Myth-free space advocacy part I-The myth of innate exploratory and migratory urges
NASA Astrophysics Data System (ADS)
Schwartz, James S. J.
2017-08-01
This paper discusses the ;myth; that we have an innate drive to explore or to migrate into space. Three interpretations of the claim are considered. According to the ;mystical interpretation,; it is part of our ;destiny; as humans to explore and migrate into space. Such a claim has no rational basis and should play no role in rationally- or evidence-based space advocacy. According to the ;cultural interpretation,; exploration and migration are essential features of human culture and society. These are not universal features because there are cultures and societies that have not encouraged exploration and migration. Moreover, the cultures that have explored have seldom conducted exploration for its own sake. According to the ;biological interpretation; there is a psychological or genetic basis for exploration or migration. While there is limited genetic evidence for such a claim, that evidence suggests that genes associated with exploratory behavior were selected for subsequent to migration, making it unlikely that these genes played a role in causing migration. In none of these senses is it clearly true that we have an innate drive to explore or migrate into space; and even if we did it would be fallacious to argue that the existence of such a drive justified spaceflight activities.
Ko, Yanna; Butcher, Rhys; Leong, Rupert W
2014-02-07
Inflammatory bowel diseases (IBD) are idiopathic chronic diseases of the gastrointestinal tract well known to be associated with both genetic and environmental risk factors. Permissive genotypes may manifest into clinical phenotypes under certain environmental influences and these may be best studied from migratory studies. Exploring differences between first and second generation migrants may further highlight the contribution of environmental factors towards the development of IBD. There are few opportunities that have been offered so far. We aim to review the available migration studies on IBD, evaluate the known environmental factors associated with IBD, and explore modern migration patterns to identify new opportunities and candidate migrant groups in IBD migration research.
Conflicting evidence about long-distance animal navigation.
Alerstam, Thomas
2006-08-11
Because of conflicting evidence about several fundamental issues, long-distance animal navigation has yet to be satisfactorily explained. Among the unsolved problems are the nature of genetic spatial control of migration and the relationships between celestial and magnetic compass mechanisms and between different map-related cues in orientation and homing, respectively. In addition, navigation is expected to differ between animal groups depending on sensory capabilities and ecological conditions. Evaluations based on modern long-term tracking techniques of the geometry of migration routes and individual migration history, combined with behavioral experiments and exploration of the sensory and genetic mechanisms, will be crucial for understanding the spatial principles that guide animals on their global journeys.
A two-locus model of spatially varying stabilizing or directional selection on a quantitative trait
Geroldinger, Ludwig; Bürger, Reinhard
2014-01-01
The consequences of spatially varying, stabilizing or directional selection on a quantitative trait in a subdivided population are studied. A deterministic two-locus two-deme model is employed to explore the effects of migration, the degree of divergent selection, and the genetic architecture, i.e., the recombination rate and ratio of locus effects, on the maintenance of genetic variation. The possible equilibrium configurations are determined as functions of the migration rate. They depend crucially on the strength of divergent selection and the genetic architecture. The maximum migration rates are investigated below which a stable fully polymorphic equilibrium or a stable single-locus polymorphism can exist. Under stabilizing selection, but with different optima in the demes, strong recombination may facilitate the maintenance of polymorphism. However usually, and in particular with directional selection in opposite direction, the critical migration rates are maximized by a concentrated genetic architecture, i.e., by a major locus and a tightly linked minor one. Thus, complementing previous work on the evolution of genetic architectures in subdivided populations subject to diversifying selection, it is shown that concentrated architectures may aid the maintenance of polymorphism. Conditions are obtained when this is the case. Finally, the dependence of the phenotypic variance, linkage disequilibrium, and various measures of local adaptation and differentiation on the parameters is elaborated. PMID:24726489
A two-locus model of spatially varying stabilizing or directional selection on a quantitative trait.
Geroldinger, Ludwig; Bürger, Reinhard
2014-06-01
The consequences of spatially varying, stabilizing or directional selection on a quantitative trait in a subdivided population are studied. A deterministic two-locus two-deme model is employed to explore the effects of migration, the degree of divergent selection, and the genetic architecture, i.e., the recombination rate and ratio of locus effects, on the maintenance of genetic variation. The possible equilibrium configurations are determined as functions of the migration rate. They depend crucially on the strength of divergent selection and the genetic architecture. The maximum migration rates are investigated below which a stable fully polymorphic equilibrium or a stable single-locus polymorphism can exist. Under stabilizing selection, but with different optima in the demes, strong recombination may facilitate the maintenance of polymorphism. However usually, and in particular with directional selection in opposite direction, the critical migration rates are maximized by a concentrated genetic architecture, i.e., by a major locus and a tightly linked minor one. Thus, complementing previous work on the evolution of genetic architectures in subdivided populations subject to diversifying selection, it is shown that concentrated architectures may aid the maintenance of polymorphism. Conditions are obtained when this is the case. Finally, the dependence of the phenotypic variance, linkage disequilibrium, and various measures of local adaptation and differentiation on the parameters is elaborated. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Nielsen, J.L.; Turner, S.M.; Zimmerman, C.E.
2011-01-01
Acoustic and archival tags examined freshwater and marine migrations of postspawn steelhead kelts (Oncorhynchus mykiss) in the Ninilchik River, Alaska, USA. Postspawn steelhead were captured at a weir in 2002-2005. Scale analysis indicated multiple migratory life histories and spawning behaviors. Acoustic tags were implanted in 99 kelts (2002-2003), and an array of acoustic receivers calculated the average speed of outmigration, timing of saltwater entry, and duration of residency in the vicinity of the river mouth. Ocean migration data were recovered from two archival tags implanted in kelts in 2004 (one male and one female). Archival tags documented seasonal differences in maximum depth and behavior with both fish spending 97% of time at sea <6 m depth (day and night). All study fish were double tagged with passive integrated transponder (PIT) tags implanted in the body cavity. Less than 4% of PIT tags were retained in postspawn steelhead. Molecular genetics demonstrated no significant differences in genetic population structure across years or among spawning life history types, suggesting a genetically panmictic population with highly diverse life history characteristics in the Ninilchik River.
Ly, Goki; Alard, Bérénice; Laurent, Romain; Lafosse, Sophie; Toupance, Bruno; Monidarin, Chou; Diffloth, Gérard; Bourdier, Frédéric; Evrard, Olivier; Pavard, Samuel; Chaix, Raphaëlle
2018-03-01
Social organization plays a major role in shaping human population genetic diversity. In particular, matrilocal populations tend to exhibit less mitochondrial diversity than patrilocal populations, and the other way around for Y chromosome diversity. However, several studies have not replicated such findings. The objective of this study is to understand the reasons for such inconsistencies and further evaluate the influence of social organization on genetic diversity. We explored uniparental diversity patterns using mitochondrial HV1 sequences and 17 Y-linked short tandem repeats (STRs) in 12 populations (n = 619) from mainland South-East Asia exhibiting a wide range of social organizations, along with quantitative ethno-demographic information sampled at the individual level. MtDNA diversity was lower in matrilocal than in multilocal and patrilocal populations while Y chromosome diversity was similar among these social organizations. The reasons for such asymmetry at the genetic level were understood by quantifying sex-specific migration rates from our ethno-demographic data: while female migration rates varied between social organizations, male migration rates did not. This unexpected lack of difference in male migrations resulted from a higher flexibility in residence rule in patrilocal than in matrilocal populations. In addition, our data suggested an impact of clan fission process on uniparental genetic patterns. The observed lack of signature of patrilocality on Y chromosome patterns might be attributed to the higher residence flexibility in the studied patrilocal populations, thus providing a potential explanation for the apparent discrepancies between social and genetic structures. Altogether, this study highlights the need to quantify the actual residence and descent patterns to fit social to genetic structures. © 2018 Wiley Periodicals, Inc.
2013-01-01
Background When studying the genetic structure of human populations, the role of cultural factors may be difficult to ascertain due to a lack of formal models. Linguistic diversity is a typical example of such a situation. Patrilocality, on the other hand, can be integrated into a biological framework, allowing the formulation of explicit working hypotheses. The present study is based on the assumption that patrilocal traditions make the hypervariable region I of the mtDNA a valuable tool for the exploration of migratory dynamics, offering the opportunity to explore the relationships between genetic and linguistic diversity. We studied 85 Niger-Congo-speaking patrilocal populations that cover regions from Senegal to Central African Republic. A total of 4175 individuals were included in the study. Results By combining a multivariate analysis aimed at investigating the population genetic structure, with a Bayesian approach used to test models and extent of migration, we were able to detect a stepping-stone migration model as the best descriptor of gene flow across the region, with the main discontinuities corresponding to forested areas. Conclusions Our analyses highlight an aspect of the influence of habitat variation on human genetic diversity that has yet to be understood. Rather than depending simply on geographic linear distances, patterns of female genetic variation vary substantially between savannah and rainforest environments. Our findings may be explained by the effects of recent gene flow constrained by environmental factors, which superimposes on a background shaped by pre-agricultural peopling. PMID:23360301
Population Structure and Gene Flow of the Yellow Anaconda (Eunectes notaeus) in Northern Argentina
McCartney-Melstad, Evan; Waller, Tomás; Micucci, Patricio A.; Barros, Mariano; Draque, Juan; Amato, George; Mendez, Martin
2012-01-01
Yellow anacondas (Eunectes notaeus) are large, semiaquatic boid snakes found in wetland systems in South America. These snakes are commercially harvested under a sustainable management plan in Argentina, so information regarding population structuring can be helpful for determination of management units. We evaluated genetic structure and migration using partial sequences from the mitochondrial control region and mitochondrial genes cyt-b and ND4 for 183 samples collected within northern Argentina. A group of landscape features and environmental variables including several treatments of temperature and precipitation were explored as potential drivers of observed genetic patterns. We found significant population structure between most putative population comparisons and bidirectional but asymmetric migration in several cases. The configuration of rivers and wetlands was found to be significantly associated with yellow anaconda population structure (IBD), and important for gene flow, although genetic distances were not significantly correlated with the environmental variables used here. More in-depth analyses of environmental data may be needed to fully understand the importance of environmental conditions on population structure and migration. These analyses indicate that our putative populations are demographically distinct and should be treated as such in Argentina's management plan for the harvesting of yellow anacondas. PMID:22675425
Influences of history, geography, and religion on genetic structure: the Maronites in Lebanon
Haber, Marc; Platt, Daniel E; Badro, Danielle A; Xue, Yali; El-Sibai, Mirvat; Bonab, Maziar Ashrafian; Youhanna, Sonia C; Saade, Stephanie; Soria-Hernanz, David F; Royyuru, Ajay; Wells, R Spencer; Tyler-Smith, Chris; Zalloua, Pierre A; Adhikarla, Syama; Adler, Christina J; Balanovska, Elena; Balanovsky, Oleg; Bertranpetit, Jaume; Clarke, Andrew C; Comas, David; Cooper, Alan; Der Sarkissian, Clio S I; Dulik, Matthew C; Erasmus, Christoff J; Gaieski, Jill B; GaneshPrasad, ArunKumar; Haak, Wolfgang; Hobbs, Angela; Javed, Asif; Jin, Li; Kaplan, Matthew E; Li, Shilin; Martínez-Cruz, Begoña; Matisoo-Smith, Elizabeth A; Melé, Marta; Merchant, Nirav C; Mitchell, R John; Owings, Amanda C; Parida, Laxmi; Pitchappan, Ramasamy; Quintana-Murci, Lluis; Renfrew, Colin; Lacerda, Daniela R; Santos, Fabrício R; Schurr, Theodore G; Soodyall, Himla; Swamikrishnan, Pandikumar; Valampuri John, Kavitha; Santhakumari, Arun Varatharajan; Vieira, Pedro Paulo; Ziegle, Janet S
2011-01-01
Cultural expansions, including of religions, frequently leave genetic traces of differentiation and in-migration. These expansions may be driven by complex doctrinal differentiation, together with major population migrations and gene flow. The aim of this study was to explore the genetic signature of the establishment of religious communities in a region where some of the most influential religions originated, using the Y chromosome as an informative male-lineage marker. A total of 3139 samples were analyzed, including 647 Lebanese and Iranian samples newly genotyped for 28 binary markers and 19 short tandem repeats on the non-recombinant segment of the Y chromosome. Genetic organization was identified by geography and religion across Lebanon in the context of surrounding populations important in the expansions of the major sects of Lebanon, including Italy, Turkey, the Balkans, Syria, and Iran by employing principal component analysis, multidimensional scaling, and AMOVA. Timing of population differentiations was estimated using BATWING, in comparison with dates of historical religious events to determine if these differentiations could be caused by religious conversion, or rather, whether religious conversion was facilitated within already differentiated populations. Our analysis shows that the great religions in Lebanon were adopted within already distinguishable communities. Once religious affiliations were established, subsequent genetic signatures of the older differentiations were reinforced. Post-establishment differentiations are most plausibly explained by migrations of peoples seeking refuge to avoid the turmoil of major historical events. PMID:21119711
Riou, Samuel; Combreau, Olivier; Judas, Jacky; Lawrence, Mark; Al Baidani, Mohamed Saleh; Pitra, Christian
2012-01-01
The Asian houbara bustard Chlamydotis macqueenii is a partial migrant of conservation concern found in deserts of central Asia and the Middle East. In the southern part of the species range, resident populations have been greatly fragmented and reduced by sustained human pressure. In the north, birds migrate from breeding grounds between West Kazakhstan and Mongolia to wintering areas in the Middle East and south central Asia. Extensive satellite tracking has shown substantial partitioning in migration routes and wintering grounds, suggesting a longitudinal barrier to present-day gene flow among migrants. In this context, we explored genetic population structure using 17 microsatellite loci and sampling 108 individuals across the range. We identified limited but significant overall differentiation (F(CT) = 0.045), which was overwhelmingly due to the differentiation of resident Arabian populations, particularly the one from Yemen, relative to the central Asian populations. Population structure within the central Asian group was not detectable with the exception of subtle differentiation of West Kazakh birds on the western flyway, relative to eastern populations. We interpret these patterns as evidence of recent common ancestry in Asia, coupled with a longitudinal barrier to present-day gene flow along the migratory divide, which has yet to translate into genetic divergence. These results provide key parameters for a coherent conservation strategy aimed at preserving genetic diversity and migration routes.
Inferring genetic connectivity in real populations, exemplified by coastal and oceanic Atlantic cod.
Spies, Ingrid; Hauser, Lorenz; Jorde, Per Erik; Knutsen, Halvor; Punt, André E; Rogers, Lauren A; Stenseth, Nils Chr
2018-05-08
Genetic data are commonly used to estimate connectivity between putative populations, but translating them to demographic dispersal rates is complicated. Theoretical equations that infer a migration rate based on the genetic estimator F ST , such as Wright's equation, F ST ≈ 1/(4 N e m + 1), make assumptions that do not apply to most real populations. How complexities inherent to real populations affect migration was exemplified by Atlantic cod in the North Sea and Skagerrak and was examined within an age-structured model that incorporated genetic markers. Migration was determined under various scenarios by varying the number of simulated migrants until the mean simulated level of genetic differentiation matched a fixed level of genetic differentiation equal to empirical estimates. Parameters that decreased the N e / N t ratio (where N e is the effective and N t is the total population size), such as high fishing mortality and high fishing gear selectivity, increased the number of migrants required to achieve empirical levels of genetic differentiation. Higher maturity-at-age and lower selectivity increased N e / N t and decreased migration when genetic differentiation was fixed. Changes in natural mortality, fishing gear selectivity, and maturity-at-age within expected limits had a moderate effect on migration when genetic differentiation was held constant. Changes in population size had the greatest effect on the number of migrants to achieve fixed levels of F ST , particularly when genetic differentiation was low, F ST ≈ 10 -3 Highly variable migration patterns, compared with constant migration, resulted in higher variance in genetic differentiation and higher extreme values. Results are compared with and provide insight into the use of theoretical equations to estimate migration among real populations. Copyright © 2018 the Author(s). Published by PNAS.
DIM SUM: demography and individual migration simulated using a Markov chain.
Brown, Jeremy M; Savidge, Kevin; McTavish, Emily Jane B
2011-03-01
An increasing number of studies seek to infer demographic history, often jointly with genetic relationships. Despite numerous analytical methods for such data, few simulations have investigated the methods' power and robustness, especially when underlying assumptions have been violated. DIM SUM (Demography and Individual Migration Simulated Using a Markov chain) is a stand-alone Java program for the simulation of population demography and individual migration while recording ancestor-descendant relationships. It does not employ coalescent assumptions or discrete population boundaries. It is extremely flexible, allowing the user to specify border positions, reactions of organisms to borders, local and global carrying capacities, individual dispersal kernels, rates of reproduction and strategies for sampling individuals. Spatial variables may be specified using image files (e.g., as exported from gis software) and may vary through time. In combination with software for genetic marker simulation, DIM SUM will be useful for testing phylogeographic (e.g., nested clade phylogeographic analysis, coalescent-based tests and continuous-landscape frameworks) and landscape-genetic methods, specifically regarding violations of coalescent assumptions. It can also be used to explore the qualitative features of proposed demographic scenarios (e.g. regarding biological invasions) and as a pedagogical tool. DIM SUM (with user's manual) can be downloaded from http://code.google.com/p/bio-dimsum. © 2010 Blackwell Publishing Ltd.
Sznajder, Beata; Sabelis, Maurice W; Egas, Martijn
2010-07-01
Plants infested with herbivores release specific volatile compounds that are known to recruit natural enemies. The response of natural enemies to these volatiles may be either learned or genetically determined. We asked whether there is genetic variation in the response of the predatory mite Phytoseiulus persimilis to methyl salicylate (MeSa). MeSa is a volatile compound consistently produced by plants being attacked by the two-spotted spider mite, the prey of P. persimilis. We predicted that predators express genetically determined responses during long-distance migration where previously learned associations may have less value. Additionally, we asked whether these responses depend on odors from uninfested plants as a background to MeSa. To infer a genetic basis, we analyzed the variation in response to MeSa among iso-female lines of P. persimilis by using choice-tests that involved either (1) MeSa presented as a single compound or (2) MeSa with background-odor from uninfested lima bean plants. These tests were conducted for starved and satiated predators, i.e., two physiological states, one that approximates migration and another that mimics local patch exploration. We found variation among iso-female lines in the responses to MeSa, thus showing genetic variation for this behavior. The variation was more pronounced in the starved predators, thus indicating that P. persimilis relies on innate preferences when migrating. Background volatiles of uninfested plants changed the predators' responses to MeSa in a manner that depended on physiological state and iso-female line. Thus, it is possible to select for context-dependent behavioral responses of natural enemies to plant volatiles.
Sabelis, Maurice W.; Egas, Martijn
2010-01-01
Plants infested with herbivores release specific volatile compounds that are known to recruit natural enemies. The response of natural enemies to these volatiles may be either learned or genetically determined. We asked whether there is genetic variation in the response of the predatory mite Phytoseiulus persimilis to methyl salicylate (MeSa). MeSa is a volatile compound consistently produced by plants being attacked by the two-spotted spider mite, the prey of P. persimilis. We predicted that predators express genetically determined responses during long-distance migration where previously learned associations may have less value. Additionally, we asked whether these responses depend on odors from uninfested plants as a background to MeSa. To infer a genetic basis, we analyzed the variation in response to MeSa among iso-female lines of P. persimilis by using choice-tests that involved either (1) MeSa presented as a single compound or (2) MeSa with background-odor from uninfested lima bean plants. These tests were conducted for starved and satiated predators, i.e., two physiological states, one that approximates migration and another that mimics local patch exploration. We found variation among iso-female lines in the responses to MeSa, thus showing genetic variation for this behavior. The variation was more pronounced in the starved predators, thus indicating that P. persimilis relies on innate preferences when migrating. Background volatiles of uninfested plants changed the predators’ responses to MeSa in a manner that depended on physiological state and iso-female line. Thus, it is possible to select for context-dependent behavioral responses of natural enemies to plant volatiles. PMID:20574785
Schregel, Julia; Kopatz, Alexander; Eiken, Hans Geir; Swenson, Jon E; Hagen, Snorre B
2017-01-01
The degree of gene flow within and among populations, i.e. genetic population connectivity, may closely track demographic population connectivity. Alternatively, the rate of gene flow may change relative to the rate of dispersal. In this study, we explored the relationship between genetic and demographic population connectivity using the Scandinavian brown bear as model species, due to its pronounced male dispersal and female philopatry. Thus, we expected that females would shape genetic structure locally, whereas males would act as genetic mediators among regions. To test this, we used eight validated microsatellite markers on 1531 individuals sampled noninvasively during country-wide genetic population monitoring in Sweden and Norway from 2006 to 2013. First, we determined sex-specific genetic structure and substructure across the study area. Second, we compared genetic differentiation, migration/gene flow patterns, and spatial autocorrelation results between the sexes both within and among genetic clusters and geographic regions. Our results indicated that demographic connectivity was not a reliable indicator of genetic connectivity. Among regions, we found no consistent difference in long-term gene flow and estimated current migration rates between males and females. Within regions/genetic clusters, only females consistently displayed significant positive spatial autocorrelation, indicating male-biased small-scale dispersal. In one cluster, however, males showed a dispersal pattern similar to females. The Scandinavian brown bear population has experienced substantial recovery over the last decades; however, our results did not show any changes in its large-scale population structure compared to previous studies, suggesting that an increase in population size and dispersal of individuals does not necessary lead to increased genetic connectivity. Thus, we conclude that both genetic and demographic connectivity should be estimated, so as not to make false assumptions about the reality of wildlife populations.
Clemens, Benjamin J.; Wyss, Lance A.; McCoun, Rebecca; Courter, Ian; Schwabe, Lawrence; Peery, Christopher; Schreck, Carl B.; Spice, Erin K.; Docker, Margaret F.
2017-01-01
Studies using neutral loci suggest that Pacific lamprey, Entosphenus tridentatus, lack strong spatial genetic population structure. However, it is unknown whether temporal genetic population structure exists. We tested whether adult Pacific lamprey: (1) show temporal genetic population structure; and (2) migrate different distances between years. We non-lethally sampled lamprey for DNA in 2009 and 2010 and used eight microsatellite loci to test for genetic population structure. We used telemetry to record the migration behaviors of these fish. Lamprey were assignable to three moderately differentiated genetic clusters (FST = 0.16–0.24 for all pairwise comparisons): one cluster was composed of individuals from 2009, and the other two contained individuals from 2010. The FST value between years was 0.13 and between genetic clusters within 2010 was 0.20. A total of 372 (72.5%) fish were detected multiple times during their migrations. Most fish (69.9%) remained in the mainstem Willamette River; the remaining 30.1% migrated into tributaries. Eighty-two lamprey exhibited multiple back-and-forth movements among tributaries and the mainstem, which may indicate searching behaviors. All migration distances were significantly greater in 2010, when the amplitude of river discharge was greater. Our data suggest genetic structuring between and within years that may reflect different cohorts.
Visualizing spatial population structure with estimated effective migration surfaces
Petkova, Desislava; Novembre, John; Stephens, Matthew
2015-01-01
Genetic data often exhibit patterns broadly consistent with “isolation by distance” – a phenomenon where genetic similarity decays with geographic distance. In a heterogeneous habitat this may occur more quickly in some regions than others: for example, barriers to gene flow can accelerate differentiation between neighboring groups. We use the concept of “effective migration” to model the relationship between genetics and geography: in this paradigm, effective migration is low in regions where genetic similarity decays quickly. We present a method to visualize variation in effective migration across the habitat from geographically indexed genetic data. Our approach uses a population genetic model to relate effective migration rates to expected genetic dissimilarities. We illustrate its potential and limitations using simulations and data from elephant, human and A. thaliana populations. The resulting visualizations highlight important spatial features of population structure that are difficult to discern using existing methods for summarizing genetic variation. PMID:26642242
Kampuansai, Jatupol; Kutanan, Wibhu; Tassi, Francesca; Kaewgahya, Massupa; Ghirotto, Silvia; Kangwanpong, Daoroong
2017-02-01
The migration of the Tai-Kadai speaking people from southern China to northern Thailand over the past hundreds of years has revealed numerous patterns that have likely been influenced by routes, purposes and periods of time. To study the effects of different migration patterns on Tai-Kadai maternal genetic structure, mitochondrial DNA hypervariable region I sequences from the Yong and the Lue people having well-documented histories in northern Thailand were analyzed. Although the Yong and Lue people were historically close relatives who shared Xishuangbanna Dai ancestors, significant genetic differences have been observed among them. The Yong people who have been known to practice mass migration have exhibited a closer genetic affinity to their Dai ancestors than have the Lue people. Genetic heterogeneity and a sudden reduced effective population size within the Lue group is likely a direct result of the circumstances of the founder effect.
Davies, S W; Treml, E A; Kenkel, C D; Matz, M V
2015-01-01
Understanding how genetic diversity is maintained across patchy marine environments remains a fundamental problem in marine biology. The Coral Triangle, located in the Indo-West Pacific, is the centre of marine biodiversity and has been proposed as an important source of genetic diversity for remote Pacific reefs. Several studies highlight Micronesia, a scattering of hundreds of small islands situated within the North Equatorial Counter Current, as a potentially important migration corridor. To test this hypothesis, we characterized the population genetic structure of two ecologically important congeneric species of reef-building corals across greater Micronesia, from Palau to the Marshall Islands. Genetic divergences between islands followed an isolation-by-distance pattern, with Acropora hyacinthus exhibiting greater genetic divergences than A. digitifera, suggesting different migration capabilities or different effective population sizes for these closely related species. We inferred dispersal distance using a biophysical larval transport model, which explained an additional 15-21% of the observed genetic variation compared to between-island geographical distance alone. For both species, genetic divergence accumulates and genetic diversity diminishes with distance from the Coral Triangle, supporting the hypothesis that Micronesian islands act as important stepping stones connecting the central Pacific with the species-rich Coral Triangle. However, for A. hyacinthus, the species with lower genetic connectivity, immigration from the subequatorial Pacific begins to play a larger role in shaping diversity than input from the Coral Triangle. This work highlights the enormous dispersal potential of broadcast-spawning corals and identifies the biological and physical drivers that influence coral genetic diversity on a regional scale. © 2014 John Wiley & Sons Ltd.
Connectivity in a pond system influences migration and genetic structure in threespine stickleback.
Seymour, Mathew; Räsänen, Katja; Holderegger, Rolf; Kristjánsson, Bjarni K
2013-03-01
Neutral genetic structure of natural populations is primarily influenced by migration (the movement of individuals and, subsequently, their genes) and drift (the statistical chance of losing genetic diversity over time). Migration between populations is influenced by several factors, including individual behavior, physical barriers, and environmental heterogeneity among populations. However, drift is expected to be stronger in populations with low immigration rate and small effective population size. With the technological advancement in geological information systems and spatial analysis tools, landscape genetics now allows the development of realistic migration models and increased insight to important processes influencing diversity of natural populations. In this study, we investigated the relationship between landscape connectivity and genetic distance of threespine stickleback (Gasterosteus aculeatus) inhabiting a pond complex in Belgjarskógur, Northeast Iceland. We used two landscape genetic approaches (i.e., least-cost-path and isolation-by-resistance) and asked whether gene flow, as measured by genetic distance, was more strongly associated with Euclidean distance (isolation-by-distance) or with landscape connectivity provided by areas prone to flooding (as indicated by Carex sp. cover)? We found substantial genetic structure across the study area, with pairwise genetic distances among populations (DPS) ranging from 0.118 to 0.488. Genetic distances among populations were more strongly correlated with least-cost-path and isolation-by-resistance than with Euclidean distance, whereas the relative contribution of isolation-by-resistance and Euclidian distance could not be disentangled. These results indicate that migration among stickleback populations occurs via periodically flooded areas. Overall, this study highlights the importance of transient landscape elements influencing migration and genetic structure of populations at small spatial scales.
Migration in Afro-Brazilian rural communities: crossing demographic and genetic data.
Amorim, Carlos Eduardo G; Gontijo, Carolina C; Falcão-Alencar, Gabriel; Godinho, Neide M O; Toledo, Rafaela C P; Pedrosa, Maria Angélica F; Luizon, Marcelo R; Simões, Aguinaldo L; Klautau-Guimãres, Maria N; Oliveira, Silviene F
2011-08-01
Many studies have used genetic markers to understand global migration patterns of our species. However, there are only few studies of human migration on a local scale. We, therefore, researched migration dynamics in three Afro-Brazilian rural communities, using demographic data and ten Ancestry Informative Markers. In addition to the description of migration and marriage structures, we carried out genetic comparisons between the three populations, as well as between locals and migrants from each community. Genetic admixture analyses were conducted according to the gene-identity method, with Sub-Saharan Africans, Amerindians, and Europeans as parental populations. The three analyzed Afro-Brazilian rural communities consisted of 16% to 30% of migrants, most of them women. The age pyramid revealed a gap in the segment of men aged between 20 to 30 yrs. While endogamous marriages predominated, exogamous marriages were mainly patrilocal. Migration dynamics are apparently associated with matrimonial customs and other social practices of such communities. The impact of migration upon the populations' genetic composition was low but showed an increase in European alleles with a concomitant decrease in the Amerindian contribution. Admixture analysis evidenced a higher African contribution to the gene pool of the studied populations, followed by the contribution of Europeans and Amerindians, respectively.
Corona, Erik; Chen, Rong; Sikora, Martin; Morgan, Alexander A.; Patel, Chirag J.; Ramesh, Aditya; Bustamante, Carlos D.; Butte, Atul J.
2013-01-01
Genetic diversity across different human populations can enhance understanding of the genetic basis of disease. We calculated the genetic risk of 102 diseases in 1,043 unrelated individuals across 51 populations of the Human Genome Diversity Panel. We found that genetic risk for type 2 diabetes and pancreatic cancer decreased as humans migrated toward East Asia. In addition, biliary liver cirrhosis, alopecia areata, bladder cancer, inflammatory bowel disease, membranous nephropathy, systemic lupus erythematosus, systemic sclerosis, ulcerative colitis, and vitiligo have undergone genetic risk differentiation. This analysis represents a large-scale attempt to characterize genetic risk differentiation in the context of migration. We anticipate that our findings will enable detailed analysis pertaining to the driving forces behind genetic risk differentiation. PMID:23717210
Migration features of Ips typographus in the Tatra Mountains: using a genetic method
Ferenc Lakatos
2003-01-01
The genetic structure of Ips typographus populations in the Tatra Mountains was studied based on the observed differences of gene flow and migration rate. It was a highlighted question as to what extent different natural barriers influence the migration potential of the species.
USDA-ARS?s Scientific Manuscript database
Each year the oriental armyworm, Mythimna separata, undertakes a seasonal, long-distance, multigeneration roundtrip migration between Southern and Northern China. The developmental decision to migrate is facultative and controlled by environmental, physiological, hormonal, genetic, and molecular fac...
Population Genetic Analysis Infers Migration Pathways of Phytophthora ramorum in US Nurseries
Goss, Erica M.; Larsen, Meg; Chastagner, Gary A.; Givens, Donald R.; Grünwald, Niklaus J.
2009-01-01
Recently introduced, exotic plant pathogens may exhibit low genetic diversity and be limited to clonal reproduction. However, rapidly mutating molecular markers such as microsatellites can reveal genetic variation within these populations and be used to model putative migration patterns. Phytophthora ramorum is the exotic pathogen, discovered in the late 1990s, that is responsible for sudden oak death in California forests and ramorum blight of common ornamentals. The nursery trade has moved this pathogen from source populations on the West Coast to locations across the United States, thus risking introduction to other native forests. We examined the genetic diversity of P. ramorum in United States nurseries by microsatellite genotyping 279 isolates collected from 19 states between 2004 and 2007. Of the three known P. ramorum clonal lineages, the most common and genetically diverse lineage in the sample was NA1. Two eastward migration pathways were revealed in the clustering of NA1 isolates into two groups, one containing isolates from Connecticut, Oregon, and Washington and the other isolates from California and the remaining states. This finding is consistent with trace forward analyses conducted by the US Department of Agriculture's Animal and Plant Health Inspection Service. At the same time, genetic diversities in several states equaled those observed in California, Oregon, and Washington and two-thirds of multilocus genotypes exhibited limited geographic distributions, indicating that mutation was common during or subsequent to migration. Together, these data suggest that migration, rapid mutation, and genetic drift all play a role in structuring the genetic diversity of P. ramorum in US nurseries. This work demonstrates that fast-evolving genetic markers can be used to examine the evolutionary processes acting on recently introduced pathogens and to infer their putative migration patterns, thus showing promise for the application of forensics to plant pathogens. PMID:19774068
GENETIC DIVERSITY AND THE ORIGINS OF CULTURAL FRAGMENTATION
Ashraf, Quamrul; Galor, Oded
2013-01-01
Despite the importance attributed to the effects of diversity on the stability and prosperity of nations, the origins of the uneven distribution of ethnic and cultural fragmentation across countries have been underexplored. Building on the role of deeply-rooted biogeographical forces in comparative development, this research empirically demonstrates that genetic diversity, predominantly determined during the prehistoric “out of Africa” migration of humans, is an underlying cause of various existing manifestations of ethnolinguistic heterogeneity. Further exploration of this uncharted territory may revolutionize the understanding of the effects of deeply-rooted factors on economic development and the composition of human capital across the globe. PMID:25506084
Genomic diversity and phylogeography of norovirus in China.
Qiao, Niu; Ren, He; Liu, Lei
2017-10-03
Little is known about the phylogeography of norovirus (NoV) in China. In norovirus, a clear understanding for the characteristics of tree topology, migration patterns and its demographic dynamics in viral circulation are needed to identify its prevalence trends, which can help us better prepare for its epidemics as well as develop useful control strategies. The aim of this study was to explore the genetic diversity, temporal distribution, demographic dynamics and migration patterns of NoV that circulated in China. Our analysis showed that two major genogroups, GI and GII, were identified in China, in which GII.3, GII.4 and GII.17 accounted for the majority with a total proportion around 70%. Our demography inference suggested that during the long-term migration process, NoV evolved into multiple lineages and then experienced a selective sweep, which reduced its genetic diversity. The phylogeography results suggested that the norovirus may have originated form the South China (Hong Kong and Guangdong), followed by multicenter direction outbreaks across the country. From these analyses, we indicate that domestic poultry trade and frequent communications of people from different regions have all contributed to the spread of the NoV in China. Together with recent advances in phylogeographic inference, our researches also provide powerful illustrations of how coalescent-based methods can extract adequate information in molecular epidemiology.
Engel, C R; Destombe, C; Valero, M
2004-04-01
The impact of haploid-diploidy and the intertidal landscape on a fine-scale genetic structure was explored in a red seaweed Gracilaria gracilis. The pattern of genetic structure was compared in haploid and diploid stages at a microgeographic scale (< 5 km): a total of 280 haploid and 296 diploid individuals located in six discrete, scattered rock pools were genotyped using seven microsatellite loci. Contrary to the theoretical expectation of predominantly endogamous mating systems in haploid-diploid organisms, G. gracilis showed a clearly allogamous mating system. Although within-population allele frequencies were similar between haploids and diploids, genetic differentiation among haploids was more than twice that of diploids, suggesting that there may be a lag between migration and (local) breeding due to the long generation times in G. gracilis. Weak, but significant, population differentiation was detected in both haploids and diploids and varied with landscape features, and not with geographic distance. Using an assignment test, we establish that effective migration rates varied according to height on the shore. In this intertidal species, biased spore dispersal may occur during the transport of spores and gametes at low tide when small streams flow from high- to lower-shore pools. The longevity of both haploid and diploid free-living stages and the long generation times typical of G. gracilis populations may promote the observed pattern of high genetic diversity within populations relative to that among populations.
Population genetic analysis infers mMigration pathways of Phytophthora ramorum in US nurseries
Erica M. Goss; Meg Larsen; Gary A. Chastagner; Donald R. Givens; Niklaus J. Grünwald; Barbara Jane Howlett
2009-01-01
Recently introduced, exotic plant pathogens may exhibit low genetic diversity and be limited to clonal reproduction. However, rapidly mutating molecular markers such as microsatellites can reveal genetic variation within these populations and be used to model putative migration patterns. Phytophthora ramorum is the exotic pathogen, discovered in...
Human Dispersal Out of Africa: A Lasting Debate
López, Saioa; van Dorp, Lucy; Hellenthal, Garrett
2015-01-01
Unraveling the first migrations of anatomically modern humans out of Africa has invoked great interest among researchers from a wide range of disciplines. Available fossil, archeological, and climatic data offer many hypotheses, and as such genetics, with the advent of genome-wide genotyping and sequencing techniques and an increase in the availability of ancient samples, offers another important tool for testing theories relating to our own history. In this review, we report the ongoing debates regarding how and when our ancestors left Africa, how many waves of dispersal there were and what geographical routes were taken. We explore the validity of each, using current genetic literature coupled with some of the key archeological findings. PMID:27127403
The problem of estimating recent genetic connectivity in a changing world.
Samarasin, Pasan; Shuter, Brian J; Wright, Stephen I; Rodd, F Helen
2017-02-01
Accurate understanding of population connectivity is important to conservation because dispersal can play an important role in population dynamics, microevolution, and assessments of extirpation risk and population rescue. Genetic methods are increasingly used to infer population connectivity because advances in technology have made them more advantageous (e.g., cost effective) relative to ecological methods. Given the reductions in wildlife population connectivity since the Industrial Revolution and more recent drastic reductions from habitat loss, it is important to know the accuracy of and biases in genetic connectivity estimators when connectivity has declined recently. Using simulated data, we investigated the accuracy and bias of 2 common estimators of migration (movement of individuals among populations) rate. We focused on the timing of the connectivity change and the magnitude of that change on the estimates of migration by using a coalescent-based method (Migrate-n) and a disequilibrium-based method (BayesAss). Contrary to expectations, when historically high connectivity had declined recently: (i) both methods over-estimated recent migration rates; (ii) the coalescent-based method (Migrate-n) provided better estimates of recent migration rate than the disequilibrium-based method (BayesAss); (iii) the coalescent-based method did not accurately reflect long-term genetic connectivity. Overall, our results highlight the problems with comparing coalescent and disequilibrium estimates to make inferences about the effects of recent landscape change on genetic connectivity among populations. We found that contrasting these 2 estimates to make inferences about genetic-connectivity changes over time could lead to inaccurate conclusions. © 2016 Society for Conservation Biology.
Multi-Cellular Logistics of Collective Cell Migration
Yamao, Masataka; Naoki, Honda; Ishii, Shin
2011-01-01
During development, the formation of biological networks (such as organs and neuronal networks) is controlled by multicellular transportation phenomena based on cell migration. In multi-cellular systems, cellular locomotion is restricted by physical interactions with other cells in a crowded space, similar to passengers pushing others out of their way on a packed train. The motion of individual cells is intrinsically stochastic and may be viewed as a type of random walk. However, this walk takes place in a noisy environment because the cell interacts with its randomly moving neighbors. Despite this randomness and complexity, development is highly orchestrated and precisely regulated, following genetic (and even epigenetic) blueprints. Although individual cell migration has long been studied, the manner in which stochasticity affects multi-cellular transportation within the precisely controlled process of development remains largely unknown. To explore the general principles underlying multicellular migration, we focus on the migration of neural crest cells, which migrate collectively and form streams. We introduce a mechanical model of multi-cellular migration. Simulations based on the model show that the migration mode depends on the relative strengths of the noise from migratory and non-migratory cells. Strong noise from migratory cells and weak noise from surrounding cells causes “collective migration,” whereas strong noise from non-migratory cells causes “dispersive migration.” Moreover, our theoretical analyses reveal that migratory cells attract each other over long distances, even without direct mechanical contacts. This effective interaction depends on the stochasticity of the migratory and non-migratory cells. On the basis of these findings, we propose that stochastic behavior at the single-cell level works effectively and precisely to achieve collective migration in multi-cellular systems. PMID:22205934
The Evolution of Phenotypic Switching in Subdivided Populations
Carja, Oana; Liberman, Uri; Feldman, Marcus W.
2014-01-01
Stochastic switching is an example of phenotypic bet hedging, where offspring can express a phenotype different from that of their parents. Phenotypic switching is well documented in viruses, yeast, and bacteria and has been extensively studied when the selection pressures vary through time. However, there has been little work on the evolution of phenotypic switching under both spatially and temporally fluctuating selection pressures. Here we use a population genetic model to explore the interaction of temporal and spatial variation in determining the evolutionary dynamics of phenotypic switching. We find that the stable switching rate is mainly determined by the rate of environmental change and the migration rate. This stable rate is also a decreasing function of the recombination rate, although this is a weaker effect than those of either the period of environmental change or the migration rate. This study highlights the interplay of spatial and temporal environmental variability, offering new insights into how migration can influence the evolution of phenotypic switching rates, mutation rates, or other sources of phenotypic variation. PMID:24496012
Bazzi, Gaia; Ambrosini, Roberto; Caprioli, Manuela; Costanzo, Alessandra; Liechti, Felix; Gatti, Emanuele; Gianfranceschi, Luca; Podofillini, Stefano; Romano, Andrea; Romano, Maria; Scandolara, Chiara; Saino, Nicola; Rubolini, Diego
2015-01-01
Circannual rhythms often rely on endogenous seasonal photoperiodic timers involving ‘clock’ genes, and Clock gene polymorphism has been associated to variation in phenology in some bird species. In the long-distance migratory barn swallow Hirundo rustica, individuals bearing the rare Clock allele with the largest number of C-terminal polyglutamine repeats found in this species (Q8) show a delayed reproduction and moult later. We explored the association between Clock polymorphism and migration scheduling, as gauged by light-level geolocators, in two barn swallow populations (Switzerland; Po Plain, Italy). Genetic polymorphism was low: 91% of the 64 individuals tracked year-round were Q7/Q7 homozygotes. We compared the phenology of the rare genotypes with the phenotypic distribution of Q7/Q7 homozygotes within each population. In Switzerland, compared to Q7/Q7, two Q6/Q7 males departed earlier from the wintering grounds and arrived earlier to their colony in spring, while a single Q7/Q8 female was delayed for both phenophases. On the other hand, in the Po Plain, three Q6/Q7 individuals had a similar phenology compared to Q7/Q7. The Swiss data are suggestive for a role of genetic polymorphism at a candidate phenological gene in shaping migration traits, and support the idea that Clock polymorphism underlies phenological variation in birds. PMID:26197782
Genetics Home Reference: malignant migrating partial seizures of infancy
... of infancy (MMPSI) is a severe form of epilepsy that begins very early in life. Recurrent seizures ... infantile epileptic encephalopathy 14 EIEE14 malignant migrating partial epilepsy of infancy migrating partial epilepsy of infancy migrating ...
Evaluating methods to visualize patterns of genetic differentiation on a landscape.
House, Geoffrey L; Hahn, Matthew W
2018-05-01
With advances in sequencing technology, research in the field of landscape genetics can now be conducted at unprecedented spatial and genomic scales. This has been especially evident when using sequence data to visualize patterns of genetic differentiation across a landscape due to demographic history, including changes in migration. Two recent model-based visualization methods that can highlight unusual patterns of genetic differentiation across a landscape, SpaceMix and EEMS, are increasingly used. While SpaceMix's model can infer long-distance migration, EEMS' model is more sensitive to short-distance changes in genetic differentiation, and it is unclear how these differences may affect their results in various situations. Here, we compare SpaceMix and EEMS side by side using landscape genetics simulations representing different migration scenarios. While both methods excel when patterns of simulated migration closely match their underlying models, they can produce either un-intuitive or misleading results when the simulated migration patterns match their models less well, and this may be difficult to assess in empirical data sets. We also introduce unbundled principal components (un-PC), a fast, model-free method to visualize patterns of genetic differentiation by combining principal components analysis (PCA), which is already used in many landscape genetics studies, with the locations of sampled individuals. Un-PC has characteristics of both SpaceMix and EEMS and works well with simulated and empirical data. Finally, we introduce msLandscape, a collection of tools that streamline the creation of customizable landscape-scale simulations using the popular coalescent simulator ms and conversion of the simulated data for use with un-PC, SpaceMix and EEMS. © 2017 John Wiley & Sons Ltd.
Wei, Shu-Jun; Shi, Bao-Cai; Gong, Ya-Jun; Jin, Gui-Hua; Chen, Xue-Xin; Meng, Xiang-Feng
2013-01-01
The diamondback moth Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae) is one of the most destructive insect pests of cruciferous plants worldwide. Biological, ecological and genetic studies have indicated that this moth is migratory in many regions around the world. Although outbreaks of this pest occur annually in China and cause heavy damage, little is known concerning its migration. To better understand its migration pattern, we investigated the population genetic structure and demographic history of the diamondback moth by analyzing 27 geographical populations across China using four mitochondrial genes and nine microsatellite loci. The results showed that high haplotype diversity and low nucleotide diversity occurred in the diamondback moth populations, a finding that is typical for migratory species. No genetic differentiation among all populations and no correlation between genetic and geographical distance were found. However, pairwise analysis of the mitochondrial genes has indicated that populations from the southern region were more differentiated than those from the northern region. Gene flow analysis revealed that the effective number of migrants per generation into populations of the northern region is very high, whereas that into populations of the southern region is quite low. Neutrality testing, mismatch distribution and Bayesian Skyline Plot analyses based on mitochondrial genes all revealed that deviation from Hardy-Weinberg equilibrium and sudden expansion of the effective population size were present in populations from the northern region but not in those from the southern region. In conclusion, all our analyses strongly demonstrated that the diamondback moth migrates within China from the southern to northern regions with rare effective migration in the reverse direction. Our research provides a successful example of using population genetic approaches to resolve the seasonal migration of insects. PMID:23565158
Reconstructing Native American migrations from whole-genome and whole-exome data.
Gravel, Simon; Zakharia, Fouad; Moreno-Estrada, Andres; Byrnes, Jake K; Muzzio, Marina; Rodriguez-Flores, Juan L; Kenny, Eimear E; Gignoux, Christopher R; Maples, Brian K; Guiblet, Wilfried; Dutil, Julie; Via, Marc; Sandoval, Karla; Bedoya, Gabriel; Oleksyk, Taras K; Ruiz-Linares, Andres; Burchard, Esteban G; Martinez-Cruzado, Juan Carlos; Bustamante, Carlos D
2013-01-01
There is great scientific and popular interest in understanding the genetic history of populations in the Americas. We wish to understand when different regions of the continent were inhabited, where settlers came from, and how current inhabitants relate genetically to earlier populations. Recent studies unraveled parts of the genetic history of the continent using genotyping arrays and uniparental markers. The 1000 Genomes Project provides a unique opportunity for improving our understanding of population genetic history by providing over a hundred sequenced low coverage genomes and exomes from Colombian (CLM), Mexican-American (MXL), and Puerto Rican (PUR) populations. Here, we explore the genomic contributions of African, European, and especially Native American ancestry to these populations. Estimated Native American ancestry is 48% in MXL, 25% in CLM, and 13% in PUR. Native American ancestry in PUR is most closely related to populations surrounding the Orinoco River basin, confirming the Southern American ancestry of the Taíno people of the Caribbean. We present new methods to estimate the allele frequencies in the Native American fraction of the populations, and model their distribution using a demographic model for three ancestral Native American populations. These ancestral populations likely split in close succession: the most likely scenario, based on a peopling of the Americas 16 thousand years ago (kya), supports that the MXL Ancestors split 12.2kya, with a subsequent split of the ancestors to CLM and PUR 11.7kya. The model also features effective populations of 62,000 in Mexico, 8,700 in Colombia, and 1,900 in Puerto Rico. Modeling Identity-by-descent (IBD) and ancestry tract length, we show that post-contact populations also differ markedly in their effective sizes and migration patterns, with Puerto Rico showing the smallest effective size and the earlier migration from Europe. Finally, we compare IBD and ancestry assignments to find evidence for relatedness among European founders to the three populations.
Reconstructing Native American Migrations from Whole-Genome and Whole-Exome Data
Gravel, Simon; Muzzio, Marina; Rodriguez-Flores, Juan L.; Kenny, Eimear E.; Gignoux, Christopher R.; Maples, Brian K.; Guiblet, Wilfried; Dutil, Julie; Via, Marc; Sandoval, Karla; Bedoya, Gabriel; Oleksyk, Taras K.; Ruiz-Linares, Andres; Burchard, Esteban G.; Martinez-Cruzado, Juan Carlos; Bustamante, Carlos D.
2013-01-01
There is great scientific and popular interest in understanding the genetic history of populations in the Americas. We wish to understand when different regions of the continent were inhabited, where settlers came from, and how current inhabitants relate genetically to earlier populations. Recent studies unraveled parts of the genetic history of the continent using genotyping arrays and uniparental markers. The 1000 Genomes Project provides a unique opportunity for improving our understanding of population genetic history by providing over a hundred sequenced low coverage genomes and exomes from Colombian (CLM), Mexican-American (MXL), and Puerto Rican (PUR) populations. Here, we explore the genomic contributions of African, European, and especially Native American ancestry to these populations. Estimated Native American ancestry is in MXL, in CLM, and in PUR. Native American ancestry in PUR is most closely related to populations surrounding the Orinoco River basin, confirming the Southern America ancestry of the Taíno people of the Caribbean. We present new methods to estimate the allele frequencies in the Native American fraction of the populations, and model their distribution using a demographic model for three ancestral Native American populations. These ancestral populations likely split in close succession: the most likely scenario, based on a peopling of the Americas thousand years ago (kya), supports that the MXL Ancestors split kya, with a subsequent split of the ancestors to CLM and PUR kya. The model also features effective populations of in Mexico, in Colombia, and in Puerto Rico. Modeling Identity-by-descent (IBD) and ancestry tract length, we show that post-contact populations also differ markedly in their effective sizes and migration patterns, with Puerto Rico showing the smallest effective size and the earlier migration from Europe. Finally, we compare IBD and ancestry assignments to find evidence for relatedness among European founders to the three populations. PMID:24385924
Social learning of migratory performance
Mueller, Thomas; O'Hara, Robert B.; Converse, Sarah J.; Urbanek, Richard P.; Fagan, William F.
2013-01-01
Successful bird migration can depend on individual learning, social learning, and innate navigation programs. Using 8 years of data on migrating whooping cranes, we were able to partition genetic and socially learned aspects of migration. Specifically, we analyzed data from a reintroduced population wherein all birds were captive bred and artificially trained by ultralight aircraft on their first lifetime migration. For subsequent migrations, in which birds fly individually or in groups but without ultralight escort, we found evidence of long-term social learning, but no effect of genetic relatedness on migratory performance. Social learning from older birds reduced deviations from a straight-line path, with 7 years of experience yielding a 38% improvement in migratory accuracy.
Drosophila hemocyte migration: an in vivo assay for directional cell migration.
Moreira, Carolina G A; Regan, Jennifer C; Zaidman-Rémy, Anna; Jacinto, Antonio; Prag, Soren
2011-01-01
This protocol describes an in vivo assay for random and directed hemocyte migration in Drosophila. Drosophila is becoming an increasingly powerful model system for in vivo cell migration analysis, combining unique genetic tools with translucency of the embryo and pupa, which allows direct imaging and traceability of different cell types. In the assay we present here, we make use of the hemocyte response to epithelium wounding to experimentally induce a transition from random to directed migration. Time-lapse confocal microscopy of hemocyte migration in untreated conditions provides a random cell migration assay that allows identification of molecular mechanisms involved in this complex process. Upon laser-induced wounding of the thorax epithelium, a rapid chemotactic response changes hemocyte migratory behavior into a directed migration toward the wound site. This protocol provides a direct comparison of cells during both types of migration in vivo, and combined with recently developed resources such as transgenic RNAi, is ideal for forward genetic screens.
The genetic history of Peninsular Malaysia.
Norhalifah, Hanim Kamis; Syaza, Fatnin Hisham; Chambers, Geoffrey Keith; Edinur, Hisham Atan
2016-07-15
This article explores the genetic history of the various sub-populations currently living in Peninsular Malaysia. This region has received multiple waves of migrants like the Orang Asli in prehistoric times and the Chinese, Indians, Europeans and Arabs during historic times. There are three highly distinct lineages that make up the Orang Asli; Semang, Senoi and Proto-Malays. The Semang, who have 'Negrito' characteristics, represent the first human settlers in Peninsular Malaysia arriving from about 50,000ya. The Senoi later migrated from Indochina and are a mix between an Asian Neolithic population and the Semang. These Asian genomes probably came in before Austroasiatic languages arrived between 5000 and 4000years ago. Semang and Senoi both now speak Austro-Asiatic languages indicative of cultural diffusion from Senoi to Semang. In contrast, the Proto-Malays who came last to the southern part of this region speak Austronesian language and are Austronesians with some Negrito admixture. It is from this group that the contemporary Malays emerged. Here we provide an overview of the best available genetic evidences (single nucleotide polymorphisms, mitochondrial DNA, Y-chromosome, blood groups, human platelet antigen, human leukocyte antigen, human neutrophil antigen and killer-cell immunoglobulin-like receptor) supporting the complex genetic history of Peninsular Malaysia. Large scale sampling and high throughput genetic screening programmes such as those using genome-wide single nucleotide polymorphism analyses have provided insights into various ancestral and admixture genetic fractions in this region. Given the now extensive admixture present in the contemporary descendants of ancient sub-populations in Peninsular Malaysia, improved reconstruction of human migration history in this region will require new evidence from ancient DNA in well-preserved skeletons. All other aspects of the highly diverse and complex genetic makeup in Peninsular Malaysia should be considered carefully for genetic mapping of disease loci and policy formation by health authorities. Copyright © 2016 Elsevier B.V. All rights reserved.
A Genomic View of the Peopling and Population Structure of India
Majumder, Partha P.; Basu, Analabha
2015-01-01
Recent advances in molecular and statistical genetics have enabled the reconstruction of human history by studying living humans. The ability to sequence and study DNA by calibrating the rate of accumulation of changes with evolutionary time has enabled robust inferences about how humans have evolved. These data indicate that modern humans evolved in Africa about 150,000 years ago and, consistent with paleontological evidence, migrated out of Africa. And through a series of settlements, demographic expansions, and further migrations, they populated the entire world. One of the first waves of migration from Africa was into India. Subsequent, more recent, waves of migration from other parts of the world have resulted in India being a genetic melting pot. Contemporary India has a rich tapestry of cultures and ecologies. There are about 400 tribal groups and more than 4000 groups of castes and subcastes, speaking dialects of 22 recognized languages belonging to four major language families. The contemporary social structure of Indian populations is characterized by endogamy with different degrees of porosity. The social structure, possibly coupled with large ecological heterogeneity, has resulted in considerable genetic diversity and local genetic differences within India. In this essay, we provide genetic evidence of how India may have been peopled, the nature and extent of its genetic diversity, and genetic structure among the extant populations of India. PMID:25147176
Russell, Thembi; Silva, Fabio; Steele, James
2014-01-01
We use archaeological data and spatial methods to reconstruct the dispersal of farming into areas of sub-Saharan Africa now occupied by Bantu language speakers, and introduce a new large-scale radiocarbon database and a new suite of spatial modelling techniques. We also introduce a method of estimating phylogeographic relationships from archaeologically-modelled dispersal maps, with results produced in a format that enables comparison with linguistic and genetic phylogenies. Several hypotheses are explored. The ‘deep split’ hypothesis suggests that an early-branching eastern Bantu stream spread around the northern boundary of the equatorial rainforest, but recent linguistic and genetic work tends not to support this. An alternative riverine/littoral hypothesis suggests that rivers and coastlines facilitated the migration of the first farmers/horticulturalists, with some extending this to include rivers through the rainforest as conduits to East Africa. More recently, research has shown that a grassland corridor opened through the rainforest at around 3000–2500 BP, and the possible effect of this on migrating populations is also explored. Our results indicate that rivers and coasts were important dispersal corridors, but do not resolve the debate about a ‘Deep Split’. Future work should focus on improving the size, quality and geographical coverage of the archaeological 14C database; on augmenting the information base to establish descent relationships between archaeological sites and regions based on shared material cultural traits; and on refining the associated physical geographical reconstructions of changing land cover. PMID:24498213
2008-01-01
Background Due to its history, with a high number of migration events, the Mediterranean basin represents a challenging area for population genetic studies. A large number of genetic studies have been carried out in the Mediterranean area using different markers but no consensus has been reached on the genetic landscape of the Mediterranean populations. In order to further investigate the genetics of the human Mediterranean populations, we typed 894 individuals from 11 Mediterranean populations with 25 single-nucleotide polymorphisms (SNPs) located on the X-chromosome. Results A high overall homogeneity was found among the Mediterranean populations except for the population from Morocco, which seemed to differ genetically from the rest of the populations in the Mediterranean area. A very low genetic distance was found between populations in the Middle East and most of the western part of the Mediterranean Sea. A higher migration rate in females versus males was observed by comparing data from X-chromosome, mt-DNA and Y-chromosome SNPs both in the Mediterranean and a wider geographic area. Multilocus association was observed among the 25 SNPs on the X-chromosome in the populations from Ibiza and Cosenza. Conclusion Our results support both the hypothesis of (1) a reduced impact of the Neolithic Wave and more recent migration movements in NW-Africa, and (2) the importance of the Strait of Gibraltar as a geographic barrier. In contrast, the high genetic homogeneity observed in the Mediterranean area could be interpreted as the result of the Neolithic wave caused by a large demic diffusion and/or more recent migration events. A differentiated contribution of males and females to the genetic landscape of the Mediterranean area was observed with a higher migration rate in females than in males. A certain level of background linkage disequilibrium in populations in Ibiza and Cosenza could be attributed to their demographic background. PMID:18312628
Truong, C; Palmé, A E; Felber, F
2007-01-01
Mountain birch, Betula pubescens ssp. tortuosa, forms the treeline in northern Sweden. A recent shift in the range of the species associated with an elevation of the treeline is commonly attributed to climate warming. Using microsatellite markers, we explored the genetic structure of populations along an altitudinal gradient close to the treeline. Low genetic differentiation was found between populations, whereas high genetic diversity was maintained within populations. High level of gene flow compensated for possible losses of genetic diversity at higher elevations and dissipated the founding effect of newly established populations above the treeline. Spatial autocorrelation analysis showed low spatial genetic structure within populations because of extensive gene flow. At the treeline, significant genetic structure within the juvenile age class at small distances did not persist in the adult age class, indicating recent expansion of young recruits due to the warming of the climate. Finally, seedling performance above the treeline was positively correlated with parameters related to temperature. These data confirm the high migration potential of the species in response to fluctuating environmental conditions and indicate that it is now invading higher altitudes due to the recent warming of the climate.
Recent Historical Migrations Have Shaped the Gene Pool of Arabs and Berbers in North Africa
Arauna, Lara R.; Mendoza-Revilla, Javier; Mas-Sandoval, Alex; Izaabel, Hassan; Bekada, Asmahan; Benhamamouch, Soraya; Fadhlaoui-Zid, Karima; Zalloua, Pierre; Hellenthal, Garrett
2017-01-01
North Africa is characterized by its diverse cultural and linguistic groups and its genetic heterogeneity. Genomic data has shown an amalgam of components mixed since pre-Holocean times. Though no differences have been found in uniparental and classical markers between Berbers and Arabs, the two main ethnic groups in the region, the scanty genomic data available have highlighted the singularity of Berbers. We characterize the genetic heterogeneity of North African groups, focusing on the putative differences of Berbers and Arabs, and estimate migration dates. We analyze genome-wide autosomal data in five Berber and six Arab groups, and compare them to Middle Easterns, sub-Saharans, and Europeans. Haplotype-based methods show a lack of correlation between geographical and genetic populations, and a high degree of genetic heterogeneity, without strong differences between Berbers and Arabs. Berbers enclose genetically diverse groups, from isolated endogamous groups with high autochthonous component frequencies, large homozygosity runs and low effective population sizes, to admixed groups with high frequencies of sub-Saharan and Middle Eastern components. Admixture time estimates show a complex pattern of recent historical migrations, with a peak around the 7th century C.E. coincident with the Arabization of the region; sub-Saharan migrations since the 1st century B.C. in agreement with Roman slave trade; and a strong migration in the 17th century C.E., coincident with a huge impact of the trans-Atlantic and trans-Saharan trade of sub-Saharan slaves in the Modern Era. The genetic complexity found should be taken into account when selecting reference groups in population genetics and biomedical studies. PMID:27744413
Recent Historical Migrations Have Shaped the Gene Pool of Arabs and Berbers in North Africa.
Arauna, Lara R; Mendoza-Revilla, Javier; Mas-Sandoval, Alex; Izaabel, Hassan; Bekada, Asmahan; Benhamamouch, Soraya; Fadhlaoui-Zid, Karima; Zalloua, Pierre; Hellenthal, Garrett; Comas, David
2017-02-01
North Africa is characterized by its diverse cultural and linguistic groups and its genetic heterogeneity. Genomic data has shown an amalgam of components mixed since pre-Holocean times. Though no differences have been found in uniparental and classical markers between Berbers and Arabs, the two main ethnic groups in the region, the scanty genomic data available have highlighted the singularity of Berbers. We characterize the genetic heterogeneity of North African groups, focusing on the putative differences of Berbers and Arabs, and estimate migration dates. We analyze genome-wide autosomal data in five Berber and six Arab groups, and compare them to Middle Easterns, sub-Saharans, and Europeans. Haplotype-based methods show a lack of correlation between geographical and genetic populations, and a high degree of genetic heterogeneity, without strong differences between Berbers and Arabs. Berbers enclose genetically diverse groups, from isolated endogamous groups with high autochthonous component frequencies, large homozygosity runs and low effective population sizes, to admixed groups with high frequencies of sub-Saharan and Middle Eastern components. Admixture time estimates show a complex pattern of recent historical migrations, with a peak around the 7th century C.E. coincident with the Arabization of the region; sub-Saharan migrations since the 1st century B.C. in agreement with Roman slave trade; and a strong migration in the 17th century C.E., coincident with a huge impact of the trans-Atlantic and trans-Saharan trade of sub-Saharan slaves in the Modern Era. The genetic complexity found should be taken into account when selecting reference groups in population genetics and biomedical studies. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Genomic Insights into the Ancestry and Demographic History of South America
Homburger, Julian R.; Moreno-Estrada, Andrés; Gignoux, Christopher R.; Nelson, Dominic; Sanchez, Elena; Ortiz-Tello, Patricia; Pons-Estel, Bernardo A.; Acevedo-Vasquez, Eduardo; Miranda, Pedro; Langefeld, Carl D.; Gravel, Simon; Alarcón-Riquelme, Marta E.; Bustamante, Carlos D.
2015-01-01
South America has a complex demographic history shaped by multiple migration and admixture events in pre- and post-colonial times. Settled over 14,000 years ago by Native Americans, South America has experienced migrations of European and African individuals, similar to other regions in the Americas. However, the timing and magnitude of these events resulted in markedly different patterns of admixture throughout Latin America. We use genome-wide SNP data for 437 admixed individuals from 5 countries (Colombia, Ecuador, Peru, Chile, and Argentina) to explore the population structure and demographic history of South American Latinos. We combined these data with population reference panels from Africa, Asia, Europe and the Americas to perform global ancestry analysis and infer the subcontinental origin of the European and Native American ancestry components of the admixed individuals. By applying ancestry-specific PCA analyses we find that most of the European ancestry in South American Latinos is from the Iberian Peninsula; however, many individuals trace their ancestry back to Italy, especially within Argentina. We find a strong gradient in the Native American ancestry component of South American Latinos associated with country of origin and the geography of local indigenous populations. For example, Native American genomic segments in Peruvians show greater affinities with Andean indigenous peoples like Quechua and Aymara, whereas Native American haplotypes from Colombians tend to cluster with Amazonian and coastal tribes from northern South America. Using ancestry tract length analysis we modeled post-colonial South American migration history as the youngest in Latin America during European colonization (9–14 generations ago), with an additional strong pulse of European migration occurring between 3 and 9 generations ago. These genetic footprints can impact our understanding of population-level differences in biomedical traits and, thus, inform future medical genetic studies in the region. PMID:26636962
Genomic Insights into the Ancestry and Demographic History of South America.
Homburger, Julian R; Moreno-Estrada, Andrés; Gignoux, Christopher R; Nelson, Dominic; Sanchez, Elena; Ortiz-Tello, Patricia; Pons-Estel, Bernardo A; Acevedo-Vasquez, Eduardo; Miranda, Pedro; Langefeld, Carl D; Gravel, Simon; Alarcón-Riquelme, Marta E; Bustamante, Carlos D
2015-12-01
South America has a complex demographic history shaped by multiple migration and admixture events in pre- and post-colonial times. Settled over 14,000 years ago by Native Americans, South America has experienced migrations of European and African individuals, similar to other regions in the Americas. However, the timing and magnitude of these events resulted in markedly different patterns of admixture throughout Latin America. We use genome-wide SNP data for 437 admixed individuals from 5 countries (Colombia, Ecuador, Peru, Chile, and Argentina) to explore the population structure and demographic history of South American Latinos. We combined these data with population reference panels from Africa, Asia, Europe and the Americas to perform global ancestry analysis and infer the subcontinental origin of the European and Native American ancestry components of the admixed individuals. By applying ancestry-specific PCA analyses we find that most of the European ancestry in South American Latinos is from the Iberian Peninsula; however, many individuals trace their ancestry back to Italy, especially within Argentina. We find a strong gradient in the Native American ancestry component of South American Latinos associated with country of origin and the geography of local indigenous populations. For example, Native American genomic segments in Peruvians show greater affinities with Andean indigenous peoples like Quechua and Aymara, whereas Native American haplotypes from Colombians tend to cluster with Amazonian and coastal tribes from northern South America. Using ancestry tract length analysis we modeled post-colonial South American migration history as the youngest in Latin America during European colonization (9-14 generations ago), with an additional strong pulse of European migration occurring between 3 and 9 generations ago. These genetic footprints can impact our understanding of population-level differences in biomedical traits and, thus, inform future medical genetic studies in the region.
Miller, Mark P.; Mullins, Thomas D.; Parrish, John G.; Walters, Jeffrey R.; Haig, Susan M.
2012-01-01
Birds employ numerous strategies to cope with seasonal fluctuations in high-quality habitat availability. Long distance migration is a common tactic; however, partial migration is especially common among broadly distributed species. Under partial migration systems, a portion of a species migrates, whereas the remainder inhabits breeding grounds year round. In this study, we identified effects of migratory behavior variation on genetic structure and diversity of American Kestrels (Falco sparverius), a widespread partial migrant in North America. American Kestrels generally migrate; however, a resident group inhabits the southeastern United States year round. The southeastern group is designated as a separate subspecies (F. s. paulus) from the migratory group (F. s. sparverius). Using mitochondrial DNA and microsatellites from 183 and 211 individuals, respectively, we illustrate that genetic structure is stronger among nonmigratory populations, with differentiation measures ranging from 0.060 to 0.189 depending on genetic marker and analysis approach. In contrast, measures from western North American populations ranged from 0 to 0.032. These findings suggest that seasonal migratory behavior is also associated with natal and breeding dispersal tendencies. We likewise detected significantly lower genetic diversity within nonmigratory populations, reflecting the greater influence of genetic drift in small populations. We identified the signal of population expansion among nonmigratory populations, consistent with the recent establishment of higher latitude breeding locations following Pleistocene glacial retreat. Differentiation of F. s. paulus and F. s. sparverius reflected subtle differences in allele frequencies. Because migratory behavior can evolve quickly, our analyses suggest recent origins of migratory American Kestrel populations in North America.
Reconstructing Roma History from Genome-Wide Data
Moorjani, Priya; Patterson, Nick; Loh, Po-Ru; Lipson, Mark; Kisfali, Péter; Melegh, Bela I.; Bonin, Michael; Kádaši, Ľudevít; Rieß, Olaf; Berger, Bonnie; Reich, David; Melegh, Béla
2013-01-01
The Roma people, living throughout Europe and West Asia, are a diverse population linked by the Romani language and culture. Previous linguistic and genetic studies have suggested that the Roma migrated into Europe from South Asia about 1,000–1,500 years ago. Genetic inferences about Roma history have mostly focused on the Y chromosome and mitochondrial DNA. To explore what additional information can be learned from genome-wide data, we analyzed data from six Roma groups that we genotyped at hundreds of thousands of single nucleotide polymorphisms (SNPs). We estimate that the Roma harbor about 80% West Eurasian ancestry–derived from a combination of European and South Asian sources–and that the date of admixture of South Asian and European ancestry was about 850 years before present. We provide evidence for Eastern Europe being a major source of European ancestry, and North-west India being a major source of the South Asian ancestry in the Roma. By computing allele sharing as a measure of linkage disequilibrium, we estimate that the migration of Roma out of the Indian subcontinent was accompanied by a severe founder event, which appears to have been followed by a major demographic expansion after the arrival in Europe. PMID:23516520
Duryea, M C; Zamudio, K R; Brasileiro, C A
2015-01-01
The theory of island biogeography is most often studied in the context of oceanic islands where all island inhabitants are descendants from founding events involving migration from mainland source populations. Far fewer studies have considered predictions of island biogeography in the case of continental islands, where island formation typically splits continuous populations and thus vicariance also contributes to the diversity of island populations. We examined one such case on continental islands in southeastern Brazil, to determine how classic island biogeography predictions and past vicariance explain the population genetic diversity of Thoropa taophora, a frog endemic to the Atlantic Coastal Forest. We used nuclear microsatellite markers to examine the genetic diversity of coastal and island populations of this species. We found that island isolation has a role in shaping the genetic diversity of continental island species, with island populations being significantly less diverse than coastal populations. However, area of the island and distance from coast had no significant effect on genetic diversity. We also found no significant differences between migration among coastal populations and migration to and from islands. We discuss how vicariance and the effects of continued migration between coastal and island populations interact to shape evolutionary patterns on continental islands. PMID:25920672
Characterizing source-sink dynamics with genetic parentage assignments
M. Zachariah Peery; Steven R. Beissinger; Roger F. House; Martine Berube; Laurie A. Hall; Anna Sellas; Per J. Palsboll
2008-01-01
Source-sink dynamics have been suggested to characterize the population structure of many species, but the prevalence of source-sink systems in nature is uncertain because of inherent challenges in estimating migration rates among populations. Migration rates are often difficult to estimate directly with demographic methods, and indirect genetic methods are subject to...
Isolation-by-distance in landscapes: considerations for landscape genetics
van Strien, M J; Holderegger, R; Van Heck, H J
2015-01-01
In landscape genetics, isolation-by-distance (IBD) is regarded as a baseline pattern that is obtained without additional effects of landscape elements on gene flow. However, the configuration of suitable habitat patches determines deme topology, which in turn should affect rates of gene flow. IBD patterns can be characterized either by monotonically increasing pairwise genetic differentiation (for example, FST) with increasing interdeme geographic distance (case-I pattern) or by monotonically increasing pairwise genetic differentiation up to a certain geographical distance beyond which no correlation is detectable anymore (case-IV pattern). We investigated if landscape configuration influenced the rate at which a case-IV pattern changed to a case-I pattern. We also determined at what interdeme distance the highest correlation was measured between genetic differentiation and geographic distance and whether this distance corresponded to the maximum migration distance. We set up a population genetic simulation study and assessed the development of IBD patterns for several habitat configurations and maximum migration distances. We show that the rate and likelihood of the transition of case-IV to case-I FST–distance relationships was strongly influenced by habitat configuration and maximum migration distance. We also found that the maximum correlation between genetic differentiation and geographic distance was not related to the maximum migration distance and was measured across all deme pairs in a case-I pattern and, for a case-IV pattern, at the distance where the FST–distance curve flattens out. We argue that in landscape genetics, separate analyses should be performed to either assess IBD or the landscape effects on gene flow. PMID:25052412
Roads, interrupted dispersal, and genetic diversity in timber rattlesnakes.
Clark, Rulon W; Brown, William S; Stechert, Randy; Zamudio, Kelly R
2010-08-01
Anthropogenic habitat modification often creates barriers to animal movement, transforming formerly contiguous habitat into a patchwork of habitat islands with low connectivity. Roadways are a feature of most landscapes that can act as barriers or filters to migration among local populations. Even small and recently constructed roads can have a significant impact on population genetic structure of some species, but not others. We developed a research approach that combines fine-scale molecular genetics with behavioral and ecological data to understand the impacts of roads on population structure and connectivity. We used microsatellite markers to characterize genetic variation within and among populations of timber rattlesnakes (Crotalus horridus) occupying communal hibernacula (dens) in regions bisected by roadways. We examined the impact of roads on seasonal migration, genetic diversity, and gene flow among populations. Snakes in hibernacula isolated by roads had significantly lower genetic diversity and higher genetic differentiation than snakes in hibernacula in contiguous habitat. Genetic-assignment analyses revealed that interruption to seasonal migration was the mechanism underlying these patterns. Our results underscore the sizeable impact of roads on this species, despite their relatively recent construction at our study sites (7 to 10 generations of rattlesnakes), the utility of population genetics for studies of road ecology, and the need for mitigating effects of roads.
