processing (INP). In this dissertation, we explore the potentials of two INP methods, packet packing and network coding, on improving network performance while…

  9. MP3 Players: Applications and Implications for the Use of Popular Technology in Secondary Schools

    ERIC Educational Resources Information Center

    Stiler, Gary M.

    2007-01-01

    This article explores potential uses for MP3 players in secondary classrooms. It presents an overview of current applications and describes an exploratory study of classroom uses. Seven high school teachers and one teacher educator participated in a three-month project to examine MP3 technology as applied to high school instruction. Their ideas…

  10. Bacterial and Fungal Proteolytic Enzymes: Production, Catalysis and Potential Applications.

    PubMed

    da Silva, Ronivaldo Rodrigues

    2017-09-01

    Submerged and solid-state bioprocesses have been extensively explored worldwide and employed in a number of important studies dealing with microbial cultivation for the production of enzymes. The development of these production technologies has facilitated the generation of new enzyme-based products with applications in pharmaceuticals, food, bioactive peptides, and basic research studies, among others. The applicability of microorganisms in biotechnology is potentiated because of their various advantages, including large-scale production, short time of cultivation, and ease of handling. Currently, several studies are being conducted to search for new microbial peptidases with peculiar biochemical properties for industrial applications. Bioprospecting, being an important prerequisite for research and biotechnological development, is based on exploring the microbial diversity for enzyme production. Limited information is available on the production of specific proteolytic enzymes from bacterial and fungal species, especially on the subgroups threonine and glutamic peptidases, and the seventh catalytic type, nonhydrolytic asparagine peptide lyase. This gap in information motivated the present study about these unique biocatalysts. In this study, the biochemical and biotechnological aspects of the seven catalytic types of proteolytic enzymes, namely aspartyl, cysteine, serine, metallo, glutamic, and threonine peptidase, and asparagine peptide lyase, are summarized, with an emphasis on new studies, production, catalysis, and application of these enzymes.

  11. The Challenge of Ecophysiological Biodiversity for Biotechnological Applications of Marine Microalgae

    PubMed Central

    Barra, Lucia; Chandrasekaran, Raghu; Corato, Federico; Brunet, Christophe

    2014-01-01

    In this review, we aim to explore the potential of microalgal biodiversity and ecology for biotechnological use. A deeper exploration of the biodiversity richness and ecophysiological properties of microalgae is crucial for enhancing their use for applicative purposes. After describing the actual biotechnological use of microalgae, we consider the multiple faces of taxonomical, morphological, functional and ecophysiological biodiversity of these organisms, and investigate how these properties could better serve the biotechnological field. Lastly, we propose new approaches to enhancing microalgal growth, photosynthesis, and synthesis of valuable products used in biotechnological fields, mainly focusing on culture conditions, especially light manipulations and genetic modifications. PMID:24663117

  12. Immersive virtual reality simulations in nursing education.

    PubMed

    Kilmon, Carol A; Brown, Leonard; Ghosh, Sumit; Mikitiuk, Artur

    2010-01-01

    This article explores immersive virtual reality as a potential educational strategy for nursing education and describes an immersive learning experience now being developed for nurses. This pioneering project is a virtual reality application targeting speed and accuracy of nurse response in emergency situations requiring cardiopulmonary resuscitation. Other potential uses and implications for the development of virtual reality learning programs are discussed.

  13. Electronic neuroprocessors

    NASA Technical Reports Server (NTRS)

    Thakoor, Anil

    1991-01-01

    The JPL Center for Space Microelectronics Technology (CSMT) is actively pursuing research in the neural network theory, algorithms, and electronics as well as optoelectronic neural net hardware implementations, to explore the strengths and application potential for a variety of NASA, DoD, as well as commercial application problems, where conventional computing techniques are extremely time-consuming, cumbersome, or simply non-existent. An overview of the JPL electronic neural network hardware development activities and some of the striking applications of the JPL electronic neuroprocessors are presented.

  14. On noise and the performance benefit of nonblocking collectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widener, Patrick M.; Levy, Scott; Ferreira, Kurt B.

    Relaxed synchronization offers the potential of maintaining application scalability by allowing many processes to make independent progress when some processes suffer delays. Yet, the benefits of this approach in important parallel workloads have not been investigated in detail. In this paper, we use a validated simulation approach to explore the noise mitigation effects of idealized nonblocking collectives in workloads where these collectives are a major contributor to total execution time. In conclusion, although nonblocking collectives are unlikely to provide significant noise mitigation to applications in the low-OS-noise environments expected in next-generation HPC systems, we show that they can potentially improvemore » application runtime with respect to other noise types.« less

  15. Advances in Microalgae-Derived Phytosterols for Functional Food and Pharmaceutical Applications

    PubMed Central

    Luo, Xuan; Su, Peng; Zhang, Wei

    2015-01-01

    Microalgae contain a variety of bioactive lipids with potential applications in aquaculture feed, biofuel, food and pharmaceutical industries. While microalgae-derived polyunsaturated fatty acid (PUFA) and their roles in promoting human health have been extensively studied, other lipid types from this resource, such as phytosterols, have been poorly explored. Phytosterols have been used as additives in many food products such as spread, dairy products and salad dressing. This review focuses on the recent advances in microalgae-derived phytosterols with functional bioactivities and their potential applications in functional food and pharmaceutical industries. It highlights the importance of microalgae-derived lipids other than PUFA for the development of an advanced microalgae industry. PMID:26184233

  16. On noise and the performance benefit of nonblocking collectives

    DOE PAGES

    Widener, Patrick M.; Levy, Scott; Ferreira, Kurt B.; ...

    2015-11-02

    Relaxed synchronization offers the potential of maintaining application scalability by allowing many processes to make independent progress when some processes suffer delays. Yet, the benefits of this approach in important parallel workloads have not been investigated in detail. In this paper, we use a validated simulation approach to explore the noise mitigation effects of idealized nonblocking collectives in workloads where these collectives are a major contributor to total execution time. In conclusion, although nonblocking collectives are unlikely to provide significant noise mitigation to applications in the low-OS-noise environments expected in next-generation HPC systems, we show that they can potentially improvemore » application runtime with respect to other noise types.« less

  17. Advances in Microalgae-Derived Phytosterols for Functional Food and Pharmaceutical Applications.

    PubMed

    Luo, Xuan; Su, Peng; Zhang, Wei

    2015-07-09

    Microalgae contain a variety of bioactive lipids with potential applications in aquaculture feed, biofuel, food and pharmaceutical industries. While microalgae-derived polyunsaturated fatty acid (PUFA) and their roles in promoting human health have been extensively studied, other lipid types from this resource, such as phytosterols, have been poorly explored. Phytosterols have been used as additives in many food products such as spread, dairy products and salad dressing. This review focuses on the recent advances in microalgae-derived phytosterols with functional bioactivities and their potential applications in functional food and pharmaceutical industries. It highlights the importance of microalgae-derived lipids other than PUFA for the development of an advanced microalgae industry.

  18. Graphene-MoS2 Heterojunctions for High-Speed Opto-electronics

    NASA Astrophysics Data System (ADS)

    Horng, Jason; Wang, Alex; Wang, Danqing; Li, Alexander Shengzhi; Wang, Feng

    Heterostructures consisting of two-dimensional materials has drawn significant attention in different research fields owning to their novel electronic states and potential applications. Transmitting information with transition metal dichalcogenides(TMDC) electro-optical modulator switch interconnect is of great interest for technological applications. However, their high-speed applications have been slowed by their intrinsically high resistivity as well as the difficulties in making optimized metal contacts. Here, we present a new strategy by using graphene as a tunable contact to two-dimensional semiconductors to explore possible applications in high-speed opto-electronics. We will present an optical study to provide better understanding of band alignment in graphene/MoS2 heterostructures and a demonstration of high-speed opto-electronics based on these heterostructures. The result shows the new scheme could have potential in both opto-modulators and optical sensing applications.

  19. Historical files from Federal Government mineral exploration-assistance programs, 1950 to 1974

    USGS Publications Warehouse

    Frank, David G.

    2016-06-16

    The Defense Minerals Administration (DMA), Defense Minerals Exploration Administration (DMEA), and Office of Minerals Exploration (OME) mineral exploration programs were active over the period 1950–1974. Under these programs, the Federal Government contributed financial assistance in the exploration for certain strategic and critical minerals. The information about a mining property that was collected under these programs was placed in files called dockets. A docket is a collection of material (application, contract, correspondence, maps, reports, results) about a property for which an individual applied for exploration assistance from the Federal Government. Information found in dockets describe where mineral deposits were examined, what was found, and whether it was mined. As such, they provide very useful information to private industry regarding potential and non-potential prospect areas, provide the U.S. Geological Survey with useful information on mineral occurrences that are used in national assessments for particular mineral deposits, and provide other U.S. Federal agencies (Bureau of Indian Affairs, Bureau of Land Management, and Environmental Protection Agency) information relevant to land management, permitting, and leasing.

  20. NASA's In Space Manufacturing Initiatives: Conquering the Challenges of In-Space Manufacturing

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.

    2017-01-01

    Current maintenance logistics strategy will not be effective for deep space exploration missions. ISM (In Space Manufacturing) offers the potential to: Significantly reduce maintenance logistics mass requirements; Enable the use of recycled materials and in-situ resources for more dramatic reductions in mass requirements; Enable flexibility, giving systems a broad capability to adapt to unanticipated circumstances; Mitigate risks that are not covered by current approaches to maintainability. Multiple projects are underway currently to develop and validate these capabilities for infusion into ISM exploration systems. ISS is a critical testbed for demonstrating ISM technologies, proving out these capabilities, and performing operational validation of deep space ISM applications. Developing and testing FabLab is a major milestone for springboard to DSG/Cis-lunar Space applications. ISM is a necessary paradigm shift in space operations – design for repair culture must be embraced. ISM team needs to be working with exploration system designers now to identify high-value application areas and influence design.

  1. Special Issue: NextGen Materials for 3D Printing.

    PubMed

    Chua, Chee Kai; Yeong, Wai Yee; An, Jia

    2018-04-04

    Only a handful of materials are well-established in three-dimensional (3D) printing and well-accepted in industrial manufacturing applications. However, recent advances in 3D printable materials have shown potential for enabling numerous novel applications in the future. This special issue, consisting of 2 reviews and 10 research articles, intends to explore the possible materials that could define next-generation 3D printing.

  2. Propolis: A natural biomaterial for dental and oral healthcare

    PubMed Central

    Khurshid, Zohaib; Naseem, Mustafa; Najeeb, Shariq; Zohaib, Sana

    2017-01-01

    The field of health has always emphasised on the use of natural products for curing diseases. There are varieties of natural products (such as silk, herbal tea, chitosan) used today in the biomedical application in treating a large array of systemic diseases. The natural product "Propolis" is a non-toxic resinous material having beneficial properties such as antimicrobial, anticancer, antifungal, antiviral and anti-inflammatory; hence gain the attention of researchers for its potential for bio-dental applications. The study aims to explore the properties and chemistry of propolis concerning biomedical and dental applications. In addition, status and scope of propolis for current and potential future in bio-dental applications have been discussed. This review gives an insight to the reader about the possible use of propolis in modern-day dentistry. PMID:29354255

  3. Exploring the Early Universe on Mobile Devices

    NASA Astrophysics Data System (ADS)

    Kocevski, Dale; McGrath, E. J.; CANDELS Collaboration

    2014-01-01

    The widespread adoption of smart phones and tablet computers has the potential to revolutionize the way in which educational material is shared with the general public. As part of the outreach effort for the CANDELS survey, we have developed a free interactive astronomy education application named Hubble Universe for iPad and iPhone devices. The application focuses on extragalactic science topics related to the CANDELS legacy survey, which is documenting galaxy evolution in the early universe. I will provide an overview of the application, which contains a wide range of interactive content, including 3D models of astrophysical phenomenon, informative diagrams and computer simulations. I will discuss how the application can be used to enhance classroom learning both by providing a database of interactive media and by encouraging students to explore astronomical topics away from traditional settings like the classroom or the desktop computer.

  4. New developments in ground probing radar for Earth resource mapping and planetology

    NASA Astrophysics Data System (ADS)

    Cattermole, P. J.; Junkin, G.; Finkelstein, M. I.; Kingsley, S. P.

    1992-07-01

    Ground probing radar is a well established technique for locating buried objects and has found application in resource mapping. The development of this technology for the Mars exploration programme has lead to lightweight systems with potential applications for investigating shallow geological structures on Earth, Mars and Venus. Recent advances in ground probing radar technology for planetary exploration include the development of single-antenna systems with improved beam focussing into the ground and a move to lower frequencies which considerably extends the depth penetration in dry ground. These systems are designed for mobility and could form the basis of autonomous mapping systems for terrestrial exploration. Such systems would be particularly valuable for water resource surveying in arid and semi-arid regions, where there is a need to have lightweight instrumentation that can be moved into sometimes inhospitable terrain.

  5. Application of medical gases in the field of neurobiology

    PubMed Central

    2011-01-01

    Medical gases are pharmaceutical molecules which offer solutions to a wide array of medical needs. This can range from use in burn and stroke victims to hypoxia therapy in children. More specifically however, gases such as oxygen, helium, xenon, and hydrogen have recently come under increased exploration for their potential theraputic use with various brain disease states including hypoxia-ischemia, cerebral hemorrhages, and traumatic brain injuries. As a result, this article will review the various advances in medical gas research and discuss the potential therapeutic applications and mechanisms with regards to the field of neurobiology. PMID:22146102

  6. Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Juarez, Peter D.

    2014-01-01

    NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications.

  7. Potential Applications of Zeolite Membranes in Reaction Coupling Separation Processes

    PubMed Central

    Daramola, Michael O.; Aransiola, Elizabeth F.; Ojumu, Tunde V.

    2012-01-01

    Future production of chemicals (e.g., fine and specialty chemicals) in industry is faced with the challenge of limited material and energy resources. However, process intensification might play a significant role in alleviating this problem. A vision of process intensification through multifunctional reactors has stimulated research on membrane-based reactive separation processes, in which membrane separation and catalytic reaction occur simultaneously in one unit. These processes are rather attractive applications because they are potentially compact, less capital intensive, and have lower processing costs than traditional processes. Therefore this review discusses the progress and potential applications that have occurred in the field of zeolite membrane reactors during the last few years. The aim of this article is to update researchers in the field of process intensification and also provoke their thoughts on further research efforts to explore and exploit the potential applications of zeolite membrane reactors in industry. Further evaluation of this technology for industrial acceptability is essential in this regard. Therefore, studies such as techno-economical feasibility, optimization and scale-up are of the utmost importance.

  8. Potential use and perspectives of nitric oxide donors in agriculture.

    PubMed

    Marvasi, Massimiliano

    2017-03-01

    Nitric oxide (NO) has emerged in the last 30 years as a key molecule involved in many physiological processes in plants, animals and bacteria. Current research has shown that NO can be delivered via donor molecules. In such cases, the NO release rate is dependent on the chemical structure of the donor itself and on the chemical environment. Despite NO's powerful signaling effect in plants and animals, the application of NO donors in agriculture is currently not implemented and research remains mainly at the experimental level. Technological development in the field of NO donors is rapidly expanding in scope to include controlling seed germination, plant development, ripening and increasing shelf-life of produce. Potential applications in animal production have also been identified. This concise review focuses on the use of donors that have shown potential biotechnological applications in agriculture. Insights are provided into (i) the role of donors in plant production, (ii) the potential use of donors in animal production and (iii) future approaches to explore the use and applications of donors for the benefit of agriculture. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Exploring the molecular basis of antifungal synergies using genome-wide approaches

    USDA-ARS?s Scientific Manuscript database

    This is a review article summarizing genomic profiling strategies for determining the mechanism of action of antifungal synergies, and highlighting the potential applications of these technologies. Given the limitations of currently available antifungal agents and the development of drug resistance...

  10. Module Architecture for in Situ Space Laboratories

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    2010-01-01

    The paper analyzes internal outfitting architectures for space exploration laboratory modules. ISS laboratory architecture is examined as a baseline for comparison; applicable insights are derived. Laboratory functional programs are defined for seven planet-surface knowledge domains. Necessary and value-added departures from the ISS architecture standard are defined, and three sectional interior architecture options are assessed for practicality and potential performance. Contemporary guidelines for terrestrial analytical laboratory design are found to be applicable to the in-space functional program. Densepacked racks of system equipment, and high module volume packing ratios, should not be assumed as the default solution for exploration laboratories whose primary activities include un-scriptable investigations and experimentation on the system equipment itself.

  11. Data mining applications in the context of casemix.

    PubMed

    Koh, H C; Leong, S K

    2001-07-01

    In October 1999, the Singapore Government introduced casemix-based funding to public hospitals. The casemix approach to health care funding is expected to yield significant benefits, including equity and rationality in financing health care, the use of comparative casemix data for quality improvement activities, and the provision of information that enables hospitals to understand their cost behaviour and reinforces the drive for more cost-efficient services. However, there is some concern about the "quicker and sicker" syndrome (that is, the rapid discharge of patients with little regard for the quality of outcome). As it is likely that consequences of premature discharges will be reflected in the readmission data, an analysis of possible systematic patterns in readmission data can provide useful insight into the "quicker and sicker" syndrome. This paper explores potential data mining applications in the context of casemix by using readmission data as an illustration. In particular, it illustrates how data mining can be used to better understand readmission data and to detect systematic patterns, if any. From a technical perspective, data mining (which is capable of analysing complex non-linear and interaction relationships) supplements and complements traditional statistical methods in data analysis. From an applications perspective, data mining provides the technology and methodology to analyse mass volume of data to detect hidden patterns in data. Using readmission data as an illustrative data mining application, this paper explores potential data mining applications in the general casemix context.

  12. Exploring the Nature of the H[subscript 2] Bond. 2. Using Ab Initio Molecular Orbital Calculations to Obtain the Molecular Constants

    ERIC Educational Resources Information Center

    Halpern, Arthur M.; Glendening, Eric D.

    2013-01-01

    A project for students in an upper-level course in quantum or computational chemistry is described in which they are introduced to the concepts and applications of a high quality, ab initio treatment of the ground-state potential energy curve (PEC) for H[subscript 2] and D[subscript 2]. Using a commercial computational chemistry application and a…

  13. Special Issue: NextGen Materials for 3D Printing

    PubMed Central

    Yeong, Wai Yee

    2018-01-01

    Only a handful of materials are well-established in three-dimensional (3D) printing and well-accepted in industrial manufacturing applications. However, recent advances in 3D printable materials have shown potential for enabling numerous novel applications in the future. This special issue, consisting of 2 reviews and 10 research articles, intends to explore the possible materials that could define next-generation 3D printing. PMID:29617311

  14. Topics in programmable automation. [for materials handling, inspection, and assembly

    NASA Technical Reports Server (NTRS)

    Rosen, C. A.

    1975-01-01

    Topics explored in the development of integrated programmable automation systems include: numerically controlled and computer controlled machining; machine intelligence and the emulation of human-like capabilities; large scale semiconductor integration technology applications; and sensor technology for asynchronous local computation without burdening the executive minicomputer which controls the whole system. The role and development of training aids, and the potential application of these aids to augmented teleoperator systems are discussed.

  15. Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity.

    PubMed

    Mousa, Mohamed; Evans, Nicholas D; Oreffo, Richard O C; Dawson, Jonathan I

    2018-03-01

    Clay nanoparticles, composites and hydrogels are emerging as a new class of biomaterial with exciting potential for tissue engineering and regenerative medicine applications. Clay particles have been extensively explored in polymeric nanocomposites for self-assembly and enhanced mechanical properties as well as for their potential as drug delivery modifiers. In recent years, a cluster of studies have explored cellular interactions with clay nanoparticles alone or in combination with polymeric matrices. These pioneering studies have suggested new and unforeseen utility for certain clays as bioactive additives able to enhance cellular functions including adhesion, proliferation and differentiation, most notably for osteogenesis. This review examines the recent literature describing the potential effects of clay-based nanomaterials on cell function and examines the potential role of key clay physicochemical properties in influencing such interactions and their exciting possibilities for regenerative medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Culturable bacterial endophytes isolated from Mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice.

    PubMed

    Deivanai, Subramanian; Bindusara, Amitraghata Santhanam; Prabhakaran, Guruswamy; Bhore, Subhash Janardhan

    2014-07-01

    Endophytic bacteria do have several potential applications in medicine and in other various sectors of biotechnology including agriculture. Bacterial endophytes need to be explored for their potential applications in agricultural biotechnology. One of the potential applications of bacterial endophytes in agricultural is to enhance the growth of the agricultural crops. Hence, this study was undertaken to explore the plant growth promoting potential application of bacterial endophytes. The objective of this study was to examine the effect of endophytic bacteria from mangrove tree (Rhizophora apiculata Blume) for their efficacy in promoting seedling growth in rice. Eight endophytic bacterial isolates (EBIs) isolated from twig and petiole tissues of the mangrove were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequence homology. Separately, surface sterilized paddy seeds were treated with cell-free broth and cell suspension of the EBIs. Rice seedlings were analyzed by various bioassays and data was recorded. The gene sequences of the isolates were closely related to two genera namely, Bacillus and Pantoea. Inoculation of EBIs from R. apiculata with rice seeds resulted in accelerated root and shoot growth with significant increase in chlorophyll content. Among the isolates, Pantoea ananatis (1MSE1) and Bacillus amyloliquefaciens (3MPE1) had shown predominance of activity. Endophytic invasion was recognized by the non-host by rapid accumulation of reactive oxygen species (ROS) and was counteracted by the production of hydrogen peroxide (H2O2) and lipid peroxide. The results demonstrated that EBIs from mangrove tree can increase the fitness of the rice seedlings under controlled conditions. These research findings could be useful to enhance the seedling growth and could serve as foundation in further research on enhancing the growth of the rice crop using endophytic bacteria.

  17. Knowledge mapping as a technique to support knowledge translation.

    PubMed Central

    Ebener, S.; Khan, A.; Shademani, R.; Compernolle, L.; Beltran, M.; Lansang, Ma; Lippman, M.

    2006-01-01

    This paper explores the possibility of integrating knowledge mapping into a conceptual framework that could serve as a tool for understanding the many complex processes, resources and people involved in a health system, and for identifying potential gaps within knowledge translation processes in order to address them. After defining knowledge mapping, this paper presents various examples of the application of this process in health, before looking at the steps that need to be taken to identify potential gaps, to determine to what extent these gaps affect the knowledge translation process and to establish their cause. This is followed by proposals for interventions aimed at strengthening the overall process. Finally, potential limitations on the application of this framework at the country level are addressed. PMID:16917651

  18. Cybersonics: Tapping into Technology

    NASA Technical Reports Server (NTRS)

    2001-01-01

    With the assistance of Small Business Innovation Research (SBIR) funding from NASA's Jet Propulsion Laboratory, Cybersonics, Inc., developed an ultrasonic drill with applications ranging from the medical industry to space exploration. The drill, which has the ability to take a core sample of the hardest granite or perform the most delicate diagnostic medical procedure, is a lightweight, ultrasonic device made to fit in the palm of the hand. Piezoelectric actuators, which have only two moving parts and no gears or motors, drive the components of the device, enabling it to operate in a wide range of temperatures. The most remarkable aspect of the drill is its ability to penetrate even the hardest rock with minimal force application. The ultrasonic device requires 20 to 30 times less force than standard rotating drills, allowing it to be safely guided by hand during operation. Also, the drill is operable at a level as low as three watts of power, where conventional drills require more than three times this level. Potential future applications for the ultrasonic drill include rock and soil sampling, medical procedures that involve core sampling or probing, landmine detection, building and construction, and space exploration. Cybersonics, Inc. developed an ultrasonic drill with applications ranging from the medical industry to space exploration.

  19. Preparing Alumni for Student Recruitment.

    ERIC Educational Resources Information Center

    Mount, Brian

    As recruitment budgets continue to tighten and with fewer colleges reporting application increases for their freshmen classes, enrollment managers must continue to explore all potential sources of recruitment talent. Alumni are often an underutilized or sometimes poorly utilized resource in recruitment efforts. Younger alumni, for example, may…

  20. Estimating aggregate regional user on-time reliability benefit from pre-trip ATIS : Seattle case study

    DOT National Transportation Integrated Search

    2003-12-01

    This study explores the on-time reliability benefits to potential users of a personalized advanced traveler information system (ATIS) providing real-time pre-trip roadway information for the Seattle morning peak period through the application of Heur...

  1. Artificial Intelligence and CALL.

    ERIC Educational Resources Information Center

    Underwood, John H.

    The potential application of artificial intelligence (AI) to computer-assisted language learning (CALL) is explored. Two areas of AI that hold particular interest to those who deal with language meaning--knowledge representation and expert systems, and natural-language processing--are described and examples of each are presented. AI contribution…

  2. Performance-Based Measurement: Action for Organizations and HPT Accountability

    ERIC Educational Resources Information Center

    Larbi-Apau, Josephine A.; Moseley, James L.

    2010-01-01

    Basic measurements and applications of six selected general but critical operational performance-based indicators--effectiveness, efficiency, productivity, profitability, return on investment, and benefit-cost ratio--are presented. With each measurement, goals and potential impact are explored. Errors, risks, limitations to measurements, and a…

  3. CRISPR-Cas9 therapeutics in cancer: promising strategies and present challenges.

    PubMed

    Yi, Lang; Li, Jinming

    2016-12-01

    Cancer is characterized by multiple genetic and epigenetic alterations that drive malignant cell proliferation and confer chemoresistance. The ability to correct or ablate such mutations holds immense promise for combating cancer. Recently, because of its high efficiency and accuracy, the CRISPR-Cas9 genome editing technique has been widely used in cancer therapeutic explorations. Several studies used CRISPR-Cas9 to directly target cancer cell genomic DNA in cellular and animal cancer models which have shown therapeutic potential in expanding our anticancer protocols. Moreover, CRISPR-Cas9 can also be employed to fight oncogenic infections, explore anticancer drugs, and engineer immune cells and oncolytic viruses for cancer immunotherapeutic applications. Here, we summarize these preclinical CRISPR-Cas9-based therapeutic strategies against cancer, and discuss the challenges and improvements in translating therapeutic CRISPR-Cas9 into clinical use, which will facilitate better application of this technique in cancer research. Further, we propose potential directions of the CRISPR-Cas9 system in cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Practical Applications of Digital Pathology.

    PubMed

    Saeed-Vafa, Daryoush; Magliocco, Anthony M

    2015-04-01

    Virtual microscopy and advances in machine learning have paved the way for the ever-expanding field of digital pathology. Multiple image-based computing environments capable of performing automated quantitative and morphological analyses are the foundation on which digital pathology is built. The applications for digital pathology in the clinical setting are numerous and are explored along with the digital software environments themselves, as well as the different analytical modalities specific to digital pathology. Prospective studies, case-control analyses, meta-analyses, and detailed descriptions of software environments were explored that pertained to digital pathology and its use in the clinical setting. Many different software environments have advanced platforms capable of improving digital pathology and potentially influencing clinical decisions. The potential of digital pathology is vast, particularly with the introduction of numerous software environments available for use. With all the digital pathology tools available as well as those in development, the field will continue to advance, particularly in the era of personalized medicine, providing health care professionals with more precise prognostic information as well as helping them guide treatment decisions.

  5. Multistate metadynamics for automatic exploration of conical intersections

    NASA Astrophysics Data System (ADS)

    Lindner, Joachim O.; Röhr, Merle I. S.; Mitrić, Roland

    2018-05-01

    We introduce multistate metadynamics for automatic exploration of conical intersection seams between adiabatic Born-Oppenheimer potential energy surfaces in molecular systems. By choosing the energy gap between the electronic states as a collective variable the metadynamics drives the system from an arbitrary ground-state configuration toward the intersection seam. Upon reaching the seam, the multistate electronic Hamiltonian is extended by introducing biasing potentials into the off-diagonal elements, and the molecular dynamics is continued on a modified potential energy surface obtained by diagonalization of the latter. The off-diagonal bias serves to locally open the energy gap and push the system to the next intersection point. In this way, the conical intersection energy landscape can be explored, identifying minimum energy crossing points and the barriers separating them. We illustrate the method on the example of furan, a prototype organic molecule exhibiting rich photophysics. The multistate metadynamics reveals plateaus on the conical intersection energy landscape from which the minimum energy crossing points with characteristic geometries can be extracted. The method can be combined with the broad spectrum of electronic structure methods and represents a generally applicable tool for the exploration of photophysics and photochemistry in complex molecules and materials.

  6. A web service and android application for the distribution of rainfall estimates and Earth observation data

    NASA Astrophysics Data System (ADS)

    Mantas, V. M.; Liu, Z.; Pereira, A. J. S. C.

    2015-04-01

    The full potential of Satellite Rainfall Estimates (SRE) can only be realized if timely access to the datasets is possible. Existing data distribution web portals are often focused on global products and offer limited customization options, especially for the purpose of routine regional monitoring. Furthermore, most online systems are designed to meet the needs of desktop users, limiting the compatibility with mobile devices. In response to the growing demand for SRE and to address the current limitations of available web portals a project was devised to create a set of freely available applications and services, available at a common portal that can: (1) simplify cross-platform access to Tropical Rainfall Measuring Mission Online Visualization and Analysis System (TOVAS) data (including from Android mobile devices), (2) provide customized and continuous monitoring of SRE in response to user demands and (3) combine data from different online data distribution services, including rainfall estimates, river gauge measurements or imagery from Earth Observation missions at a single portal, known as the Tropical Rainfall Measuring Mission (TRMM) Explorer. The TRMM Explorer project suite includes a Python-based web service and Android applications capable of providing SRE and ancillary data in different intuitive formats with the focus on regional and continuous analysis. The outputs include dynamic plots, tables and data files that can also be used to feed downstream applications and services. A case study in Southern Angola is used to describe the potential of the TRMM Explorer for SRE distribution and analysis in the context of ungauged watersheds. The development of a collection of data distribution instances helped to validate the concept and identify the limitations of the program, in a real context and based on user feedback. The TRMM Explorer can successfully supplement existing web portals distributing SRE and provide a cost-efficient resource to small and medium-sized organizations with specific SRE monitoring needs, namely in developing and transition countries.

  7. Silk protein-based hydrogels: Promising advanced materials for biomedical applications.

    PubMed

    Kapoor, Sonia; Kundu, Subhas C

    2016-02-01

    Hydrogels are a class of advanced material forms that closely mimic properties of the soft biological tissues. Several polymers have been explored for preparing hydrogels with structural and functional features resembling that of the extracellular matrix. Favourable material properties, biocompatibility and easy processing of silk protein fibers into several forms make it a suitable material for biomedical applications. Hydrogels made from silk proteins have shown a potential in overcoming limitations of hydrogels prepared from conventional polymers. A great deal of effort has been made to control the properties and to integrate novel topographical and functional characteristics in the hydrogel composed from silk proteins. This review provides overview of the advances in silk protein-based hydrogels with a primary emphasis on hydrogels of fibroin. It describes the approaches used to fabricate fibroin hydrogels. Attempts to improve the existing properties or to incorporate new features in the hydrogels by making composites and by improving fibroin properties by genetic engineering approaches are also described. Applications of the fibroin hydrogels in the realms of tissue engineering and controlled release are reviewed and their future potentials are discussed. This review describes the potentiality of silk fibroin hydrogel. Silk Fibroin has been widely recognized as an interesting biomaterial. Due to its properties including high mechanical strength and excellent biocompatibility, it has gained wide attention. Several groups are exploring silk-based materials including films, hydrogels, nanofibers and nanoparticles for different biomedical applications. Although there is a good amount of literature available on general properties and applications of silk based biomaterials, there is an inadequacy of extensive review articles that specifically focus on silk based hydrogels. Silk-based hydrogels have a strong potential to be utilized in biomedical applications. Our work is an effort to highlight the research that has been done in the area of silk-based hydrogels. It aims to provide an overview of the advances that have been made and the future course available. It will provide an overview of the silk-based hydrogels as well as may direct the readers to the specific areas of application. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Theoretical study on the cage-like nanostructures formed by amino acids and their potential applications as drug carriers

    NASA Astrophysics Data System (ADS)

    Weng, Pei Pei; Fan, Jian Fen; Lin, Hui Fang; Zhao, Xin; Si, Xia Lan

    2017-12-01

    The cage-like octamer, decamer and dodecamer constructed from aspartic acid monomers have been studied to explore their potential applications as drug carriers using the density functional theory. The calculation results indicate that these stable cage-like oligomers are mainly connected by the -C=O…HOOC- and -HN…HOOC- H-bonds and still keep stability and good drum-shaped topologies after the incorporation of 5-fluorouracil, paraldehyde and C24, respectively. The self-assembled cage-like oligomers may be applied to the preparation of new biological materials and the design of drug delivery systems.

  9. Parenting stress and anger expression as predictors of child abuse potential.

    PubMed

    Rodriguez, C M; Green, A J

    1997-04-01

    To explore one potential pathway to physical child abuse, the present investigation used hierarchical regression analysis using measures of parenting stress and anger expression to jointly predict child abuse potential. The Parenting Stress Index, State-Trait Anger Expression Inventory, and the Child Abuse Potential Inventory were administered to two different samples of New Zealand parents. As expected, both studies revealed parenting stress and anger expression and were individually positively correlated with child abuse potential: the major finding involved the strong point contribution of parenting stress and anger expression in predicting Child Abuse Potential Inventory scores. Application of findings for intervention and prevention are discussed.

  10. Steganography: Past, Present, Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judge, J C

    Steganography (a rough Greek translation of the term Steganography is secret writing) has been used in various forms for 2500 years. It has found use in variously in military, diplomatic, personal and intellectual property applications. Briefly stated, steganography is the term applied to any number of processes that will hide a message within an object, where the hidden message will not be apparent to an observer. This paper will explore steganography from its earliest instances through potential future application.

  11. Commentary: The relationship status of digital media and professionalism: it's complicated.

    PubMed

    Farnan, Jeanne M; Paro, John A M; Higa, Jennifer T; Reddy, Shalini T; Humphrey, Holly J; Arora, Vineet M

    2009-11-01

    The rising popularity of digital applications, such as social networking, media share sites, and blogging, has significantly affected how medical trainees interact with educators, colleagues, and the public. Despite the increased popularity and use of such applications amongst the current generation of trainees, medical educators have little evidence or guidance about preventing misuse and ensuring standards for professional conduct. As trainees become more technologically savvy, it is the responsibility of medical educators to familiarize themselves not only with the advantages of this technology but also with the potential negative effects of its misuse. Professionalism, appropriateness for public consumption, and individual or institutional representation in digital media content are just some of the salient issues that arise when considering the ramifications of trainees' digital behavior in the absence of established policies or education on risk. In this commentary the authors explore the rising use of digital media and its reflection of medical trainees' professionalism. To address possible issues related to professionalism in digital media, the authors hypothesize potential solutions, including exploring faculty familiarity with digital media and policy development, educating students on the potential risks of misuse, and modeling professionalism in this new digital age.

  12. Exploring mathematics outside the classroom with the help of GPS-enabled mobile phone application

    NASA Astrophysics Data System (ADS)

    Cahyono, A. N.; Ludwig, M.

    2018-03-01

    The aim of the study is to explore the potential of the mobile app-supported math trail program in promoting students’ intrinsic motivation for the engagement in mathematics and the opportunities of mathematical outdoor activity in particular. Explorative design research was conducted on nine secondary schools in the city of Semarang, Indonesia, with 272 students and nine teachers. Data were gathered using participatory observation, interviews, questionnaires, and student worksheets. The findings indicate that students were highly intrinsically motivated to be involved in mathematics learning. They found it easy to engage in the activities and gain relevant mathematical experiences. Students indicated they learned to use advanced technology for outdoor activity and to do the mathematization. The study suggests that school and public can take advantage of the result of this study. Further research in other places is needed to exploit its potential and future development.

  13. Linking public relations processes and organizational effectiveness at a state health department.

    PubMed

    Wise, Kurt

    2003-01-01

    This qualitative case study explored a state health department's relationships with strategic constituencies from a public relations perspective. The relationships were explored within the theoretical framework of the Excellence Theory, the dominant paradigm in public research. Findings indicate application of the Excellence Theory has the potential to increase organizational effectiveness at public health entities. With respect to the case investigated, findings indicate that the state health department could increase its organizational effectiveness through the adoption of recommendations based on the Excellence Theory.

  14. Exploring Mass Transfer in Mesoporous Zeolites by NMR Diffusometry

    PubMed Central

    Mehlhorn, Dirk; Valiullin, Rustem; Kärger, Jörg; Cho, Kanghee; Ryoo, Ryong

    2012-01-01

    With the advent of mesoporous zeolites, the exploration of their transport properties has become a task of primary importance for the auspicious application of such materials in separation technology and heterogeneous catalysis. After reviewing the potential of the pulsed field gradient method of NMR (PFG NMR) for this purpose in general, in a case study using a specially prepared mesoporous zeolite NaCaA as a host system and propane as a guest molecule, examples of the attainable information are provided. PMID:28817004

  15. Evaluating the effect of microalgal biomass on soil-plant-water systems

    USDA-ARS?s Scientific Manuscript database

    Exploring all possible applications of microalgal biomass is crucial to strengthen the current algal industry and reducing the environmental impacts of agriculture is a major global challenge. Microalgae can play a progressive role as they have the potential to improve soil structure, reduce erosion...

  16. Second Language Listening Comprehension: A Schema-Theoretic Perspective.

    ERIC Educational Resources Information Center

    Long, Donna Reseigh

    1989-01-01

    Enormous potential exists for the transfer of listening comprehension theory to second language listening research. The need for such research is highlighted through an exploration of recurring themes in the literature on background knowledge and through application of these themes to second language listening comprehension. (CB)

  17. Computer Mediated Communication: Online Instruction and Interactivity.

    ERIC Educational Resources Information Center

    Lavooy, Maria J.; Newlin, Michael H.

    2003-01-01

    Explores the different forms and potential applications of computer mediated communication (CMC) for Web-based and Web-enhanced courses. Based on their experiences with three different Web courses (Research Methods in Psychology, Statistical Methods in Psychology, and Basic Learning Processes) taught repeatedly over the last five years, the…

  18. Using Synchronous Technology to Enrich Student Learning

    ERIC Educational Resources Information Center

    Wang, Charles Xiaoxue; Jaeger, David; Liu, Jinxia; Guo, Xiaoning; Xie, Nan

    2013-01-01

    To explore the potential applications of synchronous technology to enrich student learning, faculty members from an American regional state university and a Chinese regional university collaborated to find appropriate ways to integrate synchronous technology (e.g., Adobe Connect) into an educational technology program in the American university…

  19. Physiologically-based pharmacokinetic (PBPK) modeling to explore potential metabolic pathways of bromochloromethane in rats.

    EPA Science Inventory

    Bromochloromethane (BCM) is a volatile organic compound and a by-product of disinfection of water by chlorination. Physiologically based pharmacokinetic (PBPK) models are used in risk assessment applications and a PBPK model for BCM, Updated with F-344 specific input parameters,...

  20. Physiologically-based pharmacokinetic (PBPK) modeling to explore potential metabolic pathways of bromochloromethane in rats

    EPA Science Inventory

    Bromochloromethane (BCM) is a volatile compound and a by-product of disinfection of water by ofchlorination. Physiologically based pharmacokinetic (PBPK) models are used in risk assessment applications. An updated PBPKmodel for BCM is generated and applied to hypotheses testing c...

  1. Performance Systems Analysis: Learning by Doing

    ERIC Educational Resources Information Center

    Knowles, Marc P.; Suh, Sookyung

    2005-01-01

    The authors discuss potential shortfalls of assistantships and internships in preparing students for practical career application of professional degrees and describe the benefits to overall development of courses eliciting performance in authentic scenarios. This article explores what is necessary, not only to teach, but also to learn, human…

  2. Application of genomic tools for lesquerella crop improvement

    USDA-ARS?s Scientific Manuscript database

    Lesquerella, a potential new industrial oilseed crop, is valued for its unusual hydroxy fatty acid (20:1OH) which can be used as raw materials for numerous industrial products, such as lubricants, plasticizers and surfactants. As a step towards genetic engineering of lesquerella, we explored a lesqu...

  3. Cerium-doped scintillating fused-silica fibers

    NASA Astrophysics Data System (ADS)

    Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P.; Faulkner, J.; Kunori, S.

    2018-04-01

    We report on a set of measurements made on (scintillating) cerium-doped fused-silica fibers using high-energy particle beams. These fibers were uniformly embedded in a copper absorber in order to utilize electromagnetic showers as a source of charged particles for generating signals. This new type of cerium-doped fiber potentially offers myriad new applications in calorimeters in high-energy physics, tracking systems, and beam monitoring detectors for future applications. The light yield, pulse shape, attenuation length, and light propagation speeds are given and discussed. Possible future applications are also explored.

  4. Green tea (Camellia sinensis) and l-theanine: Medicinal values and beneficial applications in humans-A comprehensive review.

    PubMed

    Saeed, Muhammad; Naveed, Muhammad; Arif, Muhammad; Kakar, Mohib Ullah; Manzoor, Robina; Abd El-Hack, Mohamed Ezzat; Alagawany, Mahmoud; Tiwari, Ruchi; Khandia, Rekha; Munjal, Ashok; Karthik, Kumaragurubaran; Dhama, Kuldeep; Iqbal, Hafiz M N; Dadar, Maryam; Sun, Chao

    2017-11-01

    Green tea (Camellia sinensis) is a famous herb, and its extract has been extensively used in traditional Chinese medicinal system. In this context, several studies have revealed its health benefits and medicinal potentialities for several ailments. With ever increasing scientific knowledge, search for safer, potential and novel type of health-related supplements quest, scientists are re-directing their research interests to explore natural resources i.e. medicinal herbs/plant derived compounds. Green tea consumption has gained a special attention and popularity in the modern era of changing lifestyle. The present review is aimed to extend the current knowledge by highlighting the importance and beneficial applications of green tea in humans for safeguarding various health issues. Herein, we have extensively reviewed, analyzed, and compiled salient information on green tea from the authentic published literature available in PubMed and other scientific databases. Scientific literature evidenced that owing to the bioactive constituents including caffeine, l-theanine, polyphenols/flavonoids and other potent molecules, green tea has many pharmacological and physiological functions. It possesses multi-beneficial applications in treating various disorders of humans. This review also provides in-depth insights on the medicinal values of green tea which will be useful for researchers, medical professionals, veterinarians, nutritionists, pharmacists and pharmaceutical industry. Future research emphasis and promotional avenues are needed to explore its potential therapeutic applications for designing appropriate pharmaceuticals, complementary medicines, and effective drugs as well as popularize and propagate its multidimensional health benefits. Copyright © 2017. Published by Elsevier Masson SAS.

  5. Hyaluronan–Itaconic Acid–Glutaraldehyde Films for Biomedical Applications: Preliminary Studies

    PubMed Central

    Calles, Javier Adrián; Ressia, Jorge Aníbal; Llabot, Juan Manuel; Vallés, Enrique Marcelo; Palma, Santiago Daniel

    2016-01-01

    New hyaluronic acid–itaconic acid films were synthesized as potential materials with biomedical applications. In this work, we explored the homogeneous cross-linking reactions of hyaluronic acid using glutaraldehyde in the presence of itaconic acid and triacetin as plasticizers. Biomechanical properties were assessed in terms of stability by measuring swelling in aqueous environments, investigating wettability using contact angle tests, and evaluating bioadhesive performance. The ductility of the materials was evaluated through stress-strain measurements and the morphology was explored by scanning electron microscopy. The results show that the incorporation of itaconic acid improved most of the desirable properties, increasing adhesiveness and reducing wettability and swelling. The use of triacetin enhanced the strength, bioadhesiveness, and ductility of the material. PMID:27110498

  6. The Search for Efficiency in Arboreal Ray Tracing Applications

    NASA Astrophysics Data System (ADS)

    van Leeuwen, M.; Disney, M.; Chen, J. M.; Gomez-Dans, J.; Kelbe, D.; van Aardt, J. A.; Lewis, P.

    2016-12-01

    Forest structure significantly impacts a range of abiotic conditions, including humidity and the radiation regime, all of which affect the rate of net and gross primary productivity. Current forest productivity models typically consider abstract media to represent the transfer of radiation within the canopy. Examples include the representation forest structure via a layered canopy model, where leaf area and inclination angles are stratified with canopy depth, or as turbid media where leaves are randomly distributed within space or within confined geometric solids such as blocks, spheres or cones. While these abstract models are known to produce accurate estimates of primary productivity at the stand level, their limited geometric resolution restricts applicability at fine spatial scales, such as the cell, leaf or shoot levels, thereby not addressing the full potential of assimilation of data from laboratory and field measurements with that of remote sensing technology. Recent research efforts have explored the use of laser scanning to capture detailed tree morphology at millimeter accuracy. These data can subsequently be used to combine ray tracing with primary productivity models, providing an ability to explore trade-offs among different morphological traits or assimilate data from spatial scales, spanning the leaf- to the stand level. Ray tracing has a major advantage of allowing the most accurate structural description of the canopy, and can directly exploit new 3D structural measurements, e.g., from laser scanning. However, the biggest limitation of ray tracing models is their high computational cost, which currently limits their use for large-scale applications. In this talk, we explore ways to more efficiently exploit ray tracing simulations and capture this information in a readily computable form for future evaluation, thus potentially enabling large-scale first-principles forest growth modelling applications.

  7. An assessment of waste processing/resource recovery technologies for lunar/Mars life applications

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E.; Packham, Nigel J. C.; Henninger, Donald H.

    1992-01-01

    NASA's future manned missions to explore the solar system are by nature of long duration, mandating extensive regeneration of life support consumables from wastes generated in space-based habitats. Long-duration exploration missions would otherwise be prohibitive due to the number and frequency of energy-intensive resupply missions from Earth. Resource recovery is therefore a critical component of the controlled ecological life support system (CELSS). In order to assess resource recovery technologies for CELSS applications, the Crew and Thermal Systems Division at NASA-Johnson Space Center convened a three-day workshop to assess potential resource recovery technologies for application in a space-based CELSS. This paper describes the methodology of assessing and ranking of these technologies. Recommendations and issues are identified. Evaluations focused on the processes for handling and treatment of inedible plant biomass, human waste, and human generated trash. Technologies were assessed on the basis of safety, reliability, technology readiness, and performance characteristics.

  8. Faculty application of the American Psychological Association style.

    PubMed

    Morse, Gwen Goetz

    2009-10-01

    This article explores current faculty methods with the application and evaluation of the American Psychological Association (APA) style. Specific aims were to determine concerns related to APA style, review faculty grading practices, identify institutional resources, and report potential solutions for improving application of APA style. A survey with an exploratory descriptive research design was developed and distributed online to academic chairs and deans, requesting their support in distributing the survey to their faculty. Responses (N = 704) were grouped into five categories: departmental and personal concerns; faculty grading practices; institutional resources; format, writing style, and grammar; and suggestions and potential solutions. Sixty percent reported that application and evaluation of APA style is a concern in their department. Content analysis identified four categories as proposed solutions: consistency, education, resources, and dialogue. On the basis of the feedback of the participants, the CRED program is proposed for the issues that were identified. Copyright 2009, SLACK Incorporated.

  9. Radiation grafted adsorbents for newly emerging environmental applications

    NASA Astrophysics Data System (ADS)

    Mahmoud Nasef, Mohamed; Ting, T. M.; Abbasi, Ali; Layeghi-moghaddam, Alireza; Sara Alinezhad, S.; Hashim, Kamaruddin

    2016-01-01

    Radiation induced grafting (RIG) is acquired to prepare a number of adsorbents for newly emerging environmental applications using a single route involving RIG of glycidymethacrylate (GMA) onto polyethylene-polypropylene (PE-PP) non-woven fabric. The grafted fabric was subjected to one of three functionalization reactions to impart desired ionic characters. This included treatment with (1) N-dimethyl-D-glucamine, (2) triethylamine and (3) triethylamine and alkalisation with KOH. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) were used to study the changes in chemical and physical structures of the obtained fibrous adsorbents. The potential applications of the three adsorbents for removal of boron from solutions, capturing CO2 from CO2/N2 mixtures and catalysing transesterification of triacetin/methanol to methyl acetate (biodiesel) were explored. The obtained fibrous adsorbents provide potential alternatives to granular resins for the investigated applications and require further development.

  10. TESSX: A Mission for Space Exploration with Tethers

    NASA Technical Reports Server (NTRS)

    Cosmo, Mario L.; Lorenzini, Enrico C.; Gramer, Daniel J.; Hoffman, John H.; Mazzoleni, Andre P.

    2005-01-01

    Tethers offer significant potential for substantially increasing payload mass fraction, increasing spacecraft lifetime, enhancing long-term space travel, and enabling the understanding and development of gravity-dependent technologies required for Moon and Mars exploration. The development of the Tether Electrodynamic Spin-up and Survivability Experiment (TESSX) will support applications relevant to NASA's new exploration initiative, including: artificial gravity generation, formation flying, electrodynamic propulsion, momentum exchange, and multi-amp current collection and emission. Under the broad term TESSX, we are currently evaluating several different tether system configurations and operational modes. The initial results of this work are presented, including hardware development, orbital dynamics simulations, and electrodynamics design and analysis.