Insular Celtic population structure and genomic footprints of migration
Hellenthal, Garrett
2018-01-01
Previous studies of the genetic landscape of Ireland have suggested homogeneity, with population substructure undetectable using single-marker methods. Here we have harnessed the haplotype-based method fineSTRUCTURE in an Irish genome-wide SNP dataset, identifying 23 discrete genetic clusters which segregate with geographical provenance. Cluster diversity is pronounced in the west of Ireland but reduced in the east where older structure has been eroded by historical migrations. Accordingly, when populations from the neighbouring island of Britain are included, a west-east cline of Celtic-British ancestry is revealed along with a particularly striking correlation between haplotypes and geography across both islands. A strong relationship is revealed between subsets of Northern Irish and Scottish populations, where discordant genetic and geographic affinities reflect major migrations in recent centuries. Additionally, Irish genetic proximity of all Scottish samples likely reflects older strata of communication across the narrowest inter-island crossing. Using GLOBETROTTER we detected Irish admixture signals from Britain and Europe and estimated dates for events consistent with the historical migrations of the Norse-Vikings, the Anglo-Normans and the British Plantations. The influence of the former is greater than previously estimated from Y chromosome haplotypes. In all, we paint a new picture of the genetic landscape of Ireland, revealing structure which should be considered in the design of studies examining rare genetic variation and its association with traits. PMID:29370172
Darling, John A; Folino-Rorem, Nadine C
2009-12-01
Discerning patterns of post-establishment spread by invasive species is critically important for the design of effective management strategies and the development of appropriate theoretical models predicting spatial expansion of introduced populations. The globally invasive colonial hydrozoan Cordylophora produces propagules both sexually and vegetatively and is associated with multiple potential dispersal mechanisms, making it a promising system to investigate complex patterns of population structure generated throughout the course of rapid range expansion. Here, we explore genetic patterns associated with the spread of this taxon within the North American Great Lakes basin. We collected intensively from eight harbours in the Chicago area in order to conduct detailed investigation of local population expansion. In addition, we collected from Lakes Michigan, Erie, and Ontario, as well as Lake Cayuga in the Finger Lakes of upstate New York in order to assess genetic structure on a regional scale. Based on data from eight highly polymorphic microsatellite loci we examined the spatial extent of clonal genotypes, assessed levels of neutral genetic diversity, and explored patterns of migration and dispersal at multiple spatial scales through assessment of population level genetic differentiation (pairwise F(ST) and factorial correspondence analysis), Bayesian inference of population structure, and assignment tests on individual genotypes. Results of these analyses indicate that Cordylophora populations in this region spread predominantly through sexually produced propagules, and that while limited natural larval dispersal can drive expansion locally, regional expansion likely relies on anthropogenic dispersal vectors.
Fine-tuning the CAR spacer improves T-cell potency
Watanabe, Norihiro; Bajgain, Pradip; Sukumaran, Sujita; Ansari, Salma; Heslop, Helen E.; Rooney, Cliona M.; Brenner, Malcolm K.; Leen, Ann M.; Vera, Juan F.
2016-01-01
ABSTRACT The adoptive transfer of genetically engineered T cells expressing chimeric antigen receptors (CARs) has emerged as a transformative cancer therapy with curative potential, precipitating a wave of preclinical and clinical studies in academic centers and the private sector. Indeed, significant effort has been devoted to improving clinical benefit by incorporating accessory genes/CAR endodomains designed to enhance cellular migration, promote in vivo expansion/persistence or enhance safety by genetic programming to enable the recognition of a tumor signature. However, our efforts centered on exploring whether CAR T-cell potency could be enhanced by modifying pre-existing CAR components. We now demonstrate how molecular refinements to the CAR spacer can impact multiple biological processes including tonic signaling, cell aging, tumor localization, and antigen recognition, culminating in superior in vivo antitumor activity. PMID:28180032
The peopling of the African continent and the diaspora into the new world
Campbell, Michael C; Hirbo, Jibril B; Townsend, Jeffrey P; Tishkoff, Sarah A
2014-01-01
Africa is the birthplace of anatomically modern humans, and is the geographic origin of human migration across the globe within the last 100,000 years. The history of African populations has consisted of a number of demographic events that have influenced patterns of genetic and phenotypic variation across the continent. With the increasing amount of genomic data and corresponding developments in computational methods, researchers are able to explore long-standing evolutionary questions, expanding our understanding of human history within and outside of Africa. This review will summarize some of the recent findings regarding African demographic history, including the African Diaspora, and will briefly explore their implications for disease susceptibility in populations of African descent. PMID:25461616
Plath, M; Hauswaldt, J S; Moll, K; Tobler, M; García De León, F J; Schlupp, I; Tiedemann, R
2007-03-01
We investigated genetic differentiation and migration patterns in a small livebearing fish, Poecilia mexicana, inhabiting a sulfidic Mexican limestone cave (Cueva del Azufre). We examined fish from three different cave chambers, the sulfidic surface creek draining the cave (El Azufre) and a nearby surface creek without the toxic hydrogen sulphide (Arroyo Cristal). Using microsatellite analysis of 10 unlinked loci, we found pronounced genetic differentiation among the three major habitats: Arroyo Cristal, El Azufre and the cave. Genetic differentiation was also found within the cave between different pools. An estimation of first-generation migrants suggests that (i) migration is unidirectional, out of the cave, and (ii) migration among different cave chambers occurs to some extent. We investigated if the pattern of genetic differentiation is also reflected in a morphological trait, eye size. Relatively large eyes were found in surface habitats, small eyes in the anterior cave chambers, and the smallest eyes were detected in the innermost cave chamber (XIII). This pattern shows some congruence with a previously proposed morphocline in eye size. However, our data do not support the proposed mechanism for this morphocline, namely that it would be maintained by migration from both directions into the middle cave chambers. This would have led to an increased variance in eye size in the middle cave chambers, which we did not find. Restricted gene flow between the cave and the surface can be explained by local adaptations to extreme environmental conditions, namely H2S and absence of light. Within the cave system, habitat properties are patchy, and genetic differentiation between cave chambers despite migration could indicate local adaptation at an even smaller scale.
Ronald Schmidtling
2007-01-01
Climate has certainly changed over time, requiring genetic change or migration of forest tree species. Little is known about the location of the southern pines during the Pleistocene glaciation, which ended around 14,000 years ago. Macrofossils of spruce (Picea spp.) dating from the late Pleistocene, which are typical of climates much cooler than...
Josephson, Matthew P; Aliani, Rana; Norris, Megan L; Ochs, Matthew E; Gujar, Mahekta; Lundquist, Erik A
2017-02-01
During nervous system development, neurons and their progenitors migrate to their final destinations. In Caenorhabditis elegans, the bilateral Q neuroblasts and their descendants migrate long distances in opposite directions, despite being born in the same posterior region. QR on the right migrates anteriorly and generates the AQR neuron positioned near the head, and QL on the left migrates posteriorly, giving rise to the PQR neuron positioned near the tail. In a screen for genes required for AQR and PQR migration, we identified an allele of nfm-1, which encodes a molecule similar to vertebrate NF2/Merlin, an important tumor suppressor in humans. Mutations in NF2 lead to neurofibromatosis type II, characterized by benign tumors of glial tissues. Here we demonstrate that in C. elegans, nfm-1 is required for the ability of Q cells and their descendants to extend protrusions and to migrate, but is not required for direction of migration. Using a combination of mosaic analysis and cell-specific expression, we show that NFM-1 is required nonautonomously, possibly in muscles, to promote Q lineage migrations. We also show a genetic interaction between nfm-1 and the C. elegans Slit homolog slt-1, which encodes a conserved secreted guidance cue. Our results suggest that NFM-1 might be involved in the generation of an extracellular cue that promotes Q neuroblast protrusion and migration that acts with or in parallel to SLT-1 In vertebrates, NF2 and Slit2 interact in axon pathfinding, suggesting a conserved interaction of NF2 and Slit2 in regulating migratory events. Copyright © 2017 by the Genetics Society of America.
Chen, Jiarui; Lin, Gonghua; Qin, Wen; Yan, Jingyan; Zhang, Tongzuo; Su, Jianping
2018-05-31
Geographical barriers and distance can reduce gene exchange among animals, resulting in genetic divergence of geographically isolated populations. The habitats of Tibetan antelope (Pantholops hodgsonii) has a geographical range of approximately 1,600 km across the Qinghai-Tibet Plateau (QTP) with a series tall mountains and big rivers. However, previously studies indicated that there was little genetic differentiation among their geographically delineated populations. To better understand the genetic structure of P. hodgsonii populations, we collected 145 samples from the three major calving regions considering their various calving grounds and migration routes. We used a combination of mitochondrial sequences (Cyt b, ATPase, D-loop and COX I) to investigate the genetic structure and the evolutionary divergence of the populations. Significant, albeit weak, genetic differentiation was detected among the three geographical populations. Analysis of the genetic divergence process revealed that the animals gradually entered into a period of rapid genetic differentiation since approximately 60,000 years ago. The calving migration of P. hodgsonii cannot be the main cause of their weak genetic structure since such cannot fully homogenize the genetic pool. Instead, the geological and climatic events as well as the coupling vegetation succession process during this period have been suggested to greatly contribute to the genetic structure and the expansion of genetic diversity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Besaggio, Davide; Fuselli, Silvia; Srikummool, Metawee; Kampuansai, Jatupol; Castrì, Loredana; Tyler-Smith, Chris; Seielstad, Mark; Kangwanpong, Daoroong; Bertorelle, Giorgio
2007-01-01
Background Ethnic minorities in Northern Thailand, often referred to as Hill Tribes, are considered an ideal model to study the different genetic impact of sex-specific migration rates expected in matrilocal (women remain in their natal villages after the marriage and men move to their wife's village) and patrilocal societies (the opposite is true). Previous studies identified such differences, but little is known about the possible interaction with another cultural factor that may potentially affect genetic diversity, i.e. linguistic differences. In addition, Hill Tribes started to migrate to Thailand in the last centuries from different Northern areas, but the history of these migrations, the level of genetic legacy with their places of origin, and the possible confounding effects related to this migration history in the patterns of genetic diversity, have not been analysed yet. Using both original and published data on the Hill Tribes and several other Asian populations, we focused on all these aspects. Results Genetic variation within population at mtDNA is lower in matrilocal, compared to patrilocal, tribes. The opposite is true for Y-chromosome microsatellites within the Sino-Tibetan linguistic family, but Hmong-Mien speaking patrilocal groups have a genetic diversity very similar to the matrilocal samples. Population divergence ranges between 5% and 14% at mtDNA sequences, and between 5% and 36% at Y- chromosomes STRs, and follows the sex-specific differences expected in patrilocal and matrilocal tribes. On the average, about 2 men and 14 women, and 4 men and 4 women, are exchanged in patrilocal and matrilocal tribes every generation, respectively. Most of the Hill Tribes in Thailand seem to preserve a genetic legacy with their likely geographic origin, with children adoption probably affecting this pattern in one tribe. Conclusion Overall, the sex specific genetic signature of different postmarital habits of residence in the Hill Tribes is robust. However, specific perturbations related to linguistic differences, population specific traits, and the complex migratory history of these groups, can be identified. Additional studies in different populations are needed, especially to obtain more precise estimates of the migration parameters. PMID:17767728
Besaggio, Davide; Fuselli, Silvia; Srikummool, Metawee; Kampuansai, Jatupol; Castrì, Loredana; Tyler-Smith, Chris; Seielstad, Mark; Kangwanpong, Daoroong; Bertorelle, Giorgio
2007-08-16
Ethnic minorities in Northern Thailand, often referred to as Hill Tribes, are considered an ideal model to study the different genetic impact of sex-specific migration rates expected in matrilocal (women remain in their natal villages after the marriage and men move to their wife's village) and patrilocal societies (the opposite is true). Previous studies identified such differences, but little is known about the possible interaction with another cultural factor that may potentially affect genetic diversity, i.e. linguistic differences. In addition, Hill Tribes started to migrate to Thailand in the last centuries from different Northern areas, but the history of these migrations, the level of genetic legacy with their places of origin, and the possible confounding effects related to this migration history in the patterns of genetic diversity, have not been analysed yet. Using both original and published data on the Hill Tribes and several other Asian populations, we focused on all these aspects. Genetic variation within population at mtDNA is lower in matrilocal, compared to patrilocal, tribes. The opposite is true for Y-chromosome microsatellites within the Sino-Tibetan linguistic family, but Hmong-Mien speaking patrilocal groups have a genetic diversity very similar to the matrilocal samples. Population divergence ranges between 5% and 14% at mtDNA sequences, and between 5% and 36% at Y-chromosomes STRs, and follows the sex-specific differences expected in patrilocal and matrilocal tribes. On the average, about 2 men and 14 women, and 4 men and 4 women, are exchanged in patrilocal and matrilocal tribes every generation, respectively. Most of the Hill Tribes in Thailand seem to preserve a genetic legacy with their likely geographic origin, with children adoption probably affecting this pattern in one tribe. Overall, the sex specific genetic signature of different postmarital habits of residence in the Hill Tribes is robust. However, specific perturbations related to linguistic differences, population specific traits, and the complex migratory history of these groups, can be identified. Additional studies in different populations are needed, especially to obtain more precise estimates of the migration parameters.
Clobert, J.; Danchin, E.; Dhondt, A.A.; Nichols, J.D.
2001-01-01
The ability of species to migrate and disperse is a trait that has interested ecologists for many years. Now that so many species and ecosystems face major environmental threats from habitat fragmentation and global climate change, the ability of species to adapt to these changes by dispersing, migrating, or moving between patches of habitat can be crucial to ensuring their survival. This book provides a timely and wide-ranging overview of the study of dispersal and incorporates much of the latest research. The causes, mechanisms, and consequences of dispersal at the individual, population, species and community levels are considered. The potential of new techniques and models for studying dispersal, drawn from molecular biology and demography, is also explored. Perspectives and insights are offered from the fields of evolution, conservation biology and genetics. Throughout the book, theoretical approaches are combined with empirical data, and care has been taken to include examples from as wide a range of species as possible.
Exploration of Interstate College and Post-Graduation Migration in the United States
ERIC Educational Resources Information Center
Ishitani, Terry T.
2011-01-01
Using national data, the present study first investigated interstate college migration. Unlike existing studies of interstate college migration, this study also tracked students to college graduation to explore their post-graduation migration, such as leaving to other states after graduating from in-state institutions and returning to home states…
Pereira, Vania; Tomas, Carmen; Sanchez, Juan J; Syndercombe-Court, Denise; Amorim, António; Gusmão, Leonor; Prata, Maria João; Morling, Niels
2015-01-01
The peopling of Greenland has a complex history shaped by population migrations, isolation and genetic drift. The Greenlanders present a genetic heritage with components of European and Inuit groups; previous studies using uniparentally inherited markers in Greenlanders have reported evidence of a sex-biased, admixed genetic background. This work further explores the genetics of the Greenlanders by analysing autosomal and X-chromosomal data to obtain deeper insights into the factors that shaped the genetic diversity in Greenlanders. Fourteen Greenlandic subsamples from multiple geographical settlements were compared to assess the level of genetic substructure in the Greenlandic population. The results showed low levels of genetic diversity in all sets of the genetic markers studied, together with an increased number of X-chromosomal loci in linkage disequilibrium in relation to the Danish population. In the broader context of worldwide populations, Greenlanders are remarkably different from most populations, but they are genetically closer to some Inuit groups from Alaska. Admixture analyses identified an Inuit component in the Greenlandic population of approximately 80%. The sub-populations of Ammassalik and Nanortalik are the least diverse, presenting the lowest levels of European admixture. Isolation-by-distance analyses showed that only 16% of the genetic substructure of Greenlanders is most likely to be explained by geographic barriers. We suggest that genetic drift and a differentiated settlement history around the island explain most of the genetic substructure of the population in Greenland. PMID:24801759
Pereira, Vania; Tomas, Carmen; Sanchez, Juan J; Syndercombe-Court, Denise; Amorim, António; Gusmão, Leonor; Prata, Maria João; Morling, Niels
2015-02-01
The peopling of Greenland has a complex history shaped by population migrations, isolation and genetic drift. The Greenlanders present a genetic heritage with components of European and Inuit groups; previous studies using uniparentally inherited markers in Greenlanders have reported evidence of a sex-biased, admixed genetic background. This work further explores the genetics of the Greenlanders by analysing autosomal and X-chromosomal data to obtain deeper insights into the factors that shaped the genetic diversity in Greenlanders. Fourteen Greenlandic subsamples from multiple geographical settlements were compared to assess the level of genetic substructure in the Greenlandic population. The results showed low levels of genetic diversity in all sets of the genetic markers studied, together with an increased number of X-chromosomal loci in linkage disequilibrium in relation to the Danish population. In the broader context of worldwide populations, Greenlanders are remarkably different from most populations, but they are genetically closer to some Inuit groups from Alaska. Admixture analyses identified an Inuit component in the Greenlandic population of approximately 80%. The sub-populations of Ammassalik and Nanortalik are the least diverse, presenting the lowest levels of European admixture. Isolation-by-distance analyses showed that only 16% of the genetic substructure of Greenlanders is most likely to be explained by geographic barriers. We suggest that genetic drift and a differentiated settlement history around the island explain most of the genetic substructure of the population in Greenland.
Zhu, W-C; Sun, J-T; Dai, J; Huang, J-R; Chen, L; Hong, X-Y
2017-11-27
Athetis lepigone (Möschler) (Lepidoptera: Noctuidae) is a new outbreak pest in China. Consequently, it is unclear whether the emergence and spread of the outbreak of this pest are triggered by rapid in situ population size increases in each outbreak area, or by immigrants from a potential source area in China. In order to explore the outbreak process of this pest through a population genetics approach, we developed ten novel polymorphic expressed sequence tags (EST)-derived microsatellites. These new microsatellites had moderately high levels of polymorphism in the tested population. The number of alleles per locus ranged from 3 to 19, with an average of 8.6, and the expected heterozygosity ranged from 0.269 to 0.783. A preliminary population genetic analysis using these new microsatellites revealed a lack of population genetic structure in natural populations of A. lepigone. The estimates of recent migration rate revealed strong gene flow among populations. In conclusion, our study developed the first set of EST-microsatellite markers and shed a new light on the population genetic structure of this pest in China.
Wooding, Stephen; Ostler, Christopher; Prasad, B V Ravi; Watkins, W Scott; Sung, Sandy; Bamshad, Mike; Jorde, Lynn B
2004-08-01
Genetic, ethnographic, and historical evidence suggests that the Hindu castes have been highly endogamous for several thousand years and that, when movement between castes does occur, it typically consists of females joining castes of higher social status. However, little is known about migration rates in these populations or the extent to which migration occurs between caste groups of low, middle, and high social status. To investigate these aspects of migration, we analyzed the largest collection of genetic markers collected to date in Hindu caste populations. These data included 45 newly typed autosomal short tandem repeat polymorphisms (STRPs), 411 bp of mitochondrial DNA sequence, and 43 Y-chromosomal single-nucleotide polymorphisms that were assayed in more than 200 individuals of known caste status sampled in Andrah Pradesh, in South India. Application of recently developed likelihood-based analyses to this dataset enabled us to obtain genetically derived estimates of intercaste migration rates. STRPs indicated migration rates of 1-2% per generation between high-, middle-, and low-status caste groups. We also found support for the hypothesis that rates of gene flow differ between maternally and paternally inherited genes. Migration rates were substantially higher in maternally than in paternally inherited markers. In addition, while prevailing patterns of migration involved movement between castes of similar rank, paternally inherited markers in the low-status castes were most likely to move into high-status castes. Our findings support earlier evidence that the caste system has been a significant, long-term source of population structuring in South Indian Hindu populations, and that patterns of migration differ between males and females. Copyright 2004 Springer-Verlag
McPhee, M V; Whited, D C; Kuzishchin, K V; Stanford, J A
2014-07-01
This study explored the relationship between riverine physical complexity, as determined from remotely sensed metrics, and anadromy and genetic diversity in steelhead or rainbow trout Oncorhynchus mykiss. The proportion of anadromy (estimated fraction of individuals within a drainage that are anadromous) was correlated with riverine complexity, but this correlation appeared to be driven largely by a confounding negative relationship between drainage area and the proportion of anadromy. Genetic diversity decreased with latitude, was lower in rivers with only non-anadromous individuals and also decreased with an increasing ratio of floodplain area to total drainage area. Anadromy may be less frequent in larger drainages due to the higher cost of migration associated with reaches farther from the ocean, and the negative relationship between genetic diversity and floodplain area may be due to lower effective population size resulting from greater population fluctuations associated with higher rates of habitat turnover. Ultimately, the relationships between riverine physical complexity and migratory life history or genetic diversity probably depend on the spatial scale of analysis. © 2014 The Fisheries Society of the British Isles.
Sanaa, Adnen; Ben Abid, Samir; Boulila, Abdennacer; Messaoud, Chokri; Boussaid, Mohamed; Ben Fadhel, Najeh
2016-06-01
Ecological systems are known to exchange genetic material through animal species migration and seed dispersal for plants. Isolated plant populations have developed long distance dispersal as a means of propagation which rely on meteorological such as anemochory and hydrochory for coast, island and river bank dwelling species. Long distance dispersal by water, in particular, in the case of water current bound islands, calls for the analogy with computer networks, where each island and nearby mainland site plays the role of a network node, the water currents play the role of a transmission channel, and water borne seeds as data packets. In this paper we explore this analogy to model long distance dispersal of seeds among island and mainland populations, when traversed with water currents, in order to model and predict their future genetic diversity. The case of Pancratium maritimum L. populations in Tunisia is used as a proof of concept, where their genetic diversity is extrapolated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Laikre, L; Olsson, F; Jansson, E; Hössjer, O; Ryman, N
2016-01-01
The Scandinavian wolf population descends from only five individuals, is isolated, highly inbred and exhibits inbreeding depression. To meet international conservation goals, suggestions include managing subdivided wolf populations over Fennoscandia as a metapopulation; a genetically effective population size of Ne⩾500, in line with the widely accepted long-term genetic viability target, might be attainable with gene flow among subpopulations of Scandinavia, Finland and Russian parts of Fennoscandia. Analytical means for modeling Ne of subdivided populations under such non-idealized situations have been missing, but we recently developed new mathematical methods for exploring inbreeding dynamics and effective population size of complex metapopulations. We apply this theory to the Fennoscandian wolves using empirical estimates of demographic parameters. We suggest that the long-term conservation genetic target for metapopulations should imply that inbreeding rates in the total system and in the separate subpopulations should not exceed Δf=0.001. This implies a meta-Ne of NeMeta⩾500 and a realized effective size of each subpopulation of NeRx⩾500. With current local effective population sizes and one migrant per generation, as recommended by management guidelines, the meta-Ne that can be reached is ~250. Unidirectional gene flow from Finland to Scandinavia reduces meta-Ne to ~130. Our results indicate that both local subpopulation effective sizes and migration among subpopulations must increase substantially from current levels to meet the conservation target. Alternatively, immigration from a large (Ne⩾500) population in northwestern Russia could support the Fennoscandian metapopulation, but immigration must be substantial (5–10 effective immigrants per generation) and migration among Fennoscandian subpopulations must nevertheless increase. PMID:27328654
Soto, A; Robledo-Arnuncio, J J; González-Martínez, S C; Smouse, P E; Alía, R
2010-04-01
Quaternary climatic fluctuations have left contrasting historical footprints on the neutral genetic diversity patterns of existing populations of different tree species. We should expect the demography, and consequently the neutral genetic structure, of taxa less tolerant to particular climatic extremes to be more sensitive to long-term climate fluctuations. We explore this hypothesis here by sampling all six pine species found in the Iberian Peninsula (2464 individuals, 105 populations), using a common set of chloroplast microsatellite markers, and by looking at the association between neutral genetic diversity and species-specific climatic requirements. We found large variation in neutral genetic diversity and structure among Iberian pines, with cold-enduring mountain species (Pinus uncinata, P. sylvestris and P. nigra) showing substantially greater diversity than thermophilous taxa (P. pinea and P. halepensis). Within species, we observed a significant positive correlation between population genetic diversity and summer precipitation for some of the mountain pines. The observed pattern is consistent with the hypotheses that: (i) more thermophilous species have been subjected to stronger demographic fluctuations in the past, as a consequence of their maladaptation to recurrent glacial cold stages; and (ii) altitudinal migrations have allowed the maintenance of large effective population sizes and genetic variation in cold-tolerant species, especially in more humid regions. In the light of these results and hypotheses, we discuss some potential genetic consequences of impending climate change.
Kinnunen, Tarja K.
2014-01-01
Heparan sulfate proteoglycans (HSPGs) play critical roles in the development and adult physiology of all metazoan organisms. Most of the known molecular interactions of HSPGs are attributed to the structurally highly complex heparan sulfate (HS) glycans. However, whether a specific HSPG (such as syndecan) contains HS modifications that differ from another HSPG (such as glypican) has remained largely unresolved. Here, a neural model in C. elegans is used to demonstrate for the first time the relationship between specific HSPGs and HS modifications in a defined biological process in vivo. HSPGs are critical for the migration of hermaphrodite specific neurons (HSNs) as genetic elimination of multiple HSPGs leads to 80% defect of HSN migration. The effects of genetic elimination of HSPGs are additive, suggesting that multiple HSPGs, present in the migrating neuron and in the matrix, act in parallel to support neuron migration. Genetic analyses suggest that syndecan/sdn-1 and HS 6-O-sulfotransferase, hst-6, function in a linear signaling pathway and glypican/lon-2 and HS 2-O-sulfotransferase, hst-2, function together in a pathway that is parallel to sdn-1 and hst-6. These results suggest core protein specific HS modifications that are critical for HSN migration. In C. elegans, the core protein specificity of distinct HS modifications may be in part regulated at the level of tissue specific expression of genes encoding for HSPGs and HS modifying enzymes. Genetic analysis reveals that there is a delicate balance of HS modifications and eliminating one HS modifying enzyme in a compromised genetic background leads to significant changes in the overall phenotype. These findings are of importance with the view of HS as a critical regulator of cell signaling in normal development and disease. PMID:25054285
Impact of genetic variations in C-C chemokine receptors and ligands on infectious diseases.
Qidwai, Tabish; Khan, M Y
2016-10-01
Chemokine receptors and ligands are crucial for extensive immune response against infectious diseases such as malaria, leishmaniasis, HIV and tuberculosis and a wide variety of other diseases. Role of chemokines are evidenced in the activation and regulation of immune cell migration which is important for immune response against diseases. Outcome of disease is determined by complex interaction among pathogen, host genetic variability and surrounding milieu. Variation in expression or function of chemokines caused by genetic polymorphisms could be associated with attenuated immune responses. Exploration of chemokine genetic polymorphisms in therapeutic response, gene regulation and disease outcome is important. Infectious agents in human host alter the expression of chemokines via epigenetic alterations and thus contribute to disease pathogenesis. Although some fragmentary data are available on chemokine genetic variations and their contribution in diseases, no unequivocal conclusion has been arrived as yet. We therefore, aim to investigate the association of CCR5-CCL5 and CCR2-CCL2 genetic polymorphisms with different infectious diseases, transcriptional regulation of gene, disease severity and response to therapy. Furthermore, the role of epigenetics in genes related to chemokines and infectious disease are also discussed. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Regulators of Intestinal Epithelial Migration in Sepsis.
Meng, Mei; Klingensmith, Nathan J; Liang, Zhe; Lyons, John D; Fay, Katherine T; Chen, Ching-Wen; Ford, Mandy L; Coopersmith, Craig M
2018-02-08
The gut is a continuously renewing organ, with cell proliferation, migration and death occurring rapidly under basal conditions. Since the impact of critical illness on cell movement from crypt base to villus tip is poorly understood, the purpose of this study was to determine how sepsis alters enterocyte migration. Wild type, transgenic and knockout mice were injected with 5-bromo-2'deoxyuridine (BrdU) to label cells in S phase before and after the onset of cecal ligation and puncture and were sacrificed at pre-determined endpoints to determine distance proliferating cells migrated up the crypt-villus unit. Enterocyte migration rate was decreased from 24-96 hours following sepsis. BrdU was not detectable on villi 6 days after sham laparotomy, meaning all cells had migrated the length of the gut and been exfoliated into its lumen. However, BrdU positive cells were detectable on villi 10 days after sepsis. Multiple components of gut integrity altered enterocyte migration. Sepsis decreased crypt proliferation, which further slowed enterocyte transit as mice injected with BrdU after the onset of sepsis (decreased proliferation) had slower migration than mice injected with BrdU prior to the onset of sepsis (normal proliferation). Decreasing intestinal apoptosis via gut-specific overexpression of Bcl-2 prevented sepsis-induced slowing of enterocyte migration. In contrast, worsened intestinal hyperpermeability by genetic deletion of JAM-A increased enterocyte migration. Sepsis therefore significantly slows enterocyte migration, and intestinal proliferation, apoptosis and permeability all affect migration time, which can potentially be targeted both genetically and pharmacologically.
Genetic Diversity and Societally Important Disparities
Rosenberg, Noah A.; Kang, Jonathan T. L.
2015-01-01
The magnitude of genetic diversity within human populations varies in a way that reflects the sequence of migrations by which people spread throughout the world. Beyond its use in human evolutionary genetics, worldwide variation in genetic diversity sometimes can interact with social processes to produce differences among populations in their relationship to modern societal problems. We review the consequences of genetic diversity differences in the settings of familial identification in forensic genetic testing, match probabilities in bone marrow transplantation, and representation in genome-wide association studies of disease. In each of these three cases, the contribution of genetic diversity to social differences follows from population-genetic principles. For a fourth setting that is not similarly grounded, we reanalyze with expanded genetic data a report that genetic diversity differences influence global patterns of human economic development, finding no support for the claim. The four examples describe a limit to the importance of genetic diversity for explaining societal differences while illustrating a distinction that certain biologically based scenarios do require consideration of genetic diversity for solving problems to which populations have been differentially predisposed by the unique history of human migrations. PMID:26354973
A test of the influence of continental axes of orientation on patterns of human gene flow
Ramachandran, Sohini; Rosenberg, Noah A.
2012-01-01
The geographic distribution of genetic variation reflects trends in past population migrations, and can be used to make inferences about these migrations. It has been proposed that the east-west orientation of the Eurasian landmass facilitated the rapid spread of ancient technological innovations across Eurasia, while the north-south orientation of the Americas led to a slower diffusion of technology there. If the diffusion of technology was accompanied by gene flow, then this hypothesis predicts that genetic differentiation in the Americas along lines of longitude will be greater than that in Eurasia along lines of latitude. We use 678 microsatellite loci from 68 indigenous populations in Eurasia and the Americas to investigate the spatial axes that underlie population-genetic variation. We find that genetic differentiation increases more rapidly along lines of longitude in the Americas than along lines of latitude in Eurasia. Distance along lines of latitude explains a sizeable portion of genetic distance in Eurasia, whereas distance along lines of longitude does not explain a large proportion of Eurasian genetic variation. Genetic differentiation in the Americas occurs along both latitudinal and longitudinal axes and has a greater magnitude than corresponding differentiation in Eurasia, even when adjusting for the lower level of genetic variation in the American populations. These results support the view that continental orientation has influenced migration patterns and has played an important role in determining both the structure of human genetic variation and the distribution and spread of cultural traits. (240 words) PMID:21913175
Godbout, L.; Wood, C.C.; Withler, R.E.; Latham, S.; Nelson, R.J.; Wetzel, L.; Barnett-Johnson, R.; Grove, M.J.; Schmitt, A.K.; McKeegan, K.D.
2011-01-01
We document the recent reappearance of anadromous sockeye salmon (Oncorhynchus nerka) that were thought to have been extirpated by the construction of hydroelectric dams on the Coquitlam and Alouette rivers in British Columbia, Canada, in 1914 and 1927, respectively. Unexpected downstream migrations of juveniles during experimental water releases into both rivers in 2005 and 2006 preceded upstream return migrations of adults in 2007 and 2008. Genetic (microsatellite and mitochondrial DNA) markers and stable isotope (??34S and 87Sr/86Sr) patterns in otoliths confirm that both the juvenile downstream migrants and adult upstream migrants were progeny of nonanadromous sockeye salmon (kokanee) that inhabit Coquitlam and Alouette reservoirs. Low genetic diversity and evidence of genetic bottlenecks suggest that the kokanee populations in both reservoirs originated from relatively few anadromous individuals that residualized after downstream migration was largely prevented by the construction of dams. Once given an opportunity for upstream and downstream migration, both populations appear capable of reverting to a successful anadromous form, even after 25 generations.
Genetics Home Reference: isolated lissencephaly sequence
... This Page Dobyns WB. The clinical patterns and molecular genetics of lissencephaly and subcortical band heterotopia. Epilepsia. 2010 ... Feb 23. Review. Citation on PubMed Liu JS. Molecular genetics of neuronal migration disorders. Curr Neurol Neurosci Rep. ...
Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral.
Matz, Mikhail V; Treml, Eric A; Aglyamova, Galina V; Bay, Line K
2018-04-01
Can genetic adaptation in reef-building corals keep pace with the current rate of sea surface warming? Here we combine population genomics, biophysical modeling, and evolutionary simulations to predict future adaptation of the common coral Acropora millepora on the Great Barrier Reef (GBR). Genomics-derived migration rates were high (0.1-1% of immigrants per generation across half the latitudinal range of the GBR) and closely matched the biophysical model of larval dispersal. Both genetic and biophysical models indicated the prevalence of southward migration along the GBR that would facilitate the spread of heat-tolerant alleles to higher latitudes as the climate warms. We developed an individual-based metapopulation model of polygenic adaptation and parameterized it with population sizes and migration rates derived from the genomic analysis. We find that high migration rates do not disrupt local thermal adaptation, and that the resulting standing genetic variation should be sufficient to fuel rapid region-wide adaptation of A. millepora populations to gradual warming over the next 20-50 coral generations (100-250 years). Further adaptation based on novel mutations might also be possible, but this depends on the currently unknown genetic parameters underlying coral thermal tolerance and the rate of warming realized. Despite this capacity for adaptation, our model predicts that coral populations would become increasingly sensitive to random thermal fluctuations such as ENSO cycles or heat waves, which corresponds well with the recent increase in frequency of catastrophic coral bleaching events.
Hindrikson, Maris; Remm, Jaanus; Männil, Peep; Ozolins, Janis; Tammeleht, Egle; Saarma, Urmas
2013-01-01
Spatial genetics is a relatively new field in wildlife and conservation biology that is becoming an essential tool for unravelling the complexities of animal population processes, and for designing effective strategies for conservation and management. Conceptual and methodological developments in this field are therefore critical. Here we present two novel methodological approaches that further the analytical possibilities of STRUCTURE and DResD. Using these approaches we analyse structure and migrations in a grey wolf (Canislupus) population in north-eastern Europe. We genotyped 16 microsatellite loci in 166 individuals sampled from the wolf population in Estonia and Latvia that has been under strong and continuous hunting pressure for decades. Our analysis demonstrated that this relatively small wolf population is represented by four genetic groups. We also used a novel methodological approach that uses linear interpolation to statistically test the spatial separation of genetic groups. The new method, which is capable of using program STRUCTURE output, can be applied widely in population genetics to reveal both core areas and areas of low significance for genetic groups. We also used a recently developed spatially explicit individual-based method DResD, and applied it for the first time to microsatellite data, revealing a migration corridor and barriers, and several contact zones.
Migrating microbes: what pathogens can tell us about population movements and human evolution.
Houldcroft, Charlotte J; Ramond, Jean-Baptiste; Rifkin, Riaan F; Underdown, Simon J
2017-08-01
The biology of human migration can be observed from the co-evolutionary relationship with infectious diseases. While many pathogens are brief, unpleasant visitors to human bodies, others have the ability to become life-long human passengers. The story of a pathogen's genetic code may, therefore, provide insight into the history of its human host. The evolution and distribution of disease in Africa is of particular interest, because of the deep history of human evolution in Africa, the presence of a variety of non-human primates, and tropical reservoirs of emerging infectious diseases. This study explores which pathogens leave traces in the archaeological record, and whether there are realistic prospects that these pathogens can be recovered from sub-Saharan African archaeological contexts. Three stories are then presented of germs on a journey. The first is the story of HIV's spread on the back of colonialism and the railway networks over the last 150 years. The second involves the spread of Schistosoma mansoni, a parasite which shares its history with the trans-Atlantic slave trade and the origins of fresh-water fishing. Finally, we discuss the tantalising hints of hominin migration and interaction found in the genome of human herpes simplex virus 2. Evidence from modern African pathogen genomes can provide data on human behaviour and migration in deep time and contribute to the improvement of human quality-of-life and longevity.
Nelson, Troy C.; Doukakis, Phaedra; Lindley, Steven T.; Schreier, Andrea D.; Hightower, Joseph E.; Hildebrand, Larry R.; Whitlock, Rebecca E.; Webb, Molly A. H.
2013-01-01
Worldwide, sturgeons (Acipenseridae) are among the most endangered fishes due to habitat degradation, overfishing, and inherent life history characteristics (long life span, late maturation, and infrequent spawning). As most sturgeons are anadromous, a considerable portion of their life history occurs in estuarine and marine environments where they may encounter unique threats (e.g., interception in non-target fisheries). Of the 16 marine-oriented species, 12 are designated as Critically Endangered by the IUCN, and these include species commercially harvested. We review important research tools and techniques (tagging, electronic tagging, genetics, microchemistry, observatory) and discuss the comparative utility of these techniques to investigate movements, migrations, and life-history characteristics of sturgeons. Examples are provided regarding what the applications have revealed regarding movement and migration and how this information can be used for conservation and management. Through studies that include Gulf (Acipenser oxyrinchus desotoi) and Green Sturgeon (A. medirostris), we illustrate what is known about well-studied species and then explore lesser-studied species. A more complete picture of migration is available for North American sturgeon species, while European and Asian species, which are among the most endangered sturgeons, are less understood. We put forth recommendations that encourage the support of stewardship initiatives to build awareness and provide key information for population assessment and monitoring. PMID:23990959
Nelson, Troy C; Doukakis, Phaedra; Lindley, Steven T; Schreier, Andrea D; Hightower, Joseph E; Hildebrand, Larry R; Whitlock, Rebecca E; Webb, Molly A H
2013-01-01
Worldwide, sturgeons (Acipenseridae) are among the most endangered fishes due to habitat degradation, overfishing, and inherent life history characteristics (long life span, late maturation, and infrequent spawning). As most sturgeons are anadromous, a considerable portion of their life history occurs in estuarine and marine environments where they may encounter unique threats (e.g., interception in non-target fisheries). Of the 16 marine-oriented species, 12 are designated as Critically Endangered by the IUCN, and these include species commercially harvested. We review important research tools and techniques (tagging, electronic tagging, genetics, microchemistry, observatory) and discuss the comparative utility of these techniques to investigate movements, migrations, and life-history characteristics of sturgeons. Examples are provided regarding what the applications have revealed regarding movement and migration and how this information can be used for conservation and management. Through studies that include Gulf (Acipenser oxyrinchus desotoi) and Green Sturgeon (A. medirostris), we illustrate what is known about well-studied species and then explore lesser-studied species. A more complete picture of migration is available for North American sturgeon species, while European and Asian species, which are among the most endangered sturgeons, are less understood. We put forth recommendations that encourage the support of stewardship initiatives to build awareness and provide key information for population assessment and monitoring.
The fine scale genetic structure of the British population
Davison, Dan; Boumertit, Abdelhamid; Day, Tammy; Hutnik, Katarzyna; Royrvik, Ellen C; Cunliffe, Barry; Lawson, Daniel J; Falush, Daniel; Freeman, Colin; Pirinen, Matti; Myers, Simon; Robinson, Mark; Donnelly, Peter; Bodmer, Walter
2015-01-01
Summary Fine-scale genetic variation between human populations is interesting as a signature of historical demographic events and because of its potential for confounding disease studies. We use haplotype-based statistical methods to analyse genome-wide SNP data from a carefully chosen geographically diverse sample of 2,039 individuals from the United Kingdom (UK). This reveals a rich and detailed pattern of genetic differentiation with remarkable concordance between genetic clusters and geography. The regional genetic differentiation and differing patterns of shared ancestry with 6,209 individuals from across Europe carry clear signals of historical demographic events. We estimate the genetic contribution to SE England from Anglo-Saxon migrations to be under half, identify the regions not carrying genetic material from these migrations, suggest significant pre-Roman but post-Mesolithic movement into SE England from the Continent, and show that in non-Saxon parts of the UK there exist genetically differentiated subgroups rather than a general “Celtic” population. PMID:25788095
Uniqueness of polymorphism for a discrete, selection-migration model with genetic dominance
James F. Selgrade; James H. Roberds
2009-01-01
The migration into a natural population of a controlled population, e.g., a transgenic population, is studied using a one island selection-migration model. A 2-dimensional system of nonlinear difference equations describes changes in allele frequency and population size between generations. Biologically reasonable conditions are obtained which guarantee the existence...
RECENT ECOLOGICAL DIVERGENCE DESPITE MIGRATION IN SOCKEYE SALMON (ONCORHYNCHUS NERKA)
Pavey, Scott A; Nielsen, Jennifer L; Hamon, Troy R
2010-01-01
Ecological divergence may result when populations experience different selection regimes, but there is considerable discussion about the role of migration at the beginning stages of divergence before reproductive isolating mechanisms have evolved. However, detection of past migration is difficult in current populations and tools to differentiate genetic similarities due to migration versus recent common ancestry are only recently available. Using past volcanic eruption times as a framework, we combine morphological analyses of traits important to reproduction with a coalescent-based genetic analysis of two proximate sockeye salmon (Oncorhynchus nerka) populations. We find that this is the most recent (∼500 years, 100 generations) natural ecological divergence recorded in a fish species, and report that this divergence is occurring despite migration. Although studies of fish divergence following the retreat of glaciers (10,000–15,000 years ago) have contributed extensively to our understanding of speciation, the Aniakchak system of sockeye salmon provides a rare example of the initial stages of ecological divergence following natural colonization. Our results show that even in the face of continued migration, populations may diverge in the absence of a physical barrier. PMID:20030707
Recent ecological divergence despite migration in sockeye salmon (Oncorhynchus nerka).
Pavey, Scott A; Nielsen, Jennifer L; Hamon, Troy R
2010-06-01
Ecological divergence may result when populations experience different selection regimes, but there is considerable discussion about the role of migration at the beginning stages of divergence before reproductive isolating mechanisms have evolved. However, detection of past migration is difficult in current populations and tools to differentiate genetic similarities due to migration versus recent common ancestry are only recently available. Using past volcanic eruption times as a framework, we combine morphological analyses of traits important to reproduction with a coalescent-based genetic analysis of two proximate sockeye salmon (Oncorhynchus nerka) populations. We find that this is the most recent (approximately 500 years, 100 generations) natural ecological divergence recorded in a fish species, and report that this divergence is occurring despite migration. Although studies of fish divergence following the retreat of glaciers (10,000-15,000 years ago) have contributed extensively to our understanding of speciation, the Aniakchak system of sockeye salmon provides a rare example of the initial stages of ecological divergence following natural colonization. Our results show that even in the face of continued migration, populations may diverge in the absence of a physical barrier.
Recent ecological divergence despite migration in sockeye salmon (Oncorhynchus nerka)
Pavey, Scott A.; Nielsen, Jennifer L.; Hamon, Troy R.
2010-01-01
Ecological divergence may result when populations experience different selection regimes, but there is considerable discussion about the role of migration at the beginning stages of divergence before reproductive isolating mechanisms have evolved. However, detection of past migration is difficult in current populations and tools to differentiate genetic similarities due to migration versus recent common ancestry are only recently available. Using past volcanic eruption times as a framework, we combine morphological analyses of traits important to reproduction with a coalescent-based genetic analysis of two proximate sockeye salmon (Oncorhynchus nerka) populations. We find that this is the most recent (~500 years, 100 generations) natural ecological divergence recorded in a fish species, and report that this divergence is occurring despite migration. Although studies of fish divergence following the retreat of glaciers (10,000–15,000 years ago) have contributed extensively to our understanding of speciation, the Aniakchak system of sockeye salmon provides a rare example of the initial stages of ecological divergence following natural colonization. Our results show that even in the face of continued migration, populations may diverge in the absence of a physical barrier.
The genetics of monarch butterfly migration and warning colouration.
Zhan, Shuai; Zhang, Wei; Niitepõld, Kristjan; Hsu, Jeremy; Haeger, Juan Fernández; Zalucki, Myron P; Altizer, Sonia; de Roode, Jacobus C; Reppert, Steven M; Kronforst, Marcus R
2014-10-16
The monarch butterfly, Danaus plexippus, is famous for its spectacular annual migration across North America, recent worldwide dispersal, and orange warning colouration. Despite decades of study and broad public interest, we know little about the genetic basis of these hallmark traits. Here we uncover the history of the monarch's evolutionary origin and global dispersal, characterize the genes and pathways associated with migratory behaviour, and identify the discrete genetic basis of warning colouration by sequencing 101 Danaus genomes from around the globe. The results rewrite our understanding of this classic system, showing that D. plexippus was ancestrally migratory and dispersed out of North America to occupy its broad distribution. We find the strongest signatures of selection associated with migration centre on flight muscle function, resulting in greater flight efficiency among migratory monarchs, and that variation in monarch warning colouration is controlled by a single myosin gene not previously implicated in insect pigmentation.
Obbard, Martyn E.; Harnden, Matthew; McConnell, Sabine; Howe, Eric J.; Burrows, Frank G.; White, Bradley N.; Kyle, Christopher J.
2017-01-01
The processes leading to genetic isolation influence a population’s local extinction risk, and should thus be identified before conservation actions are implemented. Natural or human-induced circumstances can result in historical or contemporary barriers to gene flow and/or demographic bottlenecks. Distinguishing between these hypotheses can be achieved by comparing genetic diversity and differentiation in isolated vs. continuous neighboring populations. In Ontario, American black bears (Ursus americanus) are continuously distributed, genetically diverse, and exhibit an isolation-by-distance structuring pattern, except on the Bruce Peninsula (BP). To identify the processes that led to the genetic isolation of BP black bears, we modelled various levels of historical and contemporary migration and population size reductions using forward simulations. We compared simulation results with empirical genetic indices from Ontario black bear populations under different levels of geographic isolation, and conducted additional simulations to determine if translocations could help achieve genetic restoration. From a genetic standpoint, conservation concerns for BP black bears are warranted because our results show that: i) a recent demographic bottleneck associated with recently reduced migration best explains the low genetic diversity on the BP; and ii) under sustained isolation, BP black bears could lose between 70% and 80% of their rare alleles within 100 years. Although restoring migration corridors would be the most effective method to enhance long-term genetic diversity and prevent inbreeding, it is unrealistic to expect connectivity to be re-established. Current levels of genetic diversity could be maintained by successfully translocating 10 bears onto the peninsula every 5 years. Such regular translocations may be more practical than landscape restoration, because areas connecting the peninsula to nearby mainland black bear populations have been irreversibly modified by humans, and form strong barriers to movement. PMID:28235066
Genetics Home Reference: 3MC syndrome
... pathway is thought to help direct the movement (migration) of cells during early development before birth to ... appears to be particularly important in directing the migration of neural crest cells, which give rise to ...
Environmental factors that impact population sizes, migration rates, mutation rates or selective forces can leave lasting genetic imprints on patterns of intraspecific genetic variation. This suggests that measures of genetic diversity may be useful indicators of the condition o...
Serrote, C M L; Reiniger, L R S; Stefenon, V M; Curti, A R; Costa, L S; Paim, A F
2016-08-29
Computer simulations are an important tool for developing conservation strategies for forest species. This study used simulations to investigate the genetic, ecological, and reproductive patterns that contribute to the genetic structure of the tree Luehea divaricata Mart. & Zucc. in five forest fragments in the Brazilian Pampa biome. Using the EASYPOP model, we determined the selfing and migration rates that would match the corresponding genetic structure of microsatellite marker data (based on observed and expected heterozygosity parameters). The simulated reproductive mode was mixed, with a high rate of outcrossing (rate = 0.7). This was consistent with a selfing-incompatible system in this species, which reduced, but did not prevent, selfing. The simulated migration rate was 0.02, which implied that the forest fragments were isolated by distance, and that the inbreeding coefficients were high. Based on Nei's gene diversity analysis, 94% of the genetic variability was distributed within the forest fragments, and only 6% of the genetic diversity was caused by differences between them. Furthermore, the minimum viable population and minimum viable area genetic conservation parameters (which determine conservation potential in the short and long term) suggested that only the Inhatinhum forest fragment had the short-term potential to maintain its genetic diversity. However, in the long term, none of the forest fragments proved to be sustainable, indicating that the populations will require intervention to prevent a decline in genetic variability. The creation of ecological corridors could be a useful solution to connect forest fragments and enhance gene flow between them.
EphA2 receptor is a key player in the metastatic onset of Ewing sarcoma.
Garcia-Monclús, Silvia; López-Alemany, Roser; Almacellas-Rabaiget, Olga; Herrero-Martín, David; Huertas-Martinez, Juan; Lagares-Tena, Laura; Alba-Pavón, Piedad; Hontecillas-Prieto, Lourdes; Mora, Jaume; de Álava, Enrique; Rello-Varona, Santi; Giangrande, Paloma H; Tirado, Oscar M
2018-03-26
Ewing sarcoma (ES) is the second most common bone malignancy affecting children and young adults with poor prognosis due to high metastasis incidence. Our group previously described that EphA2, a tyrosine kinase receptor, promotes angiogenesis in Ewing sarcoma (ES) cells via ligand-dependent signaling. Now we wanted to explore EphA2 ligand-independent activity, controlled upon phosphorylation at S897 (p-EphA2 S897 ), as it has been linked to metastasis in several malignancies. By reverse genetic engineering we explored the phenotypic changes after EphA2 removal or reintroduction. Gene expression microarray was used to identify key players in EphA2 signaling. Mice were employed to reproduce metastatic processes from orthotopically implanted engineered cells. We established a correlation between ES cells aggressiveness and p-EphA2 S897 . Moreover, stable overexpression of EphA2 in low EphA2 expression ES cells enhanced proliferation and migration, but not a non-phosphorylable mutant (S987A). Consistently, silencing of EphA2 reduced tumorigenicity, migration and invasion in vitro, and lung metastasis incidence in experimental and spontaneous metastasis assays in vivo. A gene expression microarray revealed the implication of EphA2 in cell signaling, cellular movement and survival. ADAM19 knockdown by siRNA technology strongly reproduced the negative effects on cell migration observed after EphA2 silencing. Altogether, our results suggest that p-EphA2 S897 correlates with aggressiveness in ES, so blocking its function may be a promising treatment. © 2018 UICC.
Charoute, Hicham; Bakhchane, Amina; Benrahma, Houda; Romdhane, Lilia; Gabi, Khalid; Rouba, Hassan; Fakiri, Malika; Abdelhak, Sonia; Lenaers, Guy; Barakat, Abdelhamid
2015-11-01
The Mediterranean basin has been the theater of migration crossroads followed by settlement of several societies and cultures in prehistoric and historical times, with important consequences on genetic and genomic determinisms. Here, we present the Mediterranean Founder Mutation Database (MFMD), established to offer web-based access to founder mutation information in the Mediterranean population. Mutation data were collected from the literature and other online resources and systematically reviewed and assembled into this database. The information provided for each founder mutation includes DNA change, amino-acid change, mutation type and mutation effect, as well as mutation frequency and coalescence time when available. Currently, the database contains 383 founder mutations found in 210 genes related to 219 diseases. We believe that MFMD will help scientists and physicians to design more rapid and less expensive genetic diagnostic tests. Moreover, the coalescence time of founder mutations gives an overview about the migration history of the Mediterranean population. MFMD can be publicly accessed from http://mfmd.pasteur.ma. © 2015 WILEY PERIODICALS, INC.
Walsh, Gregory S; Grant, Paul K; Morgan, John A; Moens, Cecilia B
2011-07-01
Components of the planar cell polarity (PCP) pathway are required for the caudal tangential migration of facial branchiomotor (FBM) neurons, but how PCP signaling regulates this migration is not understood. In a forward genetic screen, we identified a new gene, nhsl1b, required for FBM neuron migration. nhsl1b encodes a WAVE-homology domain-containing protein related to human Nance-Horan syndrome (NHS) protein and Drosophila GUK-holder (Gukh), which have been shown to interact with components of the WAVE regulatory complex that controls cytoskeletal dynamics and with the polarity protein Scribble, respectively. Nhsl1b localizes to FBM neuron membrane protrusions and interacts physically and genetically with Scrib to control FBM neuron migration. Using chimeric analysis, we show that FBM neurons have two modes of migration: one involving interactions between the neurons and their planar-polarized environment, and an alternative, collective mode involving interactions between the neurons themselves. We demonstrate that the first mode of migration requires the cell-autonomous functions of Nhsl1b and the PCP components Scrib and Vangl2 in addition to the non-autonomous functions of Scrib and Vangl2, which serve to polarize the epithelial cells in the environment of the migrating neurons. These results define a role for Nhsl1b as a neuronal effector of PCP signaling and indicate that proper FBM neuron migration is directly controlled by PCP signaling between the epithelium and the migrating neurons.
Walsh, Gregory S.; Grant, Paul K.; Morgan, John A.; Moens, Cecilia B.
2011-01-01
Components of the planar cell polarity (PCP) pathway are required for the caudal tangential migration of facial branchiomotor (FBM) neurons, but how PCP signaling regulates this migration is not understood. In a forward genetic screen, we identified a new gene, nhsl1b, required for FBM neuron migration. nhsl1b encodes a WAVE-homology domain-containing protein related to human Nance-Horan syndrome (NHS) protein and Drosophila GUK-holder (Gukh), which have been shown to interact with components of the WAVE regulatory complex that controls cytoskeletal dynamics and with the polarity protein Scribble, respectively. Nhsl1b localizes to FBM neuron membrane protrusions and interacts physically and genetically with Scrib to control FBM neuron migration. Using chimeric analysis, we show that FBM neurons have two modes of migration: one involving interactions between the neurons and their planar-polarized environment, and an alternative, collective mode involving interactions between the neurons themselves. We demonstrate that the first mode of migration requires the cell-autonomous functions of Nhsl1b and the PCP components Scrib and Vangl2 in addition to the non-autonomous functions of Scrib and Vangl2, which serve to polarize the epithelial cells in the environment of the migrating neurons. These results define a role for Nhsl1b as a neuronal effector of PCP signaling and indicate that proper FBM neuron migration is directly controlled by PCP signaling between the epithelium and the migrating neurons. PMID:21693519
Anthropogenic stressors that reduce population size, alter migration corridors or modify mutational and selective forces on populations are expected to leave a lasting genetic footprint on the distribution of intraspecific genetic variation. Thus, the pattern of intraspecific gen...
Genetic response to rapid climate change: it's seasonal timing that matters.
Bradshaw, W E; Holzapfel, C M
2008-01-01
The primary nonbiological result of recent rapid climate change is warming winter temperatures, particularly at northern latitudes, leading to longer growing seasons and new seasonal exigencies and opportunities. Biological responses reflect selection due to the earlier arrival of spring, the later arrival of fall, or the increasing length of the growing season. Animals from rotifers to rodents use the high reliability of day length to time the seasonal transitions in their life histories that are crucial to fitness in temperate and polar environments: when to begin developing in the spring, when to reproduce, when to enter dormancy or when to migrate, thereby exploiting favourable temperatures and avoiding unfavourable temperatures. In documented cases of evolutionary (genetic) response to recent, rapid climate change, the role of day length (photoperiodism) ranges from causal to inhibitory; in no case has there been demonstrated a genetic shift in thermal optima or thermal tolerance. More effort should be made to explore the role of photoperiodism in genetic responses to climate change and to rule out the role of photoperiod in the timing of seasonal life histories before thermal adaptation is assumed to be the major evolutionary response to climate change.
Nonanadromous fish passage in highway culverts.
DOT National Transportation Integrated Search
1995-01-01
Highway culverts may hinder the normal migrations of various trout species in wild trout streams, due to increased flow velocity, shallow water depths, increased turbulence, and perching. This can impede migrational movements, affecting the genetic d...
Equilibrium and nonequilibrium attractors for a discrete, selection-migration model
James F. Selgrade; James H. Roberds
2003-01-01
This study presents a discrete-time model for the effects of selection and immigration on the demographic and genetic compositions of a population. Under biologically reasonable conditions, it is shown that the model always has an equilibrium. Although equilibria for similar models without migration must have real eigenvalues, for this selection-migration model we...
Genetic Divergence of an Avian Endemic on the Californian Channel Islands
Wilson, Amy G.; Chan, Yvonne; Taylor, Sabrina S.; Arcese, Peter
2015-01-01
The Californian Channel Islands are near–shore islands with high levels of endemism, but extensive habitat loss has contributed to the decline or extinction of several endemic taxa. A key parameter for understanding patterns of endemism and demography in island populations is the magnitude of inter–island dispersal. This paper estimates the extent of migration and genetic differentiation in three extant and two extinct populations of Channel Island song sparrows (Melospiza melodia graminea). Inter–island differentiation was substantial (G''ST: 0.14–0.37), with San Miguel Island having the highest genetic divergence and lowest migration rates. Santa Rosa and Santa Cruz Island populations were less diverged with higher migration rates. Genetic signals of past population declines were detected in all of the extant populations. The Channel Island populations were significantly diverged from mainland populations of M. m. heermanni (G''ST: 0.30–0.64). Ten mtDNA haplotypes were recovered across the extant and extinct Channel Island population samples. Two of the ten haplotypes were shared between the Northern and Southern Channel Islands, with one of these haplotypes being detected on the Californian mainland. Our results suggest that there is little contemporary migration between islands, consistent with early explanations of avian biogeography in the Channel Islands, and that song sparrow populations on the northern Channel Islands are demographically independent. PMID:26308717
The intimate genetics of Drosophila fertilization
Loppin, Benjamin; Dubruille, Raphaëlle; Horard, Béatrice
2015-01-01
The union of haploid gametes at fertilization initiates the formation of the diploid zygote in sexually reproducing animals. This founding event of embryogenesis includes several fascinating cellular and nuclear processes, such as sperm–egg cellular interactions, sperm chromatin remodelling, centrosome formation or pronuclear migration. In comparison with other aspects of development, the exploration of animal fertilization at the functional level has remained so far relatively limited, even in classical model organisms. Here, we have reviewed our current knowledge of fertilization in Drosophila melanogaster, with a special emphasis on the genes involved in the complex transformation of the fertilizing sperm nucleus into a replicated set of paternal chromosomes. PMID:26246493
Anthropogenic disturbances may leave imprints on patterns of intraspecific genetic diversity through their effects on population size, adaptation, migration, and mutation. We examined patterns of genetic diversity for a stream-dwelling minnow (the central stoneroller, Campostoma...
Szövényi, P; Terracciano, S; Ricca, M; Giordano, S; Shaw, A J
2008-12-01
Several lines of evidence suggest that recent long-distance dispersal may have been important in the evolution of intercontinental distribution ranges of bryophytes. However, the absolute rate of intercontinental migration and its relative role in the development of certain distribution ranges is still poorly understood. To this end, the genetic structure of intercontinental populations of six peatmoss species showing an amphi-Atlantic distribution was investigated using microsatellite markers. Methods relying on the coalescent were applied (IM and MIGRATE) to understand the evolution of this distribution pattern in peatmosses. Intercontinental populations of the six peatmoss species were weakly albeit significantly differentiated (average F(ST) = 0.104). This suggests that the North Atlantic Ocean is acting as a barrier to gene flow even in bryophytes adapted to long-range dispersal. The im analysis suggested a relatively recent split of intercontinental populations dating back to the last two glacial periods (9000-289,000 years ago). In contrast to previous hypotheses, analyses indicated that both ongoing migration and ancestral polymorphism are important in explaining the intercontinental genetic similarity of peatmoss populations, but their relative contribution varies with species. Migration rates were significantly asymmetric towards America suggesting differential extinction of genotypes on the two continents or invasion of the American continent by European lineages. These results indicate that low genetic divergence of amphi-Atlantic populations is a general pattern across numerous flowering plants and bryophytes. However, in bryophytes, ongoing intercontinental gene flow and retained shared ancestral polymorphism must both be considered to explain the genetic similarity of intercontinental populations.
Linking extinction-colonization dynamics to genetic structure in a salamander metapopulation.
Cosentino, Bradley J; Phillips, Christopher A; Schooley, Robert L; Lowe, Winsor H; Douglas, Marlis R
2012-04-22
Theory predicts that founder effects have a primary role in determining metapopulation genetic structure. However, ecological factors that affect extinction-colonization dynamics may also create spatial variation in the strength of genetic drift and migration. We tested the hypothesis that ecological factors underlying extinction-colonization dynamics influenced the genetic structure of a tiger salamander (Ambystoma tigrinum) metapopulation. We used empirical data on metapopulation dynamics to make a priori predictions about the effects of population age and ecological factors on genetic diversity and divergence among 41 populations. Metapopulation dynamics of A. tigrinum depended on wetland area, connectivity and presence of predatory fish. We found that newly colonized populations were more genetically differentiated than established populations, suggesting that founder effects influenced genetic structure. However, ecological drivers of metapopulation dynamics were more important than age in predicting genetic structure. Consistent with demographic predictions from metapopulation theory, genetic diversity and divergence depended on wetland area and connectivity. Divergence was greatest in small, isolated wetlands where genetic diversity was low. Our results show that ecological factors underlying metapopulation dynamics can be key determinants of spatial genetic structure, and that habitat area and isolation may mediate the contributions of drift and migration to divergence and evolution in local populations.
Guo, Guo-Ye; Chen, Fang; Shi, Xiao-Dong; Tian, Yin-Shuai; Yu, Mao-Qun; Han, Xue-Qin; Yuan, Li-Chun; Zhang, Ying
2016-01-01
Genetic variation and phylogenetic relationships among 102 Jatropha curcas accessions from Asia, Africa, and the Americas were assessed using the internal transcribed spacer region of nuclear ribosomal DNA (nrDNA ITS). The average G+C content (65.04%) was considerably higher than the A+T (34.96%) content. The estimated genetic diversity revealed moderate genetic variation. The pairwise genetic divergences (GD) between haplotypes were evaluated and ranged from 0.000 to 0.017, suggesting a higher level of genetic differentiation in Mexican accessions than those of other regions. Phylogenetic relationships and intraspecific divergence were inferred by Bayesian inference (BI), maximum parsimony (MP), and median joining (MJ) network analysis and were generally resolved. The J. curcas accessions were consistently divided into three lineages, groups A, B, and C, which demonstrated distant geographical isolation and genetic divergence between American accessions and those from other regions. The MJ network analysis confirmed that Central America was the possible center of origin. The putative migration route suggested that J. curcas was distributed from Mexico or Brazil, via Cape Verde and then split into two routes. One route was dispersed to Spain, then migrated to China, eventually spreading to southeastern Asia, while the other route was dispersed to Africa, via Madagascar and migrated to China, later spreading to southeastern Asia. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Via, Sara
2012-01-01
In allopatric populations, geographical separation simultaneously isolates the entire genome, allowing genetic divergence to accumulate virtually anywhere in the genome. In sympatric populations, however, the strong divergent selection required to overcome migration produces a genetic mosaic of divergent and non-divergent genomic regions. In some recent genome scans, each divergent genomic region has been interpreted as an independent incidence of migration/selection balance, such that the reduction of gene exchange is restricted to a few kilobases around each divergently selected gene. I propose an alternative mechanism, ‘divergence hitchhiking’ (DH), in which divergent selection can reduce gene exchange for several megabases around a gene under strong divergent selection. Not all genes/markers within a DH region are divergently selected, yet the entire region is protected to some degree from gene exchange, permitting genetic divergence from mechanisms other than divergent selection to accumulate secondarily. After contrasting DH and multilocus migration/selection balance (MM/SB), I outline a model in which genomic isolation at a given genomic location is jointly determined by DH and genome-wide effects of the progressive reduction in realized migration, then illustrate DH using data from several pairs of incipient species in the wild. PMID:22201174
Ronquillo, Charlene; Boschma, Geertje; Wong, Sabrina T; Quiney, Linda
2011-09-01
The history of immigrant Filipino nurses in Canada has received little attention, yet Canada is a major receiving country of a growing number of Filipino migrants and incorporates Filipino immigrant nurses into its healthcare workforce at a steady rate. This study aims to look beyond the traditional economic and policy analysis perspectives of global migration and beyond the push and pull factors commonly discussed in the migration literature. Through oral history, this study explores biographical histories of nine Filipino immigrant nurses currently working in British Columbia and Alberta, Canada. Narratives reveal the instrumental role of the deeply embedded culture of migration in the Philippines in influencing Filipino nurses to migrate. Additionally, the stories illustrate the weight of cultural pressures and societal constructs these nurses faced that first colored their decision to pursue a career in nursing and ultimately to pursue emigration. Oral history is a powerful tool for examining migration history and sheds light on nuances of experience that might otherwise be neglected. This study explores the complex connections between various factors motivating Filipino nurse migration, the decision-making process, and other pre-migration experiences. © 2011 Blackwell Publishing Ltd.
Risk and reproductive decisions: British Pakistani couples’ responses to genetic counselling
Shaw, Alison
2011-01-01
How far does ethnicity/culture/religion mediate couples’ responses to genetic risk? This paper examines the responses of 51 British Pakistani couples referred to a genetics clinic in southern England to counselling about recurrence risks for genetic problems in children. It is based on fieldwork conducted between 2000 and 2004 that combined participant observation of genetics consultations with interviews in respondents’ homes. Interviews were conducted with 62 adults in connection with these 51 cases, of which 32 were followed through two or more clinical consultations and 12 through more than one pregnancy. Risk responses were categorized as: taking the risk; postponing; exploring risk management or dismissing the risk as irrelevant to current circumstances. Responses were cross-referenced for associations with the severity of the condition, number of affected and unaffected children, availability of a prenatal test, age, gender, and migration history. I found that most couples were initially risk-takers who already had an unaffected child or children. Couples caring for living children with severe conditions were more likely to postpone. However, the risk responses of 15 couples changed over time, most towards and some away from risk management, reflecting changes in couples’ appreciation of the severity of the condition and their subsequent reproductive experiences. The study highlights the diversity and dynamism of responses within one ethnic group and challenges stereotypes about cultural and religious responses to genetic risk. PMID:21641705
Genetic landscape of populations along the Silk Road: admixture and migration patterns.
Mezzavilla, Massimo; Vozzi, Diego; Pirastu, Nicola; Girotto, Giorgia; d'Adamo, Pio; Gasparini, Paolo; Colonna, Vincenza
2014-12-05
The ancient Silk Road has been a trading route between Europe and Central Asia from the 2(nd) century BCE to the 15(th) century CE. While most populations on this route have been characterized, the genetic background of others remains poorly understood, and little is known about past migration patterns. The scientific expedition "Marco Polo" has recently collected genetic and phenotypic data in six regions (Georgia, Armenia, Azerbaijan, Uzbekistan, Kazakhstan, Tajikistan) along the Silk Road to study the genetics of a number of phenotypes. We characterized the genetic structure of these populations within a worldwide context. We observed a West-East subdivision albeit the existence of a genetic component shared within Central Asia and nearby populations from Europe and Near East. We observed a contribution of up to 50% from Europe and Asia to most of the populations that have been analyzed. The contribution from Asia dates back to ~25 generations and is limited to the Eastern Silk Road. Time and direction of this contribution are consistent with the Mongolian expansion era. We clarified the genetic structure of six populations from Central Asia and suggested a complex pattern of gene flow among them. We provided a map of migration events in time and space and we quantified exchanges among populations. Altogether these novel findings will support the future studies aimed at understanding the genetics of the phenotypes that have been collected during the Marco Polo campaign, they will provide insights into the history of these populations, and they will be useful to reconstruct the developments and events that have shaped modern Eurasians genomes.
Afghanistan's Ethnic Groups Share a Y-Chromosomal Heritage Structured by Historical Events
Haber, Marc; Platt, Daniel E.; Ashrafian Bonab, Maziar; Youhanna, Sonia C.; Soria-Hernanz, David F.; Martínez-Cruz, Begoña; Douaihy, Bouchra; Ghassibe-Sabbagh, Michella; Rafatpanah, Hoshang; Ghanbari, Mohsen; Whale, John; Balanovsky, Oleg; Wells, R. Spencer; Comas, David; Tyler-Smith, Chris; Zalloua, Pierre A.
2012-01-01
Afghanistan has held a strategic position throughout history. It has been inhabited since the Paleolithic and later became a crossroad for expanding civilizations and empires. Afghanistan's location, history, and diverse ethnic groups present a unique opportunity to explore how nations and ethnic groups emerged, and how major cultural evolutions and technological developments in human history have influenced modern population structures. In this study we have analyzed, for the first time, the four major ethnic groups in present-day Afghanistan: Hazara, Pashtun, Tajik, and Uzbek, using 52 binary markers and 19 short tandem repeats on the non-recombinant segment of the Y-chromosome. A total of 204 Afghan samples were investigated along with more than 8,500 samples from surrounding populations important to Afghanistan's history through migrations and conquests, including Iranians, Greeks, Indians, Middle Easterners, East Europeans, and East Asians. Our results suggest that all current Afghans largely share a heritage derived from a common unstructured ancestral population that could have emerged during the Neolithic revolution and the formation of the first farming communities. Our results also indicate that inter-Afghan differentiation started during the Bronze Age, probably driven by the formation of the first civilizations in the region. Later migrations and invasions into the region have been assimilated differentially among the ethnic groups, increasing inter-population genetic differences, and giving the Afghans a unique genetic diversity in Central Asia. PMID:22470552
Afghanistan's ethnic groups share a Y-chromosomal heritage structured by historical events.
Haber, Marc; Platt, Daniel E; Ashrafian Bonab, Maziar; Youhanna, Sonia C; Soria-Hernanz, David F; Martínez-Cruz, Begoña; Douaihy, Bouchra; Ghassibe-Sabbagh, Michella; Rafatpanah, Hoshang; Ghanbari, Mohsen; Whale, John; Balanovsky, Oleg; Wells, R Spencer; Comas, David; Tyler-Smith, Chris; Zalloua, Pierre A
2012-01-01
Afghanistan has held a strategic position throughout history. It has been inhabited since the Paleolithic and later became a crossroad for expanding civilizations and empires. Afghanistan's location, history, and diverse ethnic groups present a unique opportunity to explore how nations and ethnic groups emerged, and how major cultural evolutions and technological developments in human history have influenced modern population structures. In this study we have analyzed, for the first time, the four major ethnic groups in present-day Afghanistan: Hazara, Pashtun, Tajik, and Uzbek, using 52 binary markers and 19 short tandem repeats on the non-recombinant segment of the Y-chromosome. A total of 204 Afghan samples were investigated along with more than 8,500 samples from surrounding populations important to Afghanistan's history through migrations and conquests, including Iranians, Greeks, Indians, Middle Easterners, East Europeans, and East Asians. Our results suggest that all current Afghans largely share a heritage derived from a common unstructured ancestral population that could have emerged during the Neolithic revolution and the formation of the first farming communities. Our results also indicate that inter-Afghan differentiation started during the Bronze Age, probably driven by the formation of the first civilizations in the region. Later migrations and invasions into the region have been assimilated differentially among the ethnic groups, increasing inter-population genetic differences, and giving the Afghans a unique genetic diversity in Central Asia.
Pagán, Israel; Holguín, África
2013-01-01
The Caribbean and Central America are among the regions with highest HIV-1B prevalence worldwide. Despite of this high virus burden, little is known about the timing and the migration patterns of HIV-1B in these regions. Migration is one of the major processes shaping the genetic structure of virus populations. Thus, reconstruction of epidemiological network may contribute to understand HIV-1B evolution and reduce virus prevalence. We have investigated the spatio-temporal dynamics of the HIV-1B epidemic in The Caribbean and Central America using 1,610 HIV-1B partial pol sequences from 13 Caribbean and 5 Central American countries. Timing of HIV-1B introduction and virus evolutionary rates, as well as the spatial genetic structure of the HIV-1B populations and the virus migration patterns were inferred. Results revealed that in The Caribbean and Central America most of the HIV-1B variability was generated since the 80 s. At odds with previous data suggesting that Haiti was the origin of the epidemic in The Caribbean, our reconstruction indicated that the virus could have been disseminated from Puerto Rico and Antigua. These two countries connected two distinguishable migration areas corresponding to the (mainly Spanish-colonized) Easter and (mainly British-colonized) Western islands, which indicates that virus migration patterns are determined by geographical barriers and by the movement of human populations among culturally related countries. Similar factors shaped the migration of HIV-1B in Central America. The HIV-1B population was significantly structured according to the country of origin, and the genetic diversity in each country was associated with the virus prevalence in both regions, which suggests that virus populations evolve mainly through genetic drift. Thus, our work contributes to the understanding of HIV-1B evolution and dispersion pattern in the Americas, and its relationship with the geography of the area and the movements of human populations. PMID:23874917
Zhao, Tianyu; Szabó, Nora; Ma, Jun; Luo, Lingfei; Zhou, Xunlei; Alvarez-Bolado, Gonzalo
2008-01-01
The hypothalamus is a brain region with vital functions, and alterations in its development can cause human disease. However, we still do not have a complete description of how this complex structure is put together during embryonic and early postnatal stages. Radially oriented, outside-in migration of cells is prevalent in the developing hypothalamus. In spite of this, cell contingents from outside the hypothalamus as well as tangential hypothalamic migrations also have an important role. Here we study migrations in the hypothalamic primordium by genetically labeling the Foxb1 diencephalic lineage. Foxb1 is a transcription factor gene expressed in the neuroepithelium of the developing neural tube with a rostral expression boundary between caudal and rostral diencephalon, and therefore appropriate for marking migrations from caudal levels into the hypothalamus. We have found a large, longitudinally oriented migration stream apparently originating in the thalamic region and following an axonal bundle to end in the anterior portion of the lateral hypothalamic area. Additionally, we have mapped a specific expansion of the neuroepithelium into the rostral diencephalon. The expanded neuroepithelium generates abundant neurons for the medial hypothalamus at the tuberal level. Finally, we have uncovered novel diencephalon-to-telencephalon migrations into septum, piriform cortex and amygdala. PMID:19046377
NASA Astrophysics Data System (ADS)
Li, Xiang-Yong; Chu, Dong; Yin, Yan-Qiong; Zhao, Xue-Qing; Chen, Ai-Dong; Khay, Sathya; Douangboupha, Bounneuang; Kyaw, Mu Mu; Kongchuensin, Manita; Ngo, Vien Vinh; Nguyen, Chung Huy
2016-12-01
The white-backed planthopper, Sogatella furcifera (Horváth) (Hemiptera: Delphacidae), is a serious pest of rice in Asia. However, little is known regarding the migration of this pest insect from the Greater Mekong Subregion (GMS) including Cambodia, Laos, Myanmar (Burma), Thailand, and Vietnam, into China’s Yunnan Province. To determine the migration patterns of S. furcifera in the GMS and putative secondary immigration inside China’s Yunnan Province, we investigated the population genetic diversity, genetic structure, and gene flow of 42 S. furcifera populations across the six countries in the GMS by intensive sampling using mitochondrial genes. Our study revealed the potential emigration of S. furcifera from the GMS consists primarily of three major sources: 1) the S. furcifera from Laos and Vietnam migrate into south and southeast Yunnan, where they proceed to further migrate into northeast and central Yunnan; 2) the S. furcifera from Myanmar migrate into west Yunnan, and/or central Yunnan, and/or northeast Yunnan; 3) the S. furcifera from Cambodia migrate into southwest Yunnan, where the populations can migrate further into central Yunnan. The new data will not only be helpful in predicting population dynamics of the planthopper, but will also aid in regional control programs for this economically important pest insect.