  11. A Robustness Testing Campaign for IMA-SP Partitioning Kernels

    NASA Astrophysics Data System (ADS)

    Grixti, Stephen; Lopez Trecastro, Jorge; Sammut, Nicholas; Zammit-Mangion, David

    2015-09-01

    With time and space partitioned architectures becoming increasingly appealing to the European space sector, the dependability of partitioning kernel technology is a key factor to its applicability in European Space Agency projects. This paper explores the potential of the data type fault model, which injects faults through the Application Program Interface, in partitioning kernel robustness testing. This fault injection methodology has been tailored to investigate its relevance in uncovering vulnerabilities within partitioning kernels and potentially contributing towards fault removal campaigns within this domain. This is demonstrated through a robustness testing case study of the XtratuM partitioning kernel for SPARC LEON3 processors. The robustness campaign exposed a number of vulnerabilities in XtratuM, exhibiting the potential benefits of using such a methodology for the robustness assessment of partitioning kernels.

  12. Social Bookmarking in Academic Libraries: Trends and Applications

    ERIC Educational Resources Information Center

    Redden, Carla S.

    2010-01-01

    This paper presents an exploration of the potential utilization of social bookmarking web sites by academic libraries. These web sites, which allow users and organizations to create accounts for bookmarking online content, provide academic libraries tools to collaborate and network, organize and share electronic resources and teach information…

  13. Applications of Gopher Information Systems for Composition Classes and Programs.

    ERIC Educational Resources Information Center

    Clark, John M.

    Despite accompanying drawbacks, the Internet information system known as Gopher presents a rich variety of potential benefits to writing pedagogies and to educational administrators. Writing teachers need to overcome tendencies to think of exploration of the Internet information resources as something to be uncritically adopted and as something to…

  14. Physics Meets Biology (LBNL Summer Lecture Series)

    ScienceCinema

    Chu, Steven

    2018-05-09

    Summer Lecture Series 2006: If scientists could take advantage of the awesomely complex and beautiful functioning of biology's natural molecular machines, their potential for application in many disciplines would be incalculable. Nobel Laureate and Director of the Lawrence Berkeley National Laboratory Steve Chu explores Possible solutions to global warming and its consequences.

  15. Using a Language Generation System for Second Language Learning.

    ERIC Educational Resources Information Center

    Levison, Michael; Lessard, Greg

    1996-01-01

    Describes a language generation system, which, given data files describing a natural language, generates utterances of the class the user has specified. The system can exercise control over the syntax, lexicon, morphology, and semantics of the language. This article explores a range of the system's potential applications to second-language…

  16. CMAQ and NPS : exploring the applicability of the Congestion Mitigation and Air Quality Improvement program to NPS transit

    DOT National Transportation Integrated Search

    2014-03-06

    The Congestion Mitigation and Air Quality Improvement (CMAQ) Program is a funding program that was most recently : re-authorized in Moving Ahead for Progress in the 21st Century. CMAQ offers a potential funding opportunity for NPS park units : with e...

  17. Generational Attitudes and Teacher ICT Use

    ERIC Educational Resources Information Center

    Pegler, Karen; Kollewyn, Joan; Crichton, Susan

    2010-01-01

    This paper explores the impact of generational attitudes on teachers' ICT use. Findings from the preliminary research suggest that when applications have a use or purpose that extends beyond the classroom and into their social or personal sphere, younger teachers demonstrate noticeable confidence and a higher potential for technology integration…

  18. How Graphic Novels Support Reading Comprehension Strategy Development in Children

    ERIC Educational Resources Information Center

    Brenna, Beverley

    2013-01-01

    This qualitative case study explored the relationship between comprehension strategies and graphic novels in one Grade 4 classroom, utilising children as informants. The primary research questions related to children's applications of metacognitive reading comprehension strategies as well as the potential for graphic novels to support the…

  19. Ready To Navigate: Classroom GPS Applications.

    ERIC Educational Resources Information Center

    Lucking, Robert A.; Christmann, Edwin P.

    2002-01-01

    Discusses the potential contribution of GPS and related Geographic Information Systems (GIS) technology to education. Provides resources for teachers to plan a lesson on exploring with the help of a GPS device in order to increase students' awareness of their surroundings and broaden understanding of their place in the world. (KHR)

  20. Web-based Communication of Water Quality Issues and Potential Solution Exploration

    EPA Science Inventory

    Many United States water bodies are impaired, i.e., do not meet applicable water quality standards. Pollutants enter water bodies from point sources (PS) and non-point sources (NPS). Loadings from PS are regulated by the Clean Water Act and permits limit them. Loadings from NPS a...

  1. The Archival Photograph and Its Meaning: Formalisms for Modeling Images

    ERIC Educational Resources Information Center

    Benson, Allen C.

    2009-01-01

    This article explores ontological principles and their potential applications in the formal description of archival photographs. Current archival descriptive practices are reviewed and the larger question is addressed: do archivists who are engaged in describing photographs need a more formalized system of representation, or do existing encoding…

  2. Attracting College Candidates: The Impact of Perceived Social Life

    ERIC Educational Resources Information Center

    Capraro, Anthony J.; Patrick, Michelle L.; Wilson, Melissa

    2004-01-01

    This paper explores how perceived attractiveness of the social life at a college/university influences potential applicants' likelihood to request information from, visit and apply to (decision approach actions) that school. Results obtained from a study of high school juniors indicate that attractiveness of social life, defined in terms of…

  3. Faceworking: Exploring Students' Education-Related Use of "Facebook"

    ERIC Educational Resources Information Center

    Selwyn, Neil

    2009-01-01

    Social networking sites such as "Facebook" and "MySpace" have been subject to much recent debate within the educational community. Whilst growing numbers of educators celebrate the potential of social networking to (re)engage learners with their studies, others fear that such applications compromise and disrupt young people's…

  4. Low-Latency Science Exploration of Planetary Bodies: How ISS Might Be Used as Part of a Low-Latency Analog Campaign for Human Exploration

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Valinia, Azita; Bleacher, Jacob; Eigenbrode, Jennifer; Garvin, Jim; Petro, Noah

    2014-01-01

    We suggest that the International Space Station be used to examine the application and validation of low-latency telepresence for surface exploration from space as an alternative, precursor, or potentially as an adjunct to astronaut "boots on the ground." To this end, controlled experiments that build upon and complement ground-based analog field studies will be critical for assessing the effects of different latencies (0 to 500 milliseconds), task complexity, and alternate forms of feedback to the operator. These experiments serve as an example of a pathfinder for NASA's roadmap of missions to Mars with low-latency telerobotic exploration as a precursor to astronaut's landing on the surface to conduct geological tasks.

  5. Low-latency Science Exploration of Planetary Bodies: a Demonstration Using ISS in Support of Mars Human Exploration

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A.; Valinia, Azita; Bleacher, Jacob; Eigenbrode, Jennifer; Garvin, Jim; Petro, Noah

    2014-01-01

    We summarize a proposed experiment to use the International Space Station to formally examine the application and validation of low-latency telepresence for surface exploration from space as an alternative, precursor, or potentially as an adjunct to astronaut "boots on the ground." The approach is to develop and propose controlled experiments, which build upon previous field studies and which will assess the effects of different latencies (0 to 500 msec), task complexity, and alternate forms of feedback to the operator. These experiments serve as an example of a pathfinder for NASA's roadmap of missions to Mars with low-latency telerobotic exploration as a precursor to astronaut's landing on the surface to conduct geological tasks.

  6. Marine Microorganism: An Underexplored Source of l-Asparaginase.

    PubMed

    Prihanto, A A; Wakayama, M

    l-Asparaginase (EC 3.5.1.1) is an enzyme that catalyzes the hydrolysis of l-asparagine to l-aspartic acid. This enzyme has an important role in medicine and food. l-Asparaginase is a potential drug in cancer therapy. Furthermore, it is also applied for reducing acrylamide, a carcinogenic compound in baked and fried foods. Until now, approved l-asparaginases for both applications are few due to their lack of appropriate properties. As a result, researchers have been enthusiastically seeking new sources of enzyme with better performance. A great number of terrestrial l-asparaginase-producing microorganisms have been reported but unfortunately, almost all failed to meet criteria for cancer therapy and acrylamide reducing agent. As a largest area than Earth, marine environment, by contrast, has not been optimally explored yet. So far, a great challenge facing an exploration of marine microorganisms is mainly due to their harsh, mysterious, and dangerous environment. It is clear that marine environment, a gigantic potential source for marine natural products is scantily revealed, although several approaches and technologies have been developed. This chapter presents the historical of l-asparaginase discovery and applications. It is also discussed, how the marine environment, even though offering a great potency but is still one of the less explored area for l-asparaginase-producing microorganisms. © 2016 Elsevier Inc. All rights reserved.

  7. VIRTUAL AVATARS, GAMING, AND SOCIAL MEDIA: DESIGNING A MOBILE HEALTH APP TO HELP CHILDREN CHOOSE HEALTHIER FOOD OPTIONS

    PubMed Central

    Hswen, Yulin; Murti, Vaidhy; Vormawor, Adenugbe A.; Bhattacharjee, Robbie; Naslund, John A.

    2014-01-01

    Background Rapid growth in Smartphone use among children affords potential opportunities to target health behaviors such as dietary habits; however, few mobile health applications are specifically designed with these individuals in mind. This brief report describes our step-by-step approach towards developing a mobile health application for targeting nutrition behaviors among children. Methods Descriptions of the 10 most popular paid and 10 most popular free Smartphone applications available on the Apple iTunes store for ages 4 and up as of March 2012 were qualitatively analyzed. The relevance of key characteristics found in these applications was then further explored for their potential to improve dietary behaviours amongst children, and a mobile application was developed. Results Three prominent characteristics of the most popular applications emerged: 1) virtual avatars or characters (observed in 50% of the applications); 2) gaming (observed in 75% of the applications); and 3) social media (observed in 45% of the applications). These features were then incorporated into the design of a mobile health application called Avafeed, which uses a virtual avatar and gaming to help make choosing healthier food options easier among children. The application was successfully released onto the Apple iTunes Store in September 2012. Conclusions In this unconventional approach, evidence-based research was combined with information procured from a qualitative review of popular applications available on the Apple iTunes Store in order to design a potentially relevant and popular mobile health application for use among children. PMID:25419244

  8. Potential Lunar In-Situ Resource Utilization Experiments and Mission Scenarios

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2010-01-01

    The extraction and use of resources on the Moon, known as In-Situ Resource Utilization (ISRU), can potentially reduce the cost and risk of human lunar exploration while also increasing science achieved. By not having to bring all of the shielding and mission consumables from Earth and being able to make products on the Moon, missions may require less mass to accomplish the same objectives, carry more science equipment, go to more sites of exploration, and/or provide options to recover from failures not possible with delivery of spares and consumables from Earth alone. While lunar ISRU has significant potential for mass, cost, and risk reduction for human lunar missions, it has never been demonstrated before in space. To demonstrate that ISRU can meet mission needs and to increase confidence in incorporating ISRU capabilities into mission architectures, terrestrial laboratory and analog field testing along with robotic precursor missions are required. A stepwise approach with international collaboration is recommended. This paper will outline the role of ISRU in future lunar missions, and define the approach and possible experiments to increase confidence in ISRU applications for future human lunar exploration

  9. Application of support vector machines for copper potential mapping in Kerman region, Iran

    NASA Astrophysics Data System (ADS)

    Shabankareh, Mahdi; Hezarkhani, Ardeshir

    2017-04-01

    The first step in systematic exploration studies is mineral potential mapping, which involves classification of the study area to favorable and unfavorable parts. Support vector machines (SVM) are designed for supervised classification based on statistical learning theory. This method named support vector classification (SVC). This paper describes SVC model, which combine exploration data in the regional-scale for copper potential mapping in Kerman copper bearing belt in south of Iran. Data layers or evidential maps were in six datasets namely lithology, tectonic, airborne geophysics, ferric alteration, hydroxide alteration and geochemistry. The SVC modeling result selected 2220 pixels as favorable zones, approximately 25 percent of the study area. Besides, 66 out of 86 copper indices, approximately 78.6% of all, were located in favorable zones. Other main goal of this study was to determine how each input affects favorable output. For this purpose, the histogram of each normalized input data to its favorable output was drawn. The histograms of each input dataset for favorable output showed that each information layer had a certain pattern. These patterns of SVC results could be considered as regional copper exploration characteristics.

  10. Joint Interpretation of Geological, Magnetic, AMT, and ERT Data for Mineral Exploration in the Northeast of Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Lü, Qing-Tian; Zhang, Gui-Bin; Lin, Ping-Rong; Jia, Zheng-Yuan; Suo, Kui

    2018-03-01

    The integrated interpretation of data from various technologies has the potential to obtain a more accurate estimate of subterranean earth properties. In this paper, we implement the joint interpretation of geological and geophysical data for mineral exploration in the northeastern region of Inner Mongolia, China. The joint application of several methodologies reduces the exploration risk. We first determined an approximate and large potential area for mineral exploration with geological data and magnetic data interpretation in Gaoerqi. Results from the two types of data analysis show that the ore deposit strikes roughly east in the northern part of the Gaoerqi mining area. Next, we employed the audio-magnetotelluric (AMT) method to study the subterranean electrical resistivity distribution and divide the earth into four layers. Inverted resistivity sections from the AMT data illustrate that the ore deposits are likely developed in the low-resistivity zone of the survey area from the land surface to 300-m depth. Finally, the high-resolution borehole-to-surface electrical resistivity tomography (ERT) method was employed for further investigation of the location and attitude of the potential ore deposits. Inverted resistivity sections from the ERT data show that two prospective areas for mineral exploration were observed in the west of the survey area and that the eastern portion of the survey area warrants further investigation.

  11. MisTec - A software application for supporting space exploration scenario options and technology development analysis and planning

    NASA Technical Reports Server (NTRS)

    Horsham, Gary A. P.

    1992-01-01

    This structure and composition of a new, emerging software application, which models and analyzes space exploration scenario options for feasibility based on technology development projections is presented. The software application consists of four main components: a scenario generator for designing and inputting scenario options and constraints; a processor which performs algorithmic coupling and options analyses of mission activity requirements and technology capabilities; a results display which graphically and textually shows coupling and options analysis results; and a data/knowledge base which contains information on a variety of mission activities and (power and propulsion) technology system capabilities. The general long-range study process used by NASA to support recent studies is briefly introduced to provide the primary basis for comparison for discussing the potential advantages to be gained from developing and applying this kind of application. A hypothetical example of a scenario option to facilitate the best conceptual understanding of what the application is, how it works, or the operating methodology, and when it might be applied is presented.

  12. MisTec: A software application for supporting space exploration scenario options and technology development analysis and planning

    NASA Technical Reports Server (NTRS)

    Horsham, Gary A. P.

    1991-01-01

    The structure and composition of a new, emerging software application, which models and analyzes space exploration scenario options for feasibility based on technology development projections is presented. The software application consists of four main components: a scenario generator for designing and inputting scenario options and constraints; a processor which performs algorithmic coupling and options analyses of mission activity requirements and technology capabilities; a results display which graphically and textually shows coupling and options analysis results; and a data/knowledge base which contains information on a variety of mission activities and (power and propulsion) technology system capabilities. The general long-range study process used by NASA to support recent studies is briefly introduced to provide the primary basis for comparison for discussing the potential advantages to be gained from developing and applying this king of application. A hypothetical example of a scenario option to facilitate the best conceptual understanding of what the application is, how it works, or the operating methodology, and when it might be applied is presented.

  13. Potential of Electrospun Nanofibers for Biomedical and Dental Applications

    PubMed Central

    Zafar, Muhammad; Najeeb, Shariq; Khurshid, Zohaib; Vazirzadeh, Masoud; Zohaib, Sana; Najeeb, Bilal; Sefat, Farshid

    2016-01-01

    Electrospinning is a versatile technique that has gained popularity for various biomedical applications in recent years. Electrospinning is being used for fabricating nanofibers for various biomedical and dental applications such as tooth regeneration, wound healing and prevention of dental caries. Electrospun materials have the benefits of unique properties for instance, high surface area to volume ratio, enhanced cellular interactions, protein absorption to facilitate binding sites for cell receptors. Extensive research has been conducted to explore the potential of electrospun nanofibers for repair and regeneration of various dental and oral tissues including dental pulp, dentin, periodontal tissues, oral mucosa and skeletal tissues. However, there are a few limitations of electrospinning hindering the progress of these materials to practical or clinical applications. In terms of biomaterials aspects, the better understanding of controlled fabrication, properties and functioning of electrospun materials is required to overcome the limitations. More in vivo studies are definitely required to evaluate the biocompatibility of electrospun scaffolds. Furthermore, mechanical properties of such scaffolds should be enhanced so that they resist mechanical stresses during tissue regeneration applications. The objective of this article is to review the current progress of electrospun nanofibers for biomedical and dental applications. In addition, various aspects of electrospun materials in relation to potential dental applications have been discussed. PMID:28787871

  14. CRISPR/Cas9: at the cutting edge of hepatology

    PubMed Central

    Pankowicz, Francis P; Jarrett, Kelsey E; Lagor, William R; Bissig, Karl-Dimiter

    2018-01-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 genome engineering has revolutionised biomedical science and we are standing on the cusp of medical transformation. The therapeutic potential of this technology is tremendous, however, its translation to the clinic will be challenging. In this article, we review recent progress using this genome editing technology and explore its potential uses in studying and treating diseases of the liver. We discuss the development of new research tools and animal models as well as potential clinical applications, strategies and challenges. PMID:28487442

  15. Applications of the Analytical Electron Microscope to Materials Science

    NASA Technical Reports Server (NTRS)

    Goldstein, J. I.

    1992-01-01

    In the last 20 years, the analytical electron microscope (AEM) as allowed investigators to obtain chemical and structural information from less than 50 nanometer diameter regions in thin samples of materials and to explore problems where reactions occur at boundaries and interfaces or within small particles or phases in bulk samples. Examples of the application of the AEM to materials science problems are presented in this paper and demonstrate the usefulness and the future potential of this instrument.

  16. Low-dimensional materials for organic electronic applications

    NASA Astrophysics Data System (ADS)

    Beniwal, Sumit

    This thesis explores the self-assembly, surface interactions and electronic properties of functional molecules that have potential applications in electronics. Three classes of molecules - organic ferroelectric, spin-crossover complex, and molecules that assemble into a 2D semiconductor, have been studied through scanning tunneling microscopy and surfacesensitive spectroscopic methods. The scientific goal of this thesis is to understand the self-assembly of these molecules in low-dimensional (2D) configurations and the influence of substrate on their properties.

  17. Recognizing and exploring the right questions with climate data: An example of better understanding ENSO in climate projections

    NASA Astrophysics Data System (ADS)

    Ammann, C. M.; Brown, B.; Kalb, C. P.; Bullock, R.; Buja, L.; Gutowski, W. J., Jr.; Halley-Gotway, J.; Kaatz, L.; Yates, D. N.

    2017-12-01

    Coordinated, multi-model climate change projection archives have already led to a flourishing of new climate impact applications. Collections and online tools for the computation of derived indicators have attracted many non-specialist users and decision-makers and facilitated for them the exploration of potential future weather and climate changes on their systems. Guided by a set of standardized steps and analyses, many can now use model output and determine basic model-based changes. But because each application and decision-context is different, the question remains if such a small collection of standardized tools can faithfully and comprehensively represent the critical physical context of change? We use the example of the El Niño - Southern Oscillation, the largest and most broadly recognized mode of variability in the climate system, to explore the difference in impact contexts between a quasi-blind, protocol-bound and a flexible, scientifically guided use of climate information. More use oriented diagnostics of the model-data as well as different strategies for getting data into decision environments are explored.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klawitter, A.L.; Hoak, T.E.; Decker, A.D.

    In 1993, the San Juan Basin accounted for approximately 605 Bcf of the 740 Bcf of all coalbed gas produced in the United States. The San Juan {open_quotes}cavitation fairway{close_quotes} in which production occurs in open-hole cavity completions, is responsible for over 60% of all U.S. coalbed methane production. Perhaps most striking is the fact that over 17,000 wells had penetrated the Fruitland formation in the San Juan Basin prior to recognition of the coalbed methan potential. To understand the dynamic cavity fairway reservoir in the San Juan Basin, an exploration rationale for coalbed methan was developed that permits a sequentialmore » reduction in total basin exploration area based on four primary exploration criteria. One of the most significant criterion is the existence of thick, thermally mature, friable coals. A second criterion is the existence of fully gas-charged coals. Evaluation of this criterion requires reservoir geochemical data to delineate zones of meteoric influx where breaching has occurred. A third criterion is the presence of adequate reservoir permeability. Natural fracturing in coals is due to cleating and tectonic processes. Because of the general relationship between coal cleating and coal rank, coal cleating intensity can be estimated by analysis of regional coal rank maps. The final criterion is determining whether natural fractures are open or closed. To make this determination, remote sensing imagery interpretation is supported by ancillary data compiled from regional tectonic studies. Application of these four criteria to the San Juan Basin in a heuristic, stepwise process resulted in an overall 94% reduction in total basin exploration area. Application of the first criterion reduced the total basin exploration area by 80%. Application of the second criterion further winnows this area by an addition 9%. Application of the third criterion reduces the exploration area to 6% of the total original exploration area.« less

  19. Synthesis and Biomedical Applications of Copper Sulfide Nanoparticles: From Sensors to Theranostics

    PubMed Central

    Goel, Shreya; Chen, Feng; Cai, Weibo

    2013-01-01

    Copper sulfide (CuS) nanoparticles have attracted increasing attention from biomedical researchers across the globe, because of their intriguing properties which have been mainly explored for energy- and catalysis-related applications to date. This focused review article aims to summarize the recent progress made in the synthesis and biomedical applications of various CuS nanoparticles. After a brief introduction to CuS nanoparticles in the first section, we will provide a concise outline of the various synthetic routes to obtain different morphologies of CuS nanoparticles, which can influence their properties and potential applications. CuS nanoparticles have found broad applications in vitro, especially in the detection of biomolecules, chemicals, and pathogens which will be illustrated in detail. The in vivo uses of CuS nanoparticles have also been investigated in preclinical studies, including molecular imaging with various techniques, cancer therapy based on the photothermal properties of CuS, as well as drug delivery and theranostic applications. Research on CuS nanoparticles will continue to thrive over the next decade, and tremendous opportunities lie ahead for potential biomedical/clinical applications of CuS nanoparticles. PMID:24106015

  20. Review of MR Elastography Applications and Recent Developments

    PubMed Central

    Glaser, Kevin J.; Manduca, Armando; Ehman, Richard L.

    2012-01-01

    The technique of MR elastography (MRE) has emerged as a useful modality for quantitatively imaging the mechanical properties of soft tissues in vivo. Recently, MRE has been introduced as a clinical tool for evaluating chronic liver disease, but many other potential applications are being explored. These applications include measuring tissue changes associated with diseases of the liver, breast, brain, heart, and skeletal muscle including both focal lesions (e.g., hepatic, breast, and brain tumors) and diffuse diseases (e.g., fibrosis and multiple sclerosis). The purpose of this review article is to summarize some of the recent developments of MRE and to highlight some emerging applications. PMID:22987755

  1. Applications of pain-related evoked potentials and short-latency somatosensory evoked potentials in acupuncture research: a narrative review.

    PubMed

    Lin, Chi; Ma, Liangxiao; Zhu, Shipeng; Hu, Nijuan; Wang, Pei; Zhang, Peng; Qi, Dandan; Hao, Jie; Li, Jing; Xin, Siyuan; Zhu, Jiang

    2015-10-01

    To review and discuss the Chinese and English literature on the use of pain-related evoked potentials (PREP) and short-latency somatosensory EP (SLSEP) in acupuncture research. China National Knowledge Infrastructure Database and MEDLINE were searched for the following key words: acupuncture and PREP or SLSEP. Thirty-seven articles were included in the review. Researchers usually use PREPs to study the analgesic effect of acupuncture, observe influential factors, or for mechanistic exploration. In the SLSEP studies, researchers focused on response characteristics of acupuncture, acupoint specificity, and influential factors of the treatment. There were some problems with the study design and conclusions. Researchers could use PREP and SLSEP to objectively validate the effects of acupuncture and explore its mechanisms using nerve electrophysiology. Further studies can benefit from observing more acupoints' effects using PREPs or SLSEPs and investigating the placebo effect of acupuncture.

  2. GSFC Information Systems Technology Developments Supporting the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Hughes, Peter; Dennehy, Cornelius; Mosier, Gary; Smith, Dan; Rykowski, Lisa

    2004-01-01

    The Vision for Space Exploration will guide NASA's future human and robotic space activities. The broad range of human and robotic missions now being planned will require the development of new system-level capabilities enabled by emerging new technologies. Goddard Space Flight Center is actively supporting the Vision for Space Exploration in a number of program management, engineering and technology areas. This paper provides a brief background on the Vision for Space Exploration and a general overview of potential key Goddard contributions. In particular, this paper focuses on describing relevant GSFC information systems capabilities in architecture development; interoperable command, control and communications; and other applied information systems technology/research activities that are applicable to support the Vision for Space Exploration goals. Current GSFC development efforts and task activities are presented together with future plans.

  3. Remote mineral mapping using AVIRIS data at Summitville, Colorado and the adjacent San Juan Mountains

    NASA Technical Reports Server (NTRS)

    King, Trude V. V.; Clark, Roger N.; Ager, Cathy; Swayze, Gregg A.

    1995-01-01

    We have demonstrated the unique utility of imaging spectroscopy in mapping mineral distribution. In the Summitville mining region we have shown that the mine site does not contribute clay minerals to the Alamosa River, but does contribute Fe-bearing minerals. Such minerals have the potential to carry heavy metals. This application illustrates only one specific environmental application of imaging spectroscopy data. For instance, the types of minerals we can map with confidence are those frequently associated with environmental problems related to active and abandoned mine lands. Thus, the potential utility of this technology to the field of environmental science has yet to be fully explored.

  4. Use of indocyanine green angiography in microsurgical subinguinal varicocelectomy - lessons learned from our initial experience.

    PubMed

    Cho, Chak-Lam; Ho, Kwan-Lun; Chan, Wayne Kwun-Wai; Chu, Ringo Wing-Hong; Law, In-Chak

    2017-01-01

    Microsurgical subinguinal varicocelectomy (MSV) is generally considered the gold standard nowadays in view of the lower risk of complications and recurrence. To achieve complete ligation of veins while preserving testicular artery (TA) during the procedure remains challenging despite the application of high power optical magnification and micro-Doppler ultrasonography. The use of intraoperative indocyanine green angiography (ICGA) with infrared fluorescence operative micro-scope in MSV potentially lowers the incidence of TA injury and shortens the learning curve of nov-ice surgeons. We present our initial experience in the application of the technique in nine patients and explore the potential of the new adjunct. Copyright® by the International Brazilian Journal of Urology.

  5. Small Solar Electric Propulsion Spacecraft Concept for Near Earth Object and Inner Solar System Missions

    NASA Technical Reports Server (NTRS)

    Lang, Jared J.; Randolph, Thomas M.; McElrath, Timothy P.; Baker, John D.; Strange, Nathan J.; Landau, Damon; Wallace, Mark S.; Snyder, J. Steve; Piacentine, Jamie S.; Malone, Shane; hide

    2011-01-01

    Near Earth Objects (NEOs) and other primitive bodies are exciting targets for exploration. Not only do they provide clues to the early formation of the universe, but they also are potential resources for manned exploration as well as provide information about potential Earth hazards. As a step toward exploration outside Earth's sphere of influence, NASA is considering manned exploration to Near Earth Asteroids (NEAs), however hazard characterization of a target is important before embarking on such an undertaking. A small Solar Electric Propulsion (SEP) spacecraft would be ideally suited for this type of mission due to the high delta-V requirements, variety of potential targets and locations, and the solar energy available in the inner solar system.Spacecraft and mission trades have been performed to develop a robust spacecraft design that utilizes low cost, off-the-shelf components that could accommodate a suite of different scientific payloads for NEO characterization. Mission concepts such as multiple spacecraft each rendezvousing with different NEOs, single spacecraft rendezvousing with separate NEOs, NEO landers, as well as other inner solar system applications (Mars telecom orbiter) have been evaluated. Secondary launch opportunities using the Expendable Secondary Payload Adapter (ESPA) Grande launch adapter with unconstrained launch dates have also been examined.

  6. Composite materials for rail transit systems

    NASA Technical Reports Server (NTRS)

    Griffin, O. Hayden, Jr.; Guerdal, Zafer; Herakovich, Carl T.

    1987-01-01

    The potential is explored for using composite materials in urban mass transit systems. The emphasis was to identify specific advantages of composite materials in order to determine their actual and potential usage for carbody and guideway structure applications. The literature was reviewed, contacts were made with major domestic system operators, designers, and builders, and an analysis was made of potential composite application to railcar construction. Composites were found to be in use throughout the transit industry, usually in secondary or auxiliary applications such as car interior and nonstructural exterior panels. More recently, considerable activity has been initiated in the area of using composites in the load bearing elements of civil engineering structures such as highway bridges. It is believed that new and improved manufacturing refinements in pultrusion and filament winding will permit the production of beam sections which can be used in guideway structures. The inherent corrosion resistance and low maintenance characteristics of composites should result in lowered maintenance costs over a prolonged life of the structure.

  7. Solid Freeform Fabrication: An Enabling Technology for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. B.; Hafley, Robert A.; Dicus, Dennis L.

    2002-01-01

    The emerging class of direct manufacturing processes known as Solid Freeform Fabrication (SFF) employs a focused energy beam and metal feedstock to build structural parts directly from computer aided design (CAD) data. Some variations on existing SFF techniques have potential for application in space for a variety of different missions. This paper will focus on three different applications ranging from near to far term to demonstrate the widespread potential of this technology for space-based applications. One application is the on-orbit construction of large space structures, on the order of tens of meters to a kilometer in size. Such structures are too large to launch intact even in a deployable design; their extreme size necessitates assembly or erection of such structures in space. A low-earth orbiting satellite with a SFF system employing a high-energy beam for high deposition rates could be employed to construct large space structures using feedstock launched from Earth. A second potential application is a small, multifunctional system that could be used by astronauts on long-duration human exploration missions to manufacture spare parts. Supportability of human exploration missions is essential, and a SFF system would provide flexibility in the ability to repair or fabricate any part that may be damaged or broken during the mission. The system envisioned would also have machining and welding capabilities to increase its utility on a mission where mass and volume are extremely limited. A third example of an SFF application in space is a miniaturized automated system for structural health monitoring and repair. If damage is detected using a low power beam scan, the beam power can be increased to perform repairs within the spacecraft or satellite structure without the requirement of human interaction or commands. Due to low gravity environment for all of these applications, wire feedstock is preferred to powder from a containment, handling, and safety standpoint. The energy beams may be either electron beam or laser, and the developments required for either energy source to achieve success in these applications will be discussed.

  8. Analysis on the emission and potential application of Cherenkov radiation in boron neutron capture therapy: A Monte Carlo simulation study.

    PubMed

    Shu, Di-Yun; Geng, Chang-Ran; Tang, Xiao-Bin; Gong, Chun-Hui; Shao, Wen-Cheng; Ai, Yao

    2018-07-01

    This paper was aimed to explore the physics of Cherenkov radiation and its potential application in boron neutron capture therapy (BNCT). The Monte Carlo toolkit Geant4 was used to simulate the interaction between the epithermal neutron beam and the phantom containing boron-10. Results showed that Cherenkov photons can only be generated from secondary charged particles of gamma rays in BNCT, in which the 2.223 MeV prompt gamma rays are the main contributor. The number of Cherenkov photons per unit mass generated in the measurement region decreases linearly with the increase of boron concentration in both water and tissue phantom. The work presented the fundamental basis for applications of Cherenkov radiation in BNCT. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The Potential Application of Raw Cadmium Sulfide Nanoparticles as CT Photographic Developer

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Huang, Lingxin; Li, Zhan; An, Wenzhen; Liu, Dan; Lin, Jin; Tian, Longlong; Wang, Xinling; Liu, Bo; Qi, Wei; Wu, Wangsuo

    2016-04-01

    With the development of science and technology, new applications about nanoparticles should be explored to achieve full-scale knowledge. Therefore, in this work, the toxicity and potential application of raw cadmium sulfide nanoparticles (CdS) in vivo were further studied through ICP-OES and CTs. Surprisingly, CdS exhibited an excellent photographic property, except for finding the accumulation of CdS in the lungs, liver, spleen, and kidney with a strong dependence on time; it is also found that there were a significant uptake in the pancreas for an obvious CT imaging. And the following investigations showed that the raw CdS could damage the tissues accumulating nanoparticles. Through this work, it can be seen that the raw CdS being modified might be an excellent photographic developer for detecting cancers or other diseases.

  10. Dielectrophoresis for Biomedical Sciences Applications: A Review

    PubMed Central

    Abd Rahman, Nurhaslina; Ibrahim, Fatimah; Yafouz, Bashar

    2017-01-01

    Dielectrophoresis (DEP) is a label-free, accurate, fast, low-cost diagnostic technique that uses the principles of polarization and the motion of bioparticles in applied electric fields. This technique has been proven to be beneficial in various fields, including environmental research, polymer research, biosensors, microfluidics, medicine and diagnostics. Biomedical science research is one of the major research areas that could potentially benefit from DEP technology for diverse applications. Nevertheless, many medical science research investigations have yet to benefit from the possibilities offered by DEP. This paper critically reviews the fundamentals, recent progress, current challenges, future directions and potential applications of research investigations in the medical sciences utilizing DEP technique. This review will also act as a guide and reference for medical researchers and scientists to explore and utilize the DEP technique in their research fields. PMID:28245552

  11. 4D printing of a self-morphing polymer driven by a swellable guest medium.

    PubMed

    Su, Jheng-Wun; Tao, Xiang; Deng, Heng; Zhang, Cheng; Jiang, Shan; Lin, Yuyi; Lin, Jian

    2018-01-31

    There is a significant need of advanced materials that can be fabricated into functional devices with defined three-dimensional (3D) structures for application in tissue engineering, flexible electronics, and soft robotics. This need motivates an emerging four-dimensional (4D) printing technology, by which printed 3D structures consisting of active materials can transform their configurations over time in response to stimuli. Despite the ubiquity of active materials in performing self-morphing processes, their potential for 4D printing has not been fully explored to date. In this study, we demonstrate 4D printing of a commercial polymer, SU-8, which has not been reported to date in this field. The working principle is based on a self-morphing process of the printed SU-8 structures through spatial control of the swelling medium inside the polymer matrix by a modified process. To understand the self-morphing behavior, fundamental studies on the effect of the geometries including contours and filling patterns were carried out. A soft electronic device as an actuator was demonstrated to realize an application of this programmable polymer using the 3D printing technology. These studies provide a new paradigm for application of SU-8 in 4D printing, paving a new route to the exploration of more potential candidates by this demonstrated strategy.

  12. Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems

    DOE PAGES

    Phan, Manh-Huong; Alonso, Javier; Khurshid, Hafsa; ...

    2016-11-23

    The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and relatedmore » phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications.« less

  13. Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phan, Manh-Huong; Alonso, Javier; Khurshid, Hafsa

    The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and relatedmore » phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications.« less

  14. Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems

    PubMed Central

    Phan, Manh-Huong; Alonso, Javier; Khurshid, Hafsa; Lampen-Kelley, Paula; Chandra, Sayan; Stojak Repa, Kristen; Nemati, Zohreh; Das, Raja; Iglesias, Óscar; Srikanth, Hariharan

    2016-01-01

    The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and related phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications. PMID:28335349

  15. Green and Smart: Hydrogels to Facilitate Independent Practical Learning

    ERIC Educational Resources Information Center

    Hurst, Glenn A.

    2017-01-01

    A laboratory experiment was developed to enable students to investigate the use of smart hydrogels for potential application in targeted drug delivery. This is challenging for students to explore practically because of the extremely high risks of handling cross-linking agents such as glutaraldehyde. Genipin is a safe and green alternative that has…

  16. Mobile Assisted Language Learning: Review of the Recent Applications of Emerging Mobile Technologies

    ERIC Educational Resources Information Center

    Yang, Jaeseok

    2013-01-01

    As mobile computing technologies have been more powerful and inclusive in people's daily life, the issue of mobile assisted language learning (MALL) has also been widely explored in CALL research. Many researches on MALL consider the emerging mobile technologies have considerable potentials for the effective language learning. This review study…

  17. Exploring Students' Acceptance of Team Messaging Services: The Roles of Social Presence and Motivation

    ERIC Educational Resources Information Center

    Huang, Yong-Ming

    2017-01-01

    Team messaging services represent a type of cloud computing applications that support not only the messaging among users but also the collaboration in a team. Accordingly, team messaging services have great potential to facilitate students' collaboration. However, only few studies utilized such services to support students' collaboration and…

  18. GMR-based PhC biosensor: FOM analysis and experimental studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syamprasad, Jagadeesh; Narayanan, Roshni; Joseph, Joby

    2014-02-20

    Guided Mode Resonance based Photonic crystal biosensor has a lot of potential applications. In our work, we are trying to improve their figure of merit values in order to achieve an optimum level through design and fabrication techniques. A robust and low-cost alternative for current biosensors is also explored through this research.

  19. Work-Life Benefits and Job Pursuit Intentions: The Role of Anticipated Organizational Support

    ERIC Educational Resources Information Center

    Casper, Wendy J.; Buffardi, Louis C.

    2004-01-01

    The current study examined the impact of two work-life benefits, work schedule flexibility, and dependent care assistance, on applicants' intentions to pursue jobs with potential employers. The study also explored whether anticipated organizational support would mediate the relationships between these two work-life benefits and job pursuit…

  20. The Potential of Artificial Intelligence in Aids for the Disabled.

    ERIC Educational Resources Information Center

    Boyer, John J.

    The paper explores the possibilities for applying the knowledge of artificial intelligence (AI) research to aids for the disabled. Following a definition of artificial intelligence, the paper reviews areas of basic AI research, such as computer vision, machine learning, and planning and problem solving. Among application areas relevant to the…

  1. Resilience and Impact of Children's Intellectual Disability on Indian Parents

    ERIC Educational Resources Information Center

    Rajan, Anugraha Merin; John, Romate

    2017-01-01

    Resilience of parents in the context of raising a child with intellectual disability is gaining attention as a mechanism that addresses their inherent strengths to withstand the potential associated strain. Understanding its underlying factors has applications in fostering their resilience. The present study explored the resilience of parents and…

  2. Thermal decomposition reactions of cotton fabric treated with piperazine-phosphonates derivatives as a flame retardant

    USDA-ARS?s Scientific Manuscript database

    There has been a great scientific interest in exploring the great potential of the piperazine-phosphonates in flame retardant (FR) application on cotton fabric by investigating the thermal decomposition of cotton fabric treated with them. This research tries to understand the mode of action of the t...

  3. Youth Sports Clubs' Potential as Health-Promoting Setting: Profiles, Motives and Barriers

    ERIC Educational Resources Information Center

    Meganck, Jeroen; Scheerder, Jeroen; Thibaut, Erik; Seghers, Jan

    2015-01-01

    Setting and Objective: For decades, the World Health Organisation has promoted settings-based health promotion, but its application to leisure settings is minimal. Focusing on organised sports as an important leisure activity, the present study had three goals: exploring the health promotion profile of youth sports clubs, identifying objective…

  4. High Speed Computing, LANs, and WAMs

    NASA Technical Reports Server (NTRS)

    Bergman, Larry A.; Monacos, Steve

    1994-01-01

    Optical fiber networks may one day offer potential capacities exceeding 10 terabits/sec. This paper describes present gigabit network techniques for distributed computing as illustrated by the CASA gigabit testbed, and then explores future all-optic network architectures that offer increased capacity, more optimized level of service for a given application, high fault tolerance, and dynamic reconfigurability.

  5. The New Epistemology and the Milan Approach: Feminist and Sociopolitical Considerations.

    ERIC Educational Resources Information Center

    MacKinnon, Laurie Katherine; Miller, Dusty

    1987-01-01

    Explores the sociopolitical implications of the new epistemology and the Milan approach, concluding that, while second order cybernetics has greater potential to incorporate a radical social analysis, it has, nevertheless, failed to do so. The application of second order cybernetics in family therapy appears to be constrained by the sociopolitical…

  6. An Exploration of the Potential Impact of the Integrated Experiential Learning Curriculum in Beijing, China

    ERIC Educational Resources Information Center

    Zhang, Danhui; Campbell, Todd

    2012-01-01

    This study examines the effectiveness of the Integrated Experiential Learning Curriculum (IELC) in China. This curriculum was developed to engage Chinese elementary students in science to cultivate a scientifically literate society by focusing science instruction on practical applications of scientific knowledge. Cornerstones of the approach…

  7. Solidifying Segregation or Promoting Diversity? School Closure and Rezoning in an Urban District

    ERIC Educational Resources Information Center

    Siegel-Hawley, Genevieve; Bridges, Kimberly; Shields, Thomas J.

    2017-01-01

    Purpose: Layered with myriad considerations, school closure and rezoning processes in urban school systems are politically fraught with the potential for damaging consequences. This article explores the politics and impacts of a closure and rezoning process in Richmond, Virginia, through the lens of themes applicable to urban school systems and…

  8. Applications of Text Analysis Tools for Spoken Response Grading

    ERIC Educational Resources Information Center

    Crossley, Scott; McNamara, Danielle

    2013-01-01

    This study explores the potential for automated indices related to speech delivery, language use, and topic development to model human judgments of TOEFL speaking proficiency in second language (L2) speech samples. For this study, 244 transcribed TOEFL speech samples taken from 244 L2 learners were analyzed using automated indices taken from…

  9. EasyLexia 2.0: Redesigning Our Mobile Application for Children with Learning Difficulties

    ERIC Educational Resources Information Center

    Skiada, Roxani; Soroniati, Eva; Gardeli, Anna; Zissis, Dimitrios

    2014-01-01

    Dyslexia is one of the most common learning difficulties affecting approximately 15 to 20 per cent of the world's population. A large amount of research is currently being conducted in exploring the potential benefits of using Information & Communication Technologies as a learning platform for individuals and especially children with such…

  10. The NASA Electric Propulsion Program

    NASA Technical Reports Server (NTRS)

    Byers, David C.; Wasel, Robert A.

    1987-01-01

    The NASA OAST Propulsion, Power and Energy Division supports electric propulsion for a broad class of missions. Concepts with potential to significantly benefit or enable space exploration and exploitation are identified and advanced toward applications in the near to far term. Recent program progress in mission/system analyses and in electrothermal, ion, and electromagnetic technologies are summarized.

  11. Integrating Geospatial Technologies into Existing Teacher Education Coursework: Theoretical and Practical Notes from the Field

    ERIC Educational Resources Information Center

    Kerr, Stacey

    2016-01-01

    Although instruction related to learning management systems and other educational applications in teacher education programs has increased, the potential of geospatial technologies has yet to be widely explored and considered in the teacher education literature, despite its ability to function as an engaging pedagogical tool with teacher…

  12. Optical information processing for NASA's space exploration

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Ochoa, Ellen; Juday, Richard

    1990-01-01

    The development status of optical processing techniques under development at NASA-JPL, NASA-Ames, and NASA-Johnson, is evaluated with a view to their potential applications in future NASA planetary exploration missions. It is projected that such optical processing systems can yield major reductions in mass, volume, and power requirements relative to exclusively electronic systems of comparable processing capabilities. Attention is given to high-order neural networks for distortion-invariant classification and pattern recognition, multispectral imaging using an acoustooptic tunable filter, and an optical matrix processor for control problems.

  13. Analysis Insights: Energy Storage - Possibilities for Expanding Electric Grid Flexibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-02-01

    NREL Analysis Insights mines our body of analysis work to synthesize topical insights and key findings. In this issue, we explore energy storage and the role it is playing and could potentially play in increasing grid flexibility and renewable energy integration. We explore energy storage as one building block for a more flexible power system, policy and R and D as drivers of energy storage deployment, methods for valuing energy storage in grid applications, ways that energy storage supports renewable integration, and emerging opportunities for energy storage in the electric grid.

  14. Next Generation P-Band Planetary Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael; Carter, Lynn; Lu, Dee Pong Daniel

    2016-01-01

    The Space Exploration Synthetic Aperture Radar (SESAR) is an advanced P-band beamforming radar instrument concept to enable a new class of observations suitable to meet Decadal Survey science goals for planetary exploration. The radar operates at full polarimetry and fine (meter scale) resolution, and achieves beam agility through programmable waveform generation and digital beamforming. The radar architecture employs a novel low power, lightweight design approach to meet stringent planetary instrument requirements. This instrument concept has the potential to provide unprecedented surface and near- subsurface measurements applicable to multiple DecadalSurvey Science Goals.

  15. Next Generation P-Band Planetary Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael; Carter, Lynn; Lu, Dee Pong Daniel

    2017-01-01

    The Space Exploration Synthetic Aperture Radar (SESAR) is an advanced P-band beamforming radar instrument concept to enable a new class of observations suitable to meet Decadal Survey science goals for planetary exploration. The radar operates at full polarimetry and fine (meter scale) resolution, and achieves beam agility through programmable waveform generation and digital beamforming. The radar architecture employs a novel low power, lightweight design approach to meet stringent planetary instrument requirements. This instrument concept has the potential to provide unprecedented surface and near- subsurface measurements applicable to multiple Decadal Survey Science Goals.

  16. Polarimetric Multispectral Imaging Technology

    NASA Technical Reports Server (NTRS)

    Cheng, L.-J.; Chao, T.-H.; Dowdy, M.; Mahoney, C.; Reyes, G.

    1993-01-01

    The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration.

  17. FM-UWB: Towards a Robust, Low-Power Radio for Body Area Networks

    PubMed Central

    Kopta, Vladimir; Farserotu, John; Enz, Christian

    2017-01-01

    The Frequency Modulated Ultra-Wideband (FM-UWB) is known as a low-power, low-complexity modulation scheme targeting low to moderate data rates in applications such as wireless body area networks. In this paper, a thorough review of all FM-UWB receivers and transmitters reported in literature is presented. The emphasis is on trends in power reduction that exhibit an improvement by a factor 20 over the past eight years, showing the high potential of FM-UWB. The main architectural and circuit techniques that have led to this improvement are highlighted. Seldom explored potential of using higher data rates and more complex modulations is demonstrated as a way to increase energy efficiency of FM-UWB. Multi-user communication over a single Radio Frequency (RF) channel is explored in more depth and multi-channel transmission is proposed as an extension of standard FM-UWB. The two techniques provide means of decreasing network latency, improving performance, and allow the FM-UWB to accommodate the increasing number of sensor nodes in the emerging applications such as High-Density Wireless Sensor Networks. PMID:28481248

  18. Reconfigurable, Intelligently-Adaptive, Communication System, an SDR Platform

    NASA Technical Reports Server (NTRS)

    Roche, Rigoberto

    2016-01-01

    The Space Telecommunications Radio System (STRS) provides a common, consistent framework to abstract the application software from the radio platform hardware. STRS aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. The Glenn Research Center (GRC) team made a software-defined radio (SDR) platform STRS compliant by adding an STRS operating environment and a field programmable gate array (FPGA) wrapper, capable of implementing each of the platforms interfaces, as well as a test waveform to exercise those interfaces. This effort serves to provide a framework toward waveform development on an STRS compliant platform to support future space communication systems for advanced exploration missions. Validated STRS compliant applications provided tested code with extensive documentation to potentially reduce risk, cost and efforts in development of space-deployable SDRs. This paper discusses the advantages of STRS, the integration of STRS onto a Reconfigurable, Intelligently-Adaptive, Communication System (RIACS) SDR platform, the sample waveform, and wrapper development efforts. The paper emphasizes the infusion of the STRS Architecture onto the RIACS platform for potential use in next generation SDRs for advance exploration missions.

  19. Introducing ZORA to Children with Severe Physical Disabilities.

    PubMed

    van den Heuvel, Renée; Lexis, Monique; de Witte, Luc

    2017-01-01

    The aim of the present study was to explore the potential of a ZORA-robot based intervention in rehabilitation and special education for children with (severe) physical disabilities from the professionals perspective. The qualitative results of this study will be presented. Professionals indicated meaningful application possibilities for ZORA. Overall, ZORA was able to improve motivation, concentration, taking initiative and attention span. Three domains could be identified to be most promising for application of ZORA: (re)learning of movement skills, cognitive skills and communication/social interaction skills.

  20. Direct hyperpolarization of micro- and nanodiamonds for bioimaging applications - Considerations on particle size, functionalization and polarization loss

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Grzegorz; Jähnig, Fabian; Steinhauser, Jonas; Wespi, Patrick; Ernst, Matthias; Kozerke, Sebastian

    2018-01-01

    Due to the inherently long relaxation time of 13C spins in diamond, the nuclear polarization enhancement obtained with dynamic nuclear polarization can be preserved for a time on the order of about one hour, opening up an opportunity to use diamonds as a new class of long-lived contrast agents. The present communication explores the feasibility of using 13C spins in directly hyperpolarized diamonds for MR imaging including considerations for potential in vivo applications.

  1. Solar photovoltaics for development applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepperd, L.W.; Richards, E.H.

    1993-08-01

    This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

  2. In Situ Surveying of Saturn's Rings

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Cheung, C.

    2004-01-01

    The Saturn Autonomous Ring Array (SARA) mission concept is a new application for the Autonomous Nano-Technology Swarm (ANTS) architecture, a paradigm being developed for exploration of high surface area and/or multibody targets to minimize costs and maximize effectiveness of survey operations. Systems designed with ANTS architecture are built from potentially very large numbers of highly autonomous, yet socially interactive, specialists, in approximately ten specialist classes. Here, we analyze requirements for such a mission as well as specialized autonomous operations which would support this application.

  3. Unlocking the potential of CRISPR technology for improving livelihoods in Africa.

    PubMed

    Mudziwapasi, Reagan; Ndudzo, Abigarl; Nyamusamba, Rutendo Patricia; Jomane, Fortune Ntengwa; Mutengwa, Tendai Trudor; Maphosa, Mcebisi

    2018-06-11

    Africa is burdened with food shortages and plant, animal and human diseases. Some of these can be ameliorated by adopting genome editing technologies such as CRISPR. This technology is considered better than its predecessors, Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), because it is cheaper, easy to use, has high gene modification efficiency and is less time consuming. CRISPR technology has wide applications in the African context ranging from crop and animal improvement to disease diagnosis and treatment as well as improving food shelf life, organoleptic properties and food safety. It has the potential to bring back species of organisms that are extinct. However, some African countries have not taken advantage of the potential of CRISPR to solve many of their problems. This paper explores possible applications of CRISPR towards improvement of African livelihoods.

  4. Natural melanin: a potential pH-responsive drug release device.

    PubMed

    Araújo, Marco; Viveiros, Raquel; Correia, Tiago R; Correia, Ilídio J; Bonifácio, Vasco D B; Casimiro, Teresa; Aguiar-Ricardo, Ana

    2014-07-20

    This work proposes melanin as a new nanocarrier for pH-responsive drug release. Melanin is an abundant natural polymer that can be easily extracted from cuttlefish as nanoparticles with a suitable size range for drug delivery. However, despite its high potentiality, the application of this biopolymer in the pharmaceutical and biomedical fields is yet to be explored. Herein, melanin nanoparticles were impregnated with metronidazole, chosen as model antibiotic drug, using supercritical carbon dioxide. The drug release profile was investigated at acidic and physiologic pH, and the dominant mechanism was found to follow a non-Fickian transport. Drug release from melanin shows a strong pH dependency, which allied to its biocompatibility and lack of cytotoxicity envisages its potential application as nanocarrier in formulations for colon and intestine targeted drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. BEEHAVE: a systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure

    PubMed Central

    Becher, Matthias A; Grimm, Volker; Thorbek, Pernille; Horn, Juliane; Kennedy, Peter J; Osborne, Juliet L

    2014-01-01

    A notable increase in failure of managed European honeybee Apis mellifera L. colonies has been reported in various regions in recent years. Although the underlying causes remain unclear, it is likely that a combination of stressors act together, particularly varroa mites and other pathogens, forage availability and potentially pesticides. It is experimentally challenging to address causality at the colony scale when multiple factors interact. In silico experiments offer a fast and cost-effective way to begin to address these challenges and inform experiments. However, none of the published bee models combine colony dynamics with foraging patterns and varroa dynamics. We have developed a honeybee model, BEEHAVE, which integrates colony dynamics, population dynamics of the varroa mite, epidemiology of varroa-transmitted viruses and allows foragers in an agent-based foraging model to collect food from a representation of a spatially explicit landscape. We describe the model, which is freely available online (www.beehave-model.net). Extensive sensitivity analyses and tests illustrate the model's robustness and realism. Simulation experiments with various combinations of stressors demonstrate, in simplified landscape settings, the model's potential: predicting colony dynamics and potential losses with and without varroa mites under different foraging conditions and under pesticide application. We also show how mitigation measures can be tested. Synthesis and applications. BEEHAVE offers a valuable tool for researchers to design and focus field experiments, for regulators to explore the relative importance of stressors to devise management and policy advice and for beekeepers to understand and predict varroa dynamics and effects of management interventions. We expect that scientists and stakeholders will find a variety of applications for BEEHAVE, stimulating further model development and the possible inclusion of other stressors of potential importance to honeybee colony dynamics. PMID:25598549

  6. BEEHAVE: a systems model of honeybee colony dynamics and foraging to explore multifactorial causes of colony failure.

    PubMed

    Becher, Matthias A; Grimm, Volker; Thorbek, Pernille; Horn, Juliane; Kennedy, Peter J; Osborne, Juliet L

    2014-04-01

    A notable increase in failure of managed European honeybee Apis mellifera L. colonies has been reported in various regions in recent years. Although the underlying causes remain unclear, it is likely that a combination of stressors act together, particularly varroa mites and other pathogens, forage availability and potentially pesticides. It is experimentally challenging to address causality at the colony scale when multiple factors interact. In silico experiments offer a fast and cost-effective way to begin to address these challenges and inform experiments. However, none of the published bee models combine colony dynamics with foraging patterns and varroa dynamics.We have developed a honeybee model, BEEHAVE, which integrates colony dynamics, population dynamics of the varroa mite, epidemiology of varroa-transmitted viruses and allows foragers in an agent-based foraging model to collect food from a representation of a spatially explicit landscape.We describe the model, which is freely available online (www.beehave-model.net). Extensive sensitivity analyses and tests illustrate the model's robustness and realism. Simulation experiments with various combinations of stressors demonstrate, in simplified landscape settings, the model's potential: predicting colony dynamics and potential losses with and without varroa mites under different foraging conditions and under pesticide application. We also show how mitigation measures can be tested. Synthesis and applications . BEEHAVE offers a valuable tool for researchers to design and focus field experiments, for regulators to explore the relative importance of stressors to devise management and policy advice and for beekeepers to understand and predict varroa dynamics and effects of management interventions. We expect that scientists and stakeholders will find a variety of applications for BEEHAVE, stimulating further model development and the possible inclusion of other stressors of potential importance to honeybee colony dynamics.

  7. A Behavior-Based Strategy for Single and Multi-Robot Autonomous Exploration

    PubMed Central

    Cepeda, Jesus S.; Chaimowicz, Luiz; Soto, Rogelio; Gordillo, José L.; Alanís-Reyes, Edén A.; Carrillo-Arce, Luis C.

    2012-01-01

    In this paper, we consider the problem of autonomous exploration of unknown environments with single and multiple robots. This is a challenging task, with several potential applications. We propose a simple yet effective approach that combines a behavior-based navigation with an efficient data structure to store previously visited regions. This allows robots to safely navigate, disperse and efficiently explore the environment. A series of experiments performed using a realistic robotic simulator and a real testbed scenario demonstrate that our technique effectively distributes the robots over the environment and allows them to quickly accomplish their mission in large open spaces, narrow cluttered environments, dead-end corridors, as well as rooms with minimum exits.

  8. Extraction and characterization of collagen from Antarctic and Sub-Antarctic squid and its potential application in hybrid scaffolds for tissue engineering.

    PubMed

    Coelho, Rui C G; Marques, Ana L P; Oliveira, Sara M; Diogo, Gabriela S; Pirraco, Rogério P; Moreira-Silva, Joana; Xavier, José C; Reis, Rui L; Silva, Tiago H; Mano, João F

    2017-09-01

    Collagen is the most abundant protein found in mammals and it exhibits a low immunogenicity, high biocompatibility and biodegradability when compared with others natural polymers. For this reason, it has been explored for the development of biologically instructive biomaterials with applications for tissue substitution and regeneration. Marine origin collagen has been pursued as an alternative to the more common bovine and porcine origins. This study focused on squid (Teuthoidea: Cephalopoda), particularly the Antarctic squid Kondakovia longimana and the Sub-Antarctic squid Illex argentinus as potential collagen sources. In this study, collagen has been isolated from the skins of the squids using acid-based and pepsin-based protocols, with the higher yield being obtained from I. argentinus in the presence of pepsin. The produced collagen has been characterized in terms of physicochemical properties, evidencing an amino acid profile similar to the one of calf collagen, but exhibiting a less preserved structure, with hydrolyzed portions and a lower melting temperature. Pepsin-soluble collagen isolated from I. argentinus was selected for further evaluation of biomedical potential, exploring its incorporation on poly-ε-caprolactone (PCL) 3D printed scaffolds for the development of hybrid scaffolds for tissue engineering, exhibiting hierarchical features. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Exploratory Network Meta Regression Analysis of Stroke Prevention in Atrial Fibrillation Fails to Identify Any Interactions with Treatment Effect.

    PubMed

    Batson, Sarah; Sutton, Alex; Abrams, Keith

    2016-01-01

    Patients with atrial fibrillation are at a greater risk of stroke and therefore the main goal for treatment of patients with atrial fibrillation is to prevent stroke from occurring. There are a number of different stroke prevention treatments available to include warfarin and novel oral anticoagulants. Previous network meta-analyses of novel oral anticoagulants for stroke prevention in atrial fibrillation acknowledge the limitation of heterogeneity across the included trials but have not explored the impact of potentially important treatment modifying covariates. To explore potentially important treatment modifying covariates using network meta-regression analyses for stroke prevention in atrial fibrillation. We performed a network meta-analysis for the outcome of ischaemic stroke and conducted an exploratory regression analysis considering potentially important treatment modifying covariates. These covariates included the proportion of patients with a previous stroke, proportion of males, mean age, the duration of study follow-up and the patients underlying risk of ischaemic stroke. None of the covariates explored impacted relative treatment effects relative to placebo. Notably, the exploration of 'study follow-up' as a covariate supported the assumption that difference in trial durations is unimportant in this indication despite the variation across trials in the network. This study is limited by the quantity of data available. Further investigation is warranted, and, as justifying further trials may be difficult, it would be desirable to obtain individual patient level data (IPD) to facilitate an effort to relate treatment effects to IPD covariates in order to investigate heterogeneity. Observational data could also be examined to establish if there are potential trends elsewhere. The approach and methods presented have potentially wide applications within any indication as to highlight the potential benefit of extending decision problems to include additional comparators outside of those of primary interest to allow for the exploration of heterogeneity.

  10. Effective methodology to derive strategic decisions from ESA exploration technology roadmaps

    NASA Astrophysics Data System (ADS)

    Cresto Aleina, Sara; Viola, Nicole; Fusaro, Roberta; Saccoccia, Giorgio

    2016-09-01

    Top priorities in future international space exploration missions regard the achievement of the necessary maturation of enabling technologies, thereby allowing Europe to play a role commensurate with its industrial, operational and scientific capabilities. As part of the actions derived from this commitment, ESA Technology Roadmaps for Exploration represent a powerful tool to prioritise R&D activities in technologies for space exploration and support the preparation of a consistent procurement plan for space exploration technologies in Europe. The roadmaps illustrate not only the technology procurement (to TRL-8) paths for specific missions envisaged in the present timeframe, but also the achievement for Europe of technological milestones enabling operational capabilities and building blocks, essential for current and future Exploration missions. Coordination of requirements and funding sources among all European stakeholders (ESA, EU, National, and Industry) is one of the objectives of these roadmaps, that show also possible application of the technologies beyond space exploration, both at ESA and outside. The present paper describes the activity that supports the work on-going at ESA on the elaboration and update of these roadmaps and related tools, in order to criticise the followed approach and to suggest methodologies of assessment of the Roadmaps, and to derive strategic decision for the advancement of Space Exploration in Europe. After a review of Technology Areas, Missions/Programmes and related building blocks (architectures) and operational capabilities, technology applicability analyses are presented. The aim is to identify if a specific technology is required, applicable or potentially a demonstrator in the building blocks of the proposed mission concepts. In this way, for each technology it is possible to outline one or more specific plans to increase TRL up to the required level. In practice, this translates into two possible solutions: on the one hand, approved mission concepts will be complemented with the required technologies if the latter can be considered as applicable or demo; on the other, if they are neither applicable nor demo, new missions, i.e. technology demonstrators based on multidisciplinary grouping of key technologies, shall be evaluated, so as to proceed through incremental steps. Finally, techniques to determine priorities in technology procurement are identified, and methodologies to rank the required technologies are proposed. In addition, a tool that estimates the percentage of technologies required for the final destination that are implementable in each intermediate destination of the incremental approach is presented.

  11. Concept Study: Exploration and Production in Environmentally Sensitive Arctic Areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirish Patil; Rich Haut; Tom Williams

    2008-12-31

    The Alaska North Slope offers one of the best prospects for increasing U.S. domestic oil and gas production. However, this region faces some of the greatest environmental and logistical challenges to oil and gas production in the world. A number of studies have shown that weather patterns in this region are warming, and the number of days the tundra surface is adequately frozen for tundra travel each year has declined. Operators are not allowed to explore in undeveloped areas until the tundra is sufficiently frozen and adequate snow cover is present. Spring breakup then forces rapid evacuation of the areamore » prior to snowmelt. Using the best available methods, exploration in remote arctic areas can take up to three years to identify a commercial discovery, and then years to build the infrastructure to develop and produce. This makes new exploration costly. It also increases the costs of maintaining field infrastructure, pipeline inspections, and environmental restoration efforts. New technologies are needed, or oil and gas resources may never be developed outside limited exploration stepouts from existing infrastructure. Industry has identified certain low-impact technologies suitable for operations, and has made improvements to reduce the footprint and impact on the environment. Additional improvements are needed for exploration and economic field development and end-of-field restoration. One operator-Anadarko Petroleum Corporation-built a prototype platform for drilling wells in the Arctic that is elevated, modular, and mobile. The system was tested while drilling one of the first hydrate exploration wells in Alaska during 2003-2004. This technology was identified as a potentially enabling technology by the ongoing Joint Industry Program (JIP) Environmentally Friendly Drilling (EFD) program. The EFD is headed by Texas A&M University and the Houston Advanced Research Center (HARC), and is co-funded by the National Energy Technology Laboratory (NETL). The EFD participants believe that the platform concept could have far-reaching applications in the Arctic as a drilling and production platform, as originally intended, and as a possible staging area. The overall objective of this project was to document various potential applications, locations, and conceptual designs for the inland platform serving oil and gas operations on the Alaska North Slope. The University of Alaska Fairbanks assisted the HARC/TerraPlatforms team with the characterization of potential resource areas, geotechnical conditions associated with continuous permafrost terrain, and the potential end-user evaluation process. The team discussed the various potential applications with industry, governmental agencies, and environmental organizations. The benefits and concerns associated with industry's use of the technology were identified. In this discussion process, meetings were held with five operating companies (22 people), including asset team leaders, drilling managers, HSE managers, and production and completion managers. Three other operating companies and two service companies were contacted by phone to discuss the project. A questionnaire was distributed and responses were provided, which will be included in the report. Meetings were also held with State of Alaska Department of Natural Resources officials and U.S. Bureau of Land Management regulators. The companies met with included ConcoPhillips, Chevron, Pioneer Natural Resources, Fairweather E&P, BP America, and the Alaska Oil and Gas Association.« less

  12. Telerehabilitation robotics: bright lights, big future?

    PubMed

    Carignan, Craig R; Krebs, Hermano I

    2006-01-01

    The potential for remote diagnosis and treatment over the Internet using robotics is now a reality. The state of the art is exemplified by several Internet applications, and we explore the current trends in developing new systems. We review the technical challenges that lie ahead, along with some potential solutions. Some promising results for a new bilateral system involving two InMotion2 robots are presented. Finally, we discuss the future direction and commercial outlook for rehabilitation robots over the next 15 years.

  13. Simulators and virtual reality in surgical education.

    PubMed

    Chou, Betty; Handa, Victoria L

    2006-06-01

    This article explores the pros and cons of virtual reality simulators, their abilities to train and assess surgical skills, and their potential future applications. Computer-based virtual reality simulators and more conventional box trainers are compared and contrasted. The virtual reality simulator provides objective assessment of surgical skills and immediate feedback further to enhance training. With this ability to provide standardized, unbiased assessment of surgical skills, the virtual reality trainer has the potential to be a tool for selecting, instructing, certifying, and recertifying gynecologists.

  14. Potential Uses of Deep Space Cooling for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Sweterlitsch, Jeff; Swickrath, Micahel J.

    2012-01-01

    Nearly all exploration missions envisioned by NASA provide the capability to view deep space and thus to reject heat to a very low temperature environment. Environmental sink temperatures approach as low as 4 Kelvin providing a natural capability to support separation and heat rejection processes that would otherwise be power and hardware intensive in terrestrial applications. For example, radiative heat transfer can be harnessed to cryogenically remove atmospheric contaminants such as carbon dioxide (CO2). Long duration differential temperatures on sunlit versus shadowed sides of the vehicle could be used to drive thermoelectric power generation. Rejection of heat from cryogenic propellant could counter temperature increases thus avoiding the need to vent propellants. These potential uses of deep space cooling will be addressed in this paper with the benefits and practical considerations of such approaches.

  15. Potential Uses of Deep Space Cooling for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Chambliss, Joseph; Sweterlitsch, Jeff; Swickrath, Michael

    2011-01-01

    Nearly all exploration missions envisioned by NASA provide the capability to view deep space and thus to reject heat to a very low temperature environment. Environmental sink temperatures approach as low as 4 Kelvin providing a natural capability to support separation and heat rejection processes that would otherwise be power and hardware intensive in terrestrial applications. For example, radiative heat transfer can be harnessed to cryogenically remove atmospheric contaminants such as carbon dioxide (CO2). Long duration differential temperatures on sunlit versus shadowed sides of the vehicle could be used to drive thermoelectric power generation. Rejection of heat from cryogenic propellant could avoid temperature increase thus avoiding the need to vent propellants. These potential uses of deep space cooling will be addressed in this paper with the benefits and practical considerations of such approaches.

  16. Low Tidal Volume Ventilation in Patients without Acute Respiratory Distress Syndrome: A Paradigm Shift in Mechanical Ventilation

    PubMed Central

    Lipes, Jed; Bojmehrani, Azadeh; Lellouche, Francois

    2012-01-01

    Protective ventilation with low tidal volume has been shown to reduce morbidity and mortality in patients suffering from acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Low tidal volume ventilation is associated with particular clinical challenges and is therefore often underutilized as a therapeutic option in clinical practice. Despite some potential difficulties, data have been published examining the application of protective ventilation in patients without lung injury. We will briefly review the physiologic rationale for low tidal volume ventilation and explore the current evidence for protective ventilation in patients without lung injury. In addition, we will explore some of the potential reasons for its underuse and provide strategies to overcome some of the associated clinical challenges. PMID:22536499

  17. Monitoring Change Through Hierarchical Segmentation of Remotely Sensed Image Data

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Lawrence, William T.

    2005-01-01

    NASA's Goddard Space Flight Center has developed a fast and effective method for generating image segmentation hierarchies. These segmentation hierarchies organize image data in a manner that makes their information content more accessible for analysis. Image segmentation enables analysis through the examination of image regions rather than individual image pixels. In addition, the segmentation hierarchy provides additional analysis clues through the tracing of the behavior of image region characteristics at several levels of segmentation detail. The potential for extracting the information content from imagery data based on segmentation hierarchies has not been fully explored for the benefit of the Earth and space science communities. This paper explores the potential of exploiting these segmentation hierarchies for the analysis of multi-date data sets, and for the particular application of change monitoring.

  18. Data Mining Twitter for Science Applications

    NASA Astrophysics Data System (ADS)

    Teng, W. L.; Albayrak, A.; Huffman, G. J.

    2016-12-01

    The Twitter social microblogging database, which recently passed its tenth anniversary, is potentially a rich source of real-time and historical global information for science applications (beyond the by-now fairly familiar use of Twitter for natural hazards monitoring). Over the past several years, we have been exploring the feasibility of extracting from the Twitter data stream useful information for application to NASA precipitation research, with both "passive" and "active" participation by the twitterers. In the passive case, we have experimented with listening to the Twitter stream in real time for "precipitation" and related tweets (in different languages), applying basic filters for exact phrases, extracting location information, and mapping the resulting tweet distributions. In the active case, we have conducted preliminary experiments to evaluate different methods of engaging with potential participants. The time-varying set of "precipitation" tweets can be thought of as an organic network of rain gauges, potentially providing a widespread view of precipitation occurrence. The validation of satellite precipitation estimates is challenging, because many regions lack data or access to data, especially outside of the U.S. and in remote and developing areas. Mining the Twitter stream could augment these validation programs and, potentially, help tune existing algorithms. Though exploratory, our efforts thus far could significantly extend the application realm of Twitter, as a platform for citizen science, beyond natural hazards monitoring to science applications.

  19. Ultrahigh-Temperature Ceramics

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.; Ellerby, Donald T.; Beckman, Sarah E.; Irby, Edward; Gasch, Matthew J.; Gusman, Michael I.

    2007-01-01

    Ultrahigh temperature ceramics (UHTCs) are a class of materials that include the diborides of metals such as hafnium and zirconium. The materials are of interest to NASA for their potential utility as sharp leading edges for hypersonic vehicles. Such an application requires that the materials be capable of operating at temperatures, often in excess of 2,000 C. UHTCs are highly refractory and have high thermal conductivity, an advantage for this application. UHTCs are potentially applicable for other high-temperature processing applications, such as crucibles for molten-metal processing and high-temperature electrodes. UHTCs were first studied in the 1960 s by the U.S. Air Force. NASA s Ames Research Center concentrated on developing materials in the HfB2/SiC family for a leading-edge application. The work focused on developing a process to make uniform monolithic (2-phase) materials, and on the testing and design of these materials. Figure 1 shows arc-jet models made from UHTC materials fabricated at Ames. Figure 2 shows a cone being tested in the arc-jet. Other variations of these materials being investigated elsewhere include zirconium based materials and fiber-reinforced composites. Current UHTC work at Ames covers four broad topics: monoliths, coatings, composites, and processing. The goals include improving the fracture toughness, thermal conductivity and oxidation resistance of monolithic UHTCs and developing oxidation-resistant UHTC coatings for thermal-protection-system substrates through novel coating methods. As part of this effort, researchers are exploring compositions and processing changes that have yielded improvements in properties. Computational materials science and nanotechnology are being explored as approaches to reduce materials development time and improve and tailor properties.

  20. Neuromodulation research and application in the U.S. Department of Defense.

    PubMed

    Nelson, Jeremy T; Tepe, Victoria

    2015-01-01

    Modern neuromodulatory techniques for military applications have been explored for the past decade, with an intent to optimize operator performance and, ultimately, to improve overall military effectiveness. In light of potential military applications, some researchers have voiced concern about national security agency involvement in this area of research, and possible exploitation of research findings to support military objectives. The aim of this article is to examine the U.S. Department of Defense's interest in and application of neuromodulation. We explored articles, cases, and historical context to identify critical considerations of debate concerning dual use (i.e., national security and civilian) technologies, specifically focusing on non-invasive brain stimulation (NIBS). We review the background and recent examples of DoD-sponsored neuromodulation research, framed in the more general context of research that aims to optimize and/or rehabilitate human performance. We propose that concerns about military exploitation of neuromodulatory science and technology are not unique, but rather are part of a larger philosophic debate pertaining to military application of human performance science and technology. We consider unique aspects of the Department of Defense research enterprise--which includes programs crucial to the advancement of military medicine--and why it is well-situated to fund and perform such research. We conclude that debate concerning DoD investment in human performance research must recognize the significant potential for dual use (civilian, medical) benefit as well as the need for civilian scientific insight and influence. Military interests in the health and performance of service members provide research funding and impetus to dual use applications that will benefit the civilian community. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Porous Core-Shell Nanostructures for Catalytic Applications

    NASA Astrophysics Data System (ADS)

    Ewers, Trevor David

    Porous core-shell nanostructures have recently received much attention for their enhanced thermal stability. They show great potential in the field of catalysis, as reactant gases can diffuse in and out of the porous shell while the core particle is protected from sintering, a process in which particles coalesce to form larger particles. Sintering is a large problem in industry and is the primary cause of irreversible deactivation. Despite the obvious advantages of high thermal stability, porous core-shell nanoparticles can be developed to have additional interactive properties from the combination of the core and shell together, rather than just the core particle alone. This dissertation focuses on developing new porous core-shell systems in which both the core and shell take part in catalysis. Two types of systems are explored; (1) yolk-shell nanostructures with reducible oxide shells formed using the Kirkendall effect and (2) ceramic-based porous oxide shells formed using sol-gel chemistry. Of the Kirkendall-based systems, Au FexOy and Cu CoO were synthesized and studied for catalytic applications. Additionally, ZnO was explored as a potential shelling material. Sol-gel work focused on optimizing synthetic methods to allow for coating of small gold particles, which remains a challenge today. Mixed metal oxides were explored as a shelling material to make dual catalysts in which the product of a reaction on the core particle becomes a reactant within the shell.

  2. Exploring the Application of Volunteered Geographic Information to Catchment Management: a Survey Approach

    NASA Astrophysics Data System (ADS)

    Paudyal, D. R.; McDougall, K.; Apan, A.

    2012-07-01

    The participation and engagement of grass-root level community groups and citizens for natural resource management has a long history. With recent developments in ICT tools and spatial technology, these groups are seeking a new opportunity to manage natural resource data. There are lot of spatial information collected/generated by landcare groups, land holders and other community groups at the grass-root level through their volunteer initiatives. State government organisations are also interested in gaining access to this spatial data/information and engaging these groups to collect spatial information under their mapping programs. The aim of this paper is to explore the possible utilisation of volunteered geographic information (VGI) for catchment management activities. This research paper discusses the importance of spatial information and spatial data infrastructure (SDI) for catchment management and the emergence of VGI. A conceptual framework has been developed to illustrate how these emerging spatial information applications and various community volunteer activities can contribute to a more inclusive spatial data infrastructure (SDI) development at local level. A survey of 56 regional NRM bodies in Australia was utilised to explore the current community-driven volunteer initiatives for NRM activities and the potential of utilisation of VGI initiatives for NRM decision making process. This research paper concludes that VGI activities have great potential to contribute to SDI development at the community level to achieve better natural resource management (NRM) outcomes.

  3. Time and temperature in petroleum formation: application of Lopatin's method to petroleum exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waples, D.W.

    1980-06-01

    N.V. Lopatin in the Soviet Union has developed a method for taking both time and temperature into account as factors in thermal maturation of kerogen. Lopatin's time-temperature index of maturity (TTI) values correlate with the thermal regimes corresponding to generation and preservation of hydrocarbons. Because such information is potentially of great interest for oil exploration, a calibration and evaluation have been made of Lopatin's method. Within the limitations of the date presently available the following statements can be made: 1. The rate of the chemical reactions involved in thermal maturation of organic material appears to double with every 10/sup 0/Cmore » (18/sup 0/F) rise in temperature. 2. Threshold values of Lopatin's time-temperature index of maturity (TTI) are: 15 onset of oil generation; 75 peak oil generation; 160 end oil generation; approx. 500 40/sup 0/ oil preservation deadline; approx. 1000 50/sup 0/ oil preservation deadline; approx. 1500 wet gas preservation deadline; and > 65,000 dry gas preservation deadline. 3. TTI values calculated from Lopatin reconstructions consistently agree with other maturation parameters commonly used by petroleum geochemists. Potential applications of Lopatin's method for oil exploration include timing of oil generation, calculation of volume of hydrocarbons generated within a basin, and determination of economic deadlines. 13 figures, 5 tables.« less

  4. Foundational Methane Propulsion Related Technology Efforts, and Challenges for Applications to Human Exploration Beyond Earth Orbit

    NASA Technical Reports Server (NTRS)

    Brown, Thomas; Klem, Mark; McRight, Patrick

    2016-01-01

    Current interest in human exploration beyond earth orbit is driving requirements for high performance, long duration space transportation capabilities. Continued advancement in photovoltaic power systems and investments in high performance electric propulsion promise to enable solar electric options for cargo delivery and pre-deployment of operational architecture elements. However, higher thrust options are required for human in-space transportation as well as planetary descent and ascent functions. While high thrust requirements for interplanetary transportation may be provided by chemical or nuclear thermal propulsion systems, planetary descent and ascent systems are limited to chemical solutions due to their higher thrust to weight and potential planetary protection concerns. Liquid hydrogen fueled systems provide high specific impulse, but pose challenges due to low propellant density and the thermal issues of long term propellant storage. Liquid methane fueled propulsion is a promising compromise with lower specific impulse, higher bulk propellant density and compatibility with proposed in-situ propellant production concepts. Additionally, some architecture studies have identified the potential for commonality between interplanetary and descent/ascent propulsion solutions using liquid methane (LCH4) and liquid oxygen (LOX) propellants. These commonalities may lead to reduced overall development costs and more affordable exploration architectures. With this increased interest, it is critical to understand the current state of LOX/LCH4 propulsion technology and the remaining challenges to its application to beyond earth orbit human exploration. This paper provides a survey of NASA's past and current methane propulsion related technology efforts, assesses the accomplishments to date, and examines the remaining risks associated with full scale development.

  5. A systematic review of data mining and machine learning for air pollution epidemiology.

    PubMed

    Bellinger, Colin; Mohomed Jabbar, Mohomed Shazan; Zaïane, Osmar; Osornio-Vargas, Alvaro

    2017-11-28

    Data measuring airborne pollutants, public health and environmental factors are increasingly being stored and merged. These big datasets offer great potential, but also challenge traditional epidemiological methods. This has motivated the exploration of alternative methods to make predictions, find patterns and extract information. To this end, data mining and machine learning algorithms are increasingly being applied to air pollution epidemiology. We conducted a systematic literature review on the application of data mining and machine learning methods in air pollution epidemiology. We carried out our search process in PubMed, the MEDLINE database and Google Scholar. Research articles applying data mining and machine learning methods to air pollution epidemiology were queried and reviewed. Our search queries resulted in 400 research articles. Our fine-grained analysis employed our inclusion/exclusion criteria to reduce the results to 47 articles, which we separate into three primary areas of interest: 1) source apportionment; 2) forecasting/prediction of air pollution/quality or exposure; and 3) generating hypotheses. Early applications had a preference for artificial neural networks. In more recent work, decision trees, support vector machines, k-means clustering and the APRIORI algorithm have been widely applied. Our survey shows that the majority of the research has been conducted in Europe, China and the USA, and that data mining is becoming an increasingly common tool in environmental health. For potential new directions, we have identified that deep learning and geo-spacial pattern mining are two burgeoning areas of data mining that have good potential for future applications in air pollution epidemiology. We carried out a systematic review identifying the current trends, challenges and new directions to explore in the application of data mining methods to air pollution epidemiology. This work shows that data mining is increasingly being applied in air pollution epidemiology. The potential to support air pollution epidemiology continues to grow with advancements in data mining related to temporal and geo-spacial mining, and deep learning. This is further supported by new sensors and storage mediums that enable larger, better quality data. This suggests that many more fruitful applications can be expected in the future.

  6. Polar Lunar Regions: Exploiting Natural and Augmented Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; McKellip, Rodney; Brannon, David P.; Underwood, Lauren; Russell, Kristen J.

    2007-01-01

    In polar regions of the Moon, some areas within craters are permanently shadowed from solar illumination and can reach temperatures of 100 K or less. These regions could serve as cold traps, capturing ice and other volatile compounds. These potential ice stores have many applications for lunar exploration. Within double-shaded craters, even colder regions exist, with temperatures never exceeding 50 K in many cases. Observed temperatures suggest that these regions could enable equivalent liquid nitrogen cryogenic functions. These permanently shaded polar craters also offer unprecedented high-vacuum cryogenic environments, which in their current state could support cryogenic applications. Besides ice stores, the unique conditions at the lunar poles harbor an environment that provides an opportunity to reduce the power, weight, and total mass that needs to be carried from the Earth to the Moon for lunar exploration and research. Reducing the heat flux of geothermal, black body radiation can have significant impacts on the achievable temperature. With a few manmade augmentations, permanently shaded craters located near the lunar poles achieve temperatures even lower than those that naturally exist. Our analysis reveals that lightweight thermal shielding within shaded craters could create an environment several Kelvin above absolute zero. The temperature ranges of both naturally shaded and thermally augmented craters could enable the long-term storage of most gases, low-temperature superconductors for large magnetic fields, devices and advanced high-speed computing instruments. Augmenting thermal conditions in these craters could then be used as a basis for the development of an advanced thermal management architecture that would support a wide variety of cryogenically based applications. Lunar exploration and habitation capabilities would significantly benefit if permanently shaded craters, augmented with thermal shielding, were used to facilitate the operation of near absolute zero instruments, including a wide variety of cryogenically based propulsion, energy, communication, sensing, and computing devices. The required burden of carrying massive life-supporting components from the Earth to the Moon for lunar exploration and research potentially could be reduced.

  7. Magnetotelluric Studies for Hydrocarbon and Geothermal Resources: Examples from the Asian Region

    NASA Astrophysics Data System (ADS)

    Patro, Prasanta K.

    2017-09-01

    Magnetotellurics (MT) and the other related electrical and electromagnetic methods play a very useful role in resource exploration. This review paper presents the current scenario of application of MT in the exploration for hydrocarbons and geothermal resources in Asia. While seismics is the most preferred method in oil exploration, it is, however, beset with several limitations in the case of sedimentary targets overlain by basalts or evaporate/carbonate rocks where the high-velocity layers overlying the lower velocity layers pose a problem. In such cases, MT plays an important and, in some cases, a crucial role in mapping these potential reservoirs because of significant resistivity contrast generally observed between the basalts and the underlying sedimentary layers. A few case histories are presented that typically illustrate the role of MT in this context. In the case of geothermal exploration, MT is known to be highly effective in deciphering the target areas because of the conductivity structures arising from the presence and circulation of highly conductive fluids in the geothermal target areas. A few examples of MT studies carried out in some of the potential areas of geothermal significance in the Asian region are also discussed. While it is a relatively favorable situation for application of EM and MT methods in the case of exploration of the high-enthalpy region due to the development of well-defined conceptual models, still the low-enthalpy regions need to be understood well, particularly because of more complex structural patterns and the fluid circulation under relatively low-temperature conditions. Currently, a lot of modeling in both geothermal and hydrocarbon exploration is being done using three-dimensional techniques, and it is the right time to go for integration and three-dimensional joint inversion of the geophysical parameters such as resistivity, velocity, density, from MT, electromagnetics (EM), seismics and gravity.

  8. 2D lateral heterostructures of group-III monochalcogenide: Potential photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Guo, Yu; Han, Nannan; Jiang, Xue; Zhang, Junfeng; Ahuja, Rajeev; Su, Yan; Zhao, Jijun

    2018-04-01

    Solar photovoltaics provides a practical and sustainable solution to the increasing global energy demand. Using first-principles calculations, we investigate the energetics and electronic properties of two-dimensional lateral heterostructures by group-III monochalcogenides and explore their potential applications in photovoltaics. The band structures and formation energies from supercell calculations demonstrate that these heterostructures retain semiconducting behavior and might be synthesized in laboratory using the chemical vapor deposition technique. According to the computed band offsets, most of the heterojunctions belong to type II band alignment, which can prevent the recombination of electron-hole pairs. Besides, the electronic properties of these lateral heterostructures can be effectively tailored by the number of layers, leading to a high theoretical power conversion efficiency over 20%.

  9. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials

    PubMed Central

    2015-01-01

    In this review we intend to provide a relatively comprehensive summary of the work of supramolecular hydrogelators after 2004 and to put emphasis particularly on the applications of supramolecular hydrogels/hydrogelators as molecular biomaterials. After a brief introduction of methods for generating supramolecular hydrogels, we discuss supramolecular hydrogelators on the basis of their categories, such as small organic molecules, coordination complexes, peptides, nucleobases, and saccharides. Following molecular design, we focus on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators. Particularly, we discuss the applications of supramolecular hydrogelators after they form supramolecular assemblies but prior to reaching the critical gelation concentration because this subject is less explored but may hold equally great promise for helping address fundamental questions about the mechanisms or the consequences of the self-assembly of molecules, including low molecular weight ones. Finally, we provide a perspective on supramolecular hydrogelators. We hope that this review will serve as an updated introduction and reference for researchers who are interested in exploring supramolecular hydrogelators as molecular biomaterials for addressing the societal needs at various frontiers. PMID:26646318

  10. Immobilized liquid layers: A new approach to anti-adhesion surfaces for medical applications

    PubMed Central

    Sotiri, Irini; Overton, Jonathan C; Waterhouse, Anna

    2016-01-01

    Surface fouling and undesired adhesion are nearly ubiquitous problems in the medical field, complicating everything from surgeries to routine daily care of patients. Recently, the concept of immobilized liquid (IL) interfaces has been gaining attention as a highly versatile new approach to antifouling, with a wide variety of promising applications in medicine. Here, we review the general concepts behind IL layers and discuss the fabrication strategies on medically relevant materials developed so far. We also summarize the most important findings to date on applications of potential interest to the medical community, including the use of these surfaces as anti-thrombogenic and anti-bacterial materials, anti-adhesive textiles, high-performance coatings for optics, and as unique platforms for diagnostics. Although the full potential and pitfalls of IL layers in medicine are just beginning to be explored, we believe that this approach to anti-adhesive surfaces will prove broadly useful for medical applications in the future. PMID:27022136

  11. Employment of Geoscientists in the Private Sector

    NASA Astrophysics Data System (ADS)

    Russell, J. L.

    2001-05-01

    In the private sector, major employers of geoscientists engage in diverse activities ranging from resource exploration and extraction, assessment of geologic hazards, and determination of environmental impacts. These firms actively recruit, from the breadth of geoscience disciplines, technically qualified individuals with the ability to make pragmatic decisions in the context of multidisciplinary teams that commonly include non-scientists. Moreover, they expect applicants to communicate effectively verbally and in writing, as well as demonstrate skills and experience in integrating field investigations, conducting laboratory studies, and accomplishing computer modeling. These applicants should be capable of simultaneously working in multiple projects which are rapidly evolving. Successful recruiting and employment requires interactions between the job applicant and potential employer conducted with honesty and integrity. Resumes and associated transmittal letters should be directed to specific employers based on the applicant's review of information on the firm from the Internet and other sources. "Shotgun" or blanket approaches are seldom productive. Participation in pertinent professional societies, internships, and summer employment can provide valuable experiences and opportunities for networking with potential employers.

  12. Multipurpose Cargo Transfer Bags fro Reducing Exploration Mission Logistics

    NASA Technical Reports Server (NTRS)

    Baccus, Shelley; Broyan, James Lee, Jr.; Borrego, Melissa

    2016-01-01

    The Logistics Reduction (LR) project within the Advanced Exploration Systems (AES) division is tasked with reducing logistical mass and repurposing logistical items. Multipurpose Cargo Transfer Bags (MCTB) have been designed such that they can serve the same purpose as a Cargo Transfer Bag (CTB), the common logistics carrying bag for the International Space Station (ISS). After use as a cargo carrier, a regular CTB becomes trash, whereas the MCTB can be unfolded into a flat panel for reuse. Concepts and potential benefits for various MCTB applications will be discussed including partitions, crew quarters, solar radiation storm shelters, acoustic blankets, and forward osmosis water processing. Acoustic MCTBs are currently in use on ISS to reduce the noise generated by the T2 treadmill, which reaches the hazard limit at high speeds. The development of the AMCTB included identification of keep out zones, acoustic properties, deployment considerations, and structural testing. Features developed for these considerations are applicable to MCTBs for all crew outfitting applications.

  13. A screening-level modeling approach to estimate nitrogen loading and standard exceedance risk, with application to the Tippecanoe River watershed, Indiana

    EPA Science Inventory

    This paper presents a screening-level modeling approach that can be used to rapidly estimate nutrient loading and assess numerical nutrient standard exceedance risk of surface waters leading to potential classification as impaired for designated use. It can also be used to explor...

  14. Exploring Time-Lapse Photography as a Means for Qualitative Data Collection

    ERIC Educational Resources Information Center

    Persohn, Lindsay

    2015-01-01

    Collecting information via time-lapse photography is nothing new. Scientists and artists have been using this kind of data since the late 1800s. However, my research and experiments with time-lapse have shown that great potential may lie in its application to educational and social scientific research methods. This article is part history, part…

  15. Teachers' Perception of Mobile Edutainment for Special Needs Learners: The Malaysian Case

    ERIC Educational Resources Information Center

    Mohd Yusof, Anuar; Daniel, Esther Gnanamalar Sarojini; Low, Wah Yun; Ab. Aziz, Kamarulzaman

    2014-01-01

    Study of Malaysian adoption of mobile learning (m-learning) is still in the early stages. However, there are numerous researchers in the country exploring the potential and application of m-learning in the Malaysian education system, including special education. A key question is whether teachers are prepared to incorporate mobile technology as…

  16. NASA partnership with industry: Enhancing technology transfer

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Recognizing the need to accelerate and expand the application of NASA-derived technology for other civil uses in the United States, potential opportunities were assessed; the range of benefits to NASA, industry and the nations were explored; public policy implications were assessed; and this new range of opportunities were related to current technology transfer programs of NASA.

  17. Use of Online Assessment to Enhance Teaching and Learning: The PASS-IT Project

    ERIC Educational Resources Information Center

    Ashton, Helen; Wood, Christine

    2006-01-01

    This article describes a recent collaborative project (PASS-IT) which investigated the use of online assessment in secondary education in Scotland. The aim of PASS-IT was to explore the potential of formative and summative assessment in secondary education, and to build on previous research into the applicability and validity of online…

  18. Information Technology, Type II Classroom Integration, and the Limited Infrastructure in Schools

    ERIC Educational Resources Information Center

    Maddux, Cleborne D.; Johnson D. Lamont

    2006-01-01

    In this second special issue on Type II applications of information technology in education, the focus is on classroom integration. This editorial explores some possible explanations for the fact that information technology in schools has not fulfilled its considerable potential. One reason may be that individualized instruction is not part of the…

  19. Children's Story Stem Responses: A Measure of Program Impact on Developmental Risks Associated with Dysfunctional Parenting.

    ERIC Educational Resources Information Center

    Robinson, JoAnn; Herot, Christine; Mantz-Simmons, Linda; Haynes, Phillip

    2000-01-01

    This article explores using the MacArthur Story Stem Battery to investigate the interior life of children, its potential usefulness in evaluating interventions geared to prevent dysfunctional parenting, and how the method has been adapted for use with low-income African American children. Case examples support the method's application. (Author/CR)

  20. What's in a Name? Degree Programs and What They Tell Us about "Applied Linguistics" in Australia

    ERIC Educational Resources Information Center

    Murray, Neil; Crichton, Jonathan

    2010-01-01

    In this paper we explore the provision of applied linguistics within Australian universities. We focus on how the "what" of applied linguistics, as captured in scholarly definitions of the discipline, accords with the "where", as captured in potential contexts of application as these are manifested in provision. In doing so, we…

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Abhilasha, E-mail: abhilasha.vnit@gmail.com; Kumar, Ashwini; Peshwe, D. R.

    Rare earth activated hybrid phosphors have made significant progress in terms of better light output, color properties and potential for long life. All these features coupled with low cost production and reduced maintenance have offered phosphor converted LEDs for diverse optoelectronic applications including signal lighting in advanced aviation. The present paper explores the effect of various processing parameters on luminescent hybrid phosphors fabricated through combustion synthesis.

  2. Characterizing Student Navigation in Educational Multiuser Virtual Environments: A Case Study Using Data from the River City Project

    ERIC Educational Resources Information Center

    Dukas, Georg

    2009-01-01

    Though research in emerging technologies is vital to fulfilling their incredible potential for educational applications, it is often fraught with analytic challenges related to large datasets. This thesis explores these challenges in researching multiuser virtual environments (MUVEs). In a MUVE, users assume a persona and traverse a virtual space…

  3. The Role of System Analysis in Education Management: A Pragmatic Appraisal and a New Perspective.

    ERIC Educational Resources Information Center

    Evans, John A.

    This paper explores the potential of systems analysis for the educational manager. It contains a review of systems concepts with comments on current and proper practice. An application model of systems analysis in an organizational context is provided to foster rational decisionmaking and increased skill in problem finding and solving. The…

  4. What Really Makes Students like a Web Site? What Are the Implications for Designing Web-Based Language Learning

    ERIC Educational Resources Information Center

    Hughes, Jane; McAvinia, Claire; King, Terry

    2004-01-01

    Faced with reduced numbers choosing to study foreign languages (as in England and Wales), strategies to create and maintain student interest need to be explored. One such strategy is to create "taster" courses in languages, for potential university applicants. The findings presented arise from exploratory research, undertaken to inform…

  5. Tablet and phone applications--A reflection on the experience of development.

    PubMed

    Edwards, Simon; Winckles, Derek; Leonard, Mark

    2015-06-01

    Tablet devices are now ubiquitous. Medical illustrators have the skills to produce a wide range of media content. These devices offer the potential of using their creative abilities in new and exciting ways. There is much to explore. The primary difficulty lies in understanding the necessary computer technical skills to realise a vision.

  6. Genome Sequence of the Thermotolerant Yeast Kluyveromyces marxianus var. marxianus KCTC 17555

    PubMed Central

    Jeong, Haeyoung; Lee, Dae-Hee; Kim, Sun Hong; Kim, Hyun-Jin; Lee, Kyusang; Song, Ju Yeon; Kim, Byung Kwon; Sung, Bong Hyun; Sohn, Jung Hoon; Koo, Hyun Min

    2012-01-01

    Kluyveromyces marxianus is a thermotolerant yeast that has been explored for potential use in biotechnological applications, such as production of biofuels, single-cell proteins, enzymes, and other heterologous proteins. Here, we present the high-quality draft of the 10.9-Mb genome of K. marxianus var. marxianus KCTC 17555 (= CBS 6556 = ATCC 26548). PMID:23193140

  7. "Cancer Cell Biology:" A Student-Centered Instructional Module Exploring the Use of Multimedia to Enrich Interactive, Constructivist Learning of Science

    ERIC Educational Resources Information Center

    Bockholt, Susanne M.; West, J. Paige; Bollenbacher, Walter E.

    2003-01-01

    Multimedia has the potential of providing bioscience education novel learning environments and pedagogy applications to foster student interest, involve students in the research process, advance critical thinking/problem-solving skills, and develop conceptual understanding of biological topics. "Cancer Cell Biology," an interactive, multimedia,…

  8. Technology's Effect on Achievement in Higher Education: A Stage I Meta-Analysis of Classroom Applications

    ERIC Educational Resources Information Center

    Schmid, Richard F.; Bernard, Robert M.; Borokhovski, Eugene; Tamim, Rana; Abrami, Philip C.; Wade, C. Anne; Surkes, Michael A.; Lowerison, Gretchen

    2009-01-01

    This paper reports the findings of a Stage I meta-analysis exploring the achievement effects of computer-based technology use in higher education classrooms (non-distance education). An extensive literature search revealed more than 6,000 potentially relevant primary empirical studies. Analysis of a representative sample of 231 studies (k = 310)…

  9. Potential Applications of Power Load Margin Theory for Women with Tenure in Higher Education

    ERIC Educational Resources Information Center

    Salyer-Funk, Amanda

    2012-01-01

    The purpose of this case study is to explore how tenured women with children describe their experiences; to discuss what institutional structures and policies they identify as influencing their advancement; and to see what they identify as the benefits, rewards, challenges, and/or sacrifices related to having tenure. Ultimately, a collection of…

  10. Bioactive Compounds from Macroalgae in the New Millennium: Implications for Neurodegenerative Diseases

    PubMed Central

    Barbosa, Mariana; Valentão, Patrícia; Andrade, Paula B.

    2014-01-01

    Marine environment has proven to be a rich source of structurally diverse and complex compounds exhibiting numerous interesting biological effects. Macroalgae are currently being explored as novel and sustainable sources of bioactive compounds for both pharmaceutical and nutraceutical applications. Given the increasing prevalence of different forms of dementia, researchers have been focusing their attention on the discovery and development of new compounds from macroalgae for potential application in neuroprotection. Neuroprotection involves multiple and complex mechanisms, which are deeply related. Therefore, compounds exerting neuroprotective effects through different pathways could present viable approaches in the management of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. In fact, several studies had already provided promising insights into the neuroprotective effects of a series of compounds isolated from different macroalgae species. This review will focus on compounds from macroalgae that exhibit neuroprotective effects and their potential application to treat and/or prevent neurodegenerative diseases. PMID:25257784

  11. Bioactive compounds from macroalgae in the new millennium: implications for neurodegenerative diseases.

    PubMed

    Barbosa, Mariana; Valentão, Patrícia; Andrade, Paula B

    2014-09-25

    Marine environment has proven to be a rich source of structurally diverse and complex compounds exhibiting numerous interesting biological effects. Macroalgae are currently being explored as novel and sustainable sources of bioactive compounds for both pharmaceutical and nutraceutical applications. Given the increasing prevalence of different forms of dementia, researchers have been focusing their attention on the discovery and development of new compounds from macroalgae for potential application in neuroprotection. Neuroprotection involves multiple and complex mechanisms, which are deeply related. Therefore, compounds exerting neuroprotective effects through different pathways could present viable approaches in the management of neurodegenerative diseases, such as Alzheimer's and Parkinson's. In fact, several studies had already provided promising insights into the neuroprotective effects of a series of compounds isolated from different macroalgae species. This review will focus on compounds from macroalgae that exhibit neuroprotective effects and their potential application to treat and/or prevent neurodegenerative diseases.

  12. Night vision and electro-optics technology transfer, 1972 - 1981

    NASA Astrophysics Data System (ADS)

    Fulton, R. W.; Mason, G. F.