ERIC Educational Resources Information Center
Eacott, Chelsea; Sonn, Christopher C.
2006-01-01
The population in rural areas of Australia has been declining for many decades and it has become common practice to blame this decline on the migration of young people due to structural limitations (e.g. education and employment). This study explores factors associated with migration of youth from rural Victoria looking at their experience of…
Inferring human history in East Asia from Y chromosomes.
Wang, Chuan-Chao; Li, Hui
2013-06-03
East Asia harbors substantial genetic, physical, cultural and linguistic diversity, but the detailed structures and interrelationships of those aspects remain enigmatic. This question has begun to be addressed by a rapid accumulation of molecular anthropological studies of the populations in and around East Asia, especially by Y chromosome studies. The current Y chromosome evidence suggests multiple early migrations of modern humans from Africa via Southeast Asia to East Asia. After the initial settlements, the northward migrations during the Paleolithic Age shaped the genetic structure in East Asia. Subsequently, recent admixtures between Central Asian immigrants and northern East Asians enlarged the genetic divergence between southern and northern East Asia populations. Cultural practices, such as languages, agriculture, military affairs and social prestige, also have impacts on the genetic patterns in East Asia. Furthermore, application of Y chromosome analyses in the family genealogy studies offers successful showcases of the utility of genetics in studying the ancient history.
Inferring human history in East Asia from Y chromosomes
2013-01-01
East Asia harbors substantial genetic, physical, cultural and linguistic diversity, but the detailed structures and interrelationships of those aspects remain enigmatic. This question has begun to be addressed by a rapid accumulation of molecular anthropological studies of the populations in and around East Asia, especially by Y chromosome studies. The current Y chromosome evidence suggests multiple early migrations of modern humans from Africa via Southeast Asia to East Asia. After the initial settlements, the northward migrations during the Paleolithic Age shaped the genetic structure in East Asia. Subsequently, recent admixtures between Central Asian immigrants and northern East Asians enlarged the genetic divergence between southern and northern East Asia populations. Cultural practices, such as languages, agriculture, military affairs and social prestige, also have impacts on the genetic patterns in East Asia. Furthermore, application of Y chromosome analyses in the family genealogy studies offers successful showcases of the utility of genetics in studying the ancient history. PMID:23731529
Valdiosera, Cristina; Vera-Rodríguez, Juan Carlos; Ureña, Irene; Iriarte, Eneko; Rodríguez-Varela, Ricardo; Simões, Luciana G.; Martínez-Sánchez, Rafael M.; Svensson, Emma M.; Malmström, Helena; Rodríguez, Laura; Bermúdez de Castro, José-María; Carbonell, Eudald; Alday, Alfonso; Hernández Vera, José Antonio; Götherström, Anders; Carretero, José-Miguel; Arsuaga, Juan Luis; Smith, Colin I.
2018-01-01
Population genomic studies of ancient human remains have shown how modern-day European population structure has been shaped by a number of prehistoric migrations. The Neolithization of Europe has been associated with large-scale migrations from Anatolia, which was followed by migrations of herders from the Pontic steppe at the onset of the Bronze Age. Southwestern Europe was one of the last parts of the continent reached by these migrations, and modern-day populations from this region show intriguing similarities to the initial Neolithic migrants. Partly due to climatic conditions that are unfavorable for DNA preservation, regional studies on the Mediterranean remain challenging. Here, we present genome-wide sequence data from 13 individuals combined with stable isotope analysis from the north and south of Iberia covering a four-millennial temporal transect (7,500–3,500 BP). Early Iberian farmers and Early Central European farmers exhibit significant genetic differences, suggesting two independent fronts of the Neolithic expansion. The first Neolithic migrants that arrived in Iberia had low levels of genetic diversity, potentially reflecting a small number of individuals; this diversity gradually increased over time from mixing with local hunter-gatherers and potential population expansion. The impact of post-Neolithic migrations on Iberia was much smaller than for the rest of the continent, showing little external influence from the Neolithic to the Bronze Age. Paleodietary reconstruction shows that these populations have a remarkable degree of dietary homogeneity across space and time, suggesting a strong reliance on terrestrial food resources despite changing culture and genetic make-up. PMID:29531053
Benjamin D. Cook; Sofie Bernays; Catherine M. Pringle; Jane M. Hughes
2009-01-01
Various components of island stream faunas, including caridean shrimps, fish, and gastropods, undertake obligate amphidromous migration, whereby larvae are released in upstream freshwater reaches, drift downstream to estuaries or marine waters, then migrate upstream as postlarvae to freshwater adult habitats. Longitudinal migration from estuaries to headwaters is well...
Hervella, Montserrat; Rotea, Mihai; Izagirre, Neskuts; Constantinescu, Mihai; Alonso, Santos; Ioana, Mihai; Lazăr, Cătălin; Ridiche, Florin; Soficaru, Andrei Dorian; Netea, Mihai G.; de-la-Rua, Concepcion
2015-01-01
The importance of the process of Neolithization for the genetic make-up of European populations has been hotly debated, with shifting hypotheses from a demic diffusion (DD) to a cultural diffusion (CD) model. In this regard, ancient DNA data from the Balkan Peninsula, which is an important source of information to assess the process of Neolithization in Europe, is however missing. In the present study we show genetic information on ancient populations of the South-East of Europe. We assessed mtDNA from ten sites from the current territory of Romania, spanning a time-period from the Early Neolithic to the Late Bronze Age. mtDNA data from Early Neolithic farmers of the Starčevo Criş culture in Romania (Cârcea, Gura Baciului and Negrileşti sites), confirm their genetic relationship with those of the LBK culture (Linienbandkeramik Kultur) in Central Europe, and they show little genetic continuity with modern European populations. On the other hand, populations of the Middle-Late Neolithic (Boian, Zau and Gumelniţa cultures), supposedly a second wave of Neolithic migration from Anatolia, had a much stronger effect on the genetic heritage of the European populations. In contrast, we find a smaller contribution of Late Bronze Age migrations to the genetic composition of Europeans. Based on these findings, we propose that permeation of mtDNA lineages from a second wave of Middle-Late Neolithic migration from North-West Anatolia into the Balkan Peninsula and Central Europe represent an important contribution to the genetic shift between Early and Late Neolithic populations in Europe, and consequently to the genetic make-up of modern European populations. PMID:26053041
Hervella, Montserrat; Rotea, Mihai; Izagirre, Neskuts; Constantinescu, Mihai; Alonso, Santos; Ioana, Mihai; Lazăr, Cătălin; Ridiche, Florin; Soficaru, Andrei Dorian; Netea, Mihai G; de-la-Rua, Concepcion
2015-01-01
The importance of the process of Neolithization for the genetic make-up of European populations has been hotly debated, with shifting hypotheses from a demic diffusion (DD) to a cultural diffusion (CD) model. In this regard, ancient DNA data from the Balkan Peninsula, which is an important source of information to assess the process of Neolithization in Europe, is however missing. In the present study we show genetic information on ancient populations of the South-East of Europe. We assessed mtDNA from ten sites from the current territory of Romania, spanning a time-period from the Early Neolithic to the Late Bronze Age. mtDNA data from Early Neolithic farmers of the Starčevo Criş culture in Romania (Cârcea, Gura Baciului and Negrileşti sites), confirm their genetic relationship with those of the LBK culture (Linienbandkeramik Kultur) in Central Europe, and they show little genetic continuity with modern European populations. On the other hand, populations of the Middle-Late Neolithic (Boian, Zau and Gumelniţa cultures), supposedly a second wave of Neolithic migration from Anatolia, had a much stronger effect on the genetic heritage of the European populations. In contrast, we find a smaller contribution of Late Bronze Age migrations to the genetic composition of Europeans. Based on these findings, we propose that permeation of mtDNA lineages from a second wave of Middle-Late Neolithic migration from North-West Anatolia into the Balkan Peninsula and Central Europe represent an important contribution to the genetic shift between Early and Late Neolithic populations in Europe, and consequently to the genetic make-up of modern European populations.
Eid, Lara; Lachance, Mathieu; Hickson, Gilles; Rossignol, Elsa
2018-04-20
GABAergic interneurons (INs) are critical components of neuronal networks that drive cognition and behavior. INs destined to populate the cortex migrate tangentially from their place of origin in the ventral telencephalon (including from the medial and caudal ganglionic eminences (MGE, CGE)) to the dorsal cortical plate in response to a variety of intrinsic and extrinsic cues. Different methodologies have been developed over the years to genetically manipulate specific pathways and investigate how they regulate the dynamic cytoskeletal changes required for proper IN migration. In utero electroporation has been extensively used to study the effect of gene repression or overexpression in specific IN subtypes while assessing the impact on morphology and final position. However, while this approach is readily used to modify radially migrating pyramidal cells, it is more technically challenging when targeting INs. In utero electroporation generates a low yield given the decreased survival rates of pups when electroporation is conducted before e14.5, as is customary when studying MGE-derived INs. In an alternative approach, MGE explants provide easy access to the MGE and facilitate the imaging of genetically modified INs. However, in these explants, INs migrate into an artificial matrix, devoid of endogenous guidance cues and thalamic inputs. This prompted us to optimize a method where INs can migrate in a more naturalistic environment, while circumventing the technical challenges of in utero approaches. In this paper, we describe the combination of ex utero electroporation of embryonic mouse brains followed by organotypic slice cultures to readily track, image and reconstruct genetically modified INs migrating along their natural paths in response to endogenous cues. This approach allows for both the quantification of the dynamic aspects of IN migration with time-lapse confocal imaging, as well as the detailed analysis of various morphological parameters using neuronal reconstructions on fixed immunolabeled tissue.
Miró-Herrans, Aida T.; Al-Meeri, Ali; Mulligan, Connie J.
2014-01-01
Population migration has played an important role in human evolutionary history and in the patterning of human genetic variation. A deeper and empirically-based understanding of human migration dynamics is needed in order to interpret genetic and archaeological evidence and to accurately reconstruct the prehistoric processes that comprise human evolutionary history. Current empirical estimates of migration include either short time frames (i.e. within one generation) or partial knowledge about migration, such as proportion of migrants or distance of migration. An analysis of migration that includes both proportion of migrants and distance, and direction over multiple generations would better inform prehistoric reconstructions. To evaluate human migration, we use GPS coordinates from the place of residence of the Yemeni individuals sampled in our study, their birthplaces and their parents' and grandparents' birthplaces to calculate the proportion of migrants, as well as the distance and direction of migration events between each generation. We test for differences in these values between the generations and identify factors that influence the probability of migration. Our results show that the proportion and distance of migration between females and males is similar within generations. In contrast, the proportion and distance of migration is significantly lower in the grandparents' generation, most likely reflecting the decreasing effect of technology. Based on our results, we calculate the proportion of migration events (0.102) and mean and median distances of migration (96 km and 26 km) for the grandparent's generation to represent early times in human evolution. These estimates can serve to set parameter values of demographic models in model-based methods of prehistoric reconstruction, such as approximate Bayesian computation. Our study provides the first empirically-based estimates of human migration over multiple generations in a developing country and these estimates are intended to enable more precise reconstruction of the demographic processes that characterized human evolution. PMID:24759992
A multi-perspective view of genetic variation in Cameroon.
Coia, V; Brisighelli, F; Donati, F; Pascali, V; Boschi, I; Luiselli, D; Battaggia, C; Batini, C; Taglioli, L; Cruciani, F; Paoli, G; Capelli, C; Spedini, G; Destro-Bisol, G
2009-11-01
In this study, we report the genetic variation of autosomal and Y-chromosomal microsatellites in a large Cameroon population dataset (a total of 11 populations) and jointly analyze novel and previous genetic data (mitochondrial DNA and protein coding loci) taking geographic and cultural factors into consideration. The complex pattern of genetic variation of Cameroon can in part be described by contrasting two geographic areas (corresponding to the northern and southern part of the country), which differ substantially in environmental, biological, and cultural aspects. Northern Cameroon populations show a greater within- and among-group diversity, a finding that reflects the complex migratory patterns and the linguistic heterogeneity of this area. A striking reduction of Y-chromosomal genetic diversity was observed in some populations of the northern part of the country (Podokwo and Uldeme), a result that seems to be related to their demographic history rather than to sampling issues. By exploring patterns of genetic, geographic, and linguistic variation, we detect a preferential correlation between genetics and geography for mtDNA. This finding could reflect a female matrimonial mobility that is less constrained by linguistic factors than in males. Finally, we apply the island model to mitochondrial and Y-chromosomal data and obtain a female-to-male migration Nnu ratio that was more than double in the northern part of the country. The combined effect of the propensity to inter-populational admixture of females, favored by cultural contacts, and of genetic drift acting on Y-chromosomal diversity could account for the peculiar genetic pattern observed in northern Cameroon.
Parker, Heidi G; Dreger, Dayna L; Rimbault, Maud; Davis, Brian W; Mullen, Alexandra B; Carpintero-Ramirez, Gretchen; Ostrander, Elaine A
2017-04-25
There are nearly 400 modern domestic dog breeds with a unique histories and genetic profiles. To track the genetic signatures of breed development, we have assembled the most diverse dataset of dog breeds, reflecting their extensive phenotypic variation and heritage. Combining genetic distance, migration, and genome-wide haplotype sharing analyses, we uncover geographic patterns of development and independent origins of common traits. Our analyses reveal the hybrid history of breeds and elucidate the effects of immigration, revealing for the first time a suggestion of New World dog within some modern breeds. Finally, we used cladistics and haplotype sharing to show that some common traits have arisen more than once in the history of the dog. These analyses characterize the complexities of breed development, resolving longstanding questions regarding individual breed origination, the effect of migration on geographically distinct breeds, and, by inference, transfer of trait and disease alleles among dog breeds. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Node-based measures of connectivity in genetic networks.
Koen, Erin L; Bowman, Jeff; Wilson, Paul J
2016-01-01
At-site environmental conditions can have strong influences on genetic connectivity, and in particular on the immigration and settlement phases of dispersal. However, at-site processes are rarely explored in landscape genetic analyses. Networks can facilitate the study of at-site processes, where network nodes are used to model site-level effects. We used simulated genetic networks to compare and contrast the performance of 7 node-based (as opposed to edge-based) genetic connectivity metrics. We simulated increasing node connectivity by varying migration in two ways: we increased the number of migrants moving between a focal node and a set number of recipient nodes, and we increased the number of recipient nodes receiving a set number of migrants. We found that two metrics in particular, the average edge weight and the average inverse edge weight, varied linearly with simulated connectivity. Conversely, node degree was not a good measure of connectivity. We demonstrated the use of average inverse edge weight to describe the influence of at-site habitat characteristics on genetic connectivity of 653 American martens (Martes americana) in Ontario, Canada. We found that highly connected nodes had high habitat quality for marten (deep snow and high proportions of coniferous and mature forest) and were farther from the range edge. We recommend the use of node-based genetic connectivity metrics, in particular, average edge weight or average inverse edge weight, to model the influences of at-site habitat conditions on the immigration and settlement phases of dispersal. © 2015 John Wiley & Sons Ltd.
Unified reduction principle for the evolution of mutation, migration, and recombination
Altenberg, Lee; Liberman, Uri; Feldman, Marcus W.
2017-01-01
Modifier-gene models for the evolution of genetic information transmission between generations of organisms exhibit the reduction principle: Selection favors reduction in the rate of variation production in populations near equilibrium under a balance of constant viability selection and variation production. Whereas this outcome has been proven for a variety of genetic models, it has not been proven in general for multiallelic genetic models of mutation, migration, and recombination modification with arbitrary linkage between the modifier and major genes under viability selection. We show that the reduction principle holds for all of these cases by developing a unifying mathematical framework that characterizes all of these evolutionary models. PMID:28265103
Philopatry and migration of Pacific white sharks
Jorgensen, Salvador J.; Reeb, Carol A.; Chapple, Taylor K.; Anderson, Scot; Perle, Christopher; Van Sommeran, Sean R.; Fritz-Cope, Callaghan; Brown, Adam C.; Klimley, A. Peter; Block, Barbara A.
2010-01-01
Advances in electronic tagging and genetic research are making it possible to discern population structure for pelagic marine predators once thought to be panmictic. However, reconciling migration patterns and gene flow to define the resolution of discrete population management units remains a major challenge, and a vital conservation priority for threatened species such as oceanic sharks. Many such species have been flagged for international protection, yet effective population assessments and management actions are hindered by lack of knowledge about the geographical extent and size of distinct populations. Combining satellite tagging, passive acoustic monitoring and genetics, we reveal how eastern Pacific white sharks (Carcharodon carcharias) adhere to a highly predictable migratory cycle. Individuals persistently return to the same network of coastal hotspots following distant oceanic migrations and comprise a population genetically distinct from previously identified phylogenetic clades. We hypothesize that this strong homing behaviour has maintained the separation of a northeastern Pacific population following a historical introduction from Australia/New Zealand migrants during the Late Pleistocene. Concordance between contemporary movement and genetic divergence based on mitochondrial DNA demonstrates a demographically independent management unit not previously recognized. This population's fidelity to discrete and predictable locations offers clear population assessment, monitoring and management options. PMID:19889703
Exploring the Climate Change, Migration and Conflict Nexus.
Burrows, Kate; Kinney, Patrick L
2016-04-22
The potential link between climate change, migration, and conflict has been widely discussed and is increasingly viewed by policy makers as a security issue. However, considerable uncertainty remains regarding the role that climate variability and change play among the many drivers of migration and conflict. The overall objective of this paper is to explore the potential pathways linking climate change, migration and increased risk of conflict. We review the existing literature surrounding this issue and break the problem into two components: the links between climate change and migration, and those between migration and conflict. We found a large range of views regarding the importance of climate change as a driver for increasing rates of migration and subsequently of conflict. We argue that future research should focus not only on the climate-migration-conflict pathway but also work to understand the other pathways by which climate variability and change might exacerbate conflict. We conclude by proposing five questions to help guide future research on the link between climate change, migration, and conflict.
Exploring the Climate Change, Migration and Conflict Nexus
Burrows, Kate; Kinney, Patrick L.
2016-01-01
The potential link between climate change, migration, and conflict has been widely discussed and is increasingly viewed by policy makers as a security issue. However, considerable uncertainty remains regarding the role that climate variability and change play among the many drivers of migration and conflict. The overall objective of this paper is to explore the potential pathways linking climate change, migration and increased risk of conflict. We review the existing literature surrounding this issue and break the problem into two components: the links between climate change and migration, and those between migration and conflict. We found a large range of views regarding the importance of climate change as a driver for increasing rates of migration and subsequently of conflict. We argue that future research should focus not only on the climate-migration-conflict pathway but also work to understand the other pathways by which climate variability and change might exacerbate conflict. We conclude by proposing five questions to help guide future research on the link between climate change, migration, and conflict. PMID:27110806
Effect of sociocultural cleavage on genetic differentiation: a study from North India.
Khan, Faisal; Pandey, Atul Kumar; Borkar, Meenal; Tripathi, Manorma; Talwar, Sudha; Bisen, P S; Agrawal, Suraksha
2008-06-01
Indian populations possess an exclusive genetic profile primarily due to the many migratory events, which caused an extensive range of genetic diversity, and also due to stringent and austere sociocultural barriers that structure these populations into different endogamous groups. In the present study we attempt to explore the genetic relationships between various endogamous North Indian populations and to determine the effect of stringent social regulations on their gene pool. Twenty STR markers were genotyped in 1,800 random North Indians from 9 endogamous populations belonging to upper-caste and middle-caste Hindus and Muslims. All nine populations had high allelic diversity (176 alleles) and average observed heterozygosity (0.742 +/- 0.06), suggesting strong intrapopulation diversity. The average F(ST) value over all loci was as low as 0.0084. However, within-group F(ST) and genetic distance analysis showed that populations of the same group were genetically closer to each other. The genetic distance of Muslims from middle castes (F(ST) = 0.0090; DA = 0.0266) was significantly higher than that of Muslims from upper castes (F(ST) = 0.0050; DA = 0.0148). Phylogenetic trees (neighbor-joining and maximum-likelihood) show the basal cluster pattern of three clusters corresponding to Muslims, upper-caste, and middle-caste populations, with Muslims clustered with upper-caste populations. Based on the results, we conclude that the extensive gene flow through a series of migrations and invasions has created an enormous amount of genetic diversity. The interpopulation differences are minimal but have a definite pattern, in which populations of different socioreligious groups have more genetic similarity within the same group and are genetically more distant from populations of other groups. Finally, North Indian Muslims show a differential genetic relationship with upper- and middle-caste populations.
E. L. Landguth; S. A. Cushman; M. A. Murphy; G. Luikart
2010-01-01
Linking landscape effects on gene flow to processes such as dispersal and mating is essential to provide a conceptual foundation for landscape genetics. It is particularly important to determine how classical population genetic models relate to recent individual-based landscape genetic models when assessing individual movement and its influence on population genetic...
Genetic studies on populations of large river fishes provide a potentially useful but underutilized research and assessment tool. Population genetic research on freshwater systems has provided meaningful insight into stock structure, hybridization issues, and gene flow/migration...
Phylogeny of Fomitopsis pinicola: A species complex
John Haight; Gary A. Laursen; Jessie A. Glaeser; D. Lee Taylor
2016-01-01
Fungal species with a broad distribution may exhibit considerable genetic variation over their geographic ranges. Variation may develop among populations based on geographic isolation, lack of migration, and genetic drift, though this genetic variation may not always be evident when examining phenotypic characters. Fomitopsis pinicola is an...
Sjöqvist, C; Godhe, A; Jonsson, P R; Sundqvist, L; Kremp, A
2015-01-01
Drivers of population genetic structure are still poorly understood in marine micro-organisms. We exploited the North Sea–Baltic Sea transition for investigating the seascape genetics of a marine diatom, Skeletonema marinoi. Eight polymorphic microsatellite loci were analysed in 354 individuals from ten locations to analyse population structure of the species along a 1500-km-long salinity gradient ranging from 3 to 30 psu. To test for salinity adaptation, salinity reaction norms were determined for sets of strains originating from three different salinity regimes of the gradient. Modelled oceanographic connectivity was compared to directional relative migration by correlation analyses to examine oceanographic drivers. Population genetic analyses showed distinct genetic divergence of a low-salinity Baltic Sea population and a high-salinity North Sea population, coinciding with the most evident physical dispersal barrier in the area, the Danish Straits. Baltic Sea populations displayed reduced genetic diversity compared to North Sea populations. Growth optima of low salinity isolates were significantly lower than those of strains from higher native salinities, indicating local salinity adaptation. Although the North Sea–Baltic Sea transition was identified as a barrier to gene flow, migration between Baltic Sea and North Sea populations occurred. However, the presence of differentiated neutral markers on each side of the transition zone suggests that migrants are maladapted. It is concluded that local salinity adaptation, supported by oceanographic connectivity patterns creating an asymmetric migration pattern between the Baltic Sea and the North Sea, determines genetic differentiation patterns in the transition zone. PMID:25892181
Challenging views on the peopling history of East Asia: the story according to HLA markers.
Di, Da; Sanchez-Mazas, Alicia
2011-05-01
The peopling of East Asia by the first modern humans is strongly debated from a genetic point of view. A north-south genetic differentiation observed in this geographic area suggests different hypotheses on the origin of Northern East Asian (NEA) and Southern East Asian (SEA) populations. In this study, the highly polymorphic HLA markers were used to investigate East Asian genetic diversity. Our database covers a total of about 127,000 individuals belonging to 84 distinct Asian populations tested for HLA-A, -B, -C, -DPB1, and/or -DRB1 alleles. Many Chinese populations are represented, which have been sampled in the last 30 years but rarely taken into account in international research due to their data published in Chinese. By using different statistical methods, we found a significant correlation between genetics and geography and relevant genetic clines in East Asia. Additionally, HLA alleles appear to be unevenly distributed: some alleles observed in NEA populations are widespread at the global level, while some alleles observed in SEA populations are virtually unique in Asia. The HLA genetic variation in East Asia is also characterized by a decrease of diversity from north to south, although a reverse pattern appears when one only focuses on alleles restricted to Asia. These results reflect a more complex migration history than that illustrated by the "southern-origin" hypothesis, as genetic contribution of ancient human migrations through a northern route has probably been quite substantial. We thus suggest a new overlapping model where northward and southward opposite migrations occurring at different periods overlapped. Copyright © 2011 Wiley-Liss, Inc.
Linking genetic and environmental factors in amphibian disease risk
Savage, Anna E; Becker, Carlos G; Zamudio, Kelly R
2015-01-01
A central question in evolutionary biology is how interactions between organisms and the environment shape genetic differentiation. The pathogen Batrachochytrium dendrobatidis (Bd) has caused variable population declines in the lowland leopard frog (Lithobates yavapaiensis); thus, disease has potentially shaped, or been shaped by, host genetic diversity. Environmental factors can also influence both amphibian immunity and Bd virulence, confounding our ability to assess the genetic effects on disease dynamics. Here, we used genetics, pathogen dynamics, and environmental data to characterize L. yavapaiensis populations, estimate migration, and determine relative contributions of genetic and environmental factors in predicting Bd dynamics. We found that the two uninfected populations belonged to a single genetic deme, whereas each infected population was genetically unique. We detected an outlier locus that deviated from neutral expectations and was significantly correlated with mortality within populations. Across populations, only environmental variables predicted infection intensity, whereas environment and genetics predicted infection prevalence, and genetic diversity alone predicted mortality. At one locality with geothermally elevated water temperatures, migration estimates revealed source–sink dynamics that have likely prevented local adaptation. We conclude that integrating genetic and environmental variation among populations provides a better understanding of Bd spatial epidemiology, generating more effective conservation management strategies for mitigating amphibian declines. PMID:26136822
Leo, N P; Hughes, J M; Yang, X; Poudel, S K S; Brogdon, W G; Barker, S C
2005-07-01
Little is known about the population genetics of the louse infestations of humans. We used microsatellite DNA to study 11 double infestations, that is, hosts infested with head lice and body lice simultaneously. We tested for population structure on a host, and for population structure among seven hosts that shared sleeping quarters. We also sought evidence of migration among louse populations. Our results showed that: (i) the head and body lice on these individual hosts were two genetically distinct populations; (ii) each host had their own populations of head and body lice that were genetically distinct to those on other hosts; and (iii) lice had migrated from head to head, and from body to body, but not between heads and bodies. Our results indicate that head and body lice are separate species.
Cortázar-Chinarro, Maria; Lattenkamp, Ella Z; Meyer-Lucht, Yvonne; Luquet, Emilien; Laurila, Anssi; Höglund, Jacob
2017-08-14
Past events like fluctuations in population size and post-glacial colonization processes may influence the relative importance of genetic drift, migration and selection when determining the present day patterns of genetic variation. We disentangle how drift, selection and migration shape neutral and adaptive genetic variation in 12 moor frog populations along a 1700 km latitudinal gradient. We studied genetic differentiation and variation at a MHC exon II locus and a set of 18 microsatellites. Using outlier analyses, we identified the MHC II exon 2 (corresponding to the β-2 domain) locus and one microsatellite locus (RCO8640) to be subject to diversifying selection, while five microsatellite loci showed signals of stabilizing selection among populations. STRUCTURE and DAPC analyses on the neutral microsatellites assigned populations to a northern and a southern cluster, reflecting two different post-glacial colonization routes found in previous studies. Genetic variation overall was lower in the northern cluster. The signature of selection on MHC exon II was weaker in the northern cluster, possibly as a consequence of smaller and more fragmented populations. Our results show that historical demographic processes combined with selection and drift have led to a complex pattern of differentiation along the gradient where some loci are more divergent among populations than predicted from drift expectations due to diversifying selection, while other loci are more uniform among populations due to stabilizing selection. Importantly, both overall and MHC genetic variation are lower at northern latitudes. Due to lower evolutionary potential, the low genetic variation in northern populations may increase the risk of extinction when confronted with emerging pathogens and climate change.
Rural-Urban Migration in Colombia.
ERIC Educational Resources Information Center
Schultz, T. Paul
The rural-urban migration pattern in Colombia during the last 25 years has resulted in a population increase in urban areas from 30 to 52 percent of the total population. This study explores the causes of internal migration. Migration rates are estimated for various groups in the population to clarify who migrates and to where. A model of…
NASA Astrophysics Data System (ADS)
Kopps, Anna M.; Palsbøll, Per J.
2016-02-01
The assessment of the status of endangered species or populations typically draw generously on the plethora of population genetic software available to detect population genetic structuring. However, despite the many available analytical approaches, population genetic inference methods [of neutral genetic variation] essentially capture three basic processes; migration, random genetic drift and mutation. Consequently, different analytical approaches essentially capture the same basic process, and should yield consistent results.
The Fat-like Cadherin CDH-4 Acts Cell-Non-Autonomously in Anterior-Posterior Neuroblast Migration
Sundararajan, Lakshmi; Norris, Megan L.; Schöneich, Sebastian; Ackley, Brian D.; Lundquist, Erik A.
2014-01-01
Directed migration of neurons is critical in the normal and pathological development of the brain and central nervous system. In C. elegans, the bilateral Q neuroblasts, QR on the right and QL on the left, migrate anteriorly and posteriorly, respectively. Initial protrusion and migration of the Q neuroblasts is autonomously controlled by the transmembrane proteins UNC-40/DCC, PTP-3/LAR, and MIG-21. As QL migrates posteriorly, it encounters and EGL-20/Wnt signal that induces MAB-5/Hox expression that drives QL descendant posterior migration. QR migrates anteriorly away from EGL-20/Wnt and does not activate MAB-5/Hox, resulting in anterior QR descendant migration. A forward genetic screen for new mutations affecting initial Q migrations identified alleles of cdh-4, which caused defects in both QL and QR directional migration similar to unc-40, ptp-3, and mig-21. Previous studies showed that in QL, PTP-3/LAR and MIG-21 act in a pathway in parallel to UNC-40/DCC to drive posterior QL migration. Here we show genetic evidence that CDH-4 acts in the PTP-3/MIG-21 pathway in parallel to UNC-40/DCC to direct posterior QL migration. In QR, the PTP-3/MIG-21 and UNC-40/DCC pathways mutually inhibit each other, allowing anterior QR migration. We report here that CDH-4 acts in both the PTP-3/MIG-21 and UNC-40/DCC pathways in mutual inhibition in QR, and that CDH-4 acts cell-non-autonomously. Interaction of CDH-4 with UNC-40/DCC in QR but not QL represents an inherent left-right asymmetry in the Q cells, the nature of which is not understood. We conclude that CDH-4 might act as a permissive signal for each Q neuroblast to respond differently to anterior-posterior guidance information based upon inherent left-right asymmetries in the Q neuroblasts. PMID:24954154
Valdiosera, Cristina; Günther, Torsten; Vera-Rodríguez, Juan Carlos; Ureña, Irene; Iriarte, Eneko; Rodríguez-Varela, Ricardo; Simões, Luciana G; Martínez-Sánchez, Rafael M; Svensson, Emma M; Malmström, Helena; Rodríguez, Laura; Bermúdez de Castro, José-María; Carbonell, Eudald; Alday, Alfonso; Hernández Vera, José Antonio; Götherström, Anders; Carretero, José-Miguel; Arsuaga, Juan Luis; Smith, Colin I; Jakobsson, Mattias
2018-03-27
Population genomic studies of ancient human remains have shown how modern-day European population structure has been shaped by a number of prehistoric migrations. The Neolithization of Europe has been associated with large-scale migrations from Anatolia, which was followed by migrations of herders from the Pontic steppe at the onset of the Bronze Age. Southwestern Europe was one of the last parts of the continent reached by these migrations, and modern-day populations from this region show intriguing similarities to the initial Neolithic migrants. Partly due to climatic conditions that are unfavorable for DNA preservation, regional studies on the Mediterranean remain challenging. Here, we present genome-wide sequence data from 13 individuals combined with stable isotope analysis from the north and south of Iberia covering a four-millennial temporal transect (7,500-3,500 BP). Early Iberian farmers and Early Central European farmers exhibit significant genetic differences, suggesting two independent fronts of the Neolithic expansion. The first Neolithic migrants that arrived in Iberia had low levels of genetic diversity, potentially reflecting a small number of individuals; this diversity gradually increased over time from mixing with local hunter-gatherers and potential population expansion. The impact of post-Neolithic migrations on Iberia was much smaller than for the rest of the continent, showing little external influence from the Neolithic to the Bronze Age. Paleodietary reconstruction shows that these populations have a remarkable degree of dietary homogeneity across space and time, suggesting a strong reliance on terrestrial food resources despite changing culture and genetic make-up. Copyright © 2018 the Author(s). Published by PNAS.
Chiu, Chi-Te; Huang, Chao-Li; Hung, Kuo-Hsiang; Chiang, Tzen-Yuh
2016-01-01
Postglacial climate changes alter geographical distributions and diversity of species. Such ongoing changes often force species to migrate along the latitude/altitude. Altitudinal gradients represent assemblage of environmental, especially climatic, variable factors that influence the plant distributions. Global warming that triggered upward migrations has therefore impacted the alpine plants on an island. In this study, we examined the genetic structure of Juniperus morrisonicola, a dominant alpine species in Taiwan, and inferred historical, demographic dynamics based on multilocus analyses. Lower levels of genetic diversity in north indicated that populations at higher latitudes were vulnerable to climate change, possibly related to historical alpine glaciers. Neither organellar DNA nor nuclear genes displayed geographical subdivisions, indicating that populations were likely interconnected before migrating upward to isolated mountain peaks, providing low possibilities of seed/pollen dispersal across mountain ranges. Bayesian skyline plots suggested steady population growth of J. morrisonicola followed by recent demographic contraction. In contrast, most lower-elevation plants experienced recent demographic expansion as a result of global warming. The endemic alpine conifer may have experienced dramatic climate changes over the alternation of glacial and interglacial periods, as indicated by a trend showing decreasing genetic diversity with the altitudinal gradient, plus a fact of upward migration. PMID:27561108
Huang, Chi-Chun; Hsu, Tsai-Wen; Wang, Hao-Ven; Liu, Zin-Huang; Chen, Yi-Yen; Chiu, Chi-Te; Huang, Chao-Li; Hung, Kuo-Hsiang; Chiang, Tzen-Yuh
2016-01-01
Postglacial climate changes alter geographical distributions and diversity of species. Such ongoing changes often force species to migrate along the latitude/altitude. Altitudinal gradients represent assemblage of environmental, especially climatic, variable factors that influence the plant distributions. Global warming that triggered upward migrations has therefore impacted the alpine plants on an island. In this study, we examined the genetic structure of Juniperus morrisonicola, a dominant alpine species in Taiwan, and inferred historical, demographic dynamics based on multilocus analyses. Lower levels of genetic diversity in north indicated that populations at higher latitudes were vulnerable to climate change, possibly related to historical alpine glaciers. Neither organellar DNA nor nuclear genes displayed geographical subdivisions, indicating that populations were likely interconnected before migrating upward to isolated mountain peaks, providing low possibilities of seed/pollen dispersal across mountain ranges. Bayesian skyline plots suggested steady population growth of J. morrisonicola followed by recent demographic contraction. In contrast, most lower-elevation plants experienced recent demographic expansion as a result of global warming. The endemic alpine conifer may have experienced dramatic climate changes over the alternation of glacial and interglacial periods, as indicated by a trend showing decreasing genetic diversity with the altitudinal gradient, plus a fact of upward migration.
He, Yungang; Wang, Wei R.; Li, Ran; Wang, Sijia; Jin, Li
2012-01-01
An accurate estimate of the divergence time between Native Americans is important for understanding the initial entry and early dispersion of human beings in the New World. Current methods for estimating the genetic divergence time of populations could seriously depart from a linear relationship with the true divergence for multiple populations of a different population size and significant population expansion. Here, to address this problem, we propose a novel measure to estimate the genetic divergence time of populations. Computer simulation revealed that the new measure maintained an excellent linear correlation with the population divergence time in complicated multi-population scenarios with population expansion. Utilizing the new measure and microsatellite data of 21 Native American populations, we investigated the genetic divergences of the Native American populations. The results indicated that genetic divergences between North American populations are greater than that between Central and South American populations. None of the divergences, however, were large enough to constitute convincing evidence supporting the two-wave or multi-wave migration model for the initial entry of human beings into America. The genetic affinity of the Native American populations was further explored using Neighbor-Net and the genetic divergences suggested that these populations could be categorized into four genetic groups living in four different ecologic zones. The divergence of the population groups suggests that the early dispersion of human beings in America was a multi-step procedure. Further, the divergences suggest the rapid dispersion of Native Americans in Central and South Americas after a long standstill period in North America. PMID:22970308
Josephson, Matthew P.; Aliani, Rana; Norris, Megan L.; Ochs, Matthew E.; Gujar, Mahekta; Lundquist, Erik A.
2017-01-01
During nervous system development, neurons and their progenitors migrate to their final destinations. In Caenorhabditis elegans, the bilateral Q neuroblasts and their descendants migrate long distances in opposite directions, despite being born in the same posterior region. QR on the right migrates anteriorly and generates the AQR neuron positioned near the head, and QL on the left migrates posteriorly, giving rise to the PQR neuron positioned near the tail. In a screen for genes required for AQR and PQR migration, we identified an allele of nfm-1, which encodes a molecule similar to vertebrate NF2/Merlin, an important tumor suppressor in humans. Mutations in NF2 lead to neurofibromatosis type II, characterized by benign tumors of glial tissues. Here we demonstrate that in C. elegans, nfm-1 is required for the ability of Q cells and their descendants to extend protrusions and to migrate, but is not required for direction of migration. Using a combination of mosaic analysis and cell-specific expression, we show that NFM-1 is required nonautonomously, possibly in muscles, to promote Q lineage migrations. We also show a genetic interaction between nfm-1 and the C. elegans Slit homolog slt-1, which encodes a conserved secreted guidance cue. Our results suggest that NFM-1 might be involved in the generation of an extracellular cue that promotes Q neuroblast protrusion and migration that acts with or in parallel to SLT-1. In vertebrates, NF2 and Slit2 interact in axon pathfinding, suggesting a conserved interaction of NF2 and Slit2 in regulating migratory events. PMID:27913619
The genetic structure of a relict population of wood frogs
Scherer, Rick; Muths, Erin; Noon, Barry; Oyler-McCance, Sara
2012-01-01
Habitat fragmentation and the associated reduction in connectivity between habitat patches are commonly cited causes of genetic differentiation and reduced genetic variation in animal populations. We used eight microsatellite markers to investigate genetic structure and levels of genetic diversity in a relict population of wood frogs (Lithobates sylvatica) in Rocky Mountain National Park, Colorado, where recent disturbances have altered hydrologic processes and fragmented amphibian habitat. We also estimated migration rates among subpopulations, tested for a pattern of isolation-by-distance, and looked for evidence of a recent population bottleneck. The results from the clustering algorithm in Program STRUCTURE indicated the population is partitioned into two genetic clusters (subpopulations), and this result was further supported by factorial component analysis. In addition, an estimate of FST (FST = 0.0675, P value \\0.0001) supported the genetic differentiation of the two clusters. Estimates of migration rates among the two subpopulations were low, as were estimates of genetic variability. Conservation of the population of wood frogs may be improved by increasing the spatial distribution of the population and improving gene flow between the subpopulations. Construction or restoration of wetlands in the landscape between the clusters has the potential to address each of these objectives.
A location selection policy of live virtual machine migration for power saving and load balancing.
Zhao, Jia; Ding, Yan; Xu, Gaochao; Hu, Liang; Dong, Yushuang; Fu, Xiaodong
2013-01-01
Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy) of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA). This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA) idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful.
A Location Selection Policy of Live Virtual Machine Migration for Power Saving and Load Balancing
Xu, Gaochao; Hu, Liang; Dong, Yushuang; Fu, Xiaodong
2013-01-01
Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy) of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA). This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA) idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful. PMID:24348165
Insight into the Migration Routes of Plutella xylostella in China Using mtCOI and ISSR Markers
Tian, Lixia; Xu, Baoyun; Xie, Wen; Wang, Shaoli; Zhang, Youjun; Wang, Xiangjing; Wu, Qingjun
2015-01-01
The larvae of the diamondback moth, Plutella xylostella, cause major economic losses to cruciferous crops, including cabbage, which is an important vegetable crop in China. In this study, we used the mitochondrial COI gene and 11 ISSR markers to characterize the genetic structure and seasonal migration routes of 23 P. xylostella populations in China. Both the mitochondrial and nuclear markers revealed high haplotype diversity and gene flow among the populations, although some degree of genetic isolation was evident between the populations of Hainan Island and other sampling sites. The dominant haplotypes, LX1 and LX2, differed significantly from all other haplotypes both in terms of the number of individuals with those haplotypes and their distributions. Haplotypes that were shared among populations revealed that P. xylostella migrates from the lower reaches of the Yangtze River to northern China and then to northeastern China. Our results also revealed another potential migration route for P. xylostella, i.e., from southwestern China to both northwestern and southern China. PMID:26098353
Pujolar, José M; Lucarda, Alvise N; Simonato, Mauro; Patarnello, Tomaso
2011-04-14
The genetic structure of the marble trout Salmo trutta marmoratus, an endemic salmonid of northern Italy and the Balkan peninsula, was explored at the macro- and micro-scale level using a combination of mitochondrial DNA (mtDNA) and microsatellite data. Sequence variation in the mitochondrial control region showed the presence of nonindigenous haplotypes indicative of introgression from brown trout into marble trout. This was confirmed using microsatellite markers, which showed a higher introgression at nuclear level. Microsatellite loci revealed a strong genetic differentiation across the geographical range of marble trout, which suggests restricted gene flow both at the micro-geographic (within rivers) and macro-geographic (among river systems) scale. A pattern of Isolation-by-Distance was found, in which genetic samples were correlated with hydrographic distances. A general West-to-East partition of the microsatellite polymorphism was observed, which was supported by the geographic distribution of mitochondrial haplotypes. While introgression at both mitochondrial and nuclear level is unlikely to result from natural migration and might be the consequence of current restocking practices, the pattern of genetic substructuring found at microsatellites has been likely shaped by historical colonization patterns determined by the geological evolution of the hydrographic networks.
Jiménez, Rosa Alicia
2016-01-01
The influence of geologic and Pleistocene glacial cycles might result in morphological and genetic complex scenarios in the biota of the Mesoamerican region. We tested whether berylline, blue-tailed and steely-blue hummingbirds, Amazilia beryllina, Amazilia cyanura and Amazilia saucerottei, show evidence of historical or current introgression as their plumage colour variation might suggest. We also analysed the role of past and present climatic events in promoting genetic introgression and species diversification. We collected mitochondrial DNA (mtDNA) sequence data and microsatellite loci scores for populations throughout the range of the three Amazilia species, as well as morphological and ecological data. Haplotype network, Bayesian phylogenetic and divergence time inference, historical demography, palaeodistribution modelling, and niche divergence tests were used to reconstruct the evolutionary history of this Amazilia species complex. An isolation-with-migration coalescent model and Bayesian assignment analysis were assessed to determine historical introgression and current genetic admixture. mtDNA haplotypes were geographically unstructured, with haplotypes from disparate areas interdispersed on a shallow tree and an unresolved haplotype network. Assignment analysis of the nuclear genome (nuDNA) supported three genetic groups with signs of genetic admixture, corresponding to: (1) A. beryllina populations located west of the Isthmus of Tehuantepec; (2) A. cyanura populations between the Isthmus of Tehuantepec and the Nicaraguan Depression (Nuclear Central America); and (3) A. saucerottei populations southeast of the Nicaraguan Depression. Gene flow and divergence time estimates, and demographic and palaeodistribution patterns suggest an evolutionary history of introgression mediated by Quaternary climatic fluctuations. High levels of gene flow were indicated by mtDNA and asymmetrical isolation-with-migration, whereas the microsatellite analyses found evidence for three genetic clusters with distributions corresponding to isolation by the Isthmus of Tehuantepec and the Nicaraguan Depression and signs of admixture. Historical levels of migration between genetically distinct groups estimated using microsatellites were higher than contemporary levels of migration. These results support the scenario of secondary contact and range contact during the glacial periods of the Pleistocene and strongly imply that the high levels of structure currently observed are a consequence of the limited dispersal of these hummingbirds across the isthmus and depression barriers. PMID:26788433
Risk and reproductive decisions: British Pakistani couples' responses to genetic counselling.
Shaw, Alison
2011-07-01
How far does ethnicity/culture/religion mediate couples' responses to genetic risk? This paper examines the responses of 51 British Pakistani couples referred to a genetics clinic in southern England to counselling about recurrence risks for genetic problems in children. It is based on fieldwork conducted between 2000 and 2004 that combined participant observation of genetics consultations with interviews in respondents' homes. Interviews were conducted with 62 adults in connection with these 51 cases, of which 32 were followed through two or more clinical consultations and 12 through more than one pregnancy. Risk responses were categorized as: taking the risk; postponing; exploring risk management or dismissing the risk as irrelevant to current circumstances. Responses were cross-referenced for associations with the severity of the condition, number of affected and unaffected children, availability of a prenatal test, age, gender, and migration history. I found that most couples were initially risk-takers who already had an unaffected child or children. Couples caring for living children with severe conditions were more likely to postpone. However, the risk responses of 15 couples changed over time, most towards and some away from risk management, reflecting changes in couples' appreciation of the severity of the condition and their subsequent reproductive experiences. The study highlights the diversity and dynamism of responses within one ethnic group and challenges stereotypes about cultural and religious responses to genetic risk. Copyright © 2011 Elsevier Ltd. All rights reserved.
The shaping of genetic variation in edge-of-range populations under past and future climate change
Razgour, Orly; Juste, Javier; Ibáñez, Carlos; Kiefer, Andreas; Rebelo, Hugo; Puechmaille, Sébastien J; Arlettaz, Raphael; Burke, Terry; Dawson, Deborah A; Beaumont, Mark; Jones, Gareth; Wiens, John
2013-01-01
With rates of climate change exceeding the rate at which many species are able to shift their range or adapt, it is important to understand how future changes are likely to affect biodiversity at all levels of organisation. Understanding past responses and extent of niche conservatism in climatic tolerance can help predict future consequences. We use an integrated approach to determine the genetic consequences of past and future climate changes on a bat species, Plecotus austriacus. Glacial refugia predicted by palaeo-modelling match those identified from analyses of extant genetic diversity and model-based inference of demographic history. Former refugial populations currently contain disproportionately high genetic diversity, but niche conservatism, shifts in suitable areas and barriers to migration mean that these hotspots of genetic diversity are under threat from future climate change. Evidence of population decline despite recent northward migration highlights the need to conserve leading-edge populations for spearheading future range shifts. PMID:23890483
The role of the Vlax Roma in shaping the European Romani maternal genetic history.
Salihović, Marijana Peričić; Barešić, Ana; Klarić, Irena Martinović; Cukrov, Slavena; Lauc, Lovorka Barać; Janićijević, Branka
2011-10-01
The Roma are comprised of many founder groups of common Indian origins but different socio-cultural characteristics. The Vlax Roma are one of the founder Roma populations characterized by a period of bondage in the historic Romanian principalities, and by the archaic Romanian language. Demographic history suggests different migration routes of Roma populations, especially after their arrival in Mesopotamia and the eastern boundary of the Byzantine Empire. Although various genetic studies of uniparental genetic markers showed a connection between Roma genetic legacy and their migration routes, precise sampling of Roma populations elucidates this relationship in more detail. In this study, we analyzed mitochondrial DNA of 384 Croatian Vlax Roma from two geographic locations in the context of 734 European Roma samples. Our results show that Roma migration routes are marked with two Near-Eastern haplogroups, X2 and U3, whose inverse proportional incidence clearly separates the Balkan and the Vlax Roma from other Roma populations that reached Europe as part of the first migration wave. Spatial and temporal characteristics of these haplogroups indicate a possibility of their admixture with Roma populations before arrival in Europe. Distribution of haplogroup M35 indicates that all Vlax Roma populations descend from one single founder population that might even reach back to the original ancestral Indian population. Founder effects followed by strict endogamy rules can be traced from India to contemporary small, local communities, as in the case of two Croatian Vlax Roma populations that show clear population differentiation despite similar origins and shared demographic history. Copyright © 2011 Wiley-Liss, Inc.
Stevens, Lori; Monroy, M. Carlota; Rodas, Antonieta Guadalupe; Hicks, Robin M.; Lucero, David E.; Lyons, Leslie A.; Dorn, Patricia L.
2015-01-01
Triatoma dimidiata (Latreille, 1811) is the most abundant and significant insect vector of the parasite Trypanosoma cruzi in Central America, and particularly in Guatemala. Tr. cruzi is the causative agent of Chagas disease, and successful disease control requires understanding the geographic distribution and degree of migration of vectors such as T. dimidiata that frequently re-infest houses within months following insecticide application. The population genetic structure of T. dimidiata collected from six villages in southern Guatemala was studied to gain insight into the migration patterns of the insects in this region where populations are largely domestic. This study provided insight into the likelihood of eliminating T. dimidiata by pesticide application as has been observed in some areas for other domestic triatomines such as Triatoma infestans. Genotypes of microsatellite loci for 178 insects from six villages were found to represent five genetic clusters using a Bayesian Markov Chain Monte Carlo method. Individual clusters were found in multiple villages, with multiple clusters in the same house. Although migration occurred, there was statistically significant genetic differentiation among villages (FRT = 0.05) and high genetic differentiation among houses within villages (FSR = 0.11). Relatedness of insects within houses varied from 0 to 0.25, i.e., from unrelated to half-sibs. The results suggest that T. dimidiata in southern Guatemala moves between houses and villages often enough that recolonization is likely, implying the use of insecticides alone is not sufficient for effective control of Chagas disease in this region and more sustainable solutions are required. PMID:26334816
sGD software for estimating spatially explicit indices of genetic diversity
A. J. Shirk; Samuel Cushman
2011-01-01
Anthropogenic landscape changes have greatly reduced the population size, range and migration rates of many terrestrial species. The small local effective population size of remnant populations favours loss of genetic diversity leading to reduced fitness and adaptive potential, and thus ultimately greater extinction risk. Accurately quantifying genetic diversity is...
Awad, Lara; Fady, Bruno; Khater, Carla; Roig, Anne; Cheddadi, Rachid
2014-01-01
The threatened conifer Abies cilicica currently persists in Lebanon in geographically isolated forest patches. The impact of demographic and evolutionary processes on population genetic diversity and structure were assessed using 10 nuclear microsatellite loci. All remnant 15 local populations revealed a low genetic variation but a high recent effective population size. FST-based measures of population genetic differentiation revealed a low spatial genetic structure, but Bayesian analysis of population structure identified a significant Northeast-Southwest population structure. Populations showed significant but weak isolation-by-distance, indicating non-equilibrium conditions between dispersal and genetic drift. Bayesian assignment tests detected an asymmetric Northeast-Southwest migration involving some long-distance dispersal events. We suggest that the persistence and Northeast-Southwest geographic structure of Abies cilicica in Lebanon is the result of at least two demographic processes during its recent evolutionary history: (1) recent migration to currently marginal populations and (2) local persistence through altitudinal shifts along a mountainous topography. These results might help us better understand the mechanisms involved in the species response to expected climate change. PMID:24587219
The role of MACF1 in nervous system development and maintenance.
Moffat, Jeffrey J; Ka, Minhan; Jung, Eui-Man; Smith, Amanda L; Kim, Woo-Yang
2017-09-01
Microtubule-actin crosslinking factor 1 (MACF1), also known as actin crosslinking factor 7 (ACF7), is essential for proper modulation of actin and microtubule cytoskeletal networks. Most MACF1 isoforms are expressed broadly in the body, but some are exclusively found in the nervous system. Consequentially, MACF1 is integrally involved in multiple neural processes during development and in adulthood, including neurite outgrowth and neuronal migration. Furthermore, MACF1 participates in several signaling pathways, including the Wnt/β-catenin and GSK-3 signaling pathways, which regulate key cellular processes, such as proliferation and cell migration. Genetic mutation or dysregulation of the MACF1 gene has been associated with neurodevelopmental and neurodegenerative diseases, specifically schizophrenia and Parkinson's disease. MACF1 may also play a part in neuromuscular disorders and have a neuroprotective role in the optic nerve. In this review, the authors seek to synthesize recent findings relating to the roles of MACF1 within the nervous system and explore potential novel functions of MACF1 not yet examined. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lewis, Nicola S.; Verhagen, Josanne H.; Javakhishvili, Zurab; Russell, Colin A.; Lexmond, Pascal; Westgeest, Kim B.; Bestebroer, Theo M.; Halpin, Rebecca A.; Lin, Xudong; Ransier, Amy; Fedorova, Nadia B.; Stockwell, Timothy B.; Latorre-Margalef, Neus; Olsen, Björn; Smith, Gavin; Bahl, Justin; Wentworth, David E.; Waldenström, Jonas; Fouchier, Ron A. M.
2015-01-01
Low pathogenic avian influenza A viruses (IAVs) have a natural host reservoir in wild waterbirds and the potential to spread to other host species. Here, we investigated the evolutionary, spatial and temporal dynamics of avian IAVs in Eurasian wild birds. We used whole-genome sequences collected as part of an intensive long-term Eurasian wild bird surveillance study, and combined this genetic data with temporal and spatial information to explore the virus evolutionary dynamics. Frequent reassortment and co-circulating lineages were observed for all eight genomic RNA segments over time. There was no apparent species-specific effect on the diversity of the avian IAVs. There was a spatial and temporal relationship between the Eurasian sequences and significant viral migration of avian IAVs from West Eurasia towards Central Eurasia. The observed viral migration patterns differed between segments. Furthermore, we discuss the challenges faced when analysing these surveillance and sequence data, and the caveats to be borne in mind when drawing conclusions from the apparent results of such analyses. PMID:25904147
Wiwanitkit, Viroj
2011-11-01
In Thailand, high prevalence of haemoglobin disorders has been reported. Millions of Thai people suffer from these diseases. This problem affects not only public health but also the economy of the country. Carrier detection, genetic counselling and prenatal diagnosis should be encouraged. Most of the programmes have been launched to the endemic provinces in the southern part of northeastern region of Thailand. However, due to the recent industrialisation in Thailand, the migration of the Thai population affects the pattern of haemoglobin disorder in this area. Here, the author performs a spatial analysis by Geographical Information System (GIS) using ArcExplorer Program on the database of the recorded prevalence of haemoglobin disorder in the endemic area and nearby provinces. The drift of the high prevalence from the central endemic area to the nearby provinces can be seen and support the migration effect of the population. Of interest, this observation can support the recent report on the rising prevalence of haemoglobin disorders in the non-endemic area of Thailand.
MtDNA and Y-chromosome variation in Kurdish groups.
Nasidze, Ivan; Quinque, Dominique; Ozturk, Murat; Bendukidze, Nina; Stoneking, Mark
2005-07-01
In order to investigate the origins and relationships of Kurdish-speaking groups, mtDNA HV1 sequences, eleven Y chromosome bi-allelic markers, and 9 Y-STR loci were analyzed among three Kurdish groups: Zazaki and Kurmanji speakers from Turkey, and Kurmanji speakers from Georgia. When compared with published data from other Kurdish groups and from European, Caucasian, and West and Central Asian groups, Kurdish groups are most similar genetically to other West Asian groups, and most distant from Central Asian groups, for both mtDNA and the Y-chromosome. However, Kurdish groups show a closer relationship with European groups than with Caucasian groups based on mtDNA, but the opposite based on the Y-chromosome, indicating some differences in their maternal and paternal histories. The genetic data indicate that the Georgian Kurdish group experienced a bottleneck effect during their migration to the Caucasus, and that they have not had detectable admixture with their geographic neighbours in Georgia. Our results also do not support the hypothesis of the origin of the Zazaki-speaking group being in northern Iran; genetically they are more similar to other Kurdish groups. Genetic analyses of recent events, such as the origins and migrations of Kurdish-speaking groups, can therefore lead to new insights into such migrations.
2013-01-01
Background Chagas disease, caused by the protozoan Trypanosoma cruzi is endemic in Latin America. Thirty percent of infected individuals develop chronic Chagas cardiomyopathy (CCC), an inflammatory dilated cardiomyopathy that is, by far, the most important clinical consequence of T. cruzi infection. The others remain asymptomatic (ASY). A possible genetic component to disease progression was suggested by familial aggregation of cases and the association of markers of innate and adaptive immunity genes with CCC development. Migration of Th1-type T cells play a major role in myocardial damage. Methods Our genetic analysis focused on CCR5, CCL2 and MAL/TIRAP genes. We used the Tag SNPs based approach, defined to catch all the genetic information from each gene. The study was conducted on a large Brazilian population including 315 CCC cases and 118 ASY subjects. Results The CCL2rs2530797A/A and TIRAPrs8177376A/A were associated to an increase susceptibility whereas the CCR5rs3176763C/C genotype is associated to protection to CCC. These associations were confirmed when we restricted the analysis to severe CCC, characterized by a left ventricular ejection fraction under 40%. Conclusions Our data show that polymorphisms affecting key molecules involved in several immune parameters (innate immunity signal transduction and T cell/monocyte migration) play a role in genetic susceptibility to CCC development. This also points out to the multigenic character of CCC, each polymorphism imparting a small contribution. The identification of genetic markers for CCC will provide information for pathogenesis as well as therapeutic targets. PMID:24330528
Breurec, Sebastien; Guillard, Bertrand; Hem, Sopheak; Brisse, Sylvain; Dieye, Fatou Bintou; Huerre, Michel; Oung, Chakravuth; Raymond, Josette; Sreng Tan, Tek; Thiberge, Jean-Michel; Vong, Sirenda; Monchy, Didier; Linz, Bodo
2011-01-01
The human population history in Southeast Asia was shaped by numerous migrations and population expansions. Their reconstruction based on archaeological, linguistic or human genetic data is often hampered by the limited number of informative polymorphisms in classical human genetic markers, such as the hypervariable regions of the mitochondrial DNA. Here, we analyse housekeeping gene sequences of the human stomach bacterium Helicobacter pylori from various countries in Southeast Asia and we provide evidence that H. pylori accompanied at least three ancient human migrations into this area: i) a migration from India introducing hpEurope bacteria into Thailand, Cambodia and Malaysia; ii) a migration of the ancestors of Austro-Asiatic speaking people into Vietnam and Cambodia carrying hspEAsia bacteria; and iii) a migration of the ancestors of the Thai people from Southern China into Thailand carrying H. pylori of population hpAsia2. Moreover, the H. pylori sequences reflect iv) the migrations of Chinese to Thailand and Malaysia within the last 200 years spreading hspEasia strains, and v) migrations of Indians to Malaysia within the last 200 years distributing both hpAsia2 and hpEurope bacteria. The distribution of the bacterial populations seems to strongly influence the incidence of gastric cancer as countries with predominantly hspEAsia isolates exhibit a high incidence of gastric cancer while the incidence is low in countries with a high proportion of hpAsia2 or hpEurope strains. In the future, the host range expansion of hpEurope strains among Asian populations, combined with human motility, may have a significant impact on gastric cancer incidence in Asia. PMID:21818291
Breurec, Sebastien; Guillard, Bertrand; Hem, Sopheak; Brisse, Sylvain; Dieye, Fatou Bintou; Huerre, Michel; Oung, Chakravuth; Raymond, Josette; Tan, Tek Sreng; Thiberge, Jean-Michel; Vong, Sirenda; Monchy, Didier; Linz, Bodo
2011-01-01
The human population history in Southeast Asia was shaped by numerous migrations and population expansions. Their reconstruction based on archaeological, linguistic or human genetic data is often hampered by the limited number of informative polymorphisms in classical human genetic markers, such as the hypervariable regions of the mitochondrial DNA. Here, we analyse housekeeping gene sequences of the human stomach bacterium Helicobacter pylori from various countries in Southeast Asia and we provide evidence that H. pylori accompanied at least three ancient human migrations into this area: i) a migration from India introducing hpEurope bacteria into Thailand, Cambodia and Malaysia; ii) a migration of the ancestors of Austro-Asiatic speaking people into Vietnam and Cambodia carrying hspEAsia bacteria; and iii) a migration of the ancestors of the Thai people from Southern China into Thailand carrying H. pylori of population hpAsia2. Moreover, the H. pylori sequences reflect iv) the migrations of Chinese to Thailand and Malaysia within the last 200 years spreading hspEasia strains, and v) migrations of Indians to Malaysia within the last 200 years distributing both hpAsia2 and hpEurope bacteria. The distribution of the bacterial populations seems to strongly influence the incidence of gastric cancer as countries with predominantly hspEAsia isolates exhibit a high incidence of gastric cancer while the incidence is low in countries with a high proportion of hpAsia2 or hpEurope strains. In the future, the host range expansion of hpEurope strains among Asian populations, combined with human motility, may have a significant impact on gastric cancer incidence in Asia.
Manier, Mollie K; Arnold, Stevan J
2006-12-07
Identifying ecological factors associated with population genetic differentiation is important for understanding microevolutionary processes and guiding the management of threatened populations. We identified ecological correlates of several population genetic parameters for three interacting species (two garter snakes and an anuran) that occupy a common landscape. Using multiple regression analysis, we found that species interactions were more important in explaining variation in population genetic parameters than habitat and nearest-neighbour characteristics. Effective population size was best explained by census size, while migration was associated with differences in species abundance. In contrast, genetic distance was poorly explained by the ecological correlates that we tested, but geographical distance was prominent in models for all species. We found substantially different population dynamics for the prey species relative to the two predators, characterized by larger effective sizes, lower gene flow and a state of migration-drift equilibrium. We also identified an escarpment formed by a series of block faults that serves as a barrier to dispersal for the predators. Our results suggest that successful landscape-level management should incorporate genetic and ecological data for all relevant species, because even closely associated species can exhibit very different population genetic dynamics on the same landscape.
Enteric nervous system development: migration, differentiation, and disease
Lake, Jonathan I.
2013-01-01
The enteric nervous system (ENS) provides the intrinsic innervation of the bowel and is the most neurochemically diverse branch of the peripheral nervous system, consisting of two layers of ganglia and fibers encircling the gastrointestinal tract. The ENS is vital for life and is capable of autonomous regulation of motility and secretion. Developmental studies in model organisms and genetic studies of the most common congenital disease of the ENS, Hirschsprung disease, have provided a detailed understanding of ENS development. The ENS originates in the neural crest, mostly from the vagal levels of the neuraxis, which invades, proliferates, and migrates within the intestinal wall until the entire bowel is colonized with enteric neural crest-derived cells (ENCDCs). After initial migration, the ENS develops further by responding to guidance factors and morphogens that pattern the bowel concentrically, differentiating into glia and neuronal subtypes and wiring together to form a functional nervous system. Molecules controlling this process, including glial cell line-derived neurotrophic factor and its receptor RET, endothelin (ET)-3 and its receptor endothelin receptor type B, and transcription factors such as SOX10 and PHOX2B, are required for ENS development in humans. Important areas of active investigation include mechanisms that guide ENCDC migration, the role and signals downstream of endothelin receptor type B, and control of differentiation, neurochemical coding, and axonal targeting. Recent work also focuses on disease treatment by exploring the natural role of ENS stem cells and investigating potential therapeutic uses. Disease prevention may also be possible by modifying the fetal microenvironment to reduce the penetrance of Hirschsprung disease-causing mutations. PMID:23639815
Franchini, Paolo; Irisarri, Iker; Fudickar, Adam; Schmidt, Andreas; Meyer, Axel; Wikelski, Martin; Partecke, Jesko
2017-06-01
Seasonal migration is a widespread phenomenon, which is found in many different lineages of animals. This spectacular behaviour allows animals to avoid seasonally adverse environmental conditions to exploit more favourable habitats. Migration has been intensively studied in birds, which display astonishing variation in migration strategies, thus providing a powerful system for studying the ecological and evolutionary processes that shape migratory behaviour. Despite intensive research, the genetic basis of migration remains largely unknown. Here, we used state-of-the-art radio-tracking technology to characterize the migratory behaviour of a partially migratory population of European blackbirds (Turdus merula) in southern Germany. We compared gene expression of resident and migrant individuals using high-throughput transcriptomics in blood samples. Analyses of sequence variation revealed a nonsignificant genetic structure between blackbirds differing by their migratory phenotype. We detected only four differentially expressed genes between migrants and residents, which might be associated with hyperphagia, moulting and enhanced DNA replication and transcription. The most pronounced changes in gene expression occurred between migratory birds depending on when, in relation to their date of departure, blood was collected. Overall, the differentially expressed genes detected in this analysis may play crucial roles in determining the decision to migrate, or in controlling the physiological processes required for the onset of migration. These results provide new insights into, and testable hypotheses for, the molecular mechanisms controlling the migratory phenotype and its underlying physiological mechanisms in blackbirds and other migratory bird species. © 2017 John Wiley & Sons Ltd.
Multiple zebrafish atoh1 genes specify a diversity of neuronal types in the zebrafish cerebellum.
Kidwell, Chelsea U; Su, Chen-Ying; Hibi, Masahiko; Moens, Cecilia B
2018-06-01
A single Atoh1 basic-helix-loop-helix transcription factor specifies multiple neuron types in the mammalian cerebellum and anterior hindbrain. The zebrafish genome encodes three paralagous atoh1 genes whose functions in cerebellum and anterior hindbrain development we explore here. With use of a transgenic reporter, we report that zebrafish atoh1c-expressing cells are organized in two distinct domains that are separated both by space and developmental time. An early isthmic expression domain gives rise to an extracerebellar population in rhombomere 1 and an upper rhombic lip domain gives rise to granule cell progenitors that migrate to populate all four granule cell territories of the fish cerebellum. Using genetic mutants we find that of the three zebrafish atoh1 paralogs, atoh1c and atoh1a are required for the full complement of granule neurons. Surprisingly, the two genes are expressed in non-overlapping granule cell progenitor populations, indicating that fish use duplicate atoh1 genes to generate granule cell diversity that is not detected in mammals. Finally, live imaging of granule cell migration in wildtype and atoh1c mutant embryos reveals that while atoh1c is not required for granule cell specification per se, it is required for granule cells to delaminate and migrate away from the rhombic lip. Copyright © 2018 Elsevier Inc. All rights reserved.
Geography of spring landbird migration through riparian habitats in southwestern North America
Susan K. Skagen; Jeffrey F. Kelly; Charles van Riper III; Richard L. Hutto; Deborah M. Finch; David J. Krueper; Cynthia P. Melcher
2005-01-01
Migration stopover resources, particularly riparian habitats, are critically important to landbirds migrating across the arid southwestern region of North America. To explore the effects of species biogeography and habitat affinity on spring migration patterns, we synthesized existing bird abundance and capture data collected in riparian habitats of the borderlands...
Language Policy, In-Migration and Discursive Debates in Wales
ERIC Educational Resources Information Center
Edwards, Catrin Wyn
2017-01-01
Drawing on theory from critical language policy literature, this article explores the impact of discourses on in-migration on Welsh language policy. By focussing on discursive debates surrounding the subject of in-migration, the article analyses how a range of actors produce and reproduce discourses on in-migration in Wales and how these…
Gene genealogies in geographically structured populations
Bryan K. Epperson
1999-01-01
Population genetics theory has dealt only with the spatial or geographic pattern of degrees of relatedness or genetic similarity separately for each point in time. However, a frequent goal of experimental studies is to infer migration patterns that occurred in the past or over extended periods of time. To fully understand how a present geographic pattern of genetic...
Guidi, Luiz G; Mattley, Jane; Martinez-Garay, Isabel; Monaco, Anthony P; Linden, Jennifer F; Velayos-Baeza, Antonio
2017-01-01
Abstract Developmental dyslexia is a neurodevelopmental disorder that affects reading ability caused by genetic and non-genetic factors. Amongst the susceptibility genes identified to date, KIAA0319 is a prime candidate. RNA-interference experiments in rats suggested its involvement in cortical migration but we could not confirm these findings in Kiaa0319-mutant mice. Given its homologous gene Kiaa0319L (AU040320) has also been proposed to play a role in neuronal migration, we interrogated whether absence of AU040320 alone or together with KIAA0319 affects migration in the developing brain. Analyses of AU040320 and double Kiaa0319;AU040320 knockouts (dKO) revealed no evidence for impaired cortical lamination, neuronal migration, neurogenesis or other anatomical abnormalities. However, dKO mice displayed an auditory deficit in a behavioral gap-in-noise detection task. In addition, recordings of click-evoked auditory brainstem responses revealed suprathreshold deficits in wave III amplitude in AU040320-KO mice, and more general deficits in dKOs. These findings suggest that absence of AU040320 disrupts firing and/or synchrony of activity in the auditory brainstem, while loss of both proteins might affect both peripheral and central auditory function. Overall, these results stand against the proposed role of KIAA0319 and AU040320 in neuronal migration and outline their relationship with deficits in the auditory system. PMID:29045729
Using population genetic tools to develop a control strategy for feral cats (Felis catus) in Hawai'i
Hansen, H.; Hess, S.C.; Cole, D.; Banko, P.C.
2007-01-01
Population genetics can provide information about the demographics and dynamics of invasive species that is beneficial for developing effective control strategies. We studied the population genetics of feral cats on Hawai'i Island by microsatellite analysis to evaluate genetic diversity and population structure, assess gene flow and connectivity among three populations, identify potential source populations, characterise population dynamics, and evaluate sex-biased dispersal. High genetic diversity, low structure, and high number of migrants per generation supported high gene flow that was not limited spatially. Migration rates revealed that most migration occurred out of West Mauna Kea. Effective population size estimates indicated increasing cat populations despite control efforts. Despite high gene flow, relatedness estimates declined significantly with increased geographic distance and Bayesian assignment tests revealed the presence of three population clusters. Genetic structure and relatedness estimates indicated male-biased dispersal, primarily from Mauna Kea, suggesting that this population should be targeted for control. However, recolonisation seems likely, given the great dispersal ability that may not be inhibited by barriers such as lava flows. Genetic monitoring will be necessary to assess the effectiveness of future control efforts. Management of other invasive species may benefit by employing these population genetic tools. ?? CSIRO 2007.
Jeng, Wen‐Juei; Lin, Chun‐Yen
2017-01-01
Genome‐wide association studies have indicated that human leukocyte antigen (HLA)‐DP and HLA‐DQ play roles in persistent hepatitis B virus (HBV) infection in Asia. To understand the evolution of HBV‐related single nucleotide polymorphisms (SNPs) and to correlate these SNPs with chronic HBV infection among different populations, we conducted a global perspective study on hepatitis‐related SNPs. We selected 12 HBV‐related SNPs on the HLA locus and two HBV and three hepatitis C virus immune‐related SNPs for analysis. Five nasopharyngeal carcinoma‐related SNPs served as controls. All SNP data worldwide from 26 populations were downloaded from 1,000 genomes. We found a dramatic difference in the allele frequency in most of the HBV‐ and HLA‐related SNPs in East Asia compared to the other continents. A sharp change in allele frequency in 8 of 12 SNPs was found between Bengali populations in Bangladesh and Chinese Dai populations in Xishuangbanna, China (P < 0.001); these areas represent the junction of South and East Asia. For the immune‐related SNPs, significant changes were found after leaving Africa. Most of these genes shifted from higher expression genotypes in Africa to lower expression genotypes in either Europe or South Asia (P < 0.001). During this two‐stage adaptation, immunity adjusted toward a weak immune response, which could have been a survival strategy during human migration to East Asia. The prevalence of chronic HBV infection in Africa is as high as in Asia; however, the HBV‐related SNP genotypes are not present in Africa, and so the genetic mechanism of chronic HBV infection in Africa needs further exploration. Conclusion: Two stages of genetic changes toward a weak immune response occurred when humans migrated out of Africa. These changes could be a survival strategy for avoiding cytokine storms and surviving in new environments. (Hepatology Communications 2017;1:1005–1013) PMID:29404438
Learning from HIV: exploring migration and health in South Africa.
Vearey, Joanna
2012-01-01
Southern Africa is associated with high HIV prevalence and diverse population movements, including temporary, circular movements between rural and urban areas within countries (internal migration), and movements across borders (international migration). Whilst most migration in southern Africa is associated with the search for improved livelihood opportunities in urban areas a small--but significant--number of people are forced to migrate to escape persecution or civil war. This paper utilises recent empirical studies conducted in South Africa to explore linkages between migration into urban areas and health, focusing on HIV. It is shown that the relationship between migration and HIV is complex; that both internal and international migrants move to urban areas for reasons other than healthcare seeking; and that most migratory movements into urban areas involve the positive selection of healthy individuals. Whilst healthy migration has economic benefits for rural sending households, the data uncovers an important process of return migration (internally or across borders) in times of sickness, with the burden of care placed on the rural, sending household. There is an urgent need for a comprehensive response that maintains the health of migrants in urban areas, and provides support to rural areas in times of sickness.
Migratory orientation in a narrow avian hybrid zone
Toews, David P.L.; Delmore, Kira E.; Osmond, Matthew M.; Taylor, Philip D.
2017-01-01
Background Zones of contact between closely related taxa with divergent migratory routes, termed migratory divides, have been suggested as areas where hybrid offspring may have intermediate and inferior migratory routes, resulting in low fitness of hybrids and thereby promoting speciation. In the Rocky Mountains of Canada there is a narrow hybrid zone between Audubon’s and myrtle warblers that is likely maintained by selection against hybrids. Band recoveries and isotopic studies indicate that this hybrid zone broadly corresponds to the location of a possible migratory divide, with Audubon’s warblers migrating south-southwest and myrtle warblers migrating southeast. We tested a key prediction of the migratory divide hypothesis: that genetic background would be predictive of migratory orientation among warblers in the center of the hybrid zone. Methods We recorded fall migratory orientation of wild-caught migrating warblers in the center of the hybrid zone as measured by video-based monitoring of migratory restlessness in circular orientation chambers. We then tested whether there was a relationship between migratory orientation and genetic background, as measured using a set of species-specific diagnostic genetic markers. Results We did not detect a significant association between orientation and genetic background. There was large variation among individuals in orientation direction. Mean orientation was towards the NE, surprising for birds on fall migration, but aligned with the mountain valley in which the study took place. Conclusions Only one other study has directly analyzed migratory orientation among naturally-produced hybrids in a migratory divide. While the other study showed an association between genetic background and orientation, we did not observe such an association in yellow-rumped warblers. We discuss possible reasons, including the possibility of a lack of a strong migratory divide in this hybrid zone and/or methodological limitations that may have prevented accurate measurements of long-distance migratory orientation. PMID:28439469
Verdu, Paul; Becker, Noémie S A; Froment, Alain; Georges, Myriam; Grugni, Viola; Quintana-Murci, Lluis; Hombert, Jean-Marie; Van der Veen, Lolke; Le Bomin, Sylvie; Bahuchet, Serge; Heyer, Evelyne; Austerlitz, Frédéric
2013-04-01
Sociocultural phenomena, such as exogamy or phylopatry, can largely determine human sex-specific demography. In Central Africa, diverging patterns of sex-specific genetic variation have been observed between mobile hunter-gatherer Pygmies and sedentary agricultural non-Pygmies. However, their sex-specific demography remains largely unknown. Using population genetics and approximate Bayesian computation approaches, we inferred male and female effective population sizes, sex-specific migration, and admixture rates in 23 Central African Pygmy and non-Pygmy populations, genotyped for autosomal, X-linked, Y-linked, and mitochondrial markers. We found much larger effective population sizes and migration rates among non-Pygmy populations than among Pygmies, in agreement with the recent expansions and migrations of non-Pygmies and, conversely, the isolation and stationary demography of Pygmy groups. We found larger effective sizes and migration rates for males than for females for Pygmies, and vice versa for non-Pygmies. Thus, although most Pygmy populations have patrilocal customs, their sex-specific genetic patterns resemble those of matrilocal populations. In fact, our results are consistent with a lower prevalence of polygyny and patrilocality in Pygmies compared with non-Pygmies and a potential female transmission of reproductive success in Pygmies. Finally, Pygmy populations showed variable admixture levels with the non-Pygmies, with often much larger introgression from male than from female lineages. Social discrimination against Pygmies triggering complex movements of spouses in intermarriages can explain these male-biased admixture patterns in a patrilocal context. We show how gender-related sociocultural phenomena can determine highly variable sex-specific demography among populations, and how population genetic approaches contrasting chromosomal types allow inferring detailed human sex-specific demographic history.
Verdu, Paul; Becker, Noémie S.A.; Froment, Alain; Georges, Myriam; Grugni, Viola; Quintana-Murci, Lluis; Hombert, Jean-Marie; Van der Veen, Lolke; Le Bomin, Sylvie; Bahuchet, Serge; Heyer, Evelyne; Austerlitz, Frédéric
2013-01-01
Sociocultural phenomena, such as exogamy or phylopatry, can largely determine human sex-specific demography. In Central Africa, diverging patterns of sex-specific genetic variation have been observed between mobile hunter–gatherer Pygmies and sedentary agricultural non-Pygmies. However, their sex-specific demography remains largely unknown. Using population genetics and approximate Bayesian computation approaches, we inferred male and female effective population sizes, sex-specific migration, and admixture rates in 23 Central African Pygmy and non-Pygmy populations, genotyped for autosomal, X-linked, Y-linked, and mitochondrial markers. We found much larger effective population sizes and migration rates among non-Pygmy populations than among Pygmies, in agreement with the recent expansions and migrations of non-Pygmies and, conversely, the isolation and stationary demography of Pygmy groups. We found larger effective sizes and migration rates for males than for females for Pygmies, and vice versa for non-Pygmies. Thus, although most Pygmy populations have patrilocal customs, their sex-specific genetic patterns resemble those of matrilocal populations. In fact, our results are consistent with a lower prevalence of polygyny and patrilocality in Pygmies compared with non-Pygmies and a potential female transmission of reproductive success in Pygmies. Finally, Pygmy populations showed variable admixture levels with the non-Pygmies, with often much larger introgression from male than from female lineages. Social discrimination against Pygmies triggering complex movements of spouses in intermarriages can explain these male-biased admixture patterns in a patrilocal context. We show how gender-related sociocultural phenomena can determine highly variable sex-specific demography among populations, and how population genetic approaches contrasting chromosomal types allow inferring detailed human sex-specific demographic history. PMID:23300254
Stock-specific migration timing of adult spring-summer Chinook salmon in the Columbia River basin
Keefer, M.L.; Peery, C.A.; Jepson, M.A.; Tolotti, K.R.; Bjornn, T.C.; Stuehrenberg, L.C.
2004-01-01
An understanding of the migration timing patterns of Pacific salmon Oncorhynchus spp. and steelhead O. mykiss is important for managing complex mixed-stock fisheries and preserving genetic and life history diversity. We examined adult return timing for 3,317 radio-tagged fish from 38 stocks of Columbia River basin spring-summer Chinook salmon O. tshawytscha over 5 years. Stock composition varied widely within and between years depending on the strength of influential populations. Most individual stocks migrated at similar times each year relative to overall runs, supporting the hypotheses that run timing is predictable, is at least partially due to genetic adaptation, and can be used to differentiate between some conspecific populations. Arrival timing of both aggregated radio-tagged stocks and annual runs was strongly correlated with river discharge; stocks arrived earlier at Bonneville Dam and at upstream dams in years with low discharge. Migration timing analyses identified many between-stock and between-year differences in anadromous salmonid return behavior and should and managers interested in protection and recovery of evolutionary significant populations.
Iron Age and Anglo-Saxon genomes from East England reveal British migration history.
Schiffels, Stephan; Haak, Wolfgang; Paajanen, Pirita; Llamas, Bastien; Popescu, Elizabeth; Loe, Louise; Clarke, Rachel; Lyons, Alice; Mortimer, Richard; Sayer, Duncan; Tyler-Smith, Chris; Cooper, Alan; Durbin, Richard
2016-01-19
British population history has been shaped by a series of immigrations, including the early Anglo-Saxon migrations after 400 CE. It remains an open question how these events affected the genetic composition of the current British population. Here, we present whole-genome sequences from 10 individuals excavated close to Cambridge in the East of England, ranging from the late Iron Age to the middle Anglo-Saxon period. By analysing shared rare variants with hundreds of modern samples from Britain and Europe, we estimate that on average the contemporary East English population derives 38% of its ancestry from Anglo-Saxon migrations. We gain further insight with a new method, rarecoal, which infers population history and identifies fine-scale genetic ancestry from rare variants. Using rarecoal we find that the Anglo-Saxon samples are closely related to modern Dutch and Danish populations, while the Iron Age samples share ancestors with multiple Northern European populations including Britain.
Hull, Joshua M; Girman, Derek J
2005-01-01
DNA sequences of the mitochondrial control region were analysed from 298 individual sharp-shinned hawks (Accipiter striatus velox) sampled at 12 different migration study sites across North America. The control region proved to be an appropriate genetic marker for identification of continental-scale population genetic structure and for determining the historical demography of population units. These data suggest that sharp-shinned hawks sampled at migration sites in North America are divided into distinct eastern and western groups. The eastern group appears to have recently expanded in response to the retreat of glacial ice at the end of the last glacial maximum. The western group appears to have been strongly effected by the Holocene Hypsithermal dry period, with molecular evidence indicating the most recent expansion following this mid-Holocene climatic event 7000-5000 years before present.
Miryeganeh, Matin; Takayama, Koji; Tateishi, Yoichi; Kajita, Tadashi
2014-01-01
Ipomoea pes-caprae (Convolvulaceae), a pantropical plant with sea-drifted seeds, is found globally in the littoral areas of tropical and subtropical regions. Unusual long-distance seed dispersal has been believed to be responsible for its extraordinarily wide distribution; however, the actual level of inter-population migration has never been studied. To clarify the level of migration among populations of I. pes-caprae across its range, we investigated nucleotide sequence variations by using seven low-copy nuclear markers and 272 samples collected from 34 populations that cover the range of the species. We applied coalescent-based approaches using Bayesian and maximum likelihood methods to assess migration rates, direction of migration, and genetic diversity among five regional populations. Our results showed a high number of migrants among the regional populations of I. pes-caprae subsp. brasiliensis, which suggests that migration among distant populations was maintained by long-distance seed dispersal across its global range. These results also provide strong evidence for recent trans-oceanic seed dispersal by ocean currents in all three oceanic regions. We also found migration crossing the American continents. Although this is an apparent land barrier for sea-dispersal, migration between populations of the East Pacific and West Atlantic regions was high, perhaps because of trans-isthmus migration via pollen dispersal. Therefore, the migration and gene flow among populations across the vast range of I. pes-caprae is maintained not only by seed dispersal by sea-drifted seeds, but also by pollen flow over the American continents. On the other hand, populations of subsp. pes-caprae that are restricted to only the northern part of the Indian Ocean region were highly differentiated from subsp. brasiliensis. Cryptic barriers that prevented migration by sea dispersal between the ranges of the two subspecies and/or historical differentiation that caused local adaptation to different environmental factors in each region could explain the genetic differentiation between the subspecies. PMID:24755614
Thingsgaard, K
2001-10-01
Nineteen populations of Sphagnum affine were included in a study of genetic diversity and structure in fragmented and less fragmented landscapes, and differentiation at intercontinental and three regional levels. Isozyme electrophoresis of eight enzyme systems revealed 12 variable loci, which could be used for haplotype identification. A hierachical analysis of variance (AMOVA) revealed no significant intercontinental differentiation, and very limited differentiation among European regions. A trend of decreasing diversity with increasing latitude was apparent. Gametic phase disequilibria was high, suggesting nonrandom mating and regionally high incidences of inbreeding. The partitioning of genetic variation within and among populations in each region varied among regions, the northernmost populations having 86% of the total variation among populations, the southernmost in Scandinavia having 25% of the variation among populations, whereas the American populations displayed 89% of the variation within populations. Fifteen alleles at eight loci occurred in the U.S.A. which were not encountered in Europe, whereas only three European alleles at one locus in three populations were not encountered in U.S.A. The differences in diversity between North America and Europe may result from loss of genetic diversity caused by founder effects during postglacial recolonization of northern Europe. In Europe, the main mountain ranges extend E-W, posing severe barriers to northwards migration of lowland species, compared to the N-S trend of mountain ranges in North America. The decline in genetic diversity and increase in population differentiation and gametic phase disequilibria towards the north in Scandinavia may be caused by a series of founder effects during postglacial migration. These may have corresponded to minor climatic oscillations that influenced the migration front/leading edge in the suboceanic lowlands of Norway. According to this model random genetic drift will be an increasingly important structuring factor with latitude.
Cobben, Marleen M P; van Noordwijk, Arie J
2017-10-01
Migration is a widespread phenomenon across the animal kingdom as a response to seasonality in environmental conditions. Partially migratory populations are populations that consist of both migratory and residential individuals. Such populations are very common, yet their stability has long been debated. The inheritance of migratory activity is currently best described by the threshold model of quantitative genetics. The inclusion of such a genetic threshold model for migratory behavior leads to a stable zone in time and space of partially migratory populations under a wide range of demographic parameter values, when assuming stable environmental conditions and unlimited genetic diversity. Migratory species are expected to be particularly sensitive to global warming, as arrival at the breeding grounds might be increasingly mistimed as a result of the uncoupling of long-used cues and actual environmental conditions, with decreasing reproduction as a consequence. Here, we investigate the consequences for migratory behavior and the stability of partially migratory populations under five climate change scenarios and the assumption of a genetic threshold value for migratory behavior in an individual-based model. The results show a spatially and temporally stable zone of partially migratory populations after different lengths of time in all scenarios. In the scenarios in which the species expands its range from a particular set of starting populations, the genetic diversity and location at initialization determine the species' colonization speed across the zone of partial migration and therefore across the entire landscape. Abruptly changing environmental conditions after model initialization never caused a qualitative change in phenotype distributions, or complete extinction. This suggests that climate change-induced shifts in species' ranges as well as changes in survival probabilities and reproductive success can be met with flexibility in migratory behavior at the species level, which will reduce the risk of extinction.
Genovart, Meritxell; Thibault, Jean-Claude; Igual, José Manuel; Bauzà-Ribot, Maria del Mar; Rabouam, Corinne; Bretagnolle, Vincent
2013-01-01
Dispersal is critically linked to the demographic and evolutionary trajectories of populations, but in most seabird species it may be difficult to estimate. Using molecular tools, we explored population structure and the spatial dispersal pattern of a highly pelagic but philopatric seabird, the Cory's shearwater Calonectris diomedea. Microsatellite fragments were analysed from samples collected across almost the entire breeding range of the species. To help disentangle the taxonomic status of the two subspecies described, the Atlantic form C. d. borealis and the Mediterranean form C. d. diomedea, we analysed genetic divergence between subspecies and quantified both historical and recent migration rates between the Mediterranean and Atlantic basins. We also searched for evidence of isolation by distance (IBD) and addressed spatial patterns of gene flow. We found a low genetic structure in the Mediterranean basin. Conversely, strong genetic differentiation appeared in the Atlantic basin. Even if the species was mostly philopatric (97%), results suggest recent dispersal between basins, especially from the Atlantic to the Mediterranean (aprox. 10% of migrants/generation across the last two generations). Long-term gene flow analyses also suggested an historical exchange between basins (about 70 breeders/generation). Spatial analysis of genetic variation indicates that distance is not the main factor in shaping genetic structure in this species. Given our results we recommend gathering more data before concluded whether these taxa should be treated as two species or subspecies. PMID:23950986
Population Dynamics of Early Human Migration in Britain
Vahia, Mayank N.; Ladiwala, Uma; Mahathe, Pavan; Mathur, Deepak
2016-01-01
Background Early human migration is largely determined by geography and human needs. These are both deterministic parameters when small populations move into unoccupied areas where conflicts and large group dynamics are not important. The early period of human migration into the British Isles provides such a laboratory which, because of its relative geographical isolation, may allow some insights into the complex dynamics of early human migration and interaction. Method and Results We developed a simulation code based on human affinity to habitable land, as defined by availability of water sources, altitude, and flatness of land, in choosing the path of migration. Movement of people on the British island over the prehistoric period from their initial entry points was simulated on the basis of data from the megalithic period. Topographical and hydro-shed data from satellite databases was used to define habitability, based on distance from water bodies, flatness of the terrain, and altitude above sea level. We simulated population movement based on assumptions of affinity for more habitable places, with the rate of movement tempered by existing populations. We compared results of our computer simulations with genetic data and show that our simulation can predict fairly accurately the points of contacts between different migratory paths. Such comparison also provides more detailed information about the path of peoples’ movement over ~2000 years before the present era. Conclusions We demonstrate an accurate method to simulate prehistoric movements of people based upon current topographical satellite data. Our findings are validated by recently-available genetic data. Our method may prove useful in determining early human population dynamics even when no genetic information is available. PMID:27148959
Genetic profiling links changing sea-ice to shifting beluga whale migration patterns
Mahoney, Andrew R.; Suydam, Robert; Quakenbush, Lori; Whiting, Alex; Lowry, Lloyd; Harwood, Lois
2016-01-01
There is increasing concern over how Arctic fauna will adapt to climate related changes in sea-ice. We used long-term sighting and genetic data on beluga whales (Delphinapterus leucas) in conjunction with multi-decadal patterns of sea-ice in the Pacific Arctic to investigate the influence of sea-ice on spring migration and summer residency patterns. Substantial variations in sea-ice conditions were detected across seasons, years and sub-regions, revealing ice–ocean dynamics more complex than Arctic-wide trends suggest. This variation contrasted with a highly consistent pattern of migration and residency by several populations, indicating that belugas can accommodate widely varying sea-ice conditions to perpetuate philopatry to coastal migration destinations. However, a number of anomalous migration and residency events were detected and coincided with anomalous ice years, and in one case with an increase in killer whale (Orcinus orca) sightings and reported predation on beluga whales. The behavioural shifts were likely driven by changing sea-ice and associated changes in resource dispersion and predation risk. Continued reductions in sea-ice may result in increased predation at key aggregation areas and shifts in beluga whale behaviour with implications for population viability, ecosystem structure and the subsistence cultures that rely on them.
High migration rates shape the postglacial history of amphi-Atlantic bryophytes.
Désamoré, Aurélie; Patiño, Jairo; Mardulyn, Patrick; Mcdaniel, Stuart F; Zanatta, Florian; Laenen, Benjamin; Vanderpoorten, Alain
2016-11-01
Paleontological evidence and current patterns of angiosperm species richness suggest that European biota experienced more severe bottlenecks than North American ones during the last glacial maximum. How well this pattern fits other plant species is less clear. Bryophytes offer a unique opportunity to contrast the impact of the last glacial maximum in North America and Europe because about 60% of the European bryoflora is shared with North America. Here, we use population genetic analyses based on approximate Bayesian computation on eight amphi-Atlantic species to test the hypothesis that North American populations were less impacted by the last glacial maximum, exhibiting higher levels of genetic diversity than European ones and ultimately serving as a refugium for the postglacial recolonization of Europe. In contrast with this hypothesis, the best-fit demographic model involved similar patterns of population size contractions, comparable levels of genetic diversity and balanced migration rates between European and North American populations. Our results thus suggest that bryophytes have experienced comparable demographic glacial histories on both sides of the Atlantic. Although a weak, but significant genetic structure was systematically recovered between European and North American populations, evidence for migration from and towards both continents suggests that amphi-Atlantic bryophyte population may function as a metapopulation network. Reconstructing the biogeographic history of either North American or European bryophyte populations therefore requires a large, trans-Atlantic geographic framework. © 2016 John Wiley & Sons Ltd.
Identifying Loci Under Selection Against Gene Flow in Isolation-with-Migration Models
Sousa, Vitor C.; Carneiro, Miguel; Ferrand, Nuno; Hey, Jody
2013-01-01
When divergence occurs in the presence of gene flow, there can arise an interesting dynamic in which selection against gene flow, at sites associated with population-specific adaptations or genetic incompatibilities, can cause net gene flow to vary across the genome. Loci linked to sites under selection may experience reduced gene flow and may experience genetic bottlenecks by the action of nearby selective sweeps. Data from histories such as these may be poorly fitted by conventional neutral model approaches to demographic inference, which treat all loci as equally subject to forces of genetic drift and gene flow. To allow for demographic inference in the face of such histories, as well as the identification of loci affected by selection, we developed an isolation-with-migration model that explicitly provides for variation among genomic regions in migration rates and/or rates of genetic drift. The method allows for loci to fall into any of multiple groups, each characterized by a different set of parameters, thus relaxing the assumption that all loci share the same demography. By grouping loci, the method can be applied to data with multiple loci and still have tractable dimensionality and statistical power. We studied the performance of the method using simulated data, and we applied the method to study the divergence of two subspecies of European rabbits (Oryctolagus cuniculus). PMID:23457232
Cox, Murray P.; Hudjashov, Georgi; Sim, Andre; Savina, Olga; Karafet, Tatiana M.; Sudoyo, Herawati; Lansing, J. Stephen
2016-01-01
At least since the Neolithic, humans have largely lived in networks of small, traditional communities. Often socially isolated, these groups evolved distinct languages and cultures over microgeographic scales of just tens of kilometers. Population genetic theory tells us that genetic drift should act quickly in such isolated groups, thus raising the question: do networks of small human communities maintain levels of genetic diversity over microgeographic scales? This question can no longer be asked in most parts of the world, which have been heavily impacted by historical events that make traditional society structures the exception. However, such studies remain possible in parts of Island Southeast Asia and Oceania, where traditional ways of life are still practiced. We captured genome-wide genetic data, together with linguistic records, for a case–study system—eight villages distributed across Sumba, a small, remote island in eastern Indonesia. More than 4,000 years after these communities were established during the Neolithic period, most speak different languages and can be distinguished genetically. Yet their nuclear diversity is not reduced, instead being comparable to other, even much larger, regional groups. Modeling reveals a separation of time scales: while languages and culture can evolve quickly, creating social barriers, sporadic migration averaged over many generations is sufficient to keep villages linked genetically. This loosely-connected network structure, once the global norm and still extant on Sumba today, provides a living proxy to explore fine-scale genome dynamics in the sort of small traditional communities within which the most recent episodes of human evolution occurred. PMID:27274003
Population genetic structure and long-distance dispersal of a recently expanding migratory bird.
Ramos, Raül; Song, Gang; Navarro, Joan; Zhang, Ruiying; Symes, Craig T; Forero, Manuela G; Lei, Fumin
2016-06-01
Long-distance dispersal events and their derivable increases of genetic diversity have been highlighted as important ecological and evolutionary determinants that improve performances of range-expanding species. In the context of global environmental change, specific dispersal strategies have to be understood and foreseen if we like to prevent general biodiversity impoverishment or the spread of allochthonous diseases. We explored the genetic structure and potential population mixing on the recently range-expanding European bee-eater Merops apiaster. In addition, the species is suspected of harbouring and disseminating the most relevant disease for bees and apiculture, Nosema microsporidia. In agreement with complementary ringing recovery data and morphometric measurements, genetic results on two mitochondrial genes and 12 microsatellites showed a reasonably well-structured population partitioning along its breeding distribution. Microsatellite results indicated that not only did a few birds recently disperse long distance during their return migrations and change their natal breeding areas, but also that a group of allochthonous birds together founded a new colony. Although we did not provide evidence on the direct implication of birds in the widespread of Nosema parasites, our finding on the long-distance dispersal of bird flocks between remote breeding colonies adds concern about the role of European bee-eaters in the spread of such disease at a large, inter-continental scale. Copyright © 2016 Elsevier Inc. All rights reserved.
Williams Syndrome: A Relationship between Genetics, Brain Morphology and Behaviour
ERIC Educational Resources Information Center
Fahim, C.; Yoon, U.; Nashaat, N. H.; Khalil, A. K.; El-Belbesy, M.; Mancini-Marie, A.; Evans, A. C.; Meguid, N.
2012-01-01
Background: Genetically Williams syndrome (WS) promises to provide essential insight into the pathophysiology of cortical development because its ~28 deleted genes are crucial for cortical neuronal migration and maturation. Phenotypically, WS is one of the most puzzling childhood neurodevelopmental disorders affecting most intellectual…
Y chromosome evidence for Anglo-Saxon mass migration.
Weale, Michael E; Weiss, Deborah A; Jager, Rolf F; Bradman, Neil; Thomas, Mark G
2002-07-01
British history contains several periods of major cultural change. It remains controversial as to how much these periods coincided with substantial immigration from continental Europe, even for those that occurred most recently. In this study, we examine genetic data for evidence of male immigration at particular times into Central England and North Wales. To do this, we used 12 biallelic polymorphisms and six microsatellite markers to define high-resolution Y chromosome haplotypes in a sample of 313 males from seven towns located along an east-west transect from East Anglia to North Wales. The Central English towns were genetically very similar, whereas the two North Welsh towns differed significantly both from each other and from the Central English towns. When we compared our data with an additional 177 samples collected in Friesland and Norway, we found that the Central English and Frisian samples were statistically indistinguishable. Using novel population genetic models that incorporate both mass migration and continuous gene flow, we conclude that these striking patterns are best explained by a substantial migration of Anglo-Saxon Y chromosomes into Central England (contributing 50%-100% to the gene pool at that time) but not into North Wales.
Higher impact of female than male migration on population structure in large mammals.
Tiedemann, R; Hardy, O; Vekemans, X; Milinkovitch, M C
2000-08-01
We simulated large mammal populations using an individual-based stochastic model under various sex-specific migration schemes and life history parameters from the blue whale and the Asian elephant. Our model predicts that genetic structure at nuclear loci is significantly more influenced by female than by male migration. We identified requisite comigration of mother and offspring during gravidity and lactation as the primary cause of this phenomenon. In addition, our model predicts that the common assumption that geographical patterns of mitochondrial DNA (mtDNA) could be translated into female migration rates (Nmf) will cause biased estimates of maternal gene flow when extensive male migration occurs and male mtDNA haplotypes are included in the analysis.
Migration and Vulnerability among Adolescents in Slum Areas of Addis Ababa, Ethiopia
ERIC Educational Resources Information Center
Erulkar, Annabel S.; Mekbib, Tekle-Ab; Simie, Negussie; Gulema, Tsehai
2006-01-01
Studies of urban rural migration often find the most likely migrants are adolescents and young people. Yet few studies have explored patterns of adolescent migration and the role of migration in transitions to adulthood. This study uses data from a population-based survey of over 1000 adolescents aged 10-19 in slum areas of Addis Ababa.…
Nagoshi, Rodney N.; Hay-Roe, Mirian; Khan, Ayub; Murúa, M. Gabriela; Silvie, Pierre; Vergara, Clorinda; Westbrook, John
2017-01-01
The fall armyworm, Spodoptera frugiperda (J. E. Smith)(Lepidoptera: Noctuidae), is an important agricultural pest of the Western Hemisphere noted for its broad host range, long distance flight capabilities, and a propensity to develop resistance to pesticides that includes a subset of those used in genetically modified corn varieties. These characteristics exacerbate the threat fall armyworm poses to agriculture, with the potential that a resistance trait arising in one geographical location could rapidly disseminate throughout the hemisphere. A region of particular concern is the Caribbean, where a line of islands that extends from Florida to Venezuela provides a potential migratory pathway between populations from North and South America that could allow for consistent and substantial genetic interactions. In this study, surveys of populations from Peru, Bolivia, Paraguay, and Trinidad & Tobago expand on previous work in South America that indicates a generally homogeneous population with respect to haplotype markers. This population differs from that found in most of the Lesser Antilles where a combination of genetic and meteorological observations is described that indicate fall armyworm migration from Puerto Rico to as far south as Barbados, but does not support significant incursion into Trinidad & Tobago and South America. Air transport projections demonstrate that the wind patterns in the Caribbean region are not conducive to consistent flight along the north-south orientation of the Lesser Antilles, supporting the conclusion that such migration is minor and sporadic, providing few opportunities for genetic exchanges. The implications of these findings on the dissemination of deleterious traits between the two Western Hemisphere continents are discussed. PMID:28166292
Observing Holliday junction branch migration one step at a time
NASA Astrophysics Data System (ADS)
Ha, Taekjip
2004-03-01
During genetic recombination, two homologous DNA molecules undergo strand exchange to form a four-way DNA (Holliday) junction and the recognition and processing of this species by branch migration and junction resolving enzymes determine the outcome. We have used single molecule fluorescence techniques to study two intrinsic structural dynamics of the Holliday junction, stacking conformer transitions and spontaneous branch migration. Our studies show that the dynamics of branch migration, resolved with one base pair resolution, is determined by the stability of conformers which in turn depends on the local DNA sequences. Therefore, the energy landscape of Holliday junction branch migation is not uniform, but is rugged.
Dynamical behaviour of a discrete selection-migration model with arbitrary dominance
James F. Selgrade; Jordan West Bostic; James H. Roberds
2009-01-01
To study the effects of immigration of genes (possibly transgenic) into a natural population, a one-island selection-migration model with density-dependent regulation is used to track allele frequency and population size. The existence and uniqueness of a polymorphic genetic equilibrium is proved under a general assumption about dominance in fitnesses. Also, conditions...
Fakhfakh, Hatem; Belkadhi, Mohamed Sadok
2017-01-01
Combining landscape ecology and genetics provides an excellent framework to appreciate pest population dynamics and dispersal. The genetic architectures of many species are always shaped by environmental constraints. Because little is known about the ecological and genetic traits of Tunisian whitefly populations, the main objective of this work is to highlight patterns of biodiversity, genetic structure and migration routes of this pest. We used nuclear microsatellite loci to analyze B. tabaci populations collected from various agricultural areas across the country and we determine their biotype status. Molecular data were subsequently interpreted in an ecological context supplied from a species distribution model to infer habitat suitability and hereafter the potential connection paths between sampling localities. An analysis of landscape resistance to B. tabaci genetic flow was thus applied to take into account habitat suitability, genetic relatedness and functional connectivity of habitats within a varied landscape matrix. We shed light on the occurrence of three geographically delineated genetic groups with high levels of genetic differentiation within each of them. Potential migration corridors of this pest were then established providing significant advances toward the understanding of genetic features and the dynamic dispersal of this pest. This study supports the hypothesis of a long-distance dispersal of B. tabaci followed by infrequent long-term isolations. The Inference of population sources and colonization routes is critical for the design and implementation of accurate management strategies against this pest. PMID:28972992
Ben Abdelkrim, Ahmed; Hattab, Tarek; Fakhfakh, Hatem; Belkadhi, Mohamed Sadok; Gorsane, Faten
2017-01-01
Combining landscape ecology and genetics provides an excellent framework to appreciate pest population dynamics and dispersal. The genetic architectures of many species are always shaped by environmental constraints. Because little is known about the ecological and genetic traits of Tunisian whitefly populations, the main objective of this work is to highlight patterns of biodiversity, genetic structure and migration routes of this pest. We used nuclear microsatellite loci to analyze B. tabaci populations collected from various agricultural areas across the country and we determine their biotype status. Molecular data were subsequently interpreted in an ecological context supplied from a species distribution model to infer habitat suitability and hereafter the potential connection paths between sampling localities. An analysis of landscape resistance to B. tabaci genetic flow was thus applied to take into account habitat suitability, genetic relatedness and functional connectivity of habitats within a varied landscape matrix. We shed light on the occurrence of three geographically delineated genetic groups with high levels of genetic differentiation within each of them. Potential migration corridors of this pest were then established providing significant advances toward the understanding of genetic features and the dynamic dispersal of this pest. This study supports the hypothesis of a long-distance dispersal of B. tabaci followed by infrequent long-term isolations. The Inference of population sources and colonization routes is critical for the design and implementation of accurate management strategies against this pest.
Mullen, Lindy B; Arthur Woods, H; Schwartz, Michael K; Sepulveda, Adam J; Lowe, Winsor H
2010-03-01
The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho giant salamander, Dicamptodon aterrimus, in stream networks of Idaho and Montana, USA. We used microsatellite data to test population structure models by (i) examining hierarchical partitioning of genetic variation in stream networks; and (ii) testing for genetic isolation by distance along stream corridors vs. overland pathways. Replicated sampling of streams within catchments within three river basins revealed that hierarchical scale had strong effects on genetic structure and gene flow. amova identified significant structure at all hierarchical scales (among streams, among catchments, among basins), but divergence among catchments had the greatest structural influence. Isolation by distance was detected within catchments, and in-stream distance was a strong predictor of genetic divergence. Patterns of genetic divergence suggest that differentiation among streams within catchments was driven by limited migration, consistent with a stream hierarchy model of population structure. However, there was no evidence of migration among catchments within basins, or among basins, indicating that gene flow only counters the effects of genetic drift at smaller scales (within rather than among catchments). These results show the strong influence of stream networks on population structure and genetic divergence of a salamander, with contrasting effects at different hierarchical scales.
Comprehensive view of the population history of Arabia as inferred by mtDNA variation.
Černý, Viktor; Čížková, Martina; Poloni, Estella S; Al-Meeri, Ali; Mulligan, Connie J
2016-04-01
Genetic and archaeological research supports the theory that Arabia was the first region traversed by modern humans as they left Africa and dispersed throughout Eurasia. However, the role of Arabia from the initial migration out of Africa until more recent times is still unclear. We have generated 379 new hypervariable segment 1 (HVS-1) sequences from a range of geographic locations throughout Yemen. We compare these data to published HVS-1 sequences representing Arabia and neighboring regions to build a unique dataset of 186 populations and 14,290 sequences. We identify 4,563 haplotypes unevenly distributed across Arabia and neighboring regions. Arabia contains higher proportions of shared haplotypes than the regions with which it shares these haplotypes, suggesting high levels of migration through the region. Populations in Arabia show higher levels of population expansion than those in East Africa, but lower levels than the Near East, Middle East or India. Arabian populations also show very high levels of genetic variation that overlaps with variation from most other regions. We take a population genetics approach to provide a comprehensive view of the relationships of Arabian and neighboring populations. We show that Arabian populations share closest links to the Near East and North Africa, but have a more ancient origin with slower demographic growth and/or lower migration rates. Our conclusions are supported by phylogenetic studies but also suggest that recent migrations have erased signals of earlier events. © 2015 Wiley Periodicals, Inc.
Cells Lacking β-Actin are Genetically Reprogrammed and Maintain Conditional Migratory Capacity*
Tondeleir, Davina; Lambrechts, Anja; Müller, Matthias; Jonckheere, Veronique; Doll, Thierry; Vandamme, Drieke; Bakkali, Karima; Waterschoot, Davy; Lemaistre, Marianne; Debeir, Olivier; Decaestecker, Christine; Hinz, Boris; Staes, An; Timmerman, Evy; Colaert, Niklaas; Gevaert, Kris; Vandekerckhove, Joël; Ampe, Christophe
2012-01-01
Vertebrate nonmuscle cells express two actin isoforms: cytoplasmic β- and γ-actin. Because of the presence and localized translation of β-actin at the leading edge, this isoform is generally accepted to specifically generate protrusive forces for cell migration. Recent evidence also implicates β-actin in gene regulation. Cell migration without β-actin has remained unstudied until recently and it is unclear whether other actin isoforms can compensate for this cytoplasmic function and/or for its nuclear role. Primary mouse embryonic fibroblasts lacking β-actin display compensatory expression of other actin isoforms. Consistent with this preservation of polymerization capacity, β-actin knockout cells have unchanged lamellipodial protrusion rates despite a severe migration defect. To solve this paradox we applied quantitative proteomics revealing a broad genetic reprogramming of β-actin knockout cells. This also explains why reintroducing β-actin in knockout cells does not restore the affected cell migration. Pathway analysis suggested increased Rho-ROCK signaling, consistent with observed phenotypic changes. We therefore developed and tested a model explaining the phenotypes in β-actin knockout cells based on increased Rho-ROCK signaling and increased TGFβ production resulting in increased adhesion and contractility in the knockout cells. Inhibiting ROCK or myosin restores migration of β-actin knockout cells indicating that other actins compensate for β-actin in this process. Consequently, isoactins act redundantly in providing propulsive forces for cell migration, but β-actin has a unique nuclear function, regulating expression on transcriptional and post-translational levels, thereby preventing myogenic differentiation. PMID:22448045
Publishing FAIR Data: An Exemplar Methodology Utilizing PHI-Base.
Rodríguez-Iglesias, Alejandro; Rodríguez-González, Alejandro; Irvine, Alistair G; Sesma, Ane; Urban, Martin; Hammond-Kosack, Kim E; Wilkinson, Mark D
2016-01-01
Pathogen-Host interaction data is core to our understanding of disease processes and their molecular/genetic bases. Facile access to such core data is particularly important for the plant sciences, where individual genetic and phenotypic observations have the added complexity of being dispersed over a wide diversity of plant species vs. the relatively fewer host species of interest to biomedical researchers. Recently, an international initiative interested in scholarly data publishing proposed that all scientific data should be "FAIR"-Findable, Accessible, Interoperable, and Reusable. In this work, we describe the process of migrating a database of notable relevance to the plant sciences-the Pathogen-Host Interaction Database (PHI-base)-to a form that conforms to each of the FAIR Principles. We discuss the technical and architectural decisions, and the migration pathway, including observations of the difficulty and/or fidelity of each step. We examine how multiple FAIR principles can be addressed simultaneously through careful design decisions, including making data FAIR for both humans and machines with minimal duplication of effort. We note how FAIR data publishing involves more than data reformatting, requiring features beyond those exhibited by most life science Semantic Web or Linked Data resources. We explore the value-added by completing this FAIR data transformation, and then test the result through integrative questions that could not easily be asked over traditional Web-based data resources. Finally, we demonstrate the utility of providing explicit and reliable access to provenance information, which we argue enhances citation rates by encouraging and facilitating transparent scholarly reuse of these valuable data holdings.
Publishing FAIR Data: An Exemplar Methodology Utilizing PHI-Base
Rodríguez-Iglesias, Alejandro; Rodríguez-González, Alejandro; Irvine, Alistair G.; Sesma, Ane; Urban, Martin; Hammond-Kosack, Kim E.; Wilkinson, Mark D.
2016-01-01
Pathogen-Host interaction data is core to our understanding of disease processes and their molecular/genetic bases. Facile access to such core data is particularly important for the plant sciences, where individual genetic and phenotypic observations have the added complexity of being dispersed over a wide diversity of plant species vs. the relatively fewer host species of interest to biomedical researchers. Recently, an international initiative interested in scholarly data publishing proposed that all scientific data should be “FAIR”—Findable, Accessible, Interoperable, and Reusable. In this work, we describe the process of migrating a database of notable relevance to the plant sciences—the Pathogen-Host Interaction Database (PHI-base)—to a form that conforms to each of the FAIR Principles. We discuss the technical and architectural decisions, and the migration pathway, including observations of the difficulty and/or fidelity of each step. We examine how multiple FAIR principles can be addressed simultaneously through careful design decisions, including making data FAIR for both humans and machines with minimal duplication of effort. We note how FAIR data publishing involves more than data reformatting, requiring features beyond those exhibited by most life science Semantic Web or Linked Data resources. We explore the value-added by completing this FAIR data transformation, and then test the result through integrative questions that could not easily be asked over traditional Web-based data resources. Finally, we demonstrate the utility of providing explicit and reliable access to provenance information, which we argue enhances citation rates by encouraging and facilitating transparent scholarly reuse of these valuable data holdings. PMID:27433158
Britto, Fábio B; Schmidt, Anders J; Carvalho, Adriana M F; Vasconcelos, Carolina C M P; Farias, Antonia M; Bentzen, Paul; Diniz, Fábio M
2018-01-01
The mangrove crab Ucides cordatus is considered a key species for the ecological balance of mangrove forests and a major source of employment and income for traditional crab collectors in Brazil. Several studies evidenced weak genetic variation among populations due to an efficient larval transport. However, gene flow patterns of the species is poorly understood, with no information about migration rates. The influence of the two main Brazilian currents in larval dispersion is also not clear. In order to provide baseline information for conservation, planning and management of this important fishery resource, the present study aimed to estimate and evaluate spatial distribution of genetic diversity, migration rates and gene flow directivity among populations of U. cordatus in Brazil. Nine microsatellites were used to resolve population structure of 319 crabs collected from six sites located along the Brazilian coast. The degree of geographical differentiation included estimates of genetic diversity, population structure and gene flow models, with spatial analysis of shared alleles (SAShA), isolation by distance tests, AMOVA, discriminant analysis of principal components (DAPC) and Bayesian clustering. We estimated the amount of ongoing gene flow between clusters using the coalescent-based method implemented in Migrate-N. Loci were highly polymorphic (average of 12.4 alleles per locus) evidencing high genetic variability. There was significant differentiation among localities, despite of the low value of F ST (= 0.019; P < 0.001). F ST and Jost's D indexes were also estimated in pairwise comparisons and showed significant differences between most of the surveyed site pairs ( P < 0.05). Structure evidenced a single genetic group among samples, however SAShA pointed to a non-panmictic condition ( P = 0.011). AMOVA detected four statistical significant clusters with low level of differentiation ( F CT = 0.037; P = 0.023). The gene flow model that best described the population connectivity was the island model, with ∼24 crabs being exchanged among localities per generation. The high migration rates found among localities seem to be the main force acting to sustain the distribution of the genetic diversity of U. cordatus . Despite the high gene flow and the weak population structure among samples, the significant genetic differences found suggest that gene flow alone does not bypass the effects of genetic drift, natural selection and/or human exploitation. These findings are vital for the establishment of a database to be used in the development of conservation programs.
Schmidt, Anders J.; Carvalho, Adriana M.F.; Vasconcelos, Carolina C.M.P.; Farias, Antonia M.; Bentzen, Paul
2018-01-01
Background The mangrove crab Ucides cordatus is considered a key species for the ecological balance of mangrove forests and a major source of employment and income for traditional crab collectors in Brazil. Several studies evidenced weak genetic variation among populations due to an efficient larval transport. However, gene flow patterns of the species is poorly understood, with no information about migration rates. The influence of the two main Brazilian currents in larval dispersion is also not clear. In order to provide baseline information for conservation, planning and management of this important fishery resource, the present study aimed to estimate and evaluate spatial distribution of genetic diversity, migration rates and gene flow directivity among populations of U. cordatus in Brazil. Methods Nine microsatellites were used to resolve population structure of 319 crabs collected from six sites located along the Brazilian coast. The degree of geographical differentiation included estimates of genetic diversity, population structure and gene flow models, with spatial analysis of shared alleles (SAShA), isolation by distance tests, AMOVA, discriminant analysis of principal components (DAPC) and Bayesian clustering. We estimated the amount of ongoing gene flow between clusters using the coalescent-based method implemented in Migrate-N. Results Loci were highly polymorphic (average of 12.4 alleles per locus) evidencing high genetic variability. There was significant differentiation among localities, despite of the low value of FST (= 0.019; P < 0.001). FST and Jost’s D indexes were also estimated in pairwise comparisons and showed significant differences between most of the surveyed site pairs (P < 0.05). Structure evidenced a single genetic group among samples, however SAShA pointed to a non-panmictic condition (P = 0.011). AMOVA detected four statistical significant clusters with low level of differentiation (FCT = 0.037; P = 0.023). The gene flow model that best described the population connectivity was the island model, with ∼24 crabs being exchanged among localities per generation. Discussion The high migration rates found among localities seem to be the main force acting to sustain the distribution of the genetic diversity of U. cordatus. Despite the high gene flow and the weak population structure among samples, the significant genetic differences found suggest that gene flow alone does not bypass the effects of genetic drift, natural selection and/or human exploitation. These findings are vital for the establishment of a database to be used in the development of conservation programs. PMID:29736340
M. Zachariah Peery; Laurie A. Hall; Sellas. Anna; Steven R. Beissinger; Craig Moritz; Martine Berube; Martin G. Raphael; S. Kim Nelson; Richard T. Golightly; Laura McFarlane-Tranquilla; Scott H. Newman; Per J. Palsboll
2009-01-01
The dispersal of individuals among fragmented populations is generally thought to prevent genetic and demographic isolation, and ultimately reduce extinction risk. In this study, we show that a century of reduction in coastal old-growth forests, as well as a number of other environmental factors, has probably resulted in the genetic divergence of marbled murrelets (...
Bentzen, Rebecca L.; Powell, Abby N.
2015-01-01
Post-fledging dispersal and site fidelity are poorly understood, particularly for sea ducks that spend the majority of their annual cycle at sea. This is the first description of movements and their timing for first-year (juvenile) and second-year (subadult) King Eiders Somateria spectabilis in relation to their attendant females. We fitted satellite transmitters that operated for 2 years to 63 hatch-year birds and 17 attendant females at breeding areas in northern Alaska in 2006–2009. Our goals were to describe the spatio-temporal distribution of pre-breeding individuals and adult females that had been successful breeders. We also examined fidelity to wing moulting and wintering areas as well as natal philopatry. Juveniles did not appear to follow attendant adults, although they did winter in the same three general wintering areas, suggesting that genetic inheritance and social factors may have roles in the initial migration from the breeding area. Additionally, juveniles were more variable in the timing and duration of migration, moved longer distances during the winter, and were less faithful to moulting and wintering areas than adults, indicating that individual exploration and acquired navigational memory played a role in subsequent migrations. Most (75%) subadult females returned to natal areas, probably prospecting for future nesting sites, whereas subadult males were widely dispersed at sea. Timing and duration of moult migration and wing moult of adult females that were presumed to be successful breeders differed from those of unsuccessful breeders due to the extended time that the former spent on the breeding grounds. Temporal and spatial segregation of post-fledging King Eiders from adults has direct management implications in terms of resource development and population dynamics.
Zhang, Yulu; Ye, Lin; Tan, Yuxia; Sun, Pinghui; Ji, Ke; Jiang, Wen G
2014-03-01
Breast cancer metastasis suppressor-1 (BRMS1) is a candidate metastasis-suppressing gene and has been shown to potentially inhibit tumor progression without blocking the growth of orthotopic tumors, in different tumor types including non-small cell lung cancer, ovarian, melanoma and breast cancers. BRMS-1 gene transcript was quantified in breast cancer sample tissues and analyzed against histological and clinical patient outcome. Human breast cancer cell lines, MDA MB-231 and MCF-7 were used to genetically-modify the expression of BRMS-1 and test for biological responses following BRMS-1 modifications. Key candidate signal pathways, influenced by BRMS-1 were also explored. BRMS1 was present in MDA MB-231 and MCF-7 cell lines. Using anti-BRMS1 transgenes, we knocked-down the transcripts of BRMS1 in both cells at the mRNA and protein levels. Knockdown of BRMS1 gave both cells a faster cell growth rate, rapid pace of cellular migration and invasion, compared to respective wild-type and control cells (p<0.05). Blocking phospholipase-Cγ (PLCγ) had a significant influence on the BRMS-1-induced cell migration. Finally, significantly low levels of BRMS1 were observed in patients with high-grade tumors (p=0.12), in patients with distant metastasis (p=0.05) and those who died of breast cancer (p=0.0037). In addition, patients with low levels of BRMS1 had a significantly shorter overall survival (p=0.035). BRMS-1 is aberrantly expressed in human breast cancer and is inversely-correlated with disease progression and patient survival. This is likely to be occurring via its influence on invasion and migration of breast cancer cells.
Lu, Ming; Luo, Ying; Hu, Pengfei; Dou, Liping; Huang, Shuwei
2018-01-01
Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell migration assay. And we explored the underlying mechanism by Western blotting. AGEs significantly induced the proliferation and migration of VSMCs, but treatment with tanshinone IIA attenuated these effects. AGEs could increase the activity of the ERK1/2 and p38 pathways but not the JNK pathway. Treatment with tanshinone IIA inhibited the AGEs-induced activation of the ERK1/2 pathway but not the p38 pathway. Tanshinone IIA inhibits AGEs-induced proliferation and migration of VSMCs by suppressing the ERK1/2 MAPK signaling pathway.
Destro Bisol, Giovanni; Capocasa, Marco; Anagnostou, Paolo
2012-10-01
Due to its important effects on the ecological dynamics and the genetic structure of species, biologists have long been interested in gender-biased dispersal, a condition where one gender is more prone to move from the natal site. More recently, this topic has attracted a great attention from human evolutionary geneticists. Considering the close relations between residential rules and social structure, gender-biased dispersal is, in fact, regarded as an important case study concerning the effects of socio-cultural factors on human genetic variation. It all started with the seminal paper by Mark Seielstad, Erich Minch and Luigi Luca Cavalli Sforza from Stanford University (Seielstad et al. 1998). They observed a larger differentiation for Y-chromosome than mitochondrial DNA between extant human populations, purportedly a consequence of the prevalence of long-term patrilocality in human societies. Subsequent studies, however, have highlighted the need to consider geographically close and culturally homogeneous groups, disentangle signals due to different peopling events and obtain unbiased estimates of genetic diversity. In this issue of Molecular Ecology, not only do Marks et al. (2012) adopt an experimental design which addresses these concerns, but they also take a further and important step forward by integrating the genetic analysis of two distant populations, the Basotho and Spanish, with data regarding migration rates and matrimonial distances. Using both empirical evidence and simulations, the authors show that female-biased migration due to patrilocality might shape the genetic structure of human populations only at short ranges and under substantial differences in migration rates between genders. Providing a quantitative framework for future studies of the effects of residential rules on the human genome, this study paves the way for further developments in the field. On a wider perspective, Marks et al.'s work demonstrates the power of approaches which integrate biological, cultural and demographic lines of evidence in the study of relations between social and genetic structures of human populations.
Traces of archaic mitochondrial lineages persist in Austronesian-speaking Formosan populations.
Trejaut, Jean A; Kivisild, Toomas; Loo, Jun Hun; Lee, Chien Liang; He, Chun Lin; Hsu, Chia Jung; Lee, Zheng Yan; Li, Zheng Yuan; Lin, Marie
2005-08-01
Genetic affinities between aboriginal Taiwanese and populations from Oceania and Southeast Asia have previously been explored through analyses of mitochondrial DNA (mtDNA), Y chromosomal DNA, and human leukocyte antigen loci. Recent genetic studies have supported the "slow boat" and "entangled bank" models according to which the Polynesian migration can be seen as an expansion from Melanesia without any major direct genetic thread leading back to its initiation from Taiwan. We assessed mtDNA variation in 640 individuals from nine tribes of the central mountain ranges and east coast regions of Taiwan. In contrast to the Han populations, the tribes showed a low frequency of haplogroups D4 and G, and an absence of haplogroups A, C, Z, M9, and M10. Also, more than 85% of the maternal lineages were nested within haplogroups B4, B5a, F1a, F3b, E, and M7. Although indicating a common origin of the populations of insular Southeast Asia and Oceania, most mtDNA lineages in Taiwanese aboriginal populations are grouped separately from those found in China and the Taiwan general (Han) population, suggesting a prevalence in the Taiwanese aboriginal gene pool of its initial late Pleistocene settlers. Interestingly, from complete mtDNA sequencing information, most B4a lineages were associated with three coding region substitutions, defining a new subclade, B4a1a, that endorses the origin of Polynesian migration from Taiwan. Coalescence times of B4a1a were 13.2 +/- 3.8 thousand years (or 9.3 +/- 2.5 thousand years in Papuans and Polynesians). Considering the lack of a common specific Y chromosomal element shared by the Taiwanese aboriginals and Polynesians, the mtDNA evidence provided here is also consistent with the suggestion that the proto-Oceanic societies would have been mainly matrilocal.
USDA-ARS?s Scientific Manuscript database
The evolution of species is complex and subtle, which always associates with the genetic variation and environment adaption during active/ passive spread or migration. In crops, this process is usually driven and influenced by human activities such as domestication, cultivation and immigration. One ...
Migration and Socio-Economic Change in Africa.
ERIC Educational Resources Information Center
Adepoju, Aderanti
1979-01-01
Explores determinants, characteristics, and patterns of migration in Africa and relates these factors to socioeconomic change processes. Influences of migration are evaluated as they relate to work conditions, land use, marriage and family patterns, life style, and new skills and experiences gained in formal and non-formal educational situations.…
Children Moving "Home"? Everyday Experiences of Return Migration in Highly Skilled Households
ERIC Educational Resources Information Center
Hatfield, Madeleine E.
2010-01-01
Through its focus on children and return migration, this article addresses two invisibilities within migration research. It presents the experiences of children as equal movers in returning households, drawing on research with them in their domestic spaces. Exploring how children negotiate coming "home" and highlighting their experiences…
A Novel Role of Peripheral Corticotropin-Releasing Hormone (CRH) on Dermal Fibroblasts
Rassouli, Olga; Liapakis, George; Lazaridis, Iakovos; Sakellaris, George; Gkountelias, Kostas; Gravanis, Achille; Margioris, Andrew N.
2011-01-01
Corticotropin-releasing hormone, or factor, (CRH or CRF) exerts important biological effects in multiple peripheral tissues via paracrine/autocrine actions. The aim of our study was to assess the effects of endogenous CRH in the biology of mouse and human skin fibroblasts, the primary cell type involved in wound healing. We show expression of CRH and its receptors in primary fibroblasts, and we demonstrate the functionality of fibroblast CRH receptors by induction of cAMP. Fibroblasts genetically deficient in Crh (Crh−/−) had higher proliferation and migration rates and compromised production of IL-6 and TGF-β1 compared to the wildtype (Crh+/+) cells. Human primary cultures of foreskin fibroblasts exposed to the CRF1 antagonist antalarmin recapitulated the findings in the Crh−/− cells, exhibiting altered proliferative and migratory behavior and suppressed production of IL-6. In conclusion, our findings show an important role of fibroblast-expressed CRH in the proliferation, migration, and cytokine production of these cells, processes associated with the skin response to injury. Our data suggest that the immunomodulatory effects of CRH may include an important, albeit not explored yet, role in epidermal tissue remodeling and regeneration and maintenance of tissue homeostasis. PMID:21765902
Yuan, Jing; Wu, Xin-Jiang; Lu, Wen-Qing; Cheng, Xiao-Li; Chen, Dan; Li, Xiao-Yan; Liu, Ai-Lin; Wu, Jian-Jun; Xie, Hong; Stahl, Thorsten; Mersch-Sundermann, Volker
2005-01-01
Consumption of chlorinated drinking water is suspected to be associated with adverse health effects, including mutations and cancer. In the present study, the genotoxic potential of water from Donghu lake, Yangtze river and Hanjiang river in Wuhan, an 8-million metropolis in China, was investigated using HepG2 cells and the alkaline version of the comet assay. It could be shown that all water extracts caused dose-dependent DNA migration in concentrations corresponding to dried extracts of 0.167-167 ml chlorinated drinking water per ml medium. To explore whether the intracellular redox status is regulated by chlorinated drinking water, we determined lipid peroxidation (LPO) and depletion of reduced glutathione (GSH). The malondialdehyde (thiobarbituric acid (TBA)-reactive aldehydes) concentration increased after chlorinated drinking water treatment of HepG2 cells in a dose-dependent manner, the GSH content decreased. The activity of lactate dehydrogenase (LDH) increased in chlorinated drinking water treated HepG2 cells indicating cytotoxicity. In accordance with former studies which dealt with in vivo and in vitro micronucleus induction the present study shows that chlorinated drinking water from polluted raw water may entail genetic risks.
Becoming a Migrant: Aspirations of Youths during Their Transition to Adulthood in Rural Mexico
ERIC Educational Resources Information Center
Azaola, Marta Cristina
2012-01-01
This article explores young people's transitions to adulthood in a rural community in Mexico. The focus is on participants' migration experiences and the premise is that migration can be understood as an alternative way of inclusion found by the rural youth which is strongly determined by individuals' agency. The article explores the role played…
da Silva Carvalho, C; Ribeiro, M C; Côrtes, M C; Galetti, M; Collevatti, R G
2015-01-01
Population genetics theory predicts loss in genetic variability because of drift and inbreeding in isolated plant populations; however, it has been argued that long-distance pollination and seed dispersal may be able to maintain gene flow, even in highly fragmented landscapes. We tested how historical effective population size, historical migration and contemporary landscape structure, such as forest cover, patch isolation and matrix resistance, affect genetic variability and differentiation of seedlings in a tropical palm (Euterpe edulis) in a human-modified rainforest. We sampled 16 sites within five landscapes in the Brazilian Atlantic forest and assessed genetic variability and differentiation using eight microsatellite loci. Using a model selection approach, none of the covariates explained the variation observed in inbreeding coefficients among populations. The variation in genetic diversity among sites was best explained by historical effective population size. Allelic richness was best explained by historical effective population size and matrix resistance, whereas genetic differentiation was explained by matrix resistance. Coalescence analysis revealed high historical migration between sites within landscapes and constant historical population sizes, showing that the genetic differentiation is most likely due to recent changes caused by habitat loss and fragmentation. Overall, recent landscape changes have a greater influence on among-population genetic variation than historical gene flow process. As immediate restoration actions in landscapes with low forest amount, the development of more permeable matrices to allow the movement of pollinators and seed dispersers may be an effective strategy to maintain microevolutionary processes. PMID:25873150
Abdelhay, Eliana
2017-01-01
Despite numerous advances in cell biology, genetics, and developmental biology, cancer origin has been attributed to genetic mechanisms primarily involving mutations. Embryologists have expressed timidly cancer embryological origin with little success in leveraging the discussion that cancer could involve a set of conventional cellular processes used to build the embryo during morphogenesis. Thus, this “cancer process” allows the harmonious and coherent construction of the embryo structural base, and its implementation as the embryonic process involves joint regulation of differentiation, proliferation, cell invasion, and migration, enabling the human being recreation of every generation. On the other hand, “cancer disease” is the representation of an abnormal state of the cell that might happen in the stem cells of an adult person, in which the mechanism for joint gene regulating of differentiation, proliferation, cell invasion, and migration could be reactivated in an entirely inappropriate context. PMID:28553657
Dynamical Analysis of Density-dependent Selection in a Discrete one-island Migration Model
James H. Roberds; James F. Selgrade
2000-01-01
A system of non-linear difference equations is used to model the effects of density-dependent selection and migration in a population characterized by two alleles at a single gene locus. Results for the existence and stability of polymorphic equilibria are established. Properties for a genetically important class of equilibria associated with complete dominance in...
[Dynamic of marriage structure in three cities of Ukraine from 1960 to 1992].
Timchenko, O I; Omel'chenko, E M; Nikula, E T
2000-04-01
Marriage structure was studied in the city of Kiev and in two cities of the Sumy oblast, Shostka and Trostyanets. Ethnic affiliations and birthplaces of persons contracting marriage were analyzed as the main characteristics of population genetic diversity. The ethnic composition of persons contracting marriage and the proportions of mono- and interethnic marriages remained almost unchanged during one generation. The majority of the persons contracting marriage were Ukrainians (66-91%); among other ethnic groups, only Russians considerably contributed to ethnic diversity (up to 26%). During the period studied, coefficients of marital migration substantially decreased in Kiev (from 0.66-0.82 to 0.34) and Shostka (from 0.72 to 0.52) and changed only insignificantly in Trostyanets. Outbreeding was estimated based on the migration parameters, exogamy level, and marital migration distances. The outbreeding level in the Shostka population (100,000 people) was comparable with that for the considerably larger Kiev population (two million people); however, it was significantly higher than that for the Trostyanets population, the size of which was close to the size of the Shostka population. It is supposed that "migration stress" may unfavorably affect the adaptive genetic structure of the Shostka population.
Genetics of alkaline phosphatase of the small intestine of the house mouser (Mus musculus).
Wilcox, F H
1983-08-01
Four inbred strains of mice exhibited either slow (PL/J), intermediate (DBA/2J, LP/J), or fast (SWR/J) rates of migration of duodenal alkaline phosphatase on cellulose acetate electrophoresis. Hybrids of these strains also had intermediate rates of migration regardless of the combination of strains used as parents. Strain differences were present in all regions of the small but not the large intestine. Crosses of the PL/J strain to hybrids between this strain and the other three strains gave a 1:1 segregation of the slow and intermediate patterns. The symbol Akp-3 is proposed for the locus responsible for the slower migration of the enzyme in this strain. Data from the LP/J X PL/J hybrid crossed with the PL/J strain showed linkage with two loci on chromosome 1 as follows: centromere--Idh-1--13.8 cM--Akp-3--8.9 +/- 2.6 cM--Pep-3. The available data do not reveal the genetic basis for the faster migration rate of the enzyme from the SWR/J strain, but a different response to neuraminidase and apparent nonlinkage to the Pep-3 locus suggest that a locus other than Akp-3 is responsible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carreon-Rodriguez, A.; Belkind-Gerson, J.; Serrano-Luna, G.
Availability of adult stem cells from several organs like bone marrow, umbilical cord blood or peripheral blood has become a powerful therapeutic tool for many chronic diseases. Potential of adult stem cells for regeneration extents to other tissues among them the nervous system. However two obstacles should be resolved before such cells could be currently applied in clinical practice: a) slow growth rate and b) ability to form enough dense colonies in order to populate a specific injury or cellular deficiency. Many approaches have been explored as genetic differentiation programs, growth factors, and supplemented culture media, among others. Electromagnetic fieldmore » stimulation of differentiation, proliferation, migration, and particularly on neurogenesis is little known. Since the biological effects of ELF-EMF are well documented, we hypothesize ELF-EMF could affect growth and maturation of stem cells derived of enteric tissue.« less
Genetic analysis of fibroblast growth factor signaling in the Drosophila eye.
Mukherjee, T; Choi, I; Banerjee, Utpal
2012-01-01
The development of eyes in Drosophila involves intricate epithelial reorganization events for accurate positioning of cells and proper formation and organization of ommatidial clusters. We demonstrate that Branchless (Bnl), the fibroblast growth factor ligand, regulates restructuring events in the eye disc primordium from as early as the emergence of clusters from a morphogenetic front to the cellular movements during pupal eye development. Breathless (Btl) functions as the fibroblast growth factor receptor to mediate Bnl signal, and together they regulate expression of DE-cadherin, Crumbs, and Actin. In addition, in the eye Bnl regulates the temporal onset and extent of retinal basal glial cell migration by activating Btl in the glia. We hypothesized that the Bnl functions in the eye are Hedgehog dependent and represent novel aspects of Bnl signaling not explored previously.
Reconstructing the Indian Origin and Dispersal of the European Roma: A Maternal Genetic Perspective
Mendizabal, Isabel; Valente, Cristina; Gusmão, Alfredo; Alves, Cíntia; Gomes, Verónica; Goios, Ana; Parson, Walther; Calafell, Francesc; Alvarez, Luis; Amorim, António; Gusmão, Leonor
2011-01-01
Previous genetic, anthropological and linguistic studies have shown that Roma (Gypsies) constitute a founder population dispersed throughout Europe whose origins might be traced to the Indian subcontinent. Linguistic and anthropological evidence point to Indo-Aryan ethnic groups from North-western India as the ancestral parental population of Roma. Recently, a strong genetic hint supporting this theory came from a study of a private mutation causing primary congenital glaucoma. In the present study, complete mitochondrial control sequences of Iberian Roma and previously published maternal lineages of other European Roma were analyzed in order to establish the genetic affinities among Roma groups, determine the degree of admixture with neighbouring populations, infer the migration routes followed since the first arrival to Europe, and survey the origin of Roma within the Indian subcontinent. Our results show that the maternal lineage composition in the Roma groups follows a pattern of different migration routes, with several founder effects, and low effective population sizes along their dispersal. Our data allowed the confirmation of a North/West migration route shared by Polish, Lithuanian and Iberian Roma. Additionally, eleven Roma founder lineages were identified and degrees of admixture with host populations were estimated. Finally, the comparison with an extensive database of Indian sequences allowed us to identify the Punjab state, in North-western India, as the putative ancestral homeland of the European Roma, in agreement with previous linguistic and anthropological studies. PMID:21264345
Functional Connectivity and Genetic Profile of a “Double-Cortex”-Like Malformation
Sprugnoli, Giulia; Vatti, Giampaolo; Rossi, Simone; Cerase, Alfonso; Renieri, Alessandra; Mencarelli, Maria A.; Zara, Federico; Rossi, Alessandro; Santarnecchi, Emiliano
2018-01-01
Laminar heterotopia is a rare condition consisting in an extra layer of gray matter under properly migrated cortex; it configures an atypical presentation of periventricular nodular heterotopia (PNH) or a double cortex (DC) syndrome. We conducted an original functional MRI (fMRI) analysis in a drug-resistant epilepsy patient with “double-cortex”-like malformation to reveal her functional connectivity (FC) as well as a wide genetic analysis to identify possible genetic substrates. Heterotopias were segmented into region of interests (ROIs), whose voxel-wise FC was compared to that of (i) its normally migrated counterpart, (ii) its contralateral homologous, and (iii) those of 30 age-matched healthy controls. Extensive genetic analysis was conducted to screen cortical malformations-associated genes. Compared to healthy controls, both laminar heterotopias and the overlying cortex showed significant reduction of FC with the contralateral hemisphere. Two heterozygous variants of uncertain clinical significance were found, involving autosomal recessive disease-causing genes, FAT4 and COL18A1. This first FC analysis of a unique case of “double-cortex”-like malformation revealed a hemispheric connectivity segregation both in the laminar cortex as in the correctly migrated one, with a new pattern of genes’ mutations. Our study suggests the altered FC could have an electrophysiological and functional impact on large-scale brain networks, and the involvement of not yet identified genes in “double-cortex”-like malformation with a possible role of rare variants in recessive genes as pathogenic cofactors. PMID:29946244
Delfin, Frederick; Min-Shan Ko, Albert; Li, Mingkun; Gunnarsdóttir, Ellen D; Tabbada, Kristina A; Salvador, Jazelyn M; Calacal, Gayvelline C; Sagum, Minerva S; Datar, Francisco A; Padilla, Sabino G; De Ungria, Maria Corazon A; Stoneking, Mark
2014-01-01
The Philippines is a strategic point in the Asia-Pacific region for the study of human diversity, history and origins, as it is a cross-road for human migrations and consequently exhibits enormous ethnolinguistic diversity. Following on a previous in-depth study of Y-chromosome variation, here we provide new insights into the maternal genetic history of Filipino ethnolinguistic groups by surveying complete mitochondrial DNA (mtDNA) genomes from a total of 14 groups (11 groups in this study and 3 groups previously published) including previously published mtDNA hypervariable segment (HVS) data from Filipino regional center groups. Comparison of HVS data indicate genetic differences between ethnolinguistic and regional center groups. The complete mtDNA genomes of 14 ethnolinguistic groups reveal genetic aspects consistent with the Y-chromosome, namely: diversity and heterogeneity of groups, no support for a simple dichotomy between Negrito and non-Negrito groups, and different genetic affinities with Asia-Pacific groups that are both ancient and recent. Although some mtDNA haplogroups can be associated with the Austronesian expansion, there are others that associate with South Asia, Near Oceania and Australia that are consistent with a southern migration route for ethnolinguistic group ancestors into the Asia-Pacific, with a timeline that overlaps with the initial colonization of the Asia-Pacific region, the initial colonization of the Philippines and a possible separate post-colonization migration into the Philippine archipelago. PMID:23756438
Genetic and phylogenetic consequences of island biogeography.
Johnson, K P; Adler, F R; Cherry, J L
2000-04-01
Island biogeography theory predicts that the number of species on an island should increase with island size and decrease with island distance to the mainland. These predictions are generally well supported in comparative and experimental studies. These ecological, equilibrium predictions arise as a result of colonization and extinction processes. Because colonization and extinction are also important processes in evolution, we develop methods to test evolutionary predictions of island biogeography. We derive a population genetic model of island biogeography that incorporates island colonization, migration of individuals from the mainland, and extinction of island populations. The model provides a means of estimating the rates of migration and extinction from population genetic data. This model predicts that within an island population the distribution of genetic divergences with respect to the mainland source population should be bimodal, with much of the divergence dating to the colonization event. Across islands, this model predicts that populations on large islands should be on average more genetically divergent from mainland source populations than those on small islands. Likewise, populations on distant islands should be more divergent than those on close islands. Published observations of a larger proportion of endemic species on large and distant islands support these predictions.
2011-01-01
Background Main waterfowl migration systems are well understood through ringing activities. However, in mallards (Anas platyrhynchos) ringing studies suggest deviations from general migratory trends and traditions in waterfowl. Furthermore, surprisingly little is known about the population genetic structure of mallards, and studying it may yield insight into the spread of diseases such as Avian Influenza, and in management and conservation of wetlands. The study of evolution of genetic diversity and subsequent partitioning thereof during the last glaciation adds to ongoing discussions on the general evolution of waterfowl populations and flyway evolution. Hypothesised mallard flyways are tested explicitly by analysing mitochondrial mallard DNA from the whole northern hemisphere. Results Phylogenetic analyses confirm two mitochondrial mallard clades. Genetic differentiation within Eurasia and North-America is low, on a continental scale, but large differences occur between these two land masses (FST = 0.51). Half the genetic variance lies within sampling locations, and a negligible portion between currently recognised waterfowl flyways, within Eurasia and North-America. Analysis of molecular variance (AMOVA) at continent scale, incorporating sampling localities as smallest units, also shows the absence of population structure on the flyway level. Finally, demographic modelling by coalescence simulation proposes a split between Eurasia and North-America 43,000 to 74,000 years ago and strong population growth (~100fold) since then and little migration (not statistically different from zero). Conclusions Based on this first complete assessment of the mallard's world-wide population genetic structure we confirm that no more than two mtDNA clades exist. Clade A is characteristic for Eurasia, and clade B for North-America although some representatives of clade A are also found in North-America. We explain this pattern by evaluating competing hypotheses and conclude that a complex mix of historical, recent and anthropogenic factors shaped the current mallard populations. We refute population classification based on flyways proposed by ornithologists and managers, because they seem to have little biological meaning. Our results have implications for wetland management and conservation, with special regard to the release of farmed mallards for hunting, as well as for the possible transmission of Avian Influenza by mallards due to migration. PMID:22093799
Ricklefs, Robert E; Bermingham, Eldredge
2004-08-01
Understanding patterns of diversity can be furthered by analysis of the dynamics of colonization, speciation, and extinction on islands using historical information provided by molecular phylogeography. The land birds of the Lesser Antilles are one of the most thoroughly described regional faunas in this context. In an analysis of colonization times, Ricklefs and Bermingham (2001) found that the cumulative distribution of lineages with respect to increasing time since colonization exhibits a striking change in slope at a genetic distance of about 2% mitochondrial DNA sequence divergence (about one million years). They further showed how this heterogeneity could be explained by either an abrupt increase in colonization rates or a mass extinction event. Cherry et al. (2002), referring to a model developed by Johnson et al. (2000), argued instead that the pattern resulted from a speciation threshold for reproductive isolation of island populations from their continental source populations. Prior to this threshold, genetic divergence is slowed by migration from the source, and species of varying age accumulate at a low genetic distance. After the threshold is reached, source and island populations diverge more rapidly, creating heterogeneity in the distribution of apparent ages of island taxa. We simulated of Johnson et al.'s speciation-threshold model, incorporating genetic divergence at rate k and fixation at rate M of genes that have migrated between the source and the island population. Fixation resets the divergence clock to zero. The speciation-threshold model fits the distribution of divergence times of Lesser Antillean birds well with biologically plausible parameter estimates. Application of the model to the Hawaiian avifauna, which does not exhibit marked heterogeneity of genetic divergence, and the West Indian herpetofauna, which does, required unreasonably high migration-fixation rates, several orders of magnitude greater than the colonization rate. However, the plausibility of the speciation-divergence model for Lesser Antillean birds emphasizes the importance of further investigation of historical biogeography on a regional scale for whole biotas, as well as the migration of genes between populations on long time scales and the achievement of reproductive isolation.
[New view on the population genetic structure of marine fish].
Salmenkova, E A
2011-11-01
The view on homogeneous population genetic structure in many marine fish with high mobility has changed significantly during the last ten years. Molecular genetic population studies over the whole ranges of such species as Atlantic herring and Atlantic cod showed a complex picture of spatial differentiation both on the macrogeographic and, in many areas, on the microgeographic scale, although the differentiation for neutral molecular markers was low. It was established that the migration activity of such fish is constrained in many areas of the species range by hydrological and physicochemical transition zones (environmental gradients), as well as gyres in the spawning regions. Natal homing was recorded in a number of marine fish species. Existing in marine fish constraints of gene migration and a very high variance of reproductive success determine a significantly smaller proportion of effective reproductive size of their populations in the total population size, which generates more complex abundance dynamics than assumed earlier. The various constraints on gene migration and natal homing in marine fish promote the formation of local adaptations at ecologically important phenotypic traits. Effects of selection underlying adaptations are actively investigated in marine fish on the genomic level, using approaches of population genomics. The knowledge of adaptive intraspecific structure enables understanding the ecological and evolutionary processes, that influence biodiversity and providing spatial frames for conservation of genetic resources under commercial exploitation. Contemporary views on the population genetic and adaptive structures or biocomplexity in marine fish support and develop the main principles of the conception of systemic organization of the species and its regional populations, which were advanced by Yu.P. Altukhov and Yu.G. Rychkov.
Gryseels, S; Goüy de Bellocq, J; Makundi, R; Vanmechelen, K; Broeckhove, J; Mazoch, V; Šumbera, R; Zima, J; Leirs, H; Baird, S J E
2016-10-01
Special conditions are required for genetic differentiation to arise at a local geographical scale in the face of gene flow. The Natal multimammate mouse, Mastomys natalensis, is the most widely distributed and abundant rodent in sub-Saharan Africa. A notorious agricultural pest and a natural host for many zoonotic diseases, it can live in close proximity to humans and appears to compete with other rodents for the synanthropic niche. We surveyed its population genetic structure across a 180-km transect in central Tanzania along which the landscape varied between agricultural land in a rural setting and natural woody vegetation, rivers, roads and a city (Morogoro). We sampled M. natalensis across 10 localities and genotyped 15 microsatellite loci from 515 individuals. Hierarchical STRUCTURE analyses show a K-invariant pattern distinguishing Morogoro suburbs (located in the centre of the transect) from nine surrounding rural localities. Landscape connectivity analyses in Circuitscape and comparison of rainfall patterns suggest that neither geographical isolation nor natural breeding asynchrony could explain the genetic differentiation of the urban population. Using the isolation-with-migration model implemented in IMa2, we inferred that a split between suburban and rural populations would have occurred recently (<150 years ago) with higher urban effective population density consistent with an urban source to rural sink of effective migration. The observed genetic differentiation of urban multimammate mice is striking given the uninterrupted distribution of the animal throughout the landscape and the high estimates of effective migration (2N e M = 3.0 and 29.7), suggesting a strong selection gradient across the urban boundary. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Pleiotropic Models of Polygenic Variation, Stabilizing Selection, and Epistasis
Gavrilets, S.; de-Jong, G.
1993-01-01
We show that in polymorphic populations many polygenic traits pleiotropically related to fitness are expected to be under apparent ``stabilizing selection'' independently of the real selection acting on the population. This occurs, for example, if the genetic system is at a stable polymorphic equilibrium determined by selection and the nonadditive contributions of the loci to the trait value either are absent, or are random and independent of those to fitness. Stabilizing selection is also observed if the polygenic system is at an equilibrium determined by a balance between selection and mutation (or migration) when both additive and nonadditive contributions of the loci to the trait value are random and independent of those to fitness. We also compare different viability models that can maintain genetic variability at many loci with respect to their ability to account for the strong stabilizing selection on an additive trait. Let V(m) be the genetic variance supplied by mutation (or migration) each generation, V(g) be the genotypic variance maintained in the population, and n be the number of the loci influencing fitness. We demonstrate that in mutation (migration)-selection balance models the strength of apparent stabilizing selection is order V(m)/V(g). In the overdominant model and in the symmetric viability model the strength of apparent stabilizing selection is approximately 1/(2n) that of total selection on the whole phenotype. We show that a selection system that involves pairwise additive by additive epistasis in maintaining variability can lead to a lower genetic load and genetic variance in fitness (approximately 1/(2n) times) than an equivalent selection system that involves overdominance. We show that, in the epistatic model, the apparent stabilizing selection on an additive trait can be as strong as the total selection on the whole phenotype. PMID:8325491
Lin, Wenzhi; Frère, Céline H; Karczmarski, Leszek; Xia, Jia; Gui, Duan; Wu, Yuping
2014-10-10
We used 344 mitochondrial control region (717 bp) sequences from the finless porpoise (genus Neophocaena) from the northwestern Pacific to investigate the extent and manner in which past climatic oscillations may have shaped patterns of genetic diversity for this marine mammal. Both SplitsTree and Analysis of Molecular Variance (AMOVA) revealed the presence of a deep divergence among N. phocaenoides in subtropical waters compared with N. asiaeorientalis in temperate waters. Results from Migrate-n indicated that migration increased along the continent during the early Pleistocene period. Migration increased, although to a lesser extent than that during the Pleistocene, along the marginal shelf in the Yellow/Bohai Sea during the Last Glacial Maximum (LGM) due to a shortening coastline. Our results suggest that the current patterns of genetic diversity of Neophocaena vary at a hierarchy on a temporal and spatial scale, and phylogeographic history should be taken into account when examining species population structure and taxonomy.