    1981-09-01

    The purpose of this special report, 'Night Vision and Electro-Optics Technology Transfer 1972-1981,' is threefold: To illustrate, through actual case histories, the potential for exploiting a highly developed and available military technology for solving non-military problems. To provide, in a layman's language, the principles behind night vision and electro-optical devices in order that an awareness may be developed relative to the potential for adopting this technology for non-military applications. To obtain maximum dollar return from research and development investments by applying this technology to secondary applications. This includes, but is not limited to, applications by other Government agencies, state and local governments, colleges and universities, and medical organizations. It is desired that this summary of Technology Transfer activities within Night Vision and Electro-Optics Laboratory (NV/EOL) will benefit those who desire to explore one of the vast technological resources available within the Defense Department and the Federal Government.

  13. Emerging Applications of Porphryins in Photomedicine

    NASA Astrophysics Data System (ADS)

    Huang, Haoyuan; Song, Wentao; Rieffel, James; Lovell, Jonathan

    2015-04-01

    Biomedical applications of porphyrins and related molecules have been extensively pursued in the context of photodynamic therapy (PDT). Recent advances in nanoscale engineering have opened the door for new ways that porphyrins stand to potentially benefit human health. Metalloporphyrins are inherently suitable for many types of medical imaging and therapy. Traditional nanocarriers such as liposomes, dendrimers and silica nanoparticles have been explored for photosensitizer delivery. Concurrently, entirely new classes of porphyrin nanostructures are being developed, such as smart materials that are activated by specific biochemicals encountered at disease sites. Techniques have been developed that improve treatments by combining biomaterials with photosensitizers and functional moieties such as peptides, DNA and antibodies. Compared to simpler structures, these more complex and functional designs can potentially decrease side effects and lead to safer and more efficient phototherapies. This review examines recent research on porphyrin-derived materials in multimodal imaging, drug delivery, bio-sensing, phototherapy and probe design, demonstrating their bright future for biomedical applications.

  14. Depolymerization of Trityl End-Capped Poly(Ethyl Glyoxylate): Potential Applications in Smart Packaging.

    PubMed

    Fan, Bo; Salazar, Rómulo; Gillies, Elizabeth R

    2018-06-01

    The temperature-dependent depolymerization of self-immolative poly(ethyl glyoxylate) (PEtG) capped with triphenylmethyl (trityl) groups is studied and its potential application for smart packaging is explored. PEtGs with four different trityl end-caps are prepared and found to undergo depolymerization to volatile products from the solid state at different rates depending on temperature and the electron-donating substituents on the trityl aromatic rings. Through the incorporation of hydrophobic dyes including Nile red and IR-780, the depolymerization is visualized as a color change of the dye as it changes from a dispersed to aggregated state. The ability of this platform to provide information on thermal history through an easily readable signal makes it promising in smart packaging applications for sensitive products such a food and other cargo that is susceptible to degradation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Magnetic induction tomography of objects for security applications

    NASA Astrophysics Data System (ADS)

    Ward, Rob; Joseph, Max; Langley, Abbi; Taylor, Stuart; Watson, Joe C.

    2017-10-01

    A coil array imaging system has been further developed from previous investigations, focusing on designing its application for fast screening of small bags or parcels, with a view to the production of a compact instrument for security applications. In addition to reducing image acquisition times, work was directed toward exploring potential cost effective manufacturing routes. Based on magnetic induction tomography and eddy-current principles, the instrument captured images of conductive targets using a lock-in amplifier, individually multiplexing signals between a primary driver coil and a 20 by 21 imaging array of secondary passive coils constructed using a reproducible multiple tile design. The design was based on additive manufacturing techniques and provided 2 orthogonal imaging planes with an ability to reconstruct images in less than 10 seconds. An assessment of one of the imaging planes is presented. This technique potentially provides a cost effective threat evaluation technique that may compliment conventional radiographic approaches.

  16. Nursing Students' Opinion on the Use of Smartphone Applications (Apps) in Clinical Education and Training: A Study Protocol.

    PubMed

    O'Connor, Siobhan; Andrews, Tom

    2016-01-01

    Nurse educators are exploring different mobile technologies to provide additional support to nursing students in clinical practice. However, the view of nursing students on the use of smartphone applications (apps) to enhance clinical education has not been explored. This proposed study will use a self-reported questionnaire to examine the opinions of nursing students on the current and potential use of smartphone apps when training in clinical settings. Descriptive and inferential statistics will be performed on the quantitative data. Qualitative data from open ended questions will be thematically analysed using the framework approach. This will be the first study to examine the use of smartphone apps as a support in clinical teaching from a students' perspective. Their opinion is vital if the right mobile technology is to be designed and implemented.

  17. Investigation of immiscible systems and potential applications

    NASA Technical Reports Server (NTRS)

    Markworth, A. J.; Oldfield, W.; Duga, J.; Gelles, S. H.

    1975-01-01

    The droplet coalescence kinetics at 0 g and 1 g were considered for two systems which contained liquid droplets in a host liquid. One of these (Al-In) typified a system containing a liquid phase miscibility gap and the order (oil-water) a mixture of two essentially insoluble liquids. A number of coalescence mechanisms potentially prominent at low g in this system were analyzed and explanations are presented for the observed unusual stability of the emulsion. Ground base experiments were conducted on the coalescence of In droplets in and Al-In alloy during cooling through the miscibility gap at different cooling rates. These were in qualitative agreement with the computer simulation. Potential applications for systems with liquid phase miscibility gaps were explored. Possibilities included superconductors, electrical contact materials, superplastic materials, catalysts, magnetic materials, and others. The role of space processing in their production was also analyzed.

  18. Potential Interference of Protein-Protein Interactions by Graphyne.

    PubMed

    Luan, Binquan; Huynh, Tien; Zhou, Ruhong

    2016-03-10

    Graphyne has attracted tremendous attention recently due to its many potentially superior properties relative to those of graphene. Although extensive efforts have been devoted to explore the applicability of graphyne as an alternative nanomaterial for state-of-the-art nanotechnology (including biomedical applications), knowledge regarding its possible adverse effects to biological cells is still lacking. Here, using large-scale all-atom molecular dynamics simulations, we investigate the potential toxicity of graphyne by interfering a protein-protein interaction (ppI). We found that graphyne could indeed disrupt the ppIs by cutting through the protein-protein interface and separating the protein complex into noncontacting ones, due to graphyne's dispersive and hydrophobic interaction with the hydrophobic residues residing at the dimer interface. Our results help to elucidate the mechanism of interaction between graphyne and ppI networks within a biological cell and provide insights for its hazard reduction.

  19. Security implications and governance of cognitive neuroscience.

    PubMed

    Kosal, Margaret E; Huang, Jonathan Y

    2015-01-01

    In recent years, significant efforts have been made toward elucidating the potential of the human brain. Spanning fields as disparate as psychology, biomedicine, computer science, mathematics, electrical engineering, and chemistry, research venturing into the growing domains of cognitive neuroscience and brain research has become fundamentally interdisciplinary. Among the most interesting and consequential applications to international security are the military and defense community's interests in the potential of cognitive neuroscience findings and technologies. In the United States, multiple governmental agencies are actively pursuing such endeavors, including the Department of Defense, which has invested over $3 billion in the last decade to conduct research on defense-related innovations. This study explores governance and security issues surrounding cognitive neuroscience research with regard to potential security-related applications and reports scientists' views on the role of researchers in these areas through a survey of over 200 active cognitive neuroscientists.

  20. Liquid-fueled SOFC power sources for transportation

    NASA Astrophysics Data System (ADS)

    Myles, K. M.; Doshi, R.; Kumar, R.; Krumpelt, M.

    Traditionally, fuel cells have been developed for space or stationary terrestrial applications. As the first commercial 200-kW systems were being introduced by ONSI and Fuji Electric, the potentially much larger, but also more challenging, application in transportation was beginning to be addressed. As a result, fuel cell-powered buses have been designed and built, and R&D programs for fuel cell-powered passenger cars have been initiated. The engineering challenge of eventually replacing the internal combustion engine in buses, trucks, and passenger cars with fuel cell systems is to achieve much higher power densities and much lower costs than obtainable in systems designed for stationary applications. At present, the leading fuel cell candidate for transportation applications is, without question, the polymer electrolyte fuel cell (PEFC). Offering ambient temperature start-up and the potential for a relatively high power density, the polymer technology has attracted the interest of automotive manufacturers worldwide. But the difficulties of fuel handling for the PEFC have led to a growing interest in exploring the prospects for solid oxide fuel cells (SOFCs) operating on liquid fuels for transportation applications. Solid oxide fuel cells are much more compatible with liquid fuels (methanol or other hydrocarbons) and are potentially capable of power densities high enough for vehicular use. Two SOFC options for such use are discussed in this report.

  1. Sustained Innovation Through Shared Capitalism and Democratic Governance

    NASA Astrophysics Data System (ADS)

    Beyster, M. A.; Blasi, J.; Sibilia, J.; Zebuchen, T.; Bowman, A.

    The Foundation for Enterprise Development (FED) explores application of democratic representative governance models and structures for long-term interdisciplinary research, development and education to the concept of an organization that can sustain activity in support of interstellar travel in the 100-year timeframe, as outlined by the 100 Year StarshipTM. This paper titled, Sustained Innovation through Shared Capitalism and Democratic Governance , explores the roots of representative structures and organizations as long-lived success stories throughout history. Research, innovation, organizational structures and associated issues are explored to address the long-term focus required for development, both material and human. Impact investing vehicles are also explored as potential investment structures addressing the long-term horizon required by the organization. This paper provides an illustration, description and philosophical approach of this model as developed by the FED and our collaborators.

  2. Application of a data base management system to a finite element model

    NASA Technical Reports Server (NTRS)

    Rogers, J. L., Jr.

    1980-01-01

    In today's software market, much effort is being expended on the development of data base management systems (DBMS). Most commercially available DBMS were designed for business use. However, the need for such systems within the engineering and scientific communities is becoming apparent. A potential DBMS application that appears attractive is the handling of data for finite element engineering models. The applications of a commercially available, business-oriented DBMS to a structural engineering, finite element model is explored. The model, DBMS, an approach to using the DBMS, advantages and disadvantages are described. Plans for research on a scientific and engineering DBMS are discussed.

  3. Potential disruption of protein-protein interactions by graphene oxide

    NASA Astrophysics Data System (ADS)

    Feng, Mei; Kang, Hongsuk; Yang, Zaixing; Luan, Binquan; Zhou, Ruhong

    2016-06-01

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

  4. Potential disruption of protein-protein interactions by graphene oxide.

    PubMed

    Feng, Mei; Kang, Hongsuk; Yang, Zaixing; Luan, Binquan; Zhou, Ruhong

    2016-06-14

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

  5. Cost Benefit and Alternatives Analysis of Distribution Systems with Energy Storage Systems: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Tom; Nagarajan, Adarsh; Baggu, Murali

    This paper explores monetized and non-monetized benefits from storage interconnected to distribution system through use cases illustrating potential applications for energy storage in California's electric utility system. This work supports SDG&E in its efforts to quantify, summarize, and compare the cost and benefit streams related to implementation and operation of energy storage on its distribution feeders. This effort develops the cost benefit and alternatives analysis platform, integrated with QSTS feeder simulation capability, and analyzed use cases to explore the cost-benefit of implementation and operation of energy storage for feeder support and market participation.

  6. Endomicroscopy imaging of epithelial structures using tissue autofluorescence

    NASA Astrophysics Data System (ADS)

    Lin, Bevin; Urayama, Shiro; Saroufeem, Ramez M. G.; Matthews, Dennis L.; Demos, Stavros G.

    2011-04-01

    We explore autofluorescence endomicroscopy as a potential tool for real-time visualization of epithelial tissue microstructure and organization in a clinical setting. The design parameters are explored using two experimental systems--an Olympus Medical Systems Corp. stand-alone clinical prototype probe, and a custom built bench-top rigid fiber conduit prototype. Both systems entail ultraviolet excitation at 266 nm and/or 325 nm using compact laser sources. Preliminary results using ex vivo animal and human tissue specimens suggest that this technology can be translated toward in vivo application to address the need for real-time histology.

  7. Bayesian Inference in the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2008-01-01

    This paper provides an elementary tutorial overview of Bayesian inference and its potential for application in aerospace experimentation in general and wind tunnel testing in particular. Bayes Theorem is reviewed and examples are provided to illustrate how it can be applied to objectively revise prior knowledge by incorporating insights subsequently obtained from additional observations, resulting in new (posterior) knowledge that combines information from both sources. A logical merger of Bayesian methods and certain aspects of Response Surface Modeling is explored. Specific applications to wind tunnel testing, computational code validation, and instrumentation calibration are discussed.

  8. Radiation Protection Research Needs Workshop: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewji, Shaheen A.; Davis, Jason; Hertel, Nolan E.

    In order to protect humans and the environment when using ionizing radiation for the advancement and benefit of society, accurately quantifying radiation and its potential effects remains the driver for ensuring the safety and secure use of nuclear and radiological applications of technology. In the realm of radiation protection and its various applications with the nuclear fuel cycle, (nuclear) medicine, emergency response, national defense, and space exploration, the scientific and research needs to support state and federal radiation protection needs in the United States in each of these areas are still deficient.

  9. Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles

    PubMed Central

    Zhang, Bailin; Fang, Chia-Yi; Chang, Cheng-Chun; Peterson, Ralph; Maswadi, Saher; Glickman, Randolph D.; Chang, Huan-Cheng; Ye, Jing Yong

    2012-01-01

    Fluorescent nanodiamonds (FNDs) have drawn much attention in recent years for biomedical imaging applications due to their desired physical properties including excellent photostability, high biocompatibility, extended far-red fluorescence emission, and ease of surface functionalization. Here we explore a new feature of FNDs, i.e. their photoacoustic emission capability, which may lead to potential applications of using FNDs as a dual imaging contrast agent for combined fluorescence and photoacoustic imaging modalities. We observed significant enhancement of photoacoustic emission from FNDs when they were conjugated with gold nanoparticles (GNPs). PMID:22808436

  10. Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles.

    PubMed

    Zhang, Bailin; Fang, Chia-Yi; Chang, Cheng-Chun; Peterson, Ralph; Maswadi, Saher; Glickman, Randolph D; Chang, Huan-Cheng; Ye, Jing Yong

    2012-07-01

    Fluorescent nanodiamonds (FNDs) have drawn much attention in recent years for biomedical imaging applications due to their desired physical properties including excellent photostability, high biocompatibility, extended far-red fluorescence emission, and ease of surface functionalization. Here we explore a new feature of FNDs, i.e. their photoacoustic emission capability, which may lead to potential applications of using FNDs as a dual imaging contrast agent for combined fluorescence and photoacoustic imaging modalities. We observed significant enhancement of photoacoustic emission from FNDs when they were conjugated with gold nanoparticles (GNPs).

  11. Direct hyperpolarization of micro- and nanodiamonds for bioimaging applications - Considerations on particle size, functionalization and polarization loss.

    PubMed

    Kwiatkowski, Grzegorz; Jähnig, Fabian; Steinhauser, Jonas; Wespi, Patrick; Ernst, Matthias; Kozerke, Sebastian

    2018-01-01

    Due to the inherently long relaxation time of 13 C spins in diamond, the nuclear polarization enhancement obtained with dynamic nuclear polarization can be preserved for a time on the order of about one hour, opening up an opportunity to use diamonds as a new class of long-lived contrast agents. The present communication explores the feasibility of using 13 C spins in directly hyperpolarized diamonds for MR imaging including considerations for potential in vivo applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Aircraft engine pollution reduction

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines.

  13. Engineered proteins as specific binding reagents.

    PubMed

    Binz, H Kaspar; Plückthun, Andreas

    2005-08-01

    Over the past 30 years, monoclonal antibodies have become the standard binding proteins and currently find applications in research, diagnostics and therapy. Yet, monoclonal antibodies now face strong competition from synthetic antibody libraries in combination with powerful library selection technologies. More recently, an increased understanding of other natural binding proteins together with advances in protein engineering, selection and evolution technologies has also triggered the exploration of numerous other protein architectures for the generation of designed binding molecules. Valuable protein-binding scaffolds have been obtained and represent promising alternatives to antibodies for biotechnological and, potentially, clinical applications.

  14. Innovation in Bladder Cancer Immunotherapy.

    PubMed

    Grossman, H Barton; Lamm, Donald L; Kamat, Ashish M; Keefe, Stephen; Taylor, John A; Ingersoll, Molly A

    2016-10-01

    Bladder cancer is understudied despite its high prevalence and its remarkable response to immunotherapy. Indeed, funding for studies to explore mechanisms of tumor immunity and novel new therapeutics is disproportionately lower for bladder cancer in comparison with malignancies of the breast, prostate, or lung. However, the recent successes of checkpoint blockade therapy suggest that new therapeutic strategies are on the horizon for bladder cancer. Here, we give a perspective into the evolution of bladder cancer therapy, focusing on strategies to treat high-risk nonmuscle invasive disease, followed by a discussion of recent advances in the treatment of muscle invasive bladder cancer and their potential applicability to lower stage disease. Finally, we explore immunotherapeutic strategies, which have been demonstrated to be successful in the treatment of other malignancies, for their potential to treat and cure patients with nonmuscle and muscle invasive bladder cancer.

  15. Hostage (crisis) negotiation: the potential role of negotiator personality, decision-making style, coping style and emotional intelligence on negotiator success.

    PubMed

    Grubb, Amy; Brown, Sarah

    2012-01-01

    This article explores the potential role of hostage negotiator characteristics and the impact of psychological constructs on negotiator success. It explores the role of Personality, Decision-Making Style, Coping Style, Cognitive Coping Style and Emotion Regulation and Emotional Intelligence within high stress environments and occupations. The findings suggest that certain individual traits and characteristics may play a role in negotiator success, via the mediation of specific styles, which are conducive to effective crisis negotiation skills. It is proposed that these findings have application within the field of hostage/crisis negotiation in the format of guidance regarding the recruitment and selection of hostage negotiators and the identification of potential training needs within individual negotiators in order to maximize their efficacy within the field. In line with this, it is argued that a psychometric tool that assesses these constructs is developed in order to aid the process of hostage negotiation selection.

  16. A survey of natural aggregate properties and characteristics important in remote sensing and airborne geophysics

    USGS Publications Warehouse

    Knepper, D.H.; Langer, W.H.; Miller, S.

    1995-01-01

    Natural aggregate is vital to the construction industry. Although natural aggregate is a high volume/low value commodity that is abundant, new sources are becoming increasingly difficult to find and develop because of rigid industry specifications, political considerations, development and transportation costs, and environmental concerns. There are two primary sources of natural aggregate: (1) exposed or near-surface bedrock that can be crushed, and (2) deposits of sand and gravel. Remote sensing and airborne geophysics detect surface and near-surface phenomena, and may be useful for detecting and mapping potential aggregate sources; however, before a methodology for applying these techniques can be developed, it is necessary to understand the type, distribution, physical properties, and characteristics of natural aggregate deposits. The distribution of potential aggregate sources is closely tied to local geologic history. Conventional exploration for natural aggregate deposits has been largely a ground-based operation, although aerial photographs and topographic maps have been extensively used to target possible deposits. Today, the exploration process also considers factors such as the availability of the land, space and water supply for processing, political and environmental factors, and distance from the market; exploration and planning cannot be separated. There are many physical properties and characteristics by which to judge aggregate material for specific applications; most of these properties and characteristics pertain only to individual aggregate particles. The application of remote sensing and airborne geophysical measurements to detecting and mapping potential aggregate sources, however, is based on intrinsic bulk physical properties and extrinsic characteristics of the deposits that can be directly measured, mathematically derived from measurement, or interpreted with remote sensing and geophysical data. ?? 1995 Oxford UniversityPress.

  17. A Review of the Handheld X-Ray Fluorescence Spectrometer as a Tool for Field Geologic Investigations on Earth and in Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Young, Kelsey E.; Evans, Cynthia A.; Hodges, Kip V.; Bleacher, Jacob E.; Graff, Trevor G.

    2016-01-01

    X-ray fluorescence (XRF) spectroscopy is a well-established and commonly used technique in obtaining diagnostic compositional data on geological samples. Recently, developments in X-ray tube and detector technologies have resulted in miniaturized, field-portable instruments that enable new applications both in and out of standard laboratory settings. These applications, however, have not been extensively applied to geologic field campaigns. This study investigates the feasibility of using developing handheld XRF (hXRF) technology to enhance terrestrial field geology, with potential applications in planetary surface exploration missions. We demonstrate that the hXRF is quite stable, providing reliable and accurate data continuously over a several year period. Additionally, sample preparation is proved to have a marked effect on the strategy for collecting and assimilating hXRF data. While the hXRF is capable of obtaining data that are comparable to laboratory XRF analysis for several geologically-important elements (such as Si, Ca, Ti, and K), the instrument is unable to detect other elements (such as Mg and Na) reliably. While this limits the use of the hXRF, especially when compared to laboratory XRF techniques, the hXRF is still capable of providing the field user with significantly improved contextual awareness of a field site, and more work is needed to fully evaluate the potential of this instrument in more complex geologic environments.

  18. Computational Methods of Studying the Binding of Toxins From Venomous Animals to Biological Ion Channels: Theory and Applications

    PubMed Central

    Chen, Rong; Chung, Shin-Ho

    2013-01-01

    The discovery of new drugs that selectively block or modulate ion channels has great potential to provide new treatments for a host of conditions. One promising avenue revolves around modifying or mimicking certain naturally occurring ion channel modulator toxins. This strategy appears to offer the prospect of designing drugs that are both potent and specific. The use of computational modeling is crucial to this endeavor, as it has the potential to provide lower cost alternatives for exploring the effects of new compounds on ion channels. In addition, computational modeling can provide structural information and theoretical understanding that is not easily derivable from experimental results. In this review, we look at the theory and computational methods that are applicable to the study of ion channel modulators. The first section provides an introduction to various theoretical concepts, including force-fields and the statistical mechanics of binding. We then look at various computational techniques available to the researcher, including molecular dynamics, Brownian dynamics, and molecular docking systems. The latter section of the review explores applications of these techniques, concentrating on pore blocker and gating modifier toxins of potassium and sodium channels. After first discussing the structural features of these channels, and their modes of block, we provide an in-depth review of past computational work that has been carried out. Finally, we discuss prospects for future developments in the field. PMID:23589832

  19. Social capital: theory, evidence, and implications for oral health.

    PubMed

    Rouxel, Patrick L; Heilmann, Anja; Aida, Jun; Tsakos, Georgios; Watt, Richard G

    2015-04-01

    In the last two decades, there has been increasing application of the concept of social capital in various fields of public health, including oral health. However, social capital is a contested concept with debates on its definition, measurement, and application. This study provides an overview of the concept of social capital, highlights the various pathways linking social capital to health, and discusses the potential implication of this concept for health policy. An extensive and diverse international literature has examined the relationship between social capital and a range of general health outcomes across the life course. A more limited but expanding literature has also demonstrated the potential influence of social capital on oral health. Much of the evidence in relation to oral health is limited by methodological shortcomings mainly related to the measurement of social capital, cross-sectional study designs, and inadequate controls for confounding factors. Further research using stronger methodological designs should explore the role of social capital in oral health and assess its potential application in the development of oral health improvement interventions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Two Years of ePrescription in Slovenia - Applications and Potentials.

    PubMed

    Stanimirovic, Dalibor; Savic, Dusan

    2018-01-01

    ePrescription is one of the most successful eHealth solutions in Slovenia. Since its national roll-out in early 2016, the quality of its operations has been constantly improving, and the number of users has been growing ever since to reach today's 90% of all healthcare providers. ePrescription facilitates more transparent and safer prescribing of medications, an overview of possible medication interactions, and reduction of administrative and opportunity costs. This paper initially explores the current state of ePrescription in Slovenia and different aspects of its application. Based on the research findings, the paper finally outlines potentials of ePrescription, which could be transformed into tangible benefits with particular implications for healthcare system. The research is based on focus group methodology. Structured discussions were conducted with eminent experts currently in charge of ePrescription (and other eHealth solutions) development and implementation in Slovenia. Research results imply that certain application aspects are relatively easy to define and evaluate, while the overall potentials of ePrescription are difficult to determine in many cases, and relatively unexplored in terms of their implications and operational feasibility.

  1. Patterns of Feedback on the Bridge to Independence: A Qualitative Thematic Analysis of NIH Mentored Career Development Award Application Critiques.

    PubMed

    Kaatz, Anna; Dattalo, Melissa; Regner, Caitlin; Filut, Amarette; Carnes, Molly

    2016-01-01

    NIH Mentored Career Development (K) Awards bridge investigators from mentored to independent research. A smaller proportion of women than men succeed in this transition. The aim of this qualitative study was to analyze reviewers' narrative critiques of K award applications and explore thematic content of feedback provided to male and female applicants. We collected 88 critiques, 34 from 9 unfunded and 54 from 18 funded applications, from 70% (n = 26) of investigators at the University of Wisconsin-Madison with K awards funded between 2005 and 2009 on the first submission or after revision. We qualitatively analyzed text in the 5 critique sections: candidate, career development plan, research plan, mentors, and environment and institutional commitment. We explored thematic content within these sections for male and female applicants and for applicants who had received a subsequent independent research award by 2014. Themes revealed consistent areas of criticism for unfunded applications and praise for funded applications. Subtle variations in thematic content appeared for male and female applicants: For male applicants criticism was often followed by advice but for female applicants it was followed by questions about ability; praise recurrently characterized male but not female applicants' research as highly significant with optimism for future independence. Female K awardees that obtained subsequent independent awards stood out as having track records described as "outstanding." This exploratory study suggests that K award reviewer feedback, particularly for female applicants, should be investigated as a potential contributor to research persistence and success in crossing the bridge to independence.

  2. Patterns of Feedback on the Bridge to Independence: A Qualitative Thematic Analysis of NIH Mentored Career Development Award Application Critiques

    PubMed Central

    Dattalo, Melissa; Regner, Caitlin; Filut, Amarette; Carnes, Molly

    2016-01-01

    Abstract Background: NIH Mentored Career Development (K) Awards bridge investigators from mentored to independent research. A smaller proportion of women than men succeed in this transition. The aim of this qualitative study was to analyze reviewers' narrative critiques of K award applications and explore thematic content of feedback provided to male and female applicants. Method: We collected 88 critiques, 34 from 9 unfunded and 54 from 18 funded applications, from 70% (n = 26) of investigators at the University of Wisconsin-Madison with K awards funded between 2005 and 2009 on the first submission or after revision. We qualitatively analyzed text in the 5 critique sections: candidate, career development plan, research plan, mentors, and environment and institutional commitment. We explored thematic content within these sections for male and female applicants and for applicants who had received a subsequent independent research award by 2014. Results: Themes revealed consistent areas of criticism for unfunded applications and praise for funded applications. Subtle variations in thematic content appeared for male and female applicants: For male applicants criticism was often followed by advice but for female applicants it was followed by questions about ability; praise recurrently characterized male but not female applicants' research as highly significant with optimism for future independence. Female K awardees that obtained subsequent independent awards stood out as having track records described as “outstanding.” Conclusion: This exploratory study suggests that K award reviewer feedback, particularly for female applicants, should be investigated as a potential contributor to research persistence and success in crossing the bridge to independence. PMID:26418619

  3. How sampling and scale limit accuracy assessment of vegetation maps: A comment on Loehle et al. (2015)

    Treesearch

    David M. Bell; Matthew J. Gregory; Heather M. Roberts; Raymond J. Davis; Janet L. Ohmann

    2015-01-01

    Accuracy assessments of remote sensing products are necessary for identifying map strengths and weaknesses in scientific and management applications. However, not all accuracy assessments are created equal. Motivated by a recent study published in Forest Ecology and Management (Volume 342, pages 8–20), we explored the potential limitations of accuracy assessments...

  4. Suppression of bruchids infesting stored grain legumes with the predatory bug Xylocoris flavipes (Reuter) (Hemiptera: Anthocoridae)

    Treesearch

    Sharlene E. Sing

    1997-01-01

    Biological control of pest Bruchidae may provide an important management strategy against infestation of stored grain legumes, a key source of dietary protein in developing countwies. Previous related research has focused on the potential of parasitoids to contwol bruchids; the role of generalist predators in this application has not yet been extensively explored....

  5. Global forest sector modeling: application to some impacts of climate change

    Treesearch

    Joseph Buongiorno

    2016-01-01

    This paper explored the potential long-term effects of a warming climate on the global wood sector, based on Way and Oren's synthesis (Tree Physiology 30,669-688) indicating positive responses of tree growth to higher temperature in boreal and temperative climates, and negative responses in the topics. Changes in forest productivity were introduced in the Global...

  6. 30 CFR 550.303 - Facilities described in a new or revised Exploration Plan or Development and Production Plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER... necessary. (b) Applicability of § 550.303 to existing facilities. (1) The Regional Supervisor may review any... should be subject to review under this section and has the potential to significantly affect the air...

  7. 30 CFR 550.303 - Facilities described in a new or revised Exploration Plan or Development and Production Plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER... necessary. (b) Applicability of § 550.303 to existing facilities. (1) The Regional Supervisor may review any... should be subject to review under this section and has the potential to significantly affect the air...

  8. 30 CFR 550.303 - Facilities described in a new or revised Exploration Plan or Development and Production Plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER... necessary. (b) Applicability of § 550.303 to existing facilities. (1) The Regional Supervisor may review any... should be subject to review under this section and has the potential to significantly affect the air...

  9. Energy and remote sensing

    NASA Technical Reports Server (NTRS)

    Summers, R. A.; Smith, W. L.; Short, N. M.

    1977-01-01

    Effective implementation of the President's National Energy Plan and the Nuclear Power Policy Statement require application of the best remote sensing tools available. The potential contributions of remote sensing, particularly LANDSAT data, have yet to be clearly identified and exploited. These contributions investigated fall into the following categories: (1) exploration; (2) exploitation; (3) power plant siting; (4) environmental assessment and monitoring; and (5) transportation infrastructure.

  10. Potential impacts of advanced aerodynamic technology on air transportation system productivity

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Editor)

    1994-01-01

    Summaries of a workshop held at NASA Langley Research Center in 1993 to explore the application of advanced aerodynamics to airport productivity improvement are discussed. Sessions included discussions of terminal area productivity problems and advanced aerodynamic technologies for enhanced high lift and reduced noise, emissions, and wake vortex hazard with emphasis upon advanced aircraft configurations and multidisciplinary solution options.

  11. Literature Review of Nanosprings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Reuben James

    2016-08-22

    Nanosprings are helical structures grown on the nanoscale. Numerous choices exist for composition and coating which give them a wide range of possible uses. They compare favorably in some aspects to other nanostructures and unfavorably in other aspects. This paper reviews the available literature, discusses techniques for formation and coating, and explores a variety of potential applications that may be developed in the near future.

  12. Game as a Career Metaphor: A Chaos Theory Career Counselling Application

    ERIC Educational Resources Information Center

    Pryor, Robert George Leslie; Bright, Jim E. H.

    2009-01-01

    The potential of game as a career metaphor for use in counselling is explored and it is argued that it has been largely overlooked in the literature to date. This metaphor is then explicitly linked with the Chaos Theory of Careers (CTC), by showing how the notion of attractors within the CTC can be illustrated effectively using games metaphors.…

  13. User Acceptance of Long-Term Evolution (LTE) Services: An Application of Extended Technology Acceptance Model

    ERIC Educational Resources Information Center

    Park, Eunil; Kim, Ki Joon

    2013-01-01

    Purpose: The aim of this paper is to propose an integrated path model in order to explore user acceptance of long-term evolution (LTE) services by examining potential causal relationships between key psychological factors and user intention to use the services. Design/methodology/approach: Online survey data collected from 1,344 users are analysed…

  14. Exploring the Relevance of the Personal and Social Responsibility Model in Adapted Physical Activity: A Collective Case Study

    ERIC Educational Resources Information Center

    Wright, Paul M.; White, Katherine; Gaebler-Spira, Deborah

    2004-01-01

    The purpose of this study was to examine the application of the Personal and Social Responsibility Model (PSRM) in an adapted physical activity program. Although the PSRM was developed for use with underserved youth, scholars in the field of adapted physical activity have noted its potential relevance for children with disabilities. Using a…

  15. Exploring the Potential for Using Inexpensive Natural Reagents Extracted from Plants to Teach Chemical Analysis

    ERIC Educational Resources Information Center

    Hartwell, Supaporn Kradtap

    2012-01-01

    A number of scientific articles report on the use of natural extracts from plants as chemical reagents, where the main objective is to present the scientific applications of those natural plant extracts. The author suggests that natural reagents extracted from plants can be used as alternative low cost tools in teaching chemical analysis,…

  16. Altering Public University Admission Standards to Preserve White Group Position in the United States: Results from a Laboratory Experiment

    ERIC Educational Resources Information Center

    Samson, Frank L.

    2013-01-01

    This study identifies a theoretical mechanism that could potentially affect public university admissions standards in a context of demographic change. I explore how demographic changes at a prestigious public university in the United States affect individuals' evaluations of college applications. Responding to a line graph that randomly displays a…

  17. Inkjet Printing of Proteins: an Experimental Approach.

    PubMed

    Montenegro-Nicolini, Miguel; Miranda, Víctor; Morales, Javier O

    2017-01-01

    Peptides and proteins represent a promissory group of molecules used by the pharmaceutical industry for drug therapy with great potential for development. However, the administration of these molecules presents a series of difficulties, making necessary the exploration of new alternatives like the buccal route of administration to improve drug therapy compliance. Although drop-on demand printers have been explored for small molecule drugs with promising results, the development of delivery systems for peptides and proteins through inkjet printing has seen little development. Therefore, the aim of this study was to assess the feasibility of using a thermal inkjet printing system for dispensing lysozyme and ribonuclease-A as model proteins. To address the absorption limitations of a potential buccal use, a permeation enhancer (sodium deoxycholate) was also studied in formulations. We found that a conventional printer successfully printed both proteins, exhibiting very high printing efficiency. Furthermore, the protein structure was not affected and minor effects were observed in the enzymatic activity after the printing process. In conclusion, we provide evidence for the usage of an inexpensive, easy to use, reliable, and reproducible thermal inkjet printing system to dispense proteins solutions for potential buccal application. Our research significantly contributes to present an alternative for manufacturing biologics delivery systems, with emphasis in buccal applications. Next steps of developments will be aimed at the use of new materials for printing, controlled release, and protection strategies for proteins and peptides.

  18. Usability inspection to improve an electronic provincial medication repository.

    PubMed

    Kitson, Nicole A; Price, Morgan; Bowen, Michael; Lau, Francis

    2013-01-01

    Medication errors are a significant source of actual and potential harm for patients. Community medication records have the potential to reduce medication errors, but they can also introduce unintended consequences when there is low fit to task (low cognitive fit). PharmaNet is a provincially managed electronic repository that contains the records for community-based pharmacy-dispensed medications in British Columbia. This research explores the usability of PharmaNet, as a representative community-based medication repository. We completed usability inspections of PharmaNet through vendor applications. Vendor participants were asked to complete activity-driven scenarios, which highlighted aspects of medication management workflow. Screen recording was later reviewed. Heuristics were applied to explore usability issues and improvement opportunities. Usability inspection was conducted with four PharmaNet applications. Ninety-six usability issues were identified; half of these had potential implications for patient safety. These were primarily related to login and logout procedures; display of patient name; display of medications; update and display of alert information; and the changing or discontinuation of medications. PharmaNet was designed primarily to support medication dispensing and billing activities by community pharmacies, but is also used to support care providers with monitoring and prescribing activities. As such, some of the features do not have a strong fit for other clinical activities. To improve fit, we recommend: having a Current Medications List and Displaying Medication Utilization Charts.

  19. Interaction of extremophilic archaeal viruses with human and mouse complement system and viral biodistribution in mice

    PubMed Central

    Wu, Linping; Uldahl, Kristine Buch; Chen, Fangfang; Benasutti, Halli; Logvinski, Deborah; Vu, Vivian; Banda, Nirmal K.; Peng, Xu; Simberg, Dmitri; Moghimi, Seyed Moein

    2017-01-01

    Archaeal viruses offer exceptional biophysical properties for modification and exploration of their potential in bionanotechnology, bioengineering and nanotherapeutic developments. However, the interaction of archaeal viruses with elements of the innate immune system has not been explored, which is a necessary prerequisite if their potential for biomedical applications to be realized. Here we show complement activation through lectin (via direct binding of MBL/MASPs) and alternative pathways by two extremophilic archaeal viruses (Sulfolobus monocaudavirus 1 and Sulfolobus spindle-shaped virus 2) in human serum. We further show some differences in initiation of complement activation pathways between these viruses. Since, Sulfolobus monocaudavirus 1 was capable of directly triggering the alternative pathway, we also demonstrate that the complement regulator factor H has no affinity for the viral surface, but factor H deposition is purely C3-dependent. This suggests that unlike some virulent pathogens Sulfolobus monocaudavirus 1 does not acquire factor H for protection. Complement activation with Sulfolobus monocaudavirus 1 also proceeds in murine sera through MBL-A/C as well as factor D-dependent manner, but C3 deficiency has no overall effect on viral clearance by organs of the reticuloendothelial system on intravenous injection. However, splenic deposition was significantly higher in C3 knockout animals compared with the corresponding wild type mice. We discuss the potential application of these viruses in biomedicine in relation to their complement activating properties. PMID:28846925

  20. Reconfigurable, Intelligently-Adaptive, Communication System, an SDR Platform

    NASA Technical Reports Server (NTRS)

    Roche, Rigoberto J.; Shalkhauser, Mary Jo; Hickey, Joseph P.; Briones, Janette C.

    2016-01-01

    The Space Telecommunications Radio System (STRS) provides a common, consistent framework to abstract the application software from the radio platform hardware. STRS aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. The NASA Glenn Research Center (GRC) team made a software defined radio (SDR) platform STRS compliant by adding an STRS operating environment and a field programmable gate array (FPGA) wrapper, capable of implementing each of the platforms interfaces, as well as a test waveform to exercise those interfaces. This effort serves to provide a framework toward waveform development onto an STRS compliant platform to support future space communication systems for advanced exploration missions. The use of validated STRS compliant applications provides tested code with extensive documentation to potentially reduce risk, cost and e ort in development of space-deployable SDRs. This paper discusses the advantages of STRS, the integration of STRS onto a Reconfigurable, Intelligently-Adaptive, Communication System (RIACS) SDR platform, and the test waveform and wrapper development e orts. The paper emphasizes the infusion of the STRS Architecture onto the RIACS platform for potential use in next generation flight system SDRs for advanced exploration missions.

  1. Ultrasound Molecular Imaging: Moving Towards Clinical Translation

    PubMed Central

    Abou-Elkacem, Lotfi; Bachawal, Sunitha V.; Willmann, Jürgen K.

    2015-01-01

    Ultrasound is a widely available, cost-effective, real-time, non-invasive and safe imaging modality widely used in the clinic for anatomical and functional imaging. With the introduction of novel molecularly-targeted ultrasound contrast agents, another dimension of ultrasound has become a reality: diagnosing and monitoring pathological processes at the molecular level. Most commonly used ultrasound molecular imaging contrast agents are micron sized, gas-containing microbubbles functionalized to recognize and attach to molecules expressed on inflamed or angiogenic vascular endothelial cells. There are several potential clinical applications currently being explored including earlier detection, molecular profiling, and monitoring of cancer, as well as visualization of ischemic memory in transient myocardial ischemia, monitoring of disease activity in inflammatory bowel disease, and assessment of arteriosclerosis. Recently, a first clinical grade ultrasound contrast agent (BR55), targeted at a molecule expressed in neoangiogenesis (vascular endothelial growth factor receptor type 2; VEGFR2) has been introduced and safety and feasibility of VEGFR2-targeted ultrasound imaging is being explored in first inhuman clinical trials in various cancer types. This review describes the design of ultrasound molecular imaging contrast agents, imaging techniques, and potential future clinical applications of ultrasound molecular imaging. PMID:25851932

  2. Knowledge Management

    NASA Technical Reports Server (NTRS)

    Shariq, Syed Z.; Kutler, Paul (Technical Monitor)

    1997-01-01

    The emergence of rapidly expanding technologies for distribution and dissemination of information and knowledge has brought to focus the opportunities for development of knowledge-based networks, knowledge dissemination and knowledge management technologies and their potential applications for enhancing productivity of knowledge work. The challenging and complex problems of the future can be best addressed by developing the knowledge management as a new discipline based on an integrative synthesis of hard and soft sciences. A knowledge management professional society can provide a framework for catalyzing the development of proposed synthesis as well as serve as a focal point for coordination of professional activities in the strategic areas of education, research and technology development. Preliminary concepts for the development of the knowledge management discipline and the professional society are explored. Within this context of knowledge management discipline and the professional society, potential opportunities for application of information technologies for more effectively delivering or transferring information and knowledge (i.e., resulting from the NASA's Mission to Planet Earth) for the development of policy options in critical areas of national and global importance (i.e., policy decisions in economic and environmental areas) can be explored, particularly for those policy areas where a global collaborative knowledge network is likely to be critical to the acceptance of the policies.

  3. Ultrasound molecular imaging: Moving toward clinical translation.

    PubMed

    Abou-Elkacem, Lotfi; Bachawal, Sunitha V; Willmann, Jürgen K

    2015-09-01

    Ultrasound is a widely available, cost-effective, real-time, non-invasive and safe imaging modality widely used in the clinic for anatomical and functional imaging. With the introduction of novel molecularly-targeted ultrasound contrast agents, another dimension of ultrasound has become a reality: diagnosing and monitoring pathological processes at the molecular level. Most commonly used ultrasound molecular imaging contrast agents are micron sized, gas-containing microbubbles functionalized to recognize and attach to molecules expressed on inflamed or angiogenic vascular endothelial cells. There are several potential clinical applications currently being explored including earlier detection, molecular profiling, and monitoring of cancer, as well as visualization of ischemic memory in transient myocardial ischemia, monitoring of disease activity in inflammatory bowel disease, and assessment of arteriosclerosis. Recently, a first clinical grade ultrasound contrast agent (BR55), targeted at a molecule expressed in neoangiogenesis (vascular endothelial growth factor receptor type 2; VEGFR2) has been introduced and safety and feasibility of VEGFR2-targeted ultrasound imaging is being explored in first inhuman clinical trials in various cancer types. This review describes the design of ultrasound molecular imaging contrast agents, imaging techniques, and potential future clinical applications of ultrasound molecular imaging. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Recent advancements in carbon nanofiber and carbon nanotube applications in drug delivery and tissue engineering.

    PubMed

    Stout, David A

    2015-01-01

    Since the discovery and synthesis of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) over a decade ago, researchers have envisioned and discovered new potential applications for these materials. CNTs and CNFs have rapidly become a platform technology for a variety of uses, including biomedical applications due to their mechanical, electrical, thermal, optical and structural properties. CNTs and CNFs are also advantageous due to their ability to be produced in many different shapes and sizes. Since their discovery, of the many imaginable applications, CNTs and CNFs have gained a significant amount of attention and therapeutic potential in tissue engineering and drug delivery applications. In recent years, CNTs and CNFs have made significant contributions in designing new strategies for, delivery of pharmaceuticals, genes and molecular probes into cells, stem cell therapies and assisting in tissue regeneration. Furthermore, it is widely expressed that these materials will significantly contribute to the next generation of health care technologies in treating diseases and contributing to tissue growth. Hence, this review seeks to explore the recent advancements, current status and limitations of CNTs and CNFs for drug delivery and tissue engineering applications.

  5. Investigating electrical resonance in eddy-current array probes

    NASA Astrophysics Data System (ADS)

    Hughes, R.; Fan, Y.; Dixon, S.

    2016-02-01

    The sensitivity enhancing effects of eddy-current testing at frequencies close to electrical resonance are explored. Var-ied techniques exploiting the phenomenon, dubbed near electrical resonance signal enhancement (NERSE), were experimentally investigated to evaluate its potential exploitation for other interesting applications in aerospace materials, in particular its potential for boosting the sensitivity of standard ECT measurements. Methods for setting and controlling the typically unstable resonant frequencies of such systems are discussed. This research is funded by the EPSRC, via the Research Centre for Non-Destructive Evaluation RCNDE, and Rolls-Royce plc.

  6. Industrial Waste Heat Recovery - Potential Applications, Available Technologies and Crosscutting R&D Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thekdi, Arvind; Nimbalkar, Sachin U.

    2015-01-01

    The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.

  7. The Influence of Power Limitations on Closed Environment Life Support System Applications

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Kliss, Mark (Technical Monitor)

    1997-01-01

    The future of manned space exploration will be determined through a process which balances the innate need of humanity to explore its surroundings and the costs associated with accomplishing these goals. For NASA, this balance is derived from economics and budgetary constraints that hold it accountable for the expenditure of public funds. These budgetary realities demand a reduction in cost and expenditures of exploration and research activities. For missions venturing out to the edge of habitability, the development of cost effective life support approaches will have a significant influence on mission viability. Over the past several years, a variety of mission scenarios for potential Lunar and Mars missions have been developed. The most promising of these scenarios attempt to provide basic mission requirements at a minimum cost. As a result, these scenarios are extremely power limited. For Closed Environment Life Support System (CELSS) applications, these realities impose both limitations and direction to future research. This paper presents a summary of these mission scenarios and an evaluation of the impact which these power limitations will have on CELSS system design.

  8. Exploring quantum computing application to satellite data assimilation

    NASA Astrophysics Data System (ADS)

    Cheung, S.; Zhang, S. Q.

    2015-12-01

    This is an exploring work on potential application of quantum computing to a scientific data optimization problem. On classical computational platforms, the physical domain of a satellite data assimilation problem is represented by a discrete variable transform, and classical minimization algorithms are employed to find optimal solution of the analysis cost function. The computation becomes intensive and time-consuming when the problem involves large number of variables and data. The new quantum computer opens a very different approach both in conceptual programming and in hardware architecture for solving optimization problem. In order to explore if we can utilize the quantum computing machine architecture, we formulate a satellite data assimilation experimental case in the form of quadratic programming optimization problem. We find a transformation of the problem to map it into Quadratic Unconstrained Binary Optimization (QUBO) framework. Binary Wavelet Transform (BWT) will be applied to the data assimilation variables for its invertible decomposition and all calculations in BWT are performed by Boolean operations. The transformed problem will be experimented as to solve for a solution of QUBO instances defined on Chimera graphs of the quantum computer.

  9. Applying a soft-robotic glove as assistive device and training tool with games to support hand function after stroke: Preliminary results on feasibility and potential clinical impact.

    PubMed

    Prange-Lasonder, Gerdienke B; Radder, Bob; Kottink, Anke I R; Melendez-Calderon, Alejandro; Buurke, Jaap H; Rietman, Johan S

    2017-07-01

    Recent technological developments regarding wearable soft-robotic devices extend beyond the current application of rehabilitation robotics and enable unobtrusive support of the arms and hands during daily activities. In this light, the HandinMind (HiM) system was developed, comprising a soft-robotic, grip supporting glove with an added computer gaming environment. The present study aims to gain first insight into the feasibility of clinical application of the HiM system and its potential impact. In order to do so, both the direct influence of the HiM system on hand function as assistive device and its therapeutic potential, of either assistive or therapeutic use, were explored. A pilot randomized clinical trial was combined with a cross-sectional measurement (comparing performance with and without glove) at baseline in 5 chronic stroke patients, to investigate both the direct assistive and potential therapeutic effects of the HiM system. Extended use of the soft-robotic glove as assistive device at home or with dedicated gaming exercises in a clinical setting was applicable and feasible. A positive assistive effect of the soft-robotic glove was proposed for pinch strength and functional task performance 'lifting full cans' in most of the five participants. A potential therapeutic impact was suggested with predominantly improved hand strength in both participants with assistive use, and faster functional task performance in both participants with therapeutic application.

  10. Advances in covalent organic frameworks in separation science.

    PubMed

    Qian, Hai-Long; Yang, Cheng-Xiong; Wang, Wen-Long; Yang, Cheng; Yan, Xiu-Ping

    2018-03-23

    Covalent organic frameworks (COFs) are a new class of multifunctional crystalline organic polymer constructed with organic monomers via robust covalent bonds. The unique properties such as convenient modification, low densities, large specific surface areas, good stability and permanent porosity make COFs great potential in separation science. This review shows the state-of-the art for the application of COFs and their composites in analytical separation science. COFs and their composites have been explored as promising sorbents for solid phase extraction, potential coatings for solid phase microextraction, and novel stationary phases for gas chromatography, high-performance liquid chromatography and capillary electrochromatography. The prospects of COFs for separation science are also presented, which can offer an outlook and reference for further study on the applications of COFs. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes.

    PubMed

    Phan, Chia-Wei; Sabaratnam, Vikineswary

    2012-11-01

    Mushroom industries generate a virtually in-exhaustible supply of a co-product called spent mushroom substrate (SMS). This is the unutilised substrate and the mushroom mycelium left after harvesting of mushrooms. As the mushroom industry is steadily growing, the volume of SMS generated annually is increasing. In recent years, the mushroom industry has faced challenges in storing and disposing the SMS. The obvious solution is to explore new applications of SMS. There has been considerable discussion recently about the potentials of using SMS for production of value-added products. One of them is production of lignocellulosic enzymes such as laccase, xylanase, lignin peroxidase, cellulase and hemicellulase. This paper reviews scientific research and practical applications of SMS as a readily available and cheap source of enzymes for bioremediation, animal feed and energy feedstock.