Scaffolding protein Gab1 regulates myeloid dendritic cell migration in allergic asthma
Zhang, Yun; Xu, Yun; Liu, Shuwan; Guo, Xiaohong; Cen, Dong; Xu, Jiaqi; Li, Heyuan; Li, Kaijun; Zeng, Chunlai; Lu, Linrong; Zhou, Yiting; Shen, Huahao; Cheng, Hongqiang; Zhang, Xue; Ke, Yuehai
2016-01-01
Asthma is a common allergic disorder involving a complex interplay among multiple genetic and environmental factors. Recent studies identified genetic variants of human GAB1 as a novel asthma susceptibility factor. However, the functions of Gab1 in lung remain largely unexplored. In this study, we first observed an elevation of Gab1 level in peripheral blood mononuclear cells from asthmatic patients during acute exacerbation compared with convalescence. Mice with a selectively disrupted Gab1 in myeloid dendritic cells (mDCs) considerably attenuated allergic inflammation in experimental models of asthma. Further investigations revealed a prominent reduction in CCL19-mediated migration of Gab1-deficient mDCs to draining lymph nodes and subsequent impairment of Th2-driven adaptive activation. Mechanistically, Gab1 is an essential component of the CCL19/CCR7 chemokine axis that regulates mDC migration during asthmatic responses. Together, these findings provide the first evidence for the roles of Gab1 in lung, giving us deeper understanding of asthmatic pathogenesis. PMID:27811945
Iron Age and Anglo-Saxon genomes from East England reveal British migration history
Schiffels, Stephan; Haak, Wolfgang; Paajanen, Pirita; Llamas, Bastien; Popescu, Elizabeth; Loe, Louise; Clarke, Rachel; Lyons, Alice; Mortimer, Richard; Sayer, Duncan; Tyler-Smith, Chris; Cooper, Alan; Durbin, Richard
2016-01-01
British population history has been shaped by a series of immigrations, including the early Anglo-Saxon migrations after 400 CE. It remains an open question how these events affected the genetic composition of the current British population. Here, we present whole-genome sequences from 10 individuals excavated close to Cambridge in the East of England, ranging from the late Iron Age to the middle Anglo-Saxon period. By analysing shared rare variants with hundreds of modern samples from Britain and Europe, we estimate that on average the contemporary East English population derives 38% of its ancestry from Anglo-Saxon migrations. We gain further insight with a new method, rarecoal, which infers population history and identifies fine-scale genetic ancestry from rare variants. Using rarecoal we find that the Anglo-Saxon samples are closely related to modern Dutch and Danish populations, while the Iron Age samples share ancestors with multiple Northern European populations including Britain. PMID:26783965
Caribbean nurses migrating to the UK: a gender-focused literature review.
Jones, A D; Bifulco, A; Gabe, J
2009-09-01
International nurse recruitment is an integral part of government health care strategy in many countries. However, the gendered implications of nurse migration have been little explored despite the fact that the nursing workforce is predominantly made up of women. Based on the migration of nurses from the English-speaking Caribbean region to the UK, this paper explores the significance of gender at both the macro and micro levels. Four strands of inquiry were explored: nurse migration, impact on development, work experiences and family life. Key terms were used to search the electronic databases SSCI, EBSCO and JSTOR. An interpretative framework based on the feminist theory of intersectionality was used to systematically review the 15 studies that met the inclusion criteria. Gender issues are significant across all aspects of the migratory process. Migrant nurses contribute to social progress through remittances and knowledge gained abroad although overall, nurse migration negatively impacts development and there are hidden implications for women. For some Caribbean nurses, migration reflects increased economic freedom; however, for others, gender inequality lies at the centre of the decision to relocate. Gender inequality also permeates the lives of many migrant nurses even in countries where economic and work conditions are improved. The ramifications of nurse migration cannot be fully understood without attention to gender inequalities and the specific socio-economic contexts in which they exist. There is need for a gender-centred approach to international nursing recruitment policy that takes account not only of the impact on developing countries, but also of the well-being of migrant nurses themselves.
The Psychology of Puerto Rican Migration.
ERIC Educational Resources Information Center
Prewitt Diaz, Joseph O.
The psychology of the Puerto Rican migrant to the United States mainland is explored. Puerto Ricans have been migrating to the U.S. mainland and returning to Puerto Rico for more than 125 years, and, in fact, approximately 57% of all Puerto Ricans have migrated at one time or another. The migrant experience, including the circular migration…
Fractured Connections: Migration and Holistic Models of Counselling
ERIC Educational Resources Information Center
Wright, Jeannie; Lang, Steve K. W.; Cornforth, Sue
2011-01-01
In this article we aim to explore those points at which migrant identity and landscape intersect. We also consider implications for holistic models of counselling with migrant groups. The New Zealand migration literature was the starting point to consider how and why the experience of migration has been studied. We asked how collective biography…
Effect of single-strand break on branch migration and folding dynamics of Holliday junctions.
Palets, Dmytro; Lushnikov, Alexander Y; Karymov, Mikhail A; Lyubchenko, Yuri L
2010-09-22
The Holliday junction (HJ), or four-way junction, is a central intermediate state of DNA for homologous genetic recombination and other genetic processes such as replication and repair. Branch migration is the process by which the exchange of homologous DNA regions occurs, and it can be spontaneous or driven by proteins. Unfolding of the HJ is required for branch migration. Our previous single-molecule fluorescence studies led to a model according to which branch migration is a stepwise process consisting of consecutive migration and folding steps. Folding of the HJ in one of the folded conformations terminates the branch migration phase. At the same time, in the unfolded state HJ rapidly migrates over entire homology region of the HJ in one hop. This process can be affected by irregularities in the DNA double helical structure, so mismatches almost terminate a spontaneous branch migration. Single-stranded breaks or nicks are the most ubiquitous defects in the DNA helix; however, to date, their effect on the HJ branch migration has not been studied. In addition, although nicked HJs are specific substrates for a number of enzymes involved in DNA recombination and repair, the role of this substrate specificity remains unclear. Our main goal in this work was to study the effect of nicks on the efficiency of HJ branch migration and the dynamics of the HJ. To accomplish this goal, we applied two single-molecule methods: atomic force microscopy and fluorescence resonance energy transfer. The atomic force microscopy data show that the nick does not prevent branch migration, but it does decrease the probability that the HJ will pass the DNA lesion. The single-molecule fluorescence resonance energy transfer approaches were instrumental in detailing the effects of nicks. These studies reveal a dramatic change of the HJ dynamics. The nick changes the structure and conformational dynamics of the junctions, leading to conformations with geometries that are different from those for the intact HJ. On the basis of these data, we propose a model of branch migration in which the propensity of the junction to unfold decreases the lifetimes of folded states, thereby increasing the frequency of junction fluctuations between the folded states. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Theodorakis, Christopher W.; Bickham, John W.; Lamb, Trip; Medica, Philip A.; Lyne, T. Barrett
2001-01-01
We examined effects of radionuclide exposure at two atomic blast sites on kangaroo rats (Dipodomys merriami) at the Nevada Test Site, Nevada, USA, using genotoxicity and population genetic analyses. We assessed chromosome damage by micronucleus and flow cytometric assays and genetic variation by randomly amplified polymorphic DNA (RAPD) and mitochondrial DNA (mtDNA) analyses. The RAPD analysis showed no population structure, but mtDNA exhibited differentiation among and within populations. Genotoxicity effects were not observed when all individuals were analyzed. However, individuals with mtDNA haplotypes unique to the contaminated sites had greater chromosomal damage than contaminated-site individuals with haplotypes shared with reference sites. When interpopulation comparisons used individuals with unique haplotypes, one contaminated site had greater levels of chromosome damage than one or both of the reference sites. We hypothesize that shared-haplotype individuals are potential migrants and that unique-haplotype individuals are potential long-term residents. A parsimony approach was used to estimate the minimum number of migration events necessary to explain the haplotype distributions on a phylogenetic tree. The observed predominance of migration events into the contaminated sites supported our migration hypothesis. We conclude the atomic blast sites are ecological sinks and that immigration masks the genotoxic effects of radiation on the resident populations.
Listman, JB; Malison, RT; Sanichwankul, K; Ittiwut, C; Mutirangura, A; Gelernter, J
2010-01-01
In Thailand, the term Hill Tribe is used to describe populations whose members traditionally practice slash and burn agriculture and reside in the mountains. These tribes are thought to have migrated throughout Asia for up to 5,000 years, including migrations through Southern China and/or Southeast Asia. There have been continuous migrations southward from China into Thailand for approximately the past thousand years and the present geographic range of any given tribe straddles multiple political borders. As none of these populations have autochthonous scripts, written histories have until recently, been externally produced. Northern Asian, Tibetan, and Siberian origins of Hill Tribes have been proposed. All purport endogamy and have non-mutually intelligible languages. In order to test hypotheses regarding the geographic origins of these populations, relatedness and migrations among them and neighboring populations, and whether their genetic relationships correspond with their linguistic relationships, we analyzed 2445 genome-wide SNP markers in 118 individuals from five Thai Hill Tribe populations (Akha, Hmong, Karen, Lahu, and Lisu), 90 individuals from majority Thai populations, and 826 individuals from Asian and Oceanean HGDP and HapMap populations using a Bayesian clustering method. Considering these results within the context of results of recent large-scale studies of Asian geographic genetic variation allows us to infer a shared Southeast Asian origin of these five Hill Tribe populations as well ancestry components that distinguish among them seen in successive levels of clustering. In addition, the inferred level of shared ancestry among the Hill Tribes corresponds well to relationships among their languages. PMID:20979205
Listman, J B; Malison, R T; Sanichwankul, K; Ittiwut, C; Mutirangura, A; Gelernter, J
2011-02-01
In Thailand, the term Hill Tribe is used to describe populations whose members traditionally practice slash and burn agriculture and reside in the mountains. These tribes are thought to have migrated throughout Asia for up to 5,000 years, including migrations through Southern China and/or Southeast Asia. There have been continuous migrations southward from China into Thailand for approximately the past thousand years and the present geographic range of any given tribe straddles multiple political borders. As none of these populations have autochthonous scripts, written histories have until recently, been externally produced. Northern Asian, Tibetan, and Siberian origins of Hill Tribes have been proposed. All purport endogamy and have nonmutually intelligible languages. To test hypotheses regarding the geographic origins of these populations, relatedness and migrations among them and neighboring populations, and whether their genetic relationships correspond with their linguistic relationships, we analyzed 2,445 genome-wide SNP markers in 118 individuals from five Thai Hill Tribe populations (Akha, Hmong, Karen, Lahu, and Lisu), 90 individuals from majority Thai populations, and 826 individuals from Asian and Oceanean HGDP and HapMap populations using a Bayesian clustering method. Considering these results within the context of results ofrecent large-scale studies of Asian geographic genetic variation allows us to infer a shared Southeast Asian origin of these five Hill Tribe populations as well ancestry components that distinguish among them seen in successive levels of clustering. In addition, the inferred level of shared ancestry among the Hill Tribes corresponds well to relationships among their languages. 2010 Wiley-Liss, Inc.
Scascitelli, M; Whitney, K D; Randell, R A; King, Matthew; Buerkle, C A; Rieseberg, L H
2010-02-01
Although the sexual transfer of genetic material between species (i.e. introgression) has been documented in many groups of plants and animals, genome-wide patterns of introgression are poorly understood. Is most of the genome permeable to interspecific gene flow, or is introgression typically restricted to a handful of genomic regions? Here, we assess the genomic extent and direction of introgression between three sunflowers from the south-central USA: the common sunflower, Helianthus annuus ssp. annuus; a near-endemic to Texas, Helianthus debilis ssp. cucumerifolius; and their putative hybrid derivative, thought to have recently colonized Texas, H. annuus ssp. texanus. Analyses of variation at 88 genetically mapped microsatellite loci revealed that long-term migration rates were high, genome-wide and asymmetric, with higher migration rates from H. annuus texanus into the two parental taxa than vice versa. These results imply a longer history of intermittent contact between H. debilis and H. annuus than previously believed, and that H. annuus texanus may serve as a bridge for the transfer of alleles between its parental taxa. They also contradict recent theory suggesting that introgression should predominantly be in the direction of the colonizing species. As in previous studies of hybridizing sunflower species, regions of genetic differentiation appear small, whether estimated in terms of FST or unidirectional migration rates. Estimates of recent immigration and admixture were inconsistent, depending on the type of analysis. At the individual locus level, one marker showed striking asymmetry in migration rates, a pattern consistent with tight linkage to a Bateson-Dobzhansky-Muller incompatibility.
Dulik, Matthew C.; Owings, Amanda C.; Gaieski, Jill B.; Vilar, Miguel G.; Andre, Alestine; Lennie, Crystal; Mackenzie, Mary Adele; Kritsch, Ingrid; Snowshoe, Sharon; Wright, Ruth; Martin, James; Gibson, Nancy; Andrews, Thomas D.; Schurr, Theodore G.; Adhikarla, Syama; Adler, Christina J.; Balanovska, Elena; Balanovsky, Oleg; Bertranpetit, Jaume; Clarke, Andrew C.; Comas, David; Cooper, Alan; Der Sarkissian, Clio S. I.; GaneshPrasad, ArunKumar; Haak, Wolfgang; Haber, Marc; Hobbs, Angela; Javed, Asif; Jin, Li; Kaplan, Matthew E.; Li, Shilin; Martínez-Cruz, Begoña; Matisoo-Smith, Elizabeth A.; Melé, Marta; Merchant, Nirav C.; Mitchell, R. John; Parida, Laxmi; Pitchappan, Ramasamy; Platt, Daniel E.; Quintana-Murci, Lluis; Renfrew, Colin; Lacerda, Daniela R.; Royyuru, Ajay K.; Santos, Fabrício R.; Soodyall, Himla; Soria Hernanz, David F.; Swamikrishnan, Pandikumar; Tyler-Smith, Chris; Santhakumari, Arun Varatharajan; Vieira, Pedro Paulo; Wells, R. Spencer; Zalloua, Pierre A.; Ziegle, Janet S.
2012-01-01
For decades, the peopling of the Americas has been explored through the analysis of uniparentally inherited genetic systems in Native American populations and the comparison of these genetic data with current linguistic groupings. In northern North America, two language families predominate: Eskimo-Aleut and Na-Dene. Although the genetic evidence from nuclear and mtDNA loci suggest that speakers of these language families share a distinct biological origin, this model has not been examined using data from paternally inherited Y chromosomes. To test this hypothesis and elucidate the migration histories of Eskimoan- and Athapaskan-speaking populations, we analyzed Y-chromosomal data from Inuvialuit, Gwich’in, and Tłįchǫ populations living in the Northwest Territories of Canada. Over 100 biallelic markers and 19 chromosome short tandem repeats (STRs) were genotyped to produce a high-resolution dataset of Y chromosomes from these groups. Among these markers is an SNP discovered in the Inuvialuit that differentiates them from other Aboriginal and Native American populations. The data suggest that Canadian Eskimoan- and Athapaskan-speaking populations are genetically distinct from one another and that the formation of these groups was the result of two population expansions that occurred after the initial movement of people into the Americas. In addition, the population history of Athapaskan speakers is complex, with the Tłįchǫ being distinct from other Athapaskan groups. The high-resolution biallelic data also make clear that Y-chromosomal diversity among the first Native Americans was greater than previously recognized. PMID:22586127
Determinants of Mexico-U.S. Outward and Return Migration Flows: A State-Level Panel Data Analysis.
Chort, Isabelle; de la Rupelle, Maëlys
2016-10-01
Using a unique panel data set of state-to-state outward and return migration flows between Mexico and the United States from 1995 to 2012, this study is the first to analyze Mexico-U.S. migration at the state level and explore simultaneously the effect of economic, environmental, and social factors in Mexico over two decades. Pairing origin and destination states and controlling for a rich structure of fixed effects, we find that income positively impacts migration outflows, especially for Mexican states of origin with a recent migration history and for low-educated migrant flows, suggesting the existence of credit constraints. We find evidence that drought causes more out-migration, while other climatic shocks have no effect. Violence is found to increase out-migration flows from border states and to decrease migration from other Mexican states, especially where violence is directed at migrants. Last, return flows are larger when income growth at destination is lower, consistent with the accumulation of savings as a primary motivation of migrants. Exploring the impact of the crisis, we find evidence of significant changes in the geography of migration flows. Traditional flows are drying up, and new migration corridors are rising, with implications on the composition of the Mexican population in the United States. Although the effect of income on flows in both directions is unchanged by the crisis, the negative effect of violence on out-migration tends to reverse at the end of the period. Overall, this study emphasizes the interest of analyzing disaggregated flows at the infra-country level.
Clucas, Gemma V; Younger, Jane L; Kao, Damian; Rogers, Alex D; Handley, Jonathan; Miller, Gary D; Jouventin, Pierre; Nolan, Paul; Gharbi, Karim; Miller, Karen J; Hart, Tom
2016-10-13
Seabirds are important components of marine ecosystems, both as predators and as indicators of ecological change, being conspicuous and sensitive to changes in prey abundance. To determine whether fluctuations in population sizes are localised or indicative of large-scale ecosystem change, we must first understand population structure and dispersal. King penguins are long-lived seabirds that occupy a niche across the sub-Antarctic zone close to the Polar Front. Colonies have very different histories of exploitation, population recovery, and expansion. We investigated the genetic population structure and patterns of colonisation of king penguins across their current range using a dataset of 5154 unlinked, high-coverage single nucleotide polymorphisms generated via restriction site associated DNA sequencing (RADSeq). Despite breeding at a small number of discrete, geographically separate sites, we find only very slight genetic differentiation among colonies separated by thousands of kilometers of open-ocean, suggesting migration among islands and archipelagos may be common. Our results show that the South Georgia population is slightly differentiated from all other colonies and suggest that the recently founded Falkland Island colony is likely to have been established by migrants from the distant Crozet Islands rather than nearby colonies on South Georgia, possibly as a result of density-dependent processes. The observed subtle differentiation among king penguin colonies must be considered in future conservation planning and monitoring of the species, and demographic models that attempt to forecast extinction risk in response to large-scale climate change must take into account migration. It is possible that migration could buffer king penguins against some of the impacts of climate change where colonies appear panmictic, although it is unlikely to protect them completely given the widespread physical changes projected for their Southern Ocean foraging grounds. Overall, large-scale population genetic studies of marine predators across the Southern Ocean are revealing more interconnection and migration than previously supposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malme, C.I.; Miles, P.R.; Clark, C.W.
1984-08-01
The study supplements work performed during 1983 in the Monterey, California region in determining the degree of behavioral response of migrating gray whales to acoustic stimuli associated with oil and gas exploration and development activities. A computer-implemented trackline program analyzed the theodolite data for any possible changes in distance from shore, speed, linearity of track, orientation toward the sound source, and course heading of the whale group. A history of marine seismic exploration off California was compiled that showed no long-term relationship with growth rates in the gray whale population.
Mettler, Raeann; Schaefer, H. Martin; Chernetsov, Nikita; Fiedler, Wolfgang; Hobson, Keith A.; Ilieva, Mihaela; Imhof, Elisabeth; Johnsen, Arild; Renner, Swen C.; Rolshausen, Gregor; Serrano, David; Wesołowski, Tomasz; Segelbacher, Gernot
2013-01-01
Migratory divides are thought to facilitate behavioral, ecological, and genetic divergence among populations with different migratory routes. However, it is currently contentious how much genetic divergence is needed to maintain distinct migratory behavior across migratory divides. Here we investigate patterns of neutral genetic differentiation among Blackcap (Sylvia atricapilla) populations with different migratory strategies across Europe. We compare the level of genetic divergence of populations migrating to southwestern (SW) or southeastern (SE) wintering areas with birds wintering in the British Isles following a recently established northwesterly (NW) migration route. The migratory divide between SW and SE wintering areas can be interpreted as a result of a re-colonization process after the last glaciation. Thus we predicted greater levels of genetic differentiation among the SW/SE populations. However, a lack of genetic differentiation was found between SW and SE populations, suggesting that interbreeding likely occurs among Blackcaps with different migratory orientations across a large area; therefore the SW/SE migratory divide can be seen as diffuse, broad band and is, at best, a weak isolating barrier. Conversely, weak, albeit significant genetic differentiation was evident between NW and SW migrants breeding sympatrically in southern Germany, suggesting a stronger isolating mechanism may be acting in this population. Populations located within/near the SW/SE contact zone were the least genetically divergent from NW migrants, confirming NW migrants likely originated from within the contact zone. Significant isolation-by-distance was found among eastern Blackcap populations (i.e. SE migrants), but not among western populations (i.e. NW and SW migrants), revealing different patterns of genetic divergence among Blackcap populations in Europe. We discuss possible explanations for the genetic structure of European Blackcaps and how gene flow influences the persistence of divergent migratory behaviors. PMID:24278428
Shafqat-Abbasi, Hamdah; Kowalewski, Jacob M; Kiss, Alexa; Gong, Xiaowei; Hernandez-Varas, Pablo; Berge, Ulrich; Jafari-Mamaghani, Mehrdad; Lock, John G; Strömblad, Staffan
2016-01-01
Mesenchymal (lamellipodial) migration is heterogeneous, although whether this reflects progressive variability or discrete, 'switchable' migration modalities, remains unclear. We present an analytical toolbox, based on quantitative single-cell imaging data, to interrogate this heterogeneity. Integrating supervised behavioral classification with multivariate analyses of cell motion, membrane dynamics, cell-matrix adhesion status and F-actin organization, this toolbox here enables the detection and characterization of two quantitatively distinct mesenchymal migration modes, termed 'Continuous' and 'Discontinuous'. Quantitative mode comparisons reveal differences in cell motion, spatiotemporal coordination of membrane protrusion/retraction, and how cells within each mode reorganize with changed cell speed. These modes thus represent distinctive migratory strategies. Additional analyses illuminate the macromolecular- and cellular-scale effects of molecular targeting (fibronectin, talin, ROCK), including 'adaptive switching' between Continuous (favored at high adhesion/full contraction) and Discontinuous (low adhesion/inhibited contraction) modes. Overall, this analytical toolbox now facilitates the exploration of both spontaneous and adaptive heterogeneity in mesenchymal migration. DOI: http://dx.doi.org/10.7554/eLife.11384.001 PMID:26821527
Goldenberg, Shira M; Liu, Vivian; Nguyen, Paul; Chettiar, Jill; Shannon, Kate
2015-02-01
Given heterogeneous evidence regarding the impacts of migration on HIV/sexually transmitted infections (STIs) among female sex workers (FSWs), we explored factors associated with international migration among FSWs in Vancouver, Canada. We draw on baseline questionnaire and HIV/STI testing data from a community-based cohort, AESHA, from 2010-2012. Logistic regression identified correlates of international migration. Of 650 FSWs, 163 (25.1%) were international migrants, who primarily worked in formal indoor establishments. HIV/STI prevalence was lower among migrants than Canadian-born women (5.5 vs. 25.9%). In multivariate analysis, international migration was positively associated with completing high school, supporting dependents, and paying a third party, and negatively associated with HIV, injecting drugs and inconsistent condom use with clients. Although migrants experience lower workplace harms and HIV risk than Canadian-born women, they face concerning levels of violence, police harassment, and HIV/STIs. Research exploring structural and socio-cultural factors shaping risk mitigation and migrants' access to support remains needed.
Lu, Ming; Luo, Ying; Hu, Pengfei; Dou, Liping; Huang, Shuwei
2018-01-01
Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell migration assay. And we explored the underlying mechanism by Western blotting. Results: AGEs significantly induced the proliferation and migration of VSMCs, but treatment with tanshinone IIA attenuated these effects. AGEs could increase the activity of the ERK1/2 and p38 pathways but not the JNK pathway. Treatment with tanshinone IIA inhibited the AGEs-induced activation of the ERK1/2 pathway but not the p38 pathway. Conclusion: Tanshinone IIA inhibits AGEs-induced proliferation and migration of VSMCs by suppressing the ERK1/2 MAPK signaling pathway. PMID:29372041
Control of cortical neuronal migration by glutamate and GABA
Luhmann, Heiko J.; Fukuda, A.; Kilb, W.
2015-01-01
Neuronal migration in the cortex is controlled by the paracrine action of the classical neurotransmitters glutamate and GABA. Glutamate controls radial migration of pyramidal neurons by acting primarily on NMDA receptors and regulates tangential migration of inhibitory interneurons by activating non-NMDA and NMDA receptors. GABA, acting on ionotropic GABAA-rho and GABAA receptors, has a dichotomic action on radially migrating neurons by acting as a GO signal in lower layers and as a STOP signal in upper cortical plate (CP), respectively. Metabotropic GABAB receptors promote radial migration into the CP and tangential migration of interneurons. Besides GABA, the endogenous GABAergic agonist taurine is a relevant agonist controlling radial migration. To a smaller extent glycine receptor activation can also influence radial and tangential migration. Activation of glutamate and GABA receptors causes increases in intracellular Ca2+ transients, which promote neuronal migration by acting on the cytoskeleton. Pharmacological or genetic manipulation of glutamate or GABA receptors during early corticogenesis induce heterotopic cell clusters in upper layers and loss of cortical lamination, i.e., neuronal migration disorders which can be associated with neurological or neuropsychiatric diseases. The pivotal role of NMDA and ionotropic GABA receptors in cortical neuronal migration is of major clinical relevance, since a number of drugs acting on these receptors (e.g., anti-epileptics, anesthetics, alcohol) may disturb the normal migration pattern when present during early corticogenesis. PMID:25688185
John Krapek; Paul E. Hennon; David V. D' Amore; Brian Buma
2017-01-01
Aim: To explore the recent (past ~1,000 year) migration history of yellow-cedar (Callitropsis nootkatensis), a climate-threatened tree, which appears to lag behind its potential climatic niche at a leading northern range edge, and infer its continued migration potential under changing climate. Location:...
Exploring Meaning-Making with Adolescents "Left Behind" by Migration
ERIC Educational Resources Information Center
Lykes, M. Brinton; Sibley, Erin
2013-01-01
This paper focuses on a population that has received little attention in migration and in youth-related research: those "left behind" when parents migrate to the United States in search of a better life for their families. Findings presented here are drawn from two sets of workshops with Mayan youth participants in the Southern Quiché…
Migration Decision-Making among Mexican Youth: Individual, Family, and Community Influences
ERIC Educational Resources Information Center
Tucker, Christine M.; Torres-Pereda, Pilar; Minnis, Alexandra M.; Bautista-Arredondo, Sergio A.
2013-01-01
We explored migration decisions using in-depth, semistructured interviews with male and female youth ages 14 to 24 (n = 47) from two Mexican communities, one with high and one with low U.S. migration density. Half were return migrants and half were nonmigrants with relatives in the United States. Migrant and nonmigrant youth expressed different…
ERIC Educational Resources Information Center
Rodriguez, Sophia
2018-01-01
This article theorizes migration as risk, drawing on Biesta's notion of risk. The author explores how productive risk connects with emancipation, seeing the risky migrant subjects in societies in new ways, rather than positioning them as marginalized threats. Finally, the author connects the theory of migration as risk to current qualitative data…
Genetics of Severe Early Onset Epilepsies
2017-08-24
Epilepsy; Epileptic Encephalopathy; Ohtahara Syndrome; Infantile Spasms; Dravet Syndrome; Malignant Migrating Partial Epilepsy of Infancy; Early Myoclonic Epileptic Encephalopathy; PCDH19-related Epilepsy and Related Conditions
Identification, Characterization, Immunolocalization, and Biological Activity of Lucilin Peptide.
Alberto, Tellez German; Alejandra, Zapata Jesica; Johanna, Toro Lily; Carolina, Henao Diana; Pablo, Bedoya Juan; David, Rivera Juan; Valentin, Trujillo Juan; Bruno, Rivas; Lopez, Richard Onalbi Hoyos; Carlos, Castano Jhon
2018-06-08
Maggots from the Lucilia sp. genus are used for debridement of infected and necrotic wounds. Broad-spectrum antimicrobial activity has been described in the excretion/secretions (ES 1 ) of these larvae. This study identifies the genetic sequence of a cecropin-like antimicrobial peptide from Lucilia eximia. Total RNA was extracted and used for PCR-RACE amplification of a cecropin, the native peptide was immunolocalized in the tissues and secretions of the larvae, and a synthetic analog was used to explore its antimicrobial, cytotoxic, LPS neutralizing and wound-healing activities in vitro. The genetic cDNA sequence of a cecropin-like antimicrobial peptide in L. eximia called "Lucilin" was amplified, corresponding to 63 aa completed protein and 40 aa mature peptide; the structure of the mature peptide was predicted as an α-helix. The peptide was immunolocalized in the salivary glands, fat body, the ES, and hemolymph of the maggots. Lucilin synthetic peptide analog was active against E. coli DH10B with a MIC 2 of 7.8 µg/mL, E. coli extended spectrum b-lactamase (ESBL) (MIC: 15.6 µg/mL), and Enterobacter cloacae (MIC: 125 µg/mL), but it was not active against Pseudomonas aeruginosa and Staphylococcus epidermidis; and had no cytotoxic or hemolytic activity. It showed immunomodulatory activity against human peripheral blood mononuclear cells (PBMCs) stimulated with LPS, reducing the TNF-α production when treated at 17 µg/mL and induces cell migration of Hacat at 5 and 50 µg/mL. Lucilin is a cecropin-like peptide from L. eximia with antimicrobial activity against Gram negative bacteria and immunomodulatory activities, decreasing the TNF-α production in PBMCs and inducing cellular migration in human keratinocytes. Copyright © 2018. Published by Elsevier B.V.
Rethinking care through social reproduction: articulating circuits of migration.
Kofman, Eleonore
2012-01-01
Care has come to dominate much feminist research on globalized migrations and the transfer of labor from the South to the North, while the older concept of reproduction had been pushed into the background but is now becoming the subject of debates on the commodification of care in the household and changes in welfare state policies. This article argues that we could achieve a better understanding of the different modalities and trajectories of care in the reproduction of individuals, families, and communities, both of migrant and nonmigrant populations by articulating the diverse circuits of migration, in particular that of labor and the family. In doing this, I go back to the earlier North American writing on racialized minorities and migrants and stratified social reproduction. I also explore insights from current Asian studies of gendered circuits of migration connecting labor and marriage migrations as well as the notion of global householding that highlights the gender politics of social reproduction operating within and beyond households in institutional and welfare architectures. In contrast to Asia, there has relatively been little exploration in European studies of the articulation of labor and family migrations through the lens of social reproduction. However, connecting the different types of migration enables us to achieve a more complex understanding of care trajectories and their contribution to social reproduction.
Nilsson, Anna L K; Nilsson, Jan-Åke; Mettke-Hofmann, Claudia
2016-01-01
In facultative partial migrants some individuals in a population are migratory and others are resident and individuals decide each year anew which strategy to choose. While the proportion of birds migrating is in part determined by environmental conditions and competitive abilities, the timing of individual departure and behaviours on route are little understood. Individuals encounter different environmental conditions when migrating earlier or later. Based on cost/ benefit considerations we tested whether behaviours on route were affected by time constraints, personality and/or age in a partially migrating population of Blue tits (Cyanistes caeruleus). We captured female Blue tits on migration at the Southern tip of Sweden during early, peak and late migration and measured latency to feed in an unfamiliar environment, exploration of a novel object and hesitation to feed beside a novel object (neophobia). Lean birds and birds with long wings started feeding earlier when released into the cage indicating that foraging decisions were mainly determined by energetic needs (lean and large birds). However, juveniles commenced feeding later with progression of the migratory season in concordance with predictions about personality effects. Furthermore, lean birds started to explore earlier than birds with larger fat reserves again indicating an effect of maintaining threshold energy reserves. Moreover, late migrating juveniles, started to explore earlier than early migrating juveniles possibly due to time constraints to find high-quality foraging patches or a suitable winter home. Finally, neophobia did not change over the migratory season indicating that this behaviour is not compromised by time constraints. The results overall indicate that decisions on route are mainly governed by energetic requirements and current needs to learn about the environment and only to a small extent by differences in personality.
Nilsson, Jan-Åke; Mettke-Hofmann, Claudia
2016-01-01
In facultative partial migrants some individuals in a population are migratory and others are resident and individuals decide each year anew which strategy to choose. While the proportion of birds migrating is in part determined by environmental conditions and competitive abilities, the timing of individual departure and behaviours on route are little understood. Individuals encounter different environmental conditions when migrating earlier or later. Based on cost/ benefit considerations we tested whether behaviours on route were affected by time constraints, personality and/or age in a partially migrating population of Blue tits (Cyanistes caeruleus). We captured female Blue tits on migration at the Southern tip of Sweden during early, peak and late migration and measured latency to feed in an unfamiliar environment, exploration of a novel object and hesitation to feed beside a novel object (neophobia). Lean birds and birds with long wings started feeding earlier when released into the cage indicating that foraging decisions were mainly determined by energetic needs (lean and large birds). However, juveniles commenced feeding later with progression of the migratory season in concordance with predictions about personality effects. Furthermore, lean birds started to explore earlier than birds with larger fat reserves again indicating an effect of maintaining threshold energy reserves. Moreover, late migrating juveniles, started to explore earlier than early migrating juveniles possibly due to time constraints to find high-quality foraging patches or a suitable winter home. Finally, neophobia did not change over the migratory season indicating that this behaviour is not compromised by time constraints. The results overall indicate that decisions on route are mainly governed by energetic requirements and current needs to learn about the environment and only to a small extent by differences in personality. PMID:27732602
ERIC Educational Resources Information Center
Jervis, George A., Ed.
The genetics of mental retardation are discussed in terms of geographical isolates, prospects for prevention of trisomic conditions, population genetics, and cytogenetics of Down's syndrome; problems of neurogenesis described are anabolic pathways of galactose and glucose metabolism, abnormal cell migrations in developing brains, and genetic…
Population genetic analysis reveals ancient evolution and recent migration of P. ramorum
Erica M. Goss; Meg Larsen; Ignazio Carbone; Donald R. Givens; Gary A. Chastagner; Niklaus J. Gr& uuml; nwald
2010-01-01
Phytophthora ramorum populations in North America and Europe are comprised of three clonal lineages based on several different genetic marker systems (Ivors and others 2006, Martin 2008). Whether these lineages are ancient or a recent artifact of introduction has been unclear. We analyzed DNA sequence variation at five nuclear loci in order to...
SDN-1/syndecan regulates growth factor signaling in distal tip cell migrations in C. elegans.
Schwabiuk, Megan; Coudiere, Ludivine; Merz, David C
2009-10-01
Mutations in the sdn-1/syndecan gene act as genetic enhancers of the ventral-to-dorsal distal tip cell (DTC) migration defects caused by a weak allele of the netrin receptor gene unc-5. The sdn-1(ev697) allele was identified in a genetic screen for enhancers of unc-5 DTC migration defects, and carried a nonsense mutation predicted to truncate the SDN-1 protein prior to the transmembrane domain. The enhancement of unc-5 caused by an sdn-1 mutation was rescued by expression of wild-type sdn-1 in the hypodermis or nervous system rather than the DTCs, indicating a cell non-autonomous function of sdn-1. The enhancement was also partially reversed by mutations in the egl-17/FGF or egl-20/Wnt genes, suggesting that sdn-1 affects UNC-5 function through a mis-regulation of signaling in growth factor pathways. egl-20 reporter constructs exhibited increased and mis-localized EGL-20 distribution in sdn-1 mutants compared to wild-type animals. Finally, using loss of function mutations, we show that egl-17/Fgf and egl-20/Wnt are partially redundant in regulating the migration pattern of the posterior DTC, as double mutants exhibit significant frequencies of defects in migration phases along both the anteroposterior and dorsoventral axes. Together these results suggest that SDN-1 affects UNC-5 function by regulating the proper extracellular distribution of growth factors.
2011-01-01
Background Population extinction risk in a fragmented landscape is related to the differential ability of the species to spread its genes across the landscape. The impact of landscape fragmentation on plant population dynamics will therefore vary across different spatial scales. We quantified successful seed-mediated dispersal of the dioecious shrub Juniperus communis in a fragmented landscape across northwestern Europe by using amplified fragment length polymorphism (AFLP) markers. Furthermore we investigated the genetic diversity and structure on two spatial scales: across northwestern Europe and across Flanders (northern Belgium). We also studied whether seed viability and populations size were correlated with genetic diversity. Results Unexpectedly, estimated seed-mediated dispersal rates were quite high and ranged between 3% and 14%. No population differentiation and no spatial genetic structure were detected on the local, Flemish scale. A significant low to moderate genetic differentiation between populations was detected at the regional, northwest European scale (PhiPT = 0.10). In general, geographically nearby populations were also genetically related. High levels of within-population genetic diversity were detected but no correlation was found between any genetic diversity parameter and population size or seed viability. Conclusions In northwestern Europe, landscape fragmentation has lead to a weak isolation-by-distance pattern but not to genetic impoverishment of common juniper. Substantial rates of successful migration by seed-mediated gene flow indicate a high dispersal ability which could enable Juniperus communis to naturally colonize suitable habitats. However, it is not clear whether the observed levels of migration will suffice to counterbalance the effects of genetic drift in small populations on the long run. PMID:21859457
Vanden-Broeck, An; Gruwez, Robert; Cox, Karen; Adriaenssens, Sandy; Michalczyk, Inga M; Verheyen, Kris
2011-08-22
Population extinction risk in a fragmented landscape is related to the differential ability of the species to spread its genes across the landscape. The impact of landscape fragmentation on plant population dynamics will therefore vary across different spatial scales. We quantified successful seed-mediated dispersal of the dioecious shrub Juniperus communis in a fragmented landscape across northwestern Europe by using amplified fragment length polymorphism (AFLP) markers. Furthermore we investigated the genetic diversity and structure on two spatial scales: across northwestern Europe and across Flanders (northern Belgium). We also studied whether seed viability and populations size were correlated with genetic diversity. Unexpectedly, estimated seed-mediated dispersal rates were quite high and ranged between 3% and 14%. No population differentiation and no spatial genetic structure were detected on the local, Flemish scale. A significant low to moderate genetic differentiation between populations was detected at the regional, northwest European scale (PhiPT = 0.10). In general, geographically nearby populations were also genetically related. High levels of within-population genetic diversity were detected but no correlation was found between any genetic diversity parameter and population size or seed viability. In northwestern Europe, landscape fragmentation has lead to a weak isolation-by-distance pattern but not to genetic impoverishment of common juniper. Substantial rates of successful migration by seed-mediated gene flow indicate a high dispersal ability which could enable Juniperus communis to naturally colonize suitable habitats. However, it is not clear whether the observed levels of migration will suffice to counterbalance the effects of genetic drift in small populations on the long run.
Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Hartman, Travis; Johnson, Jim; Roseman, Edward F.
2013-01-01
Lake whitefish (Coregonus clupeaformis (Mitchill)) are important commercially, culturally, and ecologically in the Laurentian Great Lakes. Stocks of lake whitefish in the Great Lakes have recovered from low levels of abundance in the 1960s. Reductions in abundance, loss of habitat and environmental degradation can be accompanied by losses of genetic diversity and overall fitness that may persist even as populations recover demographically. Therefore, it is important to be able to identify stocks that have reduced levels of genetic diversity. In this study, we investigated patterns of genetic diversity at microsatellite DNA loci in lake whitefish collected between 1927 and 1929 (historical period) and between 1997 and 2005 (contemporary period) from Lake Huron and Lake Erie. Genetic analysis of lake whitefish from Lakes Huron and Erie shows that the amount of population structuring varies from lake to lake. Greater genetic divergences among collections from Lake Huron may be the result of sampling scale, migration patterns and demographic processes. Fluctuations in abundance of lake whitefish populations may have resulted in periods of increased genetic drift that have resulted in changes in allele frequencies over time, but periodic genetic drift was not severe enough to result in a significant loss of genetic diversity. Migration among stocks may have decreased levels of genetic differentiation while not completely obscuring stock boundaries. Recent changes in spatial boundaries to stocks, the number of stocks and life history characteristics of stocks further demonstrate the potential of coregonids for a swift and varied response to environmental change and emphasise the importance of incorporating both spatial and temporal considerations into management plans to ensure that diversity is preserved.
Batai, Ken; Babrowski, Kara B.; Arroyo, Juan Pablo; Kusimba, Chapurukha M.; Williams, Sloan R.
2013-01-01
The Bantu languages are widely distributed throughout sub-Saharan Africa. Genetic research supports linguists and historians who argue that migration played an important role in the spread of this language family, but the genetic data also indicates a more complex process involving substantial gene flow with resident populations. In order to understand the Bantu expansion process in east Africa, mtDNA hypervariable region I variation in 352 individuals from the Taita and Mijikenda ethnic groups was analyzed, and we evaluated the interactions that took place between the Bantu- and non-Bantu-speaking populations in east Africa. The Taita and Mijikenda are Bantu-speaking agropastoralists from southeastern Kenya, at least some of whose ancestors probably migrated into the area as part of Bantu migrations that began around 3,000 BCE. Our analyses indicate that they show some distinctive differences that reflect their unique cultural histories. The Taita are genetically more diverse than the Mijikenda with larger estimates of genetic diversity. The Taita cluster with other east African groups, having high frequencies of haplogroups from that region, while the Mijikenda have high frequencies of central African haplogroups and cluster more closely with central African Bantu-speaking groups. The non-Bantu speakers who lived in southeastern Kenya before Bantu speaking groups arrived were at least partially incorporated into what are now Bantu-speaking Taita groups. In contrast, gene flow from non-Bantu speakers into the Mijikenda was more limited. These results suggest a more complex demographic history where the nature of Bantu and non-Bantu interactions varied throughout the area. PMID:23382080
Boessenkool, Sanne; Star, Bastiaan; Waters, Jonathan M; Seddon, Philip J
2009-06-01
The identification of demographically independent populations and the recognition of management units have been greatly facilitated by the continuing advances in genetic tools. Managements units now play a key role in short-term conservation management programmes of declining species, but their importance in expanding populations receives comparatively little attention. The endangered yellow-eyed penguin (Megadyptes antipodes) expanded its range from the subantarctic to New Zealand's South Island a few hundred years ago and this new population now represents almost half of the species' total census size. This dramatic expansion attests to M. antipodes' high dispersal abilities and suggests the species is likely to constitute a single demographic population. Here we test this hypothesis of panmixia by investigating genetic differentiation and levels of gene flow among penguin breeding areas using 12 autosomal microsatellite loci along with mitochondrial control region sequence analyses for 350 individuals. Contrary to our hypothesis, however, the analyses reveal two genetically and geographically distinct assemblages: South Island vs. subantarctic populations. Using assignment tests, we recognize just two first-generation migrants between these populations (corresponding to a migration rate of < 2%), indicating that ongoing levels of long-distance migration are low. Furthermore, the South Island population has low genetic variability compared to the subantarctic population. These results suggest that the South Island population was founded by only a small number of individuals, and that subsequent levels of gene flow have remained low. The demographic independence of the two populations warrants their designation as distinct management units and conservation efforts should be adjusted accordingly to protect both populations.
Turgeon, J; Bernatchez, L
2001-11-11
Classical models of the spatial structure of population genetics rely on the assumption of migration-drift equilibrium, which is seldom met in natural populations having only recently colonized their current range (e.g., postglacial). Population structure then depicts historical events, and counfounding effects due to recent secondary contact between recently differentiated lineages can further counfound analyses of association between geographic and genetic distances. Mitochondrial polymorphisms have revealed the existence of two closely related lineages of the lake cisco, Coregonus artedi, whose significantly different but overlaping geographical distributions provided a weak signal of past range fragmentation blurred by putative subsequent extensive secondary contacts. In this study, we analyzed geographical patterns of genetic variation at seven microsatellite loci among 22 populations of lake cisco located along the axis of an area covered by proglacial lakes 12,000-8,000 years ago in North America. The results clearly confirmed the existence of two genetically distinct races characterized by different sets of microsatellite alleles whose frequencies varied clinally across some 3000 km. Equilibrium and nonequilibrium analyses of isolation by distance revealed historical signal of gene flow resulting from the nearly complete admixture of these races following neutral secondary contacts in their historical habitat and indicated that the colonization process occurred by a stepwise expansion of an eastern (Atlantic) race into a previously established Mississippian race. This historical signal of equilibrium contrasted with the current migration-drift disequilibrium within major extant watersheds and was apparently maintained by high effective population sizes and low migration regimes.
Population structure, migration, and diversifying selection in the Netherlands
Abdellaoui, Abdel; Hottenga, Jouke-Jan; Knijff, Peter de; Nivard, Michel G; Xiao, Xiangjun; Scheet, Paul; Brooks, Andrew; Ehli, Erik A; Hu, Yueshan; Davies, Gareth E; Hudziak, James J; Sullivan, Patrick F; van Beijsterveldt, Toos; Willemsen, Gonneke; de Geus, Eco J; Penninx, Brenda W J H; Boomsma, Dorret I
2013-01-01
Genetic variation in a population can be summarized through principal component analysis (PCA) on genome-wide data. PCs derived from such analyses are valuable for genetic association studies, where they can correct for population stratification. We investigated how to capture the genetic population structure in a well-characterized sample from the Netherlands and in a worldwide data set and examined whether (1) removing long-range linkage disequilibrium (LD) regions and LD-based SNP pruning significantly improves correlations between PCs and geography and (2) whether genetic differentiation may have been influenced by migration and/or selection. In the Netherlands, three PCs showed significant correlations with geography, distinguishing between: (1) North and South; (2) East and West; and (3) the middle-band and the rest of the country. The third PC only emerged with minimized LD, which also significantly increased correlations with geography for the other two PCs. In addition to geography, the Dutch North–South PC showed correlations with genome-wide homozygosity (r=0.245), which may reflect a serial-founder effect due to northwards migration, and also with height (♂: r=0.142, ♀: r=0.153). The divergence between subpopulations identified by PCs is partly driven by selection pressures. The first three PCs showed significant signals for diversifying selection (545 SNPs - the majority within 184 genes). The strongest signal was observed between North and South for the functional SNP in HERC2 that determines human blue/brown eye color. Thus, this study demonstrates how to increase ancestry signals in a relatively homogeneous population and how those signals can reveal evolutionary history. PMID:23531865
Vyas, Deven N; Kitchen, Andrew; Miró-Herrans, Aida T; Pearson, Laurel N; Al-Meeri, Ali; Mulligan, Connie J
2016-03-01
Anatomically, modern humans are thought to have migrated out of Africa ∼60,000 years ago in the first successful global dispersal. This initial migration may have passed through Yemen, a region that has experienced multiple migrations events with Africa and Eurasia throughout human history. We use Bayesian phylogenetics to determine how ancient and recent migrations have shaped Yemeni mitogenomic variation. We sequenced 113 mitogenomes from multiple Yemeni regions with a focus on haplogroups M, N, and L3(xM,N) as these groups have the oldest evolutionary history outside of Africa. We performed Bayesian evolutionary analyses to generate time-measured phylogenies calibrated by Neanderthal and Denisovan mitogenomes in order to determine the age of Yemeni-specific clades. As defined by Yemeni monophyly, Yemeni in situ evolution is limited to the Holocene or latest Pleistocene (ages of clades in subhaplogroups L3b1a1a, L3h2, L3x1, M1a1f, M1a5, N1a1a3, and N1a3 range from 2 to 14 kya) and is often situated within broader Horn of Africa/southern Arabia in situ evolution (L3h2, L3x1, M1a1f, M1a5, and N1a1a3 ages range from 7 to 29 kya). Five subhaplogroups show no monophyly and are candidates for Holocene migration into Yemen (L0a2a2a, L3d1a1a, L3i2, M1a1b, and N1b1a). Yemeni mitogenomes are largely the product of Holocene migration, and subsequent in situ evolution, from Africa and western Eurasia. However, we hypothesize that recent population movements may obscure the genetic signature of more ancient migrations. Additional research, e.g., analyses of Yemeni nuclear genetic data, is needed to better reconstruct the complex population and migration histories associated with Out of Africa. © 2015 Wiley Periodicals, Inc.
WASP and SCAR are evolutionarily conserved in actin-filled pseudopod-based motility
2017-01-01
Diverse eukaryotic cells crawl through complex environments using distinct modes of migration. To understand the underlying mechanisms and their evolutionary relationships, we must define each mode and identify its phenotypic and molecular markers. In this study, we focus on a widely dispersed migration mode characterized by dynamic actin-filled pseudopods that we call “α-motility.” Mining genomic data reveals a clear trend: only organisms with both WASP and SCAR/WAVE—activators of branched actin assembly—make actin-filled pseudopods. Although SCAR has been shown to drive pseudopod formation, WASP’s role in this process is controversial. We hypothesize that these genes collectively represent a genetic signature of α-motility because both are used for pseudopod formation. WASP depletion from human neutrophils confirms that both proteins are involved in explosive actin polymerization, pseudopod formation, and cell migration. WASP and WAVE also colocalize to dynamic signaling structures. Moreover, retention of WASP together with SCAR correctly predicts α-motility in disease-causing chytrid fungi, which we show crawl at >30 µm/min with actin-filled pseudopods. By focusing on one migration mode in many eukaryotes, we identify a genetic marker of pseudopod formation, the morphological feature of α-motility, providing evidence for a widely distributed mode of cell crawling with a single evolutionary origin. PMID:28473602
Hou, Yan; Lou, Anru
2014-01-01
The phylogeographical patterns of Rhodiola dumulosa, an alpine plant species restrictedly growing in the crevices of rock piles, were investigated based on 4 fragments of the chloroplast genome. To cover the full distribution of R. dumulosa in China, 19 populations from 3 major disjunct distribution areas (northern, central, and northwestern China) were sampled. A total of 5881bp (after alignment) of chloroplast DNA (cpDNA) from 100 individuals were sequenced. The combined cpDNA data set yielded 36 haplotypes. The total genetic diversity of R. dumulosa was remarkably high (H(T) = 0.981). The interpopulation genetic differentiation was significantly large (F(ST) = 0.8537, P < 0.001), possibly due to the long-term isolation of the natural populations. N(ST) was significantly larger than G(ST) (P < 0.001), indicating the presence of phylogeographical structure among the R. dumulosa populations. We propose 2 migration steps to explain the current distribution of R. dumulosa in China. First, this species migrated from refugia in the Qinghai-Tibetan Plateau to northern areas via the intervening highlands when temperatures increased; second, the highland populations migrated toward the mountaintops when temperatures increased further because R. dumulosa is adapted to cold environments. During the second migration step, the common ancestral haplotypes may have been gradually lost.
Determinants of genetic structure in a nonequilibrium metapopulation of the plant Silene latifolia.
Fields, Peter D; Taylor, Douglas R
2014-01-01
Population genetic differentiation will be influenced by the demographic history of populations, opportunities for migration among neighboring demes and founder effects associated with repeated extinction and recolonization. In natural populations, these factors are expected to interact with each other and their magnitudes will vary depending on the spatial distribution and age structure of local demes. Although each of these effects has been individually identified as important in structuring genetic variance, their relative magnitude is seldom estimated in nature. We conducted a population genetic analysis in a metapopulation of the angiosperm, Silene latifolia, from which we had more than 20 years of data on the spatial distribution, demographic history, and extinction and colonization of demes. We used hierarchical Bayesian methods to disentangle which features of the populations contributed to among population variation in allele frequencies, including the magnitude and direction of their effects. We show that population age, long-term size and degree of connectivity all combine to affect the distribution of genetic variance; small, recently-founded, isolated populations contributed most to increase FST in the metapopulation. However, the effects of population size and population age are best understood as being modulated through the effects of connectivity to other extant populations, i.e. FST diminishes as populations age, but at a rate that depends how isolated the population is. These spatial and temporal correlates of population structure give insight into how migration, founder effect and within-deme genetic drift have combined to enhance and restrict genetic divergence in a natural metapopulation.
Griciuvienė, Loreta; Paulauskas, Algimantas; Radzijevskaja, Jana; Žukauskienė, Judita; Pūraitė, Irma
2016-01-01
Abstract The raccoon dog Nyctereutes procyonoides experienced an active introduction and acclimatization in the European part of Russia followed by its migration to and colonization in the neighboring countries. Eventually, it has spread rapidly into many European countries. N. procyonoides probably invaded Lithuania from the neighboring countries of Belarus and Latvia where the species was introduced. However, the data on genetic diversity and population structure of the raccoon dogs in the recently invaded territories are still scarce. The objectives of this study were to investigate genetic diversity of N. procyonoides in Lithuania after acclimatization, and to assess the impact of anthropogenic pressure on the formation of population structure. A total of 147 N. procyonoides individuals collected from different regions of Lithuania were genotyped using 17 microsatellite markers. The microsatellite analysis of raccoon dogs indicated high levels of genetic diversity within the population. The Bayesian clustering analysis in STRUCTURE identified 4 genetic clusters among sampled raccoon dogs that could not reveal a clear separation between subpopulations. The widespread distribution of raccoon dogs in Lithuania, high level of genetic variation observed within subpopulations, and low level of variation portioned among subpopulations suggest migration and gene flow among locations. The significant correlation between genetic and geographic distances indicated isolation that reflected the distance between locations. The fencing of highways and very intensive traffic could be barriers to gene flow between the western and eastern sampling areas of raccoon dogs. PMID:29491930
On the occurrence of false positives in tests of migration under an isolation with migration model
Hey, Jody; Chung, Yujin; Sethuraman, Arun
2015-01-01
The population genetic study of divergence is often done using a Bayesian genealogy sampler, like those implemented in IMa2 and related programs, and these analyses frequently include a likelihood-ratio test of the null hypothesis of no migration between populations. Cruickshank and Hahn (2014, Molecular Ecology, 23, 3133–3157) recently reported a high rate of false positive test results with IMa2 for data simulated with small numbers of loci under models with no migration and recent splitting times. We confirm these findings and discover that they are caused by a failure of the assumptions underlying likelihood ratio tests that arises when using marginal likelihoods for a subset of model parameters. We also show that for small data sets, with little divergence between samples from two populations, an excellent fit can often be found by a model with a low migration rate and recent splitting time and a model with a high migration rate and a deep splitting time. PMID:26456794
ERIC Educational Resources Information Center
Katseli, Louka T.; Lucas, Robert E. B.; Xenogiani, Theodora
2006-01-01
This report evaluates the evidence on how migration may promote or hinder development in countries of origin, and explores possible win-win solutions for both sending and receiving countries. The analysis of recent OECD data of foreign-born nationals into Europe documents the presence of multiple migration patterns and reveals that the EU lags…
ERIC Educational Resources Information Center
Goldstein, Sidney; Goldstein, Alice
Using data from the 1960, 1970, and 1980 censuses of Thailand, this paper explores the changing pattern of internal migration. Throughout the period, the census indicates a high degree of stability. Lifetime migration shows a slight rise in each period; recently it has risen in inter- as opposed to intra-regional movement. Five year…
ERIC Educational Resources Information Center
Starks, Donna; Willoughby, Louisa
2015-01-01
Recent years have seen a backlash against multiculturalism in many Western countries and increasing calls to restrict migration and citizenship rights to those who can pass language tests. This paper explores the sentiment of high school students who were born and raised in Australia towards issues of language and migration, including the need for…
ERIC Educational Resources Information Center
Sime, Daniela; Fassetta, Giovanna; McClung, Michele
2018-01-01
The discrimination of Roma groups across Europe has been highlighted by several international organisations. For many, poverty, racism and their children's systematic exclusion from education are 'push' factors when deciding to migrate. This study explores Roma mothers' views of their children's education post migration and their attitudes to…
Genetics of the Pig Tapeworm in Madagascar Reveal a History of Human Dispersal and Colonization
Yanagida, Tetsuya; Carod, Jean-François; Sako, Yasuhito; Nakao, Minoru; Hoberg, Eric P.; Ito, Akira
2014-01-01
An intricate history of human dispersal and geographic colonization has strongly affected the distribution of human pathogens. The pig tapeworm Taenia solium occurs throughout the world as the causative agent of cysticercosis, one of the most serious neglected tropical diseases. Discrete genetic lineages of T. solium in Asia and Africa/Latin America are geographically disjunct; only in Madagascar are they sympatric. Linguistic, archaeological and genetic evidence has indicated that the people in Madagascar have mixed ancestry from Island Southeast Asia and East Africa. Hence, anthropogenic introduction of the tapeworm from Southeast Asia and Africa had been postulated. This study shows that the major mitochondrial haplotype of T. solium in Madagascar is closely related to those from the Indian Subcontinent. Parasitological evidence presented here, and human genetics previously reported, support the hypothesis of an Indian influence on Malagasy culture coinciding with periods of early human migration onto the island. We also found evidence of nuclear-mitochondrial discordance in single tapeworms, indicating unexpected cross-fertilization between the two lineages of T. solium. Analyses of genetic and geographic populations of T. solium in Madagascar will shed light on apparently rapid evolution of this organism driven by recent (<2,000 yr) human migrations, following tens of thousands of years of geographic isolation. PMID:25329310
African genetic diversity provides novel insights into evolutionary history and local adaptations.
Choudhury, Ananyo; Aron, Shaun; Sengupta, Dhriti; Hazelhurst, Scott; Ramsay, Michèle
2018-05-08
Genetic variation and susceptibility to disease are shaped by human demographic history. We can now study the genomes of extant Africans and uncover traces of population migration, admixture, assimilation and selection by applying sophisticated computational algorithms. There are four major ethnolinguistic divisions among present day Africans: Hunter-gatherer populations in southern and central Africa; Nilo-Saharan speakers from north and northeast Africa; Afro-Asiatic speakers from east Africa; and Niger-Congo speakers who are the predominant ethnolinguistic group spread across most of sub-Saharan Africa. The enormous ethnolinguistic diversity in sub-Saharan African populations is largely paralleled by extensive genetic diversity and until a decade ago, little was known about the origins and divergence of these groups. Results from large-scale population genetic studies, and more recently whole genome sequence data, are unraveling the critical role of events like migration and admixture and environment factors including diet, infectious diseases and climatic conditions in shaping current population diversity. It is now possible to start providing quantitative estimates of divergence times, population size and dynamic processes that have affected populations and their genetic risk for disease. Finally, the availability of ancient genomes from Africa is providing historical insights of unprecedented depth. In this review, we highlight some key interpretations that have emerged from recent African genome studies.
Genomic Ancestry of North Africans Supports Back-to-Africa Migrations
Gravel, Simon; Wang, Wei; Brisbin, Abra; Byrnes, Jake K.; Fadhlaoui-Zid, Karima; Zalloua, Pierre A.; Moreno-Estrada, Andres; Bertranpetit, Jaume; Bustamante, Carlos D.; Comas, David
2012-01-01
North African populations are distinct from sub-Saharan Africans based on cultural, linguistic, and phenotypic attributes; however, the time and the extent of genetic divergence between populations north and south of the Sahara remain poorly understood. Here, we interrogate the multilayered history of North Africa by characterizing the effect of hypothesized migrations from the Near East, Europe, and sub-Saharan Africa on current genetic diversity. We present dense, genome-wide SNP genotyping array data (730,000 sites) from seven North African populations, spanning from Egypt to Morocco, and one Spanish population. We identify a gradient of likely autochthonous Maghrebi ancestry that increases from east to west across northern Africa; this ancestry is likely derived from “back-to-Africa” gene flow more than 12,000 years ago (ya), prior to the Holocene. The indigenous North African ancestry is more frequent in populations with historical Berber ethnicity. In most North African populations we also see substantial shared ancestry with the Near East, and to a lesser extent sub-Saharan Africa and Europe. To estimate the time of migration from sub-Saharan populations into North Africa, we implement a maximum likelihood dating method based on the distribution of migrant tracts. In order to first identify migrant tracts, we assign local ancestry to haplotypes using a novel, principal component-based analysis of three ancestral populations. We estimate that a migration of western African origin into Morocco began about 40 generations ago (approximately 1,200 ya); a migration of individuals with Nilotic ancestry into Egypt occurred about 25 generations ago (approximately 750 ya). Our genomic data reveal an extraordinarily complex history of migrations, involving at least five ancestral populations, into North Africa. PMID:22253600
JC Virus Mediates Invasion and Migration in Colorectal Metastasis
Link, Alexander; Shin, Sung Kwan; Nagasaka, Takeshi; Balaguer, Francesc; Koi, Minoru; Jung, Barbara; Boland, C. Richard; Goel, Ajay
2009-01-01
Introduction JC Virus (JCV), a human polyomavirus, is frequently present in colorectal cancers (CRCs). JCV large T-Ag (T-Ag) expressed in approximately half of all CRC's, however, its functional role in CRC is poorly understood. We hypothesized that JCV T-Ag may mediate metastasis in CRC cells through increased migration and invasion. Material and Methods CRC cell lines (HCT116 and SW837) were stably transfected with JCV early transcript sequences cloned into pCR3 or empty vectors. Migration and invasion assays were performed using Boyden chambers. Global gene expression analysis was performed to identify genetic targets and pathways altered by T-Ag expression. Microarray results were validated by qRT-PCR, protein expression analyses and immunohistochemistry. Matching primary CRCs and liver metastases from 33 patients were analyzed for T-Ag expression by immunohistochemistry. Results T-Ag expressing cell lines showed 2 to 3-fold increase in migration and invasion compared to controls. JCV T-Ag expression resulted in differential expression of several genetic targets, including genes that mediate cell migration and invasion. Pathway analysis suggested a significant involvement of these genes with AKT and MAPK signaling. Treatment with selective PI3K/AKT and MAPK pathway inhibitors resulted in reduced migration and invasion. In support of our in-vitro results, immunohistochemical staining of the advanced stage tumors revealed frequent JCV T-Ag expression in metastatic primary tumors (92%) as well as in their matching liver metastasis (73%). Conclusion These data suggest that JCV T-Ag expression in CRC associates with a metastatic phenotype, which may partly be mediated through the AKT/MAPK signaling pathway. Frequent expression of JCV T-Ag in CRC liver metastasis provides further clues supporting a mechanistic role for JCV as a possible mediator of cellular motility and invasion in CRC. PMID:19997600
Genetic Analysis of Fibroblast Growth Factor Signaling in the Drosophila Eye
Mukherjee, T.; Choi, I.; Banerjee, Utpal
2012-01-01
The development of eyes in Drosophila involves intricate epithelial reorganization events for accurate positioning of cells and proper formation and organization of ommatidial clusters. We demonstrate that Branchless (Bnl), the fibroblast growth factor ligand, regulates restructuring events in the eye disc primordium from as early as the emergence of clusters from a morphogenetic front to the cellular movements during pupal eye development. Breathless (Btl) functions as the fibroblast growth factor receptor to mediate Bnl signal, and together they regulate expression of DE-cadherin, Crumbs, and Actin. In addition, in the eye Bnl regulates the temporal onset and extent of retinal basal glial cell migration by activating Btl in the glia. We hypothesized that the Bnl functions in the eye are Hedgehog dependent and represent novel aspects of Bnl signaling not explored previously. PMID:22384378
Rubin, Stephen P.; Reisenbichler, Reginald R.; Hensleigh, Jay E.; Wetzel, Lisa A.; Baker, Bruce M.; Rubin, Stephen P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.; Hayes, Michael C.
2012-01-01
Various studies suggest that sea ranching of anadromous salmonids can result in domestication (increased fitness in the hatchery program) and a loss of fitness for natural production; however, the mechanism has not been characterized adequately. We artificially spawned hatchery and wild steelhead Oncorhynchus mykiss from the Clearwater River, Idaho, reared the resulting genetically marked (at the PEPA allozyme locus) progeny (HxH, HxW from hatchery females and wild males, and WxW) in hatcheries, and tested for differences in survival, growth, early maturation, downstream migration, and adult returns. Rearing treatments were mixed (crosses reared together) and separate (crosses reared separately from each other) at the hatchery of origin for the hatchery population where smolts are produced in one year, and at a nearby hatchery employing lower rations, lower winter temperatures, and two years of rearing to more closely mimic the natural life history (natural smolt age = 2-4 years). The hatchery population had been artificially propagated for six generations at the onset of our study. We found little or no difference in survival in the hatchery but substantially higher rates of growth and subsequent downstream migration for HxH than for WxW fish. Faster growth for HxH fish resulted in greater size at release which contributed to their higher migration rate, but other as yet uncharacterized traits also affected migration since the migration difference between crosses was apparent even within size classes. Growth of WxW fish was slower in the mixed than in the separate treatment indicating that WxW fish were competitively inferior to HxH fish in the hatchery environment. Incidence of precocious males was higher for WxW than for HxH fish in the separate but not in the mixed treatment. Incidence of HxH precocious males was similar between treatments. Apparently, the presence of HxH fish suppressed high incidence of early maturation by WxW males. A direct effect beyond the suppression of WxW growth by HxH fish was involved because the effect persisted within size categories. In-hatchery survival and growth of WxW relative to HxH fish may have been better with two-year rearing than in the standard one-year program (differences were consistent but small and non-significant); however, performance remained substantially worse for progeny of wild fish. Greater downstream migration for HxH than for WxW fish was primarily due to greater residualization for WxW than for HxH fish near the smolt release site rather than to immediate differential mortality. By August the residuals had lost condition compared to their condition in the hatchery the previous March, a month before release, and the residuals produced almost no smolts the following spring. Adult return rate was higher for HxH than for WxW fish for one year-class, consistent with the difference in downstream migration; only three adults (all WxW) returned from the other. Intermediate performance by HxW fish on growth, early maturation, downstream migration, and adult returns corroborated the genetic basis of the stock differences. Natural selection after release from the hatchery favored fish that performed well in the hatchery (grew fast, didn’t mature early, and excelled in other as yet uncharacterized traits) and genetically changed (domesticated) the wild population to resemble the hatchery population.
Lysosomal Disorders Drive Susceptibility to Tuberculosis by Compromising Macrophage Migration
Berg, Russell D.; Levitte, Steven; O’Sullivan, Mary P.; O’Leary, Seónadh M.; Cambier, C.J.; Cameron, James; Takaki, Kevin K.; Moens, Cecilia B.; Tobin, David M.; Keane, Joseph; Ramakrishnan, Lalita
2016-01-01
Summary A zebrafish genetic screen for determinants of susceptibility to Mycobacterium marinum identified a hypersusceptible mutant deficient in lysosomal cysteine cathepsins that manifests hallmarks of human lysosomal storage diseases. Under homeostatic conditions, mutant macrophages accumulate undigested lysosomal material, which disrupts endocytic recycling and impairs their migration to, and thus engulfment of, dying cells. This causes a buildup of unengulfed cell debris. During mycobacterial infection, macrophages with lysosomal storage cannot migrate toward infected macrophages undergoing apoptosis in the tuberculous granuloma. The unengulfed apoptotic macrophages undergo secondary necrosis, causing granuloma breakdown and increased mycobacterial growth. Macrophage lysosomal storage similarly impairs migration to newly infecting mycobacteria. This phenotype is recapitulated in human smokers, who are at increased risk for tuberculosis. A majority of their alveolar macrophages exhibit lysosomal accumulations of tobacco smoke particulates and do not migrate to Mycobacterium tuberculosis. The incapacitation of highly microbicidal first-responding macrophages may contribute to smokers’ susceptibility to tuberculosis. PMID:27015311
Rubin, Steve P.; Reisenbichler, Reginald; Wetzel, Lisa A.; Hayes, Michael C.
2012-01-01
This report presents results of studies testing for genetically based differences in performance (growth, migration, and survival) between hatchery and wild populations of steelhead and Chinook salmon (Project Number 90-052). The report is organized into 10 chapters with a general study introduction preceding the first chapter. A growing body of data shows that domestication and a resulting loss of fitness for natural rearing occur in hatchery populations of anadromous salmonids; however, the magnitude of domestication will vary among species and hatchery programs. Better information on domestication is needed to accurately predict the consequences when hatchery and wild fish interbreed. The intent of hatchery supplementation is to increase natural production through introduction of hatchery fish into natural production areas. The goal of this study was to provide managers with information on the genetic risks of hatchery supplementation to wild populations of Columbia River Basin summer steelhead and spring Chinook salmon.
Seo, Minchul; Kim, Jong-Heon; Suk, Kyoungho
2017-05-04
Recently, unbiased functional genetic selection identified novel cell migration-regulating genes. This RNAi-based functional selection was performed using 63,996 pooled lentiviral shRNAs targeting 21,332 mouse genes. After five rounds of selection using cells with accelerated or impaired migration, shRNAs were retrieved and identified by half-hairpin barcode sequencing using cells with the selected phenotypes. This selection process led to the identification of 29 novel cell migration regulators. One of these candidates, anaplastic lymphoma kinase (ALK), was further investigated. Subsequent studies revealed that ALK promoted cell migration through the PI3K-AKT pathway via the p55γ regulatory subunit of PI3K, rather than more commonly used p85 subunit. Western blot and immunohistochemistry studies using mouse brain tissues revealed similar temporal expression patterns of ALK, phospho-p55γ, and phospho-AKT during different stages of development. These data support an important role for the p55γ subunit of PI3K in ALK-induced cell migration during brain development.
Peyre, Elise; Silva, Carla G; Nguyen, Laurent
2015-01-01
During embryogenesis, cortical interneurons are generated by ventral progenitors located in the ganglionic eminences of the telencephalon. They travel along multiple tangential paths to populate the cortical wall. As they reach this structure they undergo intracortical dispersion to settle in their final destination. At the cellular level, migrating interneurons are highly polarized cells that extend and retract processes using dynamic remodeling of microtubule and actin cytoskeleton. Different levels of molecular regulation contribute to interneuron migration. These include: (1) Extrinsic guidance cues distributed along migratory streams that are sensed and integrated by migrating interneurons; (2) Intrinsic genetic programs driven by specific transcription factors that grant specification and set the timing of migration for different subtypes of interneurons; (3) Adhesion molecules and cytoskeletal elements/regulators that transduce molecular signalings into coherent movement. These levels of molecular regulation must be properly integrated by interneurons to allow their migration in the cortex. The aim of this review is to summarize our current knowledge of the interplay between microenvironmental signals and cell autonomous programs that drive cortical interneuron porduction, tangential migration, and intergration in the developing cerebral cortex.
Application of Carbonate Reservoir using waveform inversion and reverse-time migration methods
NASA Astrophysics Data System (ADS)
Kim, W.; Kim, H.; Min, D.; Keehm, Y.
2011-12-01
Recent exploration targets of oil and gas resources are deeper and more complicated subsurface structures, and carbonate reservoirs have become one of the attractive and challenging targets in seismic exploration. To increase the rate of success in oil and gas exploration, it is required to delineate detailed subsurface structures. Accordingly, migration method is more important factor in seismic data processing for the delineation. Seismic migration method has a long history, and there have been developed lots of migration techniques. Among them, reverse-time migration is promising, because it can provide reliable images for the complicated model even in the case of significant velocity contrasts in the model. The reliability of seismic migration images is dependent on the subsurface velocity models, which can be extracted in several ways. These days, geophysicists try to obtain velocity models through seismic full waveform inversion. Since Lailly (1983) and Tarantola (1984) proposed that the adjoint state of wave equations can be used in waveform inversion, the back-propagation techniques used in reverse-time migration have been used in waveform inversion, which accelerated the development of waveform inversion. In this study, we applied acoustic waveform inversion and reverse-time migration methods to carbonate reservoir models with various reservoir thicknesses to examine the feasibility of the methods in delineating carbonate reservoir models. We first extracted subsurface material properties from acoustic waveform inversion, and then applied reverse-time migration using the inverted velocities as a background model. The waveform inversion in this study used back-propagation technique, and conjugate gradient method was used in optimization. The inversion was performed using the frequency-selection strategy. Finally waveform inversion results showed that carbonate reservoir models are clearly inverted by waveform inversion and migration images based on the inversion results are quite reliable. Different thicknesses of reservoir models were also described and the results revealed that the lower boundary of the reservoir was not delineated because of energy loss. From these results, it was noted that carbonate reservoirs can be properly imaged and interpreted by waveform inversion and reverse-time migration methods. This work was supported by the Energy Resources R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2009201030001A, No. 2010T100200133) and the Brain Korea 21 project of Energy System Engineering.
Optimal Design of Passive Power Filters Based on Pseudo-parallel Genetic Algorithm
NASA Astrophysics Data System (ADS)
Li, Pei; Li, Hongbo; Gao, Nannan; Niu, Lin; Guo, Liangfeng; Pei, Ying; Zhang, Yanyan; Xu, Minmin; Chen, Kerui
2017-05-01
The economic costs together with filter efficiency are taken as targets to optimize the parameter of passive filter. Furthermore, the method of combining pseudo-parallel genetic algorithm with adaptive genetic algorithm is adopted in this paper. In the early stages pseudo-parallel genetic algorithm is introduced to increase the population diversity, and adaptive genetic algorithm is used in the late stages to reduce the workload. At the same time, the migration rate of pseudo-parallel genetic algorithm is improved to change with population diversity adaptively. Simulation results show that the filter designed by the proposed method has better filtering effect with lower economic cost, and can be used in engineering.
Chen, Kai; Li, Yajie; Xu, Hui; Zhang, Chunfeng; Li, Zhiqiang; Wang, Wei; Wang, Baofeng
2017-10-20
Though there were many researches about the effects of cancer cells on non-small cell lung cancer (NSCLC) currently, it has been rarely reported completed oncogene and its mechanism in tumors by far. Here, we used biological methods with known oncogene of NSCLC to find new oncogene and explore its functionary mechanism in NSCLC. The study firstly built NSCLC genetic interaction network based on bioinformatics methods and then combined shortest path algorithm with significance test to confirmed core genes that were closely involved with given genes; real-time qPCR was conducted to detect expression levels between patients with NSCLC and normal people; additionally, detection of PARP1's role in migration and invasion was performed by trans-well assays and wound-healing. Through gene interaction network, it was found that, core genes like PARP1, EGFR and ALK had a direct interaction. TCGA database showed that PARP1 presented strong expression in NSCLC and the expression level of metastatic NSCLC was significantly higher than that of non-metastatic NSCLC. Cell migration of NSCLC in accordance to the scratch test was suppressed by PARP1 silence but stimulated noticeably by PARP1 overexpression. According to Kaplan-meier survival curve, the higher PARP1 expression, the poorer patient survival rate and prognosis. Thus, PARP1 expression had a negative correction with patient survival rate and prognosis. New oncogene PARP1 was found from known NSCLC oncogene in terms of gene interaction network, demonstrating PARP1's impact on NSCLC cell migration.
Martinez-Bakker, Micaela E.; Sell, Stephanie K.; Swanson, Bradley J.; Kelly, Brendan P.; Tallmon, David A.
2013-01-01
Ringed seals (Pusa hispida) are broadly distributed in seasonally ice covered seas, and their survival and reproductive success is intricately linked to sea ice and snow. Climatic warming is diminishing Arctic snow and sea ice and threatens to endanger ringed seals in the foreseeable future. We investigated the population structure and connectedness within and among three subspecies: Arctic (P. hispida hispida), Baltic (P. hispida botnica), and Lake Saimaa (P. hispida saimensis) ringed seals to assess their capacity to respond to rapid environmental changes. We consider (a) the geographical scale of migration, (b) use of sea ice, and (c) the amount of gene flow between subspecies. Seasonal movements and use of sea ice were determined for 27 seals tracked via satellite telemetry. Additionally, population genetic analyses were conducted using 354 seals representative of each subspecies and 11 breeding sites. Genetic analyses included sequences from two mitochondrial regions and genotypes of 9 microsatellite loci. We found that ringed seals disperse on a pan-Arctic scale and both males and females may migrate long distances during the summer months when sea ice extent is minimal. Gene flow among Arctic breeding sites and between the Arctic and the Baltic Sea subspecies was high; these two subspecies are interconnected as are breeding sites within the Arctic subspecies. PMID:24130843
Cocoş, Relu; Schipor, Sorina; Hervella, Montserrat; Cianga, Petru; Popescu, Roxana; Bănescu, Claudia; Constantinescu, Mihai; Martinescu, Alina; Raicu, Florina
2017-03-07
As a major crossroads between Asia and Europe, Romania has experienced continuous migration and invasion episodes. The precise routes may have been shaped by the topology of the territory and had diverse impacts on the genetic structure of mitochondrial DNA (mtDNA) in historical Romanian provinces. We studied 714 Romanians from all historical provinces, Wallachia, Dobrudja, Moldavia, and Transylvania, by analyzing the mtDNA control region and coding markers to encompass the complete landscape of mtDNA haplogroups. We observed a homogenous distribution of the majority of haplogroups among the Romanian provinces and a clear association with the European populations. A principal component analysis and multidimensional scaling analysis supported the genetic similarity of the Wallachia, Moldavia, and Dobrudja groups with the Balkans, while the Transylvania population was closely related to Central European groups. These findings could be explained by the topology of the Romanian territory, where the Carpathian Arch played an important role in migration patterns. Signals of Asian maternal lineages were observed in all Romanian historical provinces, indicating gene flow along the migration routes through East Asia and Europe. Our current findings based on the mtDNA analysis of populations in historical provinces of Romania suggest similarity between populations in Transylvania and Central Europe, supported both by the observed clines in haplogroup frequencies for several European and Asian maternal lineages and MDS analyses.
Timofeeva, Olga; Pasquale, Elena B.; Hirsch, Kellen; MacDonald, Tobey J.; Dritschilo, Anatoly; Lee, Yi Chien; Henkemeyer, Mark; Rood, Brian; Jung, Mira; Wang, Xiao-Jing; Kool, Marcel
2015-01-01
The expression of members of the Eph family of receptor tyrosine kinases and their ephrin ligands is frequently dysregulated in medulloblastomas. We assessed the expression and functional role of EphB1 in medulloblastoma cell lines and engineered mouse models. mRNA and protein expression profiling showed expression of EphB1 receptor in the human medulloblastoma cell lines DAOY and UW228. EphB1 downregulation reduced cell growth and viability, decreased the expression of important cell cycle regulators, and increased the percentage of cells in G1 phase of the cell cycle. It also modulated the expression of proliferation, and cell survival markers. In addition, EphB1 knockdown in DAOY cells resulted in significant decrease in migration, which correlated with decreased β1-integrin expression and levels of phosphorylated Src. Furthermore, EphB1 knockdown enhanced cellular radiosensitization of medulloblastoma cells in culture and in a genetically engineered mouse medulloblastoma model. Using genetically engineered mouse models, we established that genetic loss of EphB1 resulted in a significant delay in tumor recurrence following irradiation compared to EphB1-expressing control tumors. Taken together, our findings establish that EphB1 plays a key role in medulloblastoma cell growth, viability, migration, and radiation sensitivity, making EphB1 a promising therapeutic target. PMID:25879388
Bhatia, Shilpa; Baig, Nimrah A; Timofeeva, Olga; Pasquale, Elena B; Hirsch, Kellen; MacDonald, Tobey J; Dritschilo, Anatoly; Lee, Yi Chien; Henkemeyer, Mark; Rood, Brian; Jung, Mira; Wang, Xiao-Jing; Kool, Marcel; Rodriguez, Olga; Albanese, Chris; Karam, Sana D
2015-04-20
The expression of members of the Eph family of receptor tyrosine kinases and their ephrin ligands is frequently dysregulated in medulloblastomas. We assessed the expression and functional role of EphB1 in medulloblastoma cell lines and engineered mouse models. mRNA and protein expression profiling showed expression of EphB1 receptor in the human medulloblastoma cell lines DAOY and UW228. EphB1 downregulation reduced cell growth and viability, decreased the expression of important cell cycle regulators, and increased the percentage of cells in G1 phase of the cell cycle. It also modulated the expression of proliferation, and cell survival markers. In addition, EphB1 knockdown in DAOY cells resulted in significant decrease in migration, which correlated with decreased β1-integrin expression and levels of phosphorylated Src. Furthermore, EphB1 knockdown enhanced cellular radiosensitization of medulloblastoma cells in culture and in a genetically engineered mouse medulloblastoma model. Using genetically engineered mouse models, we established that genetic loss of EphB1 resulted in a significant delay in tumor recurrence following irradiation compared to EphB1-expressing control tumors. Taken together, our findings establish that EphB1 plays a key role in medulloblastoma cell growth, viability, migration, and radiation sensitivity, making EphB1 a promising therapeutic target.
Ramey, Andrew M.; Ely, Craig R.; Schmutz, Joel A.; Pearce, John M.; Heard, Darryl J.
2012-01-01
Tundra swans (Cygnus columbianus) are broadly distributed in North America, use a wide variety of habitats, and exhibit diverse migration strategies. We investigated patterns of hematozoa infection in three populations of tundra swans that breed in Alaska using satellite tracking to infer host movement and molecular techniques to assess the prevalence and genetic diversity of parasites. We evaluated whether migratory patterns and environmental conditions at breeding areas explain the prevalence of blood parasites in migratory birds by contrasting the fit of competing models formulated in an occupancy modeling framework and calculating the detection probability of the top model using Akaike Information Criterion (AIC). We described genetic diversity of blood parasites in each population of swans by calculating the number of unique parasite haplotypes observed. Blood parasite infection was significantly different between populations of Alaska tundra swans, with the highest estimated prevalence occurring among birds occupying breeding areas with lower mean daily wind speeds and higher daily summer temperatures. Models including covariates of wind speed and temperature during summer months at breeding grounds better predicted hematozoa prevalence than those that included annual migration distance or duration. Genetic diversity of blood parasites in populations of tundra swans appeared to be relative to hematozoa prevalence. Our results suggest ecological conditions at breeding grounds may explain differences of hematozoa infection among populations of tundra swans that breed in Alaska. PMID:23049862
Ramey, Andrew M.; Ely, Craig R.; Schmutz, Joel A.; Pearce, John M.; Heard, Darryl J.
2012-01-01
Tundra swans (Cygnus columbianus) are broadly distributed in North America, use a wide variety of habitats, and exhibit diverse migration strategies. We investigated patterns of hematozoa infection in three populations of tundra swans that breed in Alaska using satellite tracking to infer host movement and molecular techniques to assess the prevalence and genetic diversity of parasites. We evaluated whether migratory patterns and environmental conditions at breeding areas explain the prevalence of blood parasites in migratory birds by contrasting the fit of competing models formulated in an occupancy modeling framework and calculating the detection probability of the top model using Akaike Information Criterion (AIC). We described genetic diversity of blood parasites in each population of swans by calculating the number of unique parasite haplotypes observed. Blood parasite infection was significantly different between populations of Alaska tundra swans, with the highest estimated prevalence occurring among birds occupying breeding areas with lower mean daily wind speeds and higher daily summer temperatures. Models including covariates of wind speed and temperature during summer months at breeding grounds better predicted hematozoa prevalence than those that included annual migration distance or duration. Genetic diversity of blood parasites in populations of tundra swans appeared to be relative to hematozoa prevalence. Our results suggest ecological conditions at breeding grounds may explain differences of hematozoa infection among populations of tundra swans that breed in Alaska.
Ramey, Andrew M; Ely, Craig R; Schmutz, Joel A; Pearce, John M; Heard, Darryl J
2012-01-01
Tundra swans (Cygnus columbianus) are broadly distributed in North America, use a wide variety of habitats, and exhibit diverse migration strategies. We investigated patterns of hematozoa infection in three populations of tundra swans that breed in Alaska using satellite tracking to infer host movement and molecular techniques to assess the prevalence and genetic diversity of parasites. We evaluated whether migratory patterns and environmental conditions at breeding areas explain the prevalence of blood parasites in migratory birds by contrasting the fit of competing models formulated in an occupancy modeling framework and calculating the detection probability of the top model using Akaike Information Criterion (AIC). We described genetic diversity of blood parasites in each population of swans by calculating the number of unique parasite haplotypes observed. Blood parasite infection was significantly different between populations of Alaska tundra swans, with the highest estimated prevalence occurring among birds occupying breeding areas with lower mean daily wind speeds and higher daily summer temperatures. Models including covariates of wind speed and temperature during summer months at breeding grounds better predicted hematozoa prevalence than those that included annual migration distance or duration. Genetic diversity of blood parasites in populations of tundra swans appeared to be relative to hematozoa prevalence. Our results suggest ecological conditions at breeding grounds may explain differences of hematozoa infection among populations of tundra swans that breed in Alaska.
Landbird migration in the American West: Recent progress and future research directions
Carlisle, J.D.; Skagen, S.K.; Kus, B.E.; van Riper, Charles; Paxton, K.L.; Kelly, J.F.
2009-01-01
Our knowledge of avian behaviors during the nonbreeding period still lags behind that of the breeding season, but the last decade has witnessed a proliferation in research that has yielded significant progress in understanding migration patterns of North American birds. And, although historically the great majority of migration research has been conducted in the eastern half of the continent, there has been much recent progress on aspects of avian migration in the West. In particular, expanded use of techniques such as radar, plasma metabolites, mist-netting, count surveys, stable isotopes, genetic data, and animal tracking, coupled with an increase in multi-investigator collaborations, have all contributed to this growth of knowledge. There is increasing recognition that migration is likely the most limiting time of year for migratory birds, increasing the importance of continuing to decipher patterns of stopover ecology, identifying critical stopover habitats, and documenting migration routes in the diverse and changing landscapes of the American West. Here, we review and briefly synthesize the latest findings and advances in avian migration and consider research needs to guide future research on migration in the West. ?? 2009 by The Cooper Ornithological Society. All rights reserved.
BATAI, KEN; WILLIAMS, SLOAN R.
2015-01-01
Objectives The exploitation of marine resources and intensive agriculture led to a marked population increase early in central Andean prehistory. Constant historic and prehistoric population movements also characterize this region. These features undoubtedly affected regional genetic variation, but the exact nature of these effects remains uncertain. Methods Mitochondrial DNA (mtDNA) hypervariable region I sequence variation in 61 Aymara individuals from La Paz, Bolivia, was analyzed and compared to sequences from 47 other South American populations to test hypotheses of whether increased female effective population size and gene flow influenced the mtDNA variation among central Andean populations. Results The Aymara and Quechua were genetically diverse showing evidence of population expansion and large effective population size, and a demographic expansion model fits the mtDNA variation found among central Andean populations well. Estimated migration rates and the results of AMOVA and multidimensional scaling analysis suggest that female gene flow was also an important factor, influencing genetic variation among the central Andeans as well as lowland populations from western South America. mtDNA variation in south central Andes correlated better with geographic proximity than with language, and fit a population continuity model. Conclusion The mtDNA data suggests that the central Andeans experienced population expansion, most likely because of rapid demographic expansion after introduction of intensive agriculture, but roles of female gene flow need to be further explored. PMID:24449040
Natural Variation and Genetics of Photoperiodism in Wyeomyia smithii.
Bradshaw, William E; Holzapfel, Christina M
2017-01-01
Seasonal change in the temperate and polar regions of Earth determines how the world looks around us and, in fact, how we live our day-to-day lives. For biological organisms, seasonal change typically involves complex physiological and metabolic reorganization, the majority of which is regulated by photoperiodism. Photoperiodism is the ability of animals and plants to use day length or night length, resulting in life-historical transformations, including seasonal development, migration, reproduction, and dormancy. Seasonal timing determines not only survival and reproductive success but also the structure and organization of complex communities and, ultimately, the biomes of Earth. Herein, a small mosquito, Wyeomyia smithii, that lives only in the water-filled leaves of a carnivorous plant over a wide geographic range, is used to explore the genetic and evolutionary basis of photoperiodism. Photoperiodism in W. smithii is considered in the context of its historical biogeography in nature to examine the startling finding that recent rapid climate change can drive genetic change in plants and animals at break-neck speed, and to challenge the ponderous 80+ year search for connections between daily and seasonal time-keeping mechanisms. Finally, a model is proposed that reconciles the seemingly disparate 24-h daily clock driven by the invariant rotation of Earth about its axis with the evolutionarily flexible seasonal timer orchestrated by variable seasonality driven by the rotation of Earth about the Sun. © 2017 Elsevier Inc. All rights reserved.
Climate Shocks and the Timing of Migration from Mexico
Nawrotzki, Raphael J.; DeWaard, Jack
2016-01-01
Although evidence is increasing that climate shocks influence human migration, it is unclear exactly when people migrate after a climate shock. A climate shock might be followed by an immediate migration response. Alternatively, migration, as an adaptive strategy of last resort, might be delayed and employed only after available in-situ (in-place) adaptive strategies are exhausted. In this paper, we explore the temporally lagged association between a climate shock and future migration. Using multilevel event-history models, we analyze the risk of Mexico-U.S. migration over a seven-year period after a climate shock. Consistent with a delayed response pattern, we find that the risk of migration is low immediately after a climate shock and increases as households pursue and cycle through in-situ adaptive strategies available to them. However, about three years after the climate shock, the risk of migration decreases, suggesting that households are eventually successful in adapting in-situ. PMID:27795604
Tabib, M; Zolgharnein, H; Mohammadi, M; Salari-Aliabadi, M A; Qasemi, A; Roshani, S; Rajabi-Maham, H; Frootan, F
2011-01-01
Genetic diversity of sea turtles (hawksbill turtle) was studied using sequencing of mitochondrial DNA (mtDNA, D-loop region). Thirty dead embryos were collected from the Kish and Qeshm Islands in the Persian Gulf. Analysis of sequence variation over 890 bp of the mtDNA control region revealed five haplotypes among 30 individuals. This is the first time that Iranian haplotypes have been recorded. Nucleotide and haplotype diversity was 0.77 and 0.001 for Qeshm Island and 0.64 and 0.002 for Kish Island, respectively. Total haplotype diversity was calculated as 0.69, which demonstrates low genetic diversity in this area. The data also indicated very high rates of migration between the populations of these two islands. A comparison of our data with data from previous studies downloaded from a gene bank showed that turtles of the Persian Gulf migrated from the Pacific and the Sea of Oman into this area. On the other hand, evidence of migration from populations to the West was not found.
Erin L. Landguth,; Muhlfeld, Clint C.; Luikart, Gordon
2012-01-01
We introduce Cost Distance FISHeries (CDFISH), a simulator of population genetics and connectivity in complex riverscapes for a wide range of environmental scenarios of aquatic organisms. The spatially-explicit program implements individual-based genetic modeling with Mendelian inheritance and k-allele mutation on a riverscape with resistance to movement. The program simulates individuals in subpopulations through time employing user-defined functions of individual migration, reproduction, mortality, and dispersal through straying on a continuous resistance surface.
Evolution with Stochastic Fitness and Stochastic Migration
Rice, Sean H.; Papadopoulos, Anthony
2009-01-01
Background Migration between local populations plays an important role in evolution - influencing local adaptation, speciation, extinction, and the maintenance of genetic variation. Like other evolutionary mechanisms, migration is a stochastic process, involving both random and deterministic elements. Many models of evolution have incorporated migration, but these have all been based on simplifying assumptions, such as low migration rate, weak selection, or large population size. We thus have no truly general and exact mathematical description of evolution that incorporates migration. Methodology/Principal Findings We derive an exact equation for directional evolution, essentially a stochastic Price equation with migration, that encompasses all processes, both deterministic and stochastic, contributing to directional change in an open population. Using this result, we show that increasing the variance in migration rates reduces the impact of migration relative to selection. This means that models that treat migration as a single parameter tend to be biassed - overestimating the relative impact of immigration. We further show that selection and migration interact in complex ways, one result being that a strategy for which fitness is negatively correlated with migration rates (high fitness when migration is low) will tend to increase in frequency, even if it has lower mean fitness than do other strategies. Finally, we derive an equation for the effective migration rate, which allows some of the complex stochastic processes that we identify to be incorporated into models with a single migration parameter. Conclusions/Significance As has previously been shown with selection, the role of migration in evolution is determined by the entire distributions of immigration and emigration rates, not just by the mean values. The interactions of stochastic migration with stochastic selection produce evolutionary processes that are invisible to deterministic evolutionary theory. PMID:19816580
O'Malley, Kathleen G; Jacobson, Dave P; Kurth, Ryon; Dill, Allen J; Banks, Michael A
2013-01-01
Neutral genetic markers are routinely used to define distinct units within species that warrant discrete management. Human-induced changes to gene flow however may reduce the power of such an approach. We tested the efficiency of adaptive versus neutral genetic markers in differentiating temporally divergent migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid high gene flow owing to artificial propagation and habitat alteration. We compared seven putative migration timing genes to ten microsatellite loci in delineating three migratory groups of Chinook in the Feather River, CA: offspring of fall-run hatchery broodstock that returned as adults to freshwater in fall (fall run), spring-run offspring that returned in spring (spring run), and fall-run offspring that returned in spring (FRS). We found evidence for significant differentiation between the fall and federally listed threatened spring groups based on divergence at three circadian clock genes (OtsClock1b, OmyFbxw11, and Omy1009UW), but not neutral markers. We thus demonstrate the importance of genetic marker choice in resolving complex life history types. These findings directly impact conservation management strategies and add to previous evidence from Pacific and Atlantic salmon indicating that circadian clock genes influence migration timing. PMID:24478800
Hybrid marriages and phenotypic heterosis in offspring: Evidence from China.
Zhu, Chen; Zhang, Xiaohui; Zhao, Qiran; Chen, Qihui
2018-05-01
In genetics, heterosis refers to the phenomenon that cross-breeding within species leads to offspring that are genetically fitter than their parents and exhibit improved phenotypic characteristics. Based on the theory of heterosis and existing genetic evidence, offspring of "hybrid" marriages (spouses originating from different states/provinces/countries/areas), though relatively rare due to physical boundaries, may exhibit greater genetic fitness in terms of intelligence, height, or physical attractiveness (the "distance-performance" hypothesis). This study explores whether heterosis is a contributing factor to offspring's educational attainment in China by applying a high-dimensional fixed effects (HDFE) modelling framework to the unique 0.1% micro-sample of the 2000 Chinese Population Census data. Concerning potential endogeneity of hybrid marriages, we conduct a series of robustness checks. Reassuringly, the estimated heterosis effect remains significantly positive across various measurements, after controlling for parental educational attainments/height, environmental influences, and over a thousand region and region-by-year fixed effects. The effects in male and higher-educated offspring are found to be stronger. Results are replicated when analyzing body height using data from the China Health and Nutrition Survey. Although endogeneity of "hybrid marriages" may not be completely ruled out, the current study sheds light on the potentially beneficial effects of interprovincial migration on population-level human capital accumulation, and we hope that this paper can intrigue future studies that further address endogeneity. The implied heterosis effect could, therefore, be profound for Homo sapiens as a species from an evolutionary point of view. An additional important implication is that the overall genetic influences of parents on offspring's performance may be further decomposed into a conventional heredity effect and a heterosis effect that has been neglected previously. Copyright © 2018 Elsevier B.V. All rights reserved.
Goldenberg, Shira M.; Liu, Vivian; Nguyen, Paul; Chettiar, Jill; Shannon, Kate
2014-01-01
Background Given heterogeneous evidence regarding the impacts of migration on HIV/sexually transmitted infections (STIs) among female sex workers (FSWs), we explored factors associated with international migration among FSWs in Vancouver, Canada. Methods We draw on baseline questionnaire and HIV/STI testing data from a community-based cohort, AESHA, from 2010-2012. Logistic regression identified correlates of international migration. Results Of 650 FSWs, 163 (25.1%) were international migrants, who primarily worked in formal indoor establishments. HIV/STI prevalence was lower among migrants than Canadian-born women (5.5% vs. 25.9%). In multivariate analysis, international migration was positively associated with completing high school, supporting dependents, and paying a third party, and negatively associated with HIV, injecting drugs and inconsistent condom use with clients. Discussion Although migrants experience lower workplace harms and HIV risk than Canadian-born women, they face concerning levels of violence, police harassment, and HIV/STIs. Research exploring structural and socio-cultural factors shaping risk mitigation and migrants’ access to support remains needed. PMID:24700025
Exploring migration intention of nursing students in Nepal: A mixed-methods study.
Poudel, Chandra; Ramjan, Lucie; Everett, Bronwyn; Salamonson, Yenna
2018-03-01
The objective of this study was to assess the migration intention of students enrolled in pre-registration nursing programs in Nepal, and to explore factors influencing this intention. Using an embedded mixed methods design, 799 nursing students were surveyed, followed by 12 semi-structured face-to-face interviews. The result showed that the majority (92.5%) expressed some intention to migrate, with three quarters of these listed furthering their study abroad as the primary reason. In the multiple regression analysis, those with lower professional identity, and those who reported nursing was not their first choice were likely to express migration intention. Interview data identified low salaries, unemployment, poor working conditions, insufficient postgraduate education, and a lack of professional autonomy in Nepal as reasons for their intention to migrate. Increasing opportunities for nurses to undertake postgraduate education in Nepal, promoting a positive image of nursing, and facilitating a supportive learning environment during undergraduate nursing education could help address the potential loss of nurses from Nepal. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Guenther, Christina
2017-01-01
This article explores how drama pedagogy in the foreign language classroom serves as a unique avenue for approaching the global issue of migration in the context of German-speaking Europe. The article focuses on how staging a contemporary play about migration, such as Roland Schimmelpfennig's "Der goldene Drache" (2009), in German for an…
Factors controlling sperm migration through the oviduct revealed by gene-modified mouse models
Fujihara, Yoshitaka; Miyata, Haruhiko; Ikawa, Masahito
2018-01-01
Mammalian fertilization is comprised of many steps including sperm survival in the uterus, sperm migration in the female reproductive tract, physiological and morphological changes to the spermatozoa, and sperm-egg interaction in the oviduct. In vitro studies have revealed essential factors for these fertilization steps for over half a century. However, the molecular mechanism of fertilization has recently been revised by the emergence of genetically modified animals. Here, we focus on essential factors for sperm fertilizing ability and describe recent advances in our knowledge of the mechanisms of mammalian fertilization, especially of sperm migration from the uterus into the oviduct. PMID:29353867
Kochzius, Marc; Blohm, Dietmar
2005-03-14
The aim of this study is to reveal gene flow between populations of the coral reef dwelling lionfish Pterois miles in the Gulf of Aqaba and northern Red Sea. Due to the fjord-like hydrography and topology of the Gulf of Aqaba, isolation of populations might be possible. Analysis of 5' mitochondrial control region sequences from 94 P. miles specimens detected 32 polymorphic sites, yielding 38 haplotypes. Sequence divergence among different haplotypes ranged from 0.6% to 9.9% and genetic diversity was high (h=0.85, pi=1.9%). AMOVA indicates panmixia between the Gulf of Aqaba and northern Red Sea, but analysis of migration pattern shows an almost unidirectional migration originating from the Red Sea.
Hunt, Andrew G.; Darrah, Thomas H.; Poreda, Robert J.
2012-01-01
Silurian and Devonian natural gas reservoirs present within New York state represent an example of unconventional gas accumulations within the northern Appalachian Basin. These unconventional energy resources, previously thought to be noneconomically viable, have come into play following advances in drilling (i.e., horizontal drilling) and extraction (i.e., hydraulic fracturing) capabilities. Therefore, efforts to understand these and other domestic and global natural gas reserves have recently increased. The suspicion of fugitive mass migration issues within current Appalachian production fields has catalyzed the need to develop a greater understanding of the genetic grouping (source) and migrational history of natural gases in this area. We introduce new noble gas data in the context of published hydrocarbon carbon (C1,C2+) (13C) data to explore the genesis of thermogenic gases in the Appalachian Basin. This study includes natural gases from two distinct genetic groups: group 1, Upper Devonian (Marcellus shale and Canadaway Group) gases generated in situ, characterized by early mature (13C[C1 C2][13C113C2]: –9), isotopically light methane, with low (4He) (average, 1 103 cc/cc) elevated 4He/40Ar and 21Ne/40Ar (where the asterisk denotes excess radiogenic or nucleogenic production beyond the atmospheric ratio), and a variable, atmospherically (air-saturated–water) derived noble gas component; and group 2, a migratory natural gas that emanated from Lower Ordovician source rocks (i.e., most likely, Middle Ordovician Trenton or Black River group) that is currently hosted primarily in Lower Silurian sands (i.e., Medina or Clinton group) characterized by isotopically heavy, mature methane (13C[C1 – C2] [13C113C2]: 3), with high (4He) (average, 1.85 103 cc/cc) 4He/40Ar and 21Ne/40Ar near crustal production levels and elevated crustal noble gas content (enriched 4He,21Ne, 40Ar). Because the release of each crustal noble gas (i.e., He, Ne, Ar) from mineral grains in the shale matrix is regulated by temperature, natural gases obtain and retain a record of the thermal conditions of the source rock. Therefore, noble gases constitute a valuable technique for distinguishing the genetic source and post-genetic processes of natural gases.
Soltyszewski, Ireneusz; Plocienniczak, Andrzej; Fabricius, Hans Ake; Kornienko, Igor; Vodolazhsky, Dmitrij; Parson, Walther; Hradil, Roman; Schmitter, Hermann; Ivanov, Pavel; Kuzniar, Piotr; Malyarchuk, Boris A; Grzybowski, Tomasz; Woźniak, Marcin; Henke, Jurgen; Henke, Lotte; Olkhovets, Sergiv; Voitenko, Vladimir; Lagus, Vita; Ficek, Andrej; Minárik, Gabriel; de Knijff, Peter; Rebała, Krzysztof; Wysocka, Joanna; Kapińska, Ewa; Cybulska, Lidia; Mikulich, Alexei I; Tsybovsky, Iosif S; Szczerkowska, Zofia; Krajewski, Paweł; Ploski, Rafał
2008-06-01
The purpose of this study was to evaluate the homogeneity of Polish populations with respect to STRs chosen as core markers of the Polish Forensic National DNA Intelligence Database, and to provide reference allele frequencies and to explore the genetic interrelationship between Poland and neighboring countries. The allele frequency distribution of 10 STRs included in the SGMplus kit was analyzed among 2176 unrelated individuals from 6 regional Polish populations and among 4321 individuals from Germany (three samples), Austria, The Netherlands, Sweden, Czech Republic, Slovakia, Belarus, Ukraine and the Russian Federation (six samples). The statistical approach consisted of AMOVA, calculation of pairwise Rst values and analysis by multidimensional scaling. We found homogeneity of present day Poland and consistent differences between Polish and German populations which contrasted with relative similarities between Russian and German populations. These discrepancies between genetic and geographic distances were confirmed by analysis of an independent data set on Y chromosome STRs. Migrations of Goths, Viking influences, German settlements in the region of Volga river and/or forced population resettlements and other events related to World War II are the historic events which might have caused these finding.
Pinedo, Miguel; Sim, D. Eastern Kang; Giacinto, Rebeca Espinoza; Zúñiga, María Luisa
2015-01-01
The primary aim of this study was to explore the association between internal migration experience within Mexico and lifetime substance use among a sample of 442 indigenous persons from Yucatan, Mexico. Adjusting for potential confounding, correlates of lifetime substance use were assessed among participants with and without internal migration experience. Internal migration to a tourist destination was independently associated with higher odds (Adjusted Odds Ratio (AOR): 2.1; 95% Confidence Interval (CI): 1.3-3.4) of reporting lifetime substance use. Findings suggest that environmental contexts of internal migration may be of importance in shaping vulnerability to substance use. PMID:26605952
Genetic demographic networks: Mathematical model and applications.
Kimmel, Marek; Wojdyła, Tomasz
2016-10-01
Recent improvement in the quality of genetic data obtained from extinct human populations and their ancestors encourages searching for answers to basic questions regarding human population history. The most common and successful are model-based approaches, in which genetic data are compared to the data obtained from the assumed demography model. Using such approach, it is possible to either validate or adjust assumed demography. Model fit to data can be obtained based on reverse-time coalescent simulations or forward-time simulations. In this paper we introduce a computational method based on mathematical equation that allows obtaining joint distributions of pairs of individuals under a specified demography model, each of them characterized by a genetic variant at a chosen locus. The two individuals are randomly sampled from either the same or two different populations. The model assumes three types of demographic events (split, merge and migration). Populations evolve according to the time-continuous Moran model with drift and Markov-process mutation. This latter process is described by the Lyapunov-type equation introduced by O'Brien and generalized in our previous works. Application of this equation constitutes an original contribution. In the result section of the paper we present sample applications of our model to both simulated and literature-based demographies. Among other we include a study of the Slavs-Balts-Finns genetic relationship, in which we model split and migrations between the Balts and Slavs. We also include another example that involves the migration rates between farmers and hunters-gatherers, based on modern and ancient DNA samples. This latter process was previously studied using coalescent simulations. Our results are in general agreement with the previous method, which provides validation of our approach. Although our model is not an alternative to simulation methods in the practical sense, it provides an algorithm to compute pairwise distributions of alleles, in the case of haploid non-recombining loci such as mitochondrial and Y-chromosome loci in humans. Copyright © 2016 Elsevier Inc. All rights reserved.
Deng, Lian; Hoh, Boon Peng; Lu, Dongsheng; Fu, Ruiqing; Phipps, Maude E; Li, Shilin; Nur-Shafawati, Ab Rajab; Hatin, Wan Isa; Ismail, Endom; Mokhtar, Siti Shuhada; Jin, Li; Zilfalil, Bin Alwi; Marshall, Christian R; Scherer, Stephen W; Al-Mulla, Fahd; Xu, Shuhua
2014-09-01
Peninsular Malaysia is a strategic region which might have played an important role in the initial peopling and subsequent human migrations in Asia. However, the genetic diversity and history of human populations--especially indigenous populations--inhabiting this area remain poorly understood. Here, we conducted a genome-wide study using over 900,000 single nucleotide polymorphisms (SNPs) in four major Malaysian ethnic groups (MEGs; Malay, Proto-Malay, Senoi and Negrito), and made comparisons of 17 world-wide populations. Our data revealed that Peninsular Malaysia has greater genetic diversity corresponding to its role as a contact zone of both early and recent human migrations in Asia. However, each single Orang Asli (indigenous) group was less diverse with a smaller effective population size (N(e)) than a European or an East Asian population, indicating a substantial isolation of some duration for these groups. All four MEGs were genetically more similar to Asian populations than to other continental groups, and the divergence time between MEGs and East Asian populations (12,000--6,000 years ago) was also much shorter than that between East Asians and Europeans. Thus, Malaysian Orang Asli groups, despite their significantly different features, may share a common origin with the other Asian groups. Nevertheless, we identified traces of recent gene flow from non-Asians to MEGs. Finally, natural selection signatures were detected in a batch of genes associated with immune response, human height, skin pigmentation, hair and facial morphology and blood pressure in MEGs. Notable examples include SYN3 which is associated with human height in all Orang Asli groups, a height-related gene (PNPT1) and two blood pressure-related genes (CDH13 and PAX5) in Negritos. We conclude that a long isolation period, subsequent gene flow and local adaptations have jointly shaped the genetic architectures of MEGs, and this study provides insight into the peopling and human migration history in Southeast Asia.
Galland, Manon; Friess, Martin
2016-09-10
Craniofacial variation in past and present Amerindians has been attributed to the effect of multiple founder events, or to one major migration followed by in situ differentiation and possibly recurrent contacts among Circum-Arctic groups. Our study aims to: (i) detect morphological differences that may indicate several migrations; (ii) test for the presence of genetic isolation; and (iii) test the correlation between shape data and competing settlement hypotheses by taking into account geography, chronology, climate effects, the presence of genetic isolation and recurrent gene flow. We analyzed a large sample of three-dimensional (3D) cranial surface scans (803 specimens) including past and modern groups from America and Australasia. Shape variation was investigated using geometric morphometrics. Differential external gene flow was evaluated by applying genetic concepts to morphometric data (Relethford-Blangero approach). Settlement hypotheses were tested using a matrix correlation approach (Mantel tests). Our results highlight the strong dichotomy between Circum-Arctic and continental Amerindians as well as the impact of climate adaptation, and possibly recurrent gene flow in the Circum-Arctic area. There is also evidence for the impact of genetic isolation on phenetic variation in Baja California. Several settlement hypotheses are correlated with our data. The three approaches used in this study highlight the importance of local processes especially in Baja California, and caution against the use of overly simplistic models when searching for the number of migration events. The results stress the complexity of the settlement of the Americas as well as the mosaic nature of the processes involved in this process. Am. J. Hum. Biol. 28:646-661, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Reed, Thomas E.; Schindler, Daniel E.; Hague, Merran J.; Patterson, David A.; Meir, Eli; Waples, Robin S.; Hinch, Scott G.
2011-01-01
Evolutionary adaptation affects demographic resilience to climate change but few studies have attempted to project changes in selective pressures or quantify impacts of trait responses on population dynamics and extinction risk. We used a novel individual-based model to explore potential evolutionary changes in migration timing and the consequences for population persistence in sockeye salmon Oncorhynchus nerka in the Fraser River, Canada, under scenarios of future climate warming. Adult sockeye salmon are highly sensitive to increases in water temperature during their arduous upriver migration, raising concerns about the fate of these ecologically, culturally, and commercially important fish in a warmer future. Our results suggest that evolution of upriver migration timing could allow these salmon to avoid increasingly frequent stressful temperatures, with the odds of population persistence increasing in proportion to the trait heritability and phenotypic variance. With a simulated 2°C increase in average summer river temperatures by 2100, adult migration timing from the ocean to the river advanced by ∼10 days when the heritability was 0.5, while the risk of quasi-extinction was only 17% of that faced by populations with zero evolutionary potential (i.e., heritability fixed at zero). The rates of evolution required to maintain persistence under simulated scenarios of moderate to rapid warming are plausible based on estimated heritabilities and rates of microevolution of timing traits in salmon and related species, although further empirical work is required to assess potential genetic and ecophysiological constraints on phenological adaptation. These results highlight the benefits to salmon management of maintaining evolutionary potential within populations, in addition to conserving key habitats and minimizing additional stressors where possible, as a means to build resilience to ongoing climate change. More generally, they demonstrate the importance and feasibility of considering evolutionary processes, in addition to ecology and demography, when projecting population responses to environmental change. PMID:21738573
Otero-Arnaiz, Adriana; Casas, Alejandro; Hamrick, James L; Cruse-Sanders, Jennifer
2005-05-01
Polaskia chichipe is a columnar cactus under artificial selection in central Mexico because of its edible fruits. Our study explored the effect of human manipulation on levels and distribution of genetic variation in wild, silviculturally managed and cultivated sympatric populations. Total genetic variation, estimated in nine populations with five microsatellite loci, was H(T) = 0.658 +/- 0.026 SE, which was mainly distributed within populations (H(S) = 0.646) with low differentiation among them (F(ST) = 0.015). Fixation index (F(IS)) in all populations was positive, indicating a deficit of heterozygous individuals with respect to Hardy-Weinberg expectations. When populations were pooled by management type, the highest expected heterozygosity (H(E) = 0.631 +/- 0.031 SE) and the lowest fixation index (F(IS) = 0.07) were observed in wild populations, followed by cultivated populations (H(E) = 0.56 +/- 0.03 SE, F(IS) = 0.14), whereas the lowest variation was found in silviculturally managed populations (H(E) = 0.51 +/- 0.05 SE, F(IS) = 0.17). Low differentiation among populations under different management types (F(ST) 0.005, P < 0.04) was observed. A pattern of migration among neighbouring populations, suggested from isolation by distance (r2 = 0.314, P < 0.01), may have contributed to homogenizing populations and counteracting the effects of artificial selection. P. chichipe, used and managed for at least 700 generations, shows morphological differentiation, changes in breeding system and seed germination patterns associated with human management, with only slight genetic differences detected by neutral markers.
Jue, Nathaniel K.; Brulé, Thierry; Coleman, Felicia C.; Koenig, Christopher C.
2015-01-01
Describing patterns of connectivity among populations of species with widespread distributions is particularly important in understanding the ecology and evolution of marine species. In this study, we examined patterns of population differentiation, migration, and historical population dynamics using microsatellite and mitochondrial loci to test whether populations of the epinephelid fish, Gag, Mycteroperca microlepis, an important fishery species, are genetically connected across the Gulf of Mexico and if so, whether that connectivity is attributable to either contemporary or historical processes. Populations of Gag on the Campeche Bank and the West Florida Shelf show significant, but low magnitude, differentiation. Time since divergence/expansion estimates associated with historical population dynamics indicate that any population or spatial expansions indicated by population genetics would have likely occurred in the late Pleistocene. Using coalescent-based approaches, we find that the best model for explaining observed spatial patterns of contemporary genetic variation is one of asymmetric gene flow, with movement from Campeche Bank to the West Florida Shelf. Both estimated migration rates and ecological data support the hypothesis that Gag populations throughout the Gulf of Mexico are connected via present day larval dispersal. Demonstrating this greatly expanded scale of connectivity for Gag highlights the influence of “ghost” populations (sensu Beerli) on genetic patterns and presents a critical consideration for both fisheries management and conservation of this and other species with similar genetic patterns. PMID:25856095
Levels and patterns of internal migration in Europe: A cohort perspective.
Bernard, Aude
2017-11-01
Europe displays important variations in the level of internal migration, with a clear spatial gradient of high mobility in northern and western Europe but lower mobility in the south and east. However, cross-national variation in levels of internal migration remains poorly understood, because it is analysed almost exclusively using cross-sectional data and period measures. This paper seeks to advance understanding of cross-national variation in migration levels in 14 European countries by drawing on a recently proposed suite of migration cohort measures, coupled with internationally comparable retrospective residential histories. It shows that differences in migration levels are mainly attributable to variation in the extent of repeat movement, which is underpinned by the differences in mean ages at first and last move that together delineate the average length of migration careers. Cohort analysis provides a robust foundation for exploring the demographic mechanisms underpinning variation in migration levels across countries and over time.
Flight mode affects allometry of migration range in birds.
Watanabe, Yuuki Y
2016-08-01
Billions of birds migrate to exploit seasonally available resources. The ranges of migration vary greatly among species, but the underlying mechanisms are poorly understood. I hypothesise that flight mode (flapping or soaring) and body mass affect migration range through their influence on flight energetics. Here, I compiled the tracks of migratory birds (196 species, weighing 12-10 350 g) recorded by electronic tags in the last few decades. In flapping birds, migration ranges decreased with body mass, as predicted from rapidly increasing flight cost with increasing body mass. The species with higher aspect ratio and lower wing loading had larger migration ranges. In soaring birds, migration ranges were mass-independent and larger than those of flapping birds, reflecting their low flight costs irrespective of body mass. This study demonstrates that many animal-tracking studies are now available to explore the general patterns and the underlying mechanisms of animal migration. © 2016 John Wiley & Sons Ltd/CNRS.
Fu, Feng; Nowak, Martin A.; Bonhoeffer, Sebastian
2015-01-01
Acquired resistance is one of the major barriers to successful cancer therapy. The development of resistance is commonly attributed to genetic heterogeneity. However, heterogeneity of drug penetration of the tumor microenvironment both on the microscopic level within solid tumors as well as on the macroscopic level across metastases may also contribute to acquired drug resistance. Here we use mathematical models to investigate the effect of drug heterogeneity on the probability of escape from treatment and the time to resistance. Specifically we address scenarios with sufficiently potent therapies that suppress growth of all preexisting genetic variants in the compartment with the highest possible drug concentration. To study the joint effect of drug heterogeneity, growth rate, and evolution of resistance, we analyze a multi-type stochastic branching process describing growth of cancer cells in multiple compartments with different drug concentrations and limited migration between compartments. We show that resistance is likely to arise first in the sanctuary compartment with poor drug penetrations and from there populate non-sanctuary compartments with high drug concentrations. Moreover, we show that only below a threshold rate of cell migration does spatial heterogeneity accelerate resistance evolution, otherwise deterring drug resistance with excessively high migration rates. Our results provide new insights into understanding why cancers tend to quickly become resistant, and that cell migration and the presence of sanctuary sites with little drug exposure are essential to this end. PMID:25789469
Ancient X chromosomes reveal contrasting sex bias in Neolithic and Bronze Age Eurasian migrations.
Goldberg, Amy; Günther, Torsten; Rosenberg, Noah A; Jakobsson, Mattias
2017-03-07
Dramatic events in human prehistory, such as the spread of agriculture to Europe from Anatolia and the late Neolithic/Bronze Age migration from the Pontic-Caspian Steppe, can be investigated using patterns of genetic variation among the people who lived in those times. In particular, studies of differing female and male demographic histories on the basis of ancient genomes can provide information about complexities of social structures and cultural interactions in prehistoric populations. We use a mechanistic admixture model to compare the sex-specifically-inherited X chromosome with the autosomes in 20 early Neolithic and 16 late Neolithic/Bronze Age human remains. Contrary to previous hypotheses suggested by the patrilocality of many agricultural populations, we find no evidence of sex-biased admixture during the migration that spread farming across Europe during the early Neolithic. For later migrations from the Pontic Steppe during the late Neolithic/Bronze Age, however, we estimate a dramatic male bias, with approximately five to 14 migrating males for every migrating female. We find evidence of ongoing, primarily male, migration from the steppe to central Europe over a period of multiple generations, with a level of sex bias that excludes a pulse migration during a single generation. The contrasting patterns of sex-specific migration during these two migrations suggest a view of differing cultural histories in which the Neolithic transition was driven by mass migration of both males and females in roughly equal numbers, perhaps whole families, whereas the later Bronze Age migration and cultural shift were instead driven by male migration, potentially connected to new technology and conquest.
Sundararajan, Lakshmi; Norris, Megan L; Lundquist, Erik A
2015-05-28
The Q neuroblasts in Caenorhabditis elegans display left-right asymmetry in their migration, with QR and descendants on the right migrating anteriorly, and QL and descendants on the left migrating posteriorly. Initial QR and QL migration is controlled by the transmembrane receptors UNC-40/DCC, PTP-3/LAR, and the Fat-like cadherin CDH-4. After initial migration, QL responds to an EGL-20/Wnt signal that drives continued posterior migration by activating MAB-5/Hox activity in QL but not QR. QR expresses the transmembrane protein MIG-13, which is repressed by MAB-5 in QL and which drives anterior migration of QR descendants. A screen for new Q descendant AQR and PQR migration mutations identified mig-13 as well as hse-5, the gene encoding the glucuronyl C5-epimerase enzyme, which catalyzes epimerization of glucuronic acid to iduronic acid in the heparan sulfate side chains of heparan sulfate proteoglycans (HSPGs). Of five C. elegans HSPGs, we found that only SDN-1/Syndecan affected Q migrations. sdn-1 mutants showed QR descendant AQR anterior migration defects, and weaker QL descendant PQR migration defects. hse-5 affected initial Q migration, whereas sdn-1 did not. sdn-1 and hse-5 acted redundantly in AQR and PQR migration, but not initial Q migration, suggesting the involvement of other HSPGs in Q migration. Cell-specific expression studies indicated that SDN-1 can act in QR to promote anterior migration. Genetic interactions between sdn-1, mig-13, and mab-5 suggest that MIG-13 and SDN-1 act in parallel to promote anterior AQR migration and that SDN-1 also controls posterior migration. Together, our results indicate previously unappreciated complexity in the role of multiple signaling pathways and inherent left-right asymmetry in the control of Q neuroblast descendant migration. Copyright © 2015 Sundararajan et al.
Sundararajan, Lakshmi; Norris, Megan L.; Lundquist, Erik A.
2015-01-01
The Q neuroblasts in Caenorhabditis elegans display left-right asymmetry in their migration, with QR and descendants on the right migrating anteriorly, and QL and descendants on the left migrating posteriorly. Initial QR and QL migration is controlled by the transmembrane receptors UNC-40/DCC, PTP-3/LAR, and the Fat-like cadherin CDH-4. After initial migration, QL responds to an EGL-20/Wnt signal that drives continued posterior migration by activating MAB-5/Hox activity in QL but not QR. QR expresses the transmembrane protein MIG-13, which is repressed by MAB-5 in QL and which drives anterior migration of QR descendants. A screen for new Q descendant AQR and PQR migration mutations identified mig-13 as well as hse-5, the gene encoding the glucuronyl C5-epimerase enzyme, which catalyzes epimerization of glucuronic acid to iduronic acid in the heparan sulfate side chains of heparan sulfate proteoglycans (HSPGs). Of five C. elegans HSPGs, we found that only SDN-1/Syndecan affected Q migrations. sdn-1 mutants showed QR descendant AQR anterior migration defects, and weaker QL descendant PQR migration defects. hse-5 affected initial Q migration, whereas sdn-1 did not. sdn-1 and hse-5 acted redundantly in AQR and PQR migration, but not initial Q migration, suggesting the involvement of other HSPGs in Q migration. Cell-specific expression studies indicated that SDN-1 can act in QR to promote anterior migration. Genetic interactions between sdn-1, mig-13, and mab-5 suggest that MIG-13 and SDN-1 act in parallel to promote anterior AQR migration and that SDN-1 also controls posterior migration. Together, our results indicate previously unappreciated complexity in the role of multiple signaling pathways and inherent left-right asymmetry in the control of Q neuroblast descendant migration. PMID:26022293
The Population Boom in Rural America.
ERIC Educational Resources Information Center
Wilvert, Calvin H.
1980-01-01
Explores the recent demographic and settlement trend toward city to rural area migration. Topics discussed include population influx to the Sunbelt, motivations and characterizations of the migrants, forces that encourage people to seek an alternative to urban life, and classroom relevance of the migration. (DB)
Haye, Pilar A.; Segovia, Nicolás I.; Muñoz-Herrera, Natalia C.; Gálvez, Francisca E.; Martínez, Andrea; Meynard, Andrés; Pardo-Gandarillas, María C.; Poulin, Elie; Faugeron, Sylvain
2014-01-01
The role of dispersal potential on phylogeographic structure, evidenced by the degree of genetic structure and the presence of coincident genetic and biogeographic breaks, was evaluated in a macrogeographic comparative approach along the north-central coast of Chile, across the biogeographic transition zone at 30°S. Using 2,217 partial sequences of the mitochondrial Cytochrome Oxidase I gene of eight benthic invertebrate species along ca. 2,600 km of coast, we contrasted dispersal potential with genetic structure and determined the concordance between genetic divergence between biogeographic regions and the biogeographic transition zone at 30°S. Genetic diversity and differentiation highly differed between species with high and low dispersal potential. Dispersal potential, sometimes together with biogeographic region, was the factor that best explained the genetic structure of the eight species. The three low dispersal species, and one species assigned to the high dispersal category, had a phylogeographic discontinuity coincident with the biogeographic transition zone at 30°S. Furthermore, coalescent analyses based on the isolation-with-migration model validate that the split between biogeographic regions north and south of 30°S has a historic origin. The signatures of the historic break in high dispersers is parsimoniously explained by the homogenizing effects of gene flow that have erased the genetic signatures, if ever existed, in high dispersers. Of the four species with structure across the break, only two had significant albeit very low levels of asymmetric migration across the transition zone. Historic processes have led to the current biogeographic and phylogeographic structure of marine species with limited dispersal along the north-central coast of Chile, with a strong lasting impact in their genetic structure. PMID:24586356
Genetic diversity and connectivity of the megamouth shark (Megachasma pelagios)
Joung, Shoou Jeng; Yu, Chi-Ju; Hsu, Hua-Hsun; Tsai, Wen-Pei; Liu, Kwang Ming
2018-01-01
The megamouth shark (Megachasma pelagios) was described as a new species in 1983. Since then, only ca. 100 individuals have been observed or caught. Its horizontal migration, dispersal, and connectivity patterns are still unknown due to its rarity. Two genetic markers were used in this study to reveal its genetic diversity and connectivity pattern. This approach provides a proxy to indirectly measure gene flow between populations. Tissues from 27 megamouth sharks caught by drift nets off the Hualien coast (eastern Taiwan) were collected from 2013 to 2015. With two additional tissue samples from megamouths caught in Baja California, Mexico, and sequences obtained from GenBank, we were able to perform the first population genetic analyses of the megamouth shark. The mtDNA cox1 gene and a microsatellite (Loc 6) were sequenced and analyzed. Our results showed that there is no genetic structure in the megamouth shark, suggesting a possible panmictic population. Based on occurrence data, we also suggest that the Kuroshio region, including the Philippines, Taiwan, and Japan, may act as a passageway for megamouth sharks to reach their feeding grounds from April to August. Our results provide insights into the dispersal and connectivity of megamouth sharks. Future studies should focus on collecting more samples and conducting satellite tagging to better understand the global migration and connectivity pattern of the megamouth shark. PMID:29527411
Mitochondrial and Y-chromosomal profile of the Kazakh population from East Kazakhstan
Tarlykov, Pavel V.; Zholdybayeva, Elena V.; Akilzhanova, Ainur R.; Nurkina, Zhannur M.; Sabitov, Zhaxylyk M.; Rakhypbekov, Tolebay K.; Ramanculov, Erlan M.
2013-01-01
Aim To study the genetic relationship of Kazakhs from East Kazakhstan to other Eurasian populations by examining paternal and maternal DNA lineages. Methods Whole blood samples were collected in 2010 from 160 unrelated healthy Kazakhs residing in East Kazakhstan. Genomic DNA was extracted with Wizard® genomic DNA Purification Kit. Nucleotide sequence of hypervariable segment I of mitochondrial DNA (mtDNA) was determined and analyzed. Seventeen Y-short tandem repeat (STR) loci were studied in 67 samples with the AmpFiSTR Y-filer PCR Amplification Kit. In addition, mtDNA data for 2701 individuals and Y-STR data for 677 individuals were retrieved from the literature for comparison. Results There was a high degree of genetic differentiation on the level of mitochondrial DNA. The majority of maternal lineages belonged to haplogroups common in Central Asia. In contrast, Y-STR data showed very low genetic diversity, with the relative frequency of the predominant haplotype of 0.612. Conclusion The results revealed different migration patterns in the population sample, showing there had been more migration among women. mtDNA genetic diversity in this population was equivalent to that in other Central Asian populations. Genetic evidence suggests the existence of a single paternal founder lineage in the population of East Kazakhstan, which is consistent with verbal genealogical data of the local tribes. PMID:23444242
The Italian genome reflects the history of Europe and the Mediterranean basin
Fiorito, Giovanni; Di Gaetano, Cornelia; Guarrera, Simonetta; Rosa, Fabio; Feldman, Marcus W; Piazza, Alberto; Matullo, Giuseppe
2016-01-01
Recent scientific literature has highlighted the relevance of population genetic studies both for disease association mapping in admixed populations and for understanding the history of human migrations. Deeper insight into the history of the Italian population is critical for understanding the peopling of Europe. Because of its crucial position at the centre of the Mediterranean basin, the Italian peninsula has experienced a complex history of colonization and migration whose genetic signatures are still present in contemporary Italians. In this study, we investigated genomic variation in the Italian population using 2.5 million single-nucleotide polymorphisms in a sample of more than 300 unrelated Italian subjects with well-defined geographical origins. We combined several analytical approaches to interpret genome-wide data on 1272 individuals from European, Middle Eastern, and North African populations. We detected three major ancestral components contributing different proportions across the Italian peninsula, and signatures of continuous gene flow within Italy, which have produced remarkable genetic variability among contemporary Italians. In addition, we have extracted novel details about the Italian population's ancestry, identifying the genetic signatures of major historical events in Europe and the Mediterranean basin from the Neolithic (e.g., peopling of Sardinia) to recent times (e.g., ‘barbarian invasion' of Northern and Central Italy). These results are valuable for further genetic, epidemiological and forensic studies in Italy and in Europe. PMID:26554880
Migration in the context of vulnerability and adaptation to climate change: insights from analogues
McLeman, Robert A.; Hunter, Lori M.
2011-01-01
Migration is one of the variety of ways by which human populations adapt to environmental changes. The study of migration in the context of anthropogenic climate change is often approached using the concept of vulnerability and its key functional elements: exposure, system sensitivity, and adaptive capacity. This article explores the interaction of climate change and vulnerability through review of case studies of dry-season migration in the West African Sahel, hurricane-related population displacements in the Caribbean basin, winter migration of ‘snowbirds’ to the US Sun-belt, and 1930s drought migration on the North American Great Plains. These examples are then used as analogues for identifying general causal, temporal, and spatial dimensions of climate migration, along with potential considerations for policy-making and future research needs. PMID:22022342
Peyre, Elise; Silva, Carla G.; Nguyen, Laurent
2015-01-01
During embryogenesis, cortical interneurons are generated by ventral progenitors located in the ganglionic eminences of the telencephalon. They travel along multiple tangential paths to populate the cortical wall. As they reach this structure they undergo intracortical dispersion to settle in their final destination. At the cellular level, migrating interneurons are highly polarized cells that extend and retract processes using dynamic remodeling of microtubule and actin cytoskeleton. Different levels of molecular regulation contribute to interneuron migration. These include: (1) Extrinsic guidance cues distributed along migratory streams that are sensed and integrated by migrating interneurons; (2) Intrinsic genetic programs driven by specific transcription factors that grant specification and set the timing of migration for different subtypes of interneurons; (3) Adhesion molecules and cytoskeletal elements/regulators that transduce molecular signalings into coherent movement. These levels of molecular regulation must be properly integrated by interneurons to allow their migration in the cortex. The aim of this review is to summarize our current knowledge of the interplay between microenvironmental signals and cell autonomous programs that drive cortical interneuron porduction, tangential migration, and intergration in the developing cerebral cortex. PMID:25926769
Wang, Xiangming; Liu, Jianhong; Zhu, Zhiwen; Ou, Guangshuo
2015-03-15
Directional cell migration is fundamental for neural development, and extracellular factors are pivotal for this process. Heparan sulfate proteoglycans (HSPGs) that carry long chains of differentially modified sugar residues contribute to extracellular matrix; however, the functions of HSPG in guiding cell migration remain elusive. Here, we used the Caenorhabditis elegans mutant pool from the Million Mutation Project and isolated a mutant allele of the heparan sulfate-modifying enzyme glucuronyl C5-epimerase HSE-5. Loss-of-function of this enzyme resulted in defective Q neuroblast migration. We showed that hse-5 controlled Q cell migration in a cell non-autonomous manner. By performing live cell imaging in hse-5 mutant animals, we found that hse-5 controlled initial polarization during Q neuroblast migration. Furthermore, our genetic epistasis analysis demonstrated that lon-2 might act downstream of hse-5. Finally, rescue of the hse-5 mutant phenotype by expression of human and mouse hse-5 homologs suggested a conserved function for this gene in neural development. Taken together, our results indicated that proper HSPG modification in the extracellular matrix by HSE-5 is essential for neuroblast polarity during migration. Copyright © 2015 Elsevier Inc. All rights reserved.
Effect of migration in a diffusion model for template coexistence in protocells.
Fontanari, José F; Serva, Maurizio
2014-03-01
The compartmentalization of distinct templates in protocells and the exchange of templates between them (migration) are key elements of a modern scenario for prebiotic evolution. Here we use the diffusion approximation of population genetics to study analytically the steady-state properties of such a prebiotic scenario. The coexistence of distinct template types inside a protocell is achieved by a selective pressure at the protocell level (group selection) favoring protocells with a mixed template composition. In the degenerate case, where the templates have the same replication rate, we find that a vanishingly small migration rate suffices to eliminate the segregation effect of random drift and so to promote coexistence. In the nondegenerate case, a small migration rate greatly boosts coexistence as compared with the situation where there is no migration. However, increase of the migration rate beyond a critical value leads to the complete dominance of the more efficient template type (homogeneous regime). In this case, we find a continuous phase transition separating the homogeneous and the coexistence regimes, with the order parameter vanishing linearly with the distance to the transition point.
CCDC-55 is required for larval development and distal tip cell migration in Caenorhabditis elegans.
Kovacevic, Ismar; Ho, Richard; Cram, Erin J
2012-01-01
The Caenorhabditis elegans distal tip cells (DTCs) are an in vivo model for the study of developmentally regulated cell migration. In this study, we characterize a novel role for CCDC-55, a conserved coiled-coil domain containing protein, in DTC migration and larval development in C. elegans. Although animals homozygous for a probable null allele, ccdc-55(ok2851), display an early larval arrest, RNAi depletion experiments allow the analysis of later phenotypes and suggest that CCDC-55 is needed within the DTC for migration to cease at the end of larval morphogenesis. The ccdc-55 gene is found in an operon with rnf-121 and rnf-5, E3 ubiquitin ligases that target cell migration genes such as the β-integrin PAT-3. Genetic interaction studies using RNAi depletion and the deletion alleles rnf-121(ok848) and rnf-5(tm794) indicate that CCDC-55 and the RNF genes act at least partially in parallel to promote termination of cell migration in the adult DTC. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
CCDC-55 is required for larval development and distal tip cell migration in C. elegans
Kovacevic, Ismar; Ho, Richard; Cram, Erin J.
2012-01-01
The C. elegans distal tip cells (DTCs) are an in vivo model for the study of developmentally regulated cell migration. In this study we characterize a novel role for CCDC-55, a conserved coiled-coil domain containing protein, in DTC migration and larval development in C. elegans. Although animals homozygous for a probable null allele, ccdc-55(ok2851), display an early larval arrest, RNAi depletion experiments allow the analysis of later phenotypes and suggest that CCDC-55 is needed within the DTC for migration to cease at the end of larval morphogenesis. The ccdc-55 gene is found in an operon with rnf-121 and rnf-5, E3 ubiquitin ligases that target cell migration genes such as the β-integrin PAT-3. Genetic interaction studies using RNAi depletion and the deletion alleles rnf-121(ok848) and rnf-5(tm794) indicate that CCDC-55 and the RNF genes act at least partially in parallel to promote termination of cell migration in the adult DTC. PMID:22285439
NASA Astrophysics Data System (ADS)
Lazzarano, Stefano; Lulli, Matteo; Fibbi, Gabriella; Margheri, Francesca; Papucci, Laura; Serrati, Simona; Witort, Ewa; Chilla, Anastasia; Lapucci, Andrea; Donnini, Martino; Quaglierini, Paolo; Romiti, Alice; Specogna, Rebecca; Del Rosso, Mario; Capaccioli, Sergio
2008-06-01
Angiogenesis underlies a variety of physiological processes and its possible deregulation during long term space exploration needs to be investigated. Angiogenesis is a multistep process of new blood capillary formation, where degradation of the extracellular matrix (ECM) by proteolytic enzymes, including uPA (urokinase plasminogen activator) and opening the way to migration of endothelial cells (EC), is critical. Plasminogen activation system regulates angiogenesis by both uPA-driven ECM degradation and uPA receptor (uPAR). Microgravity and low dose irradiations promote tissue neoangiogeenesis and neovascularization is often common occurence in ophthalmologic pathologies. We have designed and patented the uPAR antisense oligonucleotide (aODN) and evaluated its antiangiogenetic activity by EC cellular migration and capillary morphogenesis assays. The uPAR aODN treatment caused a 75% inhibition of human microvascular EC migration and a complete inhibition of capillary morphogenesis, suggesting its therapeutic application to prevent neoangiogenesis-related ophthalmologic pathologies during space exploration.
NASA Astrophysics Data System (ADS)
Carreón-Rodríguez, A.; Belkind-Gerson, J.; Serrano-Luna, G.; Cañedo-Dorantes, L.
2008-08-01
Availability of adult stem cells from several organs like bone marrow, umbilical cord blood or peripheral blood has become a powerful therapeutic tool for many chronic diseases. Potential of adult stem cells for regeneration extents to other tissues among them the nervous system. However two obstacles should be resolved before such cells could be currently applied in clinical practice: a) slow growth rate and b) ability to form enough dense colonies in order to populate a specific injury or cellular deficiency. Many approaches have been explored as genetic differentiation programs, growth factors, and supplemented culture media, among others. Electromagnetic field stimulation of differentiation, proliferation, migration, and particularly on neurogenesis is little known. Since the biological effects of ELF-EMF are well documented, we hypothesize ELF-EMF could affect growth and maturation of stem cells derived of enteric tissue.
The Effects of Gravitational Instabilities on Gas Giant Planet Migration in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Michael, Scott A.; Durisen, R. H.
2010-05-01
In this paper we conduct several three-dimensional radiative hydrodynamic simulations to explore the effect of the inclusion of gas giant planets in gravitationally unstable protoplanetary disks. We compare several simulations carried out with the CHYMERA code including: a baseline simulation without a planet, and three simulations including planets of various masses 0.3, 1 and 3 Jupiter masses. The planets are inserted into the baseline simulation after the gravitational instabilities (GIs) have grown to non-linear amplitude. The planets are inserted at the same radius, which coincides with the co-rotation radius of the dominant global mode in the baseline simulation. We examine the effect that the GIs have on migration rates as well as the potential of halting inward migration. We also examine the effect the insertion of the planet has on the global torques caused by the GIs. Furthermore, we explore the relationship between planet mass and migration rates and effect on GIs.
Migration Decision-Making among Mexican Youth: Individual, Family, and Community Influences
Tucker, Christine M.; Torres-Pereda, Pilar; Minnis, Alexandra M.; Bautista-Arredondo, Sergio A.
2013-01-01
We explored migration decisions using in-depth, semi-structured interviews with male and female youth ages 14 to 24 (n=47) from two Mexican communities, one with high and one with low U.S. migration density. Half were return migrants and half were non-migrants with relatives in the U.S. Migrant and non-migrant youth expressed different preferences, especially in terms of education and their ability to wait for financial gain. Reasons for migration were mostly similar across the two communities; however, the perceived risk of the migration journey was higher in the low density migration community while perceived opportunities in Mexico were higher in the high density migration community. Reasons for return were related to youths’ initial social and economic motivations for migration. A greater understanding of factors influencing migration decisions may provide insight into the vulnerability of immigrant youth along the journey, their adaptation process in the U.S., and their reintegration in Mexico. PMID:23626401
Migration Decision-Making among Mexican Youth: Individual, Family, and Community Influences.
Tucker, Christine M; Torres-Pereda, Pilar; Minnis, Alexandra M; Bautista-Arredondo, Sergio A
2013-05-07
We explored migration decisions using in-depth, semi-structured interviews with male and female youth ages 14 to 24 (n=47) from two Mexican communities, one with high and one with low U.S. migration density. Half were return migrants and half were non-migrants with relatives in the U.S. Migrant and non-migrant youth expressed different preferences, especially in terms of education and their ability to wait for financial gain. Reasons for migration were mostly similar across the two communities; however, the perceived risk of the migration journey was higher in the low density migration community while perceived opportunities in Mexico were higher in the high density migration community. Reasons for return were related to youths' initial social and economic motivations for migration. A greater understanding of factors influencing migration decisions may provide insight into the vulnerability of immigrant youth along the journey, their adaptation process in the U.S., and their reintegration in Mexico.
Genetics Home Reference: Opitz G/BBB syndrome
... of cells (cell migration). Midline-1 assists in recycling certain proteins that need to be reused instead ... decrease in midline-1 function, which prevents protein recycling. The resulting accumulation of proteins impairs microtubule function, ...
Miller, Mark P.; Haig, Susan M.; Mullins, Thomas D.; Ruan, Luzhang; Casler, Bruce; Dondua, Alexei; Gates, River H.; Johnson, J. Matthew; Kendall, Steven J.; Tomkovich, Pavel S.; Tracy, Diane; Valchuk, Olga P.; Lanctot, Richard B.
2015-01-01
Waterfowl (Anseriformes) and shorebirds (Charadriiformes) are the most common wild vectors of influenza A viruses. Due to their migratory behavior, some may transmit disease over long distances. Migratory connectivity studies can link breeding and nonbreeding grounds while illustrating potential interactions among populations that may spread diseases. We investigated Dunlin (Calidris alpina), a shorebird with a subspecies (C. a. arcticola) that migrates from nonbreeding areas endemic to avian influenza in eastern Asia to breeding grounds in northern Alaska. Using microsatellites and mitochondrial DNA, we illustrate genetic structure among six subspecies: C. a. arcticola, C. a. pacifica, C. a. hudsonia, C. a. sakhalina, C. a. kistchinski, and C. a. actites. We demonstrate that mitochondrial DNA can help distinguish C. a. arcticola on the Asian nonbreeding grounds with >70% accuracy depending on their relative abundance, indicating that genetics can help determine whether C. a. arcticola occurs where they may be exposed to highly pathogenic avian influenza (HPAI) during outbreaks. Our data reveal asymmetric intercontinental gene flow, with some C. a. arcticola short-stopping migration to breed with C. a. pacifica in western Alaska. Because C. a. pacifica migrates along the Pacific Coast of North America, interactions between these subspecies and other taxa provide route for transmission of HPAI into other parts of North America.
A Worldwide Competition to Compare the Speed and Chemotactic Accuracy of Neutrophil-Like Cells
Wong, Elisabeth; Hamza, Bashar; Bae, Albert; Martel, Joseph; Kataria, Rama; Keizer-Gunnink, Ineke; Kortholt, Arjan; Van Haastert, Peter J. M.; Charras, Guillaume; Janetopoulos, Christopher; Irimia, Daniel
2016-01-01
Chemotaxis is the ability to migrate towards the source of chemical gradients. It underlies the ability of neutrophils and other immune cells to hone in on their targets and defend against invading pathogens. Given the importance of neutrophil migration to health and disease, it is crucial to understand the basic mechanisms controlling chemotaxis so that strategies can be developed to modulate cell migration in clinical settings. Because of the complexity of human genetics, Dictyostelium and HL60 cells have long served as models system for studying chemotaxis. Since many of our current insights into chemotaxis have been gained from these two model systems, we decided to compare them side by side in a set of winner-take-all races, the Dicty World Races. These worldwide competitions challenge researchers to genetically engineer and pharmacologically enhance the model systems to compete in microfluidic racecourses. These races bring together technological innovations in genetic engineering and precision measurement of cell motility. Fourteen teams participated in the inaugural Dicty World Race 2014 and contributed cell lines, which they tuned for enhanced speed and chemotactic accuracy. The race enabled large-scale analyses of chemotaxis in complex environments and revealed an intriguing balance of speed and accuracy of the model cell lines. The successes of the first race validated the concept of using fun-spirited competition to gain insights into the complex mechanisms controlling chemotaxis, while the challenges of the first race will guide further technological development and planning of future events. PMID:27332963
Diao, Zhen-yu; Lu, Wu-guang; Cao, Peng; Hu, Yun-long; Zhou, Xing; Xue, Ping-ping; Shen, Li; Sun, Hai-xiang
2012-10-01
Nanobody is a kind of antibody from camel, which misses light chain. Nanobody has the same antigen binding specificity and affinity as mAb. Moreover, because of its small molecular weight, high stability and easy preparation, nanobody has great value of biomedical applications. In this study, we successfully prepared highly pure antiEGFR nanobody in E.coli using genetic engineering techniques. Cell proliferation assay (CCK-8 assay) and migration experiments (cell scratch test and Transwell assay) indicated that the recombinant antiEGFRnano can significantly inhibit the proliferation and migration of endometrial cancer cells. These results provide a new way of thinking and methods for EGFR-targeted therapy of endometrial cancer.
Dynamic F-actin movement is essential for fertilization in Arabidopsis thaliana
Kawashima, Tomokazu; Maruyama, Daisuke; Shagirov, Murat; Li, Jing; Hamamura, Yuki; Yelagandula, Ramesh; Toyama, Yusuke; Berger, Frédéric
2014-01-01
In animals, microtubules and centrosomes direct the migration of gamete pronuclei for fertilization. By contrast, flowering plants have lost essential components of the centrosome, raising the question of how flowering plants control gamete nuclei migration during fertilization. Here, we use Arabidopsis thaliana to document a novel mechanism that regulates F-actin dynamics in the female gametes and is essential for fertilization. Live imaging shows that F-actin structures assist the male nucleus during its migration towards the female nucleus. We identify a female gamete-specific Rho-GTPase that regulates F-actin dynamics and further show that actin–myosin interactions are also involved in male gamete nucleus migration. Genetic analyses and imaging indicate that microtubules are dispensable for migration and fusion of male and female gamete nuclei. The innovation of a novel actin-based mechanism of fertilization during plant evolution might account for the complete loss of the centrosome in flowering plants. DOI: http://dx.doi.org/10.7554/eLife.04501.001 PMID:25303363
ERIC Educational Resources Information Center
Pacheco, Angel M.; And Others
In order to explore some of the changes and stresses connected with migration and return migration, a study was conducted among migrants returning from the United States mainland to Puerto Rico. The sample consisted of 75 adolescents participating in a Bilingual Education program in Puerto Rico. Data were collected using Psychological Distance…
ERIC Educational Resources Information Center
Mahbub, Rifat
2015-01-01
This paper explores the educational and migrational pathways which a number of middle-class women from Bangladesh took as they grew up in the 1980s and 1990s. It draws on qualitative research, conducted between July and November 2011, with highly educated Bangladeshi women who migrated to Britain in the early 2000s. French Sociologist Pierre…
Echodu, Richard; Opiyo, Elizabeth A.; Dion, Kirstin; Halyard, Alexis; Dunn, Augustine W.; Aksoy, Serap; Caccone, Adalgisa
2017-01-01
Uganda is the only country where the chronic and acute forms of human African Trypanosomiasis (HAT) or sleeping sickness both occur and are separated by < 100 km in areas north of Lake Kyoga. In Uganda, Glossina fuscipes fuscipes is the main vector of the Trypanosoma parasites responsible for these diseases as well for the animal African Trypanosomiasis (AAT), or Nagana. We used highly polymorphic microsatellite loci and a mitochondrial DNA (mtDNA) marker to provide fine scale spatial resolution of genetic structure of G. f. fuscipes from 42 sampling sites from the northern region of Uganda where a merger of the two disease belts is feared. Based on microsatellite analyses, we found that G. f. fuscipes in northern Uganda are structured into three distinct genetic clusters with varying degrees of interconnectivity among them. Based on genetic assignment and spatial location, we grouped the sampling sites into four genetic units corresponding to northwestern Uganda in the Albert Nile drainage, northeastern Uganda in the Lake Kyoga drainage, western Uganda in the Victoria Nile drainage, and a transition zone between the two northern genetic clusters characterized by high level of genetic admixture. An analysis using HYBRIDLAB supported a hybrid swarm model as most consistent with tsetse genotypes in these admixed samples. Results of mtDNA analyses revealed the presence of 30 haplotypes representing three main haplogroups, whose location broadly overlaps with the microsatellite defined clusters. Migration analyses based on microsatellites point to moderate migration among the northern units located in the Albert Nile, Achwa River, Okole River, and Lake Kyoga drainages, but not between the northern units and the Victoria Nile drainage in the west. Effective population size estimates were variable with low to moderate sizes in most populations and with evidence of recent population bottlenecks, especially in the northeast unit of the Lake Kyoga drainage. Our microsatellite and mtDNA based analyses indicate that G. f. fuscipes movement along the Achwa and Okole rivers may facilitate northwest expansion of the Rhodesiense disease belt in Uganda. We identified tsetse migration corridors and recommend a rolling carpet approach from south of Lake Kyoga northward to minimize disease dispersal and prevent vector re-colonization. Additionally, our findings highlight the need for continuing tsetse monitoring efforts during and after control. PMID:28453513
Liu, Yi-Jie; Fan, Hong-Bo; Jin, Yi; Ren, Chun-Guang; Jia, Xiao-E; Wang, Lei; Chen, Yi; Dong, Mei; Zhu, Kang-Yong; Dong, Zhi-Wei; Ye, Bai-Xin; Zhong, Zhong; Deng, Min; Liu, Ting Xi; Ren, Ruibao
2013-01-01
Inflammatory migration of immune cells is involved in many human diseases. Identification of molecular pathways and modulators controlling inflammatory migration could lead to therapeutic strategies for treating human inflammation-associated diseases. The role of cannabinoid receptor type 2 (Cnr2) in regulating immune function had been widely investigated, but the mechanism is not fully understood. Through a chemical genetic screen using a zebrafish model for leukocyte migration, we found that both an agonist of the Cnr2 and inhibitor of the 5-lipoxygenase (Alox5, encoded by alox5) inhibit leukocyte migration in response to acute injury. These agents have a similar effect on migration of human myeloid cells. Consistent with these results, we found that inactivation of Cnr2 by zinc finger nuclease-mediated mutagenesis enhances leukocyte migration, while inactivation of Alox5 blocks leukocyte migration. Further investigation indicates that there is a signaling link between Cnr2 and Alox5 and that alox5 is a target of c-Jun. Cnr2 activation down-regulates alox5 expression by suppressing the JNK/c-Jun activation. These studies demonstrate that Cnr2, JNK, and Alox5 constitute a pathway regulating leukocyte migration. The cooperative effect between the Cnr2 agonist and Alox5 inhibitor also provides a potential therapeutic strategy for treating human inflammation-associated diseases. PMID:23539630
HLA in anthropology: the enigma of Easter Island.