  12. Towards Tartaric-Acid-Derived Asymmetric Organocatalysts

    PubMed Central

    Gratzer, Katharina; Gururaja, Guddeangadi N; Waser, Mario

    2013-01-01

    Tartaric acid is one of the most prominent naturally occurring chiral compounds. Whereas its application in the production of chiral ligands for metal-catalysed reactions has been exhaustively investigated, its potential to provide new organocatalysts has been less extensively explored. Nevertheless, some impressive results, such as the use of TADDOLs as chiral H-bonding catalysts or of tartrate-derived asymmetric quaternary ammonium salt catalysts, have been reported over the last decade. The goal of this article is to provide a representative overview of the potential and the limitations of tartaric acid or TADDOLs in the creation of new organocatalysts and to highlight some of the most spectacular applications of these catalysts, as well as to summarize case studies in which other classes of chiral backbones were better suited. PMID:24194674

  13. Magnetic Nanoparticles for Multi-Imaging and Drug Delivery

    PubMed Central

    Lee, Jae-Hyun; Kim, Ji-wook; Cheon, Jinwoo

    2013-01-01

    Various bio-medical applications of magnetic nanoparticles have been explored during the past few decades. As tools that hold great potential for advancing biological sciences, magnetic nanoparticles have been used as platform materials for enhanced magnetic resonance imaging (MRI) agents, biological separation and magnetic drug delivery systems, and magnetic hyperthermia treatment. Furthermore, approaches that integrate various imaging and bioactive moieties have been used in the design of multi-modality systems, which possess synergistically enhanced properties such as better imaging resolution and sensitivity, molecular recognition capabilities, stimulus responsive drug delivery with on-demand control, and spatio-temporally controlled cell signal activation. Below, recent studies that focus on the design and synthesis of multi-mode magnetic nanoparticles will be briefly reviewed and their potential applications in the imaging and therapy areas will be also discussed. PMID:23579479

  14. Mobile Phone Health Applications for the Federal Sector.

    PubMed

    Burrows, Christin S; Weigel, Fred K

    2016-01-01

    As the US healthcare system moves toward a mobile care model, mobile phones will play a significant role in the future of healthcare delivery. Today, 90% of American adults own a mobile phone and 64% own a smartphone, yet many healthcare organizations are only beginning to explore the opportunities in which mobile phones can improve and streamline care. After searching Google Scholar, the Association for Computing Machinery Database, and PubMed for articles related to mobile phone health applications and cell phone text message health, we selected articles and studies related to the application of mobile phones in healthcare. From our initial review, we identified the potential application areas and continued to refine our search, identifying a total of 55 articles for additional review and analysis. From the literature, we identified 3 main themes for mobile phone implementation in improving healthcare: primary, preventive, and population health. We recommend federal health leaders pursue the value and potential in these areas; not only because 90% of Americans already own mobile phones, but also because mobile phone integration can provide substantial access and potential cost savings. From the positive findings of multiple studies in primary, preventive, and population health, we propose a 5-year federal implementation plan to integrate mobile phone capabilities into federal healthcare delivery. Our proposal has the potential to improve access, reduce costs, and increase patient satisfaction, therefore changing the way the federal sector delivers healthcare by 2021.

  15. Exploration of Global Trend on Biomedical Application of Polyhydroxyalkanoate (PHA): A Patent Survey.

    PubMed

    Ponnaiah, Paulraj; Vnoothenei, Nagiah; Chandramohan, Muruganandham; Thevarkattil, Mohamed Javad Pazhayakath

    2018-01-30

    Polyhydroxyalkanoates are bio-based, biodegradable naturally occurring polymers produced by a wide range of organisms, from bacteria to higher mammals. The properties and biocompatibility of PHA make it possible for a wide spectrum of applications. In this context, we analyze the potential applications of PHA in biomedical science by exploring the global trend through the patent survey. The survey suggests that PHA is an attractive candidate in such a way that their applications are widely distributed in the medical industry, drug delivery system, dental material, tissue engineering, packaging material as well as other useful products. In our present study, we explored patents associated with various biomedical applications of polyhydroxyalkanoates. Patent databases of European Patent Office, United States Patent and Trademark Office and World Intellectual Property Organization were mined. We developed an intensive exploration approach to eliminate overlapping patents and sort out significant patents. We demarcated the keywords and search criterions and established search patterns for the database request. We retrieved documents within the recent 6 years, 2010 to 2016 and sort out the collected data stepwise to gather the most appropriate documents in patent families for further scrutiny. By this approach, we retrieved 23,368 patent documents from all the three databases and the patent titles were further analyzed for the relevance of polyhydroxyalkanoates in biomedical applications. This ensued in the documentation of approximately 226 significant patents associated with biomedical applications of polyhydroxyalkanoates and the information was classified into six major groups. Polyhydroxyalkanoates has been patented in such a way that their applications are widely distributed in the medical industry, drug delivery system, dental material, tissue engineering, packaging material as well as other useful products. There are many avenues through which PHA & PHB could be used. Our analysis shows patent information can be used to identify various applications of PHA and its representatives in the biomedical field. Upcoming studies can focus on the application of PHA in the different field to discover the related topics and associate to this study. We believe that this approach of analysis and findings can initiate new researchers to undertake similar kind of studies in their represented field to fill the gap between the patent articles and researchpublications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Exploring cytoplasmic dynamics in zebrafish yolk cells by single particle tracking of fluorescent nanodiamonds

    NASA Astrophysics Data System (ADS)

    Chang, Cheng-Chun; Zhang, Bailin; Li, Che-Yu; Hsieh, Chih-Chien; Duclos, Guillaume; Treussart, François; Chang, Huan-Cheng

    2012-02-01

    Fluorescent nanodiamonds (FNDs) have recently developed into an exciting new tool for bioimaging applications. The material possesses several unique features including high biocompatibility, easy bioconjugation, and perfect photostability, making it a promising optical nanoprobe in vitro as well as in vivo. This work explores the potential application of this novel nanomaterial as a photostable, nontoxic tracer in vivo using zebrafish as a model organism. We introduced FNDs into the yolk of a zebrafish embryo by microinjection at the 1-cell stage. Movements of the injected particles were investigated by using single particle tracking techniques. We observed unidirectional and stop-and-go traffic as part of the intricate cytoplasmic movements in the yolk cell. We determined a velocity in the range of 0.19 - 0.40 μm/s for 40 particles moving along with the axial streaming in the early developmental stage (1 to 2 hours post fertilization) of the zebrafish embryos.

  17. Exploring Infiniband Hardware Virtualization in OpenNebula towards Efficient High-Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pais Pitta de Lacerda Ruivo, Tiago; Bernabeu Altayo, Gerard; Garzoglio, Gabriele

    2014-11-11

    has been widely accepted that software virtualization has a big negative impact on high-performance computing (HPC) application performance. This work explores the potential use of Infiniband hardware virtualization in an OpenNebula cloud towards the efficient support of MPI-based workloads. We have implemented, deployed, and tested an Infiniband network on the FermiCloud private Infrastructure-as-a-Service (IaaS) cloud. To avoid software virtualization towards minimizing the virtualization overhead, we employed a technique called Single Root Input/Output Virtualization (SRIOV). Our solution spanned modifications to the Linux’s Hypervisor as well as the OpenNebula manager. We evaluated the performance of the hardware virtualization on up to 56more » virtual machines connected by up to 8 DDR Infiniband network links, with micro-benchmarks (latency and bandwidth) as well as w a MPI-intensive application (the HPL Linpack benchmark).« less

  18. Biology and Industrial Applications of Chlorella: Advances and Prospects.

    PubMed

    Liu, Jin; Chen, Feng

    2016-01-01

    Chlorella represents a group of eukaryotic green microalgae that has been receiving increasing scientific and commercial interest. It possesses high photosynthetic ability and is capable of growing robustly under mixotrophic and heterotrophic conditions as well. Chlorella has long been considered as a source of protein and is now industrially produced for human food and animal feed. Chlorella is also rich in oil, an ideal feedstock for biofuels. The exploration of biofuel production by Chlorella is underway. Chlorella has the ability to fix carbon dioxide efficiently and to remove nutrients of nitrogen and phosphorous, making it a good candidate for greenhouse gas biomitigation and wastewater bioremediation. In addition, Chlorella shows potential as an alternative expression host for recombinant protein production, though challenges remain to be addressed. Currently, omics analyses of certain Chlorella strains are being performed, which will help to unravel the biological implications of Chlorella and facilitate the future exploration of industrial applications.

  19. GLO-STIX: Graph-Level Operations for Specifying Techniques and Interactive eXploration

    PubMed Central

    Stolper, Charles D.; Kahng, Minsuk; Lin, Zhiyuan; Foerster, Florian; Goel, Aakash; Stasko, John; Chau, Duen Horng

    2015-01-01

    The field of graph visualization has produced a wealth of visualization techniques for accomplishing a variety of analysis tasks. Therefore analysts often rely on a suite of different techniques, and visual graph analysis application builders strive to provide this breadth of techniques. To provide a holistic model for specifying network visualization techniques (as opposed to considering each technique in isolation) we present the Graph-Level Operations (GLO) model. We describe a method for identifying GLOs and apply it to identify five classes of GLOs, which can be flexibly combined to re-create six canonical graph visualization techniques. We discuss advantages of the GLO model, including potentially discovering new, effective network visualization techniques and easing the engineering challenges of building multi-technique graph visualization applications. Finally, we implement the GLOs that we identified into the GLO-STIX prototype system that enables an analyst to interactively explore a graph by applying GLOs. PMID:26005315

  20. Acoustic Droplet Vaporization in Biology and Medicine

    PubMed Central

    Pitt, William G.

    2013-01-01

    This paper reviews the literature regarding the use of acoustic droplet vaporization (ADV) in clinical applications of imaging, embolic therapy, and therapeutic delivery. ADV is a physical process in which the pressure waves of ultrasound induce a phase transition that causes superheated liquid nanodroplets to form gas bubbles. The bubbles provide ultrasonic imaging contrast and other functions. ADV of perfluoropentane was used extensively in imaging for preclinical trials in the 1990s, but its use declined rapidly with the advent of other imaging agents. In the last decade, ADV was proposed and explored for embolic occlusion therapy, drug delivery, aberration correction, and high intensity focused ultrasound (HIFU) sensitization. Vessel occlusion via ADV has been explored in rodents and dogs and may be approaching clinical use. ADV for drug delivery is still in preclinical stages with initial applications to treat tumors in mice. Other techniques are still in preclinical studies but have potential for clinical use in specialty applications. Overall, ADV has a bright future in clinical application because the small size of nanodroplets greatly reduces the rate of clearance compared to larger contrast agent bubbles and yet provides the advantages of ultrasonographic contrast, acoustic cavitation, and nontoxicity of conventional perfluorocarbon contrast agent bubbles. PMID:24350267

  1. Bursting Regimes in a Reaction-Diffusion System with Action Potential-Dependent Equilibrium

    PubMed Central

    Meier, Stephen R.; Lancaster, Jarrett L.; Starobin, Joseph M.

    2015-01-01

    The equilibrium Nernst potential plays a critical role in neural cell dynamics. A common approximation used in studying electrical dynamics of excitable cells is that the ionic concentrations inside and outside the cell membranes act as charge reservoirs and remain effectively constant during excitation events. Research into brain electrical activity suggests that relaxing this assumption may provide a better understanding of normal and pathophysiological functioning of the brain. In this paper we explore time-dependent ionic concentrations by allowing the ion-specific Nernst potentials to vary with developing transmembrane potential. As a specific implementation, we incorporate the potential-dependent Nernst shift into a one-dimensional Morris-Lecar reaction-diffusion model. Our main findings result from a region in parameter space where self-sustaining oscillations occur without external forcing. Studying the system close to the bifurcation boundary, we explore the vulnerability of the system with respect to external stimulations which disrupt these oscillations and send the system to a stable equilibrium. We also present results for an extended, one-dimensional cable of excitable tissue tuned to this parameter regime and stimulated, giving rise to complex spatiotemporal pattern formation. Potential applications to the emergence of neuronal bursting in similar two-variable systems and to pathophysiological seizure-like activity are discussed. PMID:25823018

  2. Low electrical resistivity carbon nanotube and polyethylene nanocomposites for aerospace and energy exploration applications

    NASA Astrophysics Data System (ADS)

    Moloney, Padraig G.

    An investigation was conducted towards the development and optimization of low electrical resistivity carbon nanotube (CNT) and thermoplastic composites as potential materials for future wire and cable applications in aerospace and energy exploration. Fundamental properties of the polymer, medium density polyethylene (MDPE), such as crystallinity were studied and improved for composite use. A parallel effort was undertaken on a broad selection of CNT, including single wall, double wall and multi wall carbon nanotubes, and included research of material aspects relevant to composite application and low resistivity such as purity, diameter and chirality. With an emphasis on scalability, manufacturing and purification methods were developed, and a solvent-based composite fabrication method was optimized. CNT MDPE composites were characterized via thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Raman spectroscopy, and multiple routes of electron microscopy. Techniques including annealing and pressure treatments were used to further improve the composites' resulting electrical performance. Enhancement of conductivity was explored via exposure to a focused microwave beam. A novel doping method was developed using antimony pentafluoride (SbF5) to reduce the resistivity of the bulk CNT. Flexible composites, malleable under heat and pressure, were produced with exceptional electrical resistivities reaching as low as 2*10-6O·m (5*105S/m). A unique gas sensor application utilizing the unique electrical resistivities of the produced CNT-MDPE composites was developed. The materials proved suitable as a low weight and low energy sensing material for dimethyl methylphosphonate (DMMP), a nerve gas simulant.

  3. A technical guide to tDCS, and related non-invasive brain stimulation tools

    PubMed Central

    Woods, AJ; Antal, A; Bikson, M; Boggio, PS; Brunoni, AR; Celnik, P; Cohen, LG; Fregni, F; Herrmann, CS; Kappenman, ES; Knotkova, H; Liebetanz, D; Miniussi, C; Miranda, PC; Paulus, W; Priori, A; Reato, D; Stagg, C; Wenderoth, N; Nitsche, MA

    2015-01-01

    Transcranial electrical stimulation (tES), including transcranial direct and alternating current stimulation (tDCS, tACS) are non-invasive brain stimulation techniques increasingly used for modulation of central nervous system excitability in humans. Here we address methodological issues required for tES application. This review covers technical aspects of tES, as well as applications like exploration of brain physiology, modelling approaches, tES in cognitive neurosciences, and interventional approaches. It aims to help the reader to appropriately design and conduct studies involving these brain stimulation techniques, understand limitations and avoid shortcomings, which might hamper the scientific rigor and potential applications in the clinical domain. PMID:26652115

  4. Application of Nanotechnology and Nanomaterials in Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Nabhani, Nader; Emami, Milad; Moghadam, A. B. Taghavi

    2011-12-01

    Micro and nano technologies have already contributed significantly to technological advances in a number of industries, including electronics, biomedical, pharmaceutical, materials and manufacturing, aerospace, photography and more recently the energy industries. Micro and nanotechnologies have the potential to introduce revolutionary changes in several areas of the oil and gas industries such as exploration, drilling, production, refining and distribution. For example, nanosensors might provide more detailed and accurate information about reservoirs and smart fluids for enhanced oil recovery (EOR) and drilling. This paper examines and documents applicable nanotechnology base products that can improve the competitiveness of the oil and gas industry. The future challenges of nanotechnology application in the oil and gas industry are also discussed.

  5. Applications of diatoms as potential microalgae in nanobiotechnology.

    PubMed

    Jamali, Ali Akbar; Akbari, Fariba; Ghorakhlu, Mohamad Moradi; de la Guardia, Miguel; Yari Khosroushahi, Ahmad

    2012-01-01

    Diatoms are single cell eukaryotic microalgae, which present in nearly every water habitat make them ideal tools for a wide range of applications such as oil explora-tion, forensic examination, environmental indication, biosilica pattern generation, toxicity testing and eutrophication of aqueous ecosystems. Essential information on diatoms were reviewed and discussed towards impacts of diatoms on biosynthesis and bioremediation. In this review, we present the recent progress in this century on the application of diatoms in waste degradation, synthesis of biomaterial, biomineraliza-tion, toxicity and toxic effects of mineral elements evaluations. Diatoms can be considered as metal toxicity bioindicators and they can be applied for biomineralization, synthesis of biomaterials, and degradation of wastes.

  6. Learning and exploration in action-perception loops.

    PubMed

    Little, Daniel Y; Sommer, Friedrich T

    2013-01-01

    Discovering the structure underlying observed data is a recurring problem in machine learning with important applications in neuroscience. It is also a primary function of the brain. When data can be actively collected in the context of a closed action-perception loop, behavior becomes a critical determinant of learning efficiency. Psychologists studying exploration and curiosity in humans and animals have long argued that learning itself is a primary motivator of behavior. However, the theoretical basis of learning-driven behavior is not well understood. Previous computational studies of behavior have largely focused on the control problem of maximizing acquisition of rewards and have treated learning the structure of data as a secondary objective. Here, we study exploration in the absence of external reward feedback. Instead, we take the quality of an agent's learned internal model to be the primary objective. In a simple probabilistic framework, we derive a Bayesian estimate for the amount of information about the environment an agent can expect to receive by taking an action, a measure we term the predicted information gain (PIG). We develop exploration strategies that approximately maximize PIG. One strategy based on value-iteration consistently learns faster than previously developed reward-free exploration strategies across a diverse range of environments. Psychologists believe the evolutionary advantage of learning-driven exploration lies in the generalized utility of an accurate internal model. Consistent with this hypothesis, we demonstrate that agents which learn more efficiently during exploration are later better able to accomplish a range of goal-directed tasks. We will conclude by discussing how our work elucidates the explorative behaviors of animals and humans, its relationship to other computational models of behavior, and its potential application to experimental design, such as in closed-loop neurophysiology studies.

  7. Application of Landsat imagery to problems of petroleum exploration in Qaidam Basin, China

    USGS Publications Warehouse

    Bailey, G.B.; Anderson, P.D.

    1982-01-01

    Tertiary and Quaternary nonmarine, petroleum-bearing sedimentary rocks have been extensively deformed by compressive forces. These forces created many folds which are current targets of Chinese exploration programs. Image-derived interpretations of folds, strike-slip faults, thrust faults, normal or reverse faults, and fractures compared very favorably, in terms of locations and numbers mapped, with Chinese data compiled from years of extensive field mapping. Many potential hydrocarbon trapping structures were precisely located. Orientations of major structural trends defined from Landsat imagery correlate well with those predicted for the area based on global tectonic theory. These correlations suggest that similar orientations exist in the eastern half of the basin where folded rocks are mostly obscured by unconsolidated surface sediments and where limited exploration has occurred.--Modified journal abstract.

  8. Potential anesthesia protocols for space exploration missions.

    PubMed

    Komorowski, Matthieu; Watkins, Sharmila D; Lebuffe, Gilles; Clark, Jonathan B

    2013-03-01

    In spaceflight beyond low Earth's orbit, medical conditions requiring surgery are of a high level of concern because of their potential impact on crew health and mission success. Whereas surgical techniques have been thoroughly studied in spaceflight analogues, the research focusing on anesthesia is limited. To provide safe anesthesia during an exploration mission will be a highly challenging task. The research objective is thus to describe specific anesthesia procedures enabling treatment of pre-identified surgical conditions. Among the medical conditions considered by the NASA Human Research Program Exploration Medical Capability element, those potentially necessitating anesthesia techniques have been identified. The most appropriate procedure for each condition is thoroughly discussed. The substantial cost of training time necessary to implement regional anesthesia is pointed out. Within general anesthetics, ketamine combines the unique advantages of preservation of cardiovascular stability, the protective airway reflexes, and spontaneous ventilation. Ketamine side effects have for decades tempered enthusiasm for its use, but recent developments in mitigation means broadened its indications. The extensive experience gathered in remote environments, with minimal equipment and occasionally by insufficiently trained care providers, confirms its high degree of safety. Two ketamine-based anesthesia protocols are described with their corresponding indications. They have been designed taking into account the physiological changes occurring in microgravity and the specific constraints of exploration missions. This investigation could not only improve surgical care during long-duration spaceflights, but may find a number of terrestrial applications in isolated or austere environments.

  9. Cell Membrane-Cloaked Nanoparticles for Targeted Therapeutics

    NASA Astrophysics Data System (ADS)

    Luk, Brian Tsengchi

    The advent of nanoparticle-based delivery systems has made a significant impact on clinical patient outcomes. In recent decades, myriad nanoparticle-based therapeutic agents have been developed for the treatment and management of ailments such as cancer, diabetes, pain, bacterial infections, and asthma, among many others. Nanotherapeutics offer many distinct advantages over conventional free drug formulations. For example, nanoparticles are able to accumulate at tumor sites by extravasation through leaky vasculature at tumor sites via the enhanced permeability and retention (EPR) effect; nanoparticles can also be tailored to have desirable characteristics, such as prolonged circulation in the blood stream, improved drug encapsulation, and sustained or triggered drug release. Currently, a growing number of nanoformulations with favorable pharmacological profiles and promising efficacy are being used in clinical trials for the treatment of various cancers. Building on the success of these encouraging clinical results, new engineering strategies have emerged that combine synthetic nanoparticles with natural biomaterials to create nature-inspired biomimetic delivery systems. The work presented in this dissertation focuses on the biointerfacing between synthetic and natural materials, namely in the manifestation of cell membrane-coated nanoparticles. By exploiting the natural functionalities of source cell membranes, cell membrane-cloaked nanoparticles have huge potential in the delivery of therapeutic agents for a variety of applications. The first portion of this thesis will focus on understanding the fundamentals underlying cell membrane coating on synthetic nanoparticles. First introduced in 2011, cell membrane-cloaked nanoparticles showed immediate promise in drug delivery applications, but further understanding was necessary to be able to harness the full potential of the membrane coating platform. The first section provides further insight into the interfacial interactions between membranes and synthetic nanoparticles, and how the membrane coating technique faithfully translates the complexities of natural cellular membranes to the nanoscale. The following three sections explore potential therapeutic applications of membrane-coated nanoparticles for targeted drug delivery, biodetoxification, and immunomodulation. Ultimately, cell membrane-cloaked nanoparticles have the potential to significantly change the landscape of nanomedicine. The novel applications presented in this thesis are just a few of many examples currently being researched, with countless more avenues waiting to be explored.

  10. Spatiotemporal multivariate mixture models for Bayesian model selection in disease mapping.

    PubMed

    Lawson, A B; Carroll, R; Faes, C; Kirby, R S; Aregay, M; Watjou, K

    2017-12-01

    It is often the case that researchers wish to simultaneously explore the behavior of and estimate overall risk for multiple, related diseases with varying rarity while accounting for potential spatial and/or temporal correlation. In this paper, we propose a flexible class of multivariate spatio-temporal mixture models to fill this role. Further, these models offer flexibility with the potential for model selection as well as the ability to accommodate lifestyle, socio-economic, and physical environmental variables with spatial, temporal, or both structures. Here, we explore the capability of this approach via a large scale simulation study and examine a motivating data example involving three cancers in South Carolina. The results which are focused on four model variants suggest that all models possess the ability to recover simulation ground truth and display improved model fit over two baseline Knorr-Held spatio-temporal interaction model variants in a real data application.

  11. The Spinel Explorer--Interactive Visual Analysis of Spinel Group Minerals.

    PubMed

    Luján Ganuza, María; Ferracutti, Gabriela; Gargiulo, María Florencia; Castro, Silvia Mabel; Bjerg, Ernesto; Gröller, Eduard; Matković, Krešimir

    2014-12-01

    Geologists usually deal with rocks that are up to several thousand million years old. They try to reconstruct the tectonic settings where these rocks were formed and the history of events that affected them through the geological time. The spinel group minerals provide useful information regarding the geological environment in which the host rocks were formed. They constitute excellent indicators of geological environments (tectonic settings) and are of invaluable help in the search for mineral deposits of economic interest. The current workflow requires the scientists to work with different applications to analyze spine data. They do use specific diagrams, but these are usually not interactive. The current workflow hinders domain experts to fully exploit the potentials of tediously and expensively collected data. In this paper, we introduce the Spinel Explorer-an interactive visual analysis application for spinel group minerals. The design of the Spinel Explorer and of the newly introduced interactions is a result of a careful study of geologists' tasks. The Spinel Explorer includes most of the diagrams commonly used for analyzing spinel group minerals, including 2D binary plots, ternary plots, and 3D Spinel prism plots. Besides specific plots, conventional information visualization views are also integrated in the Spinel Explorer. All views are interactive and linked. The Spinel Explorer supports conventional statistics commonly used in spinel minerals exploration. The statistics views and different data derivation techniques are fully integrated in the system. Besides the Spinel Explorer as newly proposed interactive exploration system, we also describe the identified analysis tasks, and propose a new workflow. We evaluate the Spinel Explorer using real-life data from two locations in Argentina: the Frontal Cordillera in Central Andes and Patagonia. We describe the new findings of the geologists which would have been much more difficult to achieve using the current workflow only. Very positive feedback from geologists confirms the usefulness of the Spinel Explorer.

  12. Molecularly Imprinted Intelligent Scaffolds for Tissue Engineering Applications.

    PubMed

    Neves, Mariana I; Wechsler, Marissa E; Gomes, Manuela E; Reis, Rui L; Granja, Pedro L; Peppas, Nicholas A

    2017-02-01

    The development of molecularly imprinted polymers (MIPs) using biocompatible production methods enables the possibility to further exploit this technology for biomedical applications. Tissue engineering (TE) approaches use the knowledge of the wound healing process to design scaffolds capable of modulating cell behavior and promote tissue regeneration. Biomacromolecules bear great interest for TE, together with the established recognition of the extracellular matrix, as an important source of signals to cells, both promoting cell-cell and cell-matrix interactions during the healing process. This review focuses on exploring the potential of protein molecular imprinting to create bioactive scaffolds with molecular recognition for TE applications based on the most recent approaches in the field of molecular imprinting of macromolecules. Considerations regarding essential components of molecular imprinting technology will be addressed for TE purposes. Molecular imprinting of biocompatible hydrogels, namely based on natural polymers, is also reviewed here. Hydrogel scaffolds with molecular memory show great promise for regenerative therapies. The first molecular imprinting studies analyzing cell adhesion report promising results with potential applications for cell culture systems, or biomaterials for implantation with the capability for cell recruitment by selectively adsorbing desired molecules.

  13. Impacts on non-human biota from a generic geological disposal facility for radioactive waste: some key assessment issues.

    PubMed

    Robinson, C A; Smith, K L; Norris, S

    2010-06-01

    This paper provides an overview of key issues associated with the application of currently available biota dose assessment methods to consideration of potential environmental impacts from geological disposal facilities. It explores philosophical, methodological and practical assessment issues and reviews the implications of test assessment results in the context of recent and on-going challenges and debates.

  14. How to start a biotech company

    PubMed Central

    Tajonar, Adriana

    2014-01-01

    The spirit of life science entrepreneurship is alive and well, with outstanding innovation hubs arising throughout the country and the world. Of note, many of these hubs flourish in close proximity to research universities. If universities are the engine for discovery, then startups are the vehicle for innovation. The creativity and drive of young researchers has the potential to explore novel or underserved applications and revolutionize industries. PMID:25360051

  15. Los Alamos Novel Rocket Design Flight Tested

    ScienceCinema

    Tappan, Bryce

    2018-04-16

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  16. New Directions in Discourse Analysis for Translation: A Study of Decision-Making in Crowdsourced Subtitles of Obama's 2012 State of the Union Speech

    ERIC Educational Resources Information Center

    Munday, Jeremy

    2012-01-01

    This article approaches translation through the application of the model of systemic functional linguistics. More specifically, it explores the use of the potential of appraisal theory of evaluation (Martin, J.R., & White, P.R.R., "The Language of Evaluation: Appraisal in English". London: Palgrave, 2005), centring on the realization of…

  17. Los Alamos Novel Rocket Design Flight Tested

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tappan, Bryce

    Los Alamos National Laboratory scientists recently flight tested a new rocket design that includes a high-energy fuel and a motor design that also delivers a high degree of safety. Researchers will now work to scale-up the design, as well as explore miniaturization of the system, in order to exploit all potential applications that would require high-energy, high-velocity, and correspondingly high safety margins.

  18. Summer Students in Virtual Reality: A Pilot Study on Educational Applications of Virtual Reality Technology.

    ERIC Educational Resources Information Center

    Bricken, Meredith; Byrne, Chris M.

    The goal of this study was to take a first step in evaluating the potential of virtual reality (VR) as a learning environment. The context of the study was The Technology Academy, a technology-oriented summer day camp for students ages 5-18, where student activities center around hands-on exploration of new technology (e.g., robotics, MIDI digital…

  19. Geosensors to Support Crop Production: Current Applications and User Requirements

    PubMed Central

    Thessler, Sirpa; Kooistra, Lammert; Teye, Frederick; Huitu, Hanna; Bregt, Arnold K.

    2011-01-01

    Sensor technology, which benefits from high temporal measuring resolution, real-time data transfer and high spatial resolution of sensor data that shows in-field variations, has the potential to provide added value for crop production. The present paper explores how sensors and sensor networks have been utilised in the crop production process and what their added-value and the main bottlenecks are from the perspective of users. The focus is on sensor based applications and on requirements that users pose for them. Literature and two use cases were reviewed and applications were classified according to the crop production process: sensing of growth conditions, fertilising, irrigation, plant protection, harvesting and fleet control. The potential of sensor technology was widely acknowledged along the crop production chain. Users of the sensors require easy-to-use and reliable applications that are actionable in crop production at reasonable costs. The challenges are to develop sensor technology, data interoperability and management tools as well as data and measurement services in a way that requirements can be met, and potential benefits and added value can be realized in the farms in terms of higher yields, improved quality of yields, decreased input costs and production risks, and less work time and load. PMID:22163978

  20. Oxygen Extraction from Minerals

    NASA Technical Reports Server (NTRS)

    Muscatello, Tony

    2017-01-01

    Oxygen, whether used as part of rocket bipropellant or for astronaut life support, is a key consumable for space exploration and commercialization. In Situ Resource Utilization (ISRU) has been proposed many times as a method for making space exploration more cost effective and sustainable. On planetary and asteroid surfaces the presence of minerals in the regolith that contain oxygen is very common, making them a potential oxygen resource. The majority of research and development for oxygen extraction from minerals has been for lunar regolith although this work would generally be applicable to regolith at other locations in space. This presentation will briefly survey the major methods investigated for oxygen extraction from regolith with a focus on the current status of those methods and possible future development pathways. The major oxygen production methods are (1) extraction from lunar ilmenite (FeTiO3) with either hydrogen or carbon monoxide, (2) carbothermal reduction of iron oxides and silicates with methane, and (3) molten regolith electrolysis (MRE) of silicates. Methods (1) and (2) have also been investigated in a two-step process using CO reduction and carbon deposition followed by carbothermal reduction. All three processes have byproducts that could also be used as resources. Hydrogen or carbon monoxide reduction produce iron metal in small amounts that could potentially be used as construction material. Carbothermal reduction also makes iron metal along with silicon metal and a glass with possible applications. MRE produces iron, silicon, aluminum, titanium, and glass, with higher silicon yields than carbothermal reduction. On Mars and possibly on some moons and asteroids, water is present in the form of mineral hydrates, hydroxyl (-OH) groups on minerals, andor water adsorbed on mineral surfaces. Heating of the minerals can liberate the water which can be electrolyzed to provide a source of oxygen as well. The chemistry of these processes, some key development and demonstration projects, the challenges remaining to be overcome, and possible future directions will be discussed with a goal of increased understanding of these important ISRU technologies and their potential applications to space exploration and settlement.

  1. Exploring plenoptic properties of correlation imaging with chaotic light

    NASA Astrophysics Data System (ADS)

    Pepe, Francesco V.; Vaccarelli, Ornella; Garuccio, Augusto; Scarcelli, Giuliano; D'Angelo, Milena

    2017-11-01

    In a setup illuminated by chaotic light, we consider different schemes that enable us to perform imaging by measuring second-order intensity correlations. The most relevant feature of the proposed protocols is the ability to perform plenoptic imaging, namely to reconstruct the geometrical path of light propagating in the system, by imaging both the object and the focusing element. This property allows us to encode, in a single data acquisition, both multi-perspective images of the scene and light distribution in different planes between the scene and the focusing element. We unveil the plenoptic property of three different setups, explore their refocusing potentialities and discuss their practical applications.

  2. Nuclear power systems for lunar and Mars exploration

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Bozek, J. M.

    1990-01-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems whether solar, chemical or nuclear to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems have been identified as critical needs for these missions. These mission scenarios, the concomitant power system requirements, and power system options considered are discussed. The significant potential benefits of nuclear power are identified for meeting the power needs of the above applications.

  3. Sexual Assault Response Teams (SARTs): mapping a research agenda that incorporates an organizational perspective.

    PubMed

    Moylan, Carrie A; Lindhorst, Taryn; Tajima, Emiko A

    2015-04-01

    Multidisciplinary coordinated Sexual Assault Response Teams (SARTs) are a growing model of providing health, legal, and emotional support services to victims of sexual assault. This article conceptualizes SARTs from an organizational perspective and explores three approaches to researching SARTs that have the potential of increasing our understanding of the benefits and challenges of multidisciplinary service delivery. These approaches attend to several levels of organizational behavior, including the organizational response to external legitimacy pressures, the inter-organizational networks of victim services, and the negotiation of power and disciplinary boundaries. Possible applications to organizational research on SARTs are explored. © The Author(s) 2015.

  4. The PANTHER User Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coram, Jamie L.; Morrow, James D.; Perkins, David Nikolaus

    2015-09-01

    This document describes the PANTHER R&D Application, a proof-of-concept user interface application developed under the PANTHER Grand Challenge LDRD. The purpose of the application is to explore interaction models for graph analytics, drive algorithmic improvements from an end-user point of view, and support demonstration of PANTHER technologies to potential customers. The R&D Application implements a graph-centric interaction model that exposes analysts to the algorithms contained within the GeoGraphy graph analytics library. Users define geospatial-temporal semantic graph queries by constructing search templates based on nodes, edges, and the constraints among them. Users then analyze the results of the queries using bothmore » geo-spatial and temporal visualizations. Development of this application has made user experience an explicit driver for project and algorithmic level decisions that will affect how analysts one day make use of PANTHER technologies.« less

  5. Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders

    PubMed Central

    Marquet, Pierre; Depeursinge, Christian; Magistretti, Pierre J.

    2014-01-01

    Abstract. Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent developments of quantitative phase-digital holographic microscopy (QP-DHM). Quantitative phase-digital holographic microscopy (QP-DHM) represents an important and efficient quantitative phase method to explore cell structure and dynamics. In a second part, the most relevant QPM applications in the field of cell biology are summarized. A particular emphasis is placed on the original biological information, which can be derived from the quantitative phase signal. In a third part, recent applications obtained, with QP-DHM in the field of cellular neuroscience, namely the possibility to optically resolve neuronal network activity and spine dynamics, are presented. Furthermore, potential applications of QPM related to psychiatry through the identification of new and original cell biomarkers that, when combined with a range of other biomarkers, could significantly contribute to the determination of high risk developmental trajectories for psychiatric disorders, are discussed. PMID:26157976

  6. Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders.

    PubMed

    Marquet, Pierre; Depeursinge, Christian; Magistretti, Pierre J

    2014-10-01

    Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent developments of quantitative phase-digital holographic microscopy (QP-DHM). Quantitative phase-digital holographic microscopy (QP-DHM) represents an important and efficient quantitative phase method to explore cell structure and dynamics. In a second part, the most relevant QPM applications in the field of cell biology are summarized. A particular emphasis is placed on the original biological information, which can be derived from the quantitative phase signal. In a third part, recent applications obtained, with QP-DHM in the field of cellular neuroscience, namely the possibility to optically resolve neuronal network activity and spine dynamics, are presented. Furthermore, potential applications of QPM related to psychiatry through the identification of new and original cell biomarkers that, when combined with a range of other biomarkers, could significantly contribute to the determination of high risk developmental trajectories for psychiatric disorders, are discussed.

  7. [Environmental behavior of graphene and its effect on the transport and fate of pollutants in environment].

    PubMed

    Ren, Wen-Jie; Teng, Ying

    2014-09-01

    Graphene is one of the most popular research topics in carbon nanomaterials. Because of its special physical and chemical properties, graphene will have wide applications. As the production and application amount is increasing, graphene will be inevitably released to the environment, resulting in risks of ecological environment and human health. It is of very vital significance for evaluating environmental risks of graphene scientifically and objectively to understand its environmental behavior and fate and explore its effect on the environmental behaviors of pollutants. This paper reviewed the environmental behavior of graphene, such as colloid properties and its stability in the aqueous environment and its transport through porous media. Additionally, the paper reviewed the effect of graphene on the transport and fate of pollutants. The interactions between graphene and heavy metals or organic compounds were especially discussed. Important topics should be explored including sorption mechanisms, interactions between graphene and soil components, influence of graphene on the transport and bioavailability of pollutants in environment, as well as approaches to quantifying graphene. The review might identify potential new ideas for further research in applications of graphene.

  8. Mode of action human relevance (species concordance) framework: Evolution of the Bradford Hill considerations and comparative analysis of weight of evidence

    PubMed Central

    Meek, M E (Bette); Palermo, Christine M; Bachman, Ammie N; North, Colin M; Jeffrey Lewis, R

    2014-01-01

    The mode of action human relevance (MOA/HR) framework increases transparency in systematically considering data on MOA for end (adverse) effects and their relevance to humans. This framework continues to evolve as experience increases in its application. Though the MOA/HR framework is not designed to address the question of “how much information is enough” to support a hypothesized MOA in animals or its relevance to humans, its organizing construct has potential value in considering relative weight of evidence (WOE) among different cases and hypothesized MOA(s). This context is explored based on MOA analyses in published assessments to illustrate the relative extent of supporting data and their implications for dose–response analysis and involved comparisons for chemical assessments on trichloropropane, and carbon tetrachloride with several hypothesized MOA(s) for cancer. The WOE for each hypothesized MOA was summarized in narrative tables based on comparison and contrast of the extent and nature of the supporting database versus potentially inconsistent or missing information. The comparison was based on evolved Bradford Hill considerations rank ordered to reflect their relative contribution to WOE determinations of MOA taking into account increasing experience in their application internationally. This clarification of considerations for WOE determinations as a basis for comparative analysis is anticipated to contribute to increasing consistency in the application of MOA/HR analysis and potentially, transparency in separating science judgment from public policy considerations in regulatory risk assessment. Copyright © 2014. The Authors. Journal of Applied Toxicology Published by John Wiley & Sons Ltd. The potential value of the mode of action (MOA)/human relevance (species concordance) framework in considering relative weight of evidence (WOE) amongst different cases and hypothesized MOA(s) is explored based on the content of several published assessments. The comparison is based on evolved Bradford Hill considerations rank ordered to reflect their relative contribution to WOE determinations for MOA based on experience internationally. PMID:24777878

  9. Geochemical Analysis of Parasequences within the Productive Middle Member of the Eagle Ford Formation at Lozier Canyon near Del Rio, Texas

    NASA Astrophysics Data System (ADS)

    Shane, Timothy E.

    The middle member of the Eagle Ford formation is a heterogeneous, carbonate-shale unit that is a focus of unconventional oil and gas exploration in southern Texas. Exploration results have been mixed because of the apparent heterogeneity of the member. In this study, the extent of heterogeneities in the Eagle Ford on the "bedding-scale" were examined by evaluating changes in organic and inorganic geochemistry. Samples were collected vertically in outcrop covering four non-consecutive parasequences. These samples were analyzed using a Rock Eval 6 Analyzer(TM) to determine source rock generative potential and a Niton(TM) XRF to evaluate inorganic geochemistry to identify changes in paleoredox conditions, paleoproductivity, and clastic influx. From pyrolysis data, it is determined that Parasequence 1 potentially displays an increase in source rock potential, Parasequence 2 potentially displays a constant source rock potential, and Parasequences 3 and 4 potentially display overall decreases in source rock potential during deposition. From the inferred paleoredox conditions, paleoproductivity, and clastic influx, it is determined that Parasequence 1 experienced a potential increase in oxygen abundance, Parasequence 2 experienced a potential decrease in oxygen abundance, and Parasequences 3 and 4 potentially experienced increases in oxygen abundance during deposition. It is concluded that geochemical heterogeneities do exist on a bedding scale within the parasequences of the middle member of the Eagle Ford. Additional comprehensive sampling and analysis is recommended in the future in order to tie these data to subsurface data for economic application.

  10. Camelina as a sustainable oilseed crop: contributions of plant breeding and genetic engineering.

    PubMed

    Vollmann, Johann; Eynck, Christina

    2015-04-01

    Camelina is an underutilized Brassicaceae oilseed plant with a considerable agronomic potential for biofuel and vegetable oil production in temperate regions. In contrast to most Brassicaceae, camelina is resistant to alternaria black spot and other diseases and pests. Sequencing of the camelina genome revealed an undifferentiated allohexaploid genome with a comparatively large number of genes and low percentage of repetitive DNA. As there is a close relationship between camelina and the genetic model plant Arabidopsis, this review aims at exploring the potential of translating basic Arabidopsis results into a camelina oilseed crop for food and non-food applications. Recently, Arabidopsis genes for drought resistance or increased photosynthesis and overall productivity have successfully been expressed in camelina. In addition, gene constructs affecting lipid metabolism pathways have been engineered into camelina for synthesizing either long-chain polyunsaturated fatty acids, hydroxy fatty acids or high-oleic oils in particular camelina strains, which is of great interest in human food, industrial or biofuel applications, respectively. These results confirm the potential of camelina to serve as a biotechnology platform in biorefinery applications thus justifying further investment in breeding and genetic research for combining agronomic potential, unique oil quality features and biosafety into an agricultural production system. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The amplification effect of functionalized gold nanoparticles on the binding of anticancer drug dacarbazine to DNA and DNA bases

    NASA Astrophysics Data System (ADS)

    Shen, Qin; Wang, Xuemei; Fu, Degang

    2008-11-01

    The promising application of functionalized gold nanoparticles to amplify the performance of biosensors and relevant biomolecular recognition processes has been explored in this paper. Our observations illustrate the apparent enhancement effect of the gold nanoparticles on the electrochemical response of the anticancer drug dacarbazine (DTIC) binding to DNA and DNA bases, indicating that these functionalized gold nanoparticles could readily facilitate the specific interactions between DTIC and DNA/DNA bases. This raises the potential valuable applications of these biocompatible nanoparticles in the promising biosensors and biomedical engineering.

  12. A decision model for planetary missions

    NASA Technical Reports Server (NTRS)

    Hazelrigg, G. A., Jr.; Brigadier, W. L.

    1976-01-01

    Many techniques developed for the solution of problems in economics and operations research are directly applicable to problems involving engineering trade-offs. This paper investigates the use of utility theory for decision making in planetary exploration space missions. A decision model is derived that accounts for the objectives of the mission - science - the cost of flying the mission and the risk of mission failure. A simulation methodology for obtaining the probability distribution of science value and costs as a function spacecraft and mission design is presented and an example application of the decision methodology is given for various potential alternatives in a comet Encke mission.

  13. Spacecraft Health Automated Reasoning Prototype (SHARP): The fiscal year 1989 SHARP portability evaluations task for NASA Solar System Exploration Division's Voyager project

    NASA Technical Reports Server (NTRS)

    Atkinson, David J.; Doyle, Richard J.; James, Mark L.; Kaufman, Tim; Martin, R. Gaius

    1990-01-01

    A Spacecraft Health Automated Reasoning Prototype (SHARP) portability study is presented. Some specific progress is described on the portability studies, plans for technology transfer, and potential applications of SHARP and related artificial intelligence technology to telescience operations. The application of SHARP to Voyager telecommunications was a proof-of-capability demonstration of artificial intelligence as applied to the problem of real time monitoring functions in planetary mission operations. An overview of the design and functional description of the SHARP system is also presented as it was applied to Voyager.

  14. Visualization of electronic density

    DOE PAGES

    Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; ...

    2015-04-22

    An atom’s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.

  15. In-plant control applications and their effect on treatability of a textile mill wastewater.

    PubMed

    Dulkadiroglu, H; Eremektar, G; Dogruel, S; Uner, H; Germirli-Babuna, F; Orhon, D

    2002-01-01

    Water minimization and exploration of the potential for wastewater recovery and reuse are priority issues of industrial wastewater management. They are extremely significant for the textile industry commonly characterized with a high water demand. The study presents a detailed in-plant control survey for a wool finishing plant. A comprehensive process profile and wastewater characterization indicate that process water consumption can be reduced by 34%, and 23% of the wastewater volume can be recovered for reuse. Treatability of reusable wastewater fraction and the effect of in-plant control applications on effluent treatability were also investigated.

  16. Enhanced structural and optical properties of the polyaniline-calcium tungstate (PANI-CaWO4 nanocomposite for electronics applications

    NASA Astrophysics Data System (ADS)

    Sabu, N. Aloysius; Francis, Xavier; Anjaly, Jose; Sankararaman, S.; Varghese, Thomas

    2017-06-01

    In this article, we report the synthesis and characterization of polyaniline-calcium tungstate nanocomposite, a novel material for potential applications. The PANI-CaWO4 nanocomposite was prepared by in situ oxidative polymerization of aniline in the presence of CaWO4 nanoparticles dispersed in ethanol. Investigations using X-ray diffraction, Fourier-transformed infrared spectroscopy, UV-visible, photoluminescence and Raman spectroscopy confirmed the formation of the nanocomposite of PANI with CaWO4 nanoparticles. Scanning electron microscopy revealed almost uniform distribution of CaWO4 nanoparticles in the polyaniline matrix. These studies also confirmed electronic structure modification as a result of incorporating CaWO4 nanoparticles in PANI. Composite formation resulted in large decrease in the optical band gap and enhanced photoluminescence. The augmented structural, optical and photoluminescence properties of the PANI-CaWO4 nanocomposite can be used to explore potential applications in micro- and optoelectronics. This is the first report presenting synthesis and characterization of the PANI-CaWO4 nanocomposite.

  17. Mechanical Properties of High Entropy Alloy Al0.1CoCrFeNi for Peripheral Vascular Stent Application.

    PubMed

    Alagarsamy, Karthik; Fortier, Aleksandra; Komarasamy, Mageshwari; Kumar, Nilesh; Mohammad, Atif; Banerjee, Subhash; Han, Hai-Chao; Mishra, Rajiv S

    2016-12-01

    High entropy alloys (HEAs) are new class of metallic materials with five or more principal alloying elements. Due to this distinct concept of alloying, the HEAs exhibit unique properties compared to conventional alloys. The outstanding properties of HEAs include increased strength, superior wear resistance, high temperature stability, increased fatigue properties, good corrosion, and oxidation resistance. Such characteristics of HEAs have generated significant interest among the scientific community. However, their applications are yet to be explored. This paper discusses the mechanical behavior and microstructure of Al 0.1 CoCrFeNi HEA subjected to thermo-mechanical processing, and its potential application in peripheral vascular stent implants that are prone to high failure rates. Results show that Al 0.1 CoCrFeNi alloy possesses characteristics that compare well against currently used stent materials and it can potentially find use in peripheral vascular stent implants and extend their life-cycle.

  18. Three-dimensional Printed Cardiac Models: Applications in the Field of Medical Education, Cardiovascular Surgery, and Structural Heart Interventions.

    PubMed

    Valverde, Israel

    2017-04-01

    In recent years, three-dimensional (3D) printed models have been incorporated into cardiology because of their potential usefulness in enhancing understanding of congenital heart disease, surgical planning, and simulation of structural percutaneous interventions. This review provides an introduction to 3D printing technology and identifies the elements needed to construct a 3D model: the types of imaging modalities that can be used, their minimum quality requirements, and the kinds of 3D printers available. The review also assesses the usefulness of 3D printed models in medical education, specialist physician training, and patient communication. We also review the most recent applications of 3D models in surgical planning and simulation of percutaneous structural heart interventions. Finally, the current limitations of 3D printing and its future directions are discussed to explore potential new applications in this exciting medical field. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  19. Modeling adsorption with lattice Boltzmann equation

    PubMed Central

    Guo, Long; Xiao, Lizhi; Shan, Xiaowen; Zhang, Xiaoling

    2016-01-01

    The research of adsorption theory has recently gained renewed attention due to its critical relevance to a number of trending industrial applications, hydrogen storage and shale gas exploration for instance. The existing theoretical foundation, laid mostly in the early twentieth century, was largely based on simple heuristic molecular interaction models and static interaction potential which, although being insightful in illuminating the fundamental mechanisms, are insufficient for computations with realistic adsorbent structure and adsorbate hydrodynamics, both critical for real-life applications. Here we present and validate a novel lattice Boltzmann model incorporating both adsorbate-adsorbate and adsorbate-adsorbent interactions with hydrodynamics which, for the first time, allows adsorption to be computed with real-life details. Connection with the classic Ono-Kondo lattice theory is established and various adsorption isotherms, both within and beyond the IUPAC classification are observed as a pseudo-potential is varied. This new approach not only enables an important physical to be simulated for real-life applications, but also provides an enabling theoretical framework within which the fundamentals of adsorption can be studied. PMID:27256325

  20. Unraveling Network-induced Memory Contention: Deeper Insights with Machine Learning

    DOE PAGES

    Groves, Taylor Liles; Grant, Ryan; Gonzales, Aaron; ...