Sanchez-Mazas, Alicia; Thorsby, Erik
2013-01-01
In this article, we first present four significant cases where human leukocyte antigen (HLA) studies have been useful for the reconstruction of human peopling history on the worldwide scale; i.e., the spread of modern humans from East Africa, the colonization of East Asia along two geographic routes, the co-evolution of genes and languages in Africa, and the peopling of Europe through a main northward migration. These examples show that natural selection did not erase the genetic signatures of our past migrations in the HLA genetic diversity patterns observed today. In the second part, we summarize our studies on Easter Island. Using genomic HLA typing, we could trace an introduction of HLA alleles of native American (Amerindian) origin to Easter Island before the Peruvian slave trades; i.e., before the 1860s, and provide suggestive evidence that they may have already been introduced in prehistoric time. Our results give further support to an initial Polynesian population of the island, but also reveal an early contribution by Amerindians. Together, our data illustrate the usefulness of typing for HLA alleles to complement genetic analyses in anthropological investigations.
Bedoya, Claudia A; Dreisigacker, Susanne; Hearne, Sarah; Franco, Jorge; Mir, Celine; Prasanna, Boddupalli M; Taba, Suketoshi; Charcosset, Alain; Warburton, Marilyn L
2017-01-01
This study describes the genetic diversity and population structure of 194 native maize populations from 23 countries of Latin America and the Caribbean. The germplasm, representing 131 distinct landraces, was genetically characterized as population bulks using 28 SSR markers. Three main groups of maize germplasm were identified. The first, the Mexico and Southern Andes group, highlights the Pre-Columbian and modern exchange of germplasm between North and South America. The second group, Mesoamerica lowland, supports the hypothesis that two separate human migration events could have contributed to Caribbean maize germplasm. The third, the Andean group, displayed early introduction of maize into the Andes, with little mixing since then, other than a regional interchange zone active in the past. Events and activities in the pre- and post-Columbian Americas including the development and expansion of pre-Columbian cultures and the arrival of Europeans to the Americas are discussed in relation to the history of maize migration from its point of domestication in Mesoamerica to South America and the Caribbean through sea and land routes.
Toward a new history and geography of human genes informed by ancient DNA
Pickrell, Joseph K.; Reich, David
2014-01-01
Genetic information contains a record of the history of our species, and technological advances have transformed our ability to access this record. Many studies have used genome-wide data from populations today to learn about the peopling of the globe and subsequent adaptation to local conditions. Implicit in this research is the assumption that the geographic locations of people today are informative about the geographic locations of their ancestors in the distant past. However, it is now clear that long-range migration, admixture and population replacement subsequent to the initial out-of-Africa expansion have altered the genetic structure of most of the world’s human populations. In light of this, we argue that it is time to critically re-evaluate current models of the peopling of the globe, as well as the importance of natural selection in determining the geographic distribution of phenotypes. We specifically highlight the transformative potential of ancient DNA. By accessing the genetic make-up of populations living at archaeologically-known times and places, ancient DNA makes it possible to directly track migrations and responses to natural selection. PMID:25168683
Kocan, R.; Hershberger, P.
2006-01-01
Two genetically distinct populations of chinook salmon, Oncorhynchus tshawytscha (Walbaum), were simultaneously sampled at the confluence of the Yukon and Tanana rivers in 2003. Upper Yukon-Canadian fish had significantly higher infection prevalence as well as more severe infections (higher parasite density in heart tissue) than the lower Yukon-Tanana River fish. Both populations had migrated the same distance from the mouth of the Yukon River at the time of sampling but had significantly different distances remaining to swim before reaching their respective spawning grounds. Multiple working hypotheses are proposed to explain the differences between the two stocks: (1) the two genetically distinct populations have different inherent resistance to infection, (2) genetically influenced differences in feeding behaviour resulted in temporal and/or spatial differences in exposure, (3) physiological differences resulting from different degrees of sexual maturity influenced the course of disease, and (4) the most severely infected Tanana River fish either died en route or fatigued and were unable to complete their migration to the Tanana River, thus leaving a population of apparently healthier fish. ?? 2006 Blackwell Publishing Ltd.
Bedoya, Claudia A.; Dreisigacker, Susanne; Hearne, Sarah; Franco, Jorge; Mir, Celine; Prasanna, Boddupalli M.; Taba, Suketoshi; Charcosset, Alain; Warburton, Marilyn L.
2017-01-01
This study describes the genetic diversity and population structure of 194 native maize populations from 23 countries of Latin America and the Caribbean. The germplasm, representing 131 distinct landraces, was genetically characterized as population bulks using 28 SSR markers. Three main groups of maize germplasm were identified. The first, the Mexico and Southern Andes group, highlights the Pre-Columbian and modern exchange of germplasm between North and South America. The second group, Mesoamerica lowland, supports the hypothesis that two separate human migration events could have contributed to Caribbean maize germplasm. The third, the Andean group, displayed early introduction of maize into the Andes, with little mixing since then, other than a regional interchange zone active in the past. Events and activities in the pre- and post-Columbian Americas including the development and expansion of pre-Columbian cultures and the arrival of Europeans to the Americas are discussed in relation to the history of maize migration from its point of domestication in Mesoamerica to South America and the Caribbean through sea and land routes. PMID:28403177
Lu, Jun; Wang, Zhiqiang; Li, Shuyan; Xin, Qi; Yuan, Miaomiao; Li, Huanping; Song, Xiaoxia; Gao, Haijun; Pervaiz, Nabeel; Sun, Xudong; Lv, Wei; Jing, Tao; Zhu, Yanmei
2018-04-27
BACKGROUND Quercetin is a natural bioactive flavonoid that is present in a wide variety of vegetables and fruits and exhibits a promising anti-metastasis property in various human cancer cells. However, the effect of quercetin on human HCCLM3 cells is unclear. MATERIAL AND METHODS In the current study, a wound-healing assay was performed using quercetin-treated HCCLM3 cells to further explore whether quercetin affects the motility of human HCCLM3 cells. Transwell assay was used to explore the potential effect of quercetin in HCCLM3 cells on cell migration and cell invasion. Western blotting analysis was used to explore the expression of p-Akt1, MMP-2, and MMP-9 in quercetin-treated HCCLM3 cells. RESULTS The wound-healing time was delayed in quercetin-treated HCCLM3 cells, and the ability to migrate and invade was inhibited in quercetin-treated human HCCLM3 cells. Moreover, the protein levels of p-Akt1, MMP-2, and MMP-9 were down-regulated in quercetin-treated HCCLM3 cells, as detected by Western blotting. CONCLUSIONS Our data show that quercetin attenuated cell migration and invasion by suppressing the protein levels of p-Akt1, MMP-2, and MMP-9 in HCCLM3 cells.
Space exploration by dendritic cells requires maintenance of myosin II activity by IP3 receptor 1
Solanes, Paola; Heuzé, Mélina L; Maurin, Mathieu; Bretou, Marine; Lautenschlaeger, Franziska; Maiuri, Paolo; Terriac, Emmanuel; Thoulouze, Maria-Isabel; Launay, Pierre; Piel, Matthieu; Vargas, Pablo; Lennon-Duménil, Ana-Maria
2015-01-01
Dendritic cells (DCs) patrol the interstitial space of peripheral tissues. The mechanisms that regulate their migration in such constrained environment remain unknown. We here investigated the role of calcium in immature DCs migrating in confinement. We found that they displayed calcium oscillations that were independent of extracellular calcium and more frequently observed in DCs undergoing strong speed fluctuations. In these cells, calcium spikes were associated with fast motility phases. IP3 receptors (IP3Rs) channels, which allow calcium release from the endoplasmic reticulum, were identified as required for immature DCs to migrate at fast speed. The IP3R1 isoform was further shown to specifically regulate the locomotion persistence of immature DCs, that is, their capacity to maintain directional migration. This function of IP3R1 results from its ability to control the phosphorylation levels of myosin II regulatory light chain (MLC) and the back/front polarization of the motor protein. We propose that by upholding myosin II activity, constitutive calcium release from the ER through IP3R1 maintains DC polarity during migration in confinement, facilitating the exploration of their environment. PMID:25637353
Space exploration by dendritic cells requires maintenance of myosin II activity by IP3 receptor 1.
Solanes, Paola; Heuzé, Mélina L; Maurin, Mathieu; Bretou, Marine; Lautenschlaeger, Franziska; Maiuri, Paolo; Terriac, Emmanuel; Thoulouze, Maria-Isabel; Launay, Pierre; Piel, Matthieu; Vargas, Pablo; Lennon-Duménil, Ana-Maria
2015-03-12
Dendritic cells (DCs) patrol the interstitial space of peripheral tissues. The mechanisms that regulate their migration in such constrained environment remain unknown. We here investigated the role of calcium in immature DCs migrating in confinement. We found that they displayed calcium oscillations that were independent of extracellular calcium and more frequently observed in DCs undergoing strong speed fluctuations. In these cells, calcium spikes were associated with fast motility phases. IP₃ receptors (IP₃Rs) channels, which allow calcium release from the endoplasmic reticulum, were identified as required for immature DCs to migrate at fast speed. The IP₃R1 isoform was further shown to specifically regulate the locomotion persistence of immature DCs, that is, their capacity to maintain directional migration. This function of IP₃R1 results from its ability to control the phosphorylation levels of myosin II regulatory light chain (MLC) and the back/front polarization of the motor protein. We propose that by upholding myosin II activity, constitutive calcium release from the ER through IP₃R1 maintains DC polarity during migration in confinement, facilitating the exploration of their environment. © 2015 Institut Curie/Inserm. Published under the terms of the CC BY NC ND 4.0 license.
Effects of Gravity on Cell Movement and Development
NASA Technical Reports Server (NTRS)
Wang, Yu-Li
2002-01-01
The main purpose of this project was to understand how the migration and growth of cultured cells respond to mechanical forces. We have made significant progress on all the proposed aims. The most important discoveries are that changes in the environmental mechanical input, such as during space flight, can induce profound changes in cell migration, growth, and programmed cell death. In addition, using genetically engineered cells, we have gained important insight into the molecular mechanism underlying such mechanosensing processes. The results are summarized.
Applying heuristic inquiry to nurse migration from the UK to Australia.
Vafeas, Caroline; Hendricks, Joyce
2017-01-23
Background Heuristic inquiry is a research approach that improves understanding of the essence of an experience. This qualitative method relies on researchers' ability to discover and interpret their own experience while exploring those of others. Aim To present a discussion of heuristic inquiry's methodology and its application to the experience of nurse migration. Discussion The researcher's commitment to the research is central to heuristic inquiry. It is immersive, reflective, reiterative and a personally-affecting method of gathering knowledge. Researchers are acknowledged as the only people who can validate the findings of the research by exploring their own experiences while also examining those of others with the same experiences to truly understand the phenomena being researched. This paper presents the ways in which the heuristic process guides this discovery in relation to traditional research steps. Conclusion Heuristic inquiry is an appropriate method for exploring nurses' experiences of migration because nurse researchers can tell their own stories and it brings understanding of themselves and the phenomenon as experienced by others. Implications for practice Although not a popular method in nursing research, heuristic inquiry offers a depth of exploration and understanding that may not be revealed by other methods.
Evolution of population structure in a highly social top predator, the killer whale.
Hoelzel, A Rus; Hey, Jody; Dahlheim, Marilyn E; Nicholson, Colin; Burkanov, Vladimir; Black, Nancy
2007-06-01
Intraspecific resource partitioning and social affiliations both have the potential to structure populations, though it is rarely possible to directly assess the impact of these mechanisms on genetic diversity and population divergence. Here, we address this for killer whales (Orcinus orca), which specialize on prey species and hunting strategy and have long-term social affiliations involving both males and females. We used genetic markers to assess the structure and demographic history of regional populations and test the hypothesis that known foraging specializations and matrifocal sociality contributed significantly to the evolution of population structure. We find genetic structure in sympatry between populations of foraging specialists (ecotypes) and evidence for isolation by distance within an ecotype. Fitting of an isolation with migration model suggested ongoing, low-level migration between regional populations (within and between ecotypes) and small effective sizes for extant local populations. The founding of local populations by matrifocal social groups was indicated by the pattern of fixed mtDNA haplotypes in regional populations. Simulations indicate that this occurred within the last 20,000 years (after the last glacial maximum). Our data indicate a key role for social and foraging behavior in the evolution of genetic structure among conspecific populations of the killer whale.
Elhassan, Nuha; Gebremeskel, Eyoab Iyasu; Elnour, Mohamed Ali; Isabirye, Dan; Okello, John; Hussien, Ayman; Kwiatksowski, Dominic; Hirbo, Jibril; Tishkoff, Sara; Ibrahim, Muntaser E
2014-01-01
Human genetic variation particularly in Africa is still poorly understood. This is despite a consensus on the large African effective population size compared to populations from other continents. Based on sequencing of the mitochondrial Cytochrome C Oxidase subunit II (MT-CO2), and genome wide microsatellite data we observe evidence suggesting the effective size (Ne) of humans to be larger than the current estimates, with a foci of increased genetic diversity in east Africa, and a population size of east Africans being at least 2-6 fold larger than other populations. Both phylogenetic and network analysis indicate that east Africans possess more ancestral lineages in comparison to various continental populations placing them at the root of the human evolutionary tree. Our results also affirm east Africa as the likely spot from which migration towards Asia has taken place. The study reflects the spectacular level of sequence variation within east Africans in comparison to the global sample, and appeals for further studies that may contribute towards filling the existing gaps in the database. The implication of these data to current genomic research, as well as the need to carry out defined studies of human genetic variation that includes more African populations; particularly east Africans is paramount.
A pilgrim's progress: Seeking meaning in primordial germ cell migration.
Cantú, Andrea V; Laird, Diana J
2017-10-01
Comparative studies of primordial germ cell (PGC) development across organisms in many phyla reveal surprising diversity in the route of migration, timing and underlying molecular mechanisms, suggesting that the process of migration itself is conserved. However, beyond the perfunctory transport of cellular precursors to their later arising home of the gonads, does PGC migration serve a function? Here we propose that the process of migration plays an additional role in quality control, by eliminating PGCs incapable of completing migration as well as through mechanisms that favor PGCs capable of responding appropriately to migration cues. Focusing on PGCs in mice, we explore evidence for a selective capacity of migration, considering the tandem regulation of proliferation and migration, cell-intrinsic and extrinsic control, the potential for tumors derived from failed PGC migrants, the potential mechanisms by which migratory PGCs vary in their cellular behaviors, and corresponding effects on development. We discuss the implications of a selective role of PGC migration for in vitro gametogenesis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Gibbon, Sahra
2016-01-01
ABSTRACT In the past ten years, there has been an expansion of scientific interest in population genetics linked to both understanding histories of human migration and the way that population difference and diversity may account for and/or be implicated in health and disease. In this article, I examine how particular aspects of a globalizing research agenda related to population differences and genetic ancestry are taken up in locally variant ways in the nascent field of Brazilian cancer genetics. Drawing on a broad range of ethnographic data from clinical and nonclinical contexts in the south of Brazil, I examine the ambiguities that attention to genetic ancestry generates, so revealing the disjunctured and diverse ways a global research agenda increasingly orientated to questions of population difference and genetic ancestry is being used and reused. PMID:26452039
Reim, Ingolf; Hollfelder, Dominik; Ismat, Afshan; Frasch, Manfred
2013-01-01
Fibroblast growth factors (FGFs) frequently fulfill prominent roles in the regulation of cell migration in various contexts. In Drosophila, the FGF8-like ligands Pyramus (Pyr) and Thisbe (Ths), which signal through their receptor Heartless (Htl), are known to regulate early mesodermal cell migration after gastrulation as well as glial cell migration during eye development. Herein, we show that Pyr and Ths also exert key roles during the long-distance migration of a specific sub-population of mesodermal cells that migrate from the caudal visceral mesoderm within stereotypic bilateral paths along the trunk visceral mesoderm toward the anterior. These cells constitute the founder myoblasts of the longitudinal midgut muscles. In a forward genetic screen for regulators of this morphogenetic process we identified loss of function alleles for pyr. We show that pyr and ths are expressed along the paths of migration in the trunk visceral mesoderm and endoderm and act largely redundantly to help guide the founder myoblasts reliably onto and along their substrate of migration. Ectopically-provided Pyr and Ths signals can efficiently re-rout the migrating cells, both in the presence and absence of endogenous signals. Our data indicate that the guidance functions of these FGFs must act in concert with other important attractive or adhesive activities of the trunk visceral mesoderm. Apart from their guidance functions, the Pyr and Ths signals play an obligatory role for the survival of the migrating cells. Without these signals, essentially all of these cells enter cell death and detach from the migration substrate during early migration. We present experiments that allowed us to dissect the roles of these FGFs as guidance cues versus trophic activities during the migration of the longitudinal visceral muscle founders. PMID:22609944
Partial diel migration: A facultative migration underpinned by long-term inter-individual variation.
Harrison, Philip M; Gutowsky, Lee F G; Martins, Eduardo G; Patterson, David A; Cooke, Steven J; Power, Michael
2017-09-01
The variations in migration that comprise partial diel migrations, putatively occur entirely as a consequence of behavioural flexibility. However, seasonal partial migrations are increasingly recognised to be mediated by a combination of reversible plasticity in response to environmental variation and individual variation due to genetic and environmental effects. Here, we test the hypothesis that while partial diel migration heterogeneity occurs primarily due to short-term within-individual flexibility in behaviour, long-term individual differences in migratory behaviour also underpin this migration variation. Specifically, we use a hierarchical behavioural reaction norm approach to partition within- and among-individual variation in depth use and diel plasticity in depth use, across short- and long-term time-scales, in a group of 47 burbot (Lota lota) tagged with depth-sensing acoustic telemetry transmitters. We found that within-individual variation at the among-dates-within-seasons and among-seasons scale, explained the dominant proportion of phenotypic variation. However, individuals also repeatedly differed in their expression of migration behaviour over the 2 year study duration. These results reveal that diel migration variation occurs primarily due to short-term within-individual flexibility in depth use and diel migration behaviour. However, repeatable individual differences also played a key role in mediating partial diel migration. These findings represent a significant advancement of our understanding of the mechanisms generating the important, yet poorly understood phenomena of partial diel migration. Moreover, given the pervasive occurrence of diel migrations across aquatic taxa, these findings indicate that individual differences have an important, yet previously unacknowledged role in structuring the temporal and vertical dynamics of aquatic ecosystems. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Does human migration affect international trade? A complex-network perspective.
Fagiolo, Giorgio; Mastrorillo, Marina
2014-01-01
This paper explores the relationships between international human migration and merchandise trade, using a complex-network approach. We firstly compare the topological structure of worldwide networks of human migration and bilateral trade over the period 1960-2000. Next, we ask whether the position of any pair of countries in the migration network affects their bilateral trade flows. We show that: (i) both weighted and binary versions of the networks of international migration and trade are strongly correlated; (ii) such correlations can be mostly explained by country economic/demographic size and geographical distance; and (iii) pairs of countries that are more central in the international-migration network trade more. Our findings suggest that bilateral trade between any two countries is not only affected by the presence of migrants from either countries but also by their relative embeddedness in the complex web of corridors making up the network of international human migration.
Does Human Migration Affect International Trade? A Complex-Network Perspective
Fagiolo, Giorgio; Mastrorillo, Marina
2014-01-01
This paper explores the relationships between international human migration and merchandise trade using a complex-network approach. We firstly compare the topological structure of worldwide networks of human migration and bilateral trade over the period 1960–2000. Next, we ask whether pairs of countries that are more central in the migration network trade more. We show that: (i) the networks of international migration and trade are strongly correlated, and such correlation can be mostly explained by country economic/demographic size and geographical distance; (ii) centrality in the international-migration network boosts bilateral trade; (iii) intensive forms of country centrality are more trade enhancing than their extensive counterparts. Our findings suggest that bilateral trade between any two countries is not only affected by the presence of migrants from either countries, but also by their relative embeddedness in the complex web of corridors making up the network of international human migration. PMID:24828376
Genetics Home Reference: craniofacial-deafness-hand syndrome
... the PAX3 gene is active in cells called neural crest cells. These cells migrate from the developing ... directs the activity of other genes that signal neural crest cells to form specialized tissues or cell ...
Genetic characterization of fecal impacts of seagull migration on an urban scenery lake.
Wu, Baolei; Wang, Xiaochang C; Dzakpasu, Mawuli
2017-06-15
A microbial source tracking scheme was devised to differentiate fecal impacts of seagulls from that of human activities on an urban scenery lake in southern China, which is a major wintering ground for the black-headed seagull. Fecal contamination of seagulls was characterized by quantifying a novel genetic marker targeting Catellicoccus marimamalium. Quantification of this marker was combined with those of Escherichia coli, human-associated Bacteroidales, thermophilic Campylobacter and Helicobacter. Findings of a year-round study indicate that C. marimamalium levels correlated strongly, both spatially and temporally, with seagull migration. A steady increase in C. marimammalium concentrations was recorded between October 2014 and March 2015, which peaked at about 5-log copies/100 mL in January. However, a background level of about 2.1-log copies/100 mL was noticeable from April through September when seagulls were absent, probably due to other host sources or secondary habitats for C. marimammalium. Seagull migration also caused an apparent elevation of E. coli concentrations (86% and 60%, respectively for qPCR and culture method; p < 0.001) as well as Campylobacter and Helicobacter (66% and 68%, respectively; p < 0.001). Nonetheless, in contrast to the declining levels of E. coli, Campylobacter and Helicobacter, the human-specific Bacteroidales marginally increased in the seagull-absent season, indicating a limited influence of human activities, compared with seagull migration, on the seasonal variations in microbial water quality of the lake. The elevated levels of FIB, Campylobacter and Helicobacter along with C. marimammalium may imply human health risk of the lake water due to seasonal seagull migration, which requires further investigation for risk assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ramasamy, Srinivas; Wang, Hui; Quach, Helen Ngoc Bao; Sampath, Karuna
2006-04-15
In sexually reproducing organisms, primordial germ cells (PGCs) give rise to the cells of the germ line, the gametes. In many animals, PGCs are set apart from somatic cells early during embryogenesis. Work in Drosophila, C. elegans, Xenopus, and zebrafish has shown that maternally provided localized cytoplasmic determinants specify the germ line in these organisms (Raz, E., 2003. Primordial germ-cell development: the zebrafish perspective. Nat. Rev., Genet. 4, 690--700; Santos, A.C., Lehmann, R., 2004. Germ cell specification and migration in Drosophila and beyond. Curr. Biol. 14, R578-R589). The Drosophila RNA-binding protein, Staufen is required for germ cell formation, and mutations in stau result in a maternal effect grandchild-less phenotype (Schupbach,T., Weischaus, E., 1989. Female sterile mutations on the second chromosome of Drosophila melanogaster:1. Maternal effect mutations. Genetics 121, 101-17). Here we describe the functions of two zebrafish Staufen-related proteins, Stau1 and Stau2. When Stau1 or Stau2 functions are compromised in embryos by injecting antisense morpholino modified oligonucleotides or dominant-negative Stau peptides, germ layer patterning is not affected. However, expression of the PGC marker vasa is not maintained. Furthermore, expression of a green fluorescent protein (GFP):nanos 3'UTR fusion protein in germ cells shows that PGC migration is aberrant, and the mis-migrating PGCs do not survive in Stau-compromised embryos. Stau2 is also required for survival of neurons in the central nervous system (CNS). These phenotypes are rescued by co-injection of Drosophila stau mRNA. Thus, staufen has an evolutionarily conserved function in germ cells. In addition, we have identified a function for Stau proteins in PGC migration.
Maley, Blaine
2016-05-01
The number of distinct human migrations into the Aleutian Islands during the Holocene has been a recurrent debate in the anthropological literature. Stemming from Hrdlička's sorting of the prehistoric remains into two distinct populations based on archaeological context and cranial measurements, the human occupation of the Aleutian Islands has long been thought to be the consequence of two distinct human migrations, a Paleo-Aleut migration that provided the initial settlement of the islands, and a Neo-Aleut migration that replaced the original settlers around 1000 BP. This study examines the relationship of the Aleut cranial assemblages in the context of greater Alaskan population variability to assess the evidence for a substantial migration into the Aleutian Islands during the late Holocene. A battery of 29 cranial measurements that quantify global cranial shape were analyzed using Euclidean morphometric methods and quantitative genetic permutation methods to examine the plausibility for two distinct Aleut occupations ("Paleo-Aleut" and "Neo-Aleut"), the latter of which is held to share closer phenetic affinities to mainland Alaskan populations than the former. The Aleut skeletal assemblages were arranged according to temporal association, geographic location, and cranial typology, and analyzed within a comparative framework of mainland Alaskan samples using principal coordinates, biological distance and random skewers permutation methods. Regardless of how the Aleut assemblages are divided, they show greater similarity to each other than to any of the mainland Alaskan assemblages. These findings are consistent across the methodological approaches. The results obtained in this study provide no support for a cranial morphology-based subdivision of the Aleuts into two distinct samples, Hence, there is no evidence for a substantial population migration of so-called Neo-Aleuts, nor for a population replacement event of an extant Paleo-Aleut population by a mainland-affiliated Neo-Aleuts population at or after 1000 BP. © 2016 Wiley Periodicals, Inc.
Gendered histories: garment production and migration in Mexico.
Wilson, F
1999-02-01
Data gathered in Aguascalientes during the 1990s are used to analyze how the garment industry in Mexico has responded to economic recession and trade liberalization. In particular, the relationship between industrial change and gendered patterns of migration are explored. The author concludes that "migration over recent years has increasingly allowed working women the possibility of entering a transnational labour force and given them important labouring and living experiences on both sides of the border." excerpt
Sork, Victoria L.; Davis, Frank W.; Westfall, Robert; Flint, Alan L.; Ikegami, Makihiko; Wang, Hongfang; Grivet, Delphine
2010-01-01
Rapid climate change jeopardizes tree populations by shifting current climate zones. To avoid extinction, tree populations must tolerate, adapt, or migrate. Here we investigate geographic patterns of genetic variation in valley oak, Quercus lobata N??e, to assess how underlying genetic structure of populations might influence this species' ability to survive climate change. First, to understand how genetic lineages shape spatial genetic patterns, we examine historical patterns of colonization. Second, we examine the correlation between multivariate nuclear genetic variation and climatic variation. Third, to illustrate how geographic genetic variation could interact with regional patterns of 21st Century climate change, we produce region-specific bioclimatic distributions of valley oak using Maximum Entropy (MAXENT) models based on downscaled historical (1971-2000) and future (2070-2100) climate grids. Future climatologies are based on a moderate-high (A2) carbon emission scenario and two different global climate models. Chloroplast markers indicate historical range-wide connectivity via colonization, especially in the north. Multivariate nuclear genotypes show a strong association with climate variation that provides opportunity for local adaptation to the conditions within their climatic envelope. Comparison of regional current and projected patterns of climate suitability indicates that valley oaks grow in distinctly different climate conditions in different parts of their range. Our models predict widely different regional outcomes from local displacement of a few kilometres to hundreds of kilometres. We conclude that the relative importance of migration, adaptation, and tolerance are likely to vary widely for populations among regions, and that late 21st Century conditions could lead to regional extinctions. ?? 2010 Blackwell Publishing Ltd.
Kimble, Steven J. A.; Rhodes Jr., O. E.; Williams, Rod N.
2014-01-01
Rangewide studies of genetic parameters can elucidate patterns and processes that operate only over large geographic scales. Herein, we present a rangewide population genetic assessment of the eastern box turtle Terrapene c. carolina, a species that is in steep decline across its range. To inform conservation planning for this species, we address the hypothesis that disruptions to demographic and movement parameters associated with the decline of the eastern box turtle has resulted in distinctive genetic signatures in the form of low genetic diversity, high population structuring, and decreased gene flow. We used microsatellite genotype data from (n = 799) individuals from across the species range to perform two Bayesian population assignment approaches, two methods for comparing historical and contemporary migration among populations, an evaluation of isolation by distance, and a method for detecting barriers to gene flow. Both Bayesian methods of population assignment indicated that there are two populations rangewide, both of which have maintained high levels of genetic diversity (HO = 0.756). Evidence of isolation by distance was detected in this species at a spatial scale of 300 – 500 km, and the Appalachian Mountains were identified as the primary barrier to gene flow across the species range. We also found evidence for historical but not contemporary migration between populations. Our prediction of many, highly structured populations across the range was not supported. This may point to cryptic contemporary gene flow, which might in turn be explained by the presence of rare transients in populations. However these data may be influenced by historical signatures of genetic connectivity because individuals of this species can be long-lived. PMID:24647580
Matrilineal Heritage in Southern Iberia Reveals Deep Genetic Links between Continents.
Hernández, Candela L; Calderón, Rosario
2017-03-01
Within the Mediterranean Basin, the Iberian Peninsula has been a focus of attraction for several cultures and civilizations from its prehistory and history, making it a target territory for studying human migration patterns and peopling processes using a wide and heterogeneous spectrum of genomic markers. While its Cantabrian fringe represents the most regularly analysed area in terms of its mitochondrial diversity, the absence of monographic surveys on the maternal genetic composition of southern Iberians (i.e., Andalusians) is striking. In this work, we present a comprehensive view of various aspects of the human maternal heritage of the autochthonous Andalusian population regarding specific mitochondrial haplogroups considered key candidates to determine the genetic relationship between Europe and Africa. Data reveal that southern Iberian populations do not have genetically homogeneous mitochondrial DNA profiles, and their observed genetic affinity with north-western African populations represents strong signals of old, sustained and bidirectional human movements between the northern and southern shores of the western Mediterranean. Thorough analyses of African mtDNA haplogroups have shown that the most relevant African contribution within Iberian Peninsula could be explained as a consequence of prehistoric events. The subsequent historic episodes helped to strengthen the ties between both shores. In southern Iberia, mitochondrial and other genetic markers show that the Strait of Gibraltar together with its surrounding maritime areas should be considered a bridge between continents. More broadly, the Mediterranean Sea has acted as a transport surface, that is, as a permeable barrier to human migrations from prehistoric and historic times. In conclusion, this research contributes to our knowledge of processes that have shaped the recent human genetic history in the Mediterranean and, more specifically, of the population dynamics that the inhabitants of southern Iberia have experienced with respect to other neighbouring North African populations.
Sork, Victoria L; Davis, Frank W; Westfall, Robert; Flint, Alan; Ikegami, Makihiko; Wang, Hongfang; Grivet, Delphine
2010-09-01
Rapid climate change jeopardizes tree populations by shifting current climate zones. To avoid extinction, tree populations must tolerate, adapt, or migrate. Here we investigate geographic patterns of genetic variation in valley oak, Quercus lobata Née, to assess how underlying genetic structure of populations might influence this species' ability to survive climate change. First, to understand how genetic lineages shape spatial genetic patterns, we examine historical patterns of colonization. Second, we examine the correlation between multivariate nuclear genetic variation and climatic variation. Third, to illustrate how geographic genetic variation could interact with regional patterns of 21st Century climate change, we produce region-specific bioclimatic distributions of valley oak using Maximum Entropy (MAXENT) models based on downscaled historical (1971-2000) and future (2070-2100) climate grids. Future climatologies are based on a moderate-high (A2) carbon emission scenario and two different global climate models. Chloroplast markers indicate historical range-wide connectivity via colonization, especially in the north. Multivariate nuclear genotypes show a strong association with climate variation that provides opportunity for local adaptation to the conditions within their climatic envelope. Comparison of regional current and projected patterns of climate suitability indicates that valley oaks grow in distinctly different climate conditions in different parts of their range. Our models predict widely different regional outcomes from local displacement of a few kilometres to hundreds of kilometres. We conclude that the relative importance of migration, adaptation, and tolerance are likely to vary widely for populations among regions, and that late 21st Century conditions could lead to regional extinctions.
ERIC Educational Resources Information Center
Chamakalayil, Lalitha; Riegel, Christine
2016-01-01
Education systems reproduce social inequality based on social class, gender, and minority ethnicity ascriptions, and are organized along national structures. This paper explores, how migration and international mobility shape an individuals scope of possibilities in the context of education. We analyze how societal and institutional possibilities…
Exploring South African Mathematics Teachers' Experiences of Learner Migration
ERIC Educational Resources Information Center
Robertson, Sally-Ann; Graven, Mellony
2015-01-01
This paper focuses on patterns of post-apartheid learner migration between schools previously segregated along racial lines. South Africa's shift away from cultural and linguistic isolationism and the ways this has impacted educational arrangements in this country, most particularly in relation to the language of learning and teaching, affects…
Language Policies and "New" Migration in Officially Bilingual Areas
ERIC Educational Resources Information Center
Tunger, Verena; Mar-Molinero, Clare; Paffey, Darren; Vigers, Dick; Barlog, Cecylia
2010-01-01
This paper explores the implications of new patterns of migration (temporary, circular) for national and regional language policies in officially bilingual areas. Contrasting urban and rural sites in the UK (Wales), Spain (Valencia) and Switzerland (Grisons), it examines the dominant discourses regarding "national" (both in the formal…
Whitebark pine (Pinus albicaulis) assisted migration trial
Sierra C. McLane; Sally N. Aitken
2011-01-01
Assisted migration - the translocation of a species into a climatically-suitable location outside of its current range - has been proposed as a means of saving vulnerable species from extinction as temperatures rise due to climate change. We explore this controversial technique using the keystone wildlife symbiote and ecosystem engineer, whitebark pine (Pinus...
ERIC Educational Resources Information Center
Martínez, José Felipe; Santibanez, Lucrecia; Serván Mori, Edson E.
2013-01-01
Background/Context: Much research has investigated the complex interplay between education and migration. Education has been alternatively conceptualized as playing an important role as motivator or deterrent of future migration. This relationship, however, is often investigated in terms of coarse indicators of educational attainment. Purpose: In…
Hybrid songbirds employ intermediate routes in a migratory divide.
Delmore, Kira E; Irwin, Darren E
2014-10-01
Migratory divides are contact zones between populations that use different routes to navigate around unsuitable areas on seasonal migration. Hybrids in divides have been predicted to employ intermediate and potentially inferior routes. We provide the first direct test of this hypothesis, using light-level geolocators to track birds breeding in a hybrid zone between Swainson's thrushes in western Canada. Compared to parental forms, hybrids exhibited increased variability in their migratory routes, with some using intermediate routes that crossed arid and mountainous regions, and some using the same routes as one parental group on fall migration and the other on spring migration. Hybrids also tended to use geographically intermediate wintering sites. Analysis of genetic variation across the hybrid zone suggests moderately strong selection against hybrids. These results indicate that seasonal migratory behaviour might be a source of selection against hybrids, supporting a possible role for migration in speciation. © 2014 John Wiley & Sons Ltd/CNRS.
Salisbury, Sarah J; McCracken, Gregory R; Keefe, Donald; Perry, Robert; Ruzzante, Daniel E
2016-09-01
Dendritic metapopulations have been attributed unique properties by in silico studies, including an elevated genetic diversity relative to a panmictic population of equal total size. These predictions have not been rigorously tested in nature, nor has there been full consideration of the interacting effects among contemporary landscape features, colonization history and life history traits of the target species. We tested for the effects of dendritic structure as well as the relative importance of life history, environmental barriers and historical colonization on the neutral genetic structure of a longnose sucker (Catostomus catostomus) metapopulation in the Kogaluk watershed of northern Labrador, Canada. Samples were collected from eight lakes, genotyped with 17 microsatellites, and aged using opercula. Lakes varied in differentiation, historical and contemporary connectivity, and life history traits. Isolation by distance was detected only by removing two highly genetically differentiated lakes, suggesting a lack of migration-drift equilibrium and the lingering influence of historical factors on genetic structure. Bayesian analyses supported colonization via the Kogaluk's headwaters. The historical concentration of genetic diversity in headwaters inferred by this result was supported by high historical and contemporary effective sizes of the headwater lake, T-Bone. Alternatively, reduced allelic richness in headwaters confirmed the dendritic structure's influence on gene flow, but this did not translate to an elevated metapopulation effective size. A lack of equilibrium and upstream migration may have dampened the effects of dendritic structure. We suggest that interacting historical and contemporary factors prevent the achievement of the idealized traits of a dendritic metapopulation in nature. © 2016 John Wiley & Sons Ltd.
Brauer, Chris J.; Unmack, Peter J.; Hammer, Michael P.; Adams, Mark; Beheregaray, Luciano B.
2013-01-01
Habitat fragmentation caused by human activities alters metapopulation dynamics and decreases biological connectivity through reduced migration and gene flow, leading to lowered levels of population genetic diversity and to local extinctions. The threatened Yarra pygmy perch, Nannoperca obscura, is a poor disperser found in small, isolated populations in wetlands and streams of southeastern Australia. Modifications to natural flow regimes in anthropogenically-impacted river systems have recently reduced the amount of habitat for this species and likely further limited its opportunity to disperse. We employed highly resolving microsatellite DNA markers to assess genetic variation, population structure and the spatial scale that dispersal takes place across the distribution of this freshwater fish and used this information to identify conservation units for management. The levels of genetic variation found for N. obscura are amongst the lowest reported for a fish species (mean heterozygosity of 0.318 and mean allelic richness of 1.92). We identified very strong population genetic structure, nil to little evidence of recent migration among demes and a minimum of 11 units for conservation management, hierarchically nested within four major genetic lineages. A combination of spatial analytical methods revealed hierarchical genetic structure corresponding with catchment boundaries and also demonstrated significant isolation by riverine distance. Our findings have implications for the national recovery plan of this species by demonstrating that N. obscura populations should be managed at a catchment level and highlighting the need to restore habitat and avoid further alteration of the natural hydrology. PMID:24349405
Can mesenchymal cells undergo collective cell migration?
Theveneau, Eric
2011-01-01
Cell migration is critical for proper development of the embryo and is also used by many cell types to perform their physiological function. For instance, cell migration is essential for immune cells to monitor the body and for epithelial cells to heal a wound whereas, in cancer cells, acquisition of migratory capabilities is a critical step toward malignancy. Migratory cells are often categorized into two groups: (1) mesenchymal cells, produced by an epithelium-to-mesenchyme transition, that undergo solitary migration and (2) epithelial-like cells which migrate collectively. However, on some occasions, mesenchymal cells may travel in large, dense groups and exhibit key features of collectively migrating cells such as coordination and cooperation. Here, using data published on neural crest cells, a highly invasive mesenchymal cell population that extensively migrate throughout the embryo, we explore the idea that mesenchymal cells, including cancer cells, might be able to undergo collective cell migration under certain conditions and discuss how they could do so. PMID:22274714
Host density drives the postglacial migration of the tree parasite, Epifagus virginiana.
Tsai, Yi-Hsin Erica; Manos, Paul S
2010-09-28
To survive changes in climate, successful species shift their geographic ranges to remain in suitable habitats. For parasites and other highly specialized species, distributional changes not only are dictated by climate but can also be engineered by their hosts. The extent of host control on parasite range expansion is revealed through comparisons of host and parasite migration and demographic histories. However, understanding the codistributional history of entire forest communities is complicated by challenges in synthesizing datasets from multiple interacting species of differing datatypes. Here we integrate genetic and fossil pollen datasets from a host-parasite pair; specifically, the population structure of the parasitic plant (Epifagus virginiana) was compared with both its host (Fagus grandifolia) genetic patterns and abundance data from the paleopollen record of the last 21,000 y. Through tests of phylogeographic structure and spatial linear regression models we find, surprisingly, host range changes had little effect on the parasite's range expansion and instead host density is the main driver of parasite spread. Unlike other symbionts that have been used as proxies to track their host's movements, this parasite's migration routes are incongruent with the host and instead reflect the greater importance of host density in this community's assembly. Furthermore, these results confirm predictions of disease ecological models regarding the role of host density in the spread of pathogens. Due to host density constraints, highly specialized species may have low migration capacities and long lag times before colonization of new areas.
Der Sarkissian, Clio; Balanovsky, Oleg; Brandt, Guido; Khartanovich, Valery; Buzhilova, Alexandra; Koshel, Sergey; Zaporozhchenko, Valery; Gronenborn, Detlef; Moiseyev, Vyacheslav; Kolpakov, Eugen; Shumkin, Vladimir; Alt, Kurt W.; Balanovska, Elena; Cooper, Alan; Haak, Wolfgang
2013-01-01
North East Europe harbors a high diversity of cultures and languages, suggesting a complex genetic history. Archaeological, anthropological, and genetic research has revealed a series of influences from Western and Eastern Eurasia in the past. While genetic data from modern-day populations is commonly used to make inferences about their origins and past migrations, ancient DNA provides a powerful test of such hypotheses by giving a snapshot of the past genetic diversity. In order to better understand the dynamics that have shaped the gene pool of North East Europeans, we generated and analyzed 34 mitochondrial genotypes from the skeletal remains of three archaeological sites in northwest Russia. These sites were dated to the Mesolithic and the Early Metal Age (7,500 and 3,500 uncalibrated years Before Present). We applied a suite of population genetic analyses (principal component analysis, genetic distance mapping, haplotype sharing analyses) and compared past demographic models through coalescent simulations using Bayesian Serial SimCoal and Approximate Bayesian Computation. Comparisons of genetic data from ancient and modern-day populations revealed significant changes in the mitochondrial makeup of North East Europeans through time. Mesolithic foragers showed high frequencies and diversity of haplogroups U (U2e, U4, U5a), a pattern observed previously in European hunter-gatherers from Iberia to Scandinavia. In contrast, the presence of mitochondrial DNA haplogroups C, D, and Z in Early Metal Age individuals suggested discontinuity with Mesolithic hunter-gatherers and genetic influx from central/eastern Siberia. We identified remarkable genetic dissimilarities between prehistoric and modern-day North East Europeans/Saami, which suggests an important role of post-Mesolithic migrations from Western Europe and subsequent population replacement/extinctions. This work demonstrates how ancient DNA can improve our understanding of human population movements across Eurasia. It contributes to the description of the spatio-temporal distribution of mitochondrial diversity and will be of significance for future reconstructions of the history of Europeans. PMID:23459685
Serow, W J
1980-01-01
The author "has examined trends in interstate migration during the 1970s for the four regions of the United States and, in particular, explored the relationship of this migration with nonmetropolitan expansion and the return to the city movement. The data show that the former trend is a very real one which has persisted throughout the decade and that population growth through interstate migration in nonmetropolitan America is, on balance, the result of nonblacks moving to the South from elsewhere in the nation. Except in the West, central cities continue to experience substantial losses of population through interstate migration. Interstate migration continues to be directed toward suburbs, and is especially vigorous in the West." Data are from the March 1975 and March 1979 Current Population Surveys. excerpt
Ethiopians and Khoisan Share the Deepest Clades of the Human Y-Chromosome Phylogeny
Semino, Ornella; Santachiara-Benerecetti, A. Silvana; Falaschi, Francesco; Cavalli-Sforza, L. Luca; Underhill, Peter A.
2002-01-01
The genetic structure of 126 Ethiopian and 139 Senegalese Y chromosomes was investigated by a hierarchical analysis of 30 diagnostic biallelic markers selected from the worldwide Y-chromosome genealogy. The present study reveals that (1) only the Ethiopians share with the Khoisan the deepest human Y-chromosome clades (the African-specific Groups I and II) but with a repertoire of very different haplotypes; (2) most of the Ethiopians and virtually all the Senegalese belong to Group III, whose precursor is believed to be involved in the first migration out of Africa; and (3) the Ethiopian Y chromosomes that fall into Groups VI, VIII, and IX may be explained by back migrations from Asia. The first observation confirms the ancestral affinity between the Ethiopians and the Khoisan, which has previously been suggested by both archaeological and genetic findings. PMID:11719903
Sachdeva, Himani; Barton, Nicholas H
2017-06-01
Assortative mating is an important driver of speciation in populations with gene flow and is predicted to evolve under certain conditions in few-locus models. However, the evolution of assortment is less understood for mating based on quantitative traits, which are often characterized by high genetic variability and extensive linkage disequilibrium between trait loci. We explore this scenario for a two-deme model with migration, by considering a single polygenic trait subject to divergent viability selection across demes, as well as assortative mating and sexual selection within demes, and investigate how trait divergence is shaped by various evolutionary forces. Our analysis reveals the existence of sharp thresholds of assortment strength, at which divergence increases dramatically. We also study the evolution of assortment via invasion of modifiers of mate discrimination and show that the ES assortment strength has an intermediate value under a range of migration-selection parameters, even in diverged populations, due to subtle effects which depend sensitively on the extent of phenotypic variation within these populations. The evolutionary dynamics of the polygenic trait is studied using the hypergeometric and infinitesimal models. We further investigate the sensitivity of our results to the assumptions of the hypergeometric model, using individual-based simulations. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Phongkaew, P; Arunyawat, U; Swatdipong, A; Hongtrakul, V
2014-09-12
Nong-Han Lake, Thailand, sustains the whisker sheatfish (Micronema bleekeri Günther, 1864), which is a rare species of freshwater catfish. Wild-caught whisker sheatfish has been intensively harvested to meet market demand; yet, genetic information about this species remains unknown. To assist with the in situ conservation of whisker sheatfish populations in Nong-Han Lake, 35 and 34 individuals from the middle (MN) and lower (LN) areas of the lake, respectively, were studied using 7 microsatellite loci. Low genetic variation was detected in the MN (HO=0.338, AR=2.710) and LN (HO=0.394, AR=2.714) populations. Genetic differentiation between the 2 populations was significant (FST=0.063, P<0.05). The size of recent populations (NE<50) was found to be 9- to 29-times smaller compared to the estimated historical populations, even though no bottleneck signal was observed. Low genetic diversity was observed, implying that the populations are at risk of being lost from this site. Of note, migration among the populations inhabiting the middle and lower parts of the lake exhibited opposing trends in changes to the genetic structure. This phenomenon might be due to the operation of a regional irrigation gate over the last decade. The information collected here indicates that the whisker sheatfish populations in Nong-Han Lake require consistent fisheries monitoring and management. Further research about the whisker sheatfish populations from the Mekong and Chao Phraya River basins is required to assist national-scale conservation efforts.
Wang, Haiming; Zhang, Zhenjie; Chen, Zhanqiang; Zhang, Yanru; Lv, Qiang; An, Xiaoping; Tong, Yigang; Carr, Michael J; Sun, Shuhong; Shi, Weifeng
2016-04-01
To understand the molecular epidemiology and evolution of avian influenza viruses (AIV) along the East Asian-Australian migration flyway, we collected faecal samples (n=2859) between November 2014 and March 2015 from poultry, environmental sources and wild birds in Dongying, Shandong province and Yancheng, Jiangsu province in eastern China. The presence of AIV RNA was evaluated by real-time PCR and the positivity rate ranged from 0 to 29.3%. In both Dongying and Yancheng, samples collected from live poultry markets had the highest positivity rate for AIV RNA. AIV whole genomes were generated and phylogenetically analysed. Our results demonstrate that most of the viruses belonged to the H9N2 subtype, and could be classified into nine novel genotypes based on the phylogenetic analysis of the eight gene segments of the AIV genomes. This revealed a high genetic diversity of H9N2 in this region and suggested that they might have undergone frequent genetic reassortment. In addition, the internal genes (PB2, etc.) of two viruses from wild birds and several viruses from poultry belonged to the same gene constellation, suggesting a potential inter-host transmission of AIV between wild birds and poultry in live markets along routes of migratory flyways. Our results highlight the high genetic diversity of AIV along the East Asian-Australian migration flyway and the need for more extensive AIV surveillance in eastern China. Copyright © 2016. Published by Elsevier B.V.
Gruner, Andrea; Oster, Jörg; Müller, Gottfried; von Wietersheim, Jörn
2012-01-01
Previous studies have shown that psychosomatic rehabilitation treatments were less successful for patients with a migration background. These findings should be explored further with the help of interviews. The main aim of this study was to compare patients with and without a migration background with regards to social-demographic variables, disease model, symptoms, and the course and result of a psychosomatic rehabilitation treatment. 75 patients with and 75 without a migration background were analysed. Half-structured interviews were carried out at admission, discharge and three months after discharge from treatment. Patients with a migration background were "sicker" at the beginning of the rehabilitation. Especially men with a migration background benefit less from the treatment and often did not feel "at the right place" in the psychosomatic rehabilitation. Patients with a migration background have a more negative view of their work performance than patients without a migration background. Patient with a migration background should receive more information about psychosomatic disease models and different treatment methods prior to their rehabilitation therapy.
When GIS zooms in: spatio-genetic maps of multipaternity in Armadillidium vulgare.
Bech, Nicolas; Depeux, Charlotte; Durand, Sylvine; Debenest, Catherine; Lafitte, Alexandra; Beltran-Bech, Sophie
2017-12-01
Geographic information system (GIS) tools are designed to illustrate, analyse and integrate geographic or spatial data, usually on a macroscopic scale. By contrast, genetic tools focus on a microscopic scale. Because in reality, landscapes have no predefined scale, our original study aims to develop a new approach, combining both cartographic and genetic approaches to explore microscopic landscapes. For this, we focused on Armadillidium vulgare, a terrestrial isopod model in which evolutionary pressures imposed by terrestrial life have led to the development of internal fertilisation and, consequently, to associated physiological changes. Among these, the emergence of internal receptacles, found in many taxa ranging from mammals to arthropods, allowed females to store sperm from several partners, enabling multipaternity. Among arthropods, terrestrial isopods like the polygynandrous A. vulgare present a female structure, the marsupium, in which fertilised eggs migrate and develop into mancae (larval stage). To test our innovative combined approach, we proposed different males to four independent females, and at the end of incubation in the marsupium, we mapped (using GIS methods) and genotyped (using 12 microsatellite markers) all the incubated mancae. This methodology permitted to obtain spatio-genetic maps describing heterozygosity and spatial distribution of mancae and of multipaternity within the marsupial landscape. We discussed the interest of this kind of multidisciplinary approach which could improve in this case our understanding of sexual selection mechanisms in this terrestrial crustacean. Beyond the interesting model-focused insights, the main challenge of this study was the transfer of GIS techniques to a microscopic scale and our results appear so as pioneers rendering GIS tools available for studies involving imagery whatever their study scale.
Josephson, Matthew P; Miltner, Adam M; Lundquist, Erik A
2016-08-01
Nervous system development and circuit formation requires neurons to migrate from their birthplaces to specific destinations.Migrating neurons detect extracellular cues that provide guidance information. In Caenorhabditis elegans, the Q right (QR) and Q left (QL) neuroblast descendants migrate long distances in opposite directions. The Hox gene lin-39 cell autonomously promotes anterior QR descendant migration, and mab-5/Hox cell autonomously promotes posterior QL descendant migration. Here we describe a nonautonomous role of mab-5 in regulating both QR and QL descendant migrations, a role masked by redundancy with lin-39 A third Hox gene, egl-5/Abdominal-B, also likely nonautonomously regulates Q descendant migrations. In the lin-39 mab-5 egl-5 triple mutant, little if any QR and QL descendant migration occurs. In addition to well-described roles of lin-39 and mab-5 in the Q descendants, our results suggest that lin-39, mab-5, and egl-5 might also pattern the posterior region of the animal for Q descendant migration. Previous studies showed that the spon-1 gene might be a target of MAB-5 in Q descendant migration. spon-1 encodes a secreted basement membrane molecule similar to vertebrate F-spondin. Here we show that spon-1 acts nonautonomously to control Q descendant migration, and might function as a permissive rather than instructive signal for cell migration. We find that increased levels of MAB-5 in body wall muscle (BWM) can drive the spon-1 promoter adjacent to the Q cells, and loss of spon-1 suppresses mab-5 gain of function. Thus, MAB-5 might nonautonomously control Q descendant migrations by patterning the posterior region of the animal to which Q cells respond. spon-1 expression from BWMs might be part of the posterior patterning necessary for directed Q descendant migration. Copyright © 2016 by the Genetics Society of America.
Live Imaging of Glial Cell Migration in the Drosophila Eye Imaginal Disc
Cafferty, Patrick; Xie, Xiaojun; Browne, Kristen; Auld, Vanessa J.
2009-01-01
Glial cells of both vertebrate and invertebrate organisms must migrate to final target regions in order to ensheath and support associated neurons. While recent progress has been made to describe the live migration of glial cells in the developing pupal wing (1), studies of Drosophila glial cell migration have typically involved the examination of fixed tissue. Live microscopic analysis of motile cells offers the ability to examine cellular behavior throughout the migratory process, including determining the rate of and changes in direction of growth. Paired with use of genetic tools, live imaging can be used to determine more precise roles for specific genes in the process of development. Previous work by Silies et al. (2) has described the migration of glia originating from the optic stalk, a structure that connects the developing eye and brain, into the eye imaginal disc in fixed tissue. Here we outline a protocol for examining the live migration of glial cells into the Drosophila eye imaginal disc. We take advantage of a Drosophila line that expresses GFP in developing glia to follow glial cell progression in wild type and in mutant animals. PMID:19590493
A genetic atlas of human admixture history.
Hellenthal, Garrett; Busby, George B J; Band, Gavin; Wilson, James F; Capelli, Cristian; Falush, Daniel; Myers, Simon
2014-02-14
Modern genetic data combined with appropriate statistical methods have the potential to contribute substantially to our understanding of human history. We have developed an approach that exploits the genomic structure of admixed populations to date and characterize historical mixture events at fine scales. We used this to produce an atlas of worldwide human admixture history, constructed by using genetic data alone and encompassing over 100 events occurring over the past 4000 years. We identified events whose dates and participants suggest they describe genetic impacts of the Mongol empire, Arab slave trade, Bantu expansion, first millennium CE migrations in Eastern Europe, and European colonialism, as well as unrecorded events, revealing admixture to be an almost universal force shaping human populations.
Straight as an arrow: humpback whales swim constant course tracks during long-distance migration
Horton, Travis W.; Holdaway, Richard N.; Zerbini, Alexandre N.; Hauser, Nan; Garrigue, Claire; Andriolo, Artur; Clapham, Phillip J.
2011-01-01
Humpback whale seasonal migrations, spanning greater than 6500 km of open ocean, demonstrate remarkable navigational precision despite following spatially and temporally distinct migration routes. Satellite-monitored radio tag-derived humpback whale migration tracks in both the South Atlantic and South Pacific include constant course segments of greater than 200 km, each spanning several days of continuous movement. The whales studied here maintain these directed movements, often with better than 1° precision, despite the effects of variable sea-surface currents. Such remarkable directional precision is difficult to explain by established models of directional orientation, suggesting that alternative compass mechanisms should be explored. PMID:21508023
Health, Information, and Migration: Geographic Mobility of Union Army Veterans, 1860–1880
Lee, Chulhee
2009-01-01
This article explores how injuries, sickness, and the geographic mobility of Union Army veterans while in service affected their postservice migrations. Wartime wounds and illnesses significantly diminished the geographic mobility of veterans after the war. Geographic moves while carrying out military missions had strong positive effects on their postservice geographic mobility. Geographic moves while in service also influenced the choice of destination among the migrants. I discuss some implications of the results for the elements of self-selection in migration, the roles of different types of information in migration decisions, and the overall impact of the Civil War on geographic mobility. PMID:20234796
Guilamo-Ramos, Vincent; McCarthy, Katharine; Muñoz-Laboy, Miguel A.; de Lourdes Rosas López, Maria
2014-01-01
Migration and population movement are increasingly viewed as important factors associated with HIV transmission risk. With growing awareness of the potential impact of migration on HIV transmission, several perspectives have emerged that posit differing dynamics of risk. We considered available data on the role of migration on HIV transmission among Mexican migrants in New York City and Puebla, Mexico. Specifically, we examined 3 distinct models of migratory dynamics of HIV transmission—namely, the structural model, the local contextual model, and the interplay model. In doing so, we reframed current public health perspectives on the role of migration on HIV transmission. PMID:24825203
Straight as an arrow: humpback whales swim constant course tracks during long-distance migration.
Horton, Travis W; Holdaway, Richard N; Zerbini, Alexandre N; Hauser, Nan; Garrigue, Claire; Andriolo, Artur; Clapham, Phillip J
2011-10-23
Humpback whale seasonal migrations, spanning greater than 6500 km of open ocean, demonstrate remarkable navigational precision despite following spatially and temporally distinct migration routes. Satellite-monitored radio tag-derived humpback whale migration tracks in both the South Atlantic and South Pacific include constant course segments of greater than 200 km, each spanning several days of continuous movement. The whales studied here maintain these directed movements, often with better than 1° precision, despite the effects of variable sea-surface currents. Such remarkable directional precision is difficult to explain by established models of directional orientation, suggesting that alternative compass mechanisms should be explored.
Population genetic structure of Helicobacter pylori strains from Portuguese-speaking countries.
Oleastro, Mónica; Rocha, Raquel; Vale, Filipa F
2017-08-01
The human gastric colonizer Helicobacter pylori is useful to track human migrations given the agreement between the bacterium phylogeographic distribution and human migrations. As Portugal was an African and Brazilian colonizer for over 400 years, we hypothesized that Portuguese isolates were likely genetically closer with those from countries colonized by Portuguese in the past. We aimed to characterize the population structure of several Portuguese-speaking countries, including Portugal, Brazil, Angola, and Cape Verde. We included strains isolated in Portugal from Portuguese and from former Portuguese colonies. These strains were typed by multilocus sequence typing (MLST) for seven housekeeping genes. We also retrieved from Multi Locus Sequence Typing Web site additional housekeeping gene sequences, namely from Angola and Brazil. We provided evidence that strains from Portuguese belong to hpEurope and that the introgression of hpEurope in non-European countries that speak Portuguese is low, except for Brazil and Cape Verde, where hpEurope accounted for one quarter and one half of the population, respectively. We found genetic similarity for all strains from Portuguese-speaking countries that belong to hpEurope population. Moreover, these strains showed a predominance of ancestral Europe 2 (AE2) over ancestral Europe 1 (AE1), followed by ancestral Africa 1. H. pylori is a useful marker even for relative recent human migration events and may become rapidly differentiated from founder populations. H. pylori from Portuguese-speaking countries assigned to hpEurope appears to be a hybrid population resulting from the admixture of AE1, AE2 and ancestral hpAfrica1. © 2017 John Wiley & Sons Ltd.
Long-Distance Dispersal Shaped Patterns of Human Genetic Diversity in Eurasia
Alves, Isabel; Arenas, Miguel; Currat, Mathias; Sramkova Hanulova, Anna; Sousa, Vitor C.; Ray, Nicolas; Excoffier, Laurent
2016-01-01
Most previous attempts at reconstructing the past history of human populations did not explicitly take geography into account or considered very simple scenarios of migration and ignored environmental information. However, it is likely that the last glacial maximum (LGM) affected the demography and the range of many species, including our own. Moreover, long-distance dispersal (LDD) may have been an important component of human migrations, allowing fast colonization of new territories and preserving high levels of genetic diversity. Here, we use a high-quality microsatellite data set genotyped in 22 populations to estimate the posterior probabilities of several scenarios for the settlement of the Old World by modern humans. We considered models ranging from a simple spatial expansion to others including LDD and a LGM-induced range contraction, as well as Neolithic demographic expansions. We find that scenarios with LDD are much better supported by data than models without LDD. Nevertheless, we show evidence that LDD events to empty habitats were strongly prevented during the settlement of Eurasia. This unexpected absence of LDD ahead of the colonization wave front could have been caused by an Allee effect, either due to intrinsic causes such as an inbreeding depression built during the expansion or due to extrinsic causes such as direct competition with archaic humans. Overall, our results suggest only a relatively limited effect of the LGM contraction on current patterns of human diversity. This is in clear contrast with the major role of LDD migrations, which have potentially contributed to the intermingled genetic structure of Eurasian populations. PMID:26637555
Matthews, Luke J; Butler, Paul M
2011-07-01
Numerous lines of evidence suggest that Homo sapiens evolved as a distinct species in Africa by 150,000 years before the present (BP) and began major migrations out-of-Africa ∼50,000 BP. By 20,000 BP, our species had effectively colonized the entire Old World, and by 12,000 BP H. sapiens had a global distribution. We propose that this rapid migration into new habitats selected for individuals with low reactivity to novel stressors. Certain dopamine receptor D4 (DRD4) polymorphisms are associated with low neuronal reactivity and increased exploratory behavior, novelty seeking, and risk taking, collectively considered novelty-seeking trait (NS). One previous report (Chen et al.: Evol Hum Behav 20 (1999) 309-324) demonstrated a correlation between migratory distance and the seven-repeat (7R) VNTR DRD4 allele at exon 3 for human populations. This study, however, failed to account for neutral genetic processes (drift and admixture) that might create such a correlation in the absence of natural selection. Furthermore, additional loci surrounding DRD4 are now recognized to influence NS. Herein we account for neutral genetic structure by modeling the nonindependence of neutral allele frequencies between human populations. We retest the DRD4 exon 3 alleles, and also test two other loci near DRD4 that are associated with NS. We conclude there is an association between migratory distance and DRD4 exon 3 2R and 7R alleles that cannot be accounted for by neutral genetic processes alone. Copyright © 2011 Wiley-Liss, Inc.
Independent Origins of Yeast Associated with Coffee and Cacao Fermentation.
Ludlow, Catherine L; Cromie, Gareth A; Garmendia-Torres, Cecilia; Sirr, Amy; Hays, Michelle; Field, Colburn; Jeffery, Eric W; Fay, Justin C; Dudley, Aimée M
2016-04-04
Modern transportation networks have facilitated the migration and mingling of previously isolated populations of plants, animals, and insects. Human activities can also influence the global distribution of microorganisms. The best-understood example is yeasts associated with winemaking. Humans began making wine in the Middle East over 9,000 years ago [1, 2]. Selecting favorable fermentation products created specialized strains of Saccharomyces cerevisiae [3, 4] that were transported along with grapevines. Today, S. cerevisiae strains residing in vineyards around the world are genetically similar, and their population structure suggests a common origin that followed the path of human migration [3-7]. Like wine, coffee and cacao depend on microbial fermentation [8, 9] and have been globally dispersed by humans. Theobroma cacao originated in the Amazon and Orinoco basins of Colombia and Venezuela [10], was cultivated in Central America by Mesoamerican peoples, and was introduced to Europeans by Hernán Cortés in 1530 [11]. Coffea, native to Ethiopia, was disseminated by Arab traders throughout the Middle East and North Africa in the 6(th) century and was introduced to European consumers in the 17(th) century [12]. Here, we tested whether the yeasts associated with coffee and cacao are genetically similar, crop-specific populations or genetically diverse, geography-specific populations. Our results uncovered populations that, while defined by niche and geography, also bear signatures of admixture between major populations in events independent of the transport of the plants. Thus, human-associated fermentation and migration may have affected the distribution of yeast involved in the production of coffee and chocolate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ozawa, M; Matsuu, A; Tokorozaki, K; Horie, M; Masatani, T; Nakagawa, H; Okuya, K; Kawabata, T; Toda, S
2015-05-21
We isolated eight highly pathogenic H5N8 avian influenza viruses (H5N8 HPAIVs) in the 2014/15 winter season at an overwintering site of migratory birds in Japan. Genetic analyses revealed that these isolates were divided into three groups, indicating the co-circulation of three genetic groups of H5N8 HPAIV among these migratory birds. These results also imply the possibility of global redistribution of the H5N8 HPAIVs via the migration of these birds next winter.
Preserving the Whole: A Two-Track Approach to Rescuing Social Science Data and Metadata.
ERIC Educational Resources Information Center
Green, Ann; Dionne, JoAnn; Dennis, Martin
Focusing on the experience of the Yale University (Connecticut) social science data preservation project, this document presents a case study of migration as a preservation strategy, exploring options for migrating data stored in a technically obsolete format and their associated documentation stored on paper. The first section provides background…
ERIC Educational Resources Information Center
Fiddian-Qasmiyeh, Elena
2011-01-01
Education is often prioritised by refugee children and families, as well as by their political representatives and international actors alike. This article explores the specificities of the Sahrawi refugee education system, focusing in particular on the nature, motivations and implications of Sahrawi refugee youths' educational migration to Cuba…
ERIC Educational Resources Information Center
Burke, Penny Jane
2011-01-01
In this article, I explore men's educational experiences and aspirations in the context of UK policy discourses of widening participation and migration. Critiquing discourses that oversimplify gendered access to higher education, I develop an analysis of the impact of masculine subjectivities on processes of subjective construction in relation to…
Refugee Children in the UK. Education in an Urbanised Society
ERIC Educational Resources Information Center
Rutter, Jill
2006-01-01
Asylum migration causes intense media and political debate. However, little attention has been paid to how forced migrants can rebuild their lives in the UK or elsewhere. This timely book analyzes the social policies that impact on refugee children's education, and: (1) Provides the background to the migration of refugees; (2) Explores how…
Intertwined Effects of Gender and Migration Status on Persistence in SET Study Programmes
ERIC Educational Resources Information Center
Guenther, Elisabeth Anna; Koeszegi, Sabine Theresia
2017-01-01
This paper explores the intersectional interference of gender and migration status on students' persistence at an Austrian University of Technology. While controlling for the pre-university education and performance indicators, we estimate the odds for the persistence of male and female students, as well as of students with diverse migration…
ERIC Educational Resources Information Center
Hoffman, David M.
2009-01-01
Several scholars have underlined connections between academic mobility and international migration. This qualitative study explores a spectrum of academic mobility articulated by Teichler that empirically contributes to consideration of these connections. This analysis of e-mail excerpts from 20 migrant academics, living in seven countries,…
Diaspora, Migration, and Globalization: Expanding the Discourse of Adult Education
ERIC Educational Resources Information Center
Alfred, Mary V.
2015-01-01
This article explores how notions of diaspora, migration, and globalization intersect to inform identities and social realities of those who leave their homeland and resettle in other nations. It calls for expanding the discourse of adult education to incorporate critical studies of the diaspora to make visible the inequality and imbalance of…
Open Doors 1990/91: Report on International Educational Exchange.
ERIC Educational Resources Information Center
Zikopoulos, Marianthi, Ed.; And Others
This six-part report presents statistical data on worldwide trends in student mobility and migration, national origin, sources of financial support, fields of study, enrollments, and rates of growth. Part I explores the nature of student migration worldwide and presents data on the overall numbers of students going abroad and the extent to which…
The impact of forced migration on the mental health of the elderly: a scoping review.
Virgincar, Ashwini; Doherty, Shannon; Siriwardhana, Chesmal
2016-06-01
The worldwide elderly population fraction is increasing, with the greatest rise in developing countries. Older adults affected by conflict and forced migration mainly taking place in developing countries may be particularly vulnerable to poor mental health due to other age-specific risk factors. This review aims to explore global evidence on the effect of conflict-induced forced migration on the mental health of older adults. Seven bibliographic databases were searched. The title and abstract of 797 results were reviewed for qualitative and quantitative studies meeting inclusion and exclusion criteria. Six studies were selected for the in-depth review. Five papers assessed mental health in older adult populations displaced as refugees. One paper assessed mental health of older adults with varying immigration status. This review highlights the dearth of evidence about the impact of forced migration on the mental health of older adults. Further research is needed to explore the risk factors and processes that contribute to adverse mental health outcomes among older adult populations. This is essential to the development of interventions for this vulnerable and at-risk population, particularly in resource-poor settings.
NASA Astrophysics Data System (ADS)
Luo, Y.; Nissen-Meyer, T.; Morency, C.; Tromp, J.
2008-12-01
Seismic imaging in the exploration industry is often based upon ray-theoretical migration techniques (e.g., Kirchhoff) or other ideas which neglect some fraction of the seismic wavefield (e.g., wavefield continuation for acoustic-wave first arrivals) in the inversion process. In a companion paper we discuss the possibility of solving the full physical forward problem (i.e., including visco- and poroelastic, anisotropic media) using the spectral-element method. With such a tool at hand, we can readily apply the adjoint method to tomographic inversions, i.e., iteratively improving an initial 3D background model to fit the data. In the context of this inversion process, we draw connections between kernels in adjoint tomography and basic imaging principles in migration. We show that the images obtained by migration are nothing but particular kinds of adjoint kernels (mainly density kernels). Migration is basically a first step in the iterative inversion process of adjoint tomography. We apply the approach to basic 2D problems involving layered structures, overthrusting faults, topography, salt domes, and poroelastic regions.
Raza, Qanber; Jacobs, J Roger
2016-11-15
Collective cell migration is the coordinated movement of cells, which organize tissues during morphogenesis, repair and some cancers. The motile cell membrane of the advancing front in collective cell migration is termed the Leading Edge. The embryonic development of the vertebrate and Drosophila hearts are both characterized by the coordinated medial migration of a bilateral cluster of mesodermal cells. In Drosophila, the cardioblasts form cohesive bilateral rows that migrate collectively as a unit towards the dorsal midline to form the dorsal vessel. We have characterized the collective cell migration of cardioblasts as an in vivo quantitative model to study the behaviour of the Leading Edge. We investigated whether guidance signalling through Slit and Netrin pathways plays a role in cell migration during heart development. Through time-lapse imaging and quantitative assessment of migratory behaviour of the cardioblasts in loss-of-function mutants, we demonstrate that both Slit and Netrin mediated signals are autonomously and concomitantly required to maximize migration velocity, filopodial and lamellipodial activities. Additionally, we show that another Slit and Netrin receptor, Dscam1, the role of which during heart development was previously unknown, is required for both normal migration of cardioblasts and luminal expansion. Leading edge behaviour analysis revealed a dosage dependent genetic interaction between Slit and Netrin receptors suggesting that downstream signalling through these receptors converge on a common output that increases leading edge activity of the cardioblasts. Finally, we found that guidance signalling maintains the balance between epithelial and mesenchymal characteristics of the migrating cardioblasts. Copyright © 2016 Elsevier Inc. All rights reserved.
Public health evolutionary biology of antimicrobial resistance: priorities for intervention
Baquero, Fernando; Lanza, Val F; Cantón, Rafael; Coque, Teresa M
2015-01-01
The three main processes shaping the evolutionary ecology of antibiotic resistance (AbR) involve the emergence, invasion and occupation by antibiotic-resistant genes of significant environments for human health. The process of emergence in complex bacterial populations is a high-frequency, continuous swarming of ephemeral combinatory genetic and epigenetic explorations inside cells and among cells, populations and communities, expanding in different environments (migration), creating the stochastic variation required for evolutionary progress. Invasion refers to the process by which AbR significantly increases in frequency in a given (invaded) environment, led by external invaders local multiplication and spread, or by endogenous conversion. Conversion occurs because of the spread of AbR genes from an exogenous resistant clone into an established (endogenous) bacterial clone(s) colonizing the environment; and/or because of dissemination of particular resistant genetic variants that emerged within an endogenous clonal population. Occupation of a given environment by a resistant variant means a permanent establishment of this organism in this environment, even in the absence of antibiotic selection. Specific interventions on emergence influence invasion, those acting on invasion also influence occupation and interventions on occupation determine emergence. Such interventions should be simultaneously applied, as they are not simple solutions to the complex problem of AbR. PMID:25861381
Genetic structuring and migration patterns of Atlantic bigeye tuna, Thunnus obesus (Lowe, 1839).
Gonzalez, Elena G; Beerli, Peter; Zardoya, Rafael
2008-09-17
Large pelagic fishes are generally thought to have little population genetic structuring based on their cosmopolitan distribution, large population sizes and high dispersal capacities. However, gene flow can be influenced by ecological (e.g. homing behaviour) and physical (e.g. present-day ocean currents, past changes in sea temperature and levels) factors. In this regard, Atlantic bigeye tuna shows an interesting genetic structuring pattern with two highly divergent mitochondrial clades (Clades I and II), which are assumed to have been originated during the last Pleistocene glacial maxima. We assess genetic structure patterns of Atlantic bigeye tuna at the nuclear level, and compare them with mitochondrial evidence. We examined allele size variation of nine microsatellite loci in 380 individuals from the Gulf of Guinea, Canary, Azores, Canada, Indian Ocean, and Pacific Ocean. To investigate temporal stability of genetic structure, three Atlantic Ocean sites were re-sampled a second year. Hierarchical AMOVA tests, RST pairwise comparisons, isolation by distance (Mantel) tests, Bayesian clustering analyses, and coalescence-based migration rate inferences supported unrestricted gene flow within the Atlantic Ocean at the nuclear level, and therefore interbreeding between individuals belonging to both mitochondrial clades. Moreover, departures from HWE in several loci were inferred for the samples of Guinea, and attributed to a Wahlund effect supporting the role of this region as a spawning and nursery area. Our microsatellite data supported a single worldwide panmictic unit for bigeye tunas. Despite the strong Agulhas Current, immigration rates seem to be higher from the Atlantic Ocean into the Indo-Pacific Ocean, but the actual number of individuals moving per generation is relatively low compared to the large population sizes inhabiting each ocean basin. Lack of congruence between mt and nuclear evidences, which is also found in other species, most likely reflects past events of isolation and secondary contact. Given the inferred relatively low number of immigrants per generation around the Cape of Good Hope, the proportions of the mitochondrial clades in the different oceans may keep stable, and it seems plausible that the presence of individuals belonging to the mt Clade I in the Atlantic Ocean may be due to extensive migrations that predated the last glaciation.