    2017-11-21

    Remote Direct Memory Access (RDMA) is expected to be an integral communication mechanism for future exascale systems enabling asynchronous data transfers, so that applications may fully utilize CPU resources while simultaneously sharing data amongst remote nodes. We examine Network-induced Memory Contention (NiMC) on Infiniband networks. We expose the interactions between RDMA, main-memory and cache, when applications and out-of-band services compete for memory resources. We then explore NiMCs resulting impact on application-level performance. For a range of hardware technologies and HPC workloads, we quantify NiMC and show that NiMCs impact grows with scale resulting in up to 3X performance degradation atmore » scales as small as 8K processes even in applications that previously have been shown to be performance resilient in the presence of noise. In addition, this work examines the problem of predicting NiMC's impact on applications by leveraging machine learning and easily accessible performance counters. This approach provides additional insights about the root cause of NiMC and facilitates dynamic selection of potential solutions. Finally, we evaluated three potential techniques to reduce NiMCs impact, namely hardware offloading, core reservation and network throttling.« less

  1. Incorporating unnatural amino acids to engineer biocatalysts for industrial bioprocess applications.

    PubMed

    Ravikumar, Yuvaraj; Nadarajan, Saravanan Prabhu; Hyeon Yoo, Tae; Lee, Chong-Soon; Yun, Hyungdon

    2015-12-01

    The bioprocess engineering with biocatalysts broadly spans its development and actual application of enzymes in an industrial context. Recently, both the use of bioprocess engineering and the development and employment of enzyme engineering techniques have been increasing rapidly. Importantly, engineering techniques that incorporate unnatural amino acids (UAAs) in vivo has begun to produce enzymes with greater stability and altered catalytic properties. Despite the growth of this technique, its potential value in bioprocess applications remains to be fully exploited. In this review, we explore the methodologies involved in UAA incorporation as well as ways to synthesize these UAAs. In addition, we summarize recent efforts to increase the yield of UAA engineered proteins in Escherichia coli and also the application of this tool in enzyme engineering. Furthermore, this protein engineering tool based on the incorporation of UAA can be used to develop immobilized enzymes that are ideal for bioprocess applications. Considering the potential of this tool and by exploiting these engineered enzymes, we expect the field of bioprocess engineering to open up new opportunities for biocatalysis in the near future. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Unraveling Network-induced Memory Contention: Deeper Insights with Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groves, Taylor Liles; Grant, Ryan; Gonzales, Aaron

    Remote Direct Memory Access (RDMA) is expected to be an integral communication mechanism for future exascale systems enabling asynchronous data transfers, so that applications may fully utilize CPU resources while simultaneously sharing data amongst remote nodes. We examine Network-induced Memory Contention (NiMC) on Infiniband networks. We expose the interactions between RDMA, main-memory and cache, when applications and out-of-band services compete for memory resources. We then explore NiMCs resulting impact on application-level performance. For a range of hardware technologies and HPC workloads, we quantify NiMC and show that NiMCs impact grows with scale resulting in up to 3X performance degradation atmore » scales as small as 8K processes even in applications that previously have been shown to be performance resilient in the presence of noise. In addition, this work examines the problem of predicting NiMC's impact on applications by leveraging machine learning and easily accessible performance counters. This approach provides additional insights about the root cause of NiMC and facilitates dynamic selection of potential solutions. Finally, we evaluated three potential techniques to reduce NiMCs impact, namely hardware offloading, core reservation and network throttling.« less

  3. Application of Solar-Electric Propulsion to Robotic Missions in Near-Earth Space

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.; Dankanich, John

    2007-01-01

    Interest in applications of solar electric propulsion (SEP) is increasing. Application of SEP technology is favored when: (1) the mission is compatible with low-thrust propulsion, (2) the mission needs high total delta V such that chemical propulsion is disadvantaged; and (3) performance enhancement is needed. If all such opportunities for future missions are considered, many uses of SEP are likely. Representative missions are surveyed and several SEP applications selected for analysis, including orbit raising, lunar science and robotic exploration, and planetary science. These missions span SEP power range from 10 kWe to about 100 kWe. A SEP design compatible with small inexpensive launch vehicles, and capable of lunar science missions, is presented. Modes of use and benefits are described, and potential SEP evolution is discussed.

  4. Functionalized Gold Nanorods for Tumor Imaging and Targeted Therapy

    PubMed Central

    Gui, Chen; Cui, Da-xiang

    2012-01-01

    Gold nanorods, as an emerging noble metal nanomaterial with unique properties, have become the new exciting focus of theoretical and experimental studies in the past few years. The structure and function of gold nanorods, especially their biocompatibility, optical property, and photothermal effects, have been attracting more and more attention. Gold nanorods exhibit great potential in applications such as tumor molecular imaging and photothermal therapy. In this article, we review some of the main advances made over the past few years in the application of gold nanorods in surface functionalization, molecular imaging, and photothermal therapy. We also explore other prospective applications and discuss the corresponding concepts, issues, approaches, and challenges, with the aim of stimulating broader interest in gold nanorod-based nanotechnology and improving its practical application. PMID:23691482

  5. Carbon composites in space vehicle structures

    NASA Technical Reports Server (NTRS)

    Mayer, N. J.

    1974-01-01

    Recent developments in the technology of carbon or graphite filaments now provide the designer with greatly improved materials offering high specific strength and modulus. Besides these advantages are properties which are distinctly useful for space applications and which provide feasibility for missions not obtainable by other means. Current applications include major and secondary structures of communications satellites. A number of R & D projects are exploring carbon-fiber application to rocket engine motor cases, advanced antenna systems, and space shuttle components. Future system studies are being made, based on the successful application of carbon fibers for orbiting space telescope assemblies, orbital transfer vehicles, and very large deployable energy generation systems. Continued technology development is needed in analysis, material standards, and advanced structural concepts to exploit the full potential of carbon filaments in composite materials.

  6. BIOPEP database and other programs for processing bioactive peptide sequences.

    PubMed

    Minkiewicz, Piotr; Dziuba, Jerzy; Iwaniak, Anna; Dziuba, Marta; Darewicz, Małgorzata

    2008-01-01

    This review presents the potential for application of computational tools in peptide science based on a sample BIOPEP database and program as well as other programs and databases available via the World Wide Web. The BIOPEP application contains a database of biologically active peptide sequences and a program enabling construction of profiles of the potential biological activity of protein fragments, calculation of quantitative descriptors as measures of the value of proteins as potential precursors of bioactive peptides, and prediction of bonds susceptible to hydrolysis by endopeptidases in a protein chain. Other bioactive and allergenic peptide sequence databases are also presented. Programs enabling the construction of binary and multiple alignments between peptide sequences, the construction of sequence motifs attributed to a given type of bioactivity, searching for potential precursors of bioactive peptides, and the prediction of sites susceptible to proteolytic cleavage in protein chains are available via the Internet as are other approaches concerning secondary structure prediction and calculation of physicochemical features based on amino acid sequence. Programs for prediction of allergenic and toxic properties have also been developed. This review explores the possibilities of cooperation between various programs.

  7. Potential disruption of protein-protein interactions by graphene oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Mei; Kang, Hongsuk; Luan, Binquan

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions andmore » eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.« less

  8. Technology Applications that Support Space Exploration

    NASA Technical Reports Server (NTRS)

    Henderson, Edward M.; Holderman, Mark L.

    2011-01-01

    Several enabling technologies have been identified that would provide significant benefits for future space exploration. In-Space demonstrations should be chosen so that these technologies will have a timely opportunity to improve efficiencies and reduce risks for future spaceflight. An early window exists to conduct ground and flight demonstrations that make use of existing assets that were developed for the Space Shuttle and the Constellation programs. The work could be mostly performed using residual program civil servants, existing facilities and current commercial launch capabilities. Partnering these abilities with the emerging commercial sector, along with other government agencies, academia and with international partners would provide an affordable and timely approach to get the launch costs down for these payloads, while increasing the derived benefits to a larger community. There is a wide scope of varied technologies that are being considered to help future space exploration. However, the cost and schedule would be prohibitive to demonstrate all these in the near term. Determining which technologies would yield the best return in meeting our future space needs is critical to building an achievable Space Architecture that allows exploration beyond Low Earth Orbit. The best mix of technologies is clearly to be based on our future needs, but also must take into account the availability of existing assets and supporting partners. Selecting those technologies that have complimentary applications will provide the most knowledge, with reasonable cost, for future use The plan is to develop those applications that not only mature the technology but actually perform a useful task or mission. These might include such functions as satellite servicing, a propulsion stage, processing lunar regolith, generating and transmitting solar power, cryogenic fluid transfer and storage and artificial gravity. Applications have been selected for assessment for future consideration and are addressed in this paper. These applications have been made available to the various NASA study groups that are determining the next steps the Agency must take to secure a sound foundation for future space exploration The paper also addresses how follow-on demonstrations, as launch performance grows, can build on the earlier applications to provide increased benefits for both the commercial and scientific communities. The architecture of incrementally building upon previous successes and insights dramatically lowers the overall associated risk for developing and maturing the key enabling technologies. The goal is to establish a potential business case that encourages commercial activity, thereby reducing the cost for the demonstration while using the technology maturation in developing readiness for future space exploration with overall less risk.

  9. A potassium Rankine multimegawatt nuclear electric propulsion concept

    NASA Technical Reports Server (NTRS)

    Baumeister, E.; Rovang, R.; Mills, J.; Sercel, J.; Frisbee, R.

    1990-01-01

    Multimegawatt nuclear electric propulsion (NEP) has been identified as a potentially attractive option for future space exploratory missions. A liquid-metal-cooled reactor, potassium Rankine power system that is being developed is suited to fulfill this application. The key features of the nuclear power system are described, and system characteristics are provided for various potential NEP power ranges and operational lifetimes. The results of recent mission studies are presented to illustrate some of the potential benefits to future space exploration to be gained from high-power NEP. Specifically, mission analyses have been performed to assess the mass and trip time performance of advanced NEP for both cargo and piloted missions to Mars.

  10. LiDAR Applications in Resource Geology and Benefits for Land Management

    NASA Astrophysics Data System (ADS)

    Mikulovsky, R. P.; De La Fuente, J. A.

    2013-12-01

    The US Forest Service (US Department of Agriculture) manages a broad range of geologic resources and hazards on National Forests and Grass Lands throughout the United States. Resources include rock and earth materials, groundwater, caves and paleontological resources, minerals, energy resources, and unique geologic areas. Hazards include landslides, floods, earthquakes, volcanic eruptions, and naturally hazardous materials (e.g., asbestos, radon). Forest Service Geologists who address these issues are Resource Geologists. They have been exploring LiDAR as a revolutionary tool to efficiently manage all of these hazards and resources. However, most LiDAR applications for management have focused on timber and fuels management, rather than landforms. This study shows the applications and preliminary results of using LiDAR for managing geologic resources and hazards on public lands. Applications shown include calculating sediment budgets, mapping and monitoring landslides, mapping and characterizing borrow pits or mines, determining landslide potential, mapping faults, and characterizing groundwater dependent ecosystems. LiDAR can be used to model potential locations of groundwater dependent ecosystems with threatened or endangered plant species such as Howellia aquatilis. This difficult to locate species typically exists on the Mendocino National Forest within sag ponds on landslide benches. LiDAR metrics of known sites are used to model potential habitat. Thus LiDAR can link the disciplines of geology, hydrology, botany, archaeology and others for enhanced land management. As LiDAR acquisition costs decrease and it becomes more accessible, land management organizations will find a wealth of applications with potential far-reaching benefits for managing geologic resources and hazards.

  11. Polar Lunar Regions: Exploiting Natural and Augmented Thermal Environments

    NASA Astrophysics Data System (ADS)

    Ryan, R. E.; McKellip, R. C.; Brannon, D. P.; Underwood, L. W.; Russell, K. J.

    2007-12-01

    In polar regions of the Moon, there are areas within craters that are permanently shadowed from solar illumination, which can reach temperatures of 100K or less. These regions could serve as cold traps, capturing ice and other volatile compounds. These potential ice stores have many applications for lunar exploration. Within double-shaded craters, even colder regions exist, with temperatures never exceeding 50K in many cases. Temperatures observed in theses regions suggest that they could enable equivalent liquid nitrogen cryogenic functions. These permanently shaded polar craters also offer unprecedented high vacuum cryogenic environments, which in their current state could support cryogenic applications. The unique conditions at the lunar poles, besides ice stores, harbor an environment that provides an opportunity to reduce the power, weight and total mass that needs to be carried from the Earth to the moon for lunar exploration and research. Reducing the heat flux of geothermal, black body radiation can have significant impacts on the achievable temperature. With a few man-made augmentations, permanently shaded craters located near the lunar poles achieve temperatures even lower than those that naturally exist there. Our analysis reveals that lightweight thermal shielding, within shaded craters, could create an environment several Kelvin above absolute zero. The temperature ranges of naturally shaded craters and thermally augmented ones could enable the long-term storage of most gases, low temperature superconductors for large magnetic fields, devices and advanced high speed computing instruments. Augmenting thermal conditions in these craters could then be used as a basis for the development of an advanced thermal management architecture that would support a wide variety of cryogenically based applications. Lunar exploration and habitation capabilities would significantly benefit if permanently shaded craters, augmented with thermal shielding, were to be used to facilitate the operation of near absolute zero instruments, including wide variety of cryogenically based propulsion, energy, communication, sensing and computing devices. Potentially, the required burden of carrying massive life-supporting components from the Earth to the moon for lunar exploration and research could be reduced.

  12. The ReaxFF reactive force-field: Development, applications, and future directions

    DOE PAGES

    Senftle, Thomas; Hong, Sungwook; Islam, Md Mahbubul; ...

    2016-03-04

    The reactive force-field (ReaxFF) interatomic potential is a powerful computational tool for exploring, developing and optimizing material properties. Methods based on the principles of quantum mechanics (QM), while offering valuable theoretical guidance at the electronic level, are often too computationally intense for simulations that consider the full dynamic evolution of a system. Alternatively, empirical interatomic potentials that are based on classical principles require significantly fewer computational resources, which enables simulations to better describe dynamic processes over longer timeframes and on larger scales. Such methods, however, typically require a predefined connectivity between atoms, precluding simulations that involve reactive events. The ReaxFFmore » method was developed to help bridge this gap. Approaching the gap from the classical side, ReaxFF casts the empirical interatomic potential within a bond-order formalism, thus implicitly describing chemical bonding without expensive QM calculations. As a result, this article provides an overview of the development, application, and future directions of the ReaxFF method.« less

  13. Reviewing Bayesian Networks potentials for climate change impacts assessment and management: A multi-risk perspective.

    PubMed

    Sperotto, Anna; Molina, José-Luis; Torresan, Silvia; Critto, Andrea; Marcomini, Antonio

    2017-11-01

    The evaluation and management of climate change impacts on natural and human systems required the adoption of a multi-risk perspective in which the effect of multiple stressors, processes and interconnections are simultaneously modelled. Despite Bayesian Networks (BNs) are popular integrated modelling tools to deal with uncertain and complex domains, their application in the context of climate change still represent a limited explored field. The paper, drawing on the review of existing applications in the field of environmental management, discusses the potential and limitation of applying BNs to improve current climate change risk assessment procedures. Main potentials include the advantage to consider multiple stressors and endpoints in the same framework, their flexibility in dealing and communicate with the uncertainty of climate projections and the opportunity to perform scenario analysis. Some limitations (i.e. representation of temporal and spatial dynamics, quantitative validation), however, should be overcome to boost BNs use in climate change impacts assessment and management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Optical Voltage Sensing Using DNA Origami

    PubMed Central

    2018-01-01

    We explore the potential of DNA nanotechnology for developing novel optical voltage sensing nanodevices that convert a local change of electric potential into optical signals. As a proof-of-concept of the sensing mechanism, we assembled voltage responsive DNA origami structures labeled with a single pair of FRET dyes. The DNA structures were reversibly immobilized on a nanocapillary tip and underwent controlled structural changes upon application of an electric field. The applied field was monitored through a change in FRET efficiency. By exchanging the position of a single dye, we could tune the voltage sensitivity of our DNA origami structure, demonstrating the flexibility and versatility of our approach. The experimental studies were complemented by coarse-grained simulations that characterized voltage-dependent elastic deformation of the DNA nanostructures and the associated change in the distance between the FRET pair. Our work opens a novel pathway for determining the mechanical properties of DNA origami structures and highlights potential applications of dynamic DNA nanostructures as voltage sensors. PMID:29430924

  15. siRNAs encapsulated in recombinant capsid protein derived from Dengue serotype 2 virus inhibits the four serotypes of the virus and proliferation of cancer cells.

    PubMed

    Kumar, A S Manoj; Reddy, G E C Vidyadhar; Rajmane, Yogesh; Nair, Soumya; Pai Kamath, Sangita; Sreejesh, Greeshma; Basha, Khalander; Chile, Shailaja; Ray, Kriti; Nelly, Vivant; Khadpe, Nilesh; Kasturi, Ravishankar; Ramana, Venkata

    2015-01-10

    siRNA delivery potential of the Dengue virus capsid protein in cultured cells was recently reported, but target knockdown potential in the context of specific diseases has not been explored. In this study we have evaluated the utility of the protein as an siRNA carrier for anti Dengue viral and anti cancer applications using cell culture systems. We show that target specific siRNAs delivered using the capsid protein inhibit infection by the four serotypes of Dengue virus and proliferation of two cancer cell lines. Our data confirm the potential of the capsid for anti Dengue viral and anti cancer RNAi applications. In addition, we have optimized a fermentation strategy to improve the yield of Escherichia coli expressed D2C protein since the reported yields of E. coli expressed flaviviral capsid proteins are low. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Rare-earth-free high energy product manganese-based magnetic materials.

    PubMed

    Patel, Ketan; Zhang, Jingming; Ren, Shenqiang

    2018-06-14

    The constant drive to replace rare-earth metal magnets has initiated great interest in an alternative. Manganese (Mn) has emerged to be a potential candidate as a key element in rare-earth-free magnets. Its five unpaired valence electrons give it a large magnetocrystalline energy and the ability to form several intermetallic compounds. These factors have led Mn-based magnets to be a potential replacement for rare-earth permanent magnets for several applications, such as efficient power electronics, energy generators, magnetic recording and tunneling applications, and spintronics. For past few decades, Mn-based magnets have been explored in many different forms, such as bulk magnets, thin films, and nanoparticles. Here, we review the recent progress in the synthesis and structure-magnetic property relationships of Mn-based rare-earth-free magnets (MnBi, MnAl and MnGa). Furthermore, we discuss their potential to replace rare-earth magnetic materials through the control of their structure and composition to achieve the theoretically predicted magnetic properties.

  17. Using Network Analysis to Characterize Biogeographic Data in a Community Archive

    NASA Astrophysics Data System (ADS)

    Wellman, T. P.; Bristol, S.

    2017-12-01

    Informative measures are needed to evaluate and compare data from multiple providers in a community-driven data archive. This study explores insights from network theory and other descriptive and inferential statistics to examine data content and application across an assemblage of publically available biogeographic data sets. The data are archived in ScienceBase, a collaborative catalog of scientific data supported by the U.S Geological Survey to enhance scientific inquiry and acuity. In gaining understanding through this investigation and other scientific venues our goal is to improve scientific insight and data use across a spectrum of scientific applications. Network analysis is a tool to reveal patterns of non-trivial topological features in the data that do not exhibit complete regularity or randomness. In this work, network analyses are used to explore shared events and dependencies between measures of data content and application derived from metadata and catalog information and measures relevant to biogeographic study. Descriptive statistical tools are used to explore relations between network analysis properties, while inferential statistics are used to evaluate the degree of confidence in these assessments. Network analyses have been used successfully in related fields to examine social awareness of scientific issues, taxonomic structures of biological organisms, and ecosystem resilience to environmental change. Use of network analysis also shows promising potential to identify relationships in biogeographic data that inform programmatic goals and scientific interests.

  18. A novel thiourea type organocatalyst possessing a single NH functionality.

    PubMed

    Jovanovic, Predrag; Petkovic, Milos; Simic, Milena; Ivkovic, Branka; Savic, Vladimir

    2016-07-12

    A novel thiourea organocatalyst was rationally designed by altering a typical H-bonding pattern of thiourea derivatives and utilising the potential of the 3,5-bis(trifluoromethyl)phenyl motif to participate in the H-bond formation. This unique catalyst afforded the products of the α-amination and Michael reaction in excellent yields and with a high level of stereoselectivity. Although additional studies are necessary to establish the full potential of the catalyst and to broaden its application further, the presented results may indicate alternative routes for further exploration of the thiourea class of organocatalysts.

  19. An Overview of the VHITAL Program: A Two-Stage Bismuth Fed Very High Specific Impulse Thruster with Anode Layer

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita; Marrese-Reading, Colleen; Capelli, Mark; Scharfe, David; Tverdokhlebov, Sergey; Semenkin, Sasha; Tverdokhlebov, Oleg; Boyd, Ian; Keidar, Michael; Yalin, Azer; hide

    2005-01-01

    The Very High Isp Thruster with Anode Layer (VHITAL) is a two stage Hall thruster program that is a part of NASA's Prometheus Program in NASA's New Exploration Systems Mission Directorate (ESMD). It is a potentially viable low-cost alternative to ion engines for near-term NEP applications with the growth potential to support mid-term and far-term NEP missions... This paper will present an overview of the thruster fabrication, pre-existing TAL 160 demonstration, feed system development, lifetime assessment, contamination assessment, and mission study activities performed to date.

  20. Environmental application of gamma technology: Update on the Canadian sludge irradiator

    NASA Astrophysics Data System (ADS)

    Swinwood, Jean F.; Fraser, Frank M.

    1993-10-01

    Waste treatment and disposal technologies have recently been subjected to increasing public and regulatory scrutiny. Concern for the environment and a heightened awareness of potential health hazards that could result from insufficient or inappropriate waste handling methods have combined to push waste generators in their search for new treatment alternatives. Gamma technology can offer a new option for the treatment of potentially infectious wastes, including municipal sewage sludge. Sewage sludge contains beneficial plant nutrients and a high organic component that make it ideal as a soil conditioning agent or fertilizer bulking material. It also carries potentially infectious microorganisms which limit opportunities for beneficial recycling of sludges. Gamma irradiation-disinfection of these sludges offers a reliable, fast and efficient method for safe sludge recycling. Nordion International's Market Development Division was created in 1987 as part of a broad corporate reorganization. It was given an exclusive mandate to develop new applications of gamma irradiation technology and markets for these new applications. Nordion has since explored and developed opportunities in food irradiation, pharmaceutical/cosmetic products irradiation, biomedical waste sterilization, airline waste disinfection, and sludge disinfection for recycling. This paper focuses on the last of these -a proposed sludge recycling facility that incorporates a cobalt 60 sludge irradiator.

  1. Influence of energy band alignment in mixed crystalline TiO2 nanotube arrays: good for photocatalysis, bad for electron transfer

    NASA Astrophysics Data System (ADS)

    Mohammadpour, Raheleh

    2017-12-01

    Despite the wide application ranges of TiO2, the precise explanation of the charge transport dynamic through a mixed crystal phase of this semiconductor has remained elusive. Here, in this research, mixed-phase TiO2 nanotube arrays (TNTAs) consisting of anatase and 0-15% rutile phases has been formed through various annealing processes and employed as a photoelectrode of a photovoltaic cell. Wide ranges of optoelectronic experiments have been employed to explore the band alignment position, as well as the depth and density of trap states in TNTAs. Short circuit potential, as well as open circuit potential measurements specified that the band alignment of more than 0.2 eV exists between the anatase and rutile phase Fermi levels, with a higher electron affinity for anatase; this can result in a potential barrier in crystallite interfaces and the deterioration of electron mobility through mixed phase structures. Moreover, a higher density of shallow localized trap states below the conduction band with more depth (133 meV in anatase to 247 meV in 15% rutile phase) and also deep oxygen vacancy traps have been explored upon introducing the rutile phase. Based on our results, employing TiO2 nanotubes as just the electron transport medium in mixed crystalline phases can deteriorate the charge transport mechanism, however, in photocatalytic applications when both electrons and holes are present, a robust charge separation in crystalline anatase/rutile interphases will result in better performances.

  2. Kraft lignin chain extension chemistry via propargylation, oxidative coupling, and Claisen rearrangement.

    PubMed

    Sen, Sanghamitra; Sadeghifar, Hasan; Argyropoulos, Dimitris S

    2013-10-14

    Despite its aromatic and polymeric nature, the heterogeneous, stochastic, and reactive characteristics of softwood kraft lignin seriously limit its potential for thermoplastic applications. Our continuing efforts toward creating thermoplastic lignin polymers are now focused at exploring propargylation derivatization chemistry and its potential as a versatile novel route for the eventual utilization of technical lignins with a significant amount of molecular control. To do this, we initially report the systematic propargylation of softwood kraft lignin. The synthesized derivatives were extensively characterized with thermal methods (DSC, TGA), (1)H, (13)C, and quantitative (31)P NMR and IR spectroscopies. Further on, we explore the versatile nature of the lignin pendant propargyl groups by demonstrating two distinct chain extension chemistries; the solution-based, copper-mediated, oxidative coupling and the thermally induced, solid-state, Claissen rearrangement polymerization chemistries. Overall, we show that it is possible to modulate the reactivity of softwood kraft lignin via a combination of methylation and chain extension providing a rational means for the creation of higher molecular weight polymers with the potential for thermoplastic materials and carbon fibers with the desired control of structure-property relations.

  3. Proposed Methodology for Application of Human-like gradual Multi-Agent Q-Learning (HuMAQ) for Multi-robot Exploration

    NASA Astrophysics Data System (ADS)

    Narayan Ray, Dip; Majumder, Somajyoti

    2014-07-01

    Several attempts have been made by the researchers around the world to develop a number of autonomous exploration techniques for robots. But it has been always an important issue for developing the algorithm for unstructured and unknown environments. Human-like gradual Multi-agent Q-leaming (HuMAQ) is a technique developed for autonomous robotic exploration in unknown (and even unimaginable) environments. It has been successfully implemented in multi-agent single robotic system. HuMAQ uses the concept of Subsumption architecture, a well-known Behaviour-based architecture for prioritizing the agents of the multi-agent system and executes only the most common action out of all the different actions recommended by different agents. Instead of using new state-action table (Q-table) each time, HuMAQ uses the immediate past table for efficient and faster exploration. The proof of learning has also been established both theoretically and practically. HuMAQ has the potential to be used in different and difficult situations as well as applications. The same architecture has been modified to use for multi-robot exploration in an environment. Apart from all other existing agents used in the single robotic system, agents for inter-robot communication and coordination/ co-operation with the other similar robots have been introduced in the present research. Current work uses a series of indigenously developed identical autonomous robotic systems, communicating with each other through ZigBee protocol.

  4. Sexual Behaviour and Interest in Using a Sexual Health Mobile App to Help Improve and Manage College Students' Sexual Health

    ERIC Educational Resources Information Center

    Richman, Alice R.; Webb, Monica C.; Brinkley, Jason; Martin, Ryan J.

    2014-01-01

    Many US college students are reported to engage in risky sexual behaviour. Smartphone applications are a popular way to provide users with information in real time. We explored the potential for mobile technology to be used in promoting the sexual health of college students. Using findings from an online survey among a random sample of 5000…

  5. The non-Federal oceanographic community: An overview

    NASA Technical Reports Server (NTRS)

    Swetnick, M. A.

    1981-01-01

    A portion of the broad domestic non-Federal oceanographic community that represents a potential market for satellite remote sensor derived oceanographic data and/or marine environmental information is presented. The overview consists of listings of individuals and/or organizations who have used, or are likely to use such data or information for scientific research, offshore engineering purposes, marine resources exploration and utilization, marine related operational applications, or coastal zone management.

  6. Exploring the Energy Landscapes of Protein Folding Simulations with Bayesian Computation

    PubMed Central

    Burkoff, Nikolas S.; Várnai, Csilla; Wells, Stephen A.; Wild, David L.

    2012-01-01

    Nested sampling is a Bayesian sampling technique developed to explore probability distributions localized in an exponentially small area of the parameter space. The algorithm provides both posterior samples and an estimate of the evidence (marginal likelihood) of the model. The nested sampling algorithm also provides an efficient way to calculate free energies and the expectation value of thermodynamic observables at any temperature, through a simple post processing of the output. Previous applications of the algorithm have yielded large efficiency gains over other sampling techniques, including parallel tempering. In this article, we describe a parallel implementation of the nested sampling algorithm and its application to the problem of protein folding in a Gō-like force field of empirical potentials that were designed to stabilize secondary structure elements in room-temperature simulations. We demonstrate the method by conducting folding simulations on a number of small proteins that are commonly used for testing protein-folding procedures. A topological analysis of the posterior samples is performed to produce energy landscape charts, which give a high-level description of the potential energy surface for the protein folding simulations. These charts provide qualitative insights into both the folding process and the nature of the model and force field used. PMID:22385859

  7. A multivariate geostatistical methodology to delineate areas of potential interest for future sedimentary gold exploration.

    PubMed

    Goovaerts, P; Albuquerque, Teresa; Antunes, Margarida

    2016-11-01

    This paper describes a multivariate geostatistical methodology to delineate areas of potential interest for future sedimentary gold exploration, with an application to an abandoned sedimentary gold mining region in Portugal. The main challenge was the existence of only a dozen gold measurements confined to the grounds of the old gold mines, which precluded the application of traditional interpolation techniques, such as cokriging. The analysis could, however, capitalize on 376 stream sediment samples that were analyzed for twenty two elements. Gold (Au) was first predicted at all 376 locations using linear regression (R 2 =0.798) and four metals (Fe, As, Sn and W), which are known to be mostly associated with the local gold's paragenesis. One hundred realizations of the spatial distribution of gold content were generated using sequential indicator simulation and a soft indicator coding of regression estimates, to supplement the hard indicator coding of gold measurements. Each simulated map then underwent a local cluster analysis to identify significant aggregates of low or high values. The one hundred classified maps were processed to derive the most likely classification of each simulated node and the associated probability of occurrence. Examining the distribution of the hot-spots and cold-spots reveals a clear enrichment in Au along the Erges River downstream from the old sedimentary mineralization.

  8. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications.

    PubMed

    Rai, Vineet Kumar; Mishra, Nidhi; Yadav, Kuldeep Singh; Yadav, Narayan Prasad

    2018-01-28

    The use of nanoemulsion in augmenting dermal and transdermal effectiveness of drugs has now well established. The development of nanoemulsion based semisolid dosage forms is an active area of present research. However, thickening or liquid-to-semisolid conversion of the nanoemulsions provides opportunities to the formulation scientist to explore novel means of solving instability issues during transformation. Extending knowledge about the explicit role of nature/magnitude of zeta potential, types of emulsifiers and selection of appropriate semisolid bases could place these versatile carriers from laboratory to industrial scale. This article reviews the progressive advancement in the delivery of medicament via nanoemulsion with special reference to the dermal and transdermal administration. It is attempted to explore the most suitable semi solid dosage form for the particular type of nanoemulsion (o/w, w/o and others) and effect of particle size and zeta potential on the delivery of drugs through dermal or transdermal route. Finally, this review also highlights the basic principles and fundamental considerations of nanoemulsion manufacture, application of nanoemulsion based semisolid dosage forms in the dermal/transdermal administration and basic considerations during the nanoemulsion absorption into and through skin. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Exploring the energy landscapes of protein folding simulations with Bayesian computation.

    PubMed

    Burkoff, Nikolas S; Várnai, Csilla; Wells, Stephen A; Wild, David L

    2012-02-22

    Nested sampling is a Bayesian sampling technique developed to explore probability distributions localized in an exponentially small area of the parameter space. The algorithm provides both posterior samples and an estimate of the evidence (marginal likelihood) of the model. The nested sampling algorithm also provides an efficient way to calculate free energies and the expectation value of thermodynamic observables at any temperature, through a simple post processing of the output. Previous applications of the algorithm have yielded large efficiency gains over other sampling techniques, including parallel tempering. In this article, we describe a parallel implementation of the nested sampling algorithm and its application to the problem of protein folding in a Gō-like force field of empirical potentials that were designed to stabilize secondary structure elements in room-temperature simulations. We demonstrate the method by conducting folding simulations on a number of small proteins that are commonly used for testing protein-folding procedures. A topological analysis of the posterior samples is performed to produce energy landscape charts, which give a high-level description of the potential energy surface for the protein folding simulations. These charts provide qualitative insights into both the folding process and the nature of the model and force field used. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Ex Vivo (Fluorescence) Confocal Microscopy in Surgical Pathology: State of the Art.

    PubMed

    Ragazzi, Moira; Longo, Caterina; Piana, Simonetta

    2016-05-01

    First developed in 1957, confocal microscopy is a powerful imaging tool that can be used to obtain near real-time reflected light images of untreated human tissue with nearly histologic resolution. Besides its research applications, in the last decades, confocal microscopy technology has been proposed as a useful device to improve clinical diagnosis, especially in ophthalmology, dermatology, and endomicroscopy settings, thanks to advances in instrument development. Compared with the wider use of the in vivo tissue assessment, ex vivo applications of confocal microscopy are not fully explored. A comprehensive review of the current literature was performed here, focusing on the reliable applications of ex vivo confocal microscopy in surgical pathology and on some potential evolutions of this new technique from pathologists' viewpoint.

  11. Protein-ligand docking using FFT based sampling: D3R case study.

    PubMed

    Padhorny, Dzmitry; Hall, David R; Mirzaei, Hanieh; Mamonov, Artem B; Moghadasi, Mohammad; Alekseenko, Andrey; Beglov, Dmitri; Kozakov, Dima

    2018-01-01

    Fast Fourier transform (FFT) based approaches have been successful in application to modeling of relatively rigid protein-protein complexes. Recently, we have been able to adapt the FFT methodology to treatment of flexible protein-peptide interactions. Here, we report our latest attempt to expand the capabilities of the FFT approach to treatment of flexible protein-ligand interactions in application to the D3R PL-2016-1 challenge. Based on the D3R assessment, our FFT approach in conjunction with Monte Carlo minimization off-grid refinement was among the top performing methods in the challenge. The potential advantage of our method is its ability to globally sample the protein-ligand interaction landscape, which will be explored in further applications.

  12. A technical guide to tDCS, and related non-invasive brain stimulation tools.

    PubMed

    Woods, A J; Antal, A; Bikson, M; Boggio, P S; Brunoni, A R; Celnik, P; Cohen, L G; Fregni, F; Herrmann, C S; Kappenman, E S; Knotkova, H; Liebetanz, D; Miniussi, C; Miranda, P C; Paulus, W; Priori, A; Reato, D; Stagg, C; Wenderoth, N; Nitsche, M A

    2016-02-01

    Transcranial electrical stimulation (tES), including transcranial direct and alternating current stimulation (tDCS, tACS) are non-invasive brain stimulation techniques increasingly used for modulation of central nervous system excitability in humans. Here we address methodological issues required for tES application. This review covers technical aspects of tES, as well as applications like exploration of brain physiology, modelling approaches, tES in cognitive neurosciences, and interventional approaches. It aims to help the reader to appropriately design and conduct studies involving these brain stimulation techniques, understand limitations and avoid shortcomings, which might hamper the scientific rigor and potential applications in the clinical domain. Copyright © 2015 International Federation of Clinical Neurophysiology. All rights reserved.

  13. New technology innovations with potential for space applications

    NASA Astrophysics Data System (ADS)

    Krishen, Kumar

    2008-07-01

    Human exploration and development of space is being pursued by spacefaring nations to explore, use, and enable the development of space and expand the human experience there. The goals include: increasing human knowledge of nature's processes using the space environment; exploring and settling the solar system; achieving routine space travel; and enriching life on Earth through living and working in space. A crucial aspect of future space missions is the development of infrastructure to optimize safety, productivity, and costs. A major component of mission execution is operations management. NASA's International Space Station is providing extensive experience in both infrastructure and operations. In view of this, a vigorously organized approach is needed to implement successful space-, planet-, and ground-based research and operations that entails wise and efficient use of technical and human resources. Many revolutionary technologies being pursued by researchers and technologists may be vital in making space missions safe, reliable, cost-effective, and productive. These include: ionic polymer-metal composite technology; solid-state lasers; time-domain sensors and communication systems; high-temperature superconductivity; nanotechnology; variable specific impulse magneto plasma rocket; fuzzy logic; wavelet technology; and neural networks. An overview of some of these will be presented, along with their application to space missions.

  14. Meta-Study as Diagnostic: Toward Content Over Form in Qualitative Synthesis.

    PubMed

    Frost, Julia; Garside, Ruth; Cooper, Chris; Britten, Nicky

    2016-02-01

    Having previously conducted qualitative syntheses of the diabetes literature, we wanted to explore the changes in theoretical approaches, methodological practices, and the construction of substantive knowledge which have recently been presented in the qualitative diabetes literature. The aim of this research was to explore the feasibility of synthesizing existing qualitative syntheses of patient perspectives of diabetes using meta-study methodology. A systematic review of qualitative literature, published between 2000 and 2013, was conducted. Six articles were identified as qualitative syntheses. The meta-study methodology was used to compare the theoretical, methodological, analytic, and synthetic processes across the six studies, exploring the potential for an overarching synthesis. We identified that while research questions have increasingly concentrated on specific aspects of diabetes, the focus on systematic review processes has led to the neglect of qualitative theory and methods. This can inhibit the production of compelling results with meaningful clinical applications. Although unable to produce a synthesis of syntheses, we recommend that researchers who conduct qualitative syntheses pay equal attention to qualitative traditions and systematic review processes, to produce research products that are both credible and applicable. © The Author(s) 2015.

  15. Application of polynomial su(1, 1) algebra to Pöschl-Teller potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hong-Biao, E-mail: zhanghb017@nenu.edu.cn; Lu, Lu

    2013-12-15

    Two novel polynomial su(1, 1) algebras for the physical systems with the first and second Pöschl-Teller (PT) potentials are constructed, and their specific representations are presented. Meanwhile, these polynomial su(1, 1) algebras are used as an algebraic technique to solve eigenvalues and eigenfunctions of the Hamiltonians associated with the first and second PT potentials. The algebraic approach explores an appropriate new pair of raising and lowing operators K-circumflex{sub ±} of polynomial su(1, 1) algebra as a pair of shift operators of our Hamiltonians. In addition, two usual su(1, 1) algebras associated with the first and second PT potentials are derivedmore » naturally from the polynomial su(1, 1) algebras built by us.« less

  16. Green Composites Made of Bamboo Fabric and Poly (Lactic) Acid for Packaging Applications—A Review

    PubMed Central

    Nurul Fazita, M.R.; Jayaraman, Krishnan; Bhattacharyya, Debes; Mohamad Haafiz, M.K.; Saurabh, Chaturbhuj K.; Hussin, M. Hazwan; H.P.S., Abdul Khalil

    2016-01-01

    Petroleum based thermoplastics are widely used in a range of applications, particularly in packaging. However, their usage has resulted in soaring pollutant emissions. Thus, researchers have been driven to seek environmentally friendly alternative packaging materials which are recyclable as well as biodegradable. Due to the excellent mechanical properties of natural fibres, they have been extensively used to reinforce biopolymers to produce biodegradable composites. A detailed understanding of the properties of such composite materials is vital for assessing their applicability to various products. The present review discusses several functional properties related to packaging applications in order to explore the potential of bamboo fibre fabric-poly (lactic) acid composites for packaging applications. Physical properties, heat deflection temperature, impact resistance, recyclability and biodegradability are important functional properties of packaging materials. In this review, we will also comprehensively discuss the chronological events and applications of natural fibre biopolymer composites. PMID:28773558

  17. High temperature superconductors for magnetic suspension applications

    NASA Technical Reports Server (NTRS)

    Mcmichael, C. K.; Cooley, R. S.; Chen, Q. Y.; Ma, K. B.; Lamb, M. A.; Meng, R. L.; Chu, C. W.; Chu, W. K.

    1994-01-01

    High temperature superconductors (HTS) hold the promise for applications in magnetic levitation bearings, vibration damping, and torque coupling. Traditional magnetic suspension systems require active feedback and vibration controls in which power consumption and low frequency vibration are among the major engineering concerns. HTS materials have been demonstrated to be an enabling approach towards such problems due to their flux trapping properties. In our laboratory at TCSUH, we have been conducting a series of experiments to explore various mechanical applications using HTS. We have constructed a 30 lb. model flywheel levitated by a hybrid superconducting magnetic bearing (HSMB). We are also developing a levitated and vibration-dampled platform for high precision instrumentation. These applications would be ideal for space usages where ambient temperature is adequate for HTS to operate properly under greatly reduced cryogenic requirements. We will give a general overview of these potential applications and discuss the operating principles of the HTS devices we have developed.

  18. Applications of Radioisotopes

    DOE PAGES

    Hayes, Robert

    2017-03-10

    Radioisotopes are used all over the globe in many different types of applications. To name but a few examples, they are used in research in science, technology, and medicine; in industry; in geolog-ical explorations; in forensics for art technology and archeology; in space activities; in home pro-tection devices; and in homeland security activities. This article presents (a) general discussion about radioisotopes and radioactivity and (b) brief discussion for each one of their many applications. It is not generally credible that all current and potential science, engineering, and technological applications for radioisotopes could be listed in a single article. Perhaps allmore » those we know of could be detailed and listed in a large comprehensive book or series of works. This had been attempted early in the previous century along with select industry and application-specific reference works such as chemistry, hydrology, agriculture, and the paper industry.« less

  19. Exploring the Potential of Direct-To-Consumer Genomic Test Data for Predicting Adverse Drug Events.

    PubMed

    Zhang, Patrick M; Sarkar, Indra Neil

    2018-01-01

    Recent technological advancements in genetic testing and the growing accessibility of public genomic data provide researchers with a unique avenue to approach personalized medicine. This feasibility study examined the potential of direct-to-consumer (DTC) genomic tests (focusing on 23andMe) in research and clinical applications. In particular, we combined population genetics information from the Personal Genome Project with adverse event reports from AEOLUS and pharmacogenetic information from PharmGKB. Primarily, associations between drugs based on co-occurring genetic variations and associations between variants and adverse events were used to assess the potential for leveraging single nucleotide polymorphism information from 23andMe. The results of this study suggest potential clinical uses of DTC tests in light of potential drug interactions. Furthermore, the results suggest great potential for analyzing associations at a population level to facilitate knowledge discovery in the realm of predicting adverse drug events.

  20. Development and Applications of Portable Biosensors.

    PubMed

    Srinivasan, Balaji; Tung, Steve

    2015-08-01

    The significance of microfluidics-based and microelectromechanical systems-based biosensors has been widely acknowledged, and many reviews have explored their potential applications in clinical diagnostics, personalized medicine, global health, drug discovery, food safety, and forensics. Because health care costs are increasing, there is an increasing need to remotely monitor the health condition of patients by point-of-care-testing. The demand for biosensors for detection of biological warfare agents has increased, and research is focused on ways of producing small portable devices that would allow fast, accurate, and on-site detection. In the past decade, the demand for rapid and accurate on-site detection of plant disease diagnosis has increased due to emerging pathogens with resistance to pesticides, increased human mobility, and regulations limiting the application of toxic chemicals to prevent spread of diseases. The portability of biosensors for on-site diagnosis is limited due to various issues, including sample preparation techniques, fluid-handling techniques, the limited lifetime of biological reagents, device packaging, integrating electronics for data collection/analysis, and the requirement of external accessories and power. Many microfluidic, electronic, and biological design strategies, such as handling liquids in biosensors without pumps/valves, the application of droplet-based microfluidics, paper-based microfluidic devices, and wireless networking capabilities for data transmission, are being explored. © 2015 Society for Laboratory Automation and Screening.

  1. Development of Nested Socioeconomic Storylines for Climate Change IAV Applications (Invited)

    NASA Astrophysics Data System (ADS)

    Preston, B. L.; Absar, M.

    2013-12-01

    Socioeconomic scenarios are important for understanding future societal consequences of climate and weather. The global shared socioeconomic pathways (SSPs) represent a new opportunity for coordinated development and application of such scenarios to improve the representation of alternative societal development pathways within climate change consequence analysis. However, capitalizing on this opportunity necessitates bridging the scale disparity between the global SSPs and the regional/local context for which many impact, adaptation and vulnerability (IAV) studies are conducted. To this end, we adopted the Factor, Actor, and Sector methodology to develop a set of qualitative national and sub-national socioeconomic storylines for the United States and U.S. Southeast using the global SSPs as boundary conditions. In particular, our study sought to develop storylines to explore alternative socioeconomic futures for the U.S. Southeast and their implications for adaptive capacity of the region's energy, water, and agricultural sectors. These storylines subsequently serve as the foundation for a range of downstream IAV applications. These include qualitative vulnerability analysis to explore interactions between energy, water, and agriculture in a changing climate; as well as quantitative impact assessment where regional storylines are used to establish modeling parameters within a biophysical crop model. Such methods and applications illustrate potentially useful opportunities for routinizing the use of SSP-based storylines in IAV studies.

  2. Developing Anticipatory Life Cycle Assessment Tools to Support Responsible Innovation

    NASA Astrophysics Data System (ADS)

    Wender, Benjamin

    Several prominent research strategy organizations recommend applying life cycle assessment (LCA) early in the development of emerging technologies. For example, the US Environmental Protection Agency, the National Research Council, the Department of Energy, and the National Nanotechnology Initiative identify the potential for LCA to inform research and development (R&D) of photovoltaics and products containing engineered nanomaterials (ENMs). In this capacity, application of LCA to emerging technologies may contribute to the growing movement for responsible research and innovation (RRI). However, existing LCA practices are largely retrospective and ill-suited to support the objectives of RRI. For example, barriers related to data availability, rapid technology change, and isolation of environmental from technical research inhibit application of LCA to developing technologies. This dissertation focuses on development of anticipatory LCA tools that incorporate elements of technology forecasting, provide robust explorations of uncertainty, and engage diverse innovation actors in overcoming retrospective approaches to environmental assessment and improvement of emerging technologies. Chapter one contextualizes current LCA practices within the growing literature articulating RRI and identifies the optimal place in the stage gate innovation model to apply LCA. Chapter one concludes with a call to develop anticipatory LCA---building on the theory of anticipatory governance---as a series of methodological improvements that seek to align LCA practices with the objectives of RRI. Chapter two provides a framework for anticipatory LCA, identifies where research from multiple disciplines informs LCA practice, and builds off the recommendations presented in the preceding chapter. Chapter two focuses on crystalline and thin film photovoltaics (PV) to illustrate the novel framework, in part because PV is an environmentally motivated technology undergoing extensive R&D efforts and rapid increases in scale of deployment. The chapter concludes with a series of research recommendations that seek to direct PV research agenda towards pathways with the greatest potential for environmental improvement. Similar to PV, engineered nanomaterials (ENMs) are an emerging technology with numerous potential applications, are the subject of active R&D efforts, and are characterized by high uncertainty regarding potential environmental implications. Chapter three introduces a Monte Carlo impact assessment tool based on the toxicity impact assessment model USEtox and demonstrates stochastic characterization factor (CF) development to prioritize risk research with the greatest potential to improve certainty in CFs. The case study explores a hypothetical decision in which personal care product developers are interested in replacing the conventional antioxidant niacinamide with the novel ENM C 60, but face high data uncertainty, are unsure regarding potential ecotoxicity impacts associated with this substitution, and do not know what future risk-relevant experiments to invest in that most efficiently improve certainty in the comparison. Results suggest experiments that elucidate C60 partitioning to suspended solids should be prioritized over parameters with little influence on results. This dissertation demonstrates a novel anticipatory approach to exploration of uncertainty in environmental models that can create new, actionable knowledge with potential to guide future research and development decisions.

  3. Tea nanoparticles for immunostimulation and chemo-drug delivery in cancer treatment.

    PubMed

    Yi, Sijia; Wang, Yongzhong; Huang, Yujian; Xia, Lijin; Sun, Leming; Lenaghan, Scott C; Zhang, Mingjun

    2014-06-01

    Many health benefits have been associated with tea consumption. In an effort to elucidate the source of these health benefits, numerous phytochemicals have been extracted from tea infusions, some of which have demonstrated promise as clinical therapeutics for cancer therapy. Considering the advantageous properties of organic nanoparticles, the purpose of this study is to develop a method for isolating nanoparticles from tea leaves, and explore potential biomedical applications for these nanoparticles. First, an infusion-dialysis procedure for isolating tea nanoparticles (TNPs) from green tea infusions is developed. Second, atomic force microscopy and scanning electron microscopy reveal that the TNPs are spherical with diameters of 100-300 nm. Third, electrophoretic light scattering is used to determine that the TNPs have a zeta potential of -26.52 mV at pH 7.0. Finally, chemical analysis demonstrates that (-) Epigallocatechin gallate, caffeine, and theobromine are not found in the TNPs. Interestingly, the TNPs do enhance the in vitro secretion of cytokines IL-6, TNF-alpha, and G-CSF, as well as the chemokines RANTES, IP-10, MDC from mouse macrophages RAW264.7, indicating an immunostimulatory effect. As a nanocarrier, the TNPs are able to form complexes with doxorubicin (DOX) and have the potential for applications in drug delivery. Further the DOX-loaded TNPs increase the cellular DOX uptake, compared to free DOX, leading to higher cytotoxicity in the A549 human lung cancer and MCF-7 breast cancer cells. More importantly, the DOX-loaded TNPs significantly increase the DOX uptake and cytotoxicity in MCF-7/ADR multidrug resistant breast cancer cells. In this work, an infusion-dialysis procedure is developed for isolation of the TNPs from green tea, and the potential of these nanoparticles as a multifunctional nanocarrier for cancer therapy in vitro is explored.

  4. The Lunar Roving Vehicle: Historical perspective

    NASA Technical Reports Server (NTRS)

    Morea, Saverio F.

    1992-01-01

    As NASA proceeds with its studies, planning, and technology efforts in preparing for the early twenty-first century, it seems appropriate to reexamine past programs for potential applicability in meeting future national space science and exploration goals and objectives. Both the National Commission on Space (NCOS) study and NASA's 'Sally Ride study' suggest future programs involving returning to the Moon and establishing man's permanent presence there, and/or visiting the planet Mars in both the unmanned and manned mode. Regardless of when and which of these new bold initiatives is selected as our next national space goal, implementing these potentially new national thrusts in space will undoubtedly require the use of both manned and remotely controlled roving vehicles. Therefore, the purpose of this paper is to raise the consciousness level of the current space exploration planners to what, in the early 1970s, was a highly successful roving vehicle. During the Apollo program the vehicle known as the Lunar Roving Vehicle (LRV) was designed for carrying two astronauts, their tools, and the equipment needed for rudimentary exploration of the Moon. This paper contains a discussion of the vehicle, its characteristics, and its use on the Moon. Conceivably, the LRV has the potential to meet some future requirements, either with relatively low cost modifications or via an evolutionary route. This aspect, however, is left to those who would choose to further study these options.

  5. Potential Applications of Modularity to Enable a Deep Space Habitation Capability for Future Human Exploration Beyond Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Simon, Matthew A.; Toups, Larry; Smitherman, David

    2012-01-01

    Evaluating preliminary concepts of a Deep Space Habitat (DSH) enabling long duration crewed exploration of asteroids, the Moon, and Mars is a technically challenging problem. Sufficient habitat volumes and equipment, necessary to ensure crew health and functionality, increase propellant requirements and decrease launch flexibility to deliver multiple elements on a single launch vehicle; both of which increase overall mission cost. Applying modularity in the design of the habitat structures and subsystems can alleviate these difficulties by spreading the build-up of the overall habitation capability across several smaller parts. This allows for a more flexible habitation approach that accommodates various crew mission durations and levels of functionality. This paper provides a technical analysis of how various modular habitation approaches can impact the parametric design of a DSH with potential benefits in mass, packaging volume, and architectural flexibility. This includes a description of the desired long duration habitation capability, the definition of a baseline model for comparison, a small trade study to investigate alternatives, and commentary on potentially advantageous configurations to enable different levels of habitability. The approaches investigated include modular pressure vessel strategies, modular subsystems, and modular manufacturing approaches to habitat structure. The paper also comments upon the possibility of an integrated habitation strategy using modular components to create all short and long duration habitation elements required in the current exploration architectures.

  6. Exploring JavaScript and ROOT technologies to create Web-based ATLAS analysis and monitoring tools

    NASA Astrophysics Data System (ADS)

    Sánchez Pineda, A.

    2015-12-01

    We explore the potential of current web applications to create online interfaces that allow the visualization, interaction and real cut-based physics analysis and monitoring of processes through a web browser. The project consists in the initial development of web- based and cloud computing services to allow students and researchers to perform fast and very useful cut-based analysis on a browser, reading and using real data and official Monte- Carlo simulations stored in ATLAS computing facilities. Several tools are considered: ROOT, JavaScript and HTML. Our study case is the current cut-based H → ZZ → llqq analysis of the ATLAS experiment. Preliminary but satisfactory results have been obtained online.

  7. Biocatalysis: applications and potentials for the chemical industry.

    PubMed

    Thomas, Stuart M; DiCosimo, Robert; Nagarajan, Vasantha

    2002-06-01

    The chemical industry is exploring the use of renewable feed stocks to improve sustainability, prompting the exploration of bioprocesses for the production of chemicals. Attractive features of biological systems include versatility, substrate selectivity, regioselectivity, chemoselectivity, enantioselectivity and catalysis at ambient temperatures and pressures. However, a challenge facing bioprocesses is cost competitiveness with chemical processes because capital assets associated with the existing commercial processes are high. The chemical industry will probably use biotechnology with existing feed stocks and processes to extract higher values from feed stocks, process by-products and waste streams. In this decade, bioprocesses that offer either a process or a product advantage over traditional chemical routes will become more widely used.

  8. Chemical reactions directed Peptide self-assembly.

    PubMed

    Rasale, Dnyaneshwar B; Das, Apurba K

    2015-05-13

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.

  9. Nanomedicine strategies for targeting skin inflammation.

    PubMed

    Abdel-Mottaleb, Mona Ma; Try, Celine; Pellequer, Yann; Lamprecht, Alf

    2014-08-01

    Topical treatment of skin diseases is an attractive strategy as it receives high acceptance from patients, resulting in higher compliance and therapeutic outcomes. Recently, the use of variable nanocarriers for dermal application has been widely explored, as they offer several advantages compared with conventional topical preparations, including higher skin penetration, controlled and targeted drug delivery and the achievement of higher therapeutic effects. This article will focus on skin inflammation or dermatitis as it is one of the most common skin problems, describing the different types and causes of dermatitis, as well as the typical treatment regimens. The potential use of nanocarriers for targeting skin inflammation and the achievement of higher therapeutic effects using nanotechnology will be explored.

  10. Chemical Reactions Directed Peptide Self-Assembly

    PubMed Central

    Rasale, Dnyaneshwar B.; Das, Apurba K.

    2015-01-01

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly. PMID:25984603

  11. Exceptionally Long-Lived Charge Separated State in Zeolitic Imidazolate Framework: Implication for Photocatalytic Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pattengale, Brian; Yang, Sizhuo; Ludwig, John

    2016-06-22

    Zeolitic Imidazolate Frameworks (ZIFs) have emerged as a novel class of porous metal-organic frameworks (MOFs) for catalysis application because of their exceptional thermal and chemical stability. Inspired by the broad absorption of ZIF-67 in UV-visible-near IR region, we explored its excited state and charge separation dynamics, properties essential for photocatalytic applications, using optical (OTA) and X-ray transient absorption (XTA) spectroscopy. OTA results show that an exceptionally long-lived excited state is formed after photoexcitation. This long-lived excited state was confirmed to be the charge separated state with ligandto-metal charge transfer character using XTA. The surprisingly long-lived charge separated state, together withmore » its intrinsic hybrid nature, all point to its potential application in heterogeneous photocatalysis and energy conversion.« less

  12. Explorers from space

    USGS Publications Warehouse

    Fary, Raymond W.

    1967-01-01

    The statement that a new era in exploration is opening will almost surely bring to mind the venturing of man into space and the ever more imminent exploration of the moon. The reference here, however, is to exploration of earth itself and to the unique capabilities for study of the earth that space technology will provide. Demands for water, minerals, energy, food, and for working, living and recreational space are outrunning our ability to meet them by traditional methods. In order to satisfy these demands, it is necessary now, just as it has been in the past, to look to the activities, the instruments, and the technologies that in part create the pressures for aid in meeting them. Studies being made at the U.S. Geological Survey and elsewhere of the potential applications of remote sensors in space to earth resources research indicate that now, at last, it will be possible to approach solutions on a regional or global basis. This paper discusses the plans for an Earth Resources Observational Satellites Program which will be designed for that purpose.

  13. Panoptes: web-based exploration of large scale genome variation data.

    PubMed

    Vauterin, Paul; Jeffery, Ben; Miles, Alistair; Amato, Roberto; Hart, Lee; Wright, Ian; Kwiatkowski, Dominic

    2017-10-15

    The size and complexity of modern large-scale genome variation studies demand novel approaches for exploring and sharing the data. In order to unlock the potential of these data for a broad audience of scientists with various areas of expertise, a unified exploration framework is required that is accessible, coherent and user-friendly. Panoptes is an open-source software framework for collaborative visual exploration of large-scale genome variation data and associated metadata in a web browser. It relies on technology choices that allow it to operate in near real-time on very large datasets. It can be used to browse rich, hybrid content in a coherent way, and offers interactive visual analytics approaches to assist the exploration. We illustrate its application using genome variation data of Anopheles gambiae, Plasmodium falciparum and Plasmodium vivax. Freely available at https://github.com/cggh/panoptes, under the GNU Affero General Public License. paul.vauterin@gmail.com. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  14. Modelling strategies to predict the multi-scale effects of rural land management change

    NASA Astrophysics Data System (ADS)

    Bulygina, N.; Ballard, C. E.; Jackson, B. M.; McIntyre, N.; Marshall, M.; Reynolds, B.; Wheater, H. S.

    2011-12-01

    Changes to the rural landscape due to agricultural land management are ubiquitous, yet predicting the multi-scale effects of land management change on hydrological response remains an important scientific challenge. Much empirical research has been of little generic value due to inadequate design and funding of monitoring programmes, while the modelling issues challenge the capability of data-based, conceptual and physics-based modelling approaches. In this paper we report on a major UK research programme, motivated by a national need to quantify effects of agricultural intensification on flood risk. Working with a consortium of farmers in upland Wales, a multi-scale experimental programme (from experimental plots to 2nd order catchments) was developed to address issues of upland agricultural intensification. This provided data support for a multi-scale modelling programme, in which highly detailed physics-based models were conditioned on the experimental data and used to explore effects of potential field-scale interventions. A meta-modelling strategy was developed to represent detailed modelling in a computationally-efficient manner for catchment-scale simulation; this allowed catchment-scale quantification of potential management options. For more general application to data-sparse areas, alternative approaches were needed. Physics-based models were developed for a range of upland management problems, including the restoration of drained peatlands, afforestation, and changing grazing practices. Their performance was explored using literature and surrogate data; although subject to high levels of uncertainty, important insights were obtained, of practical relevance to management decisions. In parallel, regionalised conceptual modelling was used to explore the potential of indices of catchment response, conditioned on readily-available catchment characteristics, to represent ungauged catchments subject to land management change. Although based in part on speculative relationships, significant predictive power was derived from this approach. Finally, using a formal Bayesian procedure, these different sources of information were combined with local flow data in a catchment-scale conceptual model application , i.e. using small-scale physical properties, regionalised signatures of flow and available flow measurements.

  15. On the application of semantic technologies to the domain of forensic investigations in financial crimes

    NASA Astrophysics Data System (ADS)

    Scheidat, Tobias; Merkel, Ronny; Krummel, Volker; Gerlach, Andreas; Weisensee, Michala; Zeihe, Jana; Dittmann, Jana

    2017-10-01

    In daily police practice, forensic investigation of criminal cases is mainly based on manual work and the experience of individual forensic experts, using basic storage and data processing technologies. However, an individual criminal case does not only consist of the actual offence, but also of a variety of different aspects involved. For example, in order to solve a financial criminal case, an investigator has to find interrelations between different case entities as well as to other cases. The required information about these different entities is often stored in various databases and mostly requires to be manually requested and processed by forensic investigators. We propose the application of semantic technologies to the domain of forensic investigations at the example of financial crimes. Such combination allows for modelling specific case entities and their interrelations within and between cases. As a result, an explorative search of connections between case entities in the scope of an investigation as well as an automated derivation of conclusions from an established fact base is enabled. The proposed model is presented in the form of a crime field ontology, based on different types of knowledge obtained from three individual sources: open source intelligence, forensic investigators and captive interviews of detained criminals. The modelled crime field ontology is illustrated at two examples using the well known crime type of explosive attack on ATM and the potentially upcoming crime type data theft by NFC crowd skimming. Of these criminal modi operandi, anonymized fictional are modelled, visualized and exploratively searched. Modelled case entities include modi operandi, events, actors, resources, exploited weaknesses as well as flows of money, data and know how. The potential exploration of interrelations between the different case entities of such examples is illustrated in the scope of a fictitious investigation, highlighting the potential of the approach.

  16. Fungi as a source of natural coumarins production.

    PubMed

    Costa, Tania Maria; Tavares, Lorena Benathar Ballod; de Oliveira, Débora

    2016-08-01

    Natural coumarins and derivatives are compounds that occur naturally in several organisms (plant, bacteria, and fungi) consisting of fused benzene and α-pyrone rings. These compounds show high technological potential applications in agrochemical, food, pharmaceuticals, and cosmetics industries. Therefore, the need for bulk production of coumarins and the advancement of the chemical and pharmaceutical industries led to the development of synthetic coumarin. However, biotransformation process, synthetic bioengineering, metabolic engineering, and bioinformatics have proven effective in the production of natural products. Today, these biological systems are recognized as green chemistry innovation and business strategy. This review article aims to report the potential of fungi for synthesis of coumarin. These microorganisms are described as a source of natural products capable of synthesizing many bioactive metabolites. The features, classification, properties, and industrial applications of natural coumarins as well as new molecules obtained by basidiomycetes and ascomycetes fungi are reported in order to explore a topic not yet discussed in the scientific literature.

  17. Clinical Application of Induced Pluripotent Stem Cells in Cardiovascular Medicine.

    PubMed

    Chi, Hong-jie; Gao, Song; Yang, Xin-chun; Cai, Jun; Zhao, Wen-shu; Sun, Hao; Geng, Yong-Jian

    2015-01-01

    Induced pluripotent stem cells (iPSCs) are generated by reprogramming human somatic cells through the overexpression of four transcription factors: Oct4, Sox2, Klf4 and c-Myc. iPSCs are capable of indefinite self-renewal, and they can differentiate into almost any type of cell in the body. These cells therefore offer a highly valuable therapeutic strategy for tissue repair and regeneration. Recent experimental and preclinical research has revealed their potential for cardiovascular disease diagnosis, drug screening and cellular replacement therapy. Nevertheless, significant challenges remain in terms of the development and clinical application of human iPSCs. Here, we review current progress in research related to patient-specific iPSCs for ex vivo modeling of cardiovascular disorders and drug screening, and explore the potential of human iPSCs for use in the field of cardiovascular regenerative medicine. © 2015 S. Karger AG, Basel.

  18. Novel snapshot hyperspectral imager for fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Chandler, Lynn; Chandler, Andrea; Periasamy, Ammasi

    2018-02-01

    Hyperspectral imaging has emerged as a new technique for the identification and classification of biological tissue1. Benefitting recent developments in sensor technology, the new class of hyperspectral imagers can capture entire hypercubes with single shot operation and it shows great potential for real-time imaging in biomedical sciences. This paper explores the use of a SnapShot imager in fluorescence imaging via microscope for the very first time. Utilizing the latest imaging sensor, the Snapshot imager is both compact and attachable via C-mount to any commercially available light microscope. Using this setup, fluorescence hypercubes of several cells were generated, containing both spatial and spectral information. The fluorescence images were acquired with one shot operation for all the emission range from visible to near infrared (VIS-IR). The paper will present the hypercubes obtained images from example tissues (475-630nm). This study demonstrates the potential of application in cell biology or biomedical applications for real time monitoring.

  19. Biennial Wind Energy Conference and Workshop, 5th, Washington, DC, October 5-7, 1981, Proceedings

    NASA Astrophysics Data System (ADS)

    1982-05-01

    The results of studies funded by the Federal government to advance the state of the art of wind energy conversion systems (WECS) construction, operation, applications, and financial viability are presented. The economics of WECS were considered in terms of applicable tax laws, computer simulations of net value of WECS to utilities, and the installation of Mod-2 2.5 MW and WTS-4 4MW wind turbines near Medicine Bow, WY to test the operation of two different large WECS on the same utility grid. Potential problems of increasing penetration of WECS-produced electricity on a utility grid were explored and remedies suggested. The structural dynamics of wind turbines were analyzed, along with means to predict potential noise pollution from large WECS, and to make blade fatigue life assessments. Finally, Darrieus rotor aerodynamics were investigated, as were dynamic stall in small WECS and lightning protection for wind turbines and components.

  20. Density functional theory (DFT) study of a new novel bionanosensor hybrid; tryptophan/Pd doped single walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Yoosefian, Mehdi; Etminan, Nazanin

    2016-07-01

    In order to explore a new novel L-amino acid/transition metal doped single walled carbon nanotube based biosensor, density functional theory calculations were studied. These hybrid structures of organic-inorganic nanobiosensors are able to detect the smallest amino acid building block of proteins. The configurations of amine and carbonyl group coordination of tryptophan aromatic amino acid adsorbed on Pd/doped single walled carbon nanotube were compared. The frontier molecular orbital theory, quantum theory atom in molecule and natural bond orbital analysis were performed. The molecular electrostatic potential and the electron density surfaces were constructed. The calculations indicated that the Pd/SWCNT was sensitive to tryptophan suggesting the importance of interaction with biological molecule and potential detecting application. The proposed nanobiosensor represents a highly sensitive detection of protein at ultra-low concentration in diagnosis applications.

  1. Non-Boolean computing with nanomagnets for computer vision applications

    NASA Astrophysics Data System (ADS)

    Bhanja, Sanjukta; Karunaratne, D. K.; Panchumarthy, Ravi; Rajaram, Srinath; Sarkar, Sudeep

    2016-02-01

    The field of nanomagnetism has recently attracted tremendous attention as it can potentially deliver low-power, high-speed and dense non-volatile memories. It is now possible to engineer the size, shape, spacing, orientation and composition of sub-100 nm magnetic structures. This has spurred the exploration of nanomagnets for unconventional computing paradigms. Here, we harness the energy-minimization nature of nanomagnetic systems to solve the quadratic optimization problems that arise in computer vision applications, which are computationally expensive. By exploiting the magnetization states of nanomagnetic disks as state representations of a vortex and single domain, we develop a magnetic Hamiltonian and implement it in a magnetic system that can identify the salient features of a given image with more than 85% true positive rate. These results show the potential of this alternative computing method to develop a magnetic coprocessor that might solve complex problems in fewer clock cycles than traditional processors.

  2. Evaluation of portable Raman spectrometer with 1064 nm excitation for geological and forensic applications.

    PubMed

    Vítek, Petr; Ali, Esam M A; Edwards, Howell G M; Jehlička, Jan; Cox, Rick; Page, Kristian

    2012-02-01

    The development of miniaturized Raman instrumentation is in demand for applications relevant to forensic, pharmaceutical and art analyses, as well as geosciences, and planetary exploration. In this study we report on evaluation of a portable dispersive Raman spectrometer equipped with 1064 nm laser excitation. Selected samples from geological, geobiological and forensic areas of interest have been studied from which the advantages, disadvantages and the analytical potential of the instrument are assessed based on a comparison with bench instrumentation and other portable Raman spectrometers using 785 nm excitation. It is demonstrated that the instrument operating with 1064 nm excitation has potential for expanding the number and types of samples that can be measured by miniaturized Raman spectroscopy without interfering fluorescence background emission. It includes inorganic and organic minerals, biomolecules within living lichen and endolithic cyanobacteria as well as drugs of abuse and explosives. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Evaluation of portable Raman spectrometer with 1064 nm excitation for geological and forensic applications

    NASA Astrophysics Data System (ADS)

    Vítek, Petr; Ali, Esam M. A.; Edwards, Howell G. M.; Jehlička, Jan; Cox, Rick; Page, Kristian

    2012-02-01

    The development of miniaturized Raman instrumentation is in demand for applications relevant to forensic, pharmaceutical and art analyses, as well as geosciences, and planetary exploration. In this study we report on evaluation of a portable dispersive Raman spectrometer equipped with 1064 nm laser excitation. Selected samples from geological, geobiological and forensic areas of interest have been studied from which the advantages, disadvantages and the analytical potential of the instrument are assessed based on a comparison with bench instrumentation and other portable Raman spectrometers using 785 nm excitation. It is demonstrated that the instrument operating with 1064 nm excitation has potential for expanding the number and types of samples that can be measured by miniaturized Raman spectroscopy without interfering fluorescence background emission. It includes inorganic and organic minerals, biomolecules within living lichen and endolithic cyanobacteria as well as drugs of abuse and explosives.

  4. Polymer-Ceramic Composite Materials for Pyroelectric Infrared Detectors: An Overview

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D; Currie, J. R.; Penn, B. G.; Batra, A. K.; Lal, R. B.

    2007-01-01

    Ferroelectrics:Polymer composites can be considered an established substitute for conventional electroceramics and ferroelectric polymers. The composites have a unique blend of polymeric properties such as mechanical flexibility, high strength, formability, and low cost, with the high electro-active properties of ceramic materials. They have attracted considerable interest because of their potential use in pyroelectric infrared detecting devices and piezoelectric transducers. These flexible sensors and transducers may eventually be useful for their health monitoring applications for NASA crew launch vehicles and crew exploration vehicles being developed. In the light of many technologically important applications in this field, it is worthwhile to present an overview of the pyroelectric infrared detector theory, models to predict dielectric behavior and pyroelectric coefficient, and the concept of connectivity and fabrication techniques of biphasic composites. An elaborate review of Pyroelectric-Polymer composite materials investigated to date for their potential use in pyroelectric infrared detectors is presented.

  5. Testing a small UAS for mapping artisanal diamond mining sites in Africa

    USGS Publications Warehouse

    Malpeli, Katherine C.; Chirico, Peter G.

    2015-01-01

    Remote sensing technology is advancing at an unprecedented rate. At the forefront of the new technological developments are unmanned aircraft systems (UAS). The advent of small, lightweight, low-cost, and user-friendly UAS is greatly expanding the potential applications of remote sensing technology and improving the set of tools available to researchers seeking to map and monitor terrain from above. In this article, we explore the applications of a small UAS for mapping informal diamond mining sites in Africa. We found that this technology provides aerial imagery of unparalleled resolution in a data-sparse, difficult to access, and remote terrain.

  6. Implementation of Headtracking and 3D Stereo with Unity and VRPN for Computer Simulations

    NASA Technical Reports Server (NTRS)

    Noyes, Matthew A.

    2013-01-01

    This paper explores low-cost hardware and software methods to provide depth cues traditionally absent in monocular displays. The use of a VRPN server in conjunction with a Microsoft Kinect and/or Nintendo Wiimote to provide head tracking information to a Unity application, and NVIDIA 3D Vision for retinal disparity support, is discussed. Methods are suggested to implement this technology with NASA's EDGE simulation graphics package, along with potential caveats. Finally, future applications of this technology to astronaut crew training, particularly when combined with an omnidirectional treadmill for virtual locomotion and NASA's ARGOS system for reduced gravity simulation, are discussed.

  7. Post-structural conceptualizations of power relationships in physiotherapy.

    PubMed

    Eisenberg, Naomi R

    2012-08-01

    This paper uses a post-structuralist lens to explore the nature of power relationships within the patient-physical therapist relationship. To ground the discussion, I begin with an overview of the salient aspects of the traditional evolution of Western medicine. I then draw from the philosophy/history of Foucault to challenge traditional thinking and consider the applications to physiotherapy. The analysis reveals that the application of a Foucauldian frame of reference has the potential of modifying the therapeutic relationship to one that is more equitable as opposed to the hierarchical one. I conclude with a discussion of the implications for the development and education of physiotherapists.

  8. NOAA's Big Data Partnership and Applications to Ocean Sciences

    NASA Astrophysics Data System (ADS)

    Kearns, E. J.

    2016-02-01

    New opportunities for the distribution of NOAA's oceanographic and other environmental data are being explored through NOAA's Big Data Partnership (BDP) with Amazon Web Services, Google Cloud Platform, IBM, Microsoft Corp. and the Open Cloud Consortium. This partnership was established in April 2015 through Cooperative Research and Development Agreements, and is seeking new, financially self-sustaining collaborations between the Partners and the federal government centered upon NOAA's data and their potential value in the information marketplace. We will discuss emerging opportunities for collaboration among businesses and NOAA, progress in making NOAA's ocean data more widely accessible through the Partnerships, and applications based upon this access to NOAA's data.

  9. Laboratory studies of silicon vapor deposition, phase A. [feasibility of producing thin films for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Frost, R. T.; Racette, G. W.; Stockhoff, E. H.

    1977-01-01

    A system is described capable of carrying out silicon vapor deposition experiments in the low 10 to the minus 10th power torr vacuum range. The system was assembled and tested for use in a program aimed at exploration of vacuum heteroepitaxy of silicon on several substrates of potential interest for photovoltaic applications. An experiment is described in which a silicon layer 2.5 microns thick was deposited on a pyrolytically cleaned tungsten substrate held at a temperature of 400 C. Using a resistance heated silicon source, thicker layers can be deposited in periods of hours by utilizing closer source to substrate distances.

  10. Biological applications of nanobiotechnology.

    PubMed

    de Morais, Michele Greque; Martins, Vilásia Guimarães; Steffens, Daniela; Pranke, Patricia; da Costa, Jorge Alberto Vieira

    2014-01-01

    Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices derived from engineering, physics, chemistry, and biology. Nanotechnology has opened up by rapid advances in science and technology, creating new opportunities for advances in the fields of medicine, electronics, foods, and the environment. Nanoscale structures and materials (nanoparticles, nanowires, nanofibers, nanotubes) have been explored in many biological applications (biosensing, biological separation, molecular imaging, anticancer therapy) because their novel properties and functions differ drastically from their bulk counterparts. Their high volume/surface ratio, improved solubility, and multifunctionality open many new possibilities. The objective of this review is to describe the potential benefits and impacts of the nanobiotechnology in different areas.

  11. Identification of New Orbits to Enable Future Missions for the Exploration of the Martian Moon Phobos

    NASA Astrophysics Data System (ADS)

    Zamaro, Mattia; Biggs, James D.

    One of the paramount stepping stones towards NASA's long-term goal of undertaking human missions to Mars is the exploration of the Martian moons. In this paper, a showcase of various classes of non-Keplerian orbits are identified and a number of potential mission applications in the Mars-Phobos system are proposed. These applications include: low-thrust hovering around Phobos for close-range observations; Libration Point Orbits in enhanced three-body dynamics to enable unique low-cost operations for space missions in the proximity of Phobos; their manifold structure for high-performance landing/take-off maneuvers to and from Phobos' surface; Quasi-Satellite Orbits for long-period station-keeping and maintenance. In particular, these orbits could exploit Phobos' occulting bulk as a passive radiation shield during future manned flights to Mars to reduce human exposure to radiation. Moreover, the latter orbits can be used as an orbital garage, requiring no orbital maintenance, where a spacecraft could make planned pit-stops during a round-trip mission to Mars.

  12. Crowdsourcing and curation: perspectives from biology and natural language processing

    DOE PAGES

    Hirschman, Lynette; Fort, Karën; Boué, Stéphanie; ...

    2016-08-08

    Crowdsourcing is increasingly utilized for performing tasks in both natural language processing and biocuration. Although there have been many applications of crowdsourcing in these fields, there have been fewer high-level discussions of the methodology and its applicability to biocuration. This paper explores crowdsourcing for biocuration through several case studies that highlight different ways of leveraging ‘the crowd’; these raise issues about the kind(s) of expertise needed, the motivations of participants, and questions related to feasibility, cost and quality. The paper is an outgrowth of a panel session held at BioCreative V (Seville, September 9–11, 2015). The session consisted of fourmore » short talks, followed by a discussion. In their talks, the panelists explored the role of expertise and the potential to improve crowd performance by training; the challenge of decomposing tasks to make them amenable to crowdsourcing; and the capture of biological data and metadata through community editing.« less

  13. Crowdsourcing and curation: perspectives from biology and natural language processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirschman, Lynette; Fort, Karën; Boué, Stéphanie

    Crowdsourcing is increasingly utilized for performing tasks in both natural language processing and biocuration. Although there have been many applications of crowdsourcing in these fields, there have been fewer high-level discussions of the methodology and its applicability to biocuration. This paper explores crowdsourcing for biocuration through several case studies that highlight different ways of leveraging ‘the crowd’; these raise issues about the kind(s) of expertise needed, the motivations of participants, and questions related to feasibility, cost and quality. The paper is an outgrowth of a panel session held at BioCreative V (Seville, September 9–11, 2015). The session consisted of fourmore » short talks, followed by a discussion. In their talks, the panelists explored the role of expertise and the potential to improve crowd performance by training; the challenge of decomposing tasks to make them amenable to crowdsourcing; and the capture of biological data and metadata through community editing.« less

  14. Kirlian Photography as a Teaching Tool of Physics

    NASA Astrophysics Data System (ADS)

    Terrel, Andy; Thacker, Beth Ann, , Dr.

    2002-10-01

    There are a number of groups across the country working on redesigning introductory physics courses by incorporating physics education research, modeling, and making the courses appeal to students in broader fields. We spent the summer exploring Kirlian photography, a subject that can be understood by students with a basic comprehension of electrostatics but is still questioned by many people in other fields. Kirlian photography's applications have captivated alternative medicine but still requires research from both physics and biology to understand if it has potential as medical tool. We used a simple setup to reproduce the physics that has been done to see if it could be used in an educational setting. I will demonstrate how Kirlian photography can be explained by physics but also how the topic still needs research to completely understand its possible biological applications. By incorporating such a topic into a curriculum, one is able to teach students to explore supposed supernatural phenomena scientifically and to promote research among undergraduate students.

  15. 3D measurement using circular gratings

    NASA Astrophysics Data System (ADS)

    Harding, Kevin

    2013-09-01

    3D measurement using methods of structured light are well known in the industry. Most such systems use some variation of straight lines, either as simple lines or with some form of encoding. This geometry assumes the lines will be projected from one side and viewed from another to generate the profile information. But what about applications where a wide triangulation angle may not be practical, particularly at longer standoff distances. This paper explores the use of circular grating patterns projected from a center point to achieve 3D information. Originally suggested by John Caulfield around 1990, the method had some interesting potential, particularly if combined with alternate means of measurement from traditional triangulation including depth from focus methods. The possible advantages of a central reference point in the projected pattern may offer some different capabilities not as easily attained with a linear grating pattern. This paper will explore the pros and cons of the method and present some examples of possible applications.

  16. Considerations for Using an Incremental Scheduler for Human Exploration Task Scheduling

    NASA Technical Reports Server (NTRS)

    Jaap, John; Phillips, Shaun

    2005-01-01

    As humankind embarks on longer space missions farther from home, the requirements and environments for scheduling the activities performed on these missions are changing. As we begin to prepare for these missions it is appropriate to evaluate the merits and applicability of the different types of scheduling engines. Scheduling engines temporally arrange tasks onto a timeline so that all constraints and objectives are met and resources are not overbooked. Scheduling engines used to schedule space missions fall into three general categories: batch, mixed-initiative, and incremental. This paper presents an assessment of the engine types, a discussion of the impact of human exploration of the moon and Mars on planning and scheduling, and the applicability of the different types of scheduling engines. This paper will pursue the hypothesis that incremental scheduling engines may have a place in the new environment; they have the potential to reduce cost, to improve the satisfaction of those who execute or benefit from a particular timeline (the customers), and to allow astronauts to plan their own tasks.

  17. Metallic MoN layer and its application as anode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Qiaoxuan; Ma, Jiachen; Lei, Ming; Quhe, Ruge

    2018-04-01

    Recently, two-dimensional (2D) metallic MoN was manufactured successfully in experiment. Its intrinsic properties remain to be explored theoretically, in depth. The intrinsic properties of a MoN monolayer are investigated by first-principles calculations. The distinct geometric properties of the outermost Mo and N surfaces are discovered. We predict an extremely high work function of 6.3 eV of the N surface, which indicates the great value of the 2D MoN for application in the semiconductor industry. We further explore the potential of 2D MoN as anode material for lithium-ion batteries. It is found that the adsorption energy of a single Li atom on an MoN surface can be as low as -4.04 eV. The small diffusion barriers (0.41 eV) and high theoretical maximum capacity (406 mAh · g-1 with the inclusion of multilayer adsorption) all imply an outstanding lithium-ion battery performance by 2D MoN.

  18. Binary culture of microalgae as an integrated approach for enhanced biomass and metabolites productivity, wastewater treatment, and bioflocculation.

    PubMed

    Rashid, Naim; Park, Won-Kun; Selvaratnam, Thinesh

    2018-03-01

    Ecological studies of microalgae have revealed their potential to co-exist in the natural environment. It provides an evidence of the symbiotic relationship of microalgae with other microorganisms. The symbiosis potential of microalgae is inherited with distinct advantages, providing a venue for their scale-up applications. The deployment of large-scale microalgae applications is limited due to the technical challenges such as slow growth rate, low metabolites yield, and high risk of biomass contamination by unwanted bacteria. However, these challenges can be overcome by exploring symbiotic potential of microalgae. In a symbiotic system, photosynthetic microalgae co-exist with bacteria, fungi, as well as heterotrophic microalgae. In this consortium, they can exchange nutrients and metabolites, transfer gene, and interact with each other through complex metabolic mechanism. Microalgae in this system, termed as a binary culture, are reported to exhibit high growth rate, enhanced bio-flocculation, and biochemical productivity without experiencing contamination. Binary culture also offers interesting applications in other biotechnological processes including bioremediation, wastewater treatment, and production of high-value metabolites. The focus of the study is to provide a perspective to enhance the understanding about microalgae binary culture. In this review, the mechanism of binary culture, its potential, and limitations are briefly discussed. A number of queries are evolved through this study, which needs to be answered by executing future research to assess the real potential of binary culture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. In-Space Assembly Capability Assessment for Potential Human Exploration and Science Applications

    NASA Technical Reports Server (NTRS)

    Jefferies, Sharon A.; Jones, Christopher A.; Arney, Dale C.; Stillwagen, Frederic H.; Chai, Patrick R.; Hutchinson, Craig D.; Stafford, Matthew A.; Moses, Robert W.; Dempsey, James A.; Rodgers, Erica M.; hide

    2017-01-01

    Human missions to Mars present several major challenges that must be overcome, including delivering multiple large mass and volume elements, keeping the crew safe and productive, meeting cost constraints, and ensuring a sustainable campaign. Traditional methods for executing human Mars missions minimize or eliminate in-space assembly, which provides a narrow range of options for addressing these challenges and limits the types of missions that can be performed. This paper discusses recent work to evaluate how the inclusion of in-space assembly in space mission architectural concepts could provide novel solutions to address these challenges by increasing operational flexibility, robustness, risk reduction, crew health and safety, and sustainability. A hierarchical framework is presented to characterize assembly strategies, assembly tasks, and the required capabilities to assemble mission systems in space. The framework is used to identify general mission system design considerations and assembly system characteristics by assembly strategy. These general approaches are then applied to identify potential in-space assembly applications to address each challenge. Through this process, several focus areas were identified where applications of in-space assembly could affect multiple challenges. Each focus area was developed to identify functions, potential assembly solutions and operations, key architectural trades, and potential considerations and implications of implementation. This paper helps to identify key areas to investigate were potentially significant gains in addressing the challenges with human missions to Mars may be realized, and creates a foundation on which to further develop and analyze in-space assembly concepts and assembly-based architectures.

  20. Karaoke for quads: a new application of an old recreation with potential therapeutic benefits for people with disabilities.

    PubMed

    Batavia, A I; Batavia, M

    2003-03-18

    Karaoke is a recreational activity whereby individuals sing into a microphone along with the melodies and lyrics provided both visually and auditorily by a machine. The potential therapeutic benefits of karaoke are explored in terms of increased respiratory strength, endurance, control, and capacity, as well as emotional and physical release for people with disabilities. Although many individuals with disabilities could benefit from this activity, it is likely to be particularly beneficial to people with compromised respiratory systems, such as persons with high-level quadriplegia (tetraplegia). This article examines theoretical considerations and proposes a research agenda. Empirical research would be valuable to confirm the potential benefits of karaoke for people with disabilities.

  1. SNACC Extras

    NASA Astrophysics Data System (ADS)

    Huber, Mark; Scolnic, D.; Riess, A. G.; Tonry, J. L.; Rodney, S. A.; Rest, A.; Stubbs, C. W.

    2010-01-01

    The extensive application of the SuperNovAe Cross-Correlation (SNACC) filters developed by Scolnic et al. (2009) for follow-up identification and redshift of type Ia supernovae in current and upcoming supernovae surveys will itself produce a unique imaging survey. We will present a collection of simulated and actual sources from the initial observing run using the new 4-band SNACC filters with Suprime-Cam on the Subaru telescope to explore the extra potential of this unique data set.

  2. Overview of the improvement of the ring-stage survival assay-a novel phenotypic assay for the detection of artemisinin-resistant Plasmodium falciparum.

    PubMed

    Zhang, Jie; Feng, Guo-Hua; Zou, Chun-Yan; Su, Pin-Can; Liu, Huai-E; Yang, Zhao-Qing

    2017-11-18

    Artemisinin resistance in Plasmodium falciparum threatens the remarkable efficacy of artemisinin-based combination therapies worldwide. Thus, greater insight into the resistance mechanism using monitoring tools is essential. The ring-stage survival assay is used for phenotyping artemisinin-resistance or decreased artemisinin sensitivity. Here, we review the progress of this measurement assay and explore its limitations and potential applications.

  3. Happiness and the Family 2.0 Paradigm

    NASA Astrophysics Data System (ADS)

    Mocan, Rodica; Racorean, Stefana

    Does new media technology have the potential to make us happier? This paper explores the influence of new information communication technologies on family life satisfaction while analyzing some of the factors that determine changes in the way we live our lives in the information age. Family 2.0 is the new paradigm of family life and the emergence of Web 2.0 type of applications is at the very core of its existence.

  4. New Technology for Libraries. A Layman's Guide to Reducing Public Library Costs and Improving Services through Scientific Methods and Tools. A Background Paper for the White House Conference on Library and Information Services.

    ERIC Educational Resources Information Center

    Weisbrod, David L.

    This booklet, one of a series of background papers for the White House Conference, explores the potential of new technologies to improve library services while reducing library costs. Separate subsections describe the application of technology to the following library functions: acquisitions, catalogs and cataloging, serials control, circulation…

  5. Automated Decision Making and Problem Solving. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    Heer, E.

    1981-01-01

    The May 1980 conference is summarized. Related topics in artificial intelligence, operations research, and control theory were explored. Existing techniques were assessed, trends of development determined, and potential for application in NASA automation technology programs were identified. Formal presentations were made by experts in the three disciplines nd a workshop was held in which current technology in automation and possible NASA interfaces with the academic community to advance this technology were discussed.

  6. Magnetic and thermal behavior of a family of compositionally related zero-dimensional fluorides

    NASA Astrophysics Data System (ADS)

    Felder, Justin B.; Smith, Mark D.; Sefat, Athena; zur Loye, Hans-Conrad

    2018-07-01

    The mild hydrothermal crystal growth technique has been leveraged to synthesize four new zero-dimensional transition metal fluorides. Their structures were determined by single crystal X-ray diffraction and confirmed by powder X-ray diffraction. The thermal, optical, and magnetic properties were investigated and the presence of thermal polymorphism and antiferromagnetism were observed. In addition, the potential application of these materials as precursors for advanced functional materials was explored.

  7. Toward Low-Frequency Mechanical Energy Harvesting Using Energy-Dense Piezoelectrochemical Materials.

    PubMed

    Cannarella, John; Arnold, Craig B

    2015-12-02

    The piezoelectrochemical coupling between mechanical stress and electrochemical potential is explored in the context of mechanical energy harvesting and shown to have promise in developing high-energy-density harvesters for low-frequency applications (e.g., human locomotion). This novel concept is demonstrated experimentally by cyclically compressing an off-the-shelf lithium-ion battery and measuring the generated electric power output. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Application of Sequence Comparison Methods to Multisensor Data Fusion and Target Recognition

    DTIC Science & Technology

    1993-06-18

    lin- ear comparison). A particularly attractive aspect of the proposed fusion scheme is that it has the potential to work for any object with (1...radar sensing is a historical custom - however, the reader should keep in mind that the fundamental issue in this research is to explore and exploit...reduce the computationally expensive need to compute partial derivatives. In usual practice, the computationally more attractive filter design is

  9. Reassessing SERS enhancement factors: using thermodynamics to drive substrate design.

    PubMed

    Guicheteau, J A; Tripathi, A; Emmons, E D; Christesen, S D; Fountain, Augustus W

    2017-12-04

    Over the past 40 years fundamental and application research into Surface-Enhanced Raman Scattering (SERS) has been explored by academia, industry, and government laboratories. To date however, SERS has achieved little commercial success as an analytical technique. Researchers are tackling a variety of paths to help break through the commercial barrier by addressing the reproducibility in both the SERS substrates and SERS signals as well as continuing to explore the underlying mechanisms. To this end, investigators use a variety of methodologies, typically studying strongly binding analytes such as aromatic thiols and azarenes, and report SERS enhancement factor calculations. However a drawback of the traditional SERS enhancement factor calculation is that it does not yield enough information to understand substrate reproducibility, application potential with another analyte, or the driving factors behind the molecule-metal interaction. Our work at the US Army Edgewood Chemical Biological Center has focused on these questions and we have shown that thermodynamic principles play a key role in the SERS response and are an essential factor in future designs of substrates and applications. This work will discuss the advantages and disadvantages of various experimental techniques used to report SERS enhancement with planar SERS substrates and present our alternative SERS enhancement value. We will report on three types of analysis scenarios that all yield different information concerning the effectiveness of the SERS substrate, practical application of the substrate, and finally the thermodynamic properties of the substrate. We believe that through this work a greater understanding for designing substrates will be achieved, one that is based on both thermodynamic and plasmonic properties as opposed to just plasmonic properties. This new understanding and potential change in substrate design will enable more applications for SERS based methodologies including targeting molecules that are traditionally not easily detected with SERS due to the perceived weak molecule-metal interaction of substrates.

  10. Power system applications of high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Garlick, W. G.

    This paper presents an overview of potential applications for high temperature superconductors (HTSs) in the field of power engineering. For almost 10 years material scientists, chemists and physicists have had the freedom to find, explore and characterize the properties of new HTS materials. 10 years is not a long time in the development of a revolutionary technology, but it seems like an age to the engineer who has recognized its potential and waits impatiently for the technology to stabilize in order to apply it. Largely due to Government and Industry partnerships, only a few years after the discovery of HTS, electrical power applications based on HTS are now being designed and tested. These applications offer many benefits to the resident electrical system: increased energy efficiency, smaller equipment, reduced emissions, increased stability and reliability, deferred expansion and flexible transmission and distribution. They have a common focus: lower electricity costs, improved environmental quality and more competitive products for a global market. For HTS to become a commercial success, the development of materials technologies is necessary but not sufficient on its own; the development of a capability to design and manufacture products that use the materials is also fundamental to a viable and successful industrial base.

  11. Properties and biotechnological applications of ice-binding proteins in bacteria.

    PubMed

    Cid, Fernanda P; Rilling, Joaquín I; Graether, Steffen P; Bravo, Leon A; Mora, María de La Luz; Jorquera, Milko A

    2016-06-01

    Ice-binding proteins (IBPs), such as antifreeze proteins (AFPs) and ice-nucleating proteins (INPs), have been described in diverse cold-adapted organisms, and their potential applications in biotechnology have been recognized in various fields. Currently, both IBPs are being applied to biotechnological processes, primarily in medicine and the food industry. However, our knowledge regarding the diversity of bacterial IBPs is limited; few studies have purified and characterized AFPs and INPs from bacteria. Phenotypically verified IBPs have been described in members belonging to Gammaproteobacteria, Actinobacteria and Flavobacteriia classes, whereas putative IBPs have been found in Gammaproteobacteria, Alphaproteobacteria and Bacilli classes. Thus, the main goal of this minireview is to summarize the current information on bacterial IBPs and their application in biotechnology, emphasizing the potential application in less explored fields such as agriculture. Investigations have suggested the use of INP-producing bacteria antagonists and AFPs-producing bacteria (or their AFPs) as a very attractive strategy to prevent frost damages in crops. UniProt database analyses of reported IBPs (phenotypically verified) and putative IBPs also show the limited information available on bacterial IBPs and indicate that major studies are required. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Graphene-based flexible and wearable electronics

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Sharma, Bhupendra K.; Katiyar, Ajit K.; Ahn, Jong-Hyun

    2018-01-01

    Graphene with an exceptional combination of electronic, optical and outstanding mechanical features has been proved to lead a completely different kind of 2-D electronics. The most exciting feature of graphene is its ultra-thin thickness, that can be conformally contacted to any kind of rough surface without losing much of its transparency and conductivity. Graphene has been explored demonstrating various prototype flexible electronic applications, however, its potentiality has been proven wherever transparent conductive electrodes (TCEs) are needed in a flexible, stretchable format. Graphene-based TCEs in flexible electronic applications showed greatly superior performance over their conventionally available competitor indium tin oxide (ITO). Moreover, enormous applications have been emerging, especially in wearable devices that can be potentially used in our daily life as well as in biomedical areas. However, the production of high-quality, defect-free large area graphene is still a challenge and the main hurdle in the commercialization of flexible and wearable products. The objective of the present review paper is to summarize the progress made so far in graphene-based flexible and wearable applications. The current developments including challenges and future perspectives are also highlighted. Project supported by the National Research Foundation of Korea (No. NRF-2015R1A3A2066337).

  13. Centralized Research Recruitment—Evolving a Local Clinical Research Recruitment Web Application to Better Meet User Needs

    PubMed Central

    Dwyer‐White, Molly; Doshi, Aalap; Hill, Mary; Pienta, Kenneth J.

    2011-01-01

    Abstract  Recruiting volunteers into clinical research remains a significant challenge for many clinical research study teams, thus the Michigan Institute for Clinical and Health Research (MICHR) at the University of Michigan developed UMClinicalStudies (http://www.UMClinicalStudies.org)—a Web application that links the community to a single gateway for clinical research. UMClinicalStudies (formerly named “Engage”) is an integral piece of MICHR’s efforts to increase clinical research participation in order to advance medical discoveries. Despite the initial success of the application, barriers to research participation remain, including the applications accessibility for potential research volunteers and study team members. In response, new initiatives were instigated to identify user needs, in order to broaden the ability to simultaneously assist researchers in recruitment activities, while also aiding potential volunteers in the exploration of and participation in clinical research opportunities. To do this, improvements to the interface and functionality were identified and implemented for both the public and the research audiences through extensive system analysis, and through the application of human computer interactivity processes, resulting in significant improvements in usability and ultimately research volunteerism, indicating that utilizing such technology is pivotal in reaching broader audiences for clinical trial participation. Clin Trans Sci 2011; Volume 4: 363–368 PMID:22029810

  14. In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.

    2011-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions

  15. The Holy Grail of Orthopedic Surgery: Mesenchymal Stem Cells—Their Current Uses and Potential Applications

    PubMed Central

    Berebichez-Fridman, Roberto; Gómez-García, Ricardo; Berebichez-Fastlicht, Enrique; Olivos-Meza, Anell; Granados, Julio; Velasquillo, Cristina

    2017-01-01

    Only select tissues and organs are able to spontaneously regenerate after disease or trauma, and this regenerative capacity diminishes over time. Human stem cell research explores therapeutic regenerative approaches to treat various conditions. Mesenchymal stem cells (MSCs) are derived from adult stem cells; they are multipotent and exert anti-inflammatory and immunomodulatory effects. They can differentiate into multiple cell types of the mesenchyme, for example, endothelial cells, osteoblasts, chondrocytes, fibroblasts, tenocytes, vascular smooth muscle cells, and sarcomere muscular cells. MSCs are easily obtained and can be cultivated and expanded in vitro; thus, they represent a promising and encouraging treatment approach in orthopedic surgery. Here, we review the application of MSCs to various orthopedic conditions, namely, orthopedic trauma; muscle injury; articular cartilage defects and osteoarthritis; meniscal injuries; bone disease; nerve, tendon, and ligament injuries; spinal cord injuries; intervertebral disc problems; pediatrics; and rotator cuff repair. The use of MSCs in orthopedics may transition the practice in the field from predominately surgical replacement and reconstruction to bioregeneration and prevention. However, additional research is necessary to explore the safety and effectiveness of MSC treatment in orthopedics, as well as applications in other medical specialties. PMID:28698718

  16. Application-specific coarse-grained reconfigurable array: architecture and design methodology

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Liu, Dongpei; Zhang, Jianfeng; Liu, Hengzhu

    2015-06-01

    Coarse-grained reconfigurable arrays (CGRAs) have shown potential for application in embedded systems in recent years. Numerous reconfigurable processing elements (PEs) in CGRAs provide flexibility while maintaining high performance by exploring different levels of parallelism. However, a difference remains between the CGRA and the application-specific integrated circuit (ASIC). Some application domains, such as software-defined radios (SDRs), require flexibility with performance demand increases. More effective CGRA architectures are expected to be developed. Customisation of a CGRA according to its application can improve performance and efficiency. This study proposes an application-specific CGRA architecture template composed of generic PEs (GPEs) and special PEs (SPEs). The hardware of the SPE can be customised to accelerate specific computational patterns. An automatic design methodology that includes pattern identification and application-specific function unit generation is also presented. A mapping algorithm based on ant colony optimisation is provided. Experimental results on the SDR target domain show that compared with other ordinary and application-specific reconfigurable architectures, the CGRA generated by the proposed method performs more efficiently for given applications.

  17. Using drawings to explore patients’ perceptions of their illness: a scoping review

    PubMed Central

    Cheung, Melissa Mei Yin; Saini, Bandana; Smith, Lorraine

    2016-01-01

    Background An emerging approach for investigating patient perspectives of their illness is the use of drawings. Objective This scoping review consolidates findings from current literature regarding the use of drawings to explore patients’ perceptions and experiences of their illness and treatment. Methods Electronic databases (Medline, PubMed, Embase, PsychINFO, Cinahl, Art Index and Scopus) and reference lists were searched to identify published English language studies using participant-generated drawings to explore adults’ perceptions and experiences of their illness and treatment. Using the scoping methodological framework, data were analyzed with respect to each study’s design, key findings and implications. Results Thirty-two studies were identified and these reflected diversities in both health conditions and methods of data collection and analysis. Participants’ drawings revealed new, insightful knowledge about patients’ perceptions, beliefs and experiences of their condition and were associated with clinical and psychological markers of health. Drawing was a powerful adjunct to traditional data collection approaches, and demonstrated potential benefits for participants. This review provides detailed insights and guidance on the use of drawings in research and clinical practice. Conclusion Drawing is a novel and potentially valuable technique for exploring patients’ perceptions and experiences about their illness and treatment. Advancing the methodology and applicability of drawings in this area will assist in the future development of this technique, with benefits for the patient, researcher and health care professional alike. PMID:27920550

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Leary, J.; Hayward, T.; Addison, F.

    The Llanos Foothills petroleum trend of the Eastern Cordillera in Colombia containing the giant Cusiana Field has proven to be one of the most exciting hydrocarbon provinces discovered in recent years. The Llanos Foothills trend is a fold and thrust belt with cumulative discovered reserves to date of nearly 6 billion barrels of oil equivalent. This paper summarizes the critical exploration techniques used in unlocking the potential of this major petroleum system. The first phase of exploration in the Llanos Foothills lasted from the early 1960's to the mid-70's. Several large structures defined by surface geology and seismic data weremore » drilled. Although no major discoveries were made, evidence of a petroleum play was found. The seismic imaging and drilling technology combined with the geological understanding which was then available did not allow the full potential of the trend to be realized. In the late 1980's better data and a revised geological perception of the trend led BP, Triton and Total into active exploration, which resulted in the discovery of the Cusiana Field. The subsequent discovery of the Cupiagua, Volcanera, Florena and Pauto Sur Fields confirmed the trend as a major hydrocarbon province. The exploration programme has used a series of geological and geophysical practices and techniques which have allowed the successful exploitation of the trend. The critical success factor has been the correct application of technology in seismic acquisition and recessing and drilling techniques.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Leary, J.; Hayward, T.; Addison, F.

    The Llanos Foothills petroleum trend of the Eastern Cordillera in Colombia containing the giant Cusiana Field has proven to be one of the most exciting hydrocarbon provinces discovered in recent years. The Llanos Foothills trend is a fold and thrust belt with cumulative discovered reserves to date of nearly 6 billion barrels of oil equivalent. This paper summarizes the critical exploration techniques used in unlocking the potential of this major petroleum system. The first phase of exploration in the Llanos Foothills lasted from the early 1960`s to the mid-70`s. Several large structures defined by surface geology and seismic data weremore » drilled. Although no major discoveries were made, evidence of a petroleum play was found. The seismic imaging and drilling technology combined with the geological understanding which was then available did not allow the full potential of the trend to be realized. In the late 1980`s better data and a revised geological perception of the trend led BP, Triton and Total into active exploration, which resulted in the discovery of the Cusiana Field. The subsequent discovery of the Cupiagua, Volcanera, Florena and Pauto Sur Fields confirmed the trend as a major hydrocarbon province. The exploration programme has used a series of geological and geophysical practices and techniques which have allowed the successful exploitation of the trend. The critical success factor has been the correct application of technology in seismic acquisition and recessing and drilling techniques.« less

  20. Enhancement of seismic monitoring in hydrocarbon reservoirs

    NASA Astrophysics Data System (ADS)

    Caffagni, Enrico; Bokelmann, Götz

    2017-04-01

    Hydraulic Fracturing (HF) is widely considered as one of the most significant enablers of the successful exploitation of hydrocarbons in North America. Massive usage of HF is currently adopted to increase the permeability in shale and tight-sand deep reservoirs, despite the economical downturn. The exploitation success is less due to the subsurface geology, but in technology that improves exploration, production, and decision-making. This includes monitoring of the reservoir, which is vital. Indeed, the general mindset in the industry is to keep enhancing seismic monitoring. It allows understanding and tracking processes in hydrocarbon reservoirs, which serves two purposes, a) to optimize recovery, and b) to help minimize environmental impact. This raises the question of how monitoring, and especially seismic techniques could be more efficient. There is a pressing demand from seismic service industry to evolve quickly and to meet the oil-gas industry's changing needs. Nonetheless, the innovative monitoring techniques, to achieve the purpose, must enhance the characterization or the visualization of a superior-quality images of the reservoir. We discuss recent applications of seismic monitoring in hydrocarbon reservoirs, detailing potential enhancement and eventual limitations. The aim is to test the validity of these seismic monitoring techniques, qualitatively discuss their potential application to energy fields that are not only limited to HF. Outcomes from our investigation may benefit operators and regulators in case of future massive HF applications in Europe, as well. This work is part of the FracRisk consortium (www.fracrisk.eu), funded by the Horizon2020 research programme, whose aims is to help minimize the environmental footprint of the shale-gas exploration and exploitation.

  1. Phytochemicals of Moringa oleifera: a review of their nutritional, therapeutic and industrial significance.

    PubMed

    Saini, Ramesh Kumar; Sivanesan, Iyyakkannu; Keum, Young-Soo

    2016-12-01

    Moringa oleifera Lam., also known as the 'drumstick tree,' is recognized as a vibrant and affordable source of phytochemicals, having potential applications in medicines, functional food preparations, water purification, and biodiesel production. The multiple biological activities including antiproliferation, hepatoprotective, anti-inflammatory, antinociceptive, antiatherosclerotic, oxidative DNA damage protective, antiperoxidative, cardioprotective, as well as folk medicinal uses of M. oleifera (MO) are attributed to the presence of functional bioactive compounds, such as phenolic acids, flavonoids, alkaloids, phytosterols, natural sugars, vitamins, minerals, and organic acids. The low molecular weight of M. oleifera cationic proteins (MOCP) extracted from the seeds is very useful and is used in water purification, because of its potent antimicrobial and coagulant properties. Also, the M. oleifera methyl esters (MOME) produced from the oil of the seeds meet the major specifications of the biodiesel standard of Germany, Europe, and United States (US). Thus, MO is emerging as one of the prominent industrial crops for sustainable biodiesel production in tropical and subtropical countries. In view of the high nutritional, nutraceutical, and industrial values, it is important to compile an updated comprehensive review on the related aspects of this multipurpose and miracle tree. Hence, the present study is focused on the nutritionally significant bioactives and medicinal and biological properties, to explore the potential applications of MO in nutritionally rich food preparations. Furthermore, water coagulation, proteins, and fatty acid methyl esters from the MO seeds are reviewed, to explore their possible industrial applications in biodiesel production and water purification. In addition, the future perspectives in these areas are suggested.

  2. Improving the trust in results of numerical simulations and scientific data analytics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappello, Franck; Constantinescu, Emil; Hovland, Paul

    This white paper investigates several key aspects of the trust that a user can give to the results of numerical simulations and scientific data analytics. In this document, the notion of trust is related to the integrity of numerical simulations and data analytics applications. This white paper complements the DOE ASCR report on Cybersecurity for Scientific Computing Integrity by (1) exploring the sources of trust loss; (2) reviewing the definitions of trust in several areas; (3) providing numerous cases of result alteration, some of them leading to catastrophic failures; (4) examining the current notion of trust in numerical simulation andmore » scientific data analytics; (5) providing a gap analysis; and (6) suggesting two important research directions and their respective research topics. To simplify the presentation without loss of generality, we consider that trust in results can be lost (or the results’ integrity impaired) because of any form of corruption happening during the execution of the numerical simulation or the data analytics application. In general, the sources of such corruption are threefold: errors, bugs, and attacks. Current applications are already using techniques to deal with different types of corruption. However, not all potential corruptions are covered by these techniques. We firmly believe that the current level of trust that a user has in the results is at least partially founded on ignorance of this issue or the hope that no undetected corruptions will occur during the execution. This white paper explores the notion of trust and suggests recommendations for developing a more scientifically grounded notion of trust in numerical simulation and scientific data analytics. We first formulate the problem and show that it goes beyond previous questions regarding the quality of results such as V&V, uncertainly quantification, and data assimilation. We then explore the complexity of this difficult problem, and we sketch complementary general approaches to address it. This paper does not focus on the trust that the execution will actually complete. The product of simulation or of data analytic executions is the final element of a potentially long chain of transformations, where each stage has the potential to introduce harmful corruptions. These corruptions may produce results that deviate from the user-expected accuracy without notifying the user of this deviation. There are many potential sources of corruption before and during the execution; consequently, in this white paper we do not focus on the protection of the end result after the execution.« less

  3. Rapid Cost Assessment of Space Mission Concepts Through Application of Complexity-Based Cost Indices

    NASA Technical Reports Server (NTRS)

    Peterson, Craig E.; Cutts, James; Balint, Tibor; Hall, James B.

    2008-01-01

    This slide presentation reviews the development of a rapid cost assessment models for evaluation of exploration missions through the application of complexity based cost indices. In Fall of 2004, NASA began developing 13 documents, known as "strategic roadmaps," intended to outline a strategy for space exploration over the next 30 years. The Third Strategic Roadmap, The Strategic Roadmap for Solar System Exploration, focused on strategy for robotic exploration of the Solar System. Development of the Strategic Roadmap for Solar System Exploration led to the investigation of a large variety of missions. However, the necessity of planning around scientific inquiry and budgetary constraints made it necessary for the roadmap development team to evaluate potential missions not only for scientific return but also cost. Performing detailed cost studies for each of the large number of missions was impractical given the time constraints involved and lack of detailed mission studies; so a method of rapid cost assessment was developed by us to allow preliminary analysis. It has been noted that there is a strong correlation between complexity and cost and schedule of planetary missions. While these correlations were made after missions had been built and flown (successfully or otherwise), it seemed likely that a similar approach could provide at least some relative cost ranking. Cost estimation relationships (CERs) have been developed based on subsystem design choices. These CERs required more detailed information than available, forcing the team to adopt a more high level approach. Costing by analogy has been developed for small satellites, however, planetary exploration missions provide such varying spacecraft requirements that there is a lack of adequately comparable missions that can be used for analogy.

  4. Explorative search of distributed bio-data to answer complex biomedical questions

    PubMed Central

    2014-01-01

    Background The huge amount of biomedical-molecular data increasingly produced is providing scientists with potentially valuable information. Yet, such data quantity makes difficult to find and extract those data that are most reliable and most related to the biomedical questions to be answered, which are increasingly complex and often involve many different biomedical-molecular aspects. Such questions can be addressed only by comprehensively searching and exploring different types of data, which frequently are ordered and provided by different data sources. Search Computing has been proposed for the management and integration of ranked results from heterogeneous search services. Here, we present its novel application to the explorative search of distributed biomedical-molecular data and the integration of the search results to answer complex biomedical questions. Results A set of available bioinformatics search services has been modelled and registered in the Search Computing framework, and a Bioinformatics Search Computing application (Bio-SeCo) using such services has been created and made publicly available at http://www.bioinformatics.deib.polimi.it/bio-seco/seco/. It offers an integrated environment which eases search, exploration and ranking-aware combination of heterogeneous data provided by the available registered services, and supplies global results that can support answering complex multi-topic biomedical questions. Conclusions By using Bio-SeCo, scientists can explore the very large and very heterogeneous biomedical-molecular data available. They can easily make different explorative search attempts, inspect obtained results, select the most appropriate, expand or refine them and move forward and backward in the construction of a global complex biomedical query on multiple distributed sources that could eventually find the most relevant results. Thus, it provides an extremely useful automated support for exploratory integrated bio search, which is fundamental for Life Science data driven knowledge discovery. PMID:24564278

  5. An ESA roadmap for geobiology in space exploration

    NASA Astrophysics Data System (ADS)

    Cousins, Claire R.; Cockell, Charles S.

    2016-01-01

    Geobiology, and in particular mineral-microbe interactions, has a significant role to play in current and future space exploration. This includes the search for biosignatures in extraterrestrial environments, and the human exploration of space. Microorganisms can be exploited to advance such exploration, such as through biomining, maintenance of life-support systems, and testing of life-detection instrumentation. In view of these potential applications, a European Space Agency (ESA) Topical Team "Geobiology in Space Exploration" was developed to explore these applications, and identify research avenues to be investigated to support this endeavour. Through community workshops, a roadmap was produced, with which to define future research directions via a set of 15 recommendations spanning three key areas: Science, Technology, and Community. These roadmap recommendations identify the need for research into: (1) new terrestrial space-analogue environments; (2) community level microbial-mineral interactions; (3) response of biofilms to the space environment; (4) enzymatic and biochemical mineral interaction; (5) technical refinement of instrumentation for space-based microbiology experiments, including precursor flight tests; (6) integration of existing ground-based planetary simulation facilities; (7) integration of fieldsite biogeography with laboratory- and field-based research; (8) modification of existing planetary instruments for new geobiological investigations; (9) development of in situ sample preparation techniques; (10) miniaturisation of existing analytical methods, such as DNA sequencing technology; (11) new sensor technology to analyse chemical interaction in small volume samples; (12) development of reusable Lunar and Near Earth Object experimental platforms; (13) utility of Earth-based research to enable the realistic pursuit of extraterrestrial biosignatures; (14) terrestrial benefits and technological spin-off from existing and future space-based geobiology investigations; and (15) new communication avenues between space agencies and terrestrial research organisations to enable this impact to be developed.

  6. Summaries of the thematic conferences on remote sensing for exploration geology

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Thematic Conference series was initiated to address the need for concentrated discussion of particular remote sensing applications. The program is primarily concerned with the application of remote sensing to mineral and hydrocarbon exploration, with special emphasis on data integration, methodologies, and practical solutions for geologists. Some fifty invited papers are scheduled for eleven plenary sessions, formulated to address such important topics as basement tectonics and their surface expressions, spectral geology, applications for hydrocarbon exploration, and radar applications and future systems. Other invited presentations will discuss geobotanical remote sensing, mineral exploration, engineering and environmental applications, advanced image processing, and integration and mapping.

  7. Antenna Technologies for Future NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2006-01-01

    NASA s plans for the manned exploration of the moon and Mars will rely heavily on the development of a reliable communications infrastructure on the surface and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. Trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., surface relays, satellites, landers) will necessitate wide-area coverage, high gain, low mass, deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the past year, NASA Glenn Research Center has been heavily involved in the development of candidate antenna technologies with the potential for meeting these strict requirements. This technology ranges from electrically small antennas to phased array and large inflatable structures. A summary of this overall effort is provided, with particular attention being paid to small antenna designs and applications. A discussion of the Agency-wide activities of the Exploration Systems Mission Directorate (ESMD) in forthcoming NASA missions, as they pertain to the communications architecture for the lunar and Martian networks is performed, with an emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable antenna technologies which might address these requirements and help guide future technology development decisions.

  8. What do the data show? Fostering physical intuition with ClimateBits and NASA Earth Observations

    NASA Astrophysics Data System (ADS)

    Schollaert Uz, S.; Ward, K.

    2017-12-01

    Through data visualizations using global satellite imagery available in NASA Earth Observations (NEO), we explain Earth science concepts (e.g. albedo, urban heat island effect, phytoplankton). We also provide examples of ways to explore the satellite data in NEO within a new blog series. This is an ideal tool for scientists and non-scientists alike who want to quickly check satellite imagery for large scale features or patterns. NEO analysis requires no software or plug-ins; only a browser and an internet connection. You can even check imagery and perform simple analyses from your smart phone. NEO can be used to create graphics for presentations and papers or as a first step before acquiring data for more rigorous analysis. NEO has potential application to easily explore large scale environmental and climate patterns that impact operations and infrastructure. This is something we are currently exploring with end user groups.

  9. Developing mental health mobile apps: Exploring adolescents' perspectives.

    PubMed

    Kenny, Rachel; Dooley, Barbara; Fitzgerald, Amanda

    2016-06-01

    Mobile applications or 'apps' have significant potential for use in mental health interventions with adolescents. However, there is a lack of research exploring end users' needs from such technologies. The aim of this study was to explore adolescents' needs and concerns in relation to mental health mobile apps. Five focus groups were conducted with young people aged 15-16 years (N = 34, 60% male). Participants were asked about their views in relation to the use of mental health mobile technologies and were asked to give their responses to a mental health app prototype. Participants identified (1) safety, (2) engagement, (3) functionality, (4) social interaction, (5) awareness, (6) accessibility, (7) gender and (8) young people in control as important factors. Understanding end users' needs and concerns in relation to this topic will inform the future development of youth-oriented mental health apps that are acceptable to young people. © The Author(s) 2014.

  10. Exploring 'new' bioactivities of polymers at the nano-bio interface.

    PubMed

    Wang, Chunming; Dong, Lei

    2015-01-01

    A biological system is essentially an elegant assembly of polymeric nanostructures. The polymers in the body, biomacromolecules, are both building blocks and versatile messengers. We propose that non-biologically derived polymers can be potential therapeutic candidates with unique advantages. Emerging findings about polycations, polysaccharides, immobilised multivalent ligands, and biomolecular coronas provide evidence that polymers are activated at the nano-bio interface, while emphasising the current theoretical and practical challenges. Our increasing understanding of the nano-bio interface and evolving approaches to establish the therapeutic potential of polymers enable the development of polymer drugs with high specificities for broad applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Current applications of nanotechnology in dentistry: a review.

    PubMed

    Bhavikatti, Shaeesta Khaleelahmed; Bhardwaj, Smiti; Prabhuji, M L V

    2014-01-01

    With the increasing demand for advances in diagnosis and treatment modalities, nanotechnology is being considered as a groundbreaking and viable research subject. This technology, which deals with matter in nanodimensions, has widened our views of poorly understood health issues and provided novel means of diagnosis and treatment. Researchers in the field of dentistry have explored the potential of nanoparticles in existing therapeutic modalities with moderate success. The key implementations in the field of dentistry include local drug delivery agents, restorative materials, bone graft materials, and implant surface modifications. This review provides detailed insights about current developments in the field of dentistry, and discusses potential future uses of nanotechnology.

  12. Innovative uses of electronic health records and social media for public health surveillance.

    PubMed

    Eggleston, Emma M; Weitzman, Elissa R

    2014-03-01

    Electronic health records (EHRs) and social media have the potential to enrich public health surveillance of diabetes. Clinical and patient-facing data sources for diabetes surveillance are needed given its profound public health impact, opportunity for primary and secondary prevention, persistent disparities, and requirement for self-management. Initiatives to employ data from EHRs and social media for diabetes surveillance are in their infancy. With their transformative potential come practical limitations and ethical considerations. We explore applications of EHR and social media for diabetes surveillance, limitations to approaches, and steps for moving forward in this partnership between patients, health systems, and public health.

  13. Application of telluric-telluric profiling combined with magnetotelluric and self-potential methods to geothermal exploration in the Fujian Province, China

    NASA Astrophysics Data System (ADS)

    Pham, Van-Ngoc; Boyer, Danièle; Yuan, Xue Cheng; Liu, Shao Cheng

    1995-05-01

    In the Fujian Province, southeastern China, most of the hot springs emerge in fluviatile valleys and the geothermal resources are mainly medium and low temperature ones by mixing of hot water with cold superficial groundwater. The occurrence of the thermal waters is controlled by deep tectonic fractures in the bedrock where higher-temperature geothermal reservoirs of economic interest are present. The objective of this study is to detect the deeper active hydrothermal zone under a thick sedimentary cover by geoelectrical methods. In the Gui-An site, the combination of telluric-telluric profiling and magnetotelluric methods turns out very efficient to delineate more accurately the width of the deep conductive fracture zone. Moreover, the self-potential method allows us to localize the most active geothermal zone by electrofiltration processes above a convective cell of hot water which flows up from a deep source. The combined results constitute a possible guide for deep geothermal exploration currently encountered in several geothermal regions over the world.

  14. Exploring biological effects of MoS2 nanosheets on native structures of α-helical peptides

    NASA Astrophysics Data System (ADS)

    Gu, Zonglin; Li, Weifeng; Hong, Linbi; Zhou, Ruhong

    2016-05-01

    Recent reports of mono- and few-layer molybdenum disulfide (MoS2), a representative transition metal dichacogenide (TMD), as antibacterial and anticancer agents have shed light on their potential in biomedical applications. To better facilitate these promising applications, one needs to understand the biological effects of these TMDs as well, such as their potential adverse effects on protein structure and function. Here, we sought to understand the interaction of MoS2 nanosheets with peptides using molecular dynamics simulations and a simple model polyalanine with various lengths (PAn, n = 10, 20, 30, and 40; mainly α - helices). Our results demonstrated that MoS2 monolayer has an exceptional capability to bind all peptides in a fast and strong manner. The strong attraction from the MoS2 nanosheet is more than enough to compensate the energy needed to unfold the peptide, regardless of the length, which induces drastic disruptions to the intra-peptide hydrogen bonds and subsequent secondary structures of α - helices. This universal phenomenon may point to the potential nanotoxicity of MoS2 when used in biological systems. Moreover, these results aligned well with previous findings on the potential cytotoxicity of TMD nanomaterials.

  15. Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applications

    NASA Astrophysics Data System (ADS)

    Chung, Ill-Min; Park, Inmyoung; Seung-Hyun, Kim; Thiruvengadam, Muthu; Rajakumar, Govindasamy

    2016-01-01

    Interest in "green nanotechnology" in nanoparticle biosynthesis is growing among researchers. Nanotechnologies, due to their physicochemical and biological properties, have applications in diverse fields, including drug delivery, sensors, optoelectronics, and magnetic devices. This review focuses on the green synthesis of silver nanoparticles (AgNPs) using plant sources. Green synthesis of nanoparticles is an eco-friendly approach, which should be further explored for the potential of different plants to synthesize nanoparticles. The sizes of AgNPs are in the range of 1 to 100 nm. Characterization of synthesized nanoparticles is accomplished through UV spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy. AgNPs have great potential to act as antimicrobial agents. The green synthesis of AgNPs can be efficiently applied for future engineering and medical concerns. Different types of cancers can be treated and/or controlled by phytonanotechnology. The present review provides a comprehensive survey of plant-mediated synthesis of AgNPs with specific focus on their applications, e.g., antimicrobial, antioxidant, and anticancer activities.

  16. Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity.

    PubMed

    Chung, Joon-hui; Song, Geun Cheol; Ryu, Choong-Min

    2016-04-01

    Beneficial bacteria produce diverse chemical compounds that affect the behavior of other organisms including plants. Bacterial volatile compounds (BVCs) contribute to triggering plant immunity and promoting plant growth. Previous studies investigated changes in plant physiology caused by in vitro application of the identified volatile compounds or the BVC-emitting bacteria. This review collates new information on BVC-mediated plant-bacteria airborne interactions, addresses unresolved questions about the biological relevance of BVCs, and summarizes data on recently identified BVCs that improve plant growth or protection. Recent explorations of bacterial metabolic engineering to alter BVC production using heterologous or endogenous genes are introduced. Molecular genetic approaches can expand the BVC repertoire of beneficial bacteria to target additional beneficial effects, or simply boost the production level of naturally occurring BVCs. The effects of direct BVC application in soil are reviewed and evaluated for potential large-scale field and agricultural applications. Our review of recent BVC data indicates that BVCs have great potential to serve as effective biostimulants and bioprotectants even under open-field conditions.

  17. Novel Layered Supercell Structure from Bi 2AlMnO 6 for Multifunctionalities

    DOE PAGES

    Li, Leigang; Boullay, Philippe; Lu, Ping; ...

    2017-10-02

    Layered materials, e.g., graphene and transition metal (di)chalcogenides, holding great promises in nanoscale device applications have been extensively studied in fundamental chemistry, solid state physics and materials research areas. In parallel, layered oxides (e.g., Aurivillius and Ruddlesden–Popper phases) present an attractive class of materials both because of their rich physics behind and potential device applications. In this work, we report a novel layered oxide material with self-assembled layered supercell structure consisting of two mismatch-layered sublattices of [Bi 3O 3+δ] and [MO 2] 1.84 (M = Al/Mn, simply named BAMO), i.e., alternative layered stacking of two mutually incommensurate sublattices made ofmore » a three-layer-thick Bi–O slab and a one-layer-thick Al/Mn–O octahedra slab in the out-of-plane direction. Strong room-temperature ferromagnetic and piezoelectric responses as well as anisotropic optical property have been demonstrated with great potentials in various device applications. Furthermore, the realization of the novel BAMO layered supercell structure in this work has paved an avenue toward exploring and designing new materials with multifunctionalities.« less

  18. Recent advances in the analysis of behavioural organization and interpretation as indicators of animal welfare

    PubMed Central

    Asher, Lucy; Collins, Lisa M.; Ortiz-Pelaez, Angel; Drewe, Julian A.; Nicol, Christine J.; Pfeiffer, Dirk U.

    2009-01-01

    While the incorporation of mathematical and engineering methods has greatly advanced in other areas of the life sciences, they have been under-utilized in the field of animal welfare. Exceptions are beginning to emerge and share a common motivation to quantify ‘hidden’ aspects in the structure of the behaviour of an individual, or group of animals. Such analyses have the potential to quantify behavioural markers of pain and stress and quantify abnormal behaviour objectively. This review seeks to explore the scope of such analytical methods as behavioural indicators of welfare. We outline four classes of analyses that can be used to quantify aspects of behavioural organization. The underlying principles, possible applications and limitations are described for: fractal analysis, temporal methods, social network analysis, and agent-based modelling and simulation. We hope to encourage further application of analyses of behavioural organization by highlighting potential applications in the assessment of animal welfare, and increasing awareness of the scope for the development of new mathematical methods in this area. PMID:19740922

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Leigang; Boullay, Philippe; Lu, Ping

    Layered materials, e.g., graphene and transition metal (di)chalcogenides, holding great promises in nanoscale device applications have been extensively studied in fundamental chemistry, solid state physics and materials research areas. In parallel, layered oxides (e.g., Aurivillius and Ruddlesden–Popper phases) present an attractive class of materials both because of their rich physics behind and potential device applications. In this work, we report a novel layered oxide material with self-assembled layered supercell structure consisting of two mismatch-layered sublattices of [Bi 3O 3+δ] and [MO 2] 1.84 (M = Al/Mn, simply named BAMO), i.e., alternative layered stacking of two mutually incommensurate sublattices made ofmore » a three-layer-thick Bi–O slab and a one-layer-thick Al/Mn–O octahedra slab in the out-of-plane direction. Strong room-temperature ferromagnetic and piezoelectric responses as well as anisotropic optical property have been demonstrated with great potentials in various device applications. Furthermore, the realization of the novel BAMO layered supercell structure in this work has paved an avenue toward exploring and designing new materials with multifunctionalities.« less

  20. Application of Emulsified Zero-Valent Iron to Marine Environments

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline W.; Brooks, Kathleen B.; Geiger, Cherie L.; Clausen, Christian A.; Milum, Kristen M.

    2006-01-01

    Contamination of marine waters and sediments with heavy metals and dense non-aqueous phase liquids (DNAPLs) including chlorinated solvents, pesticides and PCBs pose ecological and human health risks through the potential of the contaminant to bioaccumulate in fish, shellfish and avian populations. The contaminants enter marine environments through improper disposal techniques and storm water runoff. Current remediation technologies for application to marine environments include costly dredging and off-site treatment of the contaminated media. Emulsified zero-valent iron (EZVI) has been proven to effectively degrade dissolved-phase and DNAPL-phase contaminants in freshwater environments on both the laboratory and field-scale level. Emulsified Zero-Valent Metal (EZVM) using metals such as iron and/or magnesium have been shown in the laboratory and on the bench scale to be effective at removing metals contamination in freshwater environments. The application to marine environments, however, is only just being explored. This paper discusses. the potential use of EZVI or EZVM in brackish and saltwater environments, with supporting laboratory data detailing its effectiveness on trichloroethylene, lead, copper, nickel and cadmium.

  1. Engineering ellipsoidal cap-like hydrogel particles as building blocks or sacrificial templates for three-dimensional cell culture.

    PubMed

    Zhang, Weiwei; Huang, Guoyou; Ng, Kelvin; Ji, Yuan; Gao, Bin; Huang, Liqing; Zhou, Jinxiong; Lu, Tian Jian; Xu, Feng

    2018-03-26

    Hydrogel particles that can be engineered to compartmentally culture cells in a three-dimensional (3D) and high-throughput manner have attracted increasing interest in the biomedical area. However, the ability to generate hydrogel particles with specially designed structures and their potential biomedical applications need to be further explored. This work introduces a method for fabricating hydrogel particles in an ellipsoidal cap-like shape (i.e., ellipsoidal cap-like hydrogel particles) by employing an open-pore anodic aluminum oxide membrane. Hydrogel particles of different sizes are fabricated. The ability to produce ellipsoidal cap-like magnetic hydrogel particles with controlled distribution of magnetic nanoparticles is demonstrated. Encapsulated cells show high viability, indicating the potential for using these hydrogel particles as structure- and remote-controllable building blocks for tissue engineering application. Moreover, the hydrogel particles are also used as sacrificial templates for fabricating ellipsoidal cap-like concave wells, which are further applied for producing size controllable cell aggregates. The results are beneficial for the development of hydrogel particles and their applications in 3D cell culture.

  2. First-principles study of electronic and optical properties of lead-free double perovskites Cs2NaBX6 (B = Sb, Bi; X = Cl, Br, I)

    NASA Astrophysics Data System (ADS)

    Zhao, Shuai; Yamamoto, Kumiko; Iikubo, Satoshi; Hayase, Shuzi; Ma, Tingli

    2018-06-01

    Organolead halide perovskite is regarded as the most promising light-harvesting material for next-generation solar cells; however, the intrinsic instability and toxicity of lead are still of great concern. Bismuth is ecofriendly and has electronic properties similar to those of lead, which has gradually attracted interest for optoelectronic applications. However, the valence state of bismuth is different from that of lead, eliminating the possibility of replacing lead by bismuth in organolead halide perovskites. To address this matter, one feasible strategy is to construct B-site double perovskites by the combination of Bi3+ and B+ in 1:1 ratio. In this work, lead-free halide double perovskites of the form Cs2NaBX6 (B = Sb, Bi; X = Cl, Br, I) were investigated by first-principles calculations. The electronic properties, optical absorption coefficients, and thermodynamic stability of these compounds were investigated to ascertain their potential application in solar energy conversion. The results provide theoretical support for the exploration of lead-free perovskite materials in potential optoelectronic applications.

  3. Efficient numerical modeling of the cornea, and applications

    NASA Astrophysics Data System (ADS)

    Gonzalez, L.; Navarro, Rafael M.; Hdez-Matamoros, J. L.

    2004-10-01

    Corneal topography has shown to be an essential tool in the ophthalmology clinic both in diagnosis and custom treatments (refractive surgery, keratoplastia), having also a strong potential in optometry. The post processing and analysis of corneal elevation, or local curvature data, is a necessary step to refine the data and also to extract relevant information for the clinician. In this context a parametric cornea model is proposed consisting of a surface described mathematically by two terms: one general ellipsoid corresponding to a regular base surface, expressed by a general quadric term located at an arbitrary position and free orientation in 3D space and a second term, described by a Zernike polynomial expansion, which accounts for irregularities and departures from the basic geometry. The model has been validated obtaining better adjustment of experimental data than other previous models. Among other potential applications, here we present the determination of the optical axis of the cornea by transforming the general quadric to its canonical form. This has permitted us to perform 3D registration of corneal topographical maps to improve the signal-to-noise ratio. Other basic and clinical applications are also explored.

  4. The National Aeronautics and Space Administration's Earth Science Applications Program: Exploring Partnerships to Enhance Decision Making in Public Health Practice

    NASA Technical Reports Server (NTRS)

    Vann, Timi S.; Venezia, Robert A.

    2002-01-01

    The National Aeronautics and Space Administration (NASA), Earth Science Enterprise is engaged in applications of NASA Earth science and remote sensing technologies for public health. Efforts are focused on establishing partnerships with those agencies and organizations that have responsibility for protecting the Nation's Health. The program's goal is the integration of NASA's advanced data and technology for enhanced decision support in the areas of disease surveillance and environmental health. A focused applications program, based on understanding partner issues and requirements, has the potential to significantly contribute to more informed decision making in public health practice. This paper intends to provide background information on NASA's investment in public health and is a call for partnership with the larger practice community.

  5. Applicability of ERTS to Antarctic iceberg resources. [harvesting icebergs for fresh water

    NASA Technical Reports Server (NTRS)

    Hult, J. L.; Ostrander, N. C.

    1974-01-01

    This investigation explores the applicability of ERTS to: (1) determine the Antarctic sea ice and environmental behavior that may influence the harvesting of icebergs, and (2) monitor iceberg locations, characteristics, and evolution. Imagery sampling in the western Antarctic between the Peninsula and the Ross Sea is used in the analysis. It is found that the potential applicability of ERTS to the research, planning, and harvesting operations can contribute importantly to the glowing promise derived from broader scope studies for the use of Antarctic icebergs to relieve a growing global thirst for fresh water. Several years of comprehensive monitoring will be necessary to characterize sea-ice and environmental behavior and iceberg evolution. Live ERTS services will assist harvesting control and claiming operations and offer a means for harmonizing entitlements to iceberg resources.

  6. Instructional Storytelling: Application of the Clinical Judgment Model in Nursing.

    PubMed

    Timbrell, Jessica

    2017-05-01

    Little is known about the teaching and learning implications of instructional storytelling (IST) in nursing education or its potential connection to nursing theory. The literature establishes storytelling as a powerful teaching-learning method in the educational, business, humanities, and health sectors, but little exploration exists that is specific to nursing. An example of a story demonstrating application of the domains of Tanner's clinical judgment model links storytelling with learning outcomes appropriate for the novice nursing student. Application of Tanner's clinical judgment model offers consistency of learning experience while preserving the creativity inherent in IST. Further research into student learning outcomes achievement using IST is warranted as a step toward establishing best practices with IST in nursing education. [J Nurs Educ. 2017;56(5):305-308.]. Copyright 2017, SLACK Incorporated.

  7. Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Minsky, M. L.; Smith, D. B. S.

    1982-01-01

    Potential applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and to their related ground support functions are explored. The specific tasks which will be required by future space projects are identified. ARAMIS options which are candidates for those space project tasks and the relative merits of these options are defined and evaluated. Promising applications of ARAMIS and specific areas for further research are identified. The ARAMIS options defined and researched by the study group span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks.

  8. Dual potential of microalgae as a sustainable biofuel feedstock and animal feed

    PubMed Central

    2013-01-01

    The rise in global population has led to explorations of alternative sources of energy and food. Because corn and soybean are staple food crops for humans, their common use as the main source of dietary energy and protein for food-producing animals directly competes with their allocation for human consumption. Alternatively, de-fatted marine microalgal biomass generated from the potential biofuel production may be a viable replacement of corn and soybean meal due to their high levels of protein, relatively well-balanced amino acid profiles, and rich contents of minerals and vitamins, along with unique bioactive compounds. Although the full-fatted (intact) microalgae represent the main source of omega-3 (n-3) polyunsaturated fatty acids including docohexaenoic acid (DHA) and eicosapentaenoic acid (EPA), the de-fatted microalgal biomass may still contain good amounts of these components for enriching DHA/EPA in eggs, meats, and milk. This review is written to highlight the necessity and potential of using the de-fatted microalgal biomass as a new generation of animal feed in helping address the global energy, food, and environmental issues. Nutritional feasibility and limitation of the biomass as the new feed ingredient for simple-stomached species are elaborated. Potential applications of the biomass for generating value-added animal products are also explored. PMID:24359607

  9. The New National Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert L.; Geveden, Rex; King, David A.

    2004-01-01

    From the Apollo landings on the Moon, to robotic surveys of the Sun and the planets, to the compelling images captured by advanced space telescopes, U.S. achievements in space have revolutionized humanity s view of the universe and have inspired Americans and people around the world. These achievements also have led to the development of technologies that have widespread applications to address problems on Earth. As the world enters the second century of powered flight, it is appropriate to articulate a new vision that will define and guide U.S. space exploration activities for the next several decades. Today, humanity has the potential to seek answers to the most fundamental questions posed about the existence of life beyond Earth. Telescopes have found planets around other stars. Robotic probes have identified potential resources on the Moon, and evidence of water - a key ingredient for life - has been found on Mars and the moons of Jupiter. Direct human experience in space has fundamentally altered our perspective of humanity and our place in the universe. Humans have the ability to respond to the unexpected developments inherent in space travel and possess unique skills that enhance discoveries. Just as Mercury, Gemini, and Apollo challenged a generation of Americans, a renewed U.S. space exploration program with a significant human component can inspire us - and our youth - to greater achievements on Earth and in space. The loss of Space Shuttles Challenger and Columbia and their crews are a stark reminder of the inherent risks of space flight and the severity of the challenges posed by space exploration. In preparation for future human exploration, we must advance our ability to live and work safely in space and, at the same time, develop the technologies to extend humanity s reach to the Moon, Mars, and beyond. The new technologies required for further space exploration also will improve the Nation s other space activities and may provide applications that could be used to address problems on Earth. Like the explorers of the past and the pioneers of flight in the last century, we cannot today identify all that we will gain from space exploration; we are confident, nonetheless, that the eventual return will be great. Like their efforts, the success of future U.S. space exploration will unfold over generations. The fundamental goal of this new national vision is to advance U.S. scientific, security, and economic interests through a robust space exploration program. In support of this goal, the United States will: 1) Implement a sustained and affordable human and robotic program to explore the solar system and beyond; 2) Extend human presence across the solar system, starting with a human return to the Moon by the year 2020, in preparation for human exploration of IMars and other destinations; 3) Develop the innovative technologies, knowledge, and infrastructures both to explore and to support decisions about the destinations for human exploration; and 4) Promote international and commercial participation in exploration to further U.S. scientific, security, and economic interests.

  10. Lignocellulosic Biomass Derived Functional Materials: Synthesis and Applications in Biomedical Engineering.

    PubMed

    Zhang, Lei; Peng, Xinwen; Zhong, Linxin; Chua, Weitian; Xiang, Zhihua; Sun, Runcang

    2017-09-18

    The pertinent issue of resources shortage arising from global climate change in the recent years has accentuated the importance of materials that are environmental friendly. Despite the merits of current material like cellulose as the most abundant natural polysaccharide on earth, the incorporation of lignocellulosic biomass has the potential to value-add the recent development of cellulose-derivatives in drug delivery systems. Lignocellulosic biomass, with a hierarchical structure, comprised of cellulose, hemicellulose and lignin. As an excellent substrate that is renewable, biodegradable, biocompatible and chemically accessible for modified materials, lignocellulosic biomass sets forth a myriad of applications. To date, materials derived from lignocellulosic biomass have been extensively explored for new technological development and applications, such as biomedical, green electronics and energy products. In this review, chemical constituents of lignocellulosic biomass are first discussed before we critically examine the potential alternatives in the field of biomedical application. In addition, the pretreatment methods for extracting cellulose, hemicellulose and lignin from lignocellulosic biomass as well as their biological applications including drug delivery, biosensor, tissue engineering etc will be reviewed. It is anticipated there will be an increasing interest and research findings in cellulose, hemicellulose and lignin from natural resources, which help provide important directions for the development in biomedical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives.

    PubMed

    Navya, P N; Daima, Hemant Kumar

    2016-01-01

    Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.

  12. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives

    NASA Astrophysics Data System (ADS)

    Navya, P. N.; Daima, Hemant Kumar

    2016-02-01

    Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.

  13. Exploiting Redundancy and Application Scalability for Cost-Effective, Time-Constrained Execution of HPC Applications on Amazon EC2

    DOE PAGES

    Marathe, Aniruddha P.; Harris, Rachel A.; Lowenthal, David K.; ...

    2015-12-17

    The use of clouds to execute high-performance computing (HPC) applications has greatly increased recently. Clouds provide several potential advantages over traditional supercomputers and in-house clusters. The most popular cloud is currently Amazon EC2, which provides fixed-cost and variable-cost, auction-based options. The auction market trades lower cost for potential interruptions that necessitate checkpointing; if the market price exceeds the bid price, a node is taken away from the user without warning. We explore techniques to maximize performance per dollar given a time constraint within which an application must complete. Specifically, we design and implement multiple techniques to reduce expected cost bymore » exploiting redundancy in the EC2 auction market. We then design an adaptive algorithm that selects a scheduling algorithm and determines the bid price. We show that our adaptive algorithm executes programs up to seven times cheaper than using the on-demand market and up to 44 percent cheaper than the best non-redundant, auction-market algorithm. We extend our adaptive algorithm to incorporate application scalability characteristics for further cost savings. In conclusion, we show that the adaptive algorithm informed with scalability characteristics of applications achieves up to 56 percent cost savings compared to the expected cost for the base adaptive algorithm run at a fixed, user-defined scale.« less

  14. Integrative intervention: a new perspective and brief review in aphasia.

    PubMed

    Marshall, Rebecca Shisler; Mohapatra, Bijoyaa

    2017-09-01

    While integrative treatment practices have become a popular treatment in different areas of study, its use in the field of aphasiology is still limited. The following paper is an attempt to address the different alternative practices that could potentially be used to remediate aphasia. A narrative review was completed regarding integrative intervention that could potentially apply to aphasia population. Through this article we have explored various treatment options for integrative health care in aphasiology. Integrative treatments including brain specific antioxidants, progesterone and estradiol therapy, nutrition, synbiotic treatment, exercise, yoga, meditation and positive mood states have demonstrated positive changes in health and behavior in healthy aging or disorders such as stroke and aphasia. Offering integrative treatment for people with aphasia allows potential for high impact gains when combined with current speech language therapeutic practices. This paper highlights the rehabilitation possibilities for aphasia therapy. Combining complementary and traditional treatment approaches could be viewed as one of the contemporary approaches to clinical practice and research for practitioners and health care systems. Implications for Rehabilitation There has been very little research that explores the potential of various types of integrative treatment for individuals with aphasia. An integrative approach to the treatment of aphasia has potential for future clinical application. Combining treatment approaches could be viewed as a viable approach to clinical practice and in the health care system.

  15. Guided exploration in virtual environments

    NASA Astrophysics Data System (ADS)

    Beckhaus, Steffi; Eckel, Gerhard; Strothotte, Thomas

    2001-06-01

    We describe an application supporting alternating interaction and animation for the purpose of exploration in a surround- screen projection-based virtual reality system. The exploration of an environment is a highly interactive and dynamic process in which the presentation of objects of interest can give the user guidance while exploring the scene. Previous systems for automatic presentation of models or scenes need either cinematographic rules, direct human interaction, framesets or precalculation (e.g. precalculation of paths to a predefined goal). We report on the development of a system that can deal with rapidly changing user interest in objects of a scene or model as well as with dynamic models and changes of the camera position introduced interactively by the user. It is implemented as a potential-field based camera data generating system. In this paper we describe the implementation of our approach in a virtual art museum on the CyberStage, our surround-screen projection-based stereoscopic display. The paradigm of guided exploration is introduced describing the freedom of the user to explore the museum autonomously. At the same time, if requested by the user, guided exploration provides just-in-time navigational support. The user controls this support by specifying the current field of interest in high-level search criteria. We also present an informal user study evaluating this approach.

  16. Revealing the optoelectronic and thermoelectric properties of the Zintl quaternary arsenides ACdGeAs{sub 2} (A = K, Rb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azam, Sikander; Khan, Saleem Ayaz; Goumri-Said, Souraya, E-mail: Souraya.Goumri-Said@chemistry.gatech.edu

    Highlights: • Zintl tetragonal phase ACdGeAs{sub 2} (A = K, Rb) are chalcopyrite and semiconductors. • Their direct band gap is suitable for PV, optolectronic and thermoelectric applications. • Combination of DFT and Boltzmann transport theory is employed. • The present arsenides are found to be covalent materials. - Abstract: Chalcopyrite semiconductors have attracted much attention due to their potential implications in photovoltaic and thermoelectric applications. First principle calculations were performed to investigate the electronic, optical and thermoelectric properties of the Zintl tetragonal phase ACdGeAs{sub 2} (A = K, Rb) using the full potential linear augmented plane wave method andmore » the Engle–Vosko GGA (EV–GGA) approximation. The present compounds are found semiconductors with direct band gap and covalent bonding character. The optical transitions are investigated via the dielectric function (real and imaginary parts) along with other related optical constants including refractive index, reflectivity and energy-loss spectrum. Combining results from DFT and Boltzmann transport theory, we reported the thermoelectric properties such as the Seebeck’s coefficient, electrical and thermal conductivity, figure of merit and power factor as function of temperatures. The present chalcopyrite Zintl quaternary arsenides deserve to be explored for their potential applications as thermoelectric materials and for photovoltaic devices.« less

  17. Light sensitivity of a one transistor-one capacitor memory cell when used as a micromirror actuator in projector applications

    NASA Astrophysics Data System (ADS)

    Huffman, James Douglas

    2001-11-01

    The most important issue facing the future business success of the Digital Micromirror Device or DMD™ produced by Texas Instruments is the cost of the actual device. As the business and consumer markets call for higher resolution displays, the array size will have to be increased to incorporate more pixels. The manufacturing costs associated with building these higher resolution displays follow an exponential relation with the number of pixels due to yield loss and reduced number of chips per silicon wafer. Each pixel is actuated by electrostatics that are provided by a memory cell that is built in the underlying silicon substrate. One way to decrease cost of the wafer is to change the memory cell architecture from a static random access configuration or SRAM to a dynamic random access configuration or DRAM. This change has the benefits of having fewer components per area and a lower metal density. This reduction in the component count and metal density has a dramatic effect on the yield of the memory array by reducing the particle sensitivity of the underlying cell. The main drawback to using a DRAM configuration in a display application is the light sensitivity of a charge storage device built in the silicon substrate. As the photons pass through the mechanical micromirrors and illuminate the DRAM cell, the effective electrostatic potential of the memory element used for the mirror actuation is reduced. This dissertation outlines the issues associated with the light sensitivity of a DRAM memory cell as the actuation element for a micromirror. The concept of charge depletion on a silicon capacitor due to recombination of photogenerated carriers is explored and experimentally verified. The effects of the reduced potential on the capacitor on the micromirror are also explored. Optical modeling is used to determine the incoming photon flux to determine the benefits of adding a charge recombination region as part of the DRAM memory cell. Several options are explored to reduce the effect of the incoming photons on the potential of the memory cell. The results will show that a 1T1C memory cell with N-type recombination regions and maximum light shielding is sufficient for a projector application.

  18. New biotechnological applications for Ashbya gossypii: Challenges and perspectives

    PubMed Central

    2017-01-01

    ABSTRACT The filamentous fungus Ashbya gossypii has long been considered a paradigm of the White Biotechnology in what concerns riboflavin production. Its industrial relevance led to the development of a significant molecular and in silico modeling toolbox for its manipulation. This, together with the increasing knowledge of its genome and metabolism has helped designing effective metabolic engineering strategies for optimizing riboflavin production, but also for developing new A. gossypii strains for novel biotechnological applications, such as production of recombinant proteins, single cell oils (SCOs), and flavour compounds. With the recent availability of its genome-scale metabolic model, the exploration of the full biotechnological potential of A. gossypii is now in the spotlight. Here, we will discuss some of the challenges that these emerging A. gossypii applications still need to overcome to become economically attractive and will present future perspectives for these and other possible biotechnological applications for A. gossypii. PMID:27791453

  19. Tuning the Luminescence Properties of Colloidal I-III-VI Semiconductor Nanocrystals for Optoelectronics and Biotechnology Applications.

    PubMed

    Zhong, Haizheng; Bai, Zelong; Zou, Bingsuo

    2012-11-01

    In the past 5 years, colloidal I-III-VI nanocrystals such as CuInS2, CuInSe2, and AgInS2 have been intensively investigated for the potential to replace commonly available colloidal nanocrystals containing toxic elements in light-emitting and solar-harvesting applications. Many researchers from different disciplines are working on developing new synthetic protocols, performing spectroscopic studies to understand the luminescence mechanisms, and exploring various applications. To achieve enhanced performance, it is very desirable to obtain high-quality materials with tunable luminescence properties. In this Perspective, we highlight the current progress on tuning the luminescence properties of I-III-VI nanocrystals, especially focusing on the advances in the synthesis, spectroscopic properties, as well as the primary applications in light-emitting devices and bioimaging techniques. Finally, we outline the challenges concerning luminescent I-III-VI NCs and list a few important research tasks in this field.

  20. Ultrasound in athletes: emerging techniques in point-of-care practice.

    PubMed

    Yim, Eugene S; Corrado, Gianmichel

    2012-01-01

    Ultrasound offers sports medicine clinicians the potential to diagnose, treat, and manage a broad spectrum of conditions afflicting athletes. This review article highlights applications of ultrasound that hold promise as point-of-care diagnostics and therapeutic tools that can be used directly by clinicians to direct real-time management of athletes. Point-of-care ultrasound has been examined most in the context of musculoskeletal disorders in athletes, with attention given to Achilles tendinopathy, patellar tendinopathy, hip and thigh pathology, elbow tendinopathy, wrist pathology, and shoulder pain. More research has focused on therapeutic applications than diagnostic, but initial evidence has been generated in both. Preliminary evidence has been published also on abdominal ultrasound for splenic enlargement in mononucleosis, cardiopulmonary processes and hydration status, deep vein thrombosis, and bone mineral density. Further research will be required to validate these applications and to explore further applications of portable ultrasound that can be used in the care of athletes.

Top