Bunlungsup, Srichan; Imai, Hiroo; Hamada, Yuzuru; Matsudaira, Kazunari; Malaivijitnond, Suchinda
2017-02-01
Macaca fascicularis fascicularis is distributed over a wide area of Southeast Asia. Thailand is located at the center of their distribution range and is the bridge connecting the two biogeographic regions of Indochina and Sunda. However, only a few genetic studies have explored the macaques in this region. To shed some light on the evolutionary history of M. f. fascicularis, including hybridization with M. mulatta, M. f. fascicularis and M. mulatta samples of known origins throughout Thailand and the vicinity were analyzed by molecular phylogenetics using mitochondrial DNA (mtDNA), including the hypervariable region 1, and Y-chromosomal DNA, including SRY and TSPY genes. The mtDNA phylogenetic analysis divided M. f. fascicularis into five subclades (Insular Indonesia, Sundaic Thai Gulf, Vietnam, Sundaic Andaman sea coast, and Indochina) and revealed genetic differentiation between the two sides of the Thai peninsula, which had previously been reported as a single group of Malay peninsular macaques. From the estimated divergence time of the Sundaic Andaman sea coast subclade, it is proposed that after M. f. fascicularis dispersed throughout Southeast Asia, some populations on the south-easternmost Indochina (eastern Thailand, southern Cambodia and southern Vietnam at the present time) migrated south-westwards across the land bridge, which was exposed during the glacial period of the late Pleistocene epoch, to the southernmost Thailand/northern peninsular Malaysia. Then, some of them migrated north and south to colonize the Thai Andaman sea coast and northern Sumatra, respectively. The SRY-TSPY phylogenetic analysis suggested that male-mediated gene flow from M. mulatta southward to M. f. fascicularis was restricted south of, but close to, the Isthmus of Kra. There was a strong impact of the geographical factors in Thailand, such as the Isthmus of Kra, Nakhon Si Thammarat, and Phuket ranges and Sundaland, on M. f. fascicularis biogeography and their hybridization with M. mulatta. © 2016 Wiley Periodicals, Inc.
Blacklock, C; Ward, A M; Heneghan, C; Thompson, M
2014-01-01
The migration of healthcare workers from Africa depletes countries already suffering from substantial staffing shortages and considerable disease burdens. The recruitment of such individuals by high income countries has been condemned by the World Health Organisation. However, understanding the reasons why healthcare workers migrate is essential, in order to attempt to alter migration decisions. We aimed to systematically analyse factors influencing healthcare workers' decisions to migrate from Africa. We systematically searched CINAHL (1980-Nov 2010), Embase (1980-Nov 2010), Global Health (1973-Nov 2010) and Medline (1950-Nov 2010) for qualitative studies of healthcare workers from Africa which specifically explored views about migration. Two reviewers identified articles, extracted data and assessed quality of included studies. Meta-ethnography was used to synthesise new lines of understanding and meaning from the data. The search identified 1203 articles from which we included six studies of healthcare workers trained in seven African countries, namely doctors or medical students (two studies), nurses (three), and pharmacy students (one study). Using meta-ethnographic synthesis we produced six lines of argument relating to the migration decisions of healthcare workers: 1) Struggle to realise unmet material expectations of self, family and society, 2) Strain and emotion, interpersonal discord, and insecurity in workplace, 3) Fear from threats to personal or family safety, in and out of workplace, 4) Absence of adequate professional support and development, 5) Desire for professional prestige and respect, 6) Conviction that hopes and goals for the future will be fulfilled overseas. We conclude that a complex interaction of factors contribute to the migration decisions of healthcare workers from Africa. Some of the factors identified are more amenable to change than others, and addressing these may significantly affect migration decisions of African healthcare workers in the future. Copyright © 2013 Elsevier Ltd. All rights reserved.
A Continuous Method for Gene Flow
Palczewski, Michal; Beerli, Peter
2013-01-01
Most modern population genetics inference methods are based on the coalescence framework. Methods that allow estimating parameters of structured populations commonly insert migration events into the genealogies. For these methods the calculation of the coalescence probability density of a genealogy requires a product over all time periods between events. Data sets that contain populations with high rates of gene flow among them require an enormous number of calculations. A new method, transition probability-structured coalescence (TPSC), replaces the discrete migration events with probability statements. Because the speed of calculation is independent of the amount of gene flow, this method allows calculating the coalescence densities efficiently. The current implementation of TPSC uses an approximation simplifying the interaction among lineages. Simulations and coverage comparisons of TPSC vs. MIGRATE show that TPSC allows estimation of high migration rates more precisely, but because of the approximation the estimation of low migration rates is biased. The implementation of TPSC into programs that calculate quantities on phylogenetic tree structures is straightforward, so the TPSC approach will facilitate more general inferences in many computer programs. PMID:23666937
Parent, Anne-Simone; Teilmann, Grete; Juul, Anders; Skakkebaek, Niels E; Toppari, Jorma; Bourguignon, Jean-Pierre
2003-10-01
During the past decade, possible advancement in timing of puberty has been reported in the United States. In addition, early pubertal development and an increased incidence of sexual precocity have been noticed in children, primarily girls, migrating for foreign adoption in several Western European countries. These observations are raising the issues of current differences and secular trends in timing of puberty in relation to ethnic, geographical, and socioeconomic background. None of these factors provide an unequivocal explanation for the earlier onset of puberty seen in the United States. In the formerly deprived migrating children, refeeding and catch-up growth may prime maturation. However, precocious puberty is seen also in some nondeprived migrating children. Attention has been paid to the changing milieu after migration, and recently, the possible role of endocrine- disrupting chemicals from the environment has been considered. These observations urge further study of the onset of puberty as a possible sensitive and early marker of the interactions between environmental conditions and genetic susceptibility that can influence physiological and pathological processes.
Thériault, Véronique; Dunlop, Erin S; Dieckmann, Ulf; Bernatchez, Louis; Dodson, Julian J
2008-01-01
Although contemporary trends indicative of evolutionary change have been detected in the life-history traits of exploited populations, it is not known to what extent fishing influences the evolution of alternative life-history tactics in migratory species such as salmonids. Here, we build a model to predict the evolution of anadromy and residency in an exploited population of brook charr, Salvelinus fontinalis. Our model allows for both phenotypic plasticity and genetic change in the age and size at migration by including migration reaction norms. Using this model, we predict that fishing of anadromous individuals over the course of 100 years causes evolution in the migration reaction norm, resulting in a decrease in average probabilities of migration with increasing harvest rate. Moreover, we show that differences in natural mortalities in freshwater greatly influence the magnitude and rate of evolutionary change. The fishing-induced changes in migration predicted by our model alter population abundances and reproductive output and should be accounted for in the sustainable management of salmonids. PMID:25567640
Nuclear migration events throughout development
Bone, Courtney R.
2016-01-01
ABSTRACT Moving the nucleus to a specific position within the cell is an important event during many cell and developmental processes. Several different molecular mechanisms exist to position nuclei in various cell types. In this Commentary, we review the recent progress made in elucidating mechanisms of nuclear migration in a variety of important developmental models. Genetic approaches to identify mutations that disrupt nuclear migration in yeast, filamentous fungi, Caenorhabditis elegans, Drosophila melanogaster and plants led to the identification of microtubule motors, as well as Sad1p, UNC-84 (SUN) domain and Klarsicht, ANC-1, Syne homology (KASH) domain proteins (LINC complex) that function to connect nuclei to the cytoskeleton. We focus on how these proteins and various mechanisms move nuclei during vertebrate development, including processes related to wound healing of fibroblasts, fertilization, developing myotubes and the developing central nervous system. We also describe how nuclear migration is involved in cells that migrate through constricted spaces. On the basis of these findings, it is becoming increasingly clear that defects in nuclear positioning are associated with human diseases, syndromes and disorders. PMID:27182060
Antman, Francisca M
2011-11-01
This paper explores the short-run effects of a father's U.S. migration on his children's schooling and work outcomes in Mexico. To get around the endogeneity of paternal migration, I use individual fixed effects and instrumental variables estimation (FEIV) where the instrumental variables are based on U.S. city-level employment statistics in two industries popular with Mexican immigrants. Overall, the estimates suggest that in the short-run, children reduce study hours and increase work hours in response to a father's U.S. migration. Decomposing the sample into sex- and age-specific groups suggests that this is mainly driven by the effects of paternal migration on 12-15 year-old boys. These results are consistent with a story in which the immediate aftermath of a father's migration is one of financial hardship that is borne in part by relatively young children.
Antman, Francisca M.
2012-01-01
This paper explores the short-run effects of a father's U.S. migration on his children's schooling and work outcomes in Mexico. To get around the endogeneity of paternal migration, I use individual fixed effects and instrumental variables estimation (FEIV) where the instrumental variables are based on U.S. city-level employment statistics in two industries popular with Mexican immigrants. Overall, the estimates suggest that in the short-run, children reduce study hours and increase work hours in response to a father's U.S. migration. Decomposing the sample into sex- and age-specific groups suggests that this is mainly driven by the effects of paternal migration on 12–15 year-old boys. These results are consistent with a story in which the immediate aftermath of a father's migration is one of financial hardship that is borne in part by relatively young children. PMID:22505791
Mozaffarian, Fariba; Mardi, Mohsen; Sarafrazi, Alimorad; Nouri Ganbalani, Gadir
2008-01-01
The carob moth, Ectomyelois ceratoniae (Zeller 1839) (Lepidoptera: Pyralidae) is the most important pest of pomegranate, Punica granatum L. (Myrtales: Ponicaceae), in Iran. In this study, 6 amplified fragment length polymorphism primer combinations were used to survey the genetic structure of the geographic and putative host-associated populations of this pest in Iran. An AMOVA was performed on test populations. Pairwise differences, Mantel test, multidimensional analysis, cluster analysis and migration rate were calculated for 5 geographic populations of E. ceratoniae sharing the same host, pomegranate. In another part of the study, 3 comparisons were performed on pairwise populations that were collected on different hosts (pomegranate, fig, pistachio and walnut) in same geographic regions. The results showed high within population variation (85.51% of total variation), however geographic populations differed significantly. The Mantel test did not show correlations between genetic and geographic distances. The probable factors that affect genetic distances are discussed. Multidimensional scaling analysis, migration rate and cluster analysis on geographic populations showed that the Arsanjan population was the most different from the others while the Saveh population was more similar to the Sabzevar population. The comparisons didn't show any host fidelity in test populations. It seems that the ability of E. ceratoniae to broaden its host range with no fidelity to hosts can decrease the efficiency of common control methods that are used on pomegranate. The results of this study suggest that in spite of the effects of geographic barriers, high within-population genetic variation, migration rate and gene flow can provide the opportunity for emerging new phenotypes or behaviors in pest populations, such as broadening host range, changing egg lying places, or changing over-wintering sites to adapt to difficult conditions such as those caused by intensive control methods. PMID:20345296
Invoking adaptation to decipher the genetic legacy of past climate change.
de Lafontaine, Guillaume; Napier, Joseph D; Petit, Rémy J; Hu, Feng Sheng
2018-05-05
Persistence of natural populations during periods of climate change is likely to depend on migration (range shifts) or adaptation. These responses were traditionally considered discrete processes and conceptually divided into the realms of ecology and evolution. In a milestone paper, Davis and Shaw (2001) argued that the interplay of adaptation and migration was central to biotic responses to Quaternary climate, but since then there has been no synthesis of efforts made to set up this research program. Here we review some of the salient findings from molecular genetic studies assessing ecological and evolutionary responses to Quaternary climate change. These studies have revolutionized our understanding of population processes associated with past species migration. However, knowledge remains limited about the role of natural selection for local adaptation of populations to Quaternary environmental fluctuations and associated range shifts, and for the footprints this might have left on extant populations. Next-generation sequencing technologies, high-resolution paleoclimate analyses, and advances in population genetic theory offer an unprecedented opportunity to test hypotheses about adaptation through time. Recent population genomics studies have greatly improved our understanding of the role of contemporary adaptation to local environments in shaping spatial patterns of genetic diversity across modern-day landscapes. Advances in this burgeoning field provide important conceptual and methodological bases to decipher the historical role of natural selection and assess adaptation to past environmental variation. We suggest that a process called "temporal conditional neutrality" has taken place: some alleles favored in glacial environments become selectively neutral in modern-day conditions, whereas some alleles that had been neutral during glacial periods become under selection in modern environments. Building on this view, we present a new integrative framework for addressing the interplay of demographic and adaptive evolutionary responses to Quaternary climate dynamics, the research agenda initially envisioned by Davis and Shaw (2001). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Migratory decisions in birds: Extent of genetic versus environmental control
Ogonowski, M.S.; Conway, C.J.
2009-01-01
Migration is one of the most spectacular of animal behaviors and is prevalent across a broad array of taxa. In birds, we know much about the physiological basis of how birds migrate, but less about the relative contribution of genetic versus environmental factors in controlling migratory tendency. To evaluate the extent to which migratory decisions are genetically determined, we examined whether individual western burrowing owls (Athene cunicularia hypugaea) change their migratory tendency from one year to the next at two sites in southern Arizona. We also evaluated the heritability of migratory decisions by using logistic regression to examine the association between the migratory tendency of burrowing owl parents and their offspring. The probability of migrating decreased with age in both sexes and adult males were less migratory than females. Individual owls sometimes changed their migratory tendency from one year to the next, but changes were one-directional: adults that were residents during winter 2004-2005 remained residents the following winter, but 47% of adults that were migrants in winter 2004-2005 became residents the following winter. We found no evidence for an association between the migratory tendency of hatch-year owls and their male or female parents. Migratory tendency of hatch-year owls did not differ between years, study sites or sexes or vary by hatching date. Experimental provision of supplemental food did not affect these relationships. All of our results suggest that heritability of migratory tendency in burrowing owls is low, and that intraspecific variation in migratory tendency is likely due to: (1) environmental factors, or (2) a combination of environmental factors and non-additive genetic variation. The fact that an individual's migratory tendency can change across years implies that widespread anthropogenic changes (i.e., climate change or changes in land use) could potentially cause widespread changes in the migratory tendency of birds. ?? 2009 GovernmentEmployee: U. S. Geological Survey, Department of Interior.
Sirohi, Vijay Kumar; Popli, Pooja; Sankhwar, Pushplata; Kaushal, Jyoti Bala; Gupta, Kanchan; Manohar, Murli; Dwivedi, Anila
2017-06-01
Although curcumin shows anti-proliferative and anti-inflammatory activities in various cancers, the effect of curcumin on cellular migration in endometrial adenocarcinoma cells remains to be understood. The current investigation was aimed to explore the anti-proliferative and anti-migratory effects of curcumin and its mechanism of action in endometrial cancer cells. Our in-vitro and in-vivo experimental studies showed that curcumin inhibited the proliferation of endometrial cancer cells and suppressed the tumor growth in Ishikawa xenograft mouse model. Curcumin induced ROS-mediated apoptosis in endometrial cancer cells. Curcumin suppressed the migration rate of Ishikawa and Hec-1B cells as analyzed by scratch wound assay. In transwell migration studies, knock down of Slit-2 reversed the anti-migratory effect of curcumin in these cell lines. Curcumin significantly up-regulated the expression of Slit-2 in Ishikawa, Hec-1B and primary endometrial cancer cells while it down-regulated the expression of stromal cell-derived factor-1 (SDF-1) and CXCR4 which in turn, suppressed the expression of matrix metallopeptidases (MMP) 2 and 9, thus attenuating the migration of endometrial cancer cells. In summary, we have demonstrated that curcumin has inhibitory effect on cellular migration via Slit-2 mediated down-regulation of CXCR4, SDF-1, and MMP2/MMP9 in endometrial carcinoma cells. These findings helped explore the role of Slit-2 in endometrial cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Li, Miao; Anderson, James G
2016-08-01
Drawing on the life course perspective and the assumptive world theory, this paper examines whether pre-migration trauma exposure is associated with psychological distress through post-migration perceived discrimination for Asian American immigrants. The study is based on cross-sectional data from the National Latino and Asian American Study (N = 1639). Structural equation model is used to estimate the relationship between pre-migration trauma, post-migration perceived discrimination, and psychological distress. Additional models are estimated to explore possible variations across ethnic groups as well as across different types of pre-migration trauma experience. Pre-migration trauma exposure is associated with higher levels of psychological distress, both directly and indirectly through higher level of perceived discrimination, even after controlling for demographic/acculturative factors and post-migration trauma exposure. This pattern holds for the following sub-types of pre-migration trauma: political trauma, crime victimization, physical violence, accidental trauma, and relational trauma. Multi-group analyses show that this pattern holds for all Asian immigrant subgroups except the Vietnamese. Studies of immigrant mental health primarily focus on post-migration stressors. Few studies have considered the link between pre- and post-migration contexts in assessing mental health outcomes. The study illustrates the usefulness of bridging the pre- and post-migration context in identifying the mental health risks along the immigrant life course.
Lai, Frank Pui-Ling; Lau, Sin-Ting; Wong, John Kwong-Leong; Gui, Hongsheng; Wang, Reeson Xu; Zhou, Tingwen; Lai, Wing Hon; Tse, Hung-Fat; Tam, Paul Kwong-Hang; Garcia-Barcelo, Maria-Mercedes; Ngan, Elly Sau-Wai
2017-07-01
Hirschsprung disease is caused by failure of enteric neural crest cells (ENCCs) to fully colonize the bowel, leading to bowel obstruction and megacolon. Heterozygous mutations in the coding region of the RET gene cause a severe form of Hirschsprung disease (total colonic aganglionosis). However, 80% of HSCR patients have short-segment Hirschsprung disease (S-HSCR), which has not been associated with genetic factors. We sought to identify mutations associated with S-HSCR, and used the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing system to determine how mutations affect ENCC function. We created induced pluripotent stem cell (iPSC) lines from 1 patient with total colonic aganglionosis (with the G731del mutation in RET) and from 2 patients with S-HSCR (without a RET mutation), as well as RET +/- and RET -/- iPSCs. IMR90-iPSC cells were used as the control cell line. Migration and differentiation capacities of iPSC-derived ENCCs were analyzed in differentiation and migration assays. We searched for mutation(s) associated with S-HSCR by combining genetic and transcriptome data from patient blood- and iPSC-derived ENCCs, respectively. Mutations in the iPSCs were corrected using the CRISPR/Cas9 system. ENCCs derived from all iPSC lines, but not control iPSCs, had defects in migration and neuronal lineage differentiation. RET mutations were associated with differentiation and migration defects of ENCCs in vitro. Genetic and transcriptome analyses associated a mutation in the vinculin gene (VCL M209L) with S-HSCR. CRISPR/Cas9 correction of the RET G731del and VCL M209L mutations in iPSCs restored the differentiation and migration capacities of ENCCs. We identified mutations in VCL associated with S-HSCR. Correction of this mutation in iPSC using CRISPR/Cas9 editing, as well as the RET G731del mutation that causes Hirschsprung disease with total colonic aganglionosis, restored ENCC function. Our study demonstrates how human iPSCs can be used to identify disease-associated mutations and determine how they affect cell functions and contribute to pathogenesis. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nagatani, Takashi; Tainaka, Kei-ichi
2018-01-01
In most cases, physicists have studied the migration of biospecies by the use of random walk. In the present article, we apply cellular automaton of traffic model. For simplicity, we deal with an ecosystem contains a prey and predator, and use one-dimensional lattice with two layers. Preys stay on the first layer, but predators uni-directionally move on the second layer. The spatial and temporal evolution is numerically explored. It is shown that the migration has the important effect on populations of both prey and predator. Without migration, the phase transition between a prey-phase and coexisting-phase occurs. In contrast, the phase transition disappears by migration. This is because predator can survive due to migration. We find another phase transition for spatial distribution: in one phase, prey and predator form a stripe pattern of condensation and rarefaction, while in the other phase, they uniformly distribute. The self-organized stripe may be similar to the migration patterns in real ecosystems.
A diffusion based study of population dynamics: Prehistoric migrations into South Asia
Vahia, Mayank N.; Yadav, Nisha; Ladiwala, Uma; Mathur, Deepak
2017-01-01
A diffusion equation has been used to study migration of early humans into the South Asian subcontinent. The diffusion equation is tempered by a set of parameters that account for geographical features like proximity to water resources, altitude, and flatness of land. The ensuing diffusion of populations is followed in time-dependent computer simulations carried out over a period of 10,000 YBP. The geographical parameters are determined from readily-available satellite data. The results of our computer simulations are compared to recent genetic data so as to better correlate the migratory patterns of various populations; they suggest that the initial populations started to coalesce around 4,000 YBP before the commencement of a period of relative geographical isolation of each population group. The period during which coalescence of populations occurred appears consistent with the established timeline associated with the Harappan civilization and also, with genetic admixing that recent genetic mapping data reveal. Our results may contribute to providing a timeline for the movement of prehistoric people. Most significantly, our results appear to suggest that the Ancestral Austro-Asiatic population entered the subcontinent through an easterly direction, potentially resolving a hitherto-contentious issue. PMID:28493906
A statistical framework for genetic association studies of power curves in bird flight
Lin, Min; Zhao, Wei
2006-01-01
How the power required for bird flight varies as a function of forward speed can be used to predict the flight style and behavioral strategy of a bird for feeding and migration. A U-shaped curve was observed between the power and flight velocity in many birds, which is consistent to the theoretical prediction by aerodynamic models. In this article, we present a general genetic model for fine mapping of quantitative trait loci (QTL) responsible for power curves in a sample of birds drawn from a natural population. This model is developed within the maximum likelihood context, implemented with the EM algorithm for estimating the population genetic parameters of QTL and the simplex algorithm for estimating the QTL genotype-specific parameters of power curves. Using Monte Carlo simulation derived from empirical observations of power curves in the European starling (Sturnus vulgaris), we demonstrate how the underlying QTL for power curves can be detected from molecular markers and how the QTL detected affect the most appropriate flight speeds used to design an optimal migration strategy. The results from our model can be directly integrated into a conceptual framework for understanding flight origin and evolution. PMID:17066123
Toward a new history and geography of human genes informed by ancient DNA.
Pickrell, Joseph K; Reich, David
2014-09-01
Genetic information contains a record of the history of our species, and technological advances have transformed our ability to access this record. Many studies have used genome-wide data from populations today to learn about the peopling of the globe and subsequent adaptation to local conditions. Implicit in this research is the assumption that the geographic locations of people today are informative about the geographic locations of their ancestors in the distant past. However, it is now clear that long-range migration, admixture, and population replacement subsequent to the initial out-of-Africa expansion have altered the genetic structure of most of the world's human populations. In light of this we argue that it is time to critically reevaluate current models of the peopling of the globe, as well as the importance of natural selection in determining the geographic distribution of phenotypes. We specifically highlight the transformative potential of ancient DNA. By accessing the genetic make-up of populations living at archaeologically known times and places, ancient DNA makes it possible to directly track migrations and responses to natural selection. Copyright © 2014 Elsevier Ltd. All rights reserved.
HGDP and HapMap Analysis by Ancestry Mapper Reveals Local and Global Population Relationships
Magalhães, Tiago R.; Casey, Jillian P.; Conroy, Judith; Regan, Regina; Fitzpatrick, Darren J.; Shah, Naisha; Sobral, João; Ennis, Sean
2012-01-01
Knowledge of human origins, migrations, and expansions is greatly enhanced by the availability of large datasets of genetic information from different populations and by the development of bioinformatic tools used to analyze the data. We present Ancestry Mapper, which we believe improves on existing methods, for the assignment of genetic ancestry to an individual and to study the relationships between local and global populations. The principle function of the method, named Ancestry Mapper, is to give each individual analyzed a genetic identifier, made up of just 51 genetic coordinates, that corresponds to its relationship to the HGDP reference population. As a consequence, the Ancestry Mapper Id (AMid) has intrinsic biological meaning and provides a tool to measure similarity between world populations. We applied Ancestry Mapper to a dataset comprised of the HGDP and HapMap data. The results show distinctions at the continental level, while simultaneously giving details at the population level. We clustered AMids of HGDP/HapMap and observe a recapitulation of human migrations: for a small number of clusters, individuals are grouped according to continental origins; for a larger number of clusters, regional and population distinctions are evident. Calculating distances between AMids allows us to infer ancestry. The number of coordinates is expandable, increasing the power of Ancestry Mapper. An R package called Ancestry Mapper is available to apply this method to any high density genomic data set. PMID:23189146
Changing profile of couples seeking genetic counseling for consanguinity in Australia.
Port, Katrina E; Mountain, Helen; Nelson, John; Bittles, Alan H
2005-01-15
Consanguineous marriage is rare in most Western countries and, for example, in the USA it may be subject to regulation by both civil legislation and religious prescription. This is not the case in many regions of Asia and Africa where marriage within the family is strongly favored. Since the 1970s there has been widespread migration to North America, Western Europe, and Australasia from communities which encourage consanguineous marriage. To assess the effect of this trend on a genetic counseling program, the records of 302 couples referred to Genetic Services of Western Australia for consanguinity counseling were abstracted for the period 1975-2001. Overall, a family history of genetic disease or a previously affected child was reported in 28.8% of cases. Premarital or prepregnancy counseling on grounds of consanguinity was sought by 41.0% of couples, and a further 18.2% of consanguineous couples had been referred because of a consanguineous pregnancy. In 7.6% of cases a relationship closer than first cousin was involved. Through time there was a significant increase in the numbers of consanguineous consultants, and their patterns of religious affiliation and ethnic origin widened markedly. Although effectively excluded from entry to Australia prior to 1975, couples of Asian origin accounted for 25.5% of all consanguineous consultants. With ongoing migration, changes in the ethnic profiles and the specific counseling requirements of consanguineous couples can be expected to continue and probably accelerate.
Reyes-Centeno, Hugo; Ghirotto, Silvia; Détroit, Florent; Grimaud-Hervé, Dominique; Barbujani, Guido; Harvati, Katerina
2014-01-01
Despite broad consensus on Africa as the main place of origin for anatomically modern humans, their dispersal pattern out of the continent continues to be intensely debated. In extant human populations, the observation of decreasing genetic and phenotypic diversity at increasing distances from sub-Saharan Africa has been interpreted as evidence for a single dispersal, accompanied by a series of founder effects. In such a scenario, modern human genetic and phenotypic variation was primarily generated through successive population bottlenecks and drift during a rapid worldwide expansion out of Africa in the Late Pleistocene. However, recent genetic studies, as well as accumulating archaeological and paleoanthropological evidence, challenge this parsimonious model. They suggest instead a “southern route” dispersal into Asia as early as the late Middle Pleistocene, followed by a separate dispersal into northern Eurasia. Here we test these competing out-of-Africa scenarios by modeling hypothetical geographical migration routes and assessing their correlation with neutral population differentiation, as measured by genetic polymorphisms and cranial shape variables of modern human populations from Africa and Asia. We show that both lines of evidence support a multiple-dispersals model in which Australo-Melanesian populations are relatively isolated descendants of an early dispersal, whereas other Asian populations are descended from, or highly admixed with, members of a subsequent migration event. PMID:24753576
Is isolation by adaptation driving genetic divergence among proximate Dolly Varden char populations?
Bond, Morgan H; Crane, Penelope A; Larson, Wesley A; Quinn, Tom P
2014-01-01
Numerous studies of population genetics in salmonids and other anadromous fishes have revealed that population structure is generally organized into geographic hierarchies (isolation by distance), but significant structure can exist in proximate populations due to varying selective pressures (isolation by adaptation). In Chignik Lakes, Alaska, anadromous Dolly Varden char (Salvelinus malma) spawn in nearly all accessible streams throughout the watershed, including those draining directly to an estuary, Chignik Lagoon, into larger rivers, and into lakes. Collections of Dolly Varden fry from 13 streams throughout the system revealed low levels of population structure among streams emptying into freshwater. However, much stronger genetic differentiation was detected between streams emptying into freshwater and streams flowing directly into estuarine environments. This fine-scale reproductive isolation without any physical barriers to migration is likely driven by differences in selection pressures across freshwater and estuarine environments. Estuary tributaries had fewer larger, older juveniles, suggesting an alternative life history of smolting and migration to the marine environment at a much smaller size than occurs in the other populations. Therefore, genetic data were consistent with a scenario where isolation by adaptation occurs between populations of Dolly Varden in the study system, and ecological data suggest that this isolation may partially be a result of a novel Dolly Varden life history of seawater tolerance at a smaller size than previously recognized. PMID:25360283
HGDP and HapMap analysis by Ancestry Mapper reveals local and global population relationships.
Magalhães, Tiago R; Casey, Jillian P; Conroy, Judith; Regan, Regina; Fitzpatrick, Darren J; Shah, Naisha; Sobral, João; Ennis, Sean
2012-01-01
Knowledge of human origins, migrations, and expansions is greatly enhanced by the availability of large datasets of genetic information from different populations and by the development of bioinformatic tools used to analyze the data. We present Ancestry Mapper, which we believe improves on existing methods, for the assignment of genetic ancestry to an individual and to study the relationships between local and global populations. The principle function of the method, named Ancestry Mapper, is to give each individual analyzed a genetic identifier, made up of just 51 genetic coordinates, that corresponds to its relationship to the HGDP reference population. As a consequence, the Ancestry Mapper Id (AMid) has intrinsic biological meaning and provides a tool to measure similarity between world populations. We applied Ancestry Mapper to a dataset comprised of the HGDP and HapMap data. The results show distinctions at the continental level, while simultaneously giving details at the population level. We clustered AMids of HGDP/HapMap and observe a recapitulation of human migrations: for a small number of clusters, individuals are grouped according to continental origins; for a larger number of clusters, regional and population distinctions are evident. Calculating distances between AMids allows us to infer ancestry. The number of coordinates is expandable, increasing the power of Ancestry Mapper. An R package called Ancestry Mapper is available to apply this method to any high density genomic data set.
Yuan, Kai-Jun; Bandrauk, André D
2017-10-04
Exploring ultrafast charge migration is of great importance in biological and chemical reactions. We present a scheme to monitor attosecond charge migration in molecules by electron diffraction with spatial and temporal resolutions from ab initio numerical simulations. An ultraviolet pulse creates a coherent superposition of electronic states, after which a time-delayed attosecond X-ray pulse is used to ionize the molecule. It is found that diffraction patterns in the X-ray photoelectron spectra show an asymmetric structure, which is dependent on the time delay between the pump-probe pulses, encoding the information of molecular orbital symmetry and chemical bonding. We describe these phenomena by developing an electronic time-dependent ultrafast molecular photoionization model of a coherent superposition state. The periodical distortion of electron diffraction patterns illustrates the evolution of the electronic coherence, providing a tool for attosecond imaging of ultrafast molecular reaction processes.
Coalbed methane accumulation and dissipation patterns: A Case study of the Junggar Basin, NW China
NASA Astrophysics Data System (ADS)
Li, Xin; Fu, Xuehai; Yang, Xuesong; Ge, Yanyan; Quan, Fangkai
2018-07-01
The Junggar Basin is a potential replacement area of coalbed methane (CBM) development in China. To improve the efficiency of CBM exploration, we investigated CBM accumulation and dissipation patterns of coal profiles located in the northwestern, southern, eastern, and central Junggar Basin based on the following criteria: burial depth, hydrogeological zone, CBM origin, CBM phase, and CBM migration type. We identified four types of CBM accumulation patterns: (1) a self-sourcing CBM pattern containing adsorbed gas of biogenic origin from shallow-depth coal within a weak runoff zone; (2) an endogenic migration pattern containing adsorbed gas of thermogenic origin from the medium and deep coals within a stagnant zone; (3) an exogenic migration pattern containing adsorbed gas of thermogenic origin from deep coal within a stagnant zone; and (4) an exogenic migration pattern containing adsorbed and free gas of thermogenic origin from ultra-deep coal within a stagnant zone. We also identified two types of CBM dissipation patterns: (1) shallow-depth coal within a runoff zone with mixed origin CBM; and (2) shallow and medium-deep coal seams with mixed origin CBM. CBM migration in low-rank coals was more substantial than that adsorbed in high-rank coal. CBM in shallow coal could easily escape, in the absence of closed structures or hydrogeological seals. CBM reservoirs occurred in deep coal where oversaturated gas may accumulate. Future exploration should focus on gas-water sealing structures in shallow coalbeds. CBM that occurred in adsorbed and free phases and other unconventional natural gas dominated by free gas in the coal stratum should be co-explored and co-developed.
Elastic Reverse Time Migration (RTM) From Surface Topography
NASA Astrophysics Data System (ADS)
Akram, Naveed; Chen, Xiaofei
2017-04-01
Seismic Migration is a promising data processing technique to construct subsurface images by projecting the recorded seismic data at surface back to their origins. There are numerous Migration methods. Among them, Reverse Time Migration (RTM) is considered a robust and standard imaging technology in present day exploration industry as well as in academic research field because of its superior performance compared to traditional migration methods. Although RTM is extensive computing and time consuming but it can efficiently handle the complex geology, highly dipping reflectors and strong lateral velocity variation all together. RTM takes data recorded at the surface as a boundary condition and propagates the data backwards in time until the imaging condition is met. It can use the same modeling algorithm that we use for forward modeling. The classical seismic exploration theory assumes flat surface which is almost impossible in practice for land data. So irregular surface topography has to be considered in simulation of seismic wave propagation, which is not always a straightforward undertaking. In this study, Curved grid finite difference method (CG-FDM) is adapted to model elastic seismic wave propagation to investigate the effect of surface topography on RTM results and explore its advantages and limitations with synthetic data experiments by using Foothill model with topography as the true model. We focus on elastic wave propagation rather than acoustic wave because earth actually behaves as an elastic body. Our results strongly emphasize on the fact that irregular surface topography must be considered for modeling of seismic wave propagation to get better subsurface images specially in mountainous scenario and suggest practitioners to properly handled the geometry of data acquired on irregular topographic surface in their imaging algorithms.
Elastic Reverse Time Migration (RTM) From Surface Topography
NASA Astrophysics Data System (ADS)
Naveed, A.; Chen, X.
2016-12-01
Seismic Migration is a promising data processing technique to construct subsurface images by projecting the recorded seismic data at surface back to their origins. There are numerous Migration methods. Among them, Reverse Time Migration (RTM) is considered a robust and standard imaging technology in present day exploration industry as well as in academic research field because of its superior performance compared to traditional migration methods. Although RTM is extensive computing and time consuming but it can efficiently handle the complex geology, highly dipping reflectors and strong lateral velocity variation all together. RTM takes data recorded at the surface as a boundary condition and propagates the data backwards in time until the imaging condition is met. It can use the same modeling algorithm that we use for forward modeling. The classical seismic exploration theory assumes flat surface which is almost impossible in practice for land data. So irregular surface topography has to be considered in simulation of seismic wave propagation, which is not always a straightforward undertaking. In this study, Curved grid finite difference method (CG-FDM) is adapted to model elastic seismic wave propagation to investigate the effect of surface topography on RTM results and explore its advantages and limitations with synthetic data experiments by using Foothill model with topography as the true model. We focus on elastic wave propagation rather than acoustic wave because earth actually behaves as an elastic body. Our results strongly emphasize on the fact that irregular surface topography must be considered for modeling of seismic wave propagation to get better subsurface images specially in mountainous scenario and suggest practitioners to properly handled the geometry of data acquired on irregular topographic surface in their imaging algorithms.
Iwamoto, Eric M; Myers, James M; Gustafson, Richard G
2012-04-01
Archival scales from 603 sockeye salmon (Oncorhynchus nerka), sampled from May to July 1924 in the lower Columbia River, were analysed for genetic variability at 12 microsatellite loci and compared to 17 present-day O. nerka populations-exhibiting either anadromous (sockeye salmon) or nonanadromous (kokanee) life histories-from throughout the Columbia River Basin, including areas upstream of impassable dams built subsequent to 1924. Statistical analyses identified four major genetic assemblages of sockeye salmon in the 1924 samples. Two of these putative historical groupings were found to be genetically similar to extant evolutionarily significant units (ESUs) in the Okanogan and Wenatchee Rivers (pairwise F(ST) = 0.004 and 0.002, respectively), and assignment tests were able to allocate 77% of the fish in these two historical groupings to the contemporary Okanogan River and Lake Wenatchee ESUs. A third historical genetic grouping was most closely aligned with contemporary sockeye salmon in Redfish Lake, Idaho, although the association was less robust (pairwise F(ST) = 0.060). However, a fourth genetic grouping did not appear to be related to any contemporary sockeye salmon or kokanee population, assigned poorly to the O. nerka baseline, and had distinctive early return migration timing, suggesting that this group represents a historical ESU originating in headwater lakes in British Columbia that was probably extirpated sometime after 1924. The lack of a contemporary O. nerka population possessing the genetic legacy of this extinct ESU indicates that efforts to reestablish early-migrating sockeye salmon to the headwater lakes region of the Columbia River will be difficult. © 2012 Blackwell Publishing Ltd.
Insight into the Peopling of Mainland Southeast Asia from Thai Population Genetic Structure
Chaichoompu, Kridsadakorn; Ngamphiw, Chumpol; Assawamakin, Anunchai; Nuinoon, Manit; Sripichai, Orapan; Svasti, Saovaros; Fucharoen, Suthat; Praphanphoj, Verayuth; Tongsima, Sissades
2013-01-01
There is considerable ethno-linguistic and genetic variation among human populations in Asia, although tracing the origins of this diversity is complicated by migration events. Thailand is at the center of Mainland Southeast Asia (MSEA), a region within Asia that has not been extensively studied. Genetic substructure may exist in the Thai population, since waves of migration from southern China throughout its recent history may have contributed to substantial gene flow. Autosomal SNP data were collated for 438,503 markers from 992 Thai individuals. Using the available self-reported regional origin, four Thai subpopulations genetically distinct from each other and from other Asian populations were resolved by Neighbor-Joining analysis using a 41,569 marker subset. Using an independent Principal Components-based unsupervised clustering approach, four major MSEA subpopulations were resolved in which regional bias was apparent. A major ancestry component was common to these MSEA subpopulations and distinguishes them from other Asian subpopulations. On the other hand, these MSEA subpopulations were admixed with other ancestries, in particular one shared with Chinese. Subpopulation clustering using only Thai individuals and the complete marker set resolved four subpopulations, which are distributed differently across Thailand. A Sino-Thai subpopulation was concentrated in the Central region of Thailand, although this constituted a minority in an otherwise diverse region. Among the most highly differentiated markers which distinguish the Thai subpopulations, several map to regions known to affect phenotypic traits such as skin pigmentation and susceptibility to common diseases. The subpopulation patterns elucidated have important implications for evolutionary and medical genetics. The subpopulation structure within Thailand may reflect the contributions of different migrants throughout the history of MSEA. The information will also be important for genetic association studies to account for population-structure confounding effects. PMID:24223962
Song, Rui; Li, Wen X; Wu, Shan G; Zou, Hong; Wang, Gui T
2014-04-01
The acanthocephalan Acanthosentis cheni was found in anadromous, freshwater, and landlocked stocks of its fish host, Coilia nasus. To examine the genetic variations of the acanthocephalan among the 3 populations with the adaptation of the host to the freshwater, the genetic structure of the helminth was investigated in anadromous (Zhoushan and Chongming islands, and Anqing), freshwater (Anqing, Ezhou, and Poyang Lake), and landlocked (Tian'ezhou Reserve) populations by sequencing intergenic transcribed spacers (ITS) of the ribosomal RNA coding genes. Low Fst values and high gene flow were found among the 7 populations (Fst = 0.0135, P = 0.2723; Nm = 36.48) and the 3 ecotypes of Acanthosentis cheni (Fst = 0.0178, P = 0.1044; Nm = 27.67). On the other hand, significant genetic differentiation of the C. nasus host populations was detected between the upstream and downstream areas of Xiaogu Mountain (Fst = 0.1961, P = 0.0030; Nm = 2.05), which is the farthest location of spawning migration for C. nasus . However, the migration break of the fish host appeared not to cause significant genetic differentiation of A. cheni populations between the upper and lower reaches of Xiaogu Mountain. Other factors might promote genetic exchange of A. cheni populations such as dispersal of the intermediate host by flooding or other fish species serving as the definitive or paratenic hosts. In Anqing, nucleotide diversity of the acanthocephalan was highest in the freshwater population (0.0038) and lower in the anadromous population (0.0026). This suggested that new mutations may have occurred in the freshwater A. cheni population in Anqing when adapting to a freshwater environment.
Insights into the Genetic History of French Cattle from Dense SNP Data on 47 Worldwide Breeds
Gautier, Mathieu; Laloë, Denis; Moazami-Goudarzi, Katayoun
2010-01-01
Background Modern cattle originate from populations of the wild extinct aurochs through a few domestication events which occurred about 8,000 years ago. Newly domesticated populations subsequently spread worldwide following breeder migration routes. The resulting complex historical origins associated with both natural and artificial selection have led to the differentiation of numerous different cattle breeds displaying a broad phenotypic variety over a short period of time. Methodology/Principal Findings This study gives a detailed assessment of cattle genetic diversity based on 1,121 individuals sampled in 47 populations from different parts of the world (with a special focus on French cattle) genotyped for 44,706 autosomal SNPs. The analyzed data set consisted of new genotypes for 296 individuals representing 14 French cattle breeds which were combined to those available from three previously published studies. After characterizing SNP polymorphism in the different populations, we performed a detailed analysis of genetic structure at both the individual and population levels. We further searched for spatial patterns of genetic diversity among 23 European populations, most of them being of French origin, under the recently developed spatial Principal Component analysis framework. Conclusions/Significance Overall, such high throughput genotyping data confirmed a clear partitioning of the cattle genetic diversity into distinct breeds. In addition, patterns of differentiation among the three main groups of populations—the African taurine, the European taurine and zebus—may provide some additional support for three distinct domestication centres. Finally, among the European cattle breeds investigated, spatial patterns of genetic diversity were found in good agreement with the two main migration routes towards France, initially postulated based on archeological evidence. PMID:20927341
International importance of the eastern Chukchi Sea as a staging area for migrating king eiders
Oppel, S.; Dickson, D.L.; Powell, A.N.
2009-01-01
The evaluation of habitats used by arctic birds on migration is crucial for their conservation. We explored the importance of the eastern Chukchi Sea (ECS) as a staging area for king eiders (Somateria spectabilis) migrating between breeding areas in Siberia and western North America and wintering areas in the Bering Sea. We tracked 190 king eiders with satellite transmitters between 1997 and 2007. In late summer, 74% of satellite-tracked king eiders migrating south staged in the ECS for 13 ?? 13 (SD) days between late June and early November. During spring migration, king eiders staged in the ECS between mid-April and early June for 21 ?? 10 days. All instrumented birds migrating to breeding grounds in western North America (n = 62), and 6 of 11 males migrating to breeding grounds in Siberia, used this area for at least 1 week during spring migration. The importance of this staging area renders it possible that industrial development could adversely affect king eider populations in both Siberia and North America. ?? 2009 US Government.
A PDMS Device Coupled with Culture Dish for In Vitro Cell Migration Assay.
Lv, Xiaoqing; Geng, Zhaoxin; Fan, Zhiyuan; Wang, Shicai; Pei, WeiHua; Chen, Hongda
2018-04-30
Cell migration and invasion are important factors during tumor progression and metastasis. Wound-healing assay and the Boyden chamber assay are efficient tools to investigate tumor development because both of them could be applied to measure cell migration rate. Therefore, a simple and integrated polydimethylsiloxane (PDMS) device was developed for cell migration assay, which could perform quantitative evaluation of cell migration behaviors, especially for the wound-healing assay. The integrated device was composed of three units, which included cell culture dish, PDMS chamber, and wound generation mold. The PDMS chamber was integrated with cell culture chamber and could perform six experiments under different conditions of stimuli simultaneously. To verify the function of this device, it was utilized to explore the tumor cell migration behaviors under different concentrations of fetal bovine serum (FBS) and transforming growth factor (TGF-β) at different time points. This device has the unique capability to create the "wound" area in parallel during cell migration assay and provides a simple and efficient platform for investigating cell migration assay in biomedical application.
Salomón, Débora G; Fermento, María E; Gandini, Norberto A; Ferronato, María J; Arévalo, Julián; Blasco, Jorge; Andrés, Nancy C; Zenklusen, Jean C; Curino, Alejandro C; Facchinetti, María M
2014-05-01
Vitamin D and its analogs have been shown to display anti-proliferative effects in a wide variety of cancer types including glioblastoma multiforme (GBM). These anticancer effects are mediated by its active metabolite, 1α, 25-dihydroxyvitamin D3 (calcitriol) acting mainly through vitamin D receptor (VDR) signaling. In addition to its involvement in calcitriol action, VDR has also been demonstrated to be useful as a prognostic factor for some types of cancer. However, to our knowledge, there are no studies evaluating the expression of VDR protein and its association with outcome in gliomas. Therefore, we investigated VDR expression by using immunohistochemical analysis in human glioma tissue microarrays, and analyzed the association between VDR expression and clinico-pathological parameters. We further investigated the effects of genetic and pharmacologic modulation of VDR on survival and migration of glioma cell lines. Our data demonstrate that VDR is increased in tumor tissues when compared with VDR in non-malignant brains, and that VDR expression is associated with an improved outcome in patients with GBM. We also show that both genetic and pharmacologic modulation of VDR modulates GBM cellular migration and survival and that VDR is necessary for calcitriol-mediated effects on migration. Altogether these results provide some limited evidence supporting a role for VDR in glioma progression.
Different waves and directions of Neolithic migrations in the Armenian Highland.
Hovhannisyan, Anahit; Khachatryan, Zaruhi; Haber, Marc; Hrechdakian, Peter; Karafet, Tatiana; Zalloua, Pierre; Yepiskoposyan, Levon
2014-01-01
The peopling of Europe and the nature of the Neolithic agricultural migration as a primary issue in the modern human colonization of the globe is still widely debated. At present, much uncertainty is associated with the reconstruction of the routes of migration for the first farmers from the Near East. In this context, hospitable climatic conditions and the key geographic position of the Armenian Highland suggest that it may have served as a conduit for several waves of expansion of the first agriculturalists from the Near East to Europe and the North Caucasus. Here, we assess Y-chromosomal distribution in six geographically distinct populations of Armenians that roughly represent the extent of historical Armenia. Using the general haplogroup structure and the specific lineages representing putative genetic markers of the Neolithic Revolution, haplogroups R1b1a2, J2, and G, we identify distinct patterns of genetic affinity between the populations of the Armenian Highland and the neighboring ones north and west from this area. Based on the results obtained, we suggest a new insight on the different routes and waves of Neolithic expansion of the first farmers through the Armenian Highland. We detected at least two principle migratory directions: (1) westward alongside the coastline of the Mediterranean Sea and (2) northward to the North Caucasus.
The costs and benefits of nurse migration on families: A Lesotho experience.
Ntlale, Matsola E; Duma, Sinegugu E
2012-02-22
The present day migration of nurses from developing countries, to more developed countries,depletes these countries of this vital human resource, which is necessary to provide optimum quality nursing care to their populations. If nurse migration persists, the health systems of these countries face collapse.It is important that a nurse understands the costs and benefits of migration to their families, whom they leave behind. This is not only to curb the problems that may occur, but to help the migrant nurses to realise how migration affects their families, especially their children and spouses, before they decide to leave their home countries to work in foreign lands.The purpose of this study, which was exploratory, descriptive and qualitative, was to investigate and describe the experiences of family members, of migrant nurses, from the Maseru district of Lesotho, about the costs and benefits of nurse migration. The objectives were to explore and describe the disadvantageous costs and the benefits gained by the families of migrant nurses. These were explored through the research question 'What are the experiences of family members of migrating nurses with regard to the costs and benefits of nurse migration?'The target population of the study was families of migrant nurses from Lesotho. Using purposive sampling the families of two migrant nurses, who were colleagues of the researcher, were identified and approached to participate in the study. Snowball sampling was next utilised to recruit the remainder of the participants. In total, six families were identified and included in the study.The semi-structured interviews and field notes were the two data collection methods that were implemented. The Giorgi's (1970) steps for data analysis, as outlined in (Burns & Grove 2001:610), were followed and seven themes were discovered as findings. The themes that relate to the costs of nurse migration are: emotional instability, weaker family connections and increased responsibility. The themes that relate to the benefits of nurse migration for their families are: better household income, improved quality of life, essential skills development and travelling opportunities.The use of communication technology is recommended to increase contact across borders in order to reduce the emotional costs of nurse migration on the families of migrant nurses. The article provides a balanced view of the costs and benefits of nurse migration on their families.
ERIC Educational Resources Information Center
Brigham, Susan M.; Baillie Abidi, Catherine; Zhang, Yuhui
2018-01-01
Migration is a gendered phenomenon, embedded within patriarchal structures and social relations that extend beyond State borders. We draw on a transnational feminist framework to explore the gendered dimensions of young refugee and immigrant women's migration and learning experiences. Ten women were involved in a participatory photography research…
ERIC Educational Resources Information Center
Marfleet, Philip; Blustein, David L.
2011-01-01
Using an integrative perspective drawn from vocational psychology and migration studies, this article explores the lives of irregular migrants, which represents a unique aspect of work-based migration. Irregular migrants are those individuals who travel from regions without much work to states that offer some means of employment, without formal…
ERIC Educational Resources Information Center
Goodman, Joyce; Jacobs, Andrea; Kisby, Fiona; Loader, Helen
2011-01-01
This paper explores the migration patterns of women who studied at Girton and Newnham prior to 1939 through whom dissemination of knowledge and values flowed from Cambridge overseas. It also considers organisations that fostered women's mobility in empire, particularly the Colonial Intelligence League for Educated Women and the International…
The Ethics of Border Guarding: A First Exploration and a Research Agenda for the Future
ERIC Educational Resources Information Center
Olsthoorn, Peter; Schut, Michelle
2018-01-01
Although the notion of universal human rights allows for the idea that states (and supranational organizations such as the European Union) can, or even should, control and impose restrictions on migration, both notions clearly do not sit well together. The ensuing tension manifests itself in our ambivalent attitude towards migration, but also…
ERIC Educational Resources Information Center
Kolstrup, Kirsten L.
2017-01-01
This article explores how the global trends of marriage migration and tightening of immigration policies in the West interconnect with second language learning motivation. Specifically, this article considers how social positions, governmental regulations, and everyday contexts come together to complicate the expectations of language learning that…
ERIC Educational Resources Information Center
Faas, Daniel
2011-01-01
National curricula are being challenged and transformed by the impact of migration and European integration. This paper examines how cultural diversity and Europe are intertwined in geography, history, and citizenship education curricula in Greece, Germany, and England. This question is explored using quantitative and qualitative methods through a…
ERIC Educational Resources Information Center
Rusch, Dana; Reyes, Karina
2013-01-01
This study examined the role of parent-child separations during serial migration to the United States in predicting individual- and family-level outcomes in Mexican immigrant families. We assessed parents' subjective appraisals of their family's separation and reunion experiences to explore associations with self-reported acculturative stress,…
International Students with Dependent Children: The Reproduction of Gender Norms
ERIC Educational Resources Information Center
Brooks, Rachel
2015-01-01
Extant research on family migration for education has focused almost exclusively on the education of children. We thus know very little about family migration when it is driven by the educational projects of parents. To begin to redress this gap, this paper explores the experiences of families who have moved to the United Kingdom primarily to…
Saini, J S; Kumar, A; Matharoo, K; Sokhi, J; Badaruddoza; Bhanwer, A J S
2012-12-15
The North West region of India is extremely important to understand the peopling of India, as it acted as a corridor to the foreign invaders from Eurasia and Central Asia. A series of these invasions along with multiple migrations led to intermixture of variable populations, strongly contributing to genetic variations. The present investigation was designed to explore the genetic diversities and affinities among the five major ethnic groups from North West India; Brahmin, Jat Sikh, Bania, Rajput and Gujjar. A total of 327 individuals of the abovementioned ethnic groups were analyzed for 4 Alu insertion marker loci (ACE, PV92, APO and D1) and a Single Nucleotide Polymorphism (SNP) rs2234693 in the intronic region of the ESR1 gene. Statistical analysis was performed to interpret the genetic structure and diversity of the population groups. Genotypes for ACE, APO, ESR1 and PV92 loci were found to be in Hardy-Weinberg equilibrium in all the ethnic groups, while significant departures were observed at the D1 locus in every investigated population after Bonferroni's correction. The average heterozygosity for all the loci in these ethnic groups was fairly substantial ranging from 0.3927 ± 0.1877 to 0.4333 ± 0.1416. Inbreeding coefficient indicated an overall 10% decrease in heterozygosity in these North West Indian populations. The gene differentiation among the populations was observed to be of the order of 0.013. Genetic distance estimates revealed that Gujjars were close to Banias and Jat Sikhs were close to Rajputs. Overall the study favored the recent division of the populations of North West India into largely endogamous groups. It was observed that the populations of North West India represent a more or less homogenous genetic entity, owing to their common ancestral history as well as geographical proximity. Copyright © 2012 Elsevier B.V. All rights reserved.
Yew, Chee Wei; Hoque, Mohd Zahirul; Pugh-Kitingan, Jacqueline; Minsong, Alexander; Voo, Christopher Lok Yung; Ransangan, Julian; Lau, Sophia Tiek Ying; Wang, Xu; Saw, Woei Yuh; Ong, Rick Twee-Hee; Teo, Yik-Ying; Xu, Shuhua; Hoh, Boon-Peng; Phipps, Maude E; Kumar, S Vijay
2018-07-01
The region of northern Borneo is home to the current state of Sabah, Malaysia. It is located closest to the southern Philippine islands and may have served as a viaduct for ancient human migration onto or off of Borneo Island. In this study, five indigenous ethnic groups from Sabah were subjected to genome-wide SNP genotyping. These individuals represent the "North Borneo"-speaking group of the great Austronesian family. They have traditionally resided in the inland region of Sabah. The dataset was merged with public datasets, and the genetic relatedness of these groups to neighboring populations from the islands of Southeast Asia, mainland Southeast Asia and southern China was inferred. Genetic structure analysis revealed that these groups formed a genetic cluster that was independent of the clusters of neighboring populations. Additionally, these groups exhibited near-absolute proportions of a genetic component that is also common among Austronesians from Taiwan and the Philippines. They showed no genetic admixture with Austro-Melanesian populations. Furthermore, phylogenetic analysis showed that they are closely related to non-Austro-Melansian Filipinos as well as to Taiwan natives but are distantly related to populations from mainland Southeast Asia. Relatively lower heterozygosity and higher pairwise genetic differentiation index (F ST ) values than those of nearby populations indicate that these groups might have experienced genetic drift in the past, resulting in their differentiation from other Austronesians. Subsequent formal testing suggested that these populations have received no gene flow from neighboring populations. Taken together, these results imply that the indigenous ethnic groups of northern Borneo shared a common ancestor with Taiwan natives and non-Austro-Melanesian Filipinos and then isolated themselves on the inland of Sabah. This isolation presumably led to no admixture with other populations, and these individuals therefore underwent strong genetic differentiation. This report contributes to addressing the paucity of genetic data on representatives from this strategic region of ancient human migration event(s). © 2018 John Wiley & Sons Ltd/University College London.
Reed, T E; Martinek, G; Quinn, T P
2010-08-01
Time series on juvenile life-history traits obtained from sockeye salmon Oncorhynchus nerka were analysed to assess lake-specific environmental influences on juvenile migration timing, size and survival of fish from a common gene pool. Every year for the past two decades, O. nerka have been spawned at a hatchery facility, and the progeny released into two lakes that differ in average summer temperatures, limnological attributes and growth opportunities. Juveniles reared in the warmer, more productive Crosswind Lake were larger and heavier as smolts compared to those from the cooler, less productive Summit Lake and had higher in-lake and subsequent marine survival. Crosswind Lake smolts migrated from the lake to sea slightly earlier in the season but the migration timing distributions overlapped considerably across years. Fry stocking density had a negative effect on smolt length for both lakes, and a negative effect on in-lake survival in Summit Lake. Taken together, the results revealed a strong effect of lake-rearing environment on the expression of life-history variation in O. nerka. The stocking of these lakes each year with juveniles from a single mixed-source population provided a large-scale reverse common-garden experiment, where the same gene pool was exposed to different environments, rather than the different gene pools in the same environment approach typical of evolutionary ecology studies. Other researchers are encouraged to seek and exploit similar serendipitous situations, which might allow environmental and genetic influences on ecologically important traits to be distinguished in natural or semi-natural settings.
Huang, Jing; Zhang, Zhiping; Guo, Jian; Ni, Aiguo; Deb, Arjun; Zhang, Lunan; Mirotsou, Maria; Pratt, Richard E; Dzau, Victor J
2010-06-11
Although mesenchymal stem cell (MSC) transplantation has been shown to promote cardiac repair in acute myocardial injury in vivo, its overall restorative capacity appears to be restricted mainly because of poor cell viability and low engraftment in the ischemic myocardium. Specific chemokines are upregulated in the infarcted myocardium. However the expression levels of the corresponding chemokine receptors (eg, CCR1, CXCR2) in MSCs are very low. We hypothesized that this discordance may account for the poor MSC engraftment and survival. To determine whether overexpression of CCR1 or CXCR2 chemokine receptors in MSCs augments their cell survival, migration and engraftment after injection in the infarcted myocardium. Overexpression of CCR1, but not CXCR2, dramatically increased chemokine-induced murine MSC migration and protected MSC from apoptosis in vitro. Moreover, when MSCs were injected intramyocardially one hour after coronary artery ligation, CCR1-MSCs accumulated in the infarcted myocardium at significantly higher levels than control-MSCs or CXCR2-MSCs 3 days postmyocardial infarction (MI). CCR1-MSC-injected hearts exhibited a significant reduction in infarct size, reduced cardiomyocytes apoptosis and increased capillary density in injured myocardium 3 days after MI. Furthermore, intramyocardial injection of CCR1-MSCs prevented cardiac remodeling and restored cardiac function 4 weeks after MI. Our results demonstrate the in vitro and in vivo salutary effects of genetic modification of stem cells. Specifically, overexpression of chemokine receptor enhances the migration, survival and engraftment of MSCs, and may provide a new therapeutic strategy for the injured myocardium.
DeGiorgio, Michael; Jakobsson, Mattias; Rosenberg, Noah A
2009-09-22
Studies of worldwide human variation have discovered three trends in summary statistics as a function of increasing geographic distance from East Africa: a decrease in heterozygosity, an increase in linkage disequilibrium (LD), and a decrease in the slope of the ancestral allele frequency spectrum. Forward simulations of unlinked loci have shown that the decline in heterozygosity can be described by a serial founder model, in which populations migrate outward from Africa through a process where each of a series of populations is formed from a subset of the previous population in the outward expansion. Here, we extend this approach by developing a retrospective coalescent-based serial founder model that incorporates linked loci. Our model both recovers the observed decline in heterozygosity with increasing distance from Africa and produces the patterns observed in LD and the ancestral allele frequency spectrum. Surprisingly, although migration between neighboring populations and limited admixture between modern and archaic humans can be accommodated in the model while continuing to explain the three trends, a competing model in which a wave of outward modern human migration expands into a series of preexisting archaic populations produces nearly opposite patterns to those observed in the data. We conclude by developing a simpler model to illustrate that the feature that permits the serial founder model but not the archaic persistence model to explain the three trends observed with increasing distance from Africa is its incorporation of a cumulative effect of genetic drift as humans colonized the world.
Nyffeler, Johanna; Karreman, Christiaan; Leisner, Heidrun; Kim, Yong Jun; Lee, Gabsang; Waldmann, Tanja; Leist, Marcel
2017-01-01
Migration of neural crest cells (NCCs) is one of the pivotal processes of human fetal development. Malformations arise if NCC migration and differentiation are impaired genetically or by toxicants. In the currently available test systems for migration inhibition of NCC (MINC), the manual generation of a cell-free space results in extreme operator dependencies, and limits throughput. Here a new test format was established. The assay avoids scratching by plating cells around a commercially available circular stopper. Removal of the stopper barrier after cell attachment initiates migration. This microwell-based circular migration zone NCC function assay (cMINC) was further optimized for toxicological testing of human pluripotent stem cell (hPSC)-derived NCCs. The challenge of obtaining data on viability and migration by automated image processing was addressed by developing a freeware. Data on cell proliferation were obtained by labelling replicating cells, and by careful assessment of cell viability for each experimental sample. The role of cell proliferation as an experimental confounder was tested experimentally by performing the cMINC in the presence of the proliferation-inhibiting drug cytosine arabinoside (AraC), and by a careful evaluation of mitotic events over time. Data from these studies led to an adaptation of the test protocol, so that toxicant exposure was limited to 24 h. Under these conditions, a prediction model was developed that allows classification of toxicants as either inactive, leading to unspecific cytotoxicity, or specifically inhibiting NC migration at non-cytotoxic concentrations.
Genetic characterization of Colombian Bahman cattle using microsatellites markers.
Gómez, Y M; Fernandez, M; Rivera, D; Gómez, G; Bernal, J E
2013-07-01
Genetic structure and diversity of 3789 animals of the Brahman breed from 23 Colombian regions were assessed. Considering the Brahman Zebu cattle as a single population, the multilocus test based on the HW equilibrium, shows significant differences (P < 0.001). Genetic characterization made on the cattle population allowed to examine the genetic variability, calculating a H(o) = 0.6621. Brahman population in Colombia was a small subdivision within populations (F(it) = 0.045), a geographic subdivision almost non-existent or low differentiation (F(st) = 0.003) and the F(is) calculated (0.042) indicates no detriment to the variability in the population, despite the narrow mating takes place or there is a force that causes the variability is sustained without inbreeding actually affect the cattle population. The outcomes of multivariate analyses, Bayesian inferences and interindividual genetic distances suggested that there is no genetic sub-structure in the population, because of the high rate of animal migration among regions.
A landscape scale decision support tool for monitoring bird and bat migration across Wisconsin
Suarez, Manuel J.; Heglund, Patricia J.; Kratt, Robert; Kirsch, Eileen
2008-01-01
This project was initiated to begin addressing the question, “Are there patterns in timing, location, and direction among migrating landbirds?” that have been at the forefront of discussion with our Federal, State, and County partners with regard to siting wind energy projects. Our goal was to explore the use of Nexrad weather data to see if examining 5 or more years’ worth of data would provide us with a sense of the general timing, movement patterns and habitat use by migrating landbirds.
[Effects of migration on the fertility component of urban growth: the case of Tunis].
Picouet, M R
1983-01-01
The relationships among fertility, migration, and urban growth are explored using data from a survey of migration and employment in the city of Tunis, Tunisia. The survey, undertaken in 1972 and 1973, includes data on 1,850 households. Consideration is given to the process of integration of migrant women into urban life and to the consequent changes in their fertility behavior. The problems that these changes in fertility pose for the process of estimating the respective contributions of immigration and fertility to the rate of urban growth are considered.
Outsourcing care: how Peruvian migrants meet transnational family obligations.
Leinaweaver, Jessaca B
2010-01-01
Migration from Peru has increased dramatically over the past decade, but the social and relational repercussions of these transnational movements have not yet been fully explored. Examination of the way migrants manage their responsibilities to dependent kin in Peru reveals that child fostering makes it possible for adults to migrate in search of better work opportunities by ensuring care for their children and company for their older relatives. For Peruvians engaging in labor migration, child fostering tempers some of the challenges of continuing to participate in established social networks from a distance.
On the role of PDZ domain-encoding genes in Drosophila border cell migration.
Aranjuez, George; Kudlaty, Elizabeth; Longworth, Michelle S; McDonald, Jocelyn A
2012-11-01
Cells often move as collective groups during normal embryonic development and wound healing, although the mechanisms governing this type of migration are poorly understood. The Drosophila melanogaster border cells migrate as a cluster during late oogenesis and serve as a powerful in vivo genetic model for collective cell migration. To discover new genes that participate in border cell migration, 64 out of 66 genes that encode PDZ domain-containing proteins were systematically targeted by in vivo RNAi knockdown. The PDZ domain is one of the largest families of protein-protein interaction domains found in eukaryotes. Proteins that contain PDZ domains participate in a variety of biological processes, including signal transduction and establishment of epithelial apical-basal polarity. Targeting PDZ proteins effectively assesses a larger number of genes via the protein complexes and pathways through which these proteins function. par-6, a known regulator of border cell migration, was a positive hit and thus validated the approach. Knockdown of 14 PDZ domain genes disrupted migration with multiple RNAi lines. The candidate genes have diverse predicted cellular functions and are anticipated to provide new insights into the mechanisms that control border cell movement. As a test of this concept, two genes that disrupted migration were characterized in more detail: big bang and the Dlg5 homolog CG6509. We present evidence that Big bang regulates JAK/STAT signaling, whereas Dlg5/CG6509 maintains cluster cohesion. Moreover, these results demonstrate that targeting a selected class of genes by RNAi can uncover novel regulators of collective cell migration.
Patsialou, Antonia; Bravo-Cordero, Jose Javier; Wang, Yarong; Entenberg, David; Liu, Huiping; Clarke, Michael; Condeelis, John S.
2014-01-01
Metastasis is the main cause of death in breast cancer patients. Cell migration is an essential component of almost every step of the metastatic cascade, especially the early step of invasion inside the primary tumor. In this report, we have used intravital multiphoton microscopy to visualize the different migration patterns of human breast tumor cells in live primary tumors. We used xenograft tumors of MDA-MB-231 cells as well as a low passage xenograft tumor from orthotopically injected patient-derived breast tumor cells. Direct visualization of human tumor cells in vivo shows two patterns of high-speed migration inside primary tumors: a. single cells and b. multicellular streams (i.e., cells following each other in a single file but without cohesive cell junctions). Critically, we found that only streaming and not random migration of single cells was significantly correlated with proximity to vessels, with intravasation and with numbers of elevated circulating tumor cells in the bloodstream. Finally, although the two human tumors were derived from diverse genetic backgrounds, we found that their migratory tumor cells exhibited coordinated gene expression changes that led to the same end-phenotype of enhanced migration involving activating actin polymerization and myosin contraction. Our data are the first direct visualization and assessment of in vivo migration within a live patient-derived breast xenograft tumor. PMID:25013744
A genetic atlas of human admixture history
Hellenthal, Garrett; Busby, George B.J.; Band, Gavin; Wilson, James F.; Capelli, Cristian
2014-01-01
Modern genetic data combined with appropriate statistical methods have the potential to contribute substantially to our understanding of human history. We have developed an approach that exploits the genomic structure of admixed populations to date and characterize historical mixture events at fine scales. We used this to produce an atlas of worldwide human admixture history, constructed using genetic data alone and encompassing over 100 events occurring over the past 4,000 years. We identify events whose dates and participants suggest they describe genetic impacts of the Mongol Empire, Arab slave trade, Bantu expansion, first millennium CE migrations in eastern Europe, and European colonialism, as well as unrecorded events, revealing admixture to be an almost universal force shaping human populations. PMID:24531965
Fournier-Level, Alexandre; Perry, Emily O.; Wang, Jonathan A.; Braun, Peter T.; Migneault, Andrew; Cooper, Martha D.; Metcalf, C. Jessica E.; Schmitt, Johanna
2016-01-01
Predicting whether and how populations will adapt to rapid climate change is a critical goal for evolutionary biology. To examine the genetic basis of fitness and predict adaptive evolution in novel climates with seasonal variation, we grew a diverse panel of the annual plant Arabidopsis thaliana (multiparent advanced generation intercross lines) in controlled conditions simulating four climates: a present-day reference climate, an increased-temperature climate, a winter-warming only climate, and a poleward-migration climate with increased photoperiod amplitude. In each climate, four successive seasonal cohorts experienced dynamic daily temperature and photoperiod variation over a year. We measured 12 traits and developed a genomic prediction model for fitness evolution in each seasonal environment. This model was used to simulate evolutionary trajectories of the base population over 50 y in each climate, as well as 100-y scenarios of gradual climate change following adaptation to a reference climate. Patterns of plastic and evolutionary fitness response varied across seasons and climates. The increased-temperature climate promoted genetic divergence of subpopulations across seasons, whereas in the winter-warming and poleward-migration climates, seasonal genetic differentiation was reduced. In silico “resurrection experiments” showed limited evolutionary rescue compared with the plastic response of fitness to seasonal climate change. The genetic basis of adaptation and, consequently, the dynamics of evolutionary change differed qualitatively among scenarios. Populations with fewer founding genotypes and populations with genetic diversity reduced by prior selection adapted less well to novel conditions, demonstrating that adaptation to rapid climate change requires the maintenance of sufficient standing variation. PMID:27140640
NASA Astrophysics Data System (ADS)
Smith, Cameron M.
2014-04-01
Designing interstellar starships for human migration to exoplanets requires establishing the starship population, which factors into many variables including closed-ecosystem design, architecture, mass and propulsion. I review the central issues of population genetics (effects of mutation, migration, selection and drift) for human populations on such voyages, specifically referencing a roughly 5-generation (c. 150-year) voyage currently in the realm of thought among Icarus Interstellar's Project Hyperion research group. I present several formulae as well as concrete numbers that can be used to help determine populations that could survive such journeys in good health. I find that previously proposed such populations, on the order of a few hundred individuals, are significantly too low to consider based on current understanding of vertebrate (including human) genetics and population dynamics. Population genetics theory, calculations and computer modeling determine that a properly screened and age- and sex-structured total founding population (Nc) of anywhere from roughly 14,000 to 44,000 people would be sufficient to survive such journeys in good health. A safe and well-considered Nc figure is 40,000, an Interstellar Migrant Population (IMP) composed of an Effective Population [Ne] of 23,400 reproductive males and females, the rest being pre- or post-reproductive individuals. This number would maintain good health over five generations despite (a) increased inbreeding resulting from a relatively small human population, (b) depressed genetic diversity due to the founder effect, (c) demographic change through time and (d) expectation of at least one severe population catastrophe over the 5-generation voyage.
Fournier-Level, Alexandre; Perry, Emily O; Wang, Jonathan A; Braun, Peter T; Migneault, Andrew; Cooper, Martha D; Metcalf, C Jessica E; Schmitt, Johanna
2016-05-17
Predicting whether and how populations will adapt to rapid climate change is a critical goal for evolutionary biology. To examine the genetic basis of fitness and predict adaptive evolution in novel climates with seasonal variation, we grew a diverse panel of the annual plant Arabidopsis thaliana (multiparent advanced generation intercross lines) in controlled conditions simulating four climates: a present-day reference climate, an increased-temperature climate, a winter-warming only climate, and a poleward-migration climate with increased photoperiod amplitude. In each climate, four successive seasonal cohorts experienced dynamic daily temperature and photoperiod variation over a year. We measured 12 traits and developed a genomic prediction model for fitness evolution in each seasonal environment. This model was used to simulate evolutionary trajectories of the base population over 50 y in each climate, as well as 100-y scenarios of gradual climate change following adaptation to a reference climate. Patterns of plastic and evolutionary fitness response varied across seasons and climates. The increased-temperature climate promoted genetic divergence of subpopulations across seasons, whereas in the winter-warming and poleward-migration climates, seasonal genetic differentiation was reduced. In silico "resurrection experiments" showed limited evolutionary rescue compared with the plastic response of fitness to seasonal climate change. The genetic basis of adaptation and, consequently, the dynamics of evolutionary change differed qualitatively among scenarios. Populations with fewer founding genotypes and populations with genetic diversity reduced by prior selection adapted less well to novel conditions, demonstrating that adaptation to rapid climate change requires the maintenance of sufficient standing variation.
Lindo, John; Achilli, Alessandro; Perego, Ugo A; Archer, David; Valdiosera, Cristina; Petzelt, Barbara; Mitchell, Joycelynn; Worl, Rosita; Dixon, E James; Fifield, Terence E; Rasmussen, Morten; Willerslev, Eske; Cybulski, Jerome S; Kemp, Brian M; DeGiorgio, Michael; Malhi, Ripan S
2017-04-18
Recent genomic studies of both ancient and modern indigenous people of the Americas have shed light on the demographic processes involved during the first peopling. The Pacific Northwest Coast proves an intriguing focus for these studies because of its association with coastal migration models and genetic ancestral patterns that are difficult to reconcile with modern DNA alone. Here, we report the low-coverage genome sequence of an ancient individual known as "Shuká K áa" ("Man Ahead of Us") recovered from the On Your Knees Cave (OYKC) in southeastern Alaska (archaeological site 49-PET-408). The human remains date to ∼10,300 calendar (cal) y B.P. We also analyze low-coverage genomes of three more recent individuals from the nearby coast of British Columbia dating from ∼6,075 to 1,750 cal y B.P. From the resulting time series of genetic data, we show that the Pacific Northwest Coast exhibits genetic continuity for at least the past 10,300 cal y B.P. We also infer that population structure existed in the late Pleistocene of North America with Shuká K áa on a different ancestral line compared with other North American individuals from the late Pleistocene or early Holocene (i.e., Anzick-1 and Kennewick Man). Despite regional shifts in mtDNA haplogroups, we conclude from individuals sampled through time that people of the northern Northwest Coast belong to an early genetic lineage that may stem from a late Pleistocene coastal migration into the Americas.
Rodríguez-Correa, Hernando; Oyama, Ken; Quesada, Mauricio; Fuchs, Eric J; González-Rodríguez, Antonio
2018-03-02
Lower Central America is an important area to study recent population history and diversification of Neotropical species due to its complex and dynamic geology and climate. Phylogeographic studies in this region are few in comparison with other regions and even less for tree species. The aim of the present study was to characterize the phylogeographic structure in two partially co-distributed endemic oak species (Quercus costaricensis and Q. bumelioides) of the Costa Rican mountains using chloroplast short sequence repeats (cpSSRs), and to test for the effect of geological and palaeoclimatic processes on their population history. Genetic diversity and structure, haplotype networks, patterns of seed-mediated gene flow and historical demography were estimated for both species. Results suggested contrasting patterns. Quercus costaricensis exhibited high values of genetic diversity, a marked phylogeographic structure, a north-to-south genetic diversity gradient and evidence of a demographic expansion during the Quaternary. Quercus bumelioides did not show significant genetic structure and the haplotype network and historical demography estimates suggested a recent population expansion probably during the Pleistocene-Holocene transition. Phylogeographic structure of Q. costaricensis seems to be related to Pleistocene altitudinal migration due to its higher altitudinal distribution. Meanwhile, historical seed-mediated gene flow through the lower altitudinal distribution of Q. bumelioides may have promoted the homogenization of genetic variation. Population expansion and stable availability of suitable climatic areas in both species probably indicate that palaeoclimatic changes promoted downwards altitudinal migration and formation of continuous forests allowing oak species to expand their distribution into the Panamanian mountains during glacial stages